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1 INTRODUCTION

In this paper we study optimal selling strategies when a producer faces a stochastic and dy-

namic arrival of customers from different market segments, considering a fixed capacity and a finite

planning horizon. We formulate the problem as a stochastic, dynamic programming model and

characterize the optimal policies as functions of the capacity and the time left until the end of the

planning horizon. We consider two features that enrich the problem: (i) we make no assumptions

concerning the particular order between the arrivals of different types of customers and (ii) we

allow for multiple types of products and downgrading. This is the case when there exists a natural

ordering of all products, so that every product is an acceptable substitute for those that are "worse"

than it.

This paper is motivated by the yield management problem that arises at the operational level in

the hotel industry. Hotel managers have to decide the best use of the limited number of rooms. As

defined by American Airlines (1987) the objective of yield management is "to maximize passenger

revenue by selling the right seats to the right customers at the right time," which can be applied

to our problem replacing seats by rooms.

Decisions are made at two levels when solving this problem. The first level is tactical: the

manager must decide the maximum number of reservations for each market segment that she accepts

at a given moment in time for a particular target date, i.e., given that the manager has already

accepted a number of reservations at a certain point in time and considering future stochastic

requests and cancellations, she must decide whether or not to accept a specific reservation request.

Usually, customers can cancel their reservations without any penalty for doing so. Thus, they do

not pay for the rooms until the actual date when they use them.

This tactical problem is closely related with the second level at which decisions are made, namely

the operational level. At this level every time a customer requests a room during the target date,

the manager has to decide whether or not to rent it to that customer, considering the number of

reservations made at the tactical level and potential customers that show up without reservations

(walk-ins). When making this decision, the manager does not know how many additional customers

will arrive that day, and whether among those who arrive there will be some for whom the room

currently being requested has a higher value. Special emphasis is given to the manager's ability to

downgrade rooms, for example, the manager may decide to give a customer a suite for the price of

a standard room when the latter is not available. The perishability of the product plays a central

role in the decision process; rooms that are not rented have a zero opportunity cost. At the tactical

level no revenues are collected; it is at the operational level that rooms are actually rented and
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revenues are collected.

At the operational level the manager knows the total number of reservations within each market

segment. However, the resulting number of reservations that turn into sales is a random variable

because of the no shows. Hotels usually have two types of reservations: the 6 p.m. hold and

guaranteed reservations. In the 6 p.m. hold reservation case a room is reserved until 6 p.m. and

it costs nothing for the customer if she does not show up. On the other hand, in the guaranteed

reservation case customers frequently must guarantee their reservations with a credit card. Despite

the fact that in practice hotels cannot always force customers to pay for the room if they do not

show up, the show-up rate is very large in this case. Therefore, due to the cancellations at the

tactical level and no shows at the operational one, managers usually overbook in order to maximize

the total expected profit. When doing this they must take into account the trade-offs of having idle

capacity due to no shows and cancellations, and turning down customers with the corresponding

rejection costs.

One of the key factors for successful management in the hotel industry is market segmentation as

stated in Merliss and Lovelock (1980). Usually, a segmentation considers at least three categories:

tourists, corporate travelers and groups. However, some hotels have explored a "finer" classification

considering more than 10 different categories as for example pure transient, executive service plan,

government workers, mini-vacations, corporate groups, airlines, and others. Each of these segments

can be characterized by the price customers pay for the room, the type of room that they request

and the rejection costs associated to turning them down. In general, this cost is difficult to quantify

because it is a combination of monetary and non-monetary costs. For example, if a customer with

a reservation for an hotel room is turned down, the rejection cost may be the monetary cost of

allocating that customer to another hotel combined with the non-monetary cost associated with

the loss in trustworthiness for failing to honor a reservation.

Managers often use downgrading as a complementary method to match the limited capacity

of the hotel with the uncertain demand experienced during the target date. Hotels usually have

different types of rooms which differ in their quality (size, furniture, service, etc.) as for example

suites, deluxe and standard rooms. Hence, there exists a natural order for the rooms where any

room can be substituted for all those that are better than it. Therefore, downgrading adds a new

degree of flexibility to the room assignment process.

In this paper we focus in the operational level. Most of the literature that studies the tactical

problem considers simplified dynamic relationships about what happens during the target date.

For example, some assume that managers have perfect information on arrivals during the target
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date while others suppose that customers show up in a specific sequence (e.g., customers that pay

less show up first). Among the papers that consider the problem at a tactical level, Ladany (1976)

proposes a dynamic programming formulation for managing reservations in the hotel industry; at

each stage a random number of reservation requests and cancellations are received. He assumes

that during the target date, all the customers arrive at the same time. Hence, the manager can do

perfect price discrimination at the operational level. Alstrup et. al. (1986) study the booking policy

for a single flight leg with two types of customers. They also assume that during the target date, all

customers arrive together. Bitran and Gilbert (1992) extend Ladany's analysis to the case where

customers do not arrive at the same time, assuming a specific order of arrival among various types

of customers. In practice, the arrival of customers from different market segments overlaps during

the target date and therefore managers must make the renting decisions in real time, considering

the trade offs discussed previously. The models presented in our paper consider this behavior as a

central feature in the decision process.

Although in this paper our focus is on the operational problem, the same methodology applies

to the tactical problem when cancellations are not allowed. In this case reservations and actual

sales become equivalent and there is no distinction between the decisions made at the tactical

and operational levels. Most of the literature that studies the tactical problem in the airline and

hotel industries does not model stochastic cancellations explicitly. For example, see the references

in Weatherford and Bodily (1992) for an extensive research overview in the yield management

area. In this context our models make a contribution when considering general patterns for the

arrival process of customers from different market segments and multiple types of products with

the possibility of downgrading.

One of the first papers that addresses this tactical problem is Littlewood (1972). The author

analyzes the problem of selling seats in the airline industry. He determines the maximum number

of seats that can be sold to customers paying lower fares in order to maximize expected profits; he

assumes two classes of customers where discount customers book their seats first. Optimization is

done over a single flight leg. Littlewood's results have been extended in various directions: Belobaba

(1989) considers an arbitrary number of fare classes, Brumelle et al. (1990) analyze separately the

cases of dependent demand (the demand of discount fare customers gives information about the

future demand of full fare customers), goodwill cost and spill rate (the proportion of full fare

customers that is turned down), and upgrading (a discount fare customer decides to pay the full

fare if there is no available seats). All the models mentioned above assume that different types of

customers arrive in a preestablished order.

Hotels generally assign capacity for group requests (tours, conventions and others) a long time
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in advance before the target date. It is not unusual to book for conventions with more than 6

months anticipation. These decisions are made at a strategic level and therefore they only reduce

the total capacity available at the tactical and operational levels. Given the risk involved in this

large block of reservations, rooms usually have to be pre-paid eliminating the problem of no shows.

Thus, as a good approximation of reality we consider only single room requests at the operational

(or tactical) level.

