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Effects of Feedback Complexity on Dynamic Decision Making

ABSTRACT

Prior research shows people suffer from misperceptions of feedback in dynamic settings,

generating systematic dysfunctional behavior in the presence of dynamic complexity - settings with

multiple feedback loops, time delays, and nonlinearities. However, prior work has not adequately

mapped the effect of these elements of complexity on performance. We report an experiment

where subjects managed an inventory in the face of stochastic sales, a classic dynamic decision

task. We vary the time delays and strength of the feedback loops as treatments to explore the

impact of these elements of dynamic complexity on behavior. Subjects faced financial incentives

and had extensive opportunities to learn. Yet performance was significantly worse than optimal

across all conditions. Subjects outperformed a naive 'do-nothing' rule in the simple conditions,

but performance deteriorated dramatically with increasing time delays and feedback effects, and

most were outperformed by the do-nothing rule in the complex conditions. Regression analysis of

subjects' decisions showed most ignored the supply line of pending production and

undercontrolled the system. Undercontrol increased significantly with growing time delays and

feedback strength, showing subjects were insufficiently adaptive despite perfect knowledge of

system structure and parameters. Subjects' understanding of complex feedback settings declines

as delays between cause and effect increase, and as actions have stronger side effects. Few

indications were found of active experimentation or learning: the need to control seemed to override

the ability to learn.
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Dynamic decision tasks arise whenever decisions made today alter the state of the system

and thus the information that conditions decisions to be made tomorrow. Dynamic decision tasks

are common, indeed inescapable, in many domains. Driving a car, managing a firm, controlling a

chemical plant and controlling the money supply are all dynamic tasks because the decision maker

and the system are entwined in feedback loops whereby decisions alter the environment, giving

rise to new information and leading to new decisions (Forrester 1961, Richardson 1991).

Dynamic decision tasks vary in terms of the dynamic complexity of the system. Many real tasks

are dynamically complex because they involve time delays, stocks and flows, multiple feedback

processes and nonlinearities. Prior research shows people have great difficulty managing

dynamically complex tasks, generating significant, systematic, and costly errors (Sterman 1989a,

1989b; Paich and Sterman 1993).

Sterman (1989a, 1989b) argued that the observed dysfunction in dynamically complex

settings arises from systematic 'misperceptions of feedback' - that the mental models people use to

guide their decisions are dynamically deficient. People generally adopt an event-based, 'open-

loop' view of causality, ignore feedback processes, fail to appreciate time delays between action

and response and in the reporting of information, do not understand stocks and flows, and are

insensitive to nonlinearities which may alter the strengths of different feedback loops as a system

evolves. In addition to the studies cited above, the misperceptions of feedback (MOF) hypothesis

is generally supported by studies in experimental economics, psychology, and management

(Smith, Suchanek and Williams 1988, Funke 1991, Brehmer 1992).

For example, Brehmer (1990) developed a computer simulation of a forest fire in which

subjects played the role of fire-fighting chiefs, deploying field units from a headquarters in the

rear. The task included significant feedback complexity, particularly the self-reinforcing (or

positive) feedback by which the fire spreads. Brehmer found that subjects' ability to control the

simulated fire was poor, and the rate of learning slowed significantly, when there were time delays

between action and response (the deployment of fire fighting units in the field) and in the reporting

of information (receipt of reports on the location and status of the field units).
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Similarly, Sterman (1989b) examined a simple inventory management task, the 'beer

distribution game,' in which subjects sought to minimize costs as they managed the production and

distribution of a commodity. Though simplified compared to real firms, the task was dynamically

complex as it included multiple feedbacks, time delays, nonlinearities, and accumulations.

Average costs were ten times greater than optimal. The subjects generated costly oscillations with

consistent amplitude and phase relations, even though the demand for the product was essentially

constant. Econometric analysis of subjects' decisions showed that people were quite insensitive to

the time delays in the system. In particular, people did not account well, and often not at all, for

the supply line of orders that had been placed but not yet received, causing them to order many

times more beer than they actually needed. Sterman (1989a) found subjects exhibited the same

phenomena in a simulated macroeconomy with time delays and feedback loops; here subject

performance was 19 times worse than optimal. In both experiments the deviations from optimality

were systematic - subjects generated large, persistent oscillations with characteristic amplitude and

phase relations among the variables. In both experiments simulation of the decision rules estimated

for the subjects showed that approximately one third were intrinsically unstable, so that the system

never reached equilibrium. About one-quarter of the estimated rules yield deterministic chaos

(Sterman 1989c, 1988). The heuristics people used interacted with the feedback structure of these

systems to yield severe, systematic, persistent, and costly oscillations.

However, recent studies are limited in several respects. Many report the results of first

trials where subjects had little opportunity to learn (Hogarth 1981). In others, critical information

is not available to the subjects. For example, in Brehmer's fire fighting task subjects were not

informed of the delay in the reporting of the status of field units, though they could infer it from the

information on the screen. In the beer distribution game the supply line of orders is not available to

the subjects but must be inferred from the history of orders and deliveries. An additional problem

arises from the sheer complexity of these tasks. Though the experimental tasks reported in the

literature are simplified compared to reality, it is hard to disentangle the roles of the different types

of feedback complexity. In some studies the elements of feedback complexity were not varied as
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treatments, while in others, only a subset were varied, or several were varied simultaneously.

While the rich variety of dynamic decision making tasks has revealed much about the flaws in

people's abilities to manage dynamic complexity, this same richness has hindered comparability of

results and the ability to reach general conclusions about the relationship of task structure to

dynamic decision making performance, a point made as well by MacKinnon and Wearing 1985.

In this study we map the effects of time delays and feedback processes on decision making

and performance in a dynamic task. By separately varying time delays and feedback effects we can

disentangle the roles of these two elements of dynamic complexity. Clearly there are many dimen-

sions of complexity beyond time delay and unintended feedback. However, time delays and

feedback processes are fundamental and pervasive in dynamic decision environments.

Understanding their role lays a foundation for further studies of the interactions between dynamic

complexity and human performance (see also Kampmann and Sterman 1992, Bakken 1993).

DYNAMIC DECISION ENVIRONMENTS

A vast number of human activities can be characterized as attempts to control a stock and

maintain its value close to a target value or within an acceptable range (Sterman, 1987, 1989b).

Stock adjustment is the prototypical dynamic decision making task. Stocks (state variables) are

accumulations of their various inflows and outflows, and thus represent the memory in a dynamic

system by which past events condition the state of the system that leads to new decisions. Stock

adjustment problems are prevalent on different levels of aggregation. People change their car's

velocity to drive at a desired speed, regulate the water's temperature to shower comfortably, and

vary diet and exercise as they seek to maintain a desired weight. Firms set production schedules to

control inventories, hire and fire employees to meet their labor needs, and borrow money to

manage their cash balances. A chemical plant operator adjusts flows of inputs to keep a process

operating in the safe range. The federal reserve engages in open market operations to adjust the

stock of money in the economy towards target ranges. In all of these examples, the objective is to

maintain a stock at its target value in the presence of disturbances such as losses, usage, or decay.

In general, a decision maker's actions do not directly affect the flows into or out of a stock.
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Rather, the decision maker typically controls flows only after delays. Firms cannot acquire new

plant and equipment instantly, but must order new equipment from suppliers or build new facili-

ties. While awaiting delivery the orders accumulate in a supply line of plant under construction or

equipment on order. There may be multiple influences, both exogenous and endogenous, on the

flows that affect the stock to be managed. The breakdown and discard of existing equipment - the

outflow from the stock of equipment - is partly exogenous and stochastic, and partly an endoge-

nous function of how intensively the equipment is used and how well it is maintained. Similarly,

the rate at which new equipment is delivered depends partly on exogenous factors such as the time

required to transport the equipment from the supplier to the customer and partly on the actions of

the customer itself. For example, if a customer places enough orders, they may exceed the

supplier's capacity, slowing delivery as the orders wait in a backlog until they can be processed.

