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Abstract

This paper studies intertemporal pricing strategies when selling perishable products
in retail stores. Initially we present a continuous time model where a seller faces a

stochastic arrival of customers with different valuations of the product. For this model,

we characterize the optimal pricing policies as functions of time and inventory. We find

necessary and sufficient conditions for the optimal pricing strategy, which provide an

efficient algorithm to compute the optimal pricing policies. This model is extended to

consider a more realistic framework with periodic pricing reviews. We show that the

structure of the optimal pricing policies is consistent with the procedures observed in

practice; retail stores successively discount the product during the season and promote

a liquidation sale at the end of the planning horizon. We also show that the loss

experienced when implementing periodic pricing review policies instead of continuous

time policies is small when the appropriate number of reviews is chosen.

Finally, we generalize the model to the case of a company that has multiple retail

stores oriented to different market segments. For this case, we develop a heuristic to
solve real size problems; this heuristic has a satisfactory performance with respect to

an upper bound that we derive for the optimization problem. The paper also discusses
the broader applicability of the models to other industries that have similar features.



1 INTRODUCTION

Pricing a product is one of the most important decisions a seller has to make. As quoted

in Monroe (1990) "more and more, today's pricing environment demands better, faster, and

more frequent pricing decisions than ever before. It is also forcing companies to take a new

look at pricing and its role in an increasingly complex marketing climate."

In this paper we study optimal pricing strategies for perishable products in retail stores.

However, the same framework can be used to analyze other applications that present the

same structure. Section 4 presents examples of applications in the hotel, airline and other

industries.

Initially we model the situation of a store that must sell a product within a desired period

of time. This is a fairly common situation, in practice, with seasonal products as for example

fashion clothing. Usually, if there is an advertisement campaign during the selling season,

retail stores promote discount ranges for a family of products without necessarily specifying

individual prices. In some cases a sample of representative items are used to promote the

sale and customers do not know all the individual prices. Therefore, the arrival rate of

potential customers to the store is a response to the regular purchasing patterns during the

selling season (which can be affected by an advertisement campaign) rather than a function

of individual prices. Another instance that fits in our framework is the case of stores that

are known to operate with a strategy of periodic pricing reviews until the products are sold.

These stores use this strategy even though the products that they sell are not necessarily

perishable. As in the previous case, the arrival of customers to the store is a function of the

normal selling practices rather than a reaction to individual prices.

The population of potential customers, those who come to the store, is characterized by

a distribution of reservation prices, i.e., the maximum price that they are willing to pay for

the product. Thus, customers only buy the product if their reservation prices are higher

than or equal to the product's price. The reservation price reflects the value that customers

assign to the product. Hence, in general, it has a continuous distribution over the population

of potential customers.

The goal of the seller is to determine the pricing policy during the planning horizon

that maximizes the total expected profit, considering the heterogeneity of the population of
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customers in their willingness to pay for the product.

We first present a model where the price is updated, for all practical purposes, continu-

ously during the planning horizon. We characterize the optimal pricing strategy as a function

of the inventory and time left in the planning horizon, considering that all price paths are

allowed. We formulate a necessary condition for the optimal solution which is also sufficient

for a large family of problems. In those cases, the optimal pricing strategy has a close form

solution that can be efficiently computed. The solution to this model is not implementable

in practice because prices react to every sale destroying the notion of value of the product.

Later, we extend the basic model to incorporate periodic pricing reviews where prices

are allowed to change only at specific instants in time. This type of strategy simplifies the

implementation of price changes and is more acceptable to consumers. We show that by

choosing the appropriate number of reviews, the loss experienced by the seller when imple-

menting periodic pricing review policies instead of continuous pricing policies is very small.

We also show that the optimal pricing policies mimic the procedure commonly observed in

practice where retail stores successively discount the product over the planning horizon and

finally promote a liquidation sale.

Finally, we extend the models above to consider a company that has multiple retail stores

oriented to different market segments. Every store has its own inventory but a centralized

management system allows movement of merchandise from one store to another at the end

of each period taking into account the associated transportation costs. Hence, the goal

is to find the pricing strategies for the stores and the level of inventory that maximize

the company's total expected profit. Optimal solutions are difficult to obtain in this case,

specially when solving real size problems. Therefore, we develop an heuristic that has a

satisfactory performance with respect to an upper bound for this problem.

Traditional pricing strategies based on applying a mark-up to the cost of the article, see

Gabor and Granger (1964) and Monroe (1990), are not well suited for our problem. The

main factors that determine the pricing policy in our paper are the finite planning horizon,

the perishability of the products and the fact that after deciding the initial inventory, the

cost of the goods is a "sunk cost".

There are several papers that study intertemporal pricing models, where a monopolistic

seller faces a market of consumers with heterogeneous valuations for the product. These
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models assume perfect information, i.e., potential consumers always know the current price

of the product. Thus, for example, Kalish (1983) assumes that for nondurable goods, cus-

tomers buy as soon as the price falls below their reservation prices. Besanko and Winston

(1990) extend this model to incorporate the assumption that consumers are intertemporal

utility maximizers. These papers determine the optimal pricing policies assuming a known

deterministic distribution for the reservation prices. They also consider the uncapacitated

problem where the demand is always satisfied. The problem that we study in section 2

differs from those described above in that it considers that customers do not have perfect

information about the product's price before shopping at the store. Hence, sellers are not

able to do a perfect price skimming. We also assume that the reservation price is stochastic,

and sellers only know its probability distribution. Finally, an important factor in our model

is the limited number of units in inventory that must be managed efficiently in order to

maximize the total expected yield.

