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Introduction

In 1971 the members of the Pharmaceutical Manufacturer's association spent about three

hundred and sixty million dollars on research and development.' In 1991 they spent 8.9 billion, an

increase of over two thousand three hundred percent. But while industry sales have grown in line with

research expenditures, there has been no significant increase in the number of new drugs introduced.

Why have costs increased so dramatically? Breakthroughs in pharmaceutical research can lay the

groundwork for qualitative improvements in the quality of life and for significant reductions in the

cost of health care, but escalating health care costs have focused attention on every aspect of health

care expenditure and have led several observers to question this apparent decline in pharmaceutical

research productivity. This paper hopes to contribute to this debate by exploring the issue in the

context of a broader study of the determinants of research productivity in ethical drug discovery.

We draw upon a detailed data set compiled from the internal records of ten major

pharmaceutical firms. The data set allows us to distinguish between research (or "discovery") and

development expenditures at a highly disaggregated level. For example within the general class of

"cardiovascular therapies" we can observe the distinctions between fields such as hypertension,

cardiotonics and blood related conditions. Section I presents some descriptive statistics from the

sample. Our sample firms display the long term decline in productivity characteristic of the industry

as a whole. Both research and development expenditures have increased dramatically in real terms,

while the output of "important" patents has fallen, and the number of drugs discovered has remained

approximately constant.

Section II explores the degree to which the escalation in real research costs may reflect a

change in the mix of research projects that are being pursued. Real research costs may have

increased, for example, if resources have shifted away from "easy" fields towards "more difficult"

fields such as oncology (cancer) and gerontology (the study of aging). However the disaggregate data

suggest that this effect is probably not very important as a driver of falling productivity. While on

average there has been a shift of resources across fields, there is no evidence that this shift has been

to fields in which it has been on average more difficult to obtain results.

Sections III and IV explore the degree to which rising real research costs reflect increased

competition in the industry. Some economic theory suggests, for example, that an increase in the

expected returns to an industry will encourage firms to increase their investment in research in the

1 Here and throughout the paper, all amounts are denominated in deflated 1991$.
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hope of capturing these returns from their rivals. In the extreme, these theories suggest that private

returns in the industry will be driven to nothing as competing firms dissipate all of the available

returns by "overinvesting" in research.

This is an important issue for public policy since it highlights the dangers of relying on the

"research cost per drug" as a useful measure of research costs. On the one hand, if there is significant

over investment in research, so that competing firms are "racing" each other to market by investing in

substantially identical research, average research costs per drug per firm substantially overstate the

actual expenditure required to discover a new drug. On the other hand, if there are significant

spillovers between firms and between research projects within the same firm, and if firms do not

immediately dissipate anticipated returns through excess investment, then mean research costs

substantially understate the resources required to discover a new drug.

Unfortunately it is difficult to test these ideas systematically since the theoretical models very

quickly become fundamentally indeterminate. As a first step towards a richer understanding of the

issue, we focus here on the exploration of the assumptions on which the theoretical literature rests.

The rather extreme conclusion that free entry unambiguously leads to over investment in research is

crucially dependent upon at least five key assumptions: that entry will occur until marginal private

returns have been driven to zero, that there is no spillover of knowledge between firms, that there is

total appropriability of consumer surplus, that competing projects are perfect substitutes for each other

and that there are no efficiency gains to multi firm competition.

The validity of the last three assumptions are beyond the scope of this paper, but in section III

we explore the first through an examination of the dynamics of investment behavior. Following

methodology pioneered by Scherer (1992) and Meron and Caves (1991), we distinguish between a

"leader," "core followers" and "fringe" firms. We find some weak evidence that core followers invest

in response to investment by the leading firm, while fringe firms reduce the investments in research

as follower firms increase their research expenditures. However these effects are only marginally

significant, and of very small magnitude. Our results suggest that by far the most important

determinant of this year's research spending is last year's spending: a finding consistent with a world

in which investment decisions are driven much more by heterogeneous firm capabilities, adjustment

costs and scientific opportunity than by strategic interactions. We interpret this as suggesting that

while firms may respond strategically to each other, these reactions are probably not sufficiently

important to drive marginal private returns to zero. In section IV we investigate the nature of

spillovers in the industry through a study of the determinants of the output of important patents. Our
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results are consistent with the presence of substantial spillovers, both within and across firms,

suggesting that the entry of additional firms into the R&D "race" is not unequivocally welfare

destroying.

Section V presents our conclusions and explores their implication for the formulation of public

policy. Our results suggest that the apparent decline in industry's long term productivity is probably a

function of escalating real research costs. There is no evidence of a shift from "easier" to more

"difficult" classes, or of an increase in racing behavior across firms. However our research highlights

the complexity of pharmaceutical research. In the absence of good measures of the returns to

innovation in the industry we cannot know whether there is, on average, "too much" spent on R&D,

but our results suggest that while the pharmaceutical industry is sometimes held up as a textbook

example of dissipative racing behavior in research and development competition, the reality is

probably considerably more involved. On the one hand we find some evidence consistent with the

kinds of correlated patterns of investment at the research program level which we would expect to see

if R&D spending decisions were dominated by strategic interaction of the kind captured by game-

theoretic models. On the other, we find evidence consistent with significant R&D project

complementarities and other spillover benefits across firms, suggesting that correlated investment

strategies may create significant externalities. While our results must be interpreted with care, they

suggest that the simple characterization of the costs of R&D by an average "dollars per drug" figure

is almost certainly incorrect.