We also consider single night stays. Despite the fact that multiple day reservations occur in

practice, there is evidence that shows that individual dates of a multiple-day reservation cancel or

show-up independently, see Bitran, Gilbert, and Leong (1992). Additionally, there are only some

critical days during the week when the hotel is likely to be fully booked. Therefore, the effort to

assign optimally the hotel's capacity should be concentrated on those days.

In this paper we present three models that differ in the degree of complexity in terms of the

assumptions considered. The first model determines the optimal policy for renting rooms when

there is only one type of room and there is no reservations made at the beginning of the target

date (customers show up without making previous reservations). Then, we extend the results for

the case of multiple types of rooms with the possibility of downgrading. These two models provide

a basis for building the final model that considers multiple types of rooms and a given number

of reservations at the beginning of the target date. The arrivals of different types of customers

is stochastic. We make no assumptions concerning the particular order between the arrivals of

different types of customers. We determine whether, at a given moment in time, the hotel manager

should rent a room to a particular type of customer, and, should the answer be positive, what room

should be rented.

We derive an optimal selling policy for this problem, which has a number of interesting proper-

ties. It is characterized by a collection of capacity threshold vectors that evolves over time (every

vector in the set has as many components as the number of products considered). It is optimal

to satisfy a customer's request as long as the actual capacity vector at the moment the request is

made has all components larger than or equal to at least one of the vectors in the current set of

threshold capacities. Furthermore, the collection of capacity threshold vectors evolves over time

in such a way that, for every class of customers and every actual capacity vector, there exists an

instant in time beyond which it is optimal to satisfy the customer's request.

The computational effort required to solve the problem can be significantly reduced using the

properties described above, making problems with one type of room tractable. However, when

real size problems with several types of rooms are considered, the computational burden becomes
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enormous even using this approach. Ad-hoc heuristics are developed to handle those cases.

The remainder of this paper is organized as follows. In Section 2 we introduce a dynamic pro-

gramming formulation for the general problem described above. We also characterize the optimal

policy for renting rooms in this section. In Section 3 we find a family of upper bounds for the

optimal solution. These bounds are useful when comparing various heuristics to solve the general

problem. In Section 4 we describe the heuristics developed to solve the general optimization prob-

lem. Section 5 contains the computational experiments that show the performance of the different

heuristics. Some of these experiments are performed using real data from a medium size hotel.

Finally, in Section 6, we present the conclusions.

2 MATHEMATICAL FORMULATION

In this section we present the mathematical formulation of the problem of finding the optimal

policy for renting hotel rooms to various classes of customers. We specify three different models,

which vary in the degree of complexity in terms of the number of products' types and customers'

classes considered. The first model considers multiple classes of customers that request a single type

of room at different prices. The second model incorporates multiple types of rooms products with

the possibility of downgrading. Finally, we extend the latter model to the case where reservations

are allowed prior to the target date. The first two models are also appropriate to solve the tactical

problem when cancellations prior to the target date are not a major factor.

The Poisson process is a natural model to represent the arrival process of customers to the

hotel. This process is commonly used in the literature; for example Alstrup et al. (1986) claim that

airline ticket requests have this distribution. Rothstein (1974) and Bitran and Gilbert (1992) use

a Poisson distribution to represent customer requests in the hotel industry. Generally, the arrival

rate of customers from each market segment varies during the day. For example, just few customers

with 6 p.m. hold reservations arrive after 6 p.m. Therefore, in this paper we consider a general non

homogeneous Poisson process to describe the arrival process of customers with arrival rates that

depend on the market segment and time.

A special consideration is incorporated for those market segments that have reservations because

the total number of arrivals is bounded by the total number of reservations. Therefore, we use a

truncated Poisson process to describe the arrival process from these customer classes where the

interarrival time is exponential and there is no more arrivals in the cases when all customers show

up.

In what follows we present a stochastic and dynamic programming formulation, where the stages
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correspond to the periods in which the planning horizon is divided. The state of the system, at a

given time, is determined by the current capacity, the class of the customer requesting a room, and

the number of pending reservations (if reservations are allowed). We divide the planning horizon

into time intervals small enough so that we can assume that the number of arrivals in each interval

is either zero or one. This approximation is based on an exact formulation which considers that

decisions are only made at the random instants when customers arrive. Due to the complexity for

solving this continuous time formulation, we formulate an approximate model where decisions are

made at discrete intervals of time. Reducing the length of the time intervals we can get as close as

we want to the continuous time formulation.

Products are classified into ordered types s E {1, ... , m}, where product 1 is the "best product"

(product 1 can substitute all other products) and m is the "worst." There are n classes of customers;

in the most general case, a class is determined by the product type requested by the customer, the

price that she pays, the rejection cost, and whether or not the customer has a reservation. Several

classes of customers can request the same type of product. Therefore, we define As as the set

of all types of customers that request product s. Before presenting the mathematical models, we

introduce the following notation:

1. 7ri: Price associated to a class i customer.

2. ci: Rejection cost associated to a class i customer.

3. C: Total number of rooms. For the case of multiple types of rooms, C is an m-dimensional

vector with C(s) equal to the number of available class s rooms.

4. T: Planning horizon. For the operational problem T corresponds to the target date.

5. R: Vector with pending reservations for each class of customer.

6. ep: Vector with a one in the pth position and zeros elsewhere.

7. Ex[f(z, y)]:expected value of f(x, y) with respect to the random variable x.

2.1 Model Without Reservations

In what follows, we analyze the case where cancellations are not allowed. Therefore, the opera-

tional and tactical problems in the hotel industry become indistinguishables. We first consider the

single type room case, and later we extend the results to the multiple types of rooms case where

downgrading is possible.
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2.1.1 Single product case

We define the function Ft(c, i) as the maximum expected profit from period t onwards if there

are c available rooms and a class i customer requests a product at time t (i = 0 corresponds to

no arrivals). Without loss of generality we assume that the planning horizon is divided in time

intervals of length equal to one. Therefore, the mathematical formulation corresponds to:

PROBLEM SP(C): Ei[Fo(C, i)],

where:

1) If c > 0, i 0:

Ft(c, i) = max' Rent a room: 7ri + Ej[Ft+l(c-1, j)],

Reject the customer: - ci + Ej[Ft+l (c, j)].

2) If c = 0, i 0:

Ft(c, i) = -c + Ej[Ft+ (c, j)].

3) If i = 0:

Ft(c, i) = Ej[Ft+l(c, j)].

Boundary conditions:

0 if i = 0,

FT(C, i) = 7ri if i 5 0 and c > 0,

-ci if i 0 and c = 0.

Hence, SP(C) is equal to the maximum expected profit during the planning horizon, considering

that the initial capacity is equal to C. Given an arrival and the current capacity, at every time

period the model gives the optimal policy of whether or not to accept the request.

In what follows, we characterize the optimal policy given by SP(C). The producer faces a non-

trivial decision only when there is a positive capacity and someone requests a room. The objective

function is this case is given by,

Ft(c,i) = max{7ri + Ej[Ft+i(c - 1, j)], -ci + Ej[Ft+l(c,j)]}.