Gallego and van Ryzin (1993) present a model that is somehow related to the problem

that we study in subsection 2.1. Although the mathematical formulations are similar they

reflect different customers' behavior. In the case of their paper the arrival of customers to the

store responds continuously to changes in price of the specific product under consideration.

One possible interpretation of their formulation is that customers are continuously informed

about specific prices. As we explained earlier, in our case the arrival of customers to the

store is a function of the way the store conducts business rather than a function of a specific

price. In our framework the demand is also a function of the price through the distribution of

reservation prices. In section 2.2 we present comparative computational results for instances

where both approaches can be applied.

To the best of our knowledge the multiple store problem has not been addressed in the

literature in a formal way as we do it in section 3.

The remainder of this paper is organized as follows. In Section 2 we present the single

outlet model and characterize the optimal pricing policy. We also extend the formulation

to include periodic pricing reviews. Section 3 formulates the multiple outlet model and

develops a heuristic to solve the mathematical formulation. We provide an upper bound for

the problem that allows us to measure the performance of the heuristic. Finally, in Section 4

we present conclusions and extensions.

3

III



2 THE SINGLE OUTLET MODEL

In this section we study the case where a single retail store must sell a product within

a preestablished time frame using price adjustments to influence the demand. For example,

fashionable clothing and food products for special holidays usually fall in this category. We

assume that the arrival process of potential customers to the store is described by a Poisson

process with an arrival rate that is a function of the general purchasing patterns rather

than a function of the specific price of the product under consideration. This behavior

is realistic even in the cases where the store conducts an advertisement campaign during

the selling season because usually a discount range is announced for a family of products

instead of individual prices. In the models that we present in this section we consider a

constant arrival rate during the selling season. However, the mathematical formulations and

algorithms to find the optimal solutions are also applicable to the case of a time dependent

arrival rate, which could represent the effect of a specific promotion during the season.

The population of potential customers is characterized by the reservation prices, i.e., the

maximum price that they are willing to pay for the product. Hence, if the product's price is

lower than their reservation prices, customers buy the product. We consider that the seller

only knows the probability distribution of the customers' reservation prices. Thus, she faces

the trade-off of losing a customer due to a high price and losing the consumer's surplus 1

due to a low price. Hence, at the beginning of every period the seller has to decide the

product's price that maximizes the total expected profit during the planning horizon, given

the current inventory and the probability distributions for the arrival process and reservation

prices. Since the interval of time covered for a selling season tends, in general, not to exceed

two or three months inventory reorders are difficult. Thus, we consider that the seller orders

the product at the beginning of the planning horizon and reorders are not allowed.

We first present a model that determines the optimal pricing policy for perishable goods

where all price paths are allowed, i.e., prices can decrease or increase arbitrarily during the

planning horizon. In the second model we incorporate periodic pricing reviews where the

seller can modify the price on a periodic basis, as for example once a day, a week or a month.

'The consumer surplus is equal to the difference between the reservation price and the product's price.

4



Before presenting the models, we introduce the following notation:

A = customers' arrival rate per unit of time.

C = inventory at the beginning of the planning horizon.

L = length of the planning horizon.

f(x) = probability density function for the reservation price.

F(z) = cumulative distribution function for the reservation price.

2.1 THE CONTINUOUS TIME MODEL

In this model we consider that the price is updated, for all practical purposes, continuously

during the planning horizon. For this purpose we divide the planning horizon in intervals of

time small enough so that at most one arrival occurs in each time period. In the limit when

these time intervals go to zero we obtain the continuous time formulation. In the remainder

of this paper we refer to this model as the continuous time formulation even though it is

only an approximation to it.

We define the function Vt(c) as the maximum expected profit if the store starts with c

units at the beginning of period t. Since the planning horizon is usually short (one or two

months), the implicit discount factor is equal to one. The objective function at the beginning

of period t is given by the immediate expected revenue of selling a product at period t plus

the expected revenue from period t- 1 onwards (we count the periods in the planning horizon

backwards, i.e., 1 is the last period). The probability of selling a unit at price p in period t

is equal to the probability of an arrival times the probability that the arrival's reservation

price is higher than or equal to the current price p. For simplicity, we assume that the

salvage value of the products is zero. We define At as the time interval where at most one

arrival occurs (the value of At is determined by the customers' arrival rate). Hence, the total

number of periods during the planning horizon is equal to T = L/At. The mathematical

model is given by the following stochastic and dynamic programming formulation:

Vt(c) = max{AAt(1 - F(p))(p + Vt_i(c - 1)) + (1 - AAt(l - F(p))Vt_l(c)}. (1)p>O
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Boundary conditions:

V(O) = O Vt,
and,

V(c) = O Vc.

The following two propositions characterize the optimal pricing policy. The first propo-

sition shows that for a given period in time, the larger the inventory, the smaller the optimal

price. In our model, the only mechanism that the seller has to affect the demand is through

the pricing policy. Hence, the seller has to reduce the price to increase the demand when

the inventory increases. The second proposition shows that as long as the inventory remains

constant, the optimal price is decreasing in time; as time goes by the seller has less possibili-

ties of selling the products. Therefore, combining these two propositions, the optimal pricing

policies resulting from the model described above, are non monotonic during the planning

horizon, i.e., for a particular outcome of the arrival process and the reservation prices, the

optimal price is decreasing in time with jumps that correspond to the instances where the

product is sold. Furthermore, as we will show in section 2.2, the expected price, obtained

by taking the expectation over all the possible outcomes for the arrival process and for the

reservation prices, is not necessarily a decreasing function of time. We define pt,c as the

optimal price at period t if the total number of units in inventory is equal to c.