The decision makers' task is to set an appropriate order rate so as to keep the stock close to

the desired or target value, taking into account the likely outflows from the stock, the time delay

between placing and receiving an order, and the various feedbacks that might alter conditions in

response to the decision maker's own actions (figure 1). The decision maker must attend to the

value of the stock compared to its target, creating a self-correcting, or negative, feedback loop.

Because of the time delay between the initiation and completion of these control actions, this

negative loop is potentially oscillatory. To compensate a wise decision maker may attend to the

supply line of pending production, creating a second negative loop to prevent overordering (though

the evidence shows many do not). Finally, the decision maker may try to anticipate the likely

outflows from the stock (a feedforward or forecasting component). To the extent decision makers

can forecast the future flows affecting the stock, they can order in advance and prevent the stock

from deviating from its target value.

The experimental system: In the present experiment we created a generic stock adjustment task

with the basic features identified above. The task is extremely general in structure, though we gave

it a business context for concreteness (Diehl 1992 provides complete documentation). Subjects

manage the production of a firm (figure 1) and seek to minimize their cumulative costs throughout
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each trial. Costs arise from discrepancies between inventory and its target value and from the

adjustment costs of changing production. Subjects can review each period their inventory levels,

sales, production, and costs. They decide how much to change production and enter their

decision. The revised rate of production adds to the work in process inventory (the contents of the

production delays, if any) until the goods are completed and added to inventory. Sales decrement

inventory. Time advances to the next round, and they make their next production decision.

More formally, the task is described by the following equations. The stock to be managed

is Inventory, I. Inventory is increased by production, P, and decreased by sales, S:

It = It-i + Pt- St. (1)

Production is determined by production starts, P*, after a delay of 8 periods to represent the time

required for the manufacturing process:

Pt = P*t-8- (2)

In the experiment subjects determine the change in production starts, A:

P*t = P*t-1 + At (3)

At = <Subject's decision> (4)

When there is a delay, production that has been initiated but not yet completed accumulates in a

supply line of work-in-process inventory, given by EP*t-i, i = 1,...,8. The length of the

production delay was a treatment variable in the experiment.

The outflow of inventory is sales (on the right side of Figure 1). The demand formulation

was designed to test the ability of people to understand and manage systems with multiple feedback

processes. In dynamically complex systems a control action may have unintended side effects.

Side effects may reinforce or oppose the intended effects of the decision, and may operate with

different delays. In the context of the manufacturing setting used here, side effects arise from the

linkages among firms in the broader community. For example, the more goods produced in an
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economy, and thus the higher the employment, the greater are people's incomes. Consumers use

their higher income to purchase more goods and services, boosting the sales of businesses

throughout the community. Thus as a firm increases production, it indirectly increase its own

sales. Higher sales further deplete inventories, leading to pressure for still higher production, in a

positive (self-reinforcing) feedback known in macroeconomics as the 'Keynesian multiplier'. Side

effects may also form negative feedback loops. In the business context used here such an effect

would mean that rising production leads to falling sales, and vice-versa. For example, suppose by

increasing your production you signaled opportunities for expansion to your competitors, who

respond with price cuts or marketing programs that lower your demand. Here rising production

leads to declining sales, unintended inventory accumulation, and pressure to cut back production,

forming a negative or self-correcting feedback loop. To capture such side effects, sales in our

model consist of an exogenous component, X, and a dependent or endogenous component, N:

St = Xt + Nt (5)

The endogenous component of demand, N, is determined by the current production rate and the

gain, y, of the side-effect feedback:

Nt = yPt (6)

Thus, for example, a gain of +.3 indicates that a 10% increase in production causes an additional

3% increase in the endogenous component of sales. The gain (sign and strength) of the feedback

from production to sales was the second treatment variable in the experiment.

Finally, the exogenous component of sales follows a random walk:

Xt = Xt- + Ut (7)

where the changes, U, are drawn from a uniform distribution with mean zero and range from -15

to +15 units/period. The random walk provides a challenging input to the system, one that

requires subjects to control the system actively or face large, persistent, and costly deviations of

6



D-4401

their inventories from the target value.

Costs are determined by both the inventory position of the subjects and the rate of change

in production. Inventory costs capture the cost of deviations of the stock from its target or set

point. The set point for inventory was zero to simplify the calculations required of the subjects. In

general, stock adjustment tasks involve adjustment costs or costs of control effort as well as costs

of deviations between the stock and its desired value. In our context, adjustment costs arise from

changes in production and can be thought of as the costs of hiring and firing workers, expediting

materials acquisition, or subcontracting the work. A quadratic cost function is assumed. Quadratic

costs are reasonable approximations to the loss functions in many stock management settings,

including inventory management (Holt et al. 1960) and allow analytic solutions to the optimal

production problem to be computed conveniently. Thus costs, C, are given by

Ct = aIt2 + bAt2; a=1, b=2. (8)

If the adjustment costs are too small, the optimal solution is to jump immediately to the optimal

inventory level, leading to unrealistically large changes in production. If the adjustment costs are

too large, the optimal solution is unrealistically slow correction of inventory discrepancies.

Simulation studies (Diehl 1989) showed that the coefficients a=l, b=2 represent a good tradeoff

between inventory and adjustment costs.

HYPOTHESES

The central issues are (1) the extent to which subjects are able to control the system in the

face of dynamic complexity; and (2) the extent to which their decision making behavior is sensitive

to different elements of complexity. That is, how does performance vary as the feedback

complexity of the task increases? What are the differential effects of delays and feedback effects?

How do delays and feedback processes interact to influence performance? Are subjects sensitive to

the presence of delays and feedbacks? Do they alter their use of information and decision making

heuristics appropriately as the feedback structure of the task changes?

The treatment variables in the experiment are the length of the production delay, 8, and the
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sign and magnitude of the gain of the side effect feedback, y. The values of delay and feedback

gain chosen as treatment levels spanned a wide range. We selected delay lengths = 0, 2, and 4

periods and gains of y = -0.6, -0.3, 0, +0.3, and +0.6, yielding a 3 (delay) by 5 (gain) factorial

design. The zero delay, zero gain condition corresponds to a simple task such as considered by

MacKinnon and Wearing (1985). Here there are no delays between your decision and its realiza-

tion, nor are there any side effects. Essentially, your task is to keep your bathtub filled to the right

level by adjusting the tap, a straightforward task in which performance should be excellent. When

there is a delay, even the optimal rule bears additional costs since an inventory discrepancy cannot

be corrected until 8 periods have passed. To the extent subjects fail to account for the delay, they

are likely to boost production throughout the period during which inventory remains too low,

leading to excess inventory, oscillation, and costs higher than optimal.

The anticipated role of the side effect feedback is more subtle. Suppose the gain of the side

effect loop is positive. Every increase in production then causes a proportional increase in sales.

If inventory is too low and the decision maker increases production, sales will rise, making it

harder to close the gap, and leading to more pressure to produce. Conversely, cuts in production

to reduce excess inventory cause sales to fall, slowing the reduction of inventory below the

intended rate. The side effect forms a positive, self-reinforcing feedback that undercuts the

stabilizing effect of the main control loop. To achieve a given change in inventory it is necessary to

make larger and more costly changes in production. Thus the positive side effect raises optimal

costs. To the extent managers fail to account for the effect of the positive side effect loop, they will

undercontrol the system, leading to larger and more persistent inventory discrepancies.