I. Long Term Trends in Industry Productivity

Figure (1) plots average spending on research and development by the firms in our sample

from 1965 to 1990. (Appendix (1) describes the construction of the data set in detail.) While research

spending has increased in real terms, the lion's share of the increase in pharmaceutical research costs

is a function of the accelerating cost of clinical development. Figure (2) plots research and

development spending as share of sales: while research expenditures are increasing roughly in line

with sales, development expenditures have far outstripped them.

Figure (3) plots average outputs per dollar from 1965 to 1990. The number of "important"

patents granted to the mean firm in our sample has fallen dramatically.2 This mirrors trends observed

2 We define "important" patents as those granted in two of the three major world markets: the
U.S., Japan and the European community.
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for the economy as a whole, but while the number of patents granted by the U.S. patenting office to

U.S. firms fell in every industry in the seventies, a number of the firms in our sample are European,

and the decline in patenting rates by our sample firms is significantly greater than this more general

trend (Griliches, 1990).3

On average, the number of INDs (Investigational new Drug Applications) and NDAs (New

Drug Applications) obtained for each dollar invested in research and development by the firms in our

sample has steadily declined. 4 This trend must be interpreted with caution since it can take more than

ten years to file an NDA once an IND has been granted, and thus it is possible that the acceleration in

development spending that we observe in the late 1980s will be followed by an outpouring of NDAs

over the next decade. In general, however, our data are in line with the aggregate statistics in

suggesting that increases in spending on R&D have not been accompanied by a proportionate increase

in the easily tracked measures of output: patents, INDs and NDAs.

II. Heterogeneity Across Therapeutic Classes

Wiggins (1979) first demonstrated the importance of distinguishing between therapeutic

classes in modeling the determinants of productivity in the industry, and Table (1) begins the process

of pulling apart the aggregate numbers to reveal the heterogeneity of pharmaceutical research. It

shows the ratio of cumulative outputs to cumulative inputs by therapeutic class for the years 1975-

1990. These numbers must be approached with caution, since they are subject to both left and right

censoring. 5 However they illustrate the variety that is hidden by aggregating the data. The number of

important patents obtained per million dollars invested in research, for example, varies from a high of

2.6 in dermatology to a low of .2 in anti-infectives. Similarly the ratio of INDs obtained per billion

3 The very low patenting rates for 1988-1990 may reflect two complicating factors. These data
were obtained from Derwent publications in 1991. On average patents are granted two years after
they are applied for. We graph number of patents granted by year of application, so there may well
be patent applications still outstanding for these years. Once granted, each patent must be classified by
Derwent. This process is not instantaneous, and may lead to further under counting in recent years.

4 In order to test a drug in humans in the United States, firms must fail an "IND" - an
"Investigational New Drug Application." If clinical trials are completed successfully, the firm then
files an "NDA" - a "New Drug Application." We count only INDs for original indications.

5 It is certainly the case, for example, that some of the discovery and development spent over
this period has yet to yield fruit, and that some of the output results from investment made before
1975.
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dollars varies from 25 for anti-infectives to 81 for dermatology, and the ratio of NDAs to cumulative

R&D spending varies from a low of 6 per billion in musculo-skeletal research to a high of 34 per

billion in dermatology.

These variations translate into significant differences in the average "cost per drug" in each

class. Making the very crude assumption, for example, that investment in each program is constant

across the sixteen year period, and that the time value of money is 9%, these differences translate into

an approximate "cost per NDA" of over three hundred and seventy million dollars for a musculo-

skeletal NDA, of around two hundred million dollars for a cardiovascular NDA and of around sixty

six million for an NDA in dermatology. 6

Thus differences in costs across therapeutic classes are one possible explanation for the

apparent decline in industry research productivity. If firms have shifted resources away from "easy"

fields such as dermatology towards "hard" fields such as anti infectives, then research costs would

rise and output would fall solely as a result of a change in portfolio composition. Figures (4) and (5)

explore this issue. Figure (4) graphs mean share of the research portfolio by therapeutic class over

time, while figure (5) graphs mean share of the development portfolio. Both graphs suggest that it is

very unlikely that increases in research costs are driven by shifts in portfolio composition. In general,

investment in research has been characterized by a switch away from anti-infectives towards

cardiovascular drugs. From the results of table (1) this shift should have increased research

productivity, all other things equal! In development the firms in our sample have been shifting out of

central nervous system research towards work in cardiovasculars while the share of resources devoted

to anti-infective work has remained more or less constant. Again, the summary statistics of table (1)

suggest that this shift should have left research productivity approximately unchanged, all other things

equal.

Thus although research productivity differs systematically across therapeutic classes, there is

little evidence to suggest that shifts between classes is at the root of the long term "decline" in the

productivity of pharmaceutical research and development. We thus turn next to an exploration of the

dynamics of investment behavior and of differences in firm productivity as a source of insight into

changes in industry productivity.

6 These numbers are reassuringly in line with those calculated by Di Masi et. al (1991). Note,
however, that they are very approximate and indicate no more than an "order of magnitude". The Di
Masi study uses a much more sophisticated methodology and more detailed project data to calculate
the "cost per drug."
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III. Overinvestment in Research? The Dynamics of Investment Behavior.
Escalating real industry research costs may reflect increasing competition and

"overinvestment" in research. The theoretical literature exploring the relationship between competitive

dynamics and investment strategy is both voluminous and inconclusive, but many of the models raise

the concern that free entry into R&D competition will result in over-investment relative to both the

private and social optima. Intuitively, these results are driven by the assumption that in deciding to

invest in research, firms consider only their own marginal returns, and do not take into account the

externality that they impose on other firms in reducing their chances of success. In the extreme, these

models suggest that entry will occur until all expected profits are dissipated (Dasgupta and Stiglitz,

1980, Loury, 1979, and Reinganum 1982,1989.)