Proposition 1 For a given period of time, the optimal price is a non-increasing function of

the inventory.

Pt,c > Pt,c+l Vt, C

PROOF: See Appendix 1 . I

Proposition 2 For a given inventory, the optimal price is a non-increasing function of

time.

Pt,c > Pt-1,c Vt, c

PROOF: See Appendix 1 . I

Next we derive useful first order conditions for the stochastic dynamic formulation de-

scribed above. We first consider the single-period case, where the seller must price one good,
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there will be at most one buyer and the good perishes after one period. A necessary condi-

tion for p to be the optimal price is that the seller have no incentive to modify this price.

The additional revenue obtained by increasing the price by a small amount dp comes from

being able to sell the good at a higher price. The expected benefit this generates is equal to

the probability that a customer's reservation price is greater than p times the price change:

(1 - F(p))dp. Yet this additional revenue comes at a cost since a fraction of customers who

were willing to buy the good at the old price are no longer willing to buy it. This fraction

is equal to f(p)dp, thus the seller expects to lose pf(p)dp because of them. For p to be the

optimal price it must be the case that the gain and loss from a small change in price be the

same. It follows that:

pf(p) = 1 - F(p). (2)

In the multi-period case the benefit associated to increasing the price (and therefore the

right hand side of equation (2)) remains unchanged. Yet the loss associated by not selling

the product is partly offset by the possibility of selling it in the future. Since the expected

benefit of selling the product in the future is given by f(p)dp(Vt_l(c)- Vt_l(c- 1)) it follows

that the first order condition in the general case is given by:

[p - (Vt-(c) - Vt-l(c - l))]f(p) = 1 - F(p). (3)

The optimal pricing policy can be found by solving the non linear equation (3) backwards

in time. Examples can be easily constructed to show that there may be values of p satisfying

equation (3) that do not correspond to the optimal price. A sufficient condition for a price

satisfying (3) to be optimal is given by requiring that the function (1 - F(p))2 /f(p) be

decreasing in p. We summarize the results above in the following proposition:

Proposition 3 Assuming that the reservation price can be described by a differentiable cu-

mulative distribution function supported by the positive real line, a necessary condition for

the price p to be optimal at time t given an inventory equal to c corresponds to:

1- F(p)
p = en (p) + Vt_1(c) - Vt l( - 1) (4)

f(p)

If the function (1 - F(p))2 /f(p) is decreasing in p, then the first order condition described

in (4) has a unique solution and it corresponds to the optimal price.
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PROOF: See Appendix 1 .

There are several probability density functions for which the sufficient condition of Propo-

sition 3 is satisfied. For example, the exponential and Weibull distributions (k > 1).2 There

are other probability density functions with bounded, convex support for which the first or-

der condition leads to a feasible optimal solution. For example, the uniform distribution in

[0, b] has the property mentioned above. In general, when the density has a bounded support,

the first order condition is given by the corresponding Kuhn Tucker system of equations.

A stronger sufficient condition for a price satisfying the necessary condition to be optimal

is given by requiring that the hazard function associated with the reservation price distribu-

tion be increasing, where the hazard function H(p) is defined as H(p) = f(p)/(l - F(p)).

This function also has an interesting interpretation: given that the product's price is equal

to p and that the reservation price associated to the current request is larger than or equal to

p, H(p)dp is approximately equal to the probability that the current customer's reservation

price is in the range [p, p + dp]. Hence the larger the hazard function, the more likely it is

that the seller obtains all the consumer's surplus, conditional on making the sale.

The model has the property that the optimal pricing policy is constant over the planning

horizon when the capacity is large enough. If the planning horizon is divided in T periods,

then the total number of requests is bounded by T (considering that in a period of time at

most one arrival occurs). Therefore, for any initial inventory larger than or equal to T, the

optimal solution can be found by solving the single period problem given by:

ma{At(1 - F(p))p}.
p!o

In what follows we present a numerical example of the optimal price path given by the

model described above. We use a Poisson process to represent the customers' arrival process

to the store and a Weibull distribution to represent the probability density function for the

reservation prices 3. When using a unimodular distribution for the reservation price implicitly

2 The Weibull distribution with parameters k and r is equal to f(p) = kr(rp)k- 1 exp(-(rp)k) Vp >
O, k> O, r > 0.

3The Weibull distribution allows us to obtain a large variety of behavior for the reservation prices:
symmetry with respect to the mean, a heavier right tail, a heavier left tail, etc. For example, a form of

the Weibull distribution with shape parameter of 3.25 is almost identical with the unit normal distribution

(Johnson and Kotz (1970))
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we are assuming that the store faces a single market segment. This assumption is close to

reality, specially for stores located in local malls. The parameters considered for the Weibull

distribution correspond to r = 0.01 and k = 1.5. The shape of this distribution can be seen

in figure 4 in Appendix 1. We consider a planning horizon of one month and an arrival rate

of 200 customers per month. In this example, the length of the period of time, At, is such

that the probability of more than one arrival is less than 99.8%. Figure 1 shows the price

path for a particular outcome of the arrival process and the reservation prices. We observe

that the optimal price changes continuously during the planning horizon. In practice, this

solution is unrealistic because of the coordination and management costs associated to this

type of strategy and the confusing information that customers receive about the product's

value. The jumps in the price curve correspond to the instants in time where the product

is sold. The difficulty to implement in practice the optimal policies given by this model

motivates the formulation of a model that allows only periodic pricing reviews. We present

this model in the next subsection.