Hence, the hotel rents the room if

7i + ci > Ej[Ft+l(c,j)] - Ej[Ft+(c - 1,j)],

and rejects the customer if

7ri + ci < Ej[Ft+l(c,j)] - Ej [Ft+l(c - 1, j)].
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Defining at(c) = Ej[Ft+l(c,j)] - Ej[Ft+l(c - 1,j)], we obtain that the hotel's policy for a class i

request at time t, given a capacity c, is to rent the room if 7ri + ci > at(c)-and reject the customer

if ri + ci < at(c).

The following proposition shows that associated with every instant in time t, there exists a

threshold C*t such that a class i customer is accepted as long as the current capacity is larger than

or equal to this threshold. The threshold C 0it is determined by equating the expected profits from

accepting and rejecting the customer's request, or equivalently: at(C*t) = 7ri + ci. The threshold

Ci*t decreases when the opportunity cost of accepting the customer's request, 7ri + ci, increases, i.e.,

if for a given capacity the optimal decision is to accept a specific type of customer then it is also

optimal to accept any type of customer with a higher opportunity cost.

Proposition 1 The function at(c) is a non-increasing function of c:

at(c - 1) > at(C).

PROOF: See Appendix 1. This is a particular case of Proposition 3. 1

The following proposition shows that, for a given capacity c and type i customer, there exists a

threshold time tic beyond which the customer's request is accepted. The threshold ric is obtained

equating act(c) and 7ri + ci. As we show in proposition 2, at(c) is a non-increasing function of t.

Hence, if we take two classes of customers i and j with 7ri + ci > rj + cj, then tic, < Tj, i.e., the

hotel rents the room to customers with a higher opportunity cost before renting it to customers

that yield a lower opportunity cost.

Proposition 2 The function at(c) is decreasing in t:

at() > at+l(c)

PROOF: See Appendix 1. This is a particular case of Proposition 4. !

The simple structure of the optimal policy can be summarized as follows. For a given instant in

time and customer class, there exists a capacity threshold such that a request within that class is

accepted as long as the current capacity is larger than the threshold. Similarly, there exists a time

threshold for every capacity and customer class, such that a request within that class that happens

after this time threshold is always accepted.

The main characteristic of the optimal policy is its simplicity. This feature has an important

consequence in terms of its practicality, because, in general, managers are more open to incorporate

rules that are intuitive and easy to verify.
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2.1.2 The multiple product case

The next model corresponds to the case of multiple types of rooms with the possibility of down-

grading. Similarly to the previous case, cancellations are not allowed. We define Ft(c, i) as the

maximum expected profit from period t onwards when there are c available rooms and a class i

customer arrives at time t (i = 0 corresponds to no arrivals). In this case c is a vector with as

many components as room types.

The mathematical formulation for this model corresponds to:

PROBLEM MP(C): Ei[Fo(C, i)],

where, assuming that a class i customer requests a type s room, i.e. i E A., we have:

1) If i $ 0 and there exists c(k) > 0 s.t. k < s:

Ft (c, i) = max Rent a room: max< <, .7ri + Ej[Ft+(c - ep, j)]

i Reject the customer: - c + Ej[Ft+l(c, j)].

2) If i # 0 and c(k) = 0 for all k < s :

Ft(c, i) = -ci + Ej[Ft+l(c, j)].

3) If i= 0

Ft(c, i) = Ej[Ft+l(c, j)]

Boundary conditions:

7ri if 3k E 1, 2,..., k} s.t. c(k) > 0 and i O,

FT(c, i) = -ci if Vk < s, c(k) = 0 and i 0,

0 if i = 0.

We observe that in the multiple product case the manager not only has to decide whether or not

to accept the request but also what room to rent. However, using the property that the objective

function is a non-decreasing function of the capacity (see Lemma 1 in Appendix 1) it is easy to

prove that if the optimal decision is to rent a room to a class i customer that requests a type s

room, then the hotel must rent the "lowest level" available room the customer is willing to accept

(this room is given by p = max{1, 2,..., S s.t. c(p) > 0). That is, if the hotel decides to rent a

room to a customer, it rents the room satisfying the customer's needs that is closest to the room

requested by the customer.

In what follows we derive the properties that characterize the optimal policy. Similarly to the

single product case, the manager faces a non trivial decision when a type i customer requests room

s and there is an available room that satisfies this request. Then, the optimal decision is given by:
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Ft(c, i) = max{7ri + Ej[Ft+l(c - ep, j)], -ci + Ej[Ft+l(c,j)]},

where p = max{l, 2,..., s} subject to c(p) > 0. Hence, the hotel rents the ro6m if:

7ri + ci > Ej[Ft+l(c,j)] - Ej[Ft+l(c - ep, j)]

and rejects the customer otherwise.

Defining at(c,p) = Ej[Ft+l(c,j)] - Ej[Ft+l(c - ep,j)], the optimal policy consists of renting the

room if ri + ci > at(c,p), and rejecting the customer if 7ri + c < at(c,p). The following two

propositions characterize the optimal policy.

Proposition 3 : The function at(c,p) is non-increasing as a function of c:

tt(c - el,p) > at(c,p) Vc, p,, t.

PROOF: See Appendix 1. I

Proposition 4 The function at(c,p) is non-increasing as a function of t:

at(,P) > tt+l(cp) Vc,p,t.

PROOF: See Appendix 1. I

We illustrate the properties described above with the following example. Consider a hotel that

has two types of rooms, where type 1 rooms can substitute type 2 rooms. For a given period of time,

and a given class i of customers, figure 1 shows the collection of capacity threshold vectors. This

corresponds to the curve that separates the acceptance and the rejection regions. If the current

capacity is in the acceptance region, the manager accepts the class i request. Otherwise, she rejects

the request. Assuming that class i customers request a type 2 room, downgrading only takes place

when there is no type 2 rooms available in the acceptance region. As time goes by, the curve that

corresponds to the set of capacity threshold vectors moves down, and the rejection region becomes

smaller.

The two preceding propositions show how the results obtained for the single product case extend

to the multiple product case with downgrading. The optimal policy for renting rooms in this case

is characterized by a collection of capacity threshold vectors that evolves over time (every vector

in the set has as many components as the number of room types considered). It is optimal to

satisfy a customer's request as long as the capacity vector at the moment the request is made has

all components larger than or equal to at least one of the vectors in the current set of threshold

10



100

90

80

70

i. 60
Ua0
et 50

40
40

- 30

20

10

0
0 10 20 30 40 50 60 70 80 90 100

Product I capacity: C(1)

Figure 1: Example of a collection of capacity threshold vectors

capacities. Furthermore, the collection of capacity threshold vectors evolves over time in such a

way that, for every class of customers and every actual capacity vector, there exists an instant in

time beyond which it is optimal to satisfy the customer's request.

Proposition 3 implies that if a customer's request is accepted when the capacity is equal to

c - el then it is also accepted when the capacity is equal to c, for all values of c and 1. Suppose

that the request is satisfied with a type p room when the capacity is c - el. When incrementing

the capacity to c this request will be satisfied with the same type p room or with a type I room if

this room is closer to the customer's need. This property is obtained by observing that:

at(c,p) > at(c, I) Vp < 1.