In contrast, negative gain is highly stabilizing and reduces optimal costs. When the side

effect gain is negative, every increase in production produces a corresponding decrease in sales. If

inventory is too low and the decision maker increases production, sales will fall, helping to raise

inventory and closing the gap more quickly and more cheaply. Similarly, production cutbacks to

reduce excess inventory induce a sales increase, speeding the adjustment of inventory to its target

level. The side effect forms a negative feedback that assists the stabilizing effect of the control loop
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formed by attempts to regulate inventory. To achieve a given change in inventory requires smaller

and less costly changes in production. Thus the negative side effect loop is highly stabilizing and

lowers optimal costs. However, to the extent subjects fail to account for the stabilizing effect of

the negative gain they will overcontrol the system, leading to frequent overshoot and oscillation.

When both production delays and side effects are present the control task becomes consid-

erably more difficult. Long delays and high positive gain are highly destabilizing, as the delay

makes it hard to correct inventory gaps and the positive feedback undercuts the corrective effect of

production changes. The production delay means that the impact of the side effect is no longer

contemporaneous with the impact of production, increasing the likelihood of inventory overshoot

and oscillation if subjects are insufficiently sensitive to either the delay or feedback. Likewise,

under long delay and negative gain, the stabilizing impact of the side effect loop is out of phase

with the production decision. Failure to account for the delay or the negative loop will lead to

instability and higher costs.

At one extreme, perfectly rational subjects would always use the optimal decision rule. The

weights they would apply to the available information would change appropriately as the delay and

gain conditions changed. Performance would diverge from optimal only to the extent subjects

applied the optimal rule inconsistently. At the other extreme, a subject might choose to take no

action, a 'no-control' rule. A no-control strategy minimizes adjustment costs and cognitive effort

but allows inventory to follow a costly random walk. We use these two extreme strategies as

benchmarks for assessment of subject performance.

An extreme interpretation of the misperceptions of feedback (MOF) hypothesis suggests

that subjects would be completely unresponsive to the presence of time delays and feedback loops.

Subjects under this extreme MOF hypothesis would make decisions as if there were no delay and

no side effect loop regardless of the actual delay and gain condition. Estimates of subjects' cue

weights would reveal heavy reliance on inventory but no weight on the supply line (future values

of production). As a result, performance would be significantly worse, relative to optimal, in

conditions with long delays and high positive gain, and better in conditions with no delay and no
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or negative gain.

However, the task is extremely simple. There is no overt time pressure. The delay and

gain conditions are highly salient: the concepts of delay and gain are emphasized in the task

briefing; the delay and gain values appear at all times on the information display; and the values of

the supply line (future production for the next 6 periods) and the impact of the side effect feedback

(dependent sales) are clearly displayed at all times. It would be remarkable if subjects were

completely unresponsive to these changes in task structure. Indeed, even in Sterman's (1989b)

beer game experiment, where the supply line was not presented to the subjects but had to be

constructed from other cues, a minority of subjects were able to account for the supply line.

However, even if subjects are aware of the task structure, the MOF hypothesis suggests they may

not fully understand the implications of delays and feedbacks. In particular, their ability to infer

the future dynamics of the system from their causal map or mental model may be inadequate in the

presence of delays and feedback loops. Thus a less restrictive interpretation of the MOF hypothe-

sis suggests that subjects will adjust their decision making heuristic somewhat as the delay and

feedback conditions change. To the extent subjects' mental models underemphasize the importance

of delays and feedback, and to the extent subjects have difficulty inferring the consequences of

these elements, such adjustments are likely to be insufficient, especially in conditions with long

delay and strong positive feedback. As a result, performance should be relatively worse compared

to optimal in the difficult conditions (long delays and high positive gain) and comparatively better

in the easy conditions (no delay, no or negative gain).

METHOD

Design: The three delay and five gain levels define a factorial design with 15 conditions.

Since performance in the task is likely to improve with experience, each subject should play many

times. A Latin square was used to assign the 15 experimental conditions to the subjects and trials

such that every subject received every treatment, and every treatment appeared in every position in

the sequence (figure 2), yielding 225 cells.

Fifteen different realizations of the random walk in exogenous sales (eq. 7) were used. If
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the same pattern were reused, subjects would gradually develop a good forecast of demand,

obviating the need to control inventories and confounding changes in their stock management

heuristic over trials with changes in the quality of their demand forecasts. Using different patterns

ensures subjects face unintended changes in inventory, requiring them to take control actions and

revealing their stock management heuristics. On the other hand, using different random walks in

all 225 cells would add considerable variance to the results. To minimize the error variance

between conditions every subject received the same sequence of random-walk patterns. As a result

the sequence of demand patterns is confounded with any learning or practice effects. However, a

strong practice effect is expected in repeated decision tasks of this type, and the focus of the study

is the subject's heuristics and their dependence on the treatments, not the practice effect. Thus the

inability to separate the practice effect from the sequence effect does not compromise the results.

Particants: Seventeen MIT students, fourteen undergraduates and three graduate students,

enrolled to participate in the study. Two subjects, for undetermined reasons, did not complete the

study: One terminated after the first session and the other terminated after the second session.

Their results indicated no large differences from other subjects.

Procedure: Subjects were paid for their participation in the study. Subjects' total pay consisted

of a base pay of $20 plus a performance-based amount. Subjects were informed that for the

computation of their reward only their 12 best games would count. However, all data were utilized

in the statistical analysis. To minimize fatigue effects the trials were run in four sessions, with three

trials in the first session and four in the sessions to follow. Participation required, on average, six

hours spread over four sessions in a two to three week period. Actual performance-based pay

varied between $5 and $45. On average, subjects received a total of $40.

Subjects were provided with an extensive written description of the task covering the

structure and context, including how all variables were related and calculated (Diehl 1992).

Subjects were fully informed about the nature of the disturbances to the system. In particular, the

endogenous and exogenous components of demand were explained, and they were informed that
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the exogenous component was a random walk. The concept of a random walk was explained, and

subjects were told how to forecast it optimally. Specifically, they were told "your best bet is to

expect that independent sales in the next period will be the same as they are in this period."

The task was implemented on Macintosh computers using a spreadsheet display (figure 3).

The subjects, MIT students, had high computer skills and were familiar with such displays. The

screen provided complete information on the current state of the system, including production, the

dependent and independent component of sales, total sales, the change in inventory, the inventory

level, and current and accumulated costs. In conditions with non-zero production delay the display

also showed the supply line of work in progress which determines production for the next 8

periods. To assist subjects, the current delay and gain conditions were always displayed. The

computer recorded the time between decisions as well as the decisions themselves.

Two emulated practice rounds were given in order to familiarize subjects with the informa-

tion display and task. The practice rounds consisted of a paper copy of actual computer screens

and two hypothetical examples. Subjects were informed that in the experiment the computer would

calculate the consequences of their decision, but that for practice purposes the subject would per-

form the computations. Then the subjects were encouraged to make a decision for production and

compute the consequences of the decision by hand. The experimenter provided them with the

value of independent sales. Subjects then proceeded to compute the rest of the variables.

Erroneous computations were immediately corrected and an explanation provided. Most subjects

did not make any errors in the second practice task.

After the practice task, the instructor repeated the rules of the experiment. Subjects were

informed that they would play 15 games altogether, each of 32 periods. They were told that the

production delay and strength of feedback to dependent sales might vary from game to game.

They were further informed that some conditions were intrinsically more difficult than others and

were told to not be discouraged by what they might consider extremely high costs. Specifics about

what high costs might be were not provided.

