
Fast Approximation Schemes
for Multi-Criteria Flow,

Knapsack, and Scheduling Problems

by
Hershel M. Safer
James B. Orlin

WP #3757-95 January 1995

Fast Approximation Schemes
For Multi-Criteria Flow,

Knapsack, and Scheduling Problems

Hershel M. Safer
Genome Therapeutics Corp.

h.safer@ieee.org

James B. Orlin
Sloan School of Management

Massachusetts Institute of Technology
jorlin@mit.edu

4 January 1995

Fast Approximation Schemes
For Multi-Criteria Flow,

Knapsack, and Scheduling Problems

Hershel M. Safer and James B. Orlin

Abstract

The solution to an instance of the standard Shortest Path problem is a single shortest route in a directed
graph. Suppose, however, that each arc has both a distance and a cost, and that one would like to find a
route that is both short and inexpensive. A solution in this case typically consists of multiple routes because,
in general, no point is both shortest and cheapest. Finding the efficient frontier or tradeoff curve for such a
multi-criteria problem is often difficult, in part because the solution set can have exponentially many points.
As a result, multi-criteria problems are often solved by approximating the efficient frontier.

A fast approximation scheme (FAS) for a multi-criteria problem is an algorithm that can quickly find an
arbitrarily-good approximation to the problem's efficient frontier. Necessary and sufficient conditions for
the existence of an FAS for a problem were introduced in [S094]. The conditions are stated in terms of the
existence of a V-pseudo-polynomial (VPP) time algorithm for the problem. A new form of reducibility is
also introduced and shown to be useful for studying the existence of FAS's.

This paper extends the work of [S094] by applying it to a variety of discrete optimization problems. The
Source-to-Tree (STT) Network Flow problem is introduced. This problem is interesting because it generalizes
many commonly-treated combinatorial optimization problems. A VPP time algorithm is demonstrated for
a particular STT problem and is used to show that the problem has an FAS.

Results are also derived about the computational complexity of finding approximate solutions to several
multi-criteria knapsack, scheduling, and production planning problems. Many theorems extend previously-
known results to multi-criteria problems. For some problems, results about problems with binary variables
are extended to problems with general integer variables. These and other results are of interest even for
problems with only a single criterion.

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Contents

List of Figures

Glossary

1 Introduction

2 The Source-To-Tree Network Flow Feasible Set

3 Objective Functions

3.1 Monotonicity.

3.2 Separability

3.3 Reductions for Classes of Objective Functions . .

4 Some Simple STT Network Flow Problems

4.1 A VPP Algorithm

4.2 Using Reduction

5 Easy Problems and Hard Problems

5.1 Multi-Criteria Objectives.

5.2 Exact Flows

6 Knapsack Covering Problems

7 The

7.1

7.2

7.3

Arborescent Knapsack Problem

The General Problem.

The Maximum Job Sequencing with Due Dates Problem

The Minimum Job Sequencing with Due Dates Problem

8 The Partially Ordered Knapsack Problem

9 Production Planning Problems

10 Summary

Acknowledgments

References

ii

111

1

1

4

4

6

8

10

10

15

16

16

19

24

26

26

29

31

33

37

39

40

40

.................

.................

.................

.
.

.

............................

............................

............................

............................

Multi-Criteria Flow, Knapsack, and Scheduling Problems

List of Figures

1 Components of STT network class specification.

2 The algorithm for (C', AP (w 1,') ,w 1 , Feas) .

3 The graph constructed in the proof of Theorem 6.

4 The graph constructed in the proof of Theorem 8 .

5 The graph constructed in the proof of Theorem 9 .

6 Summary of STT complexity results.

7 Network structure for Arborescent Knapsack reduction.

8 An in-tree partial order.

9 An out-tree partial order

10 A general tree partial order.

11 A partial order that is not a tree partial order

- 11 -

..... ... 4

..... .. 12

..... ..21

..... .. 21

..... .. 23

..... ..24

..... .. 30

..... ..34

..... ..34

..... ..35

..... .. 35

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Glossary

This section contains brief explanations of many symbols and terms that are used in this paper and its
companion paper, along with references to their full definitions.

Symbols

'AP (w), AR (w), AM (w) The set of additively separable functions that are, respectively, in P (w), R (w),
and M (w). ([2], section 3.2)

C (A1/CG/MG/NM/FS) ([2], section 2)

C' The subclass of C consisting of those networks in canonical form. ([2], section 4.1)

D (u, v) u dominates v w.r.t. w. ([1], section 3.3)

D,() (u, v) u e-dominates v w.r.t. w. ([1], section 3.4)

ek A vector of length k in which each component is one. ([1], section 3)

e, (x) The excess flow into node v that arises from the flow x. ([2], section 2)

E A non-negative bound on relative error. ([1], section 3.4)

=-vP VPP equivalent. ([1], section 5.1)

fi The ith component of the multi-criteria objective function f. ([1], section 3.1)

Y7 A family of r-criteria objective functions. ([1], section 3.1)

[f/vJ The function f scaled by v. ([1], section 4.2)

G(--) The directed graph defined by the partial order -+. ([2], section 8)

I An instance of a problem. ([1], section 3.1)

(S, f, w) An optimization instance.

(S, f, w, M) A feasibility instance.

L (I) The length of instance I. ([1], section 3.2)

log(x) Base 2 logarithm of x. ([1], section 3)

min{f, M} The function f with box constraints M. ([1], section 4.2)

Mv (I) The largest value of instance I. ([1], section 3.2)

Mv (I) A close upper bound on Mv (I) that can be found quickly. ([1], section 3.2)

n The number of variables in a problem instance. ([1], section 3.1)

IIlxI The infinity norm of the vector x. ([1], section 3)

w A direction vector. ([1], section 3.1)

wD The dual of the direction vector w, obtained by reversing the direction of each component of w.
([2], section 3.3)

Q The set of all direction vectors. ([1], section 3.1)

Q2r The set of all direction vectors of dimension r. ([1], section 3.1)

P (), R (w), M (w) The set of functions that are, respectively, order-preserving, order-reversing, and order-
monotone w.r.t. w. ([2], section 3.1)

II A problem. ([1], section 3.1)

(A, .7, w, Opt) An optimization problem.

(*t, XF, w, Feas) A feasibility problem.

IIp,p The restriction of problem to instances in which the integers in p3 are bounded by the polynomial
function p(.) of the instance length. ([1], section 5.3)

- iii -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

r The number of criteria in a problem. ([1], section 3.1)

cvpp VPP reduces. ([1], section 5.1)

TI A family of feasible sets. ([1], section 3.1)

S The feasible set of a problem instance. ([1], section 3.1)

SCO, Coo. The covering forms, respectively, of the feasible set S and the family T of feasible sets. ([2],
section 6)

(/ / / /-) Specification of a class of STT networks. ([2], section 1)

u(S) A vector of upper bounds on the components of points in the feasible set S. ([1], section 3.1)

Uma(S) The largest component of u(S). ([1], section 3.1)

3 + The set of non-negative integers. ([1], section 3.1)

In an STT network G = (N, A, c, m, b): ([2], section 2)

N The set of nodes.
A The set of arcs.
c The vector of arc capacities.
m The vector of arc multipliers.
b The vector of node demands.

In the construction of the first VPP algorithm: ([2], section 4.1)

T The tree corresponding to the graph G.
p The root of the tree T.
I(v) The postorder label of node v.

d, The number of children of node v in T.
T[v, j] The subtree of T defined by v, the first j children of v, and all the descendants of those

children.

G[v, j] The subgraph of G defined by node 0 and the nodes of G that correspond to the nodes
of T[v, j].

O(v, j, k) The maximum excess flow into node v over all flows x that are feasible w.r.t. G[v, j] and
have f (x) = k.

Terms

Additively separable Describes a function f : S - Zr+, where S C Zn+, that can be written as f (x)

Ej=l fj (xj). ([2], section 3.2)

Arborescent Describes a collection of sets, any two of which either are disjoint or for which one is properly
contained in the other. ([2], section 7.1)

P-strongly NP-hard Describes a problem II for which, for some polynomial p(.), the problem IIp,p is
NAfP-hard. ([1], section 5.3)

Binary family A family of feasible sets with domain {0, 1}. ([1], section 3.1)

Box constraint Upper bound imposed on the value of a function. ([1], section 4.2)

Box constraint neighbor A function that approximates the box-constrained value of another function.
([1], section 4.2)

Closed under box constraints Describes a family of r-criteria functions for which applying box con-
straints to any function in the family yields another function in the family. ([1], section 4.2)

Closed under scaling Describes a family of r-criteria functions for which scaling any function in the family
yields another function in the family. ([1], section 4.2)

- iv -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Domain With reference to a family t of feasible sets, the set of integers from zero through largest value of
uma(S) over sets S E I. ([1], section 3.1)

Dominate A vector u dominates v w.r.t. w if u is component-by-component better than v in the direction
specified by w. Written D, (u, v). ([1], section 3.3)

Efficient Set A set of points whose values define the efficient frontier. ([1], section 3.3)

c-dominate A vector u c-dominates v w.r.t. w if each component of u is no more than a factor of E worse
than the corresponding component of v in the direction specified by w. Written D() (u,v). ([1],
section 3.4)

c-efficient set A set of points whose values are within a factor of e of each point on the efficient frontier.