The above inequality uses the fact that the function Ft(c, i) is non-increasing in c (see Lemma 1 in

Appendix 1).

2.2 Model with Reservations

In this section we solve the operational problem that arises during the target date where the manager

knows the total number of reservations within each market segment. The demand associated

to these customers is stochastic because some of them do not show up, even though they have

reservations. Additionally, during the target date, the hotel receives requests of walk-ins, i.e.

customers that show up without making a previous reservation.
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At every instant in time, the demand associated to customers that have reservations depends

on the number of pending reservations, i.e., the number of reservations that have not been already

requested. Thus, in this case, the dynamic, stochastic programming model includes an additional

state variable that corresponds to the number of pending reservations, R, which has as many

components as the number of customer classes.

We define Ft(c, R, i) as the maximum expected profit from period t onwards, if the hotel starts at

period t with c available rooms, R pending reservations and a class i customer requests a room. We

recall that the customer class determines the price, the rejection cost, the room that the customers

requests, and whether she has a reservation or not. We define 6i equal to 1 when class i corresponds

to customers with reservations and i equal to 0 otherwise.

Considering the general multiple product case, the mathematical formulation is equal to:

PROBLEM MPR(C, R): Ei[Fo(C, R, i)],

where, assuming that a class i customer requests a type s product, i.e. i E A,, we have:

1) If i f 0 and there exists c(k) > 0 s.t. k < s:

Ft(c, R, i) = max Rent a room: maxl<p<s(ri + Ej[Ft+l(c - ep, R - iei, j)],

, Reject the customer: - ci + Ej[Ft+l(c, R - e,j)].

2) If i 0 and c(k) = 0 for all k < s:

Ft(c,R,i) = -ci + Ej[Ft+(c,R - biei,j)].

3) If i = 0

Ft(c, R, i)= Ej[Ft+l(c, R, j)].

Boundary conditions:

ri if 3k {1, 2,..., k} s.t. c(k) > 0 and i 0,
FT(c, R, i)= -ci ifVk < s, c(k)= 0 and i 0,

0O if i= O.

Similarly to the previous cases, we define:

at(c,p, R) = Ej[Ft+(c, R,j)- Ft+l(c - ep, R,j)].

The hotel rents a room to a class i customer if ri + ci > at(c,p, R - 6iei), and rejects the customer

otherwise.
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The following proposition shows that, similarly to the case without reservations, for a given

customer class, instant in time, and number of pending reservations, there is a set of capacity

threshold vectors such that the customer is accepted as long as the current capacity vector has all

the components larger than or equal to at least one of the threshold vectors.

Proposition b The function at(c, p, R) is non increasing as a function of the capacity:

at(c, p, R) < ct(c - el, p, R) Vc, t, R,p, 1.

PROOF: See Appendix 1. I

We are not able to extend the result that the function at(c,p, R) is decreasing as a function of

time, using the same proof that we have used for the case without reservations, because the number

of pending reservations varies as a function of the current arrival. For the particular case where the

probability of an arrival in the next unit of time depends on the number of pending reservations

but not on t, we can obtain the result that at(c,p, R) is decreasing as a function of time. This

proof is done by induction using the hypothesis:

Ft(c, R, i) - Ft(c - ep, R, i) > Ft+l(c, R, i) - Ft+l(c - ep, R, i).

Using the assumption that the probability of an arrival in the next unit of time depends only on

the number of pending reservations, we take the expected value on both sides of the induction

hypothesis, and obtain the desired result. We conjecture that the previous result still holds for the

case where the arrival probabilities depends on t. However, new approaches to prove this result are

needed.

The optimal policy for the general problem (multiple products, several types of customers and

reservations) can be found solving the dynamic programming formulation. However, this approach

takes too long for most "real size problems." The computational effort can be significantly reduced

using the properties characterizing the optimal policy derived in this section, making problems

with one product tractable. However, when real size problems with several types of products are

considered, the computational burden becomes intractable even using this approach. Therefore, it

is necessary to develop ad-hoc heuristics that provide good approximations for the optimal policy.

In the next section we present a family of upper bounds that will be useful to measure the quality

of these heuristics.
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3 UPPER BOUNDS

In this section we describe a family of upper bounds for the optimization problem described

Section 2, considering multiple types of rooms and reservations. These upper bounds are based on

the general idea that expected optimal profits increase when the amount of information available

about future demand becomes larger. For example, if at the beginning of the planning horizon the

manager knows the total number of requests that will take place, she can make a better decision

than the decision she would make without this information. Before presenting the model for the

upper bound, we define the following additional notation:

1. Rk: vector of pending reservations at the beginning of period k.

2. sk(R): vector with arrivals in period k if the initial vector of reservations is R. The component

sk(R) is a random variable that represents the number of class i requests in period k.

3. Bp: set of customer classes that request a room type better than or equal to p.

4. xk: vector of decision variables. The component xz corresponds to the

customers accepted in period k.

The following problem provides an upper bound for the problem MPR(C, R)

case with reservations).

PROBLEM UBK(C', R'): E,(R1)[Gi(C1, R', s1(R1))],

where:

number of class i

(multiple product

Gk(Ck, Rk, sk(Rk)) = max n ii k - c i (s k ( R k ) - x ik ) +

1 '" n i i

Esk+l (Rk+l) [Gk+l (Ck+l, Rk+l, Sk + l (Rk+l)]

s.t. xk < s(Rk), Vi = ,..., n,
P

X < E Ck(i), Vp = I, .. , m,
iEBp i=1

Rk+l = Rk _ fi(Sk(Rk))

Ck+1 = Ck - f2(k),

xk > 0 and integer, Vi = 1 . n.

(1)

(2)

(3)

(4)

(5)

The boundary condition is given by:

GK(CK, RK, sK(RK)) max E riZi - EcCi(sK(RK) - K )
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s.t. xK < sK (R K ), i = 1,...,n,
p

5SK < CK(i), Vp= 1,...,m,
iEBp i=1

zK > O and integer, Vi = 1,..., n.

The maximum number of customers that can be accepted in period k is bounded by the number

of requests received in that period. This condition is given by constraint (1), for each class of

customers. The set of constraints (2) corresponds to the capacity constraint for each class of room,

considering that they can be downgraded. Constraints (3) are conservation constraints for the

number of pending reservations, i.e., f(sk(Rk)) is equal to zero for all components associated

to customers without reservations and equal to the corresponding coordinate of sk(Rk)) for all

components associated to customers with reservations. Finally, constraints (4) are conservation

constraints for the capacity. Thus, the jth component of f 2 (z k ) is equal to the number of type j

products sold in period k considering that some of them were downgraded.

The index K of the family of upper bounds is given by the number of periods in which the

planning horizon is divided. To prove that the problem UBK(C, R) provides an upper bound for

MPR(C, R) we have to apply several times the property that the maximum of the expected value

is less than or equal to the expected value of the maximum. Instead of giving a formal proof, we

explain the intuition underlying these upper bounds. The problem UB,(C, R) corresponds to the

extreme case where the manager has perfect information about the number of arrivals for each class

of customers in the planning period. Therefore, she can make a better decision than the decision

she would make with less information. In problem UBK (C, R) we have divided the planning horizon

in K periods. At the beginning of every period the manager has perfect information about the

customers that show up in that period. Hence, she can make a decision better than the decision

she would make knowing the current arrival and the probability of potential arrivals in the future.