Unfortunately it is difficult to test these ideas. Models that attempt to incorporate all of the

relevant variables quickly become dauntingly complex, and we have, as yet, no general results about

the relationship between market structure, scientific or technological regime and the relationship

between realized and optimal levels of research investment (Baldwin and Scott (1987), Harris and

Vickers, 1987; Reinganum (1989)).

However the literature highlights several factors that determine whether the entry of an

additional firm into the research "race" will raise or lower social welfare. For example, one can show

that in markets characterized by perfectly competitive behavior, complete appropriability, and

research projects that are perfect substitutes for each other, there will be considerable over investment

in research (Dasgupta and Stiglitz, 1980b). Conversely, in industries characterized by weak

appropriability, where investment in research is more cooperative than competitive and in which

research projects are largely complements, there is likely to be under investment relative to the social

optimum (D'Aspremont and Jacquemin, 1988, 1990; Dasgupta and Maskin, 1987; Fraja, 1993;

Suzumura, 1992).

Since theoretical models that attempt to model the interaction between all of these factors

simultaneously quickly become intractable, we instead explore the validity of two of the core

assumptions on which the models of rent dissipation rely: firstly that under free entry firms will

respond strategically to each other, and will invest in research until marginal returns to zero and

secondly that there are no spillovers of knowledge either across projects within the firm or between

firms. A more complete discussion of the theoretical issues involved and of the relationship between

our research and the existing literature is given in our paper "Racing to Invest: The Dynamics of

Competition in Ethical Drug Discovery."
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In general the literature suggests that two plausible types of investment behavior are consistent

with dissipating behavior. On the one hand Reinganum (1982) presents a model in which symmetric

oliogopolistic firms "race" for a well defined prize. Under these conditions reaction functions are

upward sloping, and marginal increases in spending by one firm are met by increased spending by its

rivals. On the other hand Harris and Vickers (1987) develop a model of rivalry between asymmetric

firms in which increased spending by the "leader" evokes a submissive response by "followers."

This distinction builds on earlier work by Scherer (1967), and is confirmed by previous

empirical work. Grabowski and Baxter (1973), for example, found that in the chemical industry, the

two largest firms responded quickly to changes in each other's R&D policies, while rivalry amongst

the smaller firms in the industry was less clear cut. Caves and Meron (1992) found that in a sample

of 28 U.S. manufacturing industries, leaders and followers reacted positively to each others' increases

in R&D expenditures, while fringe firms' investment decreased with their larger rival's investment,

and Scherer (1992) found that firms with greater domestic sales in more concentrated U.S. markets

were likely to react much more aggressively to increasing import competition than smaller firms or

firms in less concentrated markets.

Tables (2) (3) and (4) present our analysis of the investment dynamics that characterize our

sample. Table (2) shows results from regressing investment onto control variables suggested by the

qualitative analysis. These include: the stock of research, which is intended to capture, among other

things, unobserved differences in the "quality" of the program; firm and therapeutic class dummies; a

time trend, and variables intended to capture shocks to scientific opportunity - "news" in own patents

and in important papers. "News" is defined as the excess of the current year's flow over the amount

necessary to maintain the stock, given a depreciation rate 6:

News = Flowt - 8 Stockt

This formulation is intended to capture activity in excess of "normal" levels.7 Of all the control

variables, only news in patents is significant.

We use three specifications for the dependent variable. In model (1) the dependent variable is

just the level of research spending, and the explanatory variables include lagged research, included to

capture the adjustment costs. This variable dominates the regression, and its coefficient is

7 Experimentation with various combinations of lags, depreciation rates etc. added little to our
analysis.
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indistinguishable from 1. In model (2) we constrain it to be 1 by using the first difference of R as the

dependent variable. A lagged difference of R is included in this specification but is insignificant.

Model (3) uses a "news" version of R, and lagged news on the right hand side. Lagged news is

strongly significant, suggesting that changes in research strategy are correlated from year to year.

Table (3) introduces competitors' expenditures into the regression in order to test for the

presence of strategic interactions.8 Model (3) is reproduced from Table (2) for purposes of

comparison. Model (4) tests the hypothesis that every firm responds to every other firm by including

"news in competitors' research" as an independent variable. It is insignificant. Model (5) tests the

hypotheses that the leading firm responds only to core followers, while core followers respond both to

each other and to the leading firm, and fringe firms respond both to the leader and to the core

followers.9 All of the coefficients except that of the leader's response to the core followers have the

expected sign, but only one is significant: fringe firms appear to react submissively to investment by

core followers. Moreover the standard test for the significance of additional variables cannot reject the

hypothesis that competitive spending adds no additional explanatory power to either model (4) or

model (5). While interpretation of this result must be tempered by the fact that our firms together

comprise only about twenty eight percent of the industry, it provides only very limited support for the

presence of strategic interactions amongst firms.

Table (4) tests for the idea that "racing" behavior may have increased over time, even if it is

not significantly present in the sample as a whole. Model (7) is run using the data for the period 1961

to 1974, while model (8) tests for the significance of competitive investment in the period 1975 to

1988.1'0 Competitive investment is insignificant in both specifications and a Chow test cannot reject

the hypothesis that the there is no difference in the dynamics of the two periods.

8 Obviously there is potential simultaneity between competitors' and own research investments.
However plausible instruments are hard to find. Rather than use weak instruments, we simply present
the ordinary least squared results here. We are actively pursuing this issue in our research.