([1], section 3.4)

e-efficient solution A minimal e-efficient set for an instance. ([1], section 3.4)

Exact solution For an optimization instance, a minimum cardinality set of feasible points whose values
constitute the efficient frontier; for a feasibility instance, a point whose value achieves the target. ([1],
section 3.3)

FAS Fast approximation scheme. Describes an algorithm for a problem II which for any E > 0 and any

instance I C II, finds an -efficient solution for I in time O ((L(I)/e)k), for some k > 0. ([1],

section 3.4)

Feasible flow A flow that satisfies the flow requirements and capacity constraints. ([2], section 2)

Feasible set A bounded set S C Zn + . ([1], section 3.1)

In-tree partial order A tree partial order -* for which G(--) contains a node toward which all the arcs
of G(-) point. ([2], section 8)

Largest value of an instance For an optimization instance, the largest component of the objective func-
tion on a particular box-constrained superset of the feasible region; for a feasibility instance, the largest
component of the upper bound. Written Mv (I). ([1], section 3.2)

Length of an instance The number of bits needed to represent the feasible set and the largest value of
the instance. Written L (I). ([1], section 3.2)

Objective function A function ff: S -- Z r+ . ([1], section 3.1)

Order-preserving, order-reversing, order-monotone Describes a multi-criteria objective function for
which increasing some components of its argument yields changes in values that are consistent with a
specified direction vector. ([2], section 3.1)

Out-tree partial order A tree partial order -- for which G(-+) contains a node away from which all the
arcs of G(--+) point. ([2], section 8)

Problem A collection of instances of the same kind (i.e., optimization or feasibility) with identical direction
vectors, feasible sets from the same families, and objective functions from the same families. ([1],
section 3.1)

Quasi-closure under box constraints A weaker variant of closure under box constraints. ([1], sec-
tion 4.2)

Quasi-closure under scaling A weaker variant of closure under scaling. ([1], section 4.2)

Scaling Truncating the low-order bits of a function value. ([1], section 4.2)

Scaling neighbor A function that approximates the scaled value of another function. ([1], section 4.2)

Multi-Criteria Flow, Knapsack, and Scheduling Problems

STT Source-to-Tree. ([2], section 2)

STT network A generalized network which has a particular forest-like structure. ([2], section 2)

Sufficient, deficient, exact flow For a node, refers to the excess flow being, respectively, non-negative,
non-positive, or zero; for a network, refers to the flow into each node having the corresponding property.

([2], section 2)

Tree partial order A partial order -- for which the undirected version of G(-+) is a tree. ([2], section 8)

VPP V-pseudo-polynomial. Describes an algorithm for a problem II which for any instance I E II, finds a

solution for I in time O ((L (I) Mv (I))k) , for some k > 0. ([1], section 3.3)

VPP equivalent Describes two problems, each of which is VPP reducible to the other. ([1], section 5.1)

VPP reduction A VPP algorithm for a problem that uses, as a subroutine, a VPP algorithm for another
problem. ([1], section 5.1)

w.r.t. With respect to. ([1], section 3.3)

References for Glossary

[1] Hershel M. Safer and James B. Orlin, Fast Approximation Schemes For Multi-Criteria Combinatorial
Optimization, 1994.

[2] Hershel M. Safer and James B. Orlin, Fast Approximation Schemes For Multi-Criteria Flow, Knapsack,
and Scheduling Problems, 1994.

- vi -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

1 Introduction

The solution to an instance of the standard Shortest Path problem is a single shortest route in a directed

graph. If, however, each arc has both a distance and a cost, then one might ask for routes that are simul-

taneously short and inexpensive. A solution in this case typically consists of multiple routes because, in

general, no point is optimal for both criteria. Finding the efficient frontier for such a multi-criteria problem

is often difficult, in part because it can have exponentially many points. As a result, such problems are often

solved by approximating the efficient frontier.

Necessary and sufficient conditions for the existence of a fast approximation scheme (FAS) for such a problem

were introduced in [S094]. The conditions are stated in terms of the existence of a V-pseudo-polynomial

(VPP) time algorithm for the problem. In addition, a new form of reducibility is introduced and shown to

be useful for studying the existence of FAS's. The present paper applies the results of [S094] to analyze the

complexity of solving a variety of combinatorial optimization problems.

The Source-to-Tree (STT) Network Flow problem is introduced in Section 2. To the knowledge of the authors

this problem has not been considered elsewhere. This problem is interesting, however, because later in this

paper it is shown to generalize a wide variety of commonly treated discrete optimization problems. Several

useful classes of objective functions are defined in Section 3, and a VPP algorithm is demonstrated for a

class of STT Network Flow problems in Section 4. The existence of this algorithm is used to show that the

problem also has an FAS. The boundary between easy and difficult classes of STT Network Flow problems

is explored in Section 5.

The STT Network Flow problem is used to assess the complexity of finding approximate solutions to sev-

eral knapsack, scheduling, and production planning problems in Sections 6 through 9. Most problems

discussed in those sections have been previously considered with only a single criterion; this paper extends

the previously-known results to multi-criteria versions of the problems. In addition, the algorithms described

here accommodate the general integer case of some problems for which only the 0-1 case has been considered

until now. FAS's are also demonstrated for several problems that have not been considered elsewhere.

The existence of an FAS for a general lot-sizing problem is demonstrated in Section 9. Although pseudo-

polynomial time algorithms were previously known for this problem, they cannot be easily transformed into

FAS's. The results of Section 9 indicate that this problem has a pseudo-polynomial time algorithm that may

be more useful in some situations than are previously-known algorithms.

2 The Source-To-Tree Network Flow Feasible Set

The Source-to-Tree Network Flow problem is introduced in this section. Not only is this problem interesting

for its own sake, but it is also useful for proving the existence of an FAS for a variety of other problems. As

shown in Sections 6 through 9, it generalizes quite a few knapsack, job scheduling, and lot-sizing problems.

1-

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Because it unifies a large number of interesting problems, results for the Source-to-Tree Network Flow

problem have wide applicability.

This section explains how to specify feasible sets for particular classes of Source-To-Tree Network Flow

problems. Objective functions are discussed in the next section. A VPP algorithm for one class of problems

is presented in Section 4.1; results for other classes are obtained in Section 5.

To start, recall two definitions. A generalized network is a network in which the flow that enters at the tail

of an arc is multiplied by an arc-specific constant before it emerges at the head of the arc[AM093]. Two

directed arcs are anti-parallel if they connect the same pair of nodes but are oriented in opposite directions.

Intuitively, a source-to-tree (STT) network is an m + 1 node generalized network that satisfies the following

conditions. The subgraph induced by nodes {1, . .. , m} is referred to as the tree part of the network. The

tree part of the network has a special forest-like structure: if each set of parallel and anti-parallel arcs is

combined into a single undirected edge, the result is a forest. Node 0 is a source/sink node and is adjacent

to some other nodes in such a way that the entire graph is connected. Each node, except the source/sink

node, has a demand or supply.

More formally, an STT network is defined by a 5-tuple G = (N, A, u, p, b). The set of nodes is N =

{0, 1, .. ., m} and the set of arcs is A C N x N. Arcs are directed, and multiple parallel and anti-parallel arcs

are permitted. If only a single arc goes from node v to node w, however, it may be represented as (v, w) for

convenience. The network is connected, and the arcs in A have a particular structure: if the arc directions

are removed from the tree part of the network, and each resulting set of parallel edges is replaced by a single

edge, the outcome is a forest.

The vector u contains the flow capacity ua Z+ of each arc a E A, that is, the upper bound on the flow

allowed on arc a. The vector lists the corresponding flow multipliers ta E Z+; if flow x enters the tail of

arc a, then flow pax emerges at the head of the arc. The vector b specifies the demand b E Z at each node

v E N - {0}. If b, > 0, then v is a demand node; if b, < 0, then v is a supply node; otherwise b = 0, and v

is a transshipment node.

Let x E ZIAI+ be a flow in G. The excess flow into node v, for v E N - {0}, is the amount by which the flow

into v exceeds the sum of the demand at v and the flow out of v, and can be written as

e () = E IaXa- E Xa-bv

aEA: aEA:
a=(w,v) a=(v,w)

When discussing the excess flow into each node of a set that includes node 0, node 0 is implicitly excluded

from consideration unless otherwise indicated. The flow into a node v is called

sufficient if eV (x) > 0,

deficient if ev (x) < 0, or

exact if e () = 0 .

-2-

Multi-Criteria Flow, Knapsack, and Scheduling Problems

A flow x is said to be sufficient, deficient, or exact if the flow into each node v E N-{O} has the corresponding

attribute.

Many classes of STT networks are interesting. Problems will defined on some particular classes in Sections 4.1

and 5. A class can be identified using a 5-tuple in which each component specifies one of the following details

about the networks in the class.

1. Restrictions on parallel arcs: Parallel arcs may or may not be allowed in the tree part of the network.

This restriction refers to the directed arcs in G, not to the undirected edges mentioned in the definition

of an STT network. Excluding parallel arcs does not preclude the use of anti-parallel arcs. This

restriction does not apply to arcs to or from node 0.

2. Restrictions on arc flow capacities: The arcs of a network can have either unit capacities or general

non-negative integer capacities.

3. Restrictions on arc flow multipliers: Multipliers can either be unity, as in an ordinary network, or

general non-negative integers, as in a generalized network.

4. Restrictions on node demands: A network may consist of all transshipment nodes, all demand nodes,

all supply nodes, or a mixture. These descriptions do not apply to node 0.

5. Restrictions on node excesses for feasible flows: A flow may be required to be sufficient, deficient, or

exact. Note that this is a condition on acceptable solutions, whereas the first four conditions refer to

characteristics of the graph structure.

The possible values for each component of the 5-tuple are listed in Figure 1. For example, the class of

networks C = (A1/CG/MG/NM/FS) consists of STT networks with no directed parallel arcs, capacities

and multipliers that can be any non-negative integers, both supply and demand nodes, and in which the

flow to each node must be sufficient. This class of STT networks is discussed further in Section 4.1.

A flow x E ZIAI+ is feasible if it satisfies the flow requirements (the fifth component of the STT class

definition) and if, in addition, x < u. The set of feasible flows for an instance constitutes the feasible set

S for that instance; the integer program that specifies the set is generally not written out explicitly. The

collection of feasible sets S for the networks in a class of STT networks is the family of feasible sets I for

an STT Network Flow problem defined on the class.

This section has described feasible sets for STT Network Flow problems. In order to specify an STT Network

Flow optimization or feasibility problem completely, other parts of the problem must be specified as well: a

family . of r-criteria objective functions defined on the vector x of flows, an r-dimensional direction vector

cw, and, for a feasibility problem, an r-dimensional target vector. The next section discusses some appropriate

classes of objective functions, and Section 4.1 presents a VPP algorithm for a problem defined on a particular

class of STT networks.