In the limit, when K is equal to the number of periods considered in the original problem (periods

with at most one arrival), the upper bound is equal to the optimal solution of MPR(C, R).

4 HEURISTICS

In this section we develop heuristics for finding "good" feasible solutions for the optimization

problems formulated in Section 2. These heuristics are based on the characterization of the optimal

policies studied in Section 2.

We introduce the following additional notation:

1. ri = price associated to a class i customer.
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2. ci = rejection cost of a class i customer.

3. Di= j/7rj + cj > ri + Ci}.

4. pref(i) = product type that a class i customer requests.

5. c = vector of current capacity.

6. Ai(t) = arrival rate of class i customers at time t.

7. T = planning horizon.

8. t = current time.

4.1 Heuristic 1

This heuristic works as follows. If at time t a customer requests a room, the manager calculates

the expected number of arrivals that have an opportunity cost (price plus rejection cost) larger

than the current request's opportunity cost, from t to the end of the planning horizon. The current

capacity is assigned optimally to this expected number of arrivals. If after the assignment there

is a remaining room that satisfies the current request, then the room is rented to the customer.

Otherwise, the manager rejects the request.

In order to assign optimally the rooms to the expected number of arrivals, the heuristic satisfies

first the expected demand of customers with the largest opportunity cost, downgrading if it is

necessary. Then it satisfies the expected demand associated to the second largest opportunity cost

and so forth.

DESCRIPTION OF HEURISTIC (HEUR1): Suppose a class i customer requests a type s room at

time t. The following algorithm is used to determine whether or not to accept the customer's

request:

Step 0: Initialization

Cap = c.

Step 1: Determining the remaining capacity after assigning the rooms to the expected number of

requests from t to T that have a larger opportunity cost than the current request's opportunity

cost.
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Si = Di

1.1 j = maxkeSi{7rk + Ck}

1.2 Exparr = ftT Aj(r)dT

1.3 p = pref(j)

If (Cap(p) > Exparr)then

Cap(p) = Cap(p)- Exp_arr

Exp arr = 0

else

Exparr = Exparr - Cap(p)

Cap(p) = 0

endif

if (p > 1) then p = p - 1, goto 1.3

Si= Si - {j},

if Si 0 goto 1.1,

else goto Step 2.

Step 2: Checking if there is an available room for the class i request.

p=s

2.1 if (Cap(p) > 0) then

Optimal decision +- give product p to the current request.

go to step 3

endif

if (p > 1)then p = p - 1, goto 2.1

else, Optimal decision +- reject the current request.

Step 3: STOP.

4.2 Heuristic 2

This heuristic is similar to the heuristic described above. The only difference is that instead of

considering the expected number of arrivals from t to the end of the planning horizon, the heuristic

considers a number of arrivals such that with 90% probability the actual number of arrivals is less

than it. HEUR2 is used to denote heuristic 2.

17



4.3 Heuristic 3

This heuristic is developed for the single product case. It calculates the marginal expected profit

of the room that satisfies the current request. If this marginal value is larger than the certain

opportunity cost associated to the current request, the manager rents the room. She rejects the

request otherwise.

In order to compute the marginal expected value, we consider the customers that have a larger

opportunity cost than the current request's net profit. For those customers, we calculate the

probability that the number of requests is larger than or equal to the current capacity. The weighted

opportunity cost for those customers times the above probability corresponds to the expected profit

for this marginal room.

Description of Heuristic 3 (HEUR3): Suppose there is a class i request at time t. The following

algorithm is used to determine whether or not to accept the customer's request:

Step 0: Initialization

Cap = C,

Step 1: Computing the weighted opportunity cost

Weighted-prof = EjeDi(rj + cj) X Aj/ >jeD, Aj

Step 2: Computing the probability that there are more or equal number of requests than the

current capacity.

Probit = Pr{(jEDi class j requests in (T - t) > Cap )

Step 3:

If (Probit x Weightedprof > ri + ci) then

Optimal decision - reject the current request

else

Optimal decision - accept the current request

Endif

Step 4: STOP.

4.4 Heuristic 4

In this heuristic the manager satisfies all the requests as long as there is an available product

that satisfies the customer's need. The decisions are made without considering any additional
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information. This simple heuristic is only used for the purpose of comparison with the other

heuristics. HEUR4 is used to denote heuristic 4.

5 COMPUTATIONAL EXPERIMENTS

In this section we use Monte Carlo simulations to evaluate the performance of the heuristics de-

scribed in Section 4. We assume that customers arrive according to a Poisson process, and every

time a customer requests a room, the manager makes a decision following the rules given by the

heuristics. We simulate the arrival process during an operational day and compute the total profit

obtained under the application of the different heuristics. Averaging the profits given by repeated

simulations, we obtain a statistical estimate of the expected profit.

We consider three groups of computational experiments. The first two sets of experiments

correspond to relatively small applications that allow us to compute the optimal solutions. The

parameters used in the third application are based on information given by the manager of a

medium size hotel in Santiago, Chile. In this real application, we are not able to compute the

optimal solution, therefore we compare the performance of the heuristics with the upper bounds

for the general optimization problem.

A statistical estimate of the value of the upper bounds is also computed using Monte Carlo

simulations. Recall that the upper bounds correspond to the expected value of an optimization

problem. The expectation is taken over all possible arrival combinations and therefore it is infeasible

to compute its exact value.

The criterium to stop the simulations is given by a standard deviation of less than 0.1% of the

expected value. In the experiments we compute two upper bounds. The first one, UB1, corresponds

to the case where all the requests are known at the beginning of the planning horizon. In the second

upper bound, UB2, the planning horizon is divided in two periods; the requests during each segment

are known at their beginning.

In what follows, we define the booking index, OB, to measure the hotel's capacity as a function of

the expected number of requests.

Single product case: OB is equal to the total expected number of arrivals over the total capacity.

OB = =1 lf7l Ai(t)dt
C

Multiple product case: first we compute the booking index for each type of product, OB., using

the cumulative capacity and the cumulative number of arrivals. Then, we calculate OB as
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the weighted booking index, where the weights correspond to the expected number of arrivals

that request each type of product.

EA, = f j Ai(t)dt
iEA,

OB = =1 EAj0 B.
Ej3= C)

and finally,

m EA,
OB = Z OB, E E

In the first group of computational experiments, we consider a single type of room, and 3 classes

of customers that arrive in a Poisson manner with arrival rates equal to 5, 3, and 2 customers per

hour. The prices that they pay are $200, $120, and $85 respectively and there is no rejection costs.