9 One firm in our sample consistently spent more on discovery research than all of the others.
Following Caves and Meron (1992) we defined this firm as the "leader." Firms that consistently
invested more than 30% of the leader's investment were defined as "core followers." Firms that spent
less were defined as "fringe firms." There are three fringe firms and six core followers in the data
set.

10 The results of table (4) rely on a more limited set of explanatory variables than those of table
(3) since we do not have data for "key papers" before 1975, and the fringe firms in our data set
appear relatively late.
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Thus we find only very limited evidence of strategic interaction in investment behavior.

Moreover the magnitude of these reactions is very small: together, in the most successful specification

they add only 0.1% to the explanatory power of the regression, and our results suggest that the

overwhelmingly most important determinant of this period's investment is last period's investment.

These results are consistent with our qualitative findings. Highly trained personnel are

expensive to hire and to let go, and dramatic increases in the size of a program are unlikely to lead to

equally dramatic increases in its productivity." Discovery research is a highly uncertain process, and

our quantitative finding that investments are highly serially correlated is consistent with a world in

which investment decisions are driven by heterogeneous firm capabilities, by adjustment costs, and by

the evolution of scientific opportunity.

IV. Spillovers and Research Productivity.

In an industry characterized by straightforward duplicative "racing" behavior, one firm's

success is another's loss since each firm invests in identical research programs and there are no

spillovers of knowledge across firms. However if there are significant spillovers of knowledge across

firms, research productivity may be correlated with competitive investment, and additional entry into

the R&D "race" may be welfare enhancing.

We test for the presence of spillovers in our data by regressing important patents onto a

variety of control variables and a set of measures designed to capture competitive activity in the field.

These equations can be usefully thought of as a production function for "important patents" in which

competitors' research successes enter as inputs to each other's R&D.

Table (5) presents our results. Models (9) and (10) use our full sample. Model (9) suggests

that own output and the success of rival firm's efforts are positively and strongly significantly

correlated. Using competitors' discovery spending in place of their patents gives very similar results:

competitors' investment has a positive and significant impact on own research productivity. 2

However this model fails to control for changes in scientific opportunity, raising the possibility that

the observed correlations across firms merely reflect exogenous shifts in opportunity that make it

easier to obtain patents in any given class. Model (10) includes "Key Papers" as a measure of

" There is no evidence of increasing returns to scale in our data (Henderson and Cockburn,
1993).

12 These results are not reported here.
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scientific opportunity. There is no significant correlation between these measures and own output, and

important competitive patents remain a significant predictor of own patents. (An alternative measure

of opportunity, "cites to key papers" performed very similarly.) Models (11) and (12) repeat these

analyses using cardiovascular data alone, where model (12) makes use of the more detailed measures

of scientific opportunity.' 3 Patent output is not significantly correlated with key papers in the public

sector, suggesting that major shifts in the stock of public knowledge are not immediately translated

into patents, but it is significantly correlated with the flow of key papers published by private sector

individuals. Nonetheless, controlling for this effect strengthens the correlation between own research

productivity and competitors' output.

Thus our results are consistent with the idea that there are significant spillovers of knowledge

across firms. Important patents per discovery dollar are likely to be significantly higher if competitors

have recently obtained a number of important patents in the area, and far from leading to a "mining

out" of opportunities, competitors' research appears to be a complementary activity to own R&D.

Thus the entry of additional firms into a therapeutic area may be welfare enhancing.

This result must be qualified by the observation that not all patents are equally important. If,

for example, a major discovery in an area makes it easier to obtain patents in the area, and if this

effect is not fully captured in our measures of scientific opportunity, then correlation in output across

firms may reflect no more than the generation of "me too" patents for "me too" drugs. Two factors

moderate this problem. The first is that so called "me too" drugs may offer important additional

therapeutic benefits such as reductions in side effects or improved efficacy with different segments of

the population. The second is our finding that output is positively associated with competitive

investment as well as with competitive output, suggesting that we are capturing the effect of genuine

spillovers of knowledge.

V. Conclusions

Over the last twenty years the pharmaceutical industry appears to have suffered a dramatic

decline in productivity. This paper used disaggregated data at the research program level to explore

13 We used secondary sources and consultation with industry experts to identify those papers that
had a seminal influence on the field and that represented an order of magnitude change in scientific
opportunity. We divided these papers into two classes: those for which a majority of the authors were
employed in the public sector: "Key Public papers" and those for which a majority of the authors
were employed in the private sector: "Key Private papers."
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this decline in the context of the drivers of productivity in drug discovery. Our results suggest that it

is probably not a function of either a shift to research in "more difficult" areas or of an increase in

"racing" behavior in the industry. Rather our results are consistent with the hypothesis that rising real

research costs in the industry reflect decreasing returns. The switch to more science intensive methods

of drug research appears to be a major contributor to increasing costs, but the most important driver

of cost escalation appears to be the rocketing costs of clinical drug development. We speculate that

this probably reflects both a shift to the treatment of conditions that require more complex clinical

trials and increasing regulatory stringency, but we have no data about this issue.'4

In general our results must be interpreted with caution. Our analysis of investment behavior

and spillover effects applies only to competition in research, or drug discovery: we plan to explore

the determinants of productivity in development in later work. Moreover the validity of our spillover

analysis is crucially dependent on our use of important patents as a measure of output. We plan to

extend our analysis through the use of alternate measures of output. We also hope to enrich our

understanding of the ways in which the dynamics of the industry have evolved over time.