-3-

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Arcs: Al No parallel arcs are allowed in the tree part of the network.
AP Parallel arcs are allowed.

Capacities: C1 Unit flow capacities (u = 1).
CG General flow capacities in Z + .

Multipliers: M1 Unit flow multipliers (= 1).
MG General flow multipliers in Z + .

Nodes: NO Network may contain only transshipment nodes (b = 0).
ND Network may contain only demand nodes (b > 0).
NS Network may contain only supply nodes (b < 0).
NM Network may contain a mixed node set (no restriction on b).

Flows: FS Flow into each node must be sufficient.
FD Flow into each node must be deficient.
FE Flow into each node must be exact.
FU Flow excesses are unrestricted.

Figure 1: Components of STT network class specification.

3 Objective Functions

The problems discussed in the remainder of this paper are distinguished from each other primarily by the

structures of their feasible regions. Before looking at these feasible regions, however, some attention should

be paid to the objective functions that are used. This section examines several kinds of objective functions

that arise frequently in practice.

This section does not deal with an important aspect of objective functions: whether they are to be minimized

or maximized. The difference is crucial when considering approximation algorithms. Consider the Traveling

Salesman problem on complete graphs without the triangle inequality. The minimum cost version has no

polynomial time -approximate algorithm for any > 0 unless P = AftP[SG76]. A tour of length at least

one-half the optimum can easily be found in the maximization case, however, by extending a maximum

weight matching.

Another example is the Multi-Dimensional Binary Knapsack problem discussed in [S094]. As mentioned

there, the maximization form has no FAS unless P = fP. The minimization form, however, can be solved

exactly and quickly by setting x = 0, that is, leaving the knapsack empty.

Section 3.1 generalizes the notion of monotonically increasing functions. This generalization is applied to

additively separable functions in Section 3.2. VPP reductions between problems with difference function

classes are derived in Section 3.3.

3.1 Monotonicity

Many common objective functions are monotonically

f : Z + - Z ' + is monotonically increasing if for x, y

increasing or monotonically decreasing. A function

E Z n +, x < y implies that f (x) < f (y). The " < "

-4-

Multi-Criteria Flow, Knapsack, and Scheduling Problems

relation is applied on a component-by-component basis. The function f is monotonically decreasing if the

function g = -f is monotonically increasing.

Results for these kinds of functions have been derived in the single-criterion case. Restricting attention to,

say, monotonically increasing objective functions in the multi-criteria case, however, is not as useful, because

different components of an objective function can be optimized in different directions. One way to generalize

single-criterion monotonic functions is to require that the values of all components of the objective function

simultaneously improve or get worse when the components of the argument increase, as illustrated by the

following definitions.

Definition 1 An objective function f: Z n + - Zr+ is order-preserving w.r.t. a direction vector E if

either of the following two conditions holds:

cWi = < i (x) < fi (y),

(a) V x, y Z + , x < y fori=1,...,r, Wi = " " > fi () fi (Y),

Wi = "=" fi) A (x)

Wi = _< " t fi (x) < fA (y) ,

(b) Vx, y E Z+, x < y for i = 1,...,r, { ="_ fi = > >f ()
Wi = , ,= ,) fi () > fi ()

The point is that the value of each component of an order-preserving function changes in accordance with the

corresponding component of the direction vector. Component functions corresponding to direction vector

entries of " = " can behave as either " < " or " > ", but must be consistent in this regard over the entire

feasible set. Furthermore, all component functions that correspond to " = " entries must behave the same

way.

The definitions of "monotonically increasing" and "order preserving" could have been stated for functions

that map from a subset S C Z n + rather than from the entire space Z'+. Doing so would, however, have

required a large overhead in notation to accommodate the function classes defined later in this section. The

more complicated formulation would not add to the insight provided by the results in this paper, nor would

it extend the applicability of the results in practice. Because of these considerations, the present definitions

are used instead of more general definitions.

Definition 2 An objective function f is order-reversing w.r.t. a direction vector w if the function g = -f is

order-preserving w.r.t. w, and f is order-monotone w.r.t. a direction vector w if f is either order-preserving

or order-reversing w.r.t. w.

-5-

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Definition 3 The following classes of objective functions are defined for a direction vector w:

P (w) = { f: f is order-preserving w.r.t. w },

R1 (co) = { f: f is order-reversing w.r.t. w },

M (w) = (c) U (c()

The notions of closure under scaling and under box constraints are introduced in [S094]. For any direction

vector w, each of the sets P (w), R1 (w), and M (w) is closed under scaling and under box constraints. The

following lemma describes the relationship between the sets P (w) and ().

Lemma 1 Let S be an n-dimensional feasible set containing a "largest" element u that satisfies the condition

x E S (u- x) E S. Let f : S Zr+ be a function and define the function f' : S Zr+ by

f'(x) = f (u-x). Then f E P (w) if and only if f E R ().

Furthermore, a component function fi that corresponds to wi = "= " behaves as though wi = " (i.e.,

according to part (a) in the definition of order-preserving) if and only if the function f behaves as though

wi = " " (i.e., according to part (b) in the definition of order-preserving).

Proof. Suppose that f E P (w). Let x, y E S be given, with x < y; then (u - x), (u - y) E S, and

(u - x) > (u - y). For each i = 1,..., r, consider the possible values of wi. If wi = " < ", then

fA(x) = fi (-x) > f (u - y) = f(y)

Analogous statements are true for wi E {" > ", " = "}. Therefore f' E R (w).

The proof of the converse statement is similar. ·

3.2 Separability

The necessary and sufficient conditions in [S094] for the existence of an FAS apply to problems with quite

general objective functions. Often, though, VPP algorithms use dynamic programming, which limits the

kinds of objective functions that can be accommodated easily. In order to be amenable to the application

of dynamic programming, a problem must typically have a separable objective function. The most common

separable objective functions are additively separable, that is, they can be written as f (x) = Zj= 1 fj (xj).

Functions of the form f (x) = jn=l fj (xj) and f (x) = min{fj (xj), j = 1,...,n} are also used[Whi69,

section 3.2]. This section introduces additively separable functions that are order-monotone.

The reason that separable objective functions are common in dynamic programming applications is that

the value of the function can be determined incrementally by optimizing the value of one variable at a

time. Although the focus here is additively separable functions, fairly general definitions of separability are

-6-

Multi-Criteria Flow, Knapsack, and Scheduling Problems

presented in [YS81, VK82, Har83]. The problems that are amenable to solution by dynamic programming

are characterized in [Bel61], as cited in [LH90], as those which can be formulated as Markov processes. Note

that the conditions of monotonicity and nonbounded dominance in [YS81] are satisfied by the objective

functions discussed in [S094].

Some attempts have been made to extend dynamic programming to problems with objective functions

that are not separable. One approach is to consider history-remembering policies[Kre77, Hen85]. Another

approach is to approximate the non-separable functions with separable functions[Sni87]. These approaches

are not pursued in this work.

Definition 4 A function f : S - Z r + , where S C Z n + , is additively separable if there exist functions fi,

... , fn such that for all x E S, f () = Zj=l fj (j). ·

The discussion in Section 3.1 can be specialized to this kind of function.

Definition 5 For a direction vector w E or,

AP (w) = { f E P (w) f is additively separable },

AR (w) = { f E R7 (w) f is additively separable }
AM (w) = AP (w) AR (w)

The notions of quasi-closure under scaling and under box constraints, as well as of scaling neighbor and box

constraint neighbor, were introduced in [S094] along with the notions of closure mentioned in Section 3.1.

None of the sets in Definition 5 is closed under scaling or under box constraints, but for any direction vector

w, each is quasi-closed under scaling and under box constraints.

Scaling and box constraint neighbors of a function f E AM (w) are easy to find. Write f as f = jn=l fj (xj),

where fj is an r-component function. For each j = 1, . . ., n and i = 1, .. ., r, let fi,j be the i th component

function of fj. Then one scaling neighbor of f w.r.t. v is the function g with r component functions

gi = Zj= 1 [fij (xj) /viJ i = 1,..., r. One box constraint neighbor of f w.r.t. M is the function h with r

component functions hi = j =l min fij (xj), Mi}, i = 1,.. ., r.

The functions that constitute the terms of an additively separable function behave similarly to the entire

function with regard to order monotonicity, as shown by the following lemma.

Lemma 2 Let S C Zn+ be closed under the "< " relation. That is, for any x,y E Zn+, with x < y, if

y E S then x E S. Suppose that a function f S - Z' + is defined by f (x) _ jn=l fj (xj). Then

(a) f E AP (w) if and only if for j = 1, . . ., n, fj E P (w), with the same behavior on wi = "= " as f, and

(b) f E AR (w) if and only if for j = 1,..., n, fj E t (w), with the same behavior on wi = "= " as f.

-7-

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Proof. Only the proof for (a) is given; the proof for (b) is similar.

Necessity: Suppose that f E AP (w). Choose x, y E S with x < y, and focus on some criterion i. Suppose

that wi = " < "; the proof is similar for wi { " > ", " = " }.

Since f E AP (w), fi (x) < fi (y). Suppose that fj does not behave as claimed for some j E {1, . . ., n}. Let

= (0, . . ., 0, xj, 0,..., 0) and y = (0,..., 0, yj, 0, ... , 0), where both 7 and y are n-vectors with the non-zero

elements in component j.

By assumption, , y E S. But f () = fj () and f () = fj (p), contradicting the assumption that fj does

not behave the in the same way as f.

Sufficiency: Suppose that for j = 1,..., n, fj E P (w), all with the same behavior on wi = "= ", and that

x,y E S with x < y. For any i = 1,...,r, suppose that wi = " < ". Then fi (x) = j=1 fi,j(xj)

Zj 1 fi,j (Yj) = fi (y). Analogous statements are true for wi E {" > ", "= "}. So f E AP (w), with the
same behavior on wi = " = " as the functions fj.