We can think on these customers as walk-ins that do not have a previous commitment with the

hotel. The planning horizon is 12 hours. The performance of the heuristics is shown in table 1:

Table 1: Single Product Case

The first column in table 1 is the hotel's capacity (number

columns have the performance of the heuristics compared with

of available rooms). The next three

the optimal solution. Finally, in the

last three columns appear the performance of the heuristics with respect to the upper bound UB2.
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Capacity OB * 100 HEUR1 HEUR3 HEUR4 HEUR1 HEUR3 HEUR4

# rooms w/r w/r w/r w/r w/r w/r

opt. sol. opt. sol. opt. sol. UB2 UB2 UB2

50 240 99.9% 99.9% 76.7% 99.8 % 99.8% 76.6 %

60 200 98.9% 98.4% 78.5% 98.2 % 97.7% 78.0 %

70 171 98 .5% 98.1% 82.2% 97.4 % 97.0% 81.3 %

80 150 99.1% 99.0% 86.0% 98.0 % 97.8% 85.0 %

90 133 99.6% 99.6% 89.5% 98.5 % 98.5% 88.5 %

100 120 99.6% 99.6% 93.3% 98.5 % 98.6% 92.3 %

110 109 99.9% 100.0% 96.9% 99.0 % 99.1% 96.0 %



The performance of HEUR4 (to give a room to all the requests as long as there is an available

room) improves as long as the capacity increases. Naturally, if the capacity is very large, all the

heuristics must lead to the optimal solution. However, for the cases where the capacity is an issue,

HEUR4 performs much worse than the other heuristics. Therefore, in those cases, it is sensible to

use additional information as for example the current capacity and the probability distribution of

future arrivals. We also observe that HEUR1 and HEUR3 perform almost the same; for very small

and large capacities the solutions given by the heuristics are near to the optimal solutions. When

the capacity is small these two heuristics rent the rooms to the highest opportunity cost customers

which, intuitively, corresponds to the optimal strategy. On the other hand, when the capacity is

large enough the optimal strategy is to accept all the requests which is also the policy given by the

heuristics. The exact behavior can be seen in Figure 2 in Appendix 2. The expected profits appear

in Table 4 in Appendix 2.

In the second group of experiments we consider 2 types of rooms with the possibility of down-

grading. We also consider 3 types of customers with arrival rates equal to 2, 3 and 5 customers per

hour, prices equal to $200, $120, and $85, and room preferences equal to 1, 2 and 2 respectively.

No rejection costs are considered and the planning horizon is 12 hours.

Table 2: Multiple Product Case with Downgrading

21

Capacity OB * 100 HEUR1 HEUR2 HEUR4 HEUR1 HEUR2 HEUR4

(# rooms) w/r optimal w/r optimal w/r optimal w/r UB2 w/r UB2 w/r UB2

solution solution solution

(5,30) 850 99.8% 84.1% 85.6% 99.7% 84.0% 85.5%

(10,30) 528 99.8% 84.3% 84.3% 99.7% 84.2% 84.2%

(10,45) 463 98.5% 87.1% 90.1% 98.0% 86.6% 89.6%

(10,50) 448 98.7% 90.0% 91.9% 98.1% 89.5% 91.4%

(10,60) 425 99.0% 94.5% 94.6% 98.5% 94.1% 94.1%

(15,70) 305 99.4% 96.2% 96.4% 99.0% 95.8% 96.0%

(20,80) 240 99.6% 97.9% 97.8% 99.2% 97.5% 97.4%

(20,90) 231 99.9% 99.5% 99.3% 99.7% 99.2% 99.1%

(25,95) 195 100.0% 100.0% 100.0% 99.9% 100.0% 99.9%



The first column in Table 2 is the hotel's capacity (number of rooms). The rooms are ordered

according to their quality; thus the first number in the capacity vector corresponds to the suite

rooms. The next three columns correspond to the performance of HUER1, HEUR2, and HEUR4

compared with the optimal solution. Finally, the last three columns show the performance of

these three heuristics with respect to the upper bound UB2. HEUR2 and HEUR4 have a similar

behavior, HEUR4 being slightly better. However, these two heuristics have, in all the cases, a

worse performance than heuristic 1. HEUR2 follows highly conservative rules, because a customer

is accepted only if there is at most 10% probability for renting the room to a higher opportunity cost.

Therefore, it is worthwhile to apply HEUR1 because it gives better solutions to the optimization

problem. We also observe from Table 2 that the performance of HEUR1 is almost optimal in both

extremes; i.e. for very small and large capacities. When capacity is very small, is it always better

not to downgrade rooms because better quality rooms will be rented to the highest opportunity cost

customers. On the other hand, all the heuristics perform close to the optimal when the capacity

increases to the limit that all the requests should be accepted. The expected profits for these

experiments can be found in Appendix 2, Table 5 and the graphic behavior of heuristic 1 as a

function of the capacity in Figure 3, Appendix 2.

For the last set of experiments, we use parameters based on data of a medium size hotel in

Santiago, Chile. The hotel works with three main classes of customers: (i) guaranteed reserva-

tion customers that are guaranteed a room based on a previous arrangement, (ii) "6 p.m. hold"

customers that are guaranteed a room based on a previous arrangement only if they arrive before

6 p.m., and (iii) "walk-ins" that request a room during the target date without a reservation.

Within these categories, customers request standard and suite rooms. Therefore, the hotel faces

the demand of 6 classes of customers. The average percentage of requests that the hotel receives

in a day is equal to 81% of guaranteed reservation customers, 14% of 6 p.m. hold customers, and

5% of walk-ins.

The parameters used in the following simulations can be found in Appendix 2. In this case it is

not feasible to compute the value of the optimal objective function, because it takes too long. We

only compute the upper bounds UB1 and UB2 and the value of the objective function given by the

heuristics 1, 2 and 4.

Table 3 shows the performance of HEUR1, HEUR2 and HEUR4 compared with the upper

bounds given by UB1 and UB2. We observe that HEUR2 and HEUR4 have a similar behavior,

HEUR2 being slightly better. Both heuristics improve their performances when the capacity in-

creases, and in the limit when the capacity is large in comparison with the demand, they perform

close to the optimal solution. However, HEUR1 has a better performance than the other heuristics
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Table 3: A Real Case

in all the cases considered. We also observe that the worst performance of HEUR1 is 98.7% com-

pared with UB2, which is close to the optimal considering

equal to the upper bound.

that the optimal solution is less than or

6 CONCLUSIONS

This paper has studied optimal policies for renting hotel rooms to various classes of customers.
We have considered stochastic and dynamic arrival of customers from different market segments
(airline employees, government workers, executives, tourists, etc.), no assumptions concerning the
particular order between the arrivals of different classes of customers, and multiple types of rooms
with the possibility of downgrading. The limited capacity and the finite planning horizon play a
central role when determining the optimal selling strategies.

We have characterized the optimal policies as follows: given a period of time, if a request is
accepted for a certain capacity, then it is also accepted for any larger capacity. Furthermore, for
every class of customers and every capacity vector, there exits an instant in time beyond which it
is optimal to satisfy the customer's request.