ZDU
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time

Figure 1: Price path for initial capacity equal to 50 units
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2.2 PERIODIC PRICING REVIEWS

In this section we extend the basic model to incorporate periodic pricing reviews where

prices are modified at discrete intervals of time, as for example once a day, week or month,

reducing management costs and coordination problems. We define K as the number of times

the price can be modified during the planning horizon and ATk as the length of the kth time

interval, and therefore, EK=1 ATk = L. This division of the planning horizon gives the seller

the flexibility of revising the price more frequently towards the end of the season. The new

formulation allows multiple arrivals during an interval of time.

We define the function VPk(c) as the maximum expected profit from period k onwards

if the initial inventory is c. Hence, the mathematical formulation is given by:

VPk(c) = max{ji[min(c,j)p + VPk-l(c- min(c,j))] Pr{jk(p) = j}}. (5)
- j=O

Boundary conditions:

VPk(O) = 0 Vk

and,

VP(c) = 0 Vc.

In equation (5), jk(p) denotes the random variable that represents the number of potential

sales in period k if the price is p. Its probability mass function is given by:

co -___ A
T

4(AATk)

Pr{jk(p) = = j!(n j))(1 - F(p))(F(p))- e
n=j j!(n - . n

Observing that the arrival process of actual buyers (customers that show up in the store
and whose reservation prices are higher than or equal to the current price) can also be seen
as a non-homogeneous Poisson process with arrival rate equal to A(p) = A(1 - F(p)) and
doing some algebraic manipulations the model above can be rewritten as follows:

VPk(c) = maxpexp- (p)aT E(A(p)ATk)j j + pc(1 - exp(P)TX )+
->O j=1 

Z VPt_(c - j)exp- A(P)AT ' ((p)ATk)j (6)
j=O J!
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This dynamic programming formulation is solved backwards in time. For each stage and

initial capacity it is necessary to solve a unidimensional non-linear optimization problem. In

all the computational experiments we use the Fibonacci algorithm to solve the non-linear

problem.

This model also has the property of a constant pricing policy when the capacity is large

enough. To prove this property, we observe that the constant pricing policy obtained for

formulation (1) is also feasible for formulation (6), therefore it is also optimal for (6).

In what follows we present a set of computational experiments that show the expected

profits given by periodic pricing reviews in comparison to continuous time policies. We

consider a single store that faces an average arrival rate of 50 customers per week for the

product under consideration. The planning horizon is 4 weeks and the parameters for the

Weibull distribution are r = 0.01 and k = 1.5. Table 1 summarizes the numerical results.

The first column contains the initial inventory in number of units. The second, third, forth

and fifth columns correspond to the maximum expected profit for the periodic pricing review

problems with 1, 2, 4, and 6 periods respectively, relative to the expected profit for the

continuous time problem. In table 1 we use VPK to denote the maximum expected profit for

the periodic pricing review problem with K periods and V* to denote the maximum expected

profit for the continuous time problem described in equation 1. We observe from Table 1

that the expected profits increase significantly when prices are allowed to change during

the planning horizon. Comparing the expected profits given by the periodic pricing review

problems with one period and six periods, we observe an improvement in the expected profits

in the range of 2.5% to 5.3%, which can be crucial to survive in the retail industry. We also

observe that the loss experienced by the seller when implementing periodic pricing reviews

instead of the continuous pricing strategies is very small when selecting the appropriate

number of reviews. In this set of experiments, the losses are less than 1.7% when making three

reviews and approximately 1.0% when making five reviews. Figure 2 shows the expected

price during the planning horizon for the continuous pricing policy and the periodic pricing

review policies with 1,2, and 4 periods. We observe that the expected price for the case

of 4 periods follows the continuous curve very closely during the first three weeks and the

difference is only significant in the last period.

Figure 3 shows the expected price during the planning horizon for the case of periodic

pricing reviews with four periods. The curves correspond to initial inventories of 4, 8 and

11
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Table 1: The one store problem

12 units respectively. Additionally to the curves shown in this figure we have computed the

expected prices for a range of initial inventories between 1 and 40 units. We have observed

that for small initial inventories, relative to the length of the planning horizon and the

arrival rate of customers, most of the price paths are decreasing as a function of time, and

therefore, the expected price is also monotonically decreasing. An example of this behavior

can be observed in figure 3 when the initial inventory is equal to 4. A different behavior is

observed for initial inventories that are in the middle of the inventory range considered in

this problem. In these cases there are several price paths for which the prices increase after

one or two periods in the planning horizon. Hence, the expected prices are not necessarily

monotonically decreasing as a function of time. The dynamics of the system in these cases

can be explained as follows: due to the fact that the initial inventory is large in comparison

to the planning horizon, the initial optimal price is relatively low. Thus, on average the seller

is able to get rid off an important fraction of the inventory in the first period. Then, in the

12

Initial Inventory (VP1/V*) * 100 (VP2/V) * 100 (VP4/V*) * 100 (VP 6/V*) * 100

1 94.1% 97.5% 98.9% 99.4%

2 94.4% 97.1% 98.6% 99.1%

3 94.6% 97.0% 98.4% 98.9%

4 94.8% 97.0% 98.4% 98.9%

5 94.9% 97.0% 98,3% 98.9%

6 95.0% 97.0% 98.3% 98.9%

8 95.2% 97.1% 98.3% 98.8%

10 95.4% 97.2% 98.4% 98.8%

12 95.5% 97.2% 98.4% 98.9%

18 95.8% 97.4% 98.5% 98.9%

25 96.1% 97.6% 98.5% 98.9%

30 96.3% 97.7% 98.6% 99.0%

35 96.5% 97.8% 98.7% 99.0%

40 96.6% 97.9% 98.7% 99.1%



I 1.5 2 2.5 3 3.5 4 4.5 5

time

Figure 2: Continuous time vs. Periodic review policies

next periods the optimal expected price is higher because the remaining inventory is "well

balanced" with respect to the time left until the end of the planning horizon. We also point

out that for the cases where the expected price goes up, the increment that we have observed

in the computational experiments has been less than 1.2%. When the inventory is large the

price paths tend to be constant during the planning horizon. As we showed earlier, in the

limit when the inventory goes to infinity, the optimal price is constant over the planning

horizon.