3.3 Reductions for Classes of Objective Functions

Reductions can be used to show relationships between classes of objective functions. The objective function

classes defined in Section 3 are of particular interest in the present work.

Consider first the classes of order-preserving and order-reversing objective functions. Problems defined with

these function classes are similar in some respects. This is particularly true when the direction vectors are

in Q=, that is, the set of direction vectors { C r,= : r = 1, ... }. The relationship between P (wr,=), 1 (r,=),

and M (wr,=), for any r, is described in the following theorem.

Theorem 1 For any family T of feasible sets, the following problems are VPP equivalent for any k:

1. (4,AM (wr',) ,Wr=, Feas), r=l1, 2, ... , k

2. (, (wr=) wr Feas), r 1, 2, ... ,k.

3. (,TZR(wr=),wr=,Feas), r 1,2,...,k

Proof. For any r, both (,P (wr=) ,r,=, Feas) and (, (r,=),wr, Feas) are the same as, and so are

VPP equivalent to, (I, M (Wr,=) , wr =, Feas).

Assume for the moment that r-criteria problems can be VPP reduced to single-criterion problems, i.e., that

("f, M (wr,=)) ,w, Feas) ocP, (, M (w, =) ,w 1', Feas); this assertion will be proved below. The problem

(IF, M (w, =) , w',=, Feas) can be VPP reduced to each of the other listed problems as follows:

1. An r-criteria function can be considered as an (r + 1)-criteria function with an (r + 1)st criterion

that is identically zero, so M (wr, =) C M (wr+l,=). Use Lemma 1 in [S094] to conclude that

(TI, M (w1,=), w1,=, Feas) ocvpP (I, M (r=) , wr=, Feas).

-8-

Multi-Criteria Flow, Knapsack, and Scheduling Problems

2. As noted above, (, M (w 1'l) ,wl,=, Feas) ocvp (,9,P (wl') ,wl,=, Feas). The further VPP reduction

to (,,P (r,=) ,r,=, Feas) follows as in (1).

3. The reduction to (, 7 (:r,), wr,=, Feas) is similar to that in (2).

The theorem is proved by establishing the earlier assertion:

(,M(W r ,=), r,=,Feas) ocvpp (, M (c 1a, =) , ,=,Feas):
Let I = (S,f, r,=,M) E (, M (wr'=),wr'=,Feas) be given. Define the function h : S -+ Z + by h(x) =

r=l1 fi () [Mv (I) + 1] The function h can be computed in VPP time. For any v E Z'+, f () = v if
and only if h(x) = v=l vi [Mv (I) + 1]i. Furthermore, since each direction component wr'= has the value

"= ", either each component function f is monotonically increasing or each is monotonically decreasing;

hence so is h. This means that h E M (w'=). Therefore the instance (S, h, 1,=, i=l Mi [v (I) + 1]i)

(I,M ((l,=), 1l, Feas).

Other relationships become apparent when the directions of optimization are reversed.

Definition 6 The dual wD of a direction vector w is obtained by changing " < " entries in w to " >" and

vice versa. ·

Example 1 (Dual direction vector) Here is an example of taking the dual of a direction vector:

D

Also note that for any r, (r,=)D = wr, = .

Lemma 3 For any family [of feasible sets and direction vector w,

(a) (, (), , Feas) -vPP (*, (),w D , Feas)

(b) (a,P(w),wD,Feas) vp,, (),R(w),w,Feas)

Proof. Only the "only if" part of (a) is proved; the "if" part of (a) and both parts of (b) can be proved

analogously. Let (S, f,w, M) E (, P (w),w, Feas) be given. Let f' = min{f, M + er). Since P (w) is closed

under box constraints, f E P (w), and Dw (f' (x) , M) if and only if D (f (x) , M).

Define g = M + er -f; then g E R (w). For any x E S, D,, (f' (x),M) if and only if DwD (g(x),er).

So solving the instance (S, g, wD, er) E (, (w), wD, Feas) yields a solution to the instance (S, f, w, M) E

(i, P (), , Feas). ·

Similar relationships are true when consideration is restricted to additively separable functions. The proofs

of the following theorem and lemma are analogous to the proofs of Theorem 1 and Lemma 3.

-9-

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Theorem 2 For any family t of feasible sets, all the following problems are VPP equivalent:

1. (,AM.A(wr,=)r,wr=, Feas), r=l,2,...

2. (,Ap(wr=),wr ,Feas), r 12,

3. (,AR(wr,=),wr=,Feas), r= 1,2,...

Lemma 4 For any family T of feasible sets and direction vector w E Q',

(a) (, ,A9 (w) ,w, Feas) - vp (I, AR (w) ,wD, Feas)

(b) (', AP (w) ,wD, Feas) _ VPP (t,AR (w),w,Feas)

4 Some Simple STT Network Flow Problems

The class of STT networks C = (A1/CG/MG/NM/FS) is described in Section 2. Section 4.1 focuses on a

canonical subset C' of that class. A VPP algorithm is presented for a feasibility problem defined on C' and

is used to prove the existence of an FAS for the optimization form of that problem. VPP reduction is used

to explore the relationship between C and C' in Section 4.2.

4.1 A VPP Algorithm

A network in C is in canonical form if a single arc connects node 0 to each other node, each other connected

pair of nodes is connected by a single pair of anti-parallel arcs, and the tree part of the network is connected.

More formally, a network G E C is in canonical form if it satisfies the following two conditions:

1. Vv E N - {0}, A contains a single arc (0, v) and no arc (v, O0).

2. The tree part of G is connected. If nodes v and w are adjacent, then A contains a single arc (v, w) and

a single arc (w, v).

The collection of networks of C in canonical form is denoted C'.

A tree T, distinct from but related to the tree part of G, is associated with G for purposes of describing

the VPP algorithm. The tree T has nodes {1,..., m}; node v in T corresponds to node v in G. For any

v, w E {1, ... , m}, nodes v and w of T are connected by an arc if and only if nodes v and w are adjacent in

G. The directions of the tree arcs are specified next.

In a postorder traversal of a tree, each subtree of the root is traversed (recursively, in postorder) and then

the root is visited[Knu73, RND77]. Choose an arbitrary node p as the root of T. Label the nodes according

to any postorder ordering w.r.t. the root p, representing the label of node v by I (v). In particular, I (p) = n.

The VPP dynamic programming algorithm to be described processes the nodes of N - {0} in increasing

label order. A good overview of this approach can be found in [JN83], from which some notation is adapted.

- 10 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Direct all the arcs of T away from p and let dv be the number of children of node v in T. This number is also

called the outdegree of v. For each node v and for j = 1,..., dv, let T[v, j] be the subtree of T defined by

v, the first j children of v, and all the descendants of those children, where the children are ordered by label

value. For example, T[v, 0] is just the node v and T[p, dp] = T. Let G[v, j] be the subgraph of G defined by

node 0 and the nodes of G that correspond to the nodes of T[v, j].

A VPP algorithm that solves the feasibility problem (C', AP (w1, =) ,wl=,Feas) will be presented. For

purposes of stating the algorithm, say that a flow x in G is feasible w.r.t. G[v, j] if it satisfies the following

three conditions:

1. The flow into each node of G[v, j], except possibly into node v itself, is sufficient.

2. If (w, w') G[v, j], then (w,w,) = 0.

3. x E ZIAI+ and x < u.

Define O(v, j, k) to be the maximum excess flow into node v over all flows x that both are feasible w.r.t.

G[v, j] and have f (x) = k. The algorithm attacks the flow problem indirectly in that the computational

focus is the maximum node excesses 0 rather than the objective function f. This approach works because

of the following lemma.

The idea behind this lemma is to examine O(p, dp, M). The flows considered in determining the value of

O(p, dp, M) are, by the definition of 0, feasible on the subtrees of the root node p. Such a flow is feasible for

the entire graph G if and only if the excess flow into p is sufficient, that is, if and only if O(p, dp, M) > O.

Lemma 5 An instance (G, f, "= ", M) of the problem (C', AP (w =) ,wl,=, Feas) has a solution if and only

if O(p, dp, M) > 0.

Proof.

Sufficiency: Suppose that the instance (G, f, "= ", M) has a solution x. Then x is a feasible flow, so

1. The flow into each node of G[p, dp] is sufficient (including the flow into p).

2. All arcs are in G[p, dp].

3. z E ZI AI+ and x < u.

So x is feasible w.r.t. G[p, dp] and f (x) = M. Furthermore, since the flow into p is sufficient, ep () > 0.

Since O(p, dp, M) is the maximum of a set that contains ep (x), it must be that O(p, dp, M) > O.

Necessity: Suppose that O(p, dp, M) > 0. This implies the existence of a flow x that is feasible w.r.t.

G[p, dp] = G and satisfies f (x) = M. Furthermore, ep (x) = (p, dp, M) > 0, so the flow into every node is

- 11 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Figure 2: The algorithm for (C', AP (wl=) ,wl1'=, Feas).

sufficient. Therefore x is a feasible flow that solves the instance (G, f, " = ", M). ·

The algorithm for solving (C', AP (w, =) ,wl,=, Feas) appears in Figure 2. A detailed description of the

main computation step, labeled (*), appears next. This is followed by a proof that the algorithm is VPP for

(C',AAP (1,) , 1 '=, Feas).

The computation for (*) has two cases, depending on whether j = 0 or j > 0. When j = 0, perform the

computation by solving the following program.

O(v, O, k) - max Io,vxo,v -bv

s.t. fo,v (xo,)= k (1)

XO,v < UO,v

Xo,v E +

When j > 0, let w be the jth child of v, and perform the computation by solving the following program.

O(v, j, k) = max O(v, j - 1, a) + L,x, v - 2x,W (2a)
a /, , , xv,w x,v

s.t. 9(w, d,,) + ,wzXv,w - xw,v > b (2b)

f, (vw) =7 (2c)

fw,v (W,v) = 6 (2d)

a+/3+7y+'= k (2e)

xV,W < uVW (2f)

xw,v < Uw,v (2g)

cr, , , 6, xv,, xw , E Z + (2h)

Theorem 3 The algorithm in Figure 2 is VPP for the feasibility problem (C', Ap (w 1,=) ,w 1,=, Feas).