Exact optimal policies can be computed for the single product case. For the general case with
multiple types of rooms, we have developed ad-hoc heuristics, based on the qualitative properties of
the optimal policies, to find approximations for the optimal solution. Computational results showed
that their performances are close to the optimal solution for a wide variety of realistic scenarios.
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Capacity OB * 100 HEUR1 HEUR2 HEUR4 HEUR1 HEUR2 HEUR4

(# rooms) w/r UB1 w/r UB1 w/r UB1 w/r UB2 w/r UB2 w/r UB2

(20,130) 186 100.0% 83.9% 81.9% 100.0% 83.9% 82.0%

(20,150) 168 99.8% 87.1% 86.0% 99.9% 87.2% 86.1%

(20,190) 143 99.3% 93.3% 92.7% 99.8% 93.8% 93.2%

(30,200) 122 98.6% 95.1% 94.3% 99.2% 95.6% 94.8%

(40,210) 108 98.2% 97.0% 96.5% 98.7% 97.4% 96.9%

(40,220) 105 98.6% 98.1% 97.6% 99.0% 95.5% 98.0%

(60,220) 93 99.4% 99.3% 99.2% 99.6% 99.5% 99.4%

(80,220) 84 99.6% 99.7% 99.6% 99.8% 99.9% 99.8%



The main feature of these heuristics is their simplicity which is extremely important in terms of

their practicality; managers are more open to use rules that are intuitive and easy to implement.

Perhaps the most important result of this paper is the simple characterization of the optimal

selling policies in a realistic framework where customers from different market segments arrive

simultaneously. We also added a new dimension to this problem when considering multiple types

of rooms with the possibility of downgrading; a practice widely used in the hotel industry.

APPENDIX 1

Lemma 1 The function Ft(c, i) is monotonically increasing as a function of the capacity:

Ft(c, i) > Ft(c - ep, i), Vc,p, t, i,

and

Ft(c - ek, i) > Ft(c - ep, i), Vk > p, and Vc, t, i.

The single product case corresponds to the particular case where c is a scalar and ep = ek = 1.

PROOF: Suppose we have an optimal policy when we start with a capacity equal to c - ep at time

t. This policy is also feasible when we start with a capacity equal to c at time t (and gives the

same value for the objective function), but it is not necessarily optimal. Therefore, the maximum

expected profit from time t onwards starting with capacity c - ep is less than or equal to the

maximum expected profit starting with capacity c. Hence,

Ft(c, i) > Ft(c - ep, i), Vc, p, t, i.

The same argument can be used when we replace c by c - ek with k > p, because product p can be

downgraded to be used as product k. I

Lemma 2 The objective function satisfies the following inequality:

Ft(c + el + ep, i) - Ft(c + el, i) < Ft(c + ep, i) - Ft(c, i), Vt, i, c,p, 1. (6)

PROOF: In what follows we use induction in t to prove the lemma for the single product case. The

objective function for the last period in the planning horizon is given by:

7ri if c > 0 and i 0,

FT(c, i)= -ci if c = O and i 0,

O if i = 0.
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We observe that given i, FT(C, i) trivially satisfies the inequality (6), i.e.,

FT(c + 2, i) - FT(c + , i) < FT(C + 1, i) - FT(, i) Vc.

In the induction hypothesis we assume that the inequality (6) is satisfied at period t + 1 and we

prove that it is also satisfied at period t. The objective functions at period t are given by (assuming

that i $ 0 and c > 0):

Ft(c, i)= f r + Ej[Ft+(c - 1,j)] (a),
-ci + Ej[Ft+l(c, j)] (b).

Ft(c + 1, i) = (ri + Ej[Ft+l(c, j)], (c),
-c + Ej[Ft+l( + 1, j)] (d).

Ft(C + 2, i) = | Xi + Ej[Ft+l(c + 1,j)] (e),
-c + Ej [Ft+l(c + 2, j)] (f).

In order to prove property (6) we have to consider all possible values for the functions above. Thus,

we have to evaluate the 8 combinations.

1. Combination (a) + (c) + (e): Replacing the objective functions for their corresponding values in

inequality (6), we get,

'i + Ej[Ft+l(c + 1, j)] - i - Ej[Ft+l(c, j)] < i + Ej[Ft+l(c, j)] - 7ri - Ej[Ft+l(c- 1, j)],

which is true by the induction hypothesis. The same proof holds for combinations (b) + (c) + (e),

(b)+ (d)+ (e), and (b)+(d)+(f).

Combination (a) + (d) + (f): In this case, when the capacity is c we accept the request, i.e.,

ci + 7ri > Ej[Ft+l(c, j)] + Ej[Ft+l(c - 1, j)],

and when the capacity is c + 1, we reject the request, i.e.,

ci + ri < Ej[Ft+l(c + 1, j)] + Ej[Ft+l(c, j)].

Both inequalities together lead to:

Ej[Ft+l(c + 1,j)] + Ej[Ft+l(c, j)] > Ej[Ft+1(c, j)] + Ej[Ft+i(c- , j)],

which contradicts the induction hypothesis. Hence, the combination (a) + (d) + (f) is infeasible.

Combinations (b) + (c) + (e), (b) + (d) + (e), and (b) + (d) + (f) are also infeasibles. Therefore,
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the inequality (6) holds for period t. When c = 0 the same proof holds. The case when i = 0 the

inequality (6) holds trivially. I

A similar proof holds for the case with types of rooms. We believe that the same proof can be

generalized for the multiple product case with more than two types of rooms. This lemma says that

the smaller the current inventory, the larger the profit associated to an extra room. The intuition

behind this lemma is that the opportunity cost of an extra room decreases when the capacity

increases because the stochastic process that determines the total demand does not change.

Lemma 3 The function Ft(c, R, i) is monotonically increasing as the function of the capacity and

it satisfies the property given in Lemma 2.

PROOF: The proof is an extension of the multiple product case without reservations. I

Proof of Proposition 3

In what follows we present the general proof for the multiple product case. By Lemma 2, we

know that the following inequality holds:

Ft+(c - e, j) - Ft+(c - ep - el, j) > Ft+(c, j)- Ft+(c - ep, j) Vt,i,c,p,l.

The probability of a class i arrival in the next unit of time depends only on t, hence we take the

expected value in both sides and the inequality still holds:

Ej[Ft+l(c- el, j) - Ft+l(c- el - ep, j)] > Ej [Ft+,(c, j ) - Ft+l(c- ep, j)].

Thus,

at(c - el,p) > at(c,p). I

Proof of Proposition 4

Assume that a type room is sold to a class i customer when the capacity is equal to c. Assuming

that 1 p, the same room is available for a class i customer when the initial capacity is c - ep,

then:

Ft+l(c,i)- Ft+(c- ep,i) = max{7ri + Ej[Ft+2 (c - el, j)], -ci+ Ej[Ft+2(c, j)]}

- max{ri + Ej[Ft+2(c - ep-e, j)], -ci + Ej[Ft+2(c - ep, j)]}

We analyze the following two cases:
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Case 1:

max{ri + Ej[Ft+2(c - e- epl,j)]; -ci + Ej[Ft+2(c- ep,j)]} = -ci + Ej[Ft+2(c - ep, j)]-

In this case,

Ft+l(c, i) - Ft+l(c - ep, i) > -Ci + Ej[Ft+2 (c, j)] - (-ci + Ej[Ft+2 (c - ep, j)])

Ft+l(c, i) - Ft+l(c-ep, i) > Ej[Ft+2 (c, j)] - Ej[Ft+2 (c - ep, j)] = at+l(c,p)

Ft+l(c, i) - Ft+l(c - ep, i) > at+l(c,p). (7)

Case 2:

max{ri + Ej[Ft+2 (c - - el,j)]; -ci + Ej[Ft+2 (c - ep, j)]} = ri + Ej[Ft+2(c - ep - el, j)].