These results have potentially important implications for public policy. Most importantly,

they suggest that the presence of several competitors in any given area may increase social welfare.

While it may be tempting to think that one could "rationalize" the amount of research and

development conducted by the industry, or to set prices on the basis of the research expenditures of a

single firm, our analysis suggests that it may be dangerous to think of research costs in terms of some

measure of "dollars per drug" deduced from the spending of any single firm. A reduction in the

number of firms conducting research in any given area may have significant negative externalities, if

R&D spending complements, rather than substitutes for rivals' investment. Intuitively the "true" cost

of a drug may include the costs of those programs in rival firms that apparently "failed" but that

contributed to the industry's common pool of knowledge by spilling information across the boundaries

of the firm.

14 The decline in measured productivity may also reflect inadequate measures of output. The
move to more "rational" drug design, for example, may have resulted in the introduction of drugs that
were more expensive to discover but that have more valuable therapeutic effects.
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Table (1) Cumulative outputs over cumulative inputs, by class, 1975-1990

CLASS Patents/ Inds/ NDAs/
Research $m Research $bn R&D $bn

Alimentary 1.7 34 13

Blood 0.8 32 8

Cardio.Vascular 1.0 41 11

Dermatology 2.6 81 34

Anti.infective 0.2 25 13

Hormones 1.9 96 16

Cytostatics 0.6 61 25

Musculo Skeletal 1.1 36 6

C.N.S. 1.6 49 14

Respiratory 1.7 43 9

Sensory Organs 1.1 38 32



Table (2): Determinants of investment in research
OLS Regression. Dependent variable =
4597 observations.

at the program level.
Investment in discovery.

Dependent variable

Intercept

Research(t-l)

A Research(t.1)

"News" in research(tl)

Research stock(t,)

"News" in patents(t.)

"News" in key papers(t,)

Class dummies

Firm dummies

Time

Time * Time

Adjusted R-squared

(1)

Researcht

0.174**
(0.072)

0.984**
(0.034)

0.000
(0.012)

0.013*
(0.008)

0.003
(0.007)

Sig.

Partial Sig.

-0.020**
(0.007)

0.001**
(0.000)

0.879

(2)

A Researcht

0. 197**
(0.075)

0.008
(0.049)

-0.004
(0.006)

0.013*
(0.008)

0.004
(0.007)

Sig.

Partial Sig.

-0.021**
(0.007)

0.001**
(0.000)

0.007

(3)

"News" in
research t

0.174**
(0.072)

0.824**
(0.034)

0.005
(0.006)

0.013*
(0.008)

0.003
(0.007)

Sig.

Partial Sig.

-0.020**
(0.006)

0.001**
(0.000)

0.648

Heteroskedastic-consistent standard errors in parentheses.
** Significant at the 1 % level.
* Significant at the 5% level.
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Table (3): Determinants of investment in
O.L.S. Regression. Dependent

research at the program level.
variable = "News" in research

N

Intercept

"News" in research(tl)

"News" in competitors' research(t)

Leader *
News in core followers' research(4)

Follower *
News in core leaders' research(t-)

Follower *
News in core followers' research(t)

Fringe firm *
News in core

Fringe firm *

leaders' research(t-)

News in core followers' research(t.l)

Research stock(tl)

"News" in patents(t1)

"News" in key papers(t)

Class dummies

Firm dummies

Time

Time * Time

Adjusted R-squared

Sum of Squared Residuals
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(3)

4597

0.174**
(0.072)

0.824**
(0.034)

0.005
(0.006)

0.013*
(0.008)

0.003
(0.007)

Sig.

Partial Sig.

-0.020**
(0.006)

0.001**
(0.000)

0.648

3029.1

(4)

4597

0.148*
(0.072)

0.825**
(0.034)

0.006
(0.006)

0.004
(0.007)

0.012
(0.007)

0.004
(0.007)

Sig.

Partial Sig.

-0.019**
(0.007)

0.001**
(0.000)

0.649

3026.8

(5)

4115

0.145*
(0.084)

0.825**
(0.036)

-0.007
(0.016)

0.026
(0.019)

0.004
(0.009)

-0.003
(0.017)

-0.010*
(0.006)

0.005
(0.007)

0.012
(0.008)

-0.006
(0.011)

Sig.

Partial Sig.

-0.018**
(0.008)

0.001**
(0.000)

0.645

2868.7
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Heteroskedastic-consistent standard errors in parentheses.
** Significant at the 1% level,
* Significant at the 5% level.
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Table (4): Determinants of investment in research at the program level.
Comparing competitive dynamics pre and post 1975.
O.L.S. Regression. Dependent variable = "News" in research

(6) (7) (8)

Sample 1961-1988 1961-1974 1975-1988

N 4170 1360 2810

Intercept 0.131* 0.091 -0.220
(0.071) (0.086) (0.622)

"News" in research(tl) 0.825** 0.744** 0.827**
(0.036) (0.056) (0.039)

Leader * -0.005 0.010 -0.012
News in core followers' research(tl) (0.016) (0.035) (0.017)

Follower * 0.028 0.056 0.029
News in core leaders' research(tl) (0.019) (0.040) (0.021)

Follower * 0.006 -0.016 0.007
News in core followers' research(,l) (0.016) (0.022) (0.010)

Research stock(,,) 0.005 0.029** 0.003
(0.007) (0.013) (0.008)

"News" in patents(t-l) 0.012 0.018* 0.007
(0.008) (0.011) (0.010)

Class dummies Sig. Sig. Sig.

Firm dummies Partial Sig. Insig. Partial Sig.