Proof. The proof has two parts: the algorithm's correctness and its running time.

Correctness: In the case that j = 0, the maximum excess on G[v, 0] must be computed. This is just the

subgraph of G induced by the nodes 0 and v, which, because G E C', contains a single arc, (0, v). The

- 12 -

for i= 1,...,n
Let v be the node with (v) = i.
for j = O,..., dv

for k = O,...,M
(*) Compute O(v, j, k).

if O(p, dp, M) > 0
then x is the desired solution.
else the problem is infeasible.

Multi-Criteria Flow, Knapsack, and Scheduling Problems

quantity y0,vx0,v - b, is the excess flow into node v on G[v, 0] when the flow on arc (0, v) is xo,v. The

program specified by Equations 1 maximizes this excess subject to the feasibility conditions, and so correctly

computes 0(v, 0, k).

In the case that j > 0, the maximum excess on G[v, j] must be computed. Note that the nodes are considered

in increasing label order, the postorder label of a node is greater than the labels of its children, and the

children of a node are processed in increasing label order; therefore the values of (.,, .) that appear in

Equations 2a and 2b are computed before they are used.

The structure of Equations 2 comes from decomposing the flow in G[v, j] and the value k into four parts: the

flow in G[v, j - 1], with value ao; the flow in G[w, d], with value /f; and the flows on arcs (v, w) and (w, v),

with values -y and 6. The total required value of k can be partitioned in this way because additively separable

objective functions are used.

The objective function, Equation 2a, expresses the value of the excess flow into node v, given the flows on

arcs (v, w) and (w, v) and in the first (j - 1) subtrees of node v, and subject to the flow in G[v, j - 1] having

value a. This is maximized to determine O(v, j, k).

Equation 2b ensures that the flow into node w is sufficient; recall that it need not have been sufficient in

G[w, dw], and anyhow the arcs (v, w) and (w, v) are not in G[w, dw]. The value contributed by the flow in

G[w, dw] is constrained to be 3. Since Equation 2b expresses the feasibility of the flow, the excess might as

well be as large as possible, so O(w, d, 3) is assumed.

Equations 2c and 2d constrain the flow values on arcs (v, w) and (w, v). Equation 2e ensures that the four

parts of the flow add up to k, and Equations 2f through 2h are needed to guarantee feasibility.

So the program specified by Equations 2 determines (v, j, k). The final value computed by the algorithm

is O(p, dp, M). If this value is non-negative, then the necessity part of the proof of Lemma 5 shows that the

value of x found by the algorithm is a solution to the instance (G, f, " = ", M). Similarly, if O(p, dp, M) < 0,

then Lemma 5 implies that the instance has no solution. Therefore the algorithm is correct.

Running time: The computation step (*) is executed only M · IAI times. The rest of this proof shows that

each execution can be solved in VPP time. This yields the conclusion that the algorithm runs in VPP time.

A call with j = 0 requires solution of the program expressed by Equations 1. For a node v, this can be

solved with O (log (uo,v + 1)) evaluations of fo,v () by using binary search over possible values of xo,v, because

fo,v E AP (wl), and fo,v is therefore either monotonically increasing or monotonically decreasing.

A call with j > 0 requires solution of the program expressed by Equations 2. Only O (k 3) distinct 4-tuples

(a, f, y, 6) satisfy Equations 2e and 2h, so if the program can be solved for each 4-tuple in VPP time, then

the entire algorithm will run within the allowed time.

- 13 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Fix values of a, p3, -y, and . The value of x,w must satisfy

fv, (Xvw) = 7

x v,w U (3)

xv,w E Z+

Let Av,w and v,, be the smallest and largest values that satisfy Equations 3; they can be found with

O (log (u,w + 1)) evaluations of fv,w () by binary search, because fv,o E AP (wl'=). Similarly, the corre-

sponding values of Aw,v and ~w,v for w,v can be found with O (log (uw,v + 1)) evaluations of fw,v (). The

following program yields the optimal values of x,,, and xw,v, given (, 3, y,).

max IW,VXW,V - vw

s.t. - x,wxv,w - ,w,v > b - (w, dw, A)

Av,w < xv,w < v,w (4)

xv,w, xw,v E Z +

To see that this program can be solved in VPP time, consider the following cases:

1. /,v,w = 0: Set XV, = v,w. If Aw,v > pv,wxv,, + (w,d,/3) - b, then the program is infeasible.

Otherwise, set

xw,v = min {,, v,wxv,w + O(w, d, 3) - bw }

2. w,v = 0, /v,o > 1: Set xw,v = Aw,v. If [bw - O(w, dw,) + xw,v]/lpv,w > v,w, then the program is

infeasible. Otherwise, set

xv,w = max{Av,w, [bw -(w, dw,,f) + xw,v] /tv,w)

3. tv,w, w,v 1: Suppose that, in some feasible solution of Equations 4, both xv,w < v,w and x,,v <

Iw,v. Incrementing each variable by one would yield a new feasible solution with objective value at

least as good as the value of the previous solution. Therefore, attention can be restricted to solutions

in which at least one of these variables is at its upper bound. Each case is considered, and the one

with the larger objective function value is used.

(a) xv,w = ~v,w: Set xw,v as in case 1.

(b) xW,v = w,v: Set xv,w as in case 2.

Apply Lemma 4 and Lemma 3 in [S094] to Theorem 3 in order to conclude that the optimization problem

corresponding to (C',AP (w', =) ,wl,=, Feas) has an FAS.

- 14 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Corollary 1 The optimization problem (C',AP (w 1 ,=) ,w 1 , Opt) has an FAS.

4.2 Using Reduction

The previous section presented an explicit VPP algorithm. This section uses reduction to demonstrate the

existence of a VPP algorithm without actually writing out the algorithm. As a consequence, results about

C' are generalized to C.

Lemma 6 (C, AP(l),w 1 ,Feas) vP (C',AP (w,=) ,l ,=, Feas)

Proof. Let II = (C, Al (l,=), w1,=, Feas) and II' = (C', Al (wl,=), wl,=, Feas).

II' OCP,, II: C' C C, so the identity mapping is a reduction from II' to II.

II cxvp, II': Let I = (S, f, wl'=, M) E II be given, where S is defined by a graph G = (N, A, u, , b) E C.

Define I' = (S', f',wl=, M) E II', where S' is defined by the graph G' = (N', A', u', ', b') E C'. The graph

G' is the same as G, except as follows:

1. (Eliminate arcs into node 0) For each arc a = (v, 0) E A:

(a) Delete arc a from A'.

(b) Add a node Wa to N' with b = 0.

(c) Add an arc a' = (v, wa) to A' with Ua' = Ua, la' = l-a, and fi,a, (Xa) fl,a (a').

2. (Eliminate parallel arcs from node 0) For each node v E {1,..., m}, if the graph contains multiple arcs

from node 0 to node v, do the following steps for all but one of the arcs. Let a = (0, v) be the arc on

which the steps are being performed.

(a) Delete arc a from A'.

(b) Add a node Wa to N' with b = 0.

(c) Add an arc a' = (0, Wa) to A' with ual = Ua, fla, = 1, and fi,a (al) = O.

(d) Add an arc a" = (a, v) to A' with al,, = Ua, ,'a" = /Ia, and fi,a,, (Xa,,) fi,a (Xal).

3. (Guarantee an arc from node 0 to each other node) For each node v E N such that arc (0, v) ¢ A: Add

an arc a' = (0, v) to A' with ual = 0, a' = 1, and f,al (Xa,) = 0.

4. (Guarantee pairs of anti-parallel arcs) For each arc (v, w) E A such that arc (w, v) A: Add an arc

a' = (w, v) to A' with ual = 0, Ila, = 1, and fi,a' (a) = 0.

5. (Guarantee connectedness) If the subgraph of G induced by nodes {1,..., n} is not connected:

(a) Add a node w to N' with b = 0.

- 15 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

(b) Add pairs of arcs a' = (v,w) and a" = (w,v) to A', with ua, = Ua,, = 0, t a/, = /,,I = 1, and

fi,a (a,) fi,a,, (Xa,,) O, to at least one node v in each component of the subgraph.

For each arc a that is in both A and A', define f,a (Xa) fi,a (a); then f' E AAP (wl'=). By construction,

G' E C'; furthermore, G' can be constructed in VPP time, and L (I) is polynomial in L (I'). The reduction

consists of constructing G' and solving I' as described in Section 4.1. This yields a solution of I directly

using the correspondences described in the construction of G'.

Theorem 3 and Lemma 6 together with Lemma 4 in [S094] yield the following corollary.

Corollary 2 The feasibility problem (C,AP (w1 =) ,w,=, Feas) has a VPP algorithm and the optimization

problem (C,A (l"=) ,wl'=, Opt) has an FAS.

Corollary 2 is a powerful building block. An explicit VPP algorithm need not be written down and verified

in order to prove the existence of an FAS for another problem; instead, problems of interest can be VPP

reduced to the problem (C, AP (w, =) ,wl=,Feas). This is done for several STT problems in Section 5.

Several knapsack, job scheduling, and lot-sizing problems are treated this way in Sections 6 through 9.

5 Easy Problems and Hard Problems

Many problems can be defined on STT networks besides those discussed in the previous section. This section

explores the boundary between "easy" and "hard" problems. The easy problems are those for which an FAS

exists; the hard problems are those for which no VPP algorithm can exist unless P = 1'P. Section 5.1

examines problems with multiple criteria and Section 5.2 considers problems in which the flows must be

exact. A summary of the results is tabulated in Figure 6 at the end of this section.

The proofs of hardness use the Subset Sum problem, which is AP-complete[GJ79].

Subset Sum

Instance: (n, V, v). The number of items n; the target sum V; and the sizes vj, j = 1,..., n, are positive

integers such that vj < V, j = 1, ... , n.