In this case,

Ft+l (c, i) - Ft+ (c - ep, i) > ri + Ej[Ft+2(c - el, j)] - (7ri + Ej[Ft+2(c - ep - el, j)]),

Ft+l(c,i) - Ft+l(c - ep, i) > Ej[Ft+2 (c- el, j)] - Ej[Ft+2 (c - e- e el,j)] = at+l(c - el,p)

Ft+l(c, i) - Ft+l(c - ep, i) > at+l(c - el,p). (8)

Using Proposition 3, we obtain:

Ft+l(c, i) - Ft+l(c - ep, i) > ct+l(c - el,p) > at+l(c,p).

Equations (7) and (8) yield:

Ft+l(c, i) - Ft+ (c - ep, i) > at+l(c, p).

For i = 0, the previous result holds trivially. Therefore, using the fact that the probability of a new

arrival depends only on t, we take expected value on both sides of the inequality above, obtaining

the desired result:

E [Ft+, (c, i) - Ft+ (c - ep, i)] > at+l(,p),

at(C,P) > att+l(c,p).

For the special case when p = 1, we have two cases:

1. If the initial capacity c - ep has an available type p room, then the proof above holds without
any change.
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2. If the initial capacity c - ep does not have any type p room available, then, if the current

request is accepted the customer receives a type k room. This room is better than a type p

room, i.e., k < p. In this case, the proof changes slightly, so we present the part of the proof

that differs from the previous case. By definition we have:

Ft+l(c, i) - Ft+l(c - ep, i) = max{(i + Ej[Ft+2 (c - ep, j)]; -ci + Ej[Ft+2 (C, j)]}

- max{ri + Ej[Ft+2(c - ep - ek, j)]; -ci + Ej[Ft+2 (c - ep, j)]}.

Similarly to the previous proof, we have to analyze two cases. The first one is analogous to

the Case 1 above. The second case changes to the following:

max{ri + Ej[Ft+2 (c - e - ek,j)]; -ci + Ej[Ft+2(c - ep, j)]} = 7i + Ej[Ft+2 (C - ep - ek, j)].

Hence,

Ft+i(c, i) - Ft+l(c - ep, i) > 7r + Ej[Ft+2(c - ep, j)] - (ri + Ej[Ft+2(c - ep - ek, j)]),

Ft+l(c,i) - Ft+l(c - ep, i) > Ej[Ft+2(c - ep, j)] - Ej[Ft+2(c - ep - ek,j)] = at+l( - ep,k).

Using Proposition 3, we obtain:

Ft+l(c, i)- Ft+,(c - e,, i) > at+(c - e, k) > at+1 (C, k).

Finally, using that the function Ft+l (c) is increasing as a function of the capacity, we have:

at+l(c, k) > at+l(c,p) if k < p.

Therefore,

Ft+l(c,i) - Ft+l(c - ep, i) > at+l(c, p).

The rest of the proof follows the same as in the previous case. I

Proof of Proposition 5

Considering that the probability of a new arrival during the next

depends only on t and on the number of pending reservations, we apply

sides of the inequality given in Lemma 3 to obtain the desired result.

time interval of length At

the expected value on both

I
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APPENDIX 2

Table 4 shows the results obtained for a single product case and 3 classes of customers with arrival

rates equal to 5, 3, and 2 customers per hour. The room prices are $200, $120, and $85 respectively

and there is no rejection costs. The planning horizon is 12 hours.

Table 4: Expected Profits for the Single Product Case.

Table 5 contains the expected profits for the case of 2 types of rooms, 3 types of customers with

arrival rates equal to 2, 3, and 5 customers per hour, prices equal to $200, $120, and $85, and room

preferences equal to 1, 2, and 2 respectively. No rejection costs are considered and the planning

horizon is 12 hours.

Table 5: Expected Profits for the Multiple Product Case.
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(# rooms) Opt. Sol. UB1 UB2 HEUR1 HEUR3 HEUR4

50 9964 9975 9974 9956 9950 7644

60 11682 11764 11757 11550 11489 9171

70 13021 13182 13170 12821 12776 10703

80 14226 14407 14389 14103 14078 12228

90 15378 15563 15542 15309 15312 13760

100 16372 16593 16549 16299 16309 15274

110 17221 17433 17381 17200 17219 16689

(# rooms) Opt. Sol. UB1 UB2 HEUR1 HEUR2 HUER4

( 5,30) 4578 4583 4583 4569 3850 3919

(10,30) 5578 5583 5585 5568 4593 4704

(10,45) 7036 7078 7075 6933 6127 6339

(10,50) 7463 7509 7506 7366 6717 6857

(10,60) 8314 8360 8357 8233 7860 7867

(15,70) 10158 10204 10202 10095 9775 9794

(20,80) 11934 11982 11977 11880 11679 11667

(20,90) 12672 12705 12697 12664 12603 12588

(25,95) 13615 13652 13625 13613 13623 13614



Table 6 contains the expected profits for a real application. The planning horizon is a operational

day that starts at 8 a.m. and finishes at 12 p.m. The parameters correspond to:

1. Number of customers : 6

2. Number of products : 2

3. Prices : (190, 200, 250, 70, 80, 110)

4. Rejection costs : (190, 100, 0 , 70, 40, 0)

5. Room preferences : (1, 1, 1, 2, 2, 2)

6. periods in the planning horizon: 8-10,10-12,12-16,16-18,18-20, 20-21,21-24

7. Arrival rate (guarantee) : (3.1, 53.9, 3.1, 3.1, 3.1, 53.9, 3.1) customers/hour.

8. Arrival rate (6 p.m. ) : (.46, 16.7, .46, .46, 0, 0, 0) customers/hour.

9. Arrival rate (walk-ins) : (.32, .32, .32, 3.6, 3.6, 3.6, 3.6) customers/hour.

Table 6: Expected Profit for a Real Case.
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(# rooms) UB1 UB2 HEUR1 HEUR2 HEUR4

(20,130) 5924 5923 5925 4970 4854

(20,150) 8740 8728 8722 7609 7512

(20,190) 13889 13813 13788 12953 12876

(30,200) 18725 18618 18465 17804 17656

(40,210) 22701 22601 22300 22014 21902

(40,220) 23548 23463 23228 23099 22990

(60,220) 25544 25491 25390 25374 25349

(80,220) 25849 25789 25747 25770 25744
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Figure 2: Performance of HEUR1 for the single product case

(5,30) (10,30) (10,45) (10,50) (10,60) (15,70) (20,80) (20,90) (25.95)
Capacity (#rooms)

Figure 3: Performance of HEUR1 for the multiple product case
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