Summarizing the results shown in figure 3, we observe that the expected price is ap-

proximately constant during the first three periods with a big sale in the last week. These

solutions mimic the procedures commonly observed in practice where retail stores succes-

sively discount the product over the planning horizon and finally promote a liquidation sale.

2.3 OPTIMAL INITIAL INVENTORY

The models presented in the previous sections also allow to determine the optimal initial

inventory that the seller has to carry to maximize the total expected profit. The optimal

initial inventory, C*, can be found solving the problem:

Z = max(VT(C) - gC},
CEZ+
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Figure 3: Expected price for different initial inventories

where g is the unit cost of the goods. By lemma 2 in Appendix 1, we have that the function

VT(C) is concave as a function of the capacity. Hence, the optimal initial inventory is

determined by the inventory such that the marginal increment in the function VT(C) is

equal to the unit good's cost. The mathematical condition is given by:

VT(C*) - VT(C - 1) > g > VT(C' + 1)- VT(C*).

Hence, when solving the dynamic programming formulation to find the optimal pricing

policies, we can also compute the optimal initial inventory with little additional work.

3 THE MULTIPLE OUTLET CASE

In this section we study the case of a company that has multiple outlets, selling the

product to different market segments. We consider the case where the company can make

price discrimination, i.e., the same product in different outlets can be sold at different prices.

This situation usually happens with companies that have several retail stores with different

names that are oriented to different classes of customers. We assume that each store manages

its own inventory, however, a global allocation allows to move merchandise from one store to
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another at the end of each period of time (day, week or month). The goal is to determine the

pricing policies for the stores and the inventory management that maximize the company's

total expected profit. For simplicity in the presentation, in what follows we study the case

of a company with two retail stores. However, all the results can be directly extended to the

case of multiple stores. We introduce the following additional notation:

Ai = arrival rate of customers at store i, i = 1, 2.

(c}, c) = inventory at the end of period k in stores 1 and 2 respectively.

Ik = inventory at the beginning of period k in store i after adjusting the inventories, i = 1, 2.

v = moving cost per unit.

Zk= number of units moved from one store to another in period k.

jik(p) = random variable that represents the number of potential buyers in store i if the

price is equal to p during period k.

Fi(p)= cumulative density function for the reservation price in store i,i = 1, 2.

VPk(c+l, c+ 1) = maximum expected profit from period k onwards if the company starts

with an inventory equal to (c,+l, c+).

The objective function is given by the immediate expected profit in period k plus the

expected profit from period k - 1 onwards. Given the limited number of units in inventory,

the expected number of sales is the minimum between the inventory and the expected number

of buyers. Thus, the model has the following mathematical formulation:

VPk (Ck+l, C2+1) = max {P1 E min{i, Il Pr{jlk(Pl) = i}+p 2 E min{i, I} Pr{j2 k(p2 ) = i}+
P1 ,I,2t,' i=O i=O

-VZk + Ejlk(pl),i2(p2) [VPk-1 l(ck Ck)]}

s.t.

Ik + k += l + k+l (7)

Zk > Ik-C+1 (8)

Zk > Ik--Ck+l (9)
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Ck= Ik - min(I,jlk(pl)) (10)

C = I - min(I, j 2 k(p2)) (11)

P > 0 ,p2 0, P2 E Z + and Ik2 E Z +,

where the probability distribution for jik(P) is given by:

Pr{jik(p) = - (1 - Fi(p))J(F(p))-j exp-,AT(AiATk) i= 1,2.
,~=e j!(n - j)!
n=j

The first constraint corresponds to the balance equation for the inventory; the total initial

inventory must be equal to the total inventory after moving merchandise from one store to

another. Constraints (8) and (9) define the total number of units moved from one store to

another at the beginning of period k. Finally, constraints (10) and (11) update the inventory

at the end of period k.

This mathematical formulation is difficult to solve specially when solving real size prob-

lems. Thus, in what follows we present a heuristic developed to find a pricing policy for the

two stores model. The heuristic evaluates all possible inventory adjustments at the beginning

of each period and chooses the one that maximizes the total expected profit assuming that

the prices must be held constant until the end of the planning horizon.

Description of the heuristic: HEUR1

The following heuristic determines the pricing policy at the beginning of period k if the

initial inventories are equal to cl and c2 in stores 1 and 2 respectively.

Step 0: Initialization

rof = -00,

C = C1 + C2

Invl = 0

Inv 2 = c

Step 1: Solve the non-linear programming problem below to find the optimal prices in

period k if the inventories at stores 1 and 2 are Invl and Inv 2 respectively.

D(Invi, Inv 2) = max{pl min[NA(p,), Invl] + p2 min[Nx(p2), Inv] - vlInvl - cl)
p1 ,p2
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s.t.

pl > ,p2 > 0.

where AT = Ek=1 AT,, and N(pi) is a Poisson random variable with arrival rate A(pi) =

AiAT(1- Fi(pi))

Step 2: Check if the current solution leads to an improvement in the objective function.

If(D(Inv, Inv2) > prof)then

I = Inv,I2 = c-Invl

Pk = p,p=p2

Endif

Inv = Inv l + 1, Inv 2 = Inv 2 - 1

If(Invl < c) Goto Stepl

Step 3: STOP: the prices in period k in stores 1 and 2 are p and p2 respectively and the

initial inventories are equal to I and I2.