Question: Find a set S C {1, . . ., n} such that E vj = V.
jES

5.1 Multi-Criteria Objectives

This section extends the previous results about C to the multi-criteria case. Theorem 4 generalizes Corollary 2

to include multiple criteria and order-reversing functions. Corollary 3 uses Theorem 5 to achieve similar

results for problems with deficient flows. Theorem 6 illustrates that problems with parallel arcs can be hard.

- 16 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Theorem 4 For each r E Z + and w E Qr' the problem (C,AM (w) ,w, Opt) has an FAS.

Proof. This follows from applying Lemma 4 and Lemma 2 in [S094] to Corollary 2 and Theorem 2.

A similar theorem is true for problems with deficient flows; it will be proved as a corollary to the following

theorem, which describes a more general relationship between problems with sufficient flows and those with

deficient flows.

Theorem 5 Let A* E {A1,AP}, C* E {C1, CG}, and M* E {M1, MG}. Define STT networks VI =

(A*/C*/M*/NM/FS) and W = (A*/C*/M*/NM/FD). For any direction vector w E Qr, define the

problems II = (, AM (w), w, Feas) and I' = (ti, AM (w), w, Feas). Then II -vr, '.

Proof. The case of II vocp II' will be proved; the converse is proved similarly. Suppose that an instance

I = (S,f,w,M) E is given, where S is defined by the graph G = (N,A, u, , b). Define the graph

G' = (N, A, u, ,, b'), where for v E N - {O},

bel > aua- ua-b v
aEA: aEA:

a=(w,v) a=(v,w)

and let S' be the feasible set defined by G'.

Define the function f' by f(x) = fi (u - x), i = 1, . . ., r. Since f E AM (), Lemmas 2 and 1 can be used

to show that f' e AM (w). So I' = (S', f',w, M) E I'.

Since f (x) = f'(u - x), the proof will be completed by showing that a flow x is feasible for I if and only if

the flow (u - x) is feasible for I'. A flow x is feasible for I if and only if 0 < x < u and

Iaxa- E Xa-bv > 0. (5)
aEA: aEA:

a=(w,v) a=(,W)

But x' = u - x satisfies 0 < x' < u, and

S a (Ua-Xa) E (Ua-Xa)-b <
aEA: aEA:

a=(w,v) a=(v,w)

if and only if Equation 5 is true. This demonstrates the claim, so II ocvP, II'. ·

Note that the construction of b' requires that both supply and demand nodes be allowed, so the fourth

component of the subclass definition in Theorem 5 is NM. The following corollary is the analog of Theorem 4

for problems with deficient flows. It follows from applying Lemma 3 and Lemma 4 in [S094] to Theorem 5

and Theorem 4.

Corollary 3 Let C1 = (A1/CG/MG/NM/FD). Then for each r E Z + and w E Q', the optimization

problem (Cl1,AM (w) ,w, Opt) has an FAS.

- 17 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Theorem 4 and Corollary 3 cannot, however, be extended to cover STT networks that contain parallel arcs,

as shown by the following theorem.

Theorem 6 Let C1 = (AP/CG/M1/NO/FS) and C2 = (AP/CG/M1/NO/FD). Neither the problem

(C1,AP (wl,=),wl,=, Feas) nor the problem (C2,AP (w=) ,wl,=, Feas) has a VPP algorithm unless P =

A'p.

Proof. The theorem will be proved by reducing Subset Sum to each of the STT problems in such a way

that a VPP algorithm for one of the latter would yield a polynomial-time algorithm for the former. Since

Subset Sum in NP-complete, such a VPP algorithm cannot exist unless P = N'P.

First consider the problem HI1 = (C1,AP (wl,=) , wl,=, Feas). Given an instance (n, V, v) of Subset Sum,

construct an STT network G = (N, A, u, ,u, b) as follows. The graph is pictured in Figure 3. The set N has

three nodes, and both non-source nodes are transshipment nodes; that is, N = {0, 1, 2}, with bl = b2 = 0.

The arcs are described in the following table:

The objective function f (x) = .+=1
2 fj (Xj) is in AP (wl,=). It will be shown that the instance of Subset

Sum has a solution if and only if at least one instance (G, f,wl 1=, k(2n + 2) + 1), k = 0,..., n, of II has

a solution, and that the solution to any of these instances immediately yields a solution to the instance of

Subset Sum. The reduction of the instance of Subset Sum to the instance of II 1 is polynomial in the size of

the Subset Sum instance, so a VPP algorithm for II yields a polynomial-time algorithm for Subset Sum.

If the Subset Sum instance has a solution: Suppose that S C {1,..., n}, with ISI = k, is a solution to the

instance of Subset Sum. One feasible solution to the constructed instance of II1 with k = k is xo,i = V,

x2,0 = V, xj = vj for j E S, and xj = 0 for j E {1,...,n}- S. This solution has value (k(2n + 2)+ 1).

If the instance of II1 has a solution: Suppose that x is a solution to the instance of II1 with value (k(2n +

2)+ 1). Since this value is odd, the flow in arc (2, 0) must be V; this leaves k(2n + 2) of the objective function

unaccounted for.

Since the flow into node 2 is sufficient, at least V units of flow must enter node 2 on arcs 1 through n. Since

the flow into node 1 is sufficient, and since u0 ,1 = V, the total flow on arcs 1 through n must be exactly V.

Since the remaining part of the objective function is divisible by (2n+2), each of the arcs 1 through n with

- 18 -

j Arc Capacity Multiplier Value fj (xj)

1,...,n (1,2) vj 1 2n+2 if xj = vj

2 if 0 < xj <vj

0 ifzj = 0

n+ (0, 1) V 1 0

n+2 (2,0) V 1 1 ifxj = V

0 o.w.

Multi-Criteria Flow, Knapsack, and Scheduling Problems

non-zero flow must be used to capacity; no subset of partially-full arcs could contribute a factor of (2n+2)

to the objective function. The indices of the arcs 1 through n with non-zero flow constitute a solution of

size k to the instance of Subset Sum.

The second part of the theorem is about the problem (C2 ,A (w 1' =) ,wl'=,Feas). The proof is similar,

except that the objective functions on arcs n + 1 and n + 2 are interchanged. ·

5.2 Exact Flows

The graphs discussed so far must have either sufficient or deficient flows. This section considers problems in

which the flows must be exact, that is, the excess flow into each node must be zero. Theorem 7 identifies

some such problems that can be solved by an FAS. Theorems 8 and 9 show that Theorem 7 cannot be

extended to graphs with both supply and demand nodes or to problems with objective functions that are

not order-preserving.

Theorem 7 Let C1 = (A1/CG/M1/ND/FE) and C2 = (A1/CG/M1/NS/FE). For any direction vector

w, an FAS exists for each of the problems (C1, AP (w) ,w, Opt) and (C2 , AP (), , Opt).

Proof. First consider the problem 11 = (C1, AP (w), w, Opt). Let r be the number of components in w. De-

fine the STT network feasible set C3 = (A1/CG/M1/ND/FS) and the problem H3 = (C3, AP (w) , w, Feas).

Note that C3 C C, SO 3 has an FAS.

The reduction II1 OCvp11H 3 will be proved. By Lemma 4 in [S094], this will mean that H1 has an FAS, thereby

proving the first half of the theorem. The proof for (C2 , AP (w) , w, Opt) is substantially the same, and so

will not be presented; it uses a reduction to a problem defined on the feasible set (A1/CG/M1/NS/FD).

To prove the reduction II1, CvPIIH3, suppose that an instance I = (S1, f,w) E H1 is specified, where S1 E C1

is defined by a graph G. Let S3 E C3 also be defined by G, and define the instance 13 = (S3, f, w, M) E 113

for any M G Zr+.

Consider any flow x that solves 13. This flow can be decomposed into flows around circuits and flows on

chains (simple directed paths) from supply nodes to demand nodes[FF62, AM093]. Suppose that the flow

around some circuit in such a decomposition is non-zero; since f is order-preserving w.r.t. w, no component

of the objective would be made worse by eliminating the flow around the circuit. So the circuits in the

decomposition can be assumed to have zero flow.

All nodes except node 0 are demand nodes, so all chains in the decomposition are from node 0 to another

node. For each node v with positive excess, that is, e (x) > 0, consider the chains from node 0 to node v.

Reducing the flow on one or more of these chains yields a flow x' with e (x') = 0. As with the circuits, no

component of the objective function will be made worse by reducing the flow in this way.

- 19 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Reduce the flow in this way for each node to obtain an exact flow x. The flow Y solves I, so II1 ocvP, 113. ·

The next theorem shows that requiring an exact flow in a network that contains both supply and demand

nodes results in a hard problem.

Theorem 8 Let C1 = (A1/CG/M1/NM/FE) be an STT network. Then no VPP algorithm exists for the

problem (C1, Ap (wo <), wl,<, Feas) unless P = VP.

Proof. The theorem will be proved by reducing Subset Sum to the problem II = (C1, AP (wl<) , wl'<, Feas)

in such a way that a VPP algorithm for II would directly yield a polynomial-time algorithm for Subset Sum.

Since the latter problem is A(P-complete, however, such a VPP algorithm cannot exist unless P = A' ~P.

Given an instance (n, V, v) of Subset Sum, an STT network is constructed, as illustrated in Figure 4. Intu-

itively, the constructed network has a node with supply vj for each item j. An (n + 1)-st node with demand

V represents the desired sum. The arcs used to satisfy the demand define a solution to the instance of Subset

Sum.

More formally, construct an STT network G = (N, A, u, /, b) as follows. The set N has n + 2 nodes

{0,1,..., n, n+ 1}. Node j has supply vj, that is, bj = -vj, j = 1,.. ., n. Node n + 1 has demand V, that

is, b+l = V. The set A has 2n arcs; they are j = (j, 0) and pj = (j, n + 1) for j = 1, . . ., n. Arcs aj and

pj have capacity vj, multiplier 1, and the following objective function:

(= 1 if k > 1

0 ifxk= 0.