Time -0.017* -0.010 0.011
(0.008) (0.019) (0.060)

Time * Time 0.001** 0.001 0.000
(0.000) (0.001) (0.001)

Adjusted R-squared 0.646 0.701 0.639

Sum of Squared Residuals 2874.6 296.3 2554.1

Heteroskedastic-consistent standard errors in parentheses.
** Significant at the 1% level,
* Significant at the 5% level.
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Table (5): Determinants of patent output at the research program level.
Poisson Regression. Dependent variable = PATENTS.

N

Intercept

Ln(Discovery)

Ln(Stock of Discovery)

SCOPE: No. classes firm
is active

SCOPE * SCOPE

Ln(SIZE): Total disc.
spending by firm.

Stock own pats in this
class

News in patents in related
classes

News in competitors'
patents in this class

News in competitors'
patents in related classes

Key paperst

Key papers,,

Key paperst.2

Key public sector C.V.
papers,

Key public sector C.V.
paperst,,

Full Sample
(9)

4879

-2.807**
(0.149)

0.030**
(0.010)

0.035**
(0.009)

0. 105**
(0.016)

-0.006**
(0.001)

0.244**
(0.042)

0.032**
(0.001)

0.033**
(0.003)

0.007**
(0.001)

0.002**
(0.000)

Full Sample
(10)

4879

-3.114**
(0.158)

0.026**
(0.010)

0.040**
(0.009)

0.123**
(0.016)

-0.007**
(0.001)

0.283**
(0.043)

0.031**
(0.001)

0.032**
(0.003)

0.006**
(0.001)

0.002**
(0.001)

-0.002
(0.005)

0.011
(0.001)

-0.003
(0.005)

C.V. only
(11)

491

-1.651**
(0.269)

-0.026
(0.023)

0.121**
(0.029)

0.107**
(0.038)

-0.006**
(0.001)

0.223*
(0.093)

0.038**
(0.002)

0.053**
(0.007)

0.018**
(0.001)

-0.003**
(0.001)

C.V. only
(12)

491

-1.359**
(0.344)

-0.009
(0.030)

0.068
(0.035)

0.112**
(0.040)

-0.005**
(0.002)

0.229*
(0.104)

0.037**
(0.002)

0.061**
(0.007)

0.010**
(0.002)

0.002
(0.001)

-0.055
(0.164)

0.006
(0.161)

I



Key public sector C.V.
paperst-2

Key private C.V. paperst

Key private C.V. paperstI

Key private C.V. paperst 2

Firm dummies

Class dummies

Time

Time * Time

Log-likelihood

Sig.

Sig.

0.069**
(0.010)

-0.003**
(0.001)

-8026.9

Sig.

Sig.

0.078**
(0.009)

-0.003**
(0.000)

-7595.4 -1347

Standard errors in parentheses. ln(variable) is set=0 when variable=0, and an
appropriately coded dummy variable is included in the regression. The omitted
therapeutic class dummy is class60, systemic anti-infectives.

** Significant at the 1 % level.
* Significant at the 5% level.
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-0.145
(0.136)

0.286**
(0. 105)

0.074
(0.098)

0.135
(0.097)

Sig.

Ommit.

-0.017
(0.025)

-0.001
(0.001)

-977.1
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Appendix One: Sources and Construction of Quantitative Data

This research relies on a data set obtained as part of a larger study of research productivity in the pharmaceutical
industry. It draws upon data about spending and output at the research program level obtained from the internal records of ten
pharmaceutical firms. We were able to obtain data about every program in which these firms invested for a period of up to
thirty years - a total of more than one hundred and eighty programs. Although for reasons of confidentiality we cannot describe
specifics of the overall size or nature of the firms, we can say that they cover the range of major R&D-performing
pharmaceutical manufacturers and that they include both American and European manufacturers. In aggregate, the firmns in our
sample account for approximately 28% of U.S. R&D and sales, and we believe that they are not markedly unrepresentative of
the industry in terms of size, or of either technical or commercial performance.

Inputs

Our data on inputs to the drug discovery process is taken from the internal records of participating companies, and
consists primarily of annual expenditures on exploratory research and discovery by research program. Several issues arise in
dealing with these data.

(a) Discovery vs. Development

The distinction between discovery and development is important. We define resources devoted to discovery as all pre-
clinical expenditures within a therapeutic class, and development as all expenses incurred after a compound has been identified
as a development candidate. Where exploratory research was attributable to a particular research program, this is included in
the discovery category. Non-program exploratory research was included in the overhead allocation for each research program.
Clinical grants are included in the figures for development, and grants to external researchers for exploratory research are
included in the total for discovery.

In some cases, the companies supplied us with data already broken down by discovery vs development by research
program. In others, we had to classify budget line items for projects/programs into the appropriate category. This was done
based on the description of each item in the original sources, and the location of items within the structure of the company's
reporting procedure.

(b) Overhead

In order to maintain as much consistency in the data collection process as possible, we tried to ensure that these
figures include appropriate overhead charges directly related to discovery activities, such as computing, R&D administration
and finance etc., but exclude charges relating to allocation of central office overhead etc. The overhead also includes some
expenditures on discipline-based exploratory research such as "molecular biology" which appeared not to be oriented towards
specific therapies. Overhead was allocated across therapeutic classes according to their fraction of total spending.

(c) Licensing

We treat up-front, lump-sum payments in respect of in-licensing of compounds, or participation in joint programs
with other pharmaceutical companies, universities or research institutes, as expenditure on discovery. Royalty fees and
contingent payments are excluded.