The computer was then turned on and the subject was asked if he or she had ever used a
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Macintosh before; if not, these mechanics were explained. The use of the software was explained.

Subjects were also given notebooks and encouraged to write down any calculations that they

wished to make, along with their decision for each round. These notebooks were used to inform

the specification of the regression models tested below.

At the end of the session, the subject handed in their notebook and arranged an appointment

for the next session. To refamiliarize subjects with the task, the instructor began each follow-up

session with a summary of the objective of the task and the rules of the game.

RESULTS

Typical Behavior: Before turning to the statistical results, it is useful to consider the dynamics

generated in typical trials. Figure 4 compares the final trials for two subjects, thus the results

reflect subjects' decision processes after extensive experience. Overall performance for the two

subjects is not statistically different from the grand mean for the full sample or from each other

(p>.7). Both subjects faced the same random walk in exogenous sales, so their results are directly

comparable. Subject 14 received the no-delay, no-gain condition, while subject 15 received a

difficult condition with a long time delay and moderate positive gain (8 = 4, y = +.3). Subject 14,

in the simple world with no feedback effects and no delays, is able to control the system quite well.

Inventory remains within ±50 units of normal, and there is little tendency towards oscillation.

Subject 15, in contrast, produces a large amplitude business cycle with a period of about 18 time

units. Inventory deviates from normal by nearly ±500 units, ten times more than for subject 14.

Over the course of the trial the cycle grows in amplitude - subject 15 seems to be losing control

over time rather than learning to bring the system into equilibrium.

To see how feedback complexity leads subjects to create cycles, consider the beginning of

the trial. By chance, exogenous sales fall, causing excess inventory to accumulate. Both subjects

14 and 15 respond with production cuts. For subject 14, the cut in production has an immediate

effect on inventory and no induced effect on demand. The inventory imbalance is quickly elimi-

nated, and subject 14 is then well positioned to deal with subsequent random changes in demand.

In effect, subject 14 has 'reset' the system roughly to initial conditions (Edwards 1990); past deci-

13



D-4401

sions have little bearing on his current situation. Subject 15, however, finds first that his produc-

tion cuts do not take effect immediately, causing still more excess inventory to accumulate, and

leading him to still larger production cutbacks. Each unit cut from production, through the multi-

plier feedback, yields a .3 unit drop in endogenous demand. So even as he cuts production to

eliminate excess inventory, demand falls, leading to additional inventory accumulation. By period

9 production has finally fallen below demand, and inventory begins to drop back towards the

desired level. Failing to account for the time delay, subject 15 holds production at its depressed

levels too long so that inventory falls below normal in period 12. As inventory plummets, the

subject gradually boosts production, but inventory continues to fall as production increases lead to

demand growth. Finally, by period 18, production exceeds demand and inventory begins to rise

towards normal. Once again, however, the subject fails to account for the time delay, continuing

to boost production until it exceeds demand by more than 140 units/period just when inventory

reaches normal levels. Thus the cycle continues as excess inventory rapidly builds up, forcing

another round of production cuts.

Note that the behavior of production and inventories is far from random. The peaks and

troughs of production tend to lag the changes in demand, and that the amplitude of production is

greater than the amplitude of demand. The amplification and phase lag are most pronounced for

subject 15, but also are visible for subject 14. Amplification and phase lag are commonly observed

in experimental tests of other stock management systems (Sterman 1989a, 1989b) and are a

fundamental feature of business cycles in the actual economy (Mitchell 1927, Moore 1983).

Performance against benchmarks: To assess performance we calculate two benchmarks, the

'no-control' rule and the optimal rule. The no-control rule assumes subjects minimize cognitive

effort and adjustment costs by making no changes in production; At is set identically to zero for all

t. The optimal solution is somewhat more complex. The task system is linear, with quadratic

costs. The optimal controller in such 'linear-quadratic' systems is a 'full state variable feedback'

rule in which the optimal rule is a weighted sum of all state variables in the system (D'Azzo and

Houpis 1981). The state variables are inventory, sales, current production, and the supply line of
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future production for t = t+i, i = 1,...,6. In equilibrium inventory is zero (the desired level) and

production = sales. The rule strives to bring the system from its current state into equilibrium at

the rate that optimally balances inventory costs and adjustment costs. It is important to note that the

optimal rule does not utilize any information not presented to the subjects. The optimal weights are

given by the solution to the Riccatti equation (see e.g. D'Azzo and Houpis 1981).2 Naturally, the

optimal weights differ in the different delay and gain conditions, as do optimal costs.

Note that applying the optimal rule minimizes total expected costs. The optimal decision

rule is not contingent on any particular realization of the random walk. The optimal rule correctly

assumes exogenous sales follow a random walk so the best forecast of future sales is current sales.

Subjects, however, may have guessed at the future values of exogenous sales. Being lucky and

correctly anticipating the next values for exogenous sales can allow a subject to outperform the

optimal rule occasionally (though not on average). Even the no-control rule, for instance, achieves

lower costs than the optimal rule in five of the fifteen random walks in one experimental condition.

The benchmarks were calculated by running two sets of simulated subjects through the full

design faced by the human subjects, yielding 225 'no-control' trials and 225 optimal trials. In

figure 5 we plot subjects' average costs by treatment condition with the two benchmarks, ranking

the experimental conditions from lowest to highest optimal costs. Because optimal costs in the

easy and hard conditions differ by many orders of magnitude we plot the log2 of costs.

Comparison to 'No-control': Subjects' mean log2 cost was 18.28 ($318,000) and ranged from

12.46 ($5600) to 29.74 ($897 million). As expected, costs are highest in the most difficult

conditions. Because raw performance confounds changes in decision behavior with changes in

objective task difficulty, we turn now to comparison of subject costs to the benchmarks.

Individual performance ranged from more than one thousand times better than no-control to more

than 700 times worse. Overall, subjects achieve costs about 15 times lower than no-control.

Subject performance relative to the no-control strategy varies dramatically across treatment

conditions (table 1; figure 6). The main effects of delay, gain and their interaction are significant at
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p = 000+, .000+, and .026, respectively. In the three most favorable conditions (8 = 0; y = -0.6,

-0.3, and 0) the majority of subjects outperform the no-control rule on average by more than a

factor of 100. However, the no-control rule outperforms the subjects on average in the two least

favorable conditions (8 = 2 and 4; y = +0.6). In these conditions subjects would have been better

off not making any changes in production at all - their efforts to control the system were

counterproductive. While the best subject outperforms the no-control rule in the most favorable

condition (8 = 0; y = -0.6) by more than 1000 times, the best subject in the least favorable

condition (8 = 4; y = +0.6) outperforms no-control barely more than four times. Relative to the

no-control rule, performance deteriorates with increasing delay and performance decreases with

increasing gain. In addition, delay and gain interact, with long delay times and high positive gains

causing a particularly steep decrease in performance relative to the no-control benchmark.

The practice/sequence effect is highly significant as well. Recall that the practice/sequence

effect is attributable to two parts: learning and differences among the random walks. However, it

appears that performance in the first two trials contains greater variance and more poor performers.

The no-control rule outperforms many subjects in their first trial. Performance in subsequent trials

is clearly improved, though after about three trials there is only slight further improvement.

Performance relative to the no control rule varies considerably between subjects, as expected.

Subjects who do poorly in the easier trials do especially badly in the most difficult cases.

Comparison to Optimal: While subjects generally outperform the no-control rule, they perform

quite poorly relative to optimal. Subject costs are 4.35 times greater than the corresponding

optimal performance across all conditions. Most interesting, however, is the relationship between

subject costs and optimal costs. Subject performance remains roughly parallel to but consistently

higher than optimal as difficulty increases (figure 5). Indeed, the ANOVA (table 2) shows no

significant effect of either treatment or their interaction, suggesting subjects did adjust their

decision making heuristic as the delay and gain conditions changed.