The objective function f (x) = Yjn l [g (x,j) + g (xpj)] is in AP (w'<). It will be shown that the instance

of Subset Sum has a solution if and only if the instance (G, f, wl'<, n) of II has a solution, and that the

solution to this instance immediately yields the solution to the instance of Subset Sum. The reduction of

the instance of Subset Sum to the instance of H is polynomial in the size of the Subset Sum instance, so a

VPP algorithm for II yields a polynomial-time algorithm for Subset Sum.

If the Subset Sum instance has a solution: Suppose that S C {1,..., n) is a solution to the instance of Subset

Sum. One feasible solution to the constructed instance of II is xpj = vj for j E S, xpj = 0 for j S, and

xoj = vj - Xpj, j = 1, .. ., n. This solution has value n.

If the instance of II has a solution: Suppose that x is a solution to the instance of II with value not greater

than n. Each node j must dispose of its supply on arc acj, ij, or both. The objective function must therefore

include at least unit value for the flow leaving each of these nodes, and hence must be at least n.

The solution to II therefore has value exactly n, which means that each of the nodes 1, . . ., n uses exactly

one of its outgoing arcs. Let S be the index set of the arcs j that have non-zero flow. Then for j E S, it

must be the case that xj = vj, and so EjEs xpj = V. So S constitutes a solution to the instance of Subset

- 20 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Figure 3: The graph constructed in the proof of Theorem 6.

Figure 4: The graph constructed in the proof of Theorem 8.

- 21 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Sum. ·

Similarly, the next theorem shows that using objective functions that are not order-preserving on networks

that contain only transshipment nodes results in a hard problem.

Theorem 9 Let C1 = (A1/CG/M1/NO/FE) be an STT network. Then no VPP algorithm exists for the

problem (C1 , AP (wl ' <) ,w 1 >, Feas) unless P = A(P.

Proof. The theorem will be proved by reducing Subset Sum to the problem II = (C1, A4P (ww<) , w1,>, Feas)

in such a way that a VPP algorithm for II would directly yield a polynomial-time algorithm for Subset Sum.

Since the latter problem is AfP-complete, however, such a VPP algorithm cannot exist unless P = P.

Given an instance (n, V, v) of Subset Sum, an STT network is constructed, as pictured in Figure 5. Intuitively,

each node j receives flow vj from node 0 and either sends it on to node (n + 1) or returns it to node 0. The

arcs into node n + 1 correspond to a solution for the instance of Subset Sum.

More formally, construct an STT network G = (N, A, u, , b) as follows. The set N has n + 2 nodes

{0, 1,..., n, n + 1}. All nodes are transshipment nodes, that is, bj = 0, j = 1,..., n + 1. The set A has

3n + 1 arcs that are described in the following table:

The objective function f () = EkeA fk (k) is in Ap (wl,<). It will be shown that the instance of Subset

Sum has a solution if and only if the instance (G, f, w',>, n + 1) of II has a solution, and that the solution to

this instance immediately yields the solution to the instance of Subset Sum. The reduction of the instance

of Subset Sum to the instance of II is polynomial in the size of the Subset Sum instance, so a VPP algorithm

for II yields a polynomial-time algorithm for Subset Sum.

If the Subset Sum instance has a solution: Suppose that S C {1, . . ., n} is a solution to the instance of Subset

Sum. One feasible solution to the constructed instance of II is xj,n+l = vj for j E S and xj,,+l = 0 for

j S; xn+l, 0 = V; and for j = 1, . . ., n, x0o,j = vj and xj, o = j - j,n+l. This solution has value n + 1,

and so solves the instance of II.

If the instance of II has a solution: Suppose that x is a solution to the instance of II with value at least n+ 1.

It must be the case that X,+l, = V and that each node j, j = 1, ... , n, sends flow vj in exactly one of the

arcs (j, n + 1) and (j, 0) and zero flow in the other. In order for this to happen, the flow in each arc (0, j),

j = 1, ... , n, must be vj.

- 22 -

Arc Capacity Multiplier Value fk (k)

(0, j), j 1,.n vj 1 0

(j, 0), j = 1,...,n vj 1 1 if k =vj

(j, n+ 1), j=1,..,n 0 o.w.

(n + 1, O) V 1 1 ifk = V

0 o.w.

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Figure 5: The graph constructed in the proof of Theorem 9.

- 23 -

supply = 0

Multi-Criteria Flow, Knapsack, and Scheduling Problems

C1 I H Difficulty Reference

(A1/CG/MG/NM/FS) (C1, AM (ar' =) ,w ' ,= , Opt) Easy Theorem 4
(A1/CG/MG/NM/FD) (C1 , AM (w), w, Opt) Easy Corollary 3
(AP/CG/M1/NO/FS) (C1,AP (w =) ,w =,Feas) Hard Theorem 6
(AP/CG/M1/NO/FD) (C1,AP (wl=) w1,= , Feas) Hard Theorem 6
(Al/CG/M1/ND/FE) (C1 , AP (w), w, Opt) Easy Theorem 7
(Al/CG/M1/NS/FE) (C1, AP (w), w, Opt) Easy Theorem 7
(Al/CG/M1/NM/FE) (C,AP (wl<) ,wl<,Feas) Hard Theorem 8
(Al/CG/M1/NO/FE) (C1,AP (wl1<) ,wl>,Feas) Hard Theorem 9

Figure 6: Summary of STT complexity results.

Let S be the set of nodes j, j = 1, . . ., n, that send non-zero flow in arc (j, n + 1). Since bn+l = 0 and the

excess at each node must be 0, it follows that Ejes vj = V; so S constitutes a solution to the instance of

Subset Sum.

The results of this section are summarized in Figure 6.

6 Knapsack Covering Problems

This section discusses the form of constraints that define the feasible regions for knapsack problems, as a

prelude to the discussion of specific problems in the following two sections. The knapsack problems considered

in this paper are special cases of the Multi-Dimensional Knapsack problem, which is formulated below. In

general, no FAS can exist for this problem unless P = XP.

Integer Multi-Dimensional Knapsack Feasible Set

Instance: (n, m, V, v, u). The number of items n and number of constraints m are non-negative integers.

The constraint upper bounds Vi, i = 1,...,m; the item values vi,j, i = 1,...,m, j = 1,...,n;

and the item quantity upper bounds uj, j = 1,...,n; are non-negative integers such that

vi,j < V, i= 1,. .,m, j = 1,...,n.

Feasible Set: S(n, m, V, v, u) is the set of all x E Z+ that satisfy the following constraints:

S vjxj < i, i=1,...,m
j=1

xj < Uj, j l,...,n

This generic knapsack problem has "<" inequality constraints. This is characteristic of the "packing" form of

knapsack problems, in that upper limits are placed on the amounts that can be packed into a knapsack. Many

interesting problems, however, have feasible regions that are naturally expressed by knapsack constraints

with ">" inequalities; these are called knapsack "covering" problems.

- 24 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Definition 7 Let W be a family of feasible regions such that each S E I can be described as the set of all

x E Z + that satisfy, for some integers n, ml, m2; Vi, i = 1,...,mi; vij, i = 1,...,ml, j = 1,...,n; W1i,

i = 1, .. ., m2; ij, i = 1,...,m2, j = 1,...,n; and uj, j = 1,...,n;

j=1

-- I/V/, (6)WijXj = Wi, i =l,- , m2
j=1

j < Uj, j ,...,n.

Such a set S is said to be of the packing type. The covering form of S, written SC °v , is the feasible region

defined as the set of all y E Zn+ that satisfy

E Vijyj > EVijUj - i, i = 1,...,ml
j=1 j=1

n n

E W~ijYj = EWijjUj-Wi, i =l,...,m2
j=1 j=1

yj < Uj, ,...,n,

and the covering form of I is
cov= { SCOV: SE }).

The present work primarily considers knapsack problems of the packing form. The following theorem shows

that this focus typically does not sacrifice much generality.

Theorem 10 Let I be a family of feasible regions of the packing type and w E Q. Then

(1) (T, AP(w) w, Opt) (cv, AR (w) ,w, Opt).

(2) (T, AR (w),w, Opt) VP (co, AP (w)w, Opt)

(3) (*, AM (w) cw Opt) _VP. (fcov, AM(w), Opt)

Proof. Statement (3) follows directly from statements (1) and (2). The proof that (, AP (w) ,w, Opt) oc

vP (IOv, AR (w), w, Opt) is given here; the remaining three reductions in (1) and (2) are proved similarly.

Let (S, f, w) E (, AP (w) , w, Opt). For any x E S, let y = u - x. Then y E SCO°; for example,

n n

E vij Yj = vij (uj - Xj)
j=1 j=l

n

> vijj - Vi
j=

1

- 25 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Now define the function f'(y) = f (u - y). Then f' E AR (w): if Y1, Y2 E SCOV, then

Y1 Y2 u - y2 U - Y1

D, (f (u-y 2), f (u-Y1)) because f E AP (w)

Dw (f'(Y2), f'(Yl))

Furthermore, f'(u - x) = f (x). So (,4f, AP (w) ,w, Opt) orC V (Icov, AR (), w,Opt). ·

Many kinds of problems admit an FAS if the feasible region has only packing constraints or only covering

constraints. Combining the two kinds of constraints, however, often yields problems that have no FAS unless

P = AP. That is why knapsack problems in which the knapsack constraint is an equality are generally

difficult to solve.

For some problems, such as the Partially Ordered Knapsack problem discussed in Section 8, not all the

constraints are reversed to define the covering form of the problem. Theorem 10 cannot be directly applied

to such problems, but it can sometimes be used indirectly, as it is in Section 8.

7 The Arborescent Knapsack Problem

This section and the next discuss the existence and non-existence of FAS's for a variety of knapsack and

scheduling problems. Note that the results presented are existential. The characteristics of a particular

problem must be considered carefully in order to develop a practical algorithm for its solution. An excellent

example of such an analysis appears in [Law79].