Outputs

In this paper we focus on patent grants as our measure of research output. We count patents by year of application.
Our interest here is on determinants of technical success, defined in terms of producing new potentially important compounds,
rather than on the ultimate commercial success or failure of new drugs. Since Patent Examiners award grants based on slowly
changing objective criteria of novelty, non-obviousness, and potential industrial application, we believe that patent grants are an
appropriate basis for measuring research output in this industry. Pharmaceutical companies patent prolifically, and patents are,
of course, a rather noisy measure of research success, in part because the significance of individual patents varies widely. We
partially control for this by counting only "important" patents, where we define "importance" by the fact that the patent was
granted in two of the three major markets: the USA, Japan, and the European Community.
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These data were provided by Derwent Publications Inc, who we asked to use their proprietary classification and
search software to produce counts of "important" patents to us broken down by therapeutic class for 29 US, European, and
Japanese pharmaceutical manufacturers for the 26 years preceding 1990. These firms were chosen to include the ten firms that
have given us data together with 19 other firms chosen on the basis of their absolute R&D expenditures, R&D intensity, and
national "home base" to try to get a representative, rather than exhaustive, assessment of world-wide patenting activity. These
19 firms have been consistently in the top 30 world wide pharmaceutical firms in terms of R&D dollars and sales.

Note that many of these patents will be "defensive" patents in that firms may patent compounds they do not intend to
develop in the short term but that may have competitive value in the longer term. Alternative measures of "importance" include
citation weighting and more detailed international filing data - "very" important patents are usually filed in nearly every major
potential market. We hope to explore these alternative measures in later work.

Classification

Classification of inputs and outputs by therapeutic class is important because this drives our measure of spillovers.
There are essentially two choices: to define programs by physiological mechanisms, e.g. "prostaglandin metabolism", or by
"indications" or disease states, e.g. "arthritis". We have chosen to classify on the basis of indication, largely because this
corresponds well to the internal divisions used by the companies in our sample (which is conceptually correct), but also because
classification by mechanism is much more difficult (a practical concern.) In further work we intend to repeat the analysis using
a "cut" by mechanism. We classified both inputs and outputs according to a scheme which closely follows the IMS Worldwide
classes. This scheme contains two tiers of aggregation: a detailed "research program" or "research area" level, and a more
aggregated level which groups related programs into therapeutic classes. For example, the therapeutic class
"CARDIOVASCULAR" includes the research programs "ANTI- HYPERTENSIVES", "CARDIOTONICS",
"ANTITHROMBOLYTICS", "DIURETICS" etc.

There are some problems with this procedure. Firstly, some projects and compounds are simply very difficult to
classify. A particular drug may be indicated for several quite distinct therapies: consider serotonin, which has quite different
physiological actions on either side of the blood-brain barrier. As a neurotransmitter it is believed to play important roles in
mediating motor functions. As a systemic hormone it has a variety of effects on smooth muscle, for example it functions as a
vasoconstrictor. Some companies report expenditures in areas which are very difficult to assign to particular therapeutic classes:
a company doing research using rDNA technology might charge expenditure to an accounting category listed as "Gene
Therapy/Molecular Biology" which is actually specific research performed on e.g. cystic fibrosis, but we have no idea about
which diseases the research is directed towards treating, and are forced to include these expenditures in "overhead". Secondly,
our two-tier classification scheme may not catch all important relationships between different therapeutic areas. We believe that
we are undercounting, rather than overcounting in this respect, so that the importance of spillovers will be underestimated
rather than overestimated. Thirdly, where firms supplied us with "pre-digested" data, they may have used substantively
different conventions in classifying projects. One firm may subsume antiviral research under a wider class of anti-infectives,
while another may report antivirals separately. Not surprisingly there are major changes within companies in internal divisional
structures, reporting formats, and so forth, which may also introduce classification errors. After working very carefully with
these data, we recognize the potential for serious miss-assignment of outputs to inputs, but we believe that such errors that
remain are not serious. The use of patents as the output measure should reduce vulnerability to this problem, since we observe
relatively large numbers, and a few miss- classifications are unlikely to seriously affect our results. When we move to INDs
and NDAs as our output measures, the much more sparsely distributed data are likely increase our vulnerability.

Matching

Data series on inputs and outputs for each firm were matched at the research program level. This procedure appears
to successfully match outputs and inputs unambiguously for the great majority of programs. In a very few cases, however, we
ended up with research programs where patents, INDs or NDAs were filed, but where there were no recorded expenditures. Of
these the majority were obviously coding errors or reflected dilemmas previously encountered in the classification process, and
appropriate corrections were made. In other cases, it was clear that these reflected "spillovers" -- research done ostensibly in,
for example, hypertension, may generate knowledge about the autonomic nervous system which prompts patenting of
compounds may be useful in treating secretory disorders (e.g. ulcers.) In such cases we set "own" inputs for the program equal
to zero, and included these observations in the data base.
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Deflation

Since our data sources span many years, it is important to base the analysis on constant dollar expenditures. We used
the R&D price deflator constructed by Edwin Mansfield (1987) for his Oil and Chemicals industry grouping. This index is
based on wage rates for R&D employees, and a price index for equipment and instrumentation purchases, and though its
movement is quite different from the CPI or the GNP deflator, it varies much less across industries, leading us to believe that it
may be a reasonable approximation to the "correct" index for pharmaceuticals. Mansfield's index exists only for 1969-1983, we
extended it backwards to 1966 and forwards to 1990 using movement in the CPI. The periods 1966-1969 and 1983-1990 saw
relatively little price inflation, so this approximation is unlikely to be serious problem. In a later paper we intend to exploit the
information that some companies were able to give us on R&D inputs in units of labor hours to construct an index specifically
for research costs in the pharmaceutical industry.