As expected, subjects' performances relative to optimal differ, and there is a significant

practice/sequence effect. Scores are highest in the first two trials and continue to improve slightly
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thereafter, consistent with the raw performance results.

Decision Effort: We analyzed the time spent per decision for both the initial decision in each new

condition and later decisions. In all cases a significant practice effect is expected, as are intersub-

jective differences. Predictions about the dependence of time spent on delay and gain differ

according to the different hypotheses about subject decision behavior. The extreme MOF hypoth-

esis suggests people are insensitive to delays and gain, focusing only on the current value of the

stock. Thus time spent, either in the orientation phase before a new trial or during a trial, should

not depend on either treatment condition. Both a more moderate MOF hypothesis and the rational

model suggest people try to account for delays and side effects. The time spent in orientation

before the first decision should thus increase with increasing delay and gain compared to the no-

delay, zero-gain condition. The complexity of the solution to the optimal rule rises roughly with

the square of the number of state variables but does not depend on the gain of the side-effect loop

(except when y=O). If subjects approximated the optimal strategy their initial decision times should

show similar differences. Likewise, the optimal rule is a weighted average of all state variables in

the system. The number of states is independent of the gain, and depends linearly on the delay

condition. Thus subjects using a full state variable decision rule should exhibit longer subsequent

decision times in the delay conditions, but decision time should not vary with the gain. Under the

misperception of feedback hypothesis, subjects attempt to account for the delays and side effects,

but do so imperfectly, for example by accounting only for the most recent production decision

rather than all stages of the supply pipeline. Here initial decision times should depend weakly on

the delay and gain conditions. Later decision times might also depend on the treatments as the

larger gains might induce greater attention to the side-effect loop, and longer delays might induce

greater effort to account for the supply line.

Table 3 shows the ANOVA results for initial and subsequent decision times. As expected,

there are significant differences between subjects in the time taken, and there is a substantial prac-

tice effect, with decision times falling rapidly in the early trials.

There is no apparent relationship between the treatment conditions and the time spent on the
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initial decision in each condition. Likewise, the main effects of delay and gain on subsequent

decision times are insignificant. Though the interaction of gain and delay is significant at about the

.01 level, there is no clear pattern to the differences among conditions. Overall, each subject spent

the same amount of time making decisions, both at the start of each new trial and subsequently, in

all treatment conditions, despite large variations in task difficulty and number of available cues.

The decision timing data support the MOF hypothesis that subjects are insensitive to and/or

unable to account for the feedback structure of the task, and are not consistent with the rational

model, which predicts longer decision times in the more complex conditions. The rational model

also predicts that the time taken at the beginning of a new trial should be longer in more complex

conditions, yet there is no evidence this is so. Dynamic complexity does not lead to increased

effort Further, increased effort does not lead to greater performance: though subjects differ

greatly in the time they spend in decision making, regressions show no significant relationship

between performance relative to the benchmarks and either initial or subsequent decision times.

The fact that effort does not improve performance may be caused by several factors.

Mental processing speed may vary among subjects independent of competence in the task. Extra

time may be spent in irrelevant thought, rest, or distraction. Those who understand the task poorly

may compensate by spending additional time. Finally, people's understanding of dynamic

complexity and its implications may be so poor that additional effort is not helpful. To explore

these issues we turn now to models of the subjects' decision rules.

MODELING SUBJECTS' DECISION RULES

To gain deeper insight into the nature of the decision process we fit various linear models to

the subjects' decisions. The specification of these rules was based on prior experimental work, the

feedback structure of the task, and a detailed analysis of the subjects' notebooks. Subjects

received a notebook in which they wrote their decisions in the upper right hand corner, while other

calculations could be made on the rest of the page. Analysis of the notebooks consisted of

reviewing subjects' round by round decisions, while relating the written calculations and

comments to each decision. The analysis was done for half of the subjects, selected randomly.
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The first three games were examined to see how subjects initially approached the task. These

initial games were compared with selected later games with particular emphasis on long delay and

positive gain, in order to determine how strategies formulated early on held up over time and under

the difficult conditions. All games with long delays and high gains were investigated.

The analysis of each game considered a variety of factors including average time overall and per

game, including timing differences within a game, the number of calculations recorded, attention

to/proper calculation of the effects of feedback gain, attention to/proper calculation of production

delay, over/under emphasis of inventory, and over/under emphasis of the change in inventory.

While such notebook analysis is a valuable addition to the researcher's tool kit of process

methods (Carroll and Johnson 1990), it has limitations. In particular, writing down calculations

and performing them are two different processes. Just because nothing is in the notebook does not

necessarily mean that subjects did not perform calculations in their heads.

The analysis revealed three major levels of sophistication:

1) attention to inventory only: subjects respond only to the inventory discrepancy;

2) attention to inventory and change in inventory: subjects understand the relationships
between production and sales and respond to the rate of change in inventory as well as the
current stock;

3) attention given to inventory and expected change in inventory: subjects attempt to account
for the supply-line.

While most subjects exhibited at least some awareness of the importance of the change in produc-

tion and the supply line, the notebooks revealed that subjects do not give these factors sufficient

consideration in high delay and high gain conditions. Some of the subjects' calculations showed

they estimated future change in inventory by ignoring the side effect loop entirely, or miscalculat-

ing its impact. While not totally ignoring the supply line, it appears that subjects paid less than full

attention to future changes in inventory. Many exhibited a marked tendency towards undercontrol,

reasoning, as subject 12 wrote, "Gradual changes seem the best since independent is so random

that big changes cost a lot and have a high probability of over- or under-shoot." Subject 13

likewise wrote "sales independent unpredictable, cut cost by keeping production constant."

In addition, the notebook analysis revealed a number of interesting strategies subjects used
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to explore the system. Many subjects adopted an 'act and wait' strategy. After changing produc-

tion these subjects would often enter 0 for the change in production in the next few rounds, appar-

ently to wait and see what the effects of the prior change would be before exerting additional con-

trol. Some subjects made extensive calculations initially, examining the effects of the delay and the

side-effect loop, but abandoned such sophisticated decision making when their decisions created

instability, reverting to an inventory-only heuristic. Others, faced with oscillations created by their

failure to account properly for the delay and side effect, reverted to the no-control strategy, appar-

ently hoping the system would settle down so they could resume control. Subject 4, for example,

made extensive calculations of inventory changes in the early games, though his calculations

ignored the side effect loop. In the difficult condition 6 = 4,7 = +.6, such behavior yields costly

oscillations, prompting the subject to write "I can't believe this is happening!" The subject then

ceased to write any calculations and seemed to revert to a strategy focused only on the current

inventory discrepancy.

One subject cleverly explored the dynamics of the system by implementing production

changes of .01 units. These small changes allowed the subject to explore the system's response at

low cost, and are reminiscent of the engineering technique of 'small signal analysis.' However the

subject soon abandoned the technique in favor of an inventory-only strategy. Some exhibited the

illusion of control by hoping the exogenous component of sales would change so as to eliminate

their inventory discrepancy without the need for them to make costly changes in production.

Subject 2, in his first trial, facing an inventory surplus, wrote "Hope that independent sales will go

up." His production cutback is much less than the amount needed to eliminate the excess inven-

tory. The environment, however, disappoints him; independent sales drop from 927 to 913, and

the subject writes "uh oh! Sales went down."