In what follows we present a model which solution corresponds to an upper bound for the

model presented above. In this upper bound both stores share the inventory permanently

during the planning horizon and prices can be updated after each At units of time, where

At is small enough so that in total, considering both stores, at most one arrival occurs in

every time period. Hence, the following model considers a total of L/It periods.

Proposition 4 The solution of the following problem is an upper bound to the optimization

problem described in this section.

Vt(ct+l) = max {AAt(l-Fl(pl))[pl+Vt-i(ct+l -1)]+A 2At(l- F2 (p2 ))[p2 +Vt_(ct+l -1)]PI ŽO,P2 >O

+[1 - A t(1 - F1(pl)) - A2 At(1- F2(P2))]Vt-1(ct+l)

where ct+l = c+1 + c2+1 .

PROOF: The proof is straightforward if we note that any feasible outcome for the selling

strategy in the optimization problem can be reproduced for the upper bound formulation,

without the costs of moving merchandise from one store to another. Thus, for example,

suppose that at period k, the optimal prices are pi and P2 and the optimal initial inventories

(after the adjustments) are I' and J2 for stores 1 and 2, respectively. Then, the upper bound
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formulation can reproduce the same solution taking pi and p2 as the optimal prices; if store

i sells I i units during period k then pi is set equal to a large number ("infinity") for any

additional unit. This avoids selling more units than those available at store i. Hence, any

selling strategy for the optimization problem is also feasible for the upper bound formulation

to a lower cost. I

The upper bound formulation is solved using the same approach used for the one store

model: we solve the first order condition for the optimal pricing strategy backwards in time.

This condition is given by:

Pc,t = Hj'(pt) + Vti(c) - Vti(c - 1). i = 1,2

We observe that the optimal price in store i consists of the sum of two terms. The first term,

H7l(p), depends only on the probability distribution for the reservation prices of the i-th

store's customers. The second term, Vt_(c) - Vt_(e- 1), takes into account the interaction

between both stores. The optimal expected profit, Vt(c), depends on the optimal pricing

policies for both stores from period t - 1 onwards, for any initial capacity.

In what follows we present computational experiments that show the performance of this

heuristic with respect to the upper bound. We use Monte Carlo simulations to estimate the

expected profits given by the heuristic. At every period in time, we determine the pricing

policy defined by the heuristic considering the available inventory and the remaining time in

the planning horizon. Then, we simulate the arrival process during the next period in the

planning horizon with the corresponding reservation prices. Finally, using this outcome, we

update the inventory at the end of the period and apply the pricing policy again. Taking the

average of the profits given by repeated simulations, we estimate the expected profit. The

simulations stop when the standard deviation is less than or equal to 0.1% of the expected

profit. The upper bounds are computed solving the corresponding dynamic programming

formulations.

Table 2 shows the performance of the heuristic for two problems that have the same

planning horizon divided in 2 and 4 periods where prices can be changed. We refer to these

problems as P2 and P4 respectively. The planning horizon is one month for both problems.

We consider arrival rates, for the product under consideration, of 200 and 150 customers

per month to stores 1 and 2, respectively. We use a Weibull distribution for the reservation

prices with parameters kl = 5, r1 = .010, andel = 0 for store 1 and k2 = 4, r2 = .007, and
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E2 = 0 for store 2. The shape of these two distributions can be seen in figure 4 in Appendix

1.

Table 2: The two stores problem

The first column is the initial inventory. The second and third columns contain the

performance of the heuristic with respect to the upper bound for problems P1 and P2

respectively. We observe that the heuristic's performance improves as long as the inventory

increases. Similarly to the single outlet case, when the inventory is large enough the optimal

pricing policy is constant over the planning horizon for each store and is equal to the pricing

policy given by the heuristic. In this case no merchandise is realocated from one outlet to

another. The overall performance of the heuristic is satisfactory with results in the range of

94.4% to 98.3% relative to the upper bound for problem P4. It is important to notice that

the upper bound tends not to be very tight with respect to the optimal solution. This is

due to the fact that in the upper bound formulation the inventory is permanently shared by

both outlets. Therefore, the problem can be seen as a single store that faces a joint demand

distribution and the inventory can be optimally allocated between these two different market

19

Initial HUER1: P2 HUER1: P4

Inventory w/r BOUND1 w/r BOUND1

2 94.2% 94.4%

4 93.7% 94.4%

6 94.0% 94.8%

8 94.8% 95.0%

10 95.2% 95.7%

15 95.5% 96.5%

18 95.9% 96.6%

25 96.4% 97.1%

30 96.7% 97.5%

40 97.1% 97.7%

60 97.4% 98.0%

80 97.5 % 98.3%
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segments as customers show up. To illustrate that the upper bound is not necessarily tight

we present the following two examples. In the first case we consider a problem with one

period and an initial inventory of one unit. The upper bound for this case is equal to

$266.0. Furthermore, it is straightforward to prove that, for this set of parameters, the

heuristic leads to the optimal solution equal to $247.5 which corresponds to 93.0% of the

upper bound (even though it is the optimal solution). In the second case we consider a

problem where the planning horizon is divided in four periods and the initial inventory is

equal to one unit. For this small example it is possible to compute the optimal expected

profit which is 97.7% of the upper bound. We observe that the performance of the heuristic

is 94.4% relative to the upper bound. However it improves to 96.4% when we compare it

with respect to the optimal solution.

4 CONCLUSIONS AND EXTENSIONS

This paper has studied optimal pricing strategies for perishable products in retail stores.