Demand

We attempt to measure cross-sectional and time series variation in the state of demand for drug treatments for the
different therapeutic classes using a variety of publicly available data. Firstly, we compiled statistics on disease incidence and
mortality in the US population from a variety of sources, including the information provided by bodies such as the National
Institutes of Health and the National Cancer Institute. Unfortunately, these data are not entirely comprehensive and consistent.
Some diseases or conditions are under-reported because they are not sufficiently serious, or because of social stigma (e.g.
depression). In many cases data only appear to have been gathered at five-year or longer intervals, and in others there were
serious inconsistencies in series over time which presumably reflect differences in reporting requirements. There are also
problems in comparing for example, diseases which have low incidence but high mortality rates with those with high incidence
and low mortality (thyroid cancer vs common cold), or indeed in comparing diseases which are merely uncomfortable with
those that are life-threatening, or chronic conditions with acute conditions.

Secondly, we complied data on the number of doctors in the US belonging to various specialties. These data are at
best only available at a rather high level of aggregation (cardiology vs neurology) and their usefulness is also limited by the
classification of many doctors into specialties such as Internal Medicine or Pediatrics which have no information about
therapeutic classes.

These data are far from satisfactory measures of demand: they are neither as detailed as we would like, nor do they
show much variation over time (trend is driven by demographics), nor are they necessarily directly comparable in the cross
section, nor do they capture the potential market size for e.g. drug therapies vs surgery. Our hope is that they pick up gross
variation in levels of demand, or shocks to demand such as the appearance of AIDS.

An alternative measure of demand is actual dollar sales of pharmaceuticals in the class. We compiled these data from
the reports of IMS America (a market research firm) for each of the therapeutic classes in our data.

A final, and perhaps more fundamental, problem with these demand measures is that their usefulness as measures of
incentives to do R&D may be rather limited. Ideally we would like some measure of the total consumer surplus available to be
captured, based on market characteristics such as the price elasticity of demand, potential for drug therapies to enhance
patients' quality of life or extend their life expectancy, the efficacy of currently available therapies etc. Our measures fall far
short of this ideal, but may be the best that we can do with limited time and resources.

Scientific Opportunity

We use two sources of data to measure "discrete" shocks to scientific opportunity: bibliometric data based on the
citation databases of ISI, and identification of key events in the evolution of the science base for particular therapeutic classes.
The ISI publishes an annual list of the most significant papers published in the life sciences. For each year and each therapeutic
class we noted the number of papers in that area which made the "Top 100" list, and also how many times that those papers
were subsequently cited in the next two years. Problems with these measures of shocks to opportunity include: matching papers
to therapeutic classes, which is often difficult if the paper refers to "generic" aspects of molecular biology or physiology rather
than specific diseases or organ systems; failure of the scientific community to identify key advances until much time has passed;
advances being of great importance to researchers in a narrowly defined field, but lacking sufficient general interest to attract
enough citations to make the "Top 100" list etc. However these measures have the advantage that they are consistent and

��___
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comparable over time, and reasonably well matched to specific therapeutic classes.

For cardiovascular therapies, we attempted to identify "key events". This process is more subjective, but is hopefully
more comprehensive. We examined standard texts on pharmacology, such as Goodman and Gilman's "The Pharmacological
Basis for Therapeutics" (Gilman, A., Rall. W., Nies A.S and Taylor Palmer, 1990, MacMillan), or accounts that focused
particular on cardiovascular therapies, including texts such as Hamer, (1986), Schneeweiss (1986) and Morganroth and Moore
(1981), and attempted to identify significant steps forward in scientific understanding, such as the discovery of entirely classes
of compounds showing desirable activity in vitro or in animal models, or the identification of important enzyme pathways. We
then cross checked our results with experts in the field.

_8__*__ ____ 1____1 ___I ~ ___ -
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Table (Al): Definition of Variables Used in the Regression Analysis

Observations are identified by (encoded) FIRM, CLASS, and YEAR.

Measures of scientific opportunity

Papers Total papers in the class listed in the ISI list of "Top 100 papers" in the
biological sciences.

Key private papers (CV only) Number of papers signalling major breakthroughs in the field published by
authors employed by private firms.

Key public papers (CV only) Number of papers signalling major breakthroughs in the field published by
authors employed by the public sector.

Measures of demand

Cases Reported U.S. incidence of the disease.

Deaths Reported U.S. mortality.

Doctors Number of doctors identifying themselves as specialists in the area.

US sales in class Wholesale U.S. sales of drugs in the class.

Measures of competitive activity

Competitors' patents in this class Important patents applied for by 28 major (worldwide) competitors.

Competitors' patents in related classes Important patents applied for by 28 major (worldwide) competitors in
related classes.

Competitors' investment in this class Investment in discovery research by the other 9 firms in the core data
base.

Firm specific variables

Investment Expenditures by this firm in this research area, relating primarily to
production of new compounds, by year, in millions of constant 1986
dollars.

Patents in this class Important patents granted to this firm in this research area, by year, from
the Derwent database. Note that throughout the analysis we count patents
by year of application.

Patents in related classes Important patents granted to this firm in the related therapeutic class, net
of the patents granted in this research area.

Firm sales in class Total US sales in the class

Scope The number of research areas in which this firm has spent at least $0.5m
dollars on discovery this year.

Total investment (size) Total research expenditure by this firm in this year across all therapeutic
classes.