Drawing on the notebook analysis and hypotheses discussed above, four models of

increasing sophistication were constructed. The rules consist of both the specification of the cue-

combination policy and restrictions on the signs of the cue weights. The models range from the

simplest single-cue rule to the optimal rule.
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Model 1: At = al It; al < 0. (9)

Model 1 represents the extreme misperception of feedback hypothesis in which subjects

respond only to inventory.3 The coefficient al must be negative so that positive inventories lead to

production cutbacks and vice versa, forming a negative feedback loop. The notebook analysis

showed all subjects used rules more sophisticated than Model 1, but we include it here because it is

the control rule demanding the least cognitive effort and serves as a benchmark for comparison to

other rules.

Model 2: At = al It + a2 (Pt - St); al < 0, a2 < 0. (10)

Model 2 assumes that subjects consider both inventory and the rate of change in inventory,

given by Production - Sales. The coefficient a2 must be negative. For example, when production

exceeds sales inventory will increase, leading to a cutback in production. From a control-theoretic

viewpoint, attending to the rate of change in inventory adds 'derivative control', a control strategy

that opposes trends in the stock and is thus stabilizing (Ogata 1970). The notebook analysis

revealed that some, although not the majority, of the subjects might have followed this rule. Note

that although the rule is sensitive to the flows that alter the stock it does not account at all for the

supply line of future production (if any).

Model 3: At = al It + a2 (Pt+ - S; al < 0, a2 < 0. (11)

Model 3 is similar to Model 2 except that subjects are assumed to account for the supply line of

pending production by comparing future production to current sales in the derivative control term.

Subjects know the value of production at time t+6 because Pt+ = P't, and these values are

displayed on the screen. However, Model 3 does not account for all stages of production in the

supply line (Pt+i, i = 1,...,6) even though these values are helpful and are also displayed. Instead

of comparing only the most recent production start decision to sales, subjects should consider the

quantity in each stage of the supply line and compare these to expected sales in each period. Model

21



D-4401

3 is thus not rational from a control theoretic viewpoint. However, model 3 does economize on the

number of cues considered and the amount of cognitive effort required to process them

(Kleinmuntz 1993). The model requires subjects to consider only one stage of the production

delay instead of the three or five (8+1) stages in the delay conditions.

8
Model 4: At = allt + a2St + PiPt+i; al < 0, a2 > 0, Zl3i = -a2 (12)

i=O

Model 4 is the optimal decision rule, the full state variable feedback controller. Here inven-

tory control is supplemented by comparison of current production and all stages of the supply line

to expected sales from the current value through 8 periods ahead. Sales increases deplete inven-

tory, necessitating higher production, thus a2 > 0. The larger the current rate of production or the

pending production in the supply line, the greater inventory will be, thus 10i < 0. Furthermore,

the production weights must sum to the (negative of) the weight on current sales to ensure that in

equilibrium the change in production A = 0 when I = 0 and sales = production. Although the

notebook analysis did not support the full information model, it is important as a test of the

sophistication of the subjects' decision making, and as a measure of the extent to which subjects

attended to the supply line.

All four models were estimated by OLS for all 225 conditions. Adjusted R2, the signifi-

cance of the estimated coefficients, and the number of coefficients with incorrect signs were used

as indicators of the adequacy of each in capturing the subjects' decisions. For instance, it makes

no sense at all to increase production in response to a positive inventory. Such a policy would

create a reinforcing feedback whereby any initial inventory discrepancy is amplified, leading to

unbounded costs. Thus a positive weight on inventory would be judged an artifactual sign reversal

and evidence the model was misspecified. Any model with one or more incorrect signs for the

coefficients was classified as a case of sign reversal. Table 4 shows the average adjusted R 2 and

number of sign reversals for each model.

Model 1 is clearly dominated by the others, with a mean 2 of just 26% and 24 sign rever-
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sals, despite having only one parameter. Adding derivative control as in Model 2 raises -2 to 51%

but also reveals 59 cases with at least one sign reversal, more than one quarter of the conditions.

Model 3 dominates Model 2, with a higher K2 and less than half the incidence of incorrect signs for

the coefficients. Fully 14 of the 24 cases with incorrect signs occur in the conditions with the

longest delay and the highest positive gains, suggesting subjects abandoned model 3 in these

difficult conditions.

The full information Model 4 increases K2 by .04 compared to model 3. However, 136 of

the regressions (60%) have at least one coefficient with the wrong sign. Nearly all the sign rever-

sals occur in the delay conditions (model 4 reduces to model 2 in the no-delay conditions). Only 2

of 75 cases had the correct signs in the conditions where 8-4. While it is true that model 4

includes more coefficients than model 3, so the chance of an incorrect sign is greater, the high

incidence of incorrect cue weights strongly suggests the subjects were not using the full informa-

tion model. Furthermore, only 11% of the estimated weights for intermediate stages of the supply

line were significantly different from zero (at the 5% level), indicating subjects did not attend to all

stages of the supply line, as is optimal, instead ignoring production they had initiated but not yet

received, as predicted by the MOF hypothesis.

Besides the four models discussed in this section, seven models ranging in sophistication

between models 3 and 4 were also tested. These models consisted of adding various states

intermediate between model 3 and the complete state model in order to test whether subjects'

behavior might fall in sophistication somewhere between model 3 and the full-state model. All of

the alternative models fell in the range .58< 2 < .62; also, all of these models produced sign

reversals substantially higher than model 3.

Thus while model 4 and related models in which intermediate supply line states are consid-

ered explain slightly more of the total variance in subject's decisions, we judge them to be inferior

to model 3 as representations of cue utilization and weighting. Analysis of subject's notebooks

also showed that the majority learned to attend to future changes in inventory but did not learn to

attend to all stages of the supply line, thus supporting the statistical results favoring model 3.
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We also analyzed subject and treatment differences in the quality of model fit to examine the

consistency of use of Model 3 across subjects, trials and treatments. Indeed, the goodness of fit of

Model 3 is significantly different across experimental conditions (p = .000+). Fit is best in the no-

delay, negative gain conditions, and deteriorates as delay and gain increase. In the most difficult

conditions ( = 4, y = +.6) the average 2 is just 27%, compared to 83% in the easiest condition (8

= 0, y = -.6). In the difficult conditions the system is intrinsically less stable and costs are

substantially higher. The higher variances of the cues might cause greater inconsistency in the

sense of inadvertent error caused by rounding, carelessness, or decreased effort caused by the

perception of poor performance. Alternatively, reduced consistency may reflect deliberate

experimentation and search for better policies. The notebooks suggest both occur, though the

incidence of explicit experimentation is low. The quality of fit also differs across subjects.

Perhaps surprisingly, the practice/sequence effect is not significant. Subjects apparently did not

become more consistent with experience.

Sources of underperformance

Underperformance can arise in two principal ways: (1) Subjects employ the right model but

apply it inconsistently; (2) Subjects employ a poor model. To partition the total shortfall of

performance relative to optimal into these two components we perform a bootstrap analysis

'running' the experiment again using the estimated Model 3 decision rules for each of the 225 cells

of the design. The performance of the estimated rules compared to that of the subjects measures

the effect of subject inconsistency. The performance of the estimated rules relative to the optimal

rule measures the effect of using the wrong model. Figure 7 shows that the bootstrap simulations

yield a substantial improvement, with simulated costs about 3 times greater than optimal, compared

to 4.35 times greater for the subjects. The improvement of about 30% is large relative to the

typical bootstrap effect in static tasks (Camerer 1981, Dawes and Corrigan 1974). More detailed

examination shows the bootstrap effect varies with the experimental conditions. The bootstrap

effect is most pronounced in the no-delay condition. With long delays and high positive gain many

subjects outperform the bootstrap model.
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Despite the substantial bootstrap effect, three-quarters of the underperformance relative to

optimal is due to subject's use of the wrong model, particularly underweighting of inventory and

future production and failure to attend to all stages of the supply line. The misperceptions of feed-

back dominate the effects of inconsistency. Subjects are not able to account adequately for the time

delay or side-effect feedback. Because the existence and strength of these structural features are

fully revealed, and full information about these effects is available on the information display, the

subjects' failure to respond appropriately must reflect more fundamental limitations on the

processing of information about the elements of feedback complexity.