We have considered a continuous time problem where a seller faces a stochastic arrival of

customers with heterogeneous valuations of the product. For this model we have character-

ized the optimal pricing policies as follows: for every outcome of the arrival process with

the corresponding reservation prices, the optimal price is a decreasing function of time with

jumps when goods are sold. A necessary and sufficient condition for the optimal price is

given, which is satisfied for a large group of distributions for the reservation price. For these

distributions, the optimal pricing strategy can be easily computed solving the first order con-

dition backwards in time. We have also extended this model to incorporate periodic pricing

reviews which is a feature usually desired in practical applications. Computational experi-

ments have shown that the loss of profit when including the appropriate number of reviews

is small. We have also shown that the optimal pricing policies reproduce what is usually

observed in practice: retail stores promote successive price discounts with a liquidation sale

at the end of the season.

Finally, we have generalized the basic model to consider a company that has multiple

retail stores in different markets. We have developed an efficient heuristic to find approxima-

tions to the optimal pricing policies for this case, which are particularly useful when solving

real size problems.
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The models developed in this paper can be extended to incorporate reservation prices

that evolve over time. There are examples in practice where people are willing to pay less for

the same item as time goes by. For example, winter clothings have less value for customers

as the spring approaches. Another interesting extension is to consider bayesian updating of

the parameters in the reservation price distribution functions. We leave the formal study of

these two topics for future research.

OTHER APPLICATIONS

The models studied in this paper can also be applied to other industries that sell per-

ishable products or services (in the sense that their residual values are eventually equal to

zero). In what follows we cite three other potential applications.

1. Tickets for special events as for example sport games, theater performances and con-

certs.

2. Hotel rooms is another example that fits in this framework. Usually the reservation

process starts several weeks before the actual target date and managers develop pricing

strategies to maximize the total expected yield. The models developed in this paper can

be applied to this case without major changes when cancellations are not an important

issue.

3. Finally, the models can be used to determine the pricing strategies in the airline in-

dustry. As in the hotel industry case, the results derived in this paper can be applied

to selling seats for a particular flight when cancellations are not significant.

Appendix 1

Lemma 1 The function Vt(c) is non-increasing as a function of time.

Vt(c) > Vt-(c)

PROOF: For t = 1 the inequality holds trivially. We assume that it holds for t, and prove

it for t + 1.

Vt+l(c) = max{AAt(1 - F(p))(p + Vt(c - 1)) + (1 - AAt( - F(p)))Vt(c)},P>O
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using that the proposition is true for t, we obtain:

Vt+l(c) > max{AAt(1 - F(p))(p + Vt-l(c - 1)) + (1 - AAt(1 - F(p)))Vt_(c)}
p>O

which is equal to:

Vt+l(c) > Vt(c). 

Lemma 2 The function Vt(c) is a concave function of the capacity,

Vt(c + 1) - Vt(c) > Vt( + 2) - Vt(c + 1) Vt,c

and the additional profit given by an etra unit increases as long as the remaining time until

the end of the planning horizon increases,

Vt+1(c + 1) - Vt+l(c) > Vt( + 1)- Vt(c) Vt, c

PROOF: We define the following inequalities:

I1(c,t): Vt+l(c + 1) - vt+l(c) > Vt( + 1) - Vt(c) Vt,c

I2(c,t): Vt+(c)- Vt(c) > Vt+2(c)- Vt+l(c) Vt, c

I3(c, t): Vt(c + 1) - Vt(c) > Vt(c + 2) - Vt(c + 1) Vt, c

The proof is done by induction in k = t + c. The inequalities I(c, t), I2(c, t), and I3(c, t)

hold trivially for k = O. We assume that the three inequalities are satisfied for all t + c < k

and we prove that they hold for t + c = k.

i) We prove that I1(c,t) holds when t + c = k. For c = O, using lemma 1 we obtain that

I1(0, t) is true for all t. Suppose c > 0, hence:

for some p, we have,

Vt+i(c) = AAt(1 - F(p))i + AAt(1 - F(p))Vt(c - 1) + (1 - AAt(1 - F(p)))Vt(c),

subtracting Vt(c) from both sides of the equation above, we get,

V+i(c) - 1V(c) = AAt(1 - F(p))p + ALt(1 - F(p))(Vt(c - 1) - Vt(c)) (12)

Because p is feasible for Vt+l(c + 1) we have,

Vt+i(c + 1) > AAt(1 - F(p))p + AAt(1 - F(p))Vt(c) + (1 - AAt(1 - F(p)))Vt(c + 1),

22



subtracting Vt(c + 1) from both sides of the previous inequality we get,

Vt+l(c + 1) - Vt(c + 1) > \at(1 - F(p))p + AAt(1 - F(p))(Vt(c) - Vt(c + 1))

By I3(c - , t) we know that the following inequality holds,

Vt(c) - Vt(c + 1) > V(c - 1) - Vt(c)

hence, replacing it in (13) we obtain:

Vt+i(c + 1) - Vt(c + 1) > aAt(1 - F(p))p + A/t(1 - F(p))(Vt(c - 1) - Vt(c))

Finally, (12) and (14) together lead to,

I1(c,t) : Vt+l(c + 1) - Vt( + 1) > Vt+i(c) - Vt(c).

ii) We prove that I2(c,t) holds for t + c = k.