Dependence of Cue Weights on Experimental Conditions

We now turn to dependence of cues weights on the experimental conditions. How far from

optimal are the cue weights used by the subjects? How do the cue weights change as delay and

gain change? Appropriate changes in cue weights across experimental conditions would provide

evidence that subjects adjusted their decision strategies to account for the feedback structure of the

system. Constant cue weights across experimental conditions would support the extreme misper-

ceptions of feedback hypothesis: subjects would be completely insensitive to the feedback structure

of the task. Partial adjustment of cue weights would support a more moderate MOF hypothesis.

Figure 8 shows 15 graphs showing estimated cue weights for inventory (vertical axis) and future

change in inventory (horizontal axis). The rows show the 3 delay conditions and the columns

show the 5 gain conditions. Also shown are the optimal weights for model 3.4

Inspection of figure 8 reveals that nearly all of the subjects' weights lie to the lower left of

optimum, corroborating the earlier result of significant undercontrol, or insufficient responsiveness

to inventory and flow imbalances. The degree of undercontrol is not constant across treatment

conditions:

1. Under increasing complexity, the optimal weight for inventory stays roughly the
same, but subjects' weights for inventory decrease dramatically.

2. Under increasing complexity, the optimal rule places greater and greater weight on
future change in inventory, but subjects' weights remain about same.

To verify these findings, we calculate for each experimental condition the Euclidean
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distance, D, between the optimal weights and each subject's weights for inventory and future

change in inventory, given by

D,y,i = [(al,,y,i - a*18,y)2 + (a2,8,y,i - a* 2,8,y) 2 ]1/2; i = 1,...,15. (13)

The ANOVA analysis of D (table 6) shows that the distance between subjects' weights and optimal

weights varies significantly with delay, gain, and their interaction, all at the p=.000+ level. The

deviation from the optimal weights increases as feedback complexity increases. 5 In addition,

subject differences are significant, but the practice/sequence effect is not. As the feedback

complexity of the task increases, subjects increasingly undercontrol the system. In particular, the

optimal weight on inventory remains approximately constant across experimental conditions, but

subjects responsiveness to inventory falls as delay lengthens and gain increases. On average,

subjects assign a weight of -0.15 to inventory. The optimal rule assigns a weight to inventory of

about -.39. Under zero delay, the average weight is approximately -.25; when 8=2, the average

weight drops to approximately -. 14 and shows greater variability across gain conditions. When

8=4, the average weight drops to approximately -.05 and decreases as gain increases - subjects

move towards the 'no-control' rule as the task becomes more difficult.

The optimal weight on the difference between future production and sales increases

substantially as the gain increases, in order to compensate for the positive loop created by the side

effect of production on sales. Yet the subjects are not more responsive to the anticipated change in

inventory as gain increases. The weights associated with the future change in inventory stay

roughly the same across conditions except for the = 4 condition. Subjects do not adjust their cue

weights appropriately as the dynamic complexity of the system changes. The insignificant

practice/sequence effect suggests as well that they fail to learn to adjust their decision weights over

time as complexity changes, despite fifteen trials each of thirty two decision rounds.

Given the large and significant discrepancies between optimal and subject weights across

treatments, it is surprising that there are not greater increases in the ratio of subjects' costs to opti-

mum as feedback complexity grows. To explore the insensitivity of costs to cue weights, we
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mapped the cost surface of the task in each of the fifteen conditions as functions of the cue weights

for model 3 (figure 9). The black dot in the center of each graph represents minimum costs. Costs

are normalized so that each contour line marks a 50% increase in costs from optimal. The cost

surfaces form valleys with steep sides and broad bottoms. There is a relatively large region of low

costs around the optimal cue weights, indicating the task has a flat optimum, as observed in a

number of prior dynamic decision making studies (e.g. Rapoport 1975). Furthermore, as delay

and gain increase, the floor of the valley narrows and stretches out toward the origin: as feedback

complexity increases, the optimal strategy converges to the 'no-control' rule. The flat cost surface

of the task and shift towards no-control of the optimum cue weights as complexity grows thus

explains the weak dependence of subject costs relative to optimal as difficulty increases even

though subjects do not adjust their decision rules appropriately as feedback complexity grows.

DISCUSSION

There are two competing explanations for the significant differences in subject weights

relative to optimal across delay and gain conditions. One could argue that subjects understood the

structure of the task well enough to conclude that the task has a flat optimum, and that they

understood that the valley of low costs around that optimum point moves towards the 'no-control'

policy as feedback complexity increases. Thus the insufficient attention paid to inventory and

supply line cues represents a rational, or at least reasonable, tradeoff between performance and

effort, so that performance relative to optimal remains relatively constant across treatments.

However, reducing the weighting of inventory and the supply line does not reduce the need to

monitor those cues, nor does it reduce the need to combine the cues to make a decision. Thus the

cognitive effort saved by underweighting seems modest at best, while the average shortfall of costs

from optimal was large (more than a factor of four). Further, deciding what cue weights to use as

a deliberate strategy based on understanding of task structure in each gain and delay condition

would require subjects to spend time at the start of each trial determining how the gain and delay

conditions of that trial affected the cost surface. The time required to calculate this surface should

be longer in conditions with long delays, since the system involves more state variables (the

1_1___1 ____1_11__1__111__11__I_�-
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complexity of finding the cost surface rises roughly with the square of the number of state

variables). Yet the deliberation time data showed no significant dependence on delay or gain, for

either the initial or subsequent decisions in each conditions. Furthermore, effort (as measured by

mean decision time) was uncorrelated with performance. Finally, the notebook analysis provides

virtually no support for the hypothesis that subjects chose their decision rules by explicit

consideration of the delay and gain conditions.

It is more likely that subjects do not understand the response surface of the task or the

dependence of optimal cue weights on delay and gain conditions. By this interpretation under-

weighting increases with complexity because subjects suffer from two types of misperceptions of

feedback. They are insufficiently aware of the feedback structure of the system, and they are not

able to infer the consequences of the feedbacks and time delays. As delays lengthen and gain

increases the system becomes less stable and the optimal policy requires more aggressive response

to the supply line and the anticipated change in production. Yet subjects, unable to infer properly

how the gain and delay conditions affect system behavior, fail to increase their responsiveness to

the anticipated change in production. Subjects reduce their responsiveness to inventory as com-

plexity increases because they find the system to be less stable - failing to understand how their

control actions affect the system, they reduce the control they exert, moving to a hands-off

strategy. Much of the data are supportive of the MOF hypothesis. The subjects tend to produce

costly, persistent oscillations with the characteristic amplitude and phase relations observed in prior

work and predicted from simple models in which the feedback structure and time delays are

ignored. Regression analysis of subject decisions showed most were unresponsive to the time

delays, ignoring the supply line of pending production. The deviation of subject cue weights from

optimal grows larger as the dynamic complexity of the system grows. Finally, the notebook

analysis suggests most subjects did not attempt, at least for very long, to account for the delay and

feedback loop structure of the task, tending instead to revert to a simple model focusing on

inventory and perhaps the expected change in inventory. In a sense, subjects were lucky: though

performance was not very good overall, their misperceptions of the feedback environment and its
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consequences were not punished more severely in the difficult conditions because the task has a

relatively flat cost surface.

Conditions in the experiment favor high performance compared to many real-life dynamic

decision tasks. The subjects, though students, rank much higher than the average person in

relevant knowledge of mathematics, computers, and feedback control theory. There were mone-

tary incentives for performing well. Explanation of and training in the task were provided.

Subjects could take all the time they wished to make their decisions. Full information was pre-

sented to the subjects; there were no hidden states. The number of cues to attend to was small.

The feedback structure of the task, including full disclosure of the treatment conditions, was dis-

played at all times. The task, except for the exogenous component of sales, was completely

deterministic - delay length, feedback strength, outcome feedback, and subject decisions were not

subject to any random variation or measurement error. Outcome feedback was immediate, perfect,

and complete.

Yet overall performance is quite poor compared to optimal. In the most difficult condi-

tions, subjects are outperformed on average by the 'no-control' rule. Analysis of subjects'

decisions revealed that they tended to focus on inventory (the stock to be managed) and the differ-

ence between expected production and sales, rather than considering full information. As found in

prior experiments, subjects did not attend to the supply line, even though information about its

contents was just as prominent in the information display as information about inventory or sales.

Side effect feedbacks also proved difficult to manage. In the presence of a positive side-effect

loop, where the side effect undercuts the impact of the subjects' control efforts, subjects undercon-

trolled the system dramatically. Most generate costly oscillations as they failed to account properly

for the impact of the side effect feedback.

The results strongly support the misperceptions of feedback hypothesis. Because the sub-

jects had full information, training, incentives, and extensive opportunities for experience it is not

plausible to attribute their poor performance in the complex conditions to inadequate information,

ambiguity of outcome feedback, inexperience, or lack of effort. Though these issues are indeed

_���_ ___I_ ___
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grave impediments to effective performance in many real life settings, these results suggest the

source of the problem is more fundamental.

We suggest the mental models subjects bring to bear in complex tasks are dynamically

deficient. Subjects were unable to account well for delays and feedback effects because (1)

people's mental models of control tasks are highly simplified, tending to exclude side effects,

feedback processes, delays, and other elements of dynamic complexity; and (2) even when these

elements are known, people's ability to infer correctly the behavior of such complex feedback

systems is poor. The former misperception can be overcome with training in the principles of

feedback systems and dynamics. The latter is a fundamental bound on human rationality - our

cognitive capabilities do not include the ability to solve systems of high-order nonlinear differential

equations intuitively. Fortunately, computer simulation makes the task of solving these systems

trivial. Currently available software allows people from grade school to chief executive to build

and simulate dynamic systems of arbitrary complexity on their personal computers (Richmond

1993, Diehl 1992, Eberlein and Peterson 1992, Morecroft and Sterman 1992). Nevertheless, the

art of model building remains difficult. Exploring the nature of training and decision aids to

overcome the misperceptions of feedback and testing their effectiveness in the field - in firmns,

markets, and other real dynamic decision making contexts - is the next frontier for research in the

psychology of dynamic decision making.
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NOTES

1 Technically, the delay introduces phase lag that can cause the eigenvalues of the linearized

system to become complex conjugates. Such systems are oscillatory. In the general case, the

system may be damped, stable but underdamped, or unstable, depending on the gain of the control

loop (the response to discrepancies between the stock and its goal) and the length of the time delay

(Forrester 1961, Ogata 1970).

2 The weights were calculated numerically using Matrix X as implemented on MIT's Athena

system.

3 All four models were tested both with and without a constant term. The constant is predicted to

be zero; nonzero values would yield nonzero inventory costs in equilibrium. In all cases the

estimated constants were not significanlty different from zero, as expected, so the regressions

reported here were run with the constant suppressed.

4 The optimal weights for model 3 were derived numerically (Diehl 1992).

5 ANOVA analysis of each weight separately confirms these results (Diehl 1992).
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Figure 1. The generic stock management structure, as implemented in the experiment. Top: the

stock and flow structure of the task, showing the two treatment variables, production delay, 8, and

side-effect feedback gain, y. Bottom: Subjects choose the change in production, A, by

considering their inventory position relative to the target, and possibly accounting for the supply

line of future production and the expected future value of sales.
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Figure 2. Subject/sequence table and Latin-square with 3 levels of production delay

and 5 levels of feedback gain.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Subject per sequence table
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Figure 3. Sample computer screen display.

Week

Change in Production

Production

Sales (dependent)

Sales (independent)

Sales (t1)

Change in Invenory

Inventory

Cost (Prod. Change)

Cost (Inventory)

Cost (Total)

Accumulated Cost

59

0

600

180

420

0

0

0

0

0

0

0

60 61

01 1

600 600

180

423

603

-3

-3

0 = 2 * (0*0

9 = *(-3*-

9

62 63

(Enter Decision)

600

-3)

9

Conditions for current game: · 10 production units cause 3 sales units.
Production is delayed by 2 weeks.

.
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Figure 5 Average subject performance, log (base 2), compared to average of optimal rule and no-

control rule. Experimental conditions are ranked from lowest optimal costs to highest.
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Figure 6 log2(Subject costs/no-control costs) by treatment condition. Negative (positive) numbers

indicate the subjects outperformed (were outperformed by) the no-control rule.
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Table 1. ANOVA of log2(subject costs/no-control costs).

-2 = .88, N = 225

Source

Delay

Gain

Delay x Gain

Subject

Practice/Sequence

df

2,182

4,182

8,182

14,182

14,182

F

98.52

32.53

2.24

5.57

12.88

P

p=.000+

p=.000+

p=.0 26

p=.000+

p=.000+

Table 2 ANOVA of log2(Subject costs/optimal costs).

R2 = .42, N = 225

Source

Delay

Gain

Delay x Gain

Subject

Practice/Sequence

df

2,182

4,182

8,182

14,182

14,182

F

1.02

1.22

1.43

5.56

2.36

P

.364

.303

.185

.000+

.005
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Table 3 ANOVA of average time spent on later decisions.

Source df F P

Delay 2,182 1.11

Gain 4,182 0.70

Delay x Gain 8,182 2.67 p<.01

Subject 14,182 15.90 p<.01

Practice 14,182 28.60 p<.01

-- not significant

Table 4 ANOVA of average time spent on first decision in each condition.

Source df F P

Delay 2,182 0.93

Gain 4,182 0.68

Delay x Gain 8,182 1.05

Subject 14,182 3.02 p<.01

Practice 14,182 10.69 p<.01

-- not significant
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Table 5. Average adjusted R 2 and incidence of sign reversals for alternative models of subject

decisions (see eqns. 9-12).

Model: M M2 M3 M4Model:

Average Adjusted R2 :

Number of Sign Reversals:

0.26

24

Cues Utilized in Each Model:

It

(Pt- St)

(Pt+8- St)

Pt

Pt+l

Pt+2

Pt+3

Pt+4

St

0.51

59

0.58

24

0.62

136

* :
0

.

0

0

0
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Figure 7 Bootstrap analysis. The total performance shortfall against optimal is partitioned into the

effect of inconsistency and the effect of subject's use of the wrong model.
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Table 6.

ANOVA for Euclidean distance of subjects' cue weights from optimal for model

(see equation 13).

Source

Delay

Gain

Delay x Gain

Subject

Practice

-- not significant

df

2,182

4,182

8,182

14,182

14,182

F

361.25

454.07

58.22

5.83

0.78

probability

p=.00 0+

p=.OOO+p=.000+

p=.000 +

p=.00 0 +
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