For some p we have,

Vt+2(c) = AAt(1 - F(p))p + AAt(1 - F(p))Vt+(c - 1) + (1 - AAt(1 - F(p)))l

subtracting Vt+l(c) from both sides of the equation above, we get,

Vt+2(c) - Vt+l(c) = AAt(1 - F(p))p + AAt(1 - F(p))(Vt+i(c - 1) - Vt+(c))

Because p is feasible for Vt+l(c) we have,

Vt+j(c) > AAt(1 - F(pi))p + AAt(1 - F(p))Vt(c - 1) + (1 - AAt(1 - F(p)))l

subtracting Vt(c) from both sides we get,

Vt+i(c) - Vt(c) > AAt(1 - F(p))p + AAt(1 - F(p))(Vt(c - 1) - Vt(c))

By Il(c - 1,t) we know that,

Vt(c - 1) - V(c) > Vt+1(c - 1)- Vt+l(c)

Replacing this inequality in (16) we obtain,

Vt+i(c) - Vt(c) > AAt(l - F(p))pi + AAt(1 - F(p))(Vt+i(c - 1) - Vt+(c)

23

)

(13)

(14)

4+1 (C),

(15)

(16)

(17)

III



Finally, (15) and (17) lead to:

12(c,t): Vt+l(C) - Vt(c) > Vt+2(C) - Vt+l().

iii) Finally, we prove that the inequality 13(c, t) holds for k = c + t.

Similarly to the previous cases, for some p, we get the following two inequalities:

Vt(c+2) - Vt_(c+ 1) = At(1-F(p))p+(1 -AAt(1-F(p)))(Vti(c+2) - Vt(c+ 1)) (18)

and,

Vt+i(c + 1) - V(c) > AAt(1 - F(p))p + (1 - AAt(1 - F(p)))(Vt(c + 1) - Vt(c)) (19)

Using Il(c, t - 1) and I3(c, t - 1) we have the following inequalities,

Vt(c + 1) - Vt(c) > Vt_l(c + 1) - Vt-l(c)

and,

Vt_(c + 1) - Vt_1(c) > Vt_1(c + 2) - Vt_1(c + 1)

hence,

Vt+l(c + 1) - Vt(c) > AAt(l - F(p))p + (1 - AAt( - F(p)))(Vtl(c + 2) - Vt_(c + 1)) (20)

(18) and (20) lead to,

Vt+(c + 1) - Vt(c) > Vt(c + 2) - Vt_1(c + 1) (21)

Additionally, by I2(c + 1,t - 1) we have,

Vt( + 1) - Vt_i( + 1) > Vt+l(c + 1) - Vt(c + 1)

or equivalently,

(22)

(21) and (22) together lead to the desire inequality,

I3(c, t): Vt(c + 1) - Vt(c) > Vt(c + 2) - Vt(c + 1). I
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Proof of Proposition 1

Defining the function ht(p, c) equal to:

ht(p, c) = ALt(1 - F(p))p + Azt(1 - F(p))Vt_(c - 1) + (1 - AAt(l - F(p)))Vt_l(c),

the maximization problem is equivalent to,

Vt(c) = max{ht(p, c)
p>O

Let pt,c be the optimal price at the beginning of period t when the initial inventory is c.

Hence, the following inequality holds for all p,

ht(p,t,c) > h(p,c) Vp.

Because pc,t is feasible for the maximization problem starting with an inventory of c + 1

units, a sufficient condition for pt,c+l to be smaller than or equal to pt,c is:

ht(pc,t, c + 1) > ht(p, c + 1) Vp > Pt,c

Thus, a stronger sufficient condition is given by,

ht(p,t, c + 1) - ht(p, c + 1) > ht(pc,t, c) - ht(p, c) Vp > Pt,c.

Replacing the function ht(p, c) by its corresponding value, we get that the sufficient condition

is equivalent to,

Vt_l(c)- Vt_ (C- 1) > Vt_l (c + 1) - Vt-_i(c)

which is true by lemma 2. Therefore, the optimal price is a non increasing function of the

capacity. I

Proof of Proposition 2

Using the same notation as in the previous proof, we have:

ht(pc,t,c) > ht(p,c) Vp.

Because pc,t is feasible for the maximization problem starting at period t - 1, a sufficient

condition for pt-l,c to be smaller than or equal to pt,c is:

ht-i (p,t, c) > hti(p, c) VP > Pt,c
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Hence, a stronger sufficient condition is given by:

htl(pct, c)- ht_(p,c) > ht(pt,c)- ht(p,c) Vp > Pt,c

Thus, replacing ht(p,c) by its corresponding expression we obtain the following sufficient

condition:

Vt_l( - 1)- -2( - 1) Vt-(C)- Vt-2(C)

which is true by Lemma 2. Hence, the optimal price is non increasing as a function of time.

I

Proof of Proposition 3

The first order condition for the optimal price given by

1- F(p)= F(p) + Vt-(c) - Vt-(c - 1),

is obtained by setting the derivative of the objective function equal to zero. This equation has

a unique solution if the function G(p) is increasing as a function of p, where G(p) corresponds

to:
1 - F(p)

G(p) = p- (p)

After some algebraic manipulations we can show that an equivalent condition for G(p) to be

an increasing function of p is given by:

29[log(1 - F(p))] < O[log(f(p)] Vp,

or equivalently,
[1 - F(p2)] 2 < [1 - F(p)]2 Vp1 < p2

f(p2) f(pl)

Therefore, the function G(p) is increasing in p if and only if the function (1 - F(p))2 /f(p)

is decreasing in p. Hence, the first order condition has a unique solution if (1- F(p))2 /f(p)

is a decreasing function of p. Finally, assuming that the probability density function for the

reservation price is bounded, this unique solution must be the optimal solution. I
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Figure 4 shows the Weibull density function for the parameters used in the computational

experiments.

price

Figure 4: Weibull p.d.f.
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