In the Arborescent Knapsack problem, items are grouped into sub-knapsacks, or stuffsacks. Stuffsacks may

be nested within other stuffsacks and each stuffsack has its own capacity bound. This structure is called

"arborescent" because the "nested within" relationship on the stuffsacks can be represented by a directed tree,

or arborescence, as illustrated in Example 2 later in this section. After defining the Arborescent Knapsack

problem and proving that it has an FAS, two special cases that arise in the context of job scheduling are

discussed.

7.1 The General Problem

After formalizing the notion of stuffsacks, the Integer Arborescent Knapsack feasible region is defined and

the existence of FAS's for certain problems defined on it is proved.

Definition 8 A collection of sets B = {B 1 ,..., B,} is called arborescent if for each pair i, j E {1,..., m},

with i j, one of the following relations holds: Bi C Bj, Bj C Bi, or Bi n Bj = 0. B is sometimes called a

collection of stuffsacks. ·

The Arborescent Knapsack feasible set may now be defined formally as follows:

- 26 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Integer Arborescent Knapsack Feasible Set

Instance: (n, m, B, V, v, u). The number of items n and number of stuffsacks m are non-negative integers.

The collection of stuffsacks B is an arborescent collection of m sets Bi C {1,..., n}, i =

1,..., m, with Bm = {1,..., n}. The stuffsack volumes V, i = 1,..., m; the item volumes vj,

j = 1,..., n; and the item quantity upper bounds uj, j = 1, ... , n; are non-negative integers

such that ifj E Bi, then vj < Vi, i = 1, ... , m, j = 1, ... , n.

Feasible Set: S(n, m, B, V, v, u) is the set of all x E Z' + that satisfy the following constraints:

E vjxj < Vi, i=1,...,m
jEBi

xj < uj, j =l,...,n .

The nesting property of the sets Bj gives the multiple constraints a special structure that allows the Arbores-

cent Knapsack problem to have an FAS, despite the difficulty of the Multi-Dimensional Knapsack problem.

An FAS that uses 0 (n3 /E2) time for the binary version of this problem with a single linear, additively

separable criterion is presented in [GL79b]. The following theorem generalizes their result to the integer

case, in which an item may appear more than once in the knapsack (up to uj copies of item j may be used).

In addition, this theorem accommodates multiple criteria.

Theorem 11 Let t be the collection of Integer Arborescent Knapsack feasible sets and w E Q. Then

(T, AM (w), w, Opt) has an FAS.

Proof. Let II = (, AM (w) , w, Feas) and 112 = (C2, AM (w) , w, Feas), where the feasible set C2 =

(A1/CG/MG/NO/FD). The reduction HII cvP 2 will be shown. By Lemma 4 in [S094] and Corollary 3,

this reduction will prove the present theorem.

Suppose that an instance I = (S, f, w, M) of II1 is given, with S = S (n, m, B, V, v, u). Assume that the

sets Bi are "topologically" ordered, so that Bi C Bk implies that i < k; such an ordering can be found

quickly[AMO93]. Define the "first containing set" function for items by

0b(j) = min{k: j E Bk }, j 1,...,n

and a similar function for sets by

a(i) = f min{k: Bi C Bk } i= 1,..., m-1

0 2=m.

Define an instance 2 = (C 2 , f,w, M) of 12, where C2 is defined by an STT network G = (N,A, u, , b).

An example of the following construction is given in Example 2. The set N has (n + m + 1) nodes: a node

aj corresponding to each item j, a node i corresponding to each stuffsack i, and node 0. All nodes are

- 27 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

transshipment nodes. The set A has (2n + m) arcs that are described in the following table:

If I has a solution: Suppose that x is a feasible solution to I1. One feasible solution to 12 is shown in the

following table:

This is a feasible flow that has the same objective function value as does the solution of I,.

If 2 has a solution: Suppose that y is a feasible flow for 12, and consider the following assignments for the

knapsack variables:

Xj = yo,aj j= 1,...,n . (7)

The capacity constraints on arc (0, aj) guarantee that xj < uj, j = 1, . . ., n. It will be shown, by induction,

that ZjEBi Vjxj < Y3 (), i - 1,..., m. Then, by the capacity constraints on the arcs (i, rP(i)), it follows

that ZjEBi VjXj < Vi, so x is a feasible solution for I1 with the same objective function as y has in I2.

i = 1: E Vjxj
jEB1

by Equation 7

nodes have deficient excess

= Z: V3yo ,~
jEBi

": : Ycuj'p~cw
jEBi

= Y a 3,/31
jEB1

•: Y P'a 1 " 1

sets are topologically ordered

node 3l has deficient excess.

i>l: E vjXj
jEBi

= E vj Xj
j :(j)=i

< E Yaj,/i
j :(j)=i

< E Yoaj,Pi
j :q(j)=i

• YjhP 0~j)

+ E
k:a(k)=i

+ E
k:a(k)=i
k:a(k)=i

jEBk

E VjX
jEBk

E Y53,pi
jEBk

arborescent network structure

nodes have deficient excess

by induction

node fi has deficient excess.

.

- 28 -

Arc Capacity Multiplier Value f (k)

(0, j), j = 1,..., uj vj fj (j)

(oEj, 3j)), j 1, . . .,n VjUj 1 0

(/i (i)) i = 1, .. ., m Vi 1 0

Arc Flow

(0, aj), j= 1,...,n xj

(Pi,j3 (i)), i =l,...,m vjj
jEBi

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Example 2 (Network construction for the proof of Theorem 11) Let n = 7 and m = 5, with the

following arborescent collection of sets:

B1 = {3,4, 5}

B2 = {6}

B3 = {1,2}

B4 = {1,2,3,4,5}

B5 = {1,2,3,4,5,6,7}.

Then the functions 4(.) and or(.) are defined as follows:

and the corresponding network is shown in Figure 7. ·

7.2 The Maximum Job Sequencing with Due Dates Problem

A special case of the Arborescent Knapsack problem is the Triangular Knapsack problem, in which the

stuffsacks are nested sequentially. More precisely, the Triangular Knapsack problem is an Arborescent

Knapsack problem in which m = n and Bi = {1,..., i}. One reason for interest in this problem is that a

common scheduling problem can be formulated as a Triangular Knapsack problem. Details about related

scheduling problems can be found in [GLLRK79].

In the Max Job Sequencing with Due Dates problem, a set of independent jobs must be scheduled on a

single machine. Those completed by their due dates earn a profit, but those completed late earn nothing;

the objective is to earn as much profit as possible. This can be described more formally as follows:

Max Job Sequencing with Due Dates (Max JSD), Version 1

Instance: (n,p, t, d). The number of jobs n; the profits pj, j = 1,..., n; the execution times tj, j = 1,..., n;

and the due dates dj, j = 1,..., n; are non-negative integers such that tj < dj, j = 1,..., n, and

dj < dj+l, j = 1,...,(n-1).

Question: Schedule the jobs to earn the maximum possible profit, where job j earns profit pj if the job is

completed before time dj and earns 0 profit otherwise.

- 29 -

Item j Set (j) Set i Set o(i)

1 3 1 4

2 3 2 5

3 1 3 4

4 1 4 5

5 1 5 0

6 2

7 5

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Figure 7: Network constructed as in the proof of Theorem 11 for the instance of Example 2.

- 30 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

An FAS that runs in time O (n2 /E) for this scheduling problem is described in [Sah76, Sah77].

To see that this problem can be formulated as a Triangular Knapsack problem, recall that the profit is

independent of the order in which the jobs are performed, and depends only on the relationship of the finish

times to the due dates. The set of optimal schedules must therefore include at least one schedule in which

all the jobs that are completed on time are performed before those that are finished late; so the search for

an optimal schedule can be restricted to schedules of this kind. Define the variables xj, j = 1, ... , n, by

1 1 if job j is completed on time, (8)

0 otherwise.

The Max JSD problem can then be formulated as:

Max Job Sequencing with Due Dates (Max JSD), Version 2

Instance: (n, p, t, d). The number of jobs n; the profits pj, j = 1,.. ., n; the execution times tj, j = 1, . .., n;

and the due dates dj, j = 1,..., n; are non-negative integers such that tj < dj, j = 1,..., n, and

di < dj+l, j = 1,...,(n- 1).

Question: Find x to solve n

max L pj
j=1

s.t. E tkXk < dj, j=l, .. ,n
k=l

x E {0,1}, j=1,...,n

This has the form of a Triangular Knapsack problem. This formulation is similar to that alluded to in

[Sah76, Sah77, GL79a] and described more fully in [Rot64, LM69, GL78, GL81] for a similar scheduling

problem that is discussed in the next section. The results of Section 7.1 imply the existence of an FAS for

the multi-criteria form of this problem.

7.3 The Minimum Job Sequencing with Due Dates Problem

The Job Sequencing with Due Dates Problem can be approached differently by assessing penalties for jobs

that are completed late, rather than providing profits for jobs that are completed on time. The objective in

this case is to minimize the sum of the penalties, and the problem is called the Min Job Sequencing with

Due Dates (Min JSD) problem. An exponential-time dynamic programming algorithm for this problem is

presented in [LM69]. An FAS that requires O (n3 /e) time is described in [GL78]; better algorithms that run

in time O (n2 log(n) + n2 /E) are given in [GL79a, GL81].

The Min JSD problem is not just a trivial variant of the Max JSD problem, because the complexities of

approximating the solution of a minimization problem and of the corresponding maximization problem can

be quite different. It has been speculated that approximating solutions for the Min JSD problem may be

- 31 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

inherently harder than doing so for the Max JSD problem[GL81]. Nevertheless, the approximation schemes

of [GL78, GL79a, GL81] are derived by reducing the Min JSD problem to the Min Arborescent Knapsack

problem. The variables are the complements of those used in Equation 8:

1 if job j is completed late,

O otherwise.

The problem can be formulated as follows:

Min Job Sequencing with Due Dates (Min JSD), Version 1

Instance: (n,p,t,d). The number of jobs n; the penalties pj, j = 1,...,n; the execution times tj, j =

1,...,n; and the due dates dj, j = 1,...,n; are non-negative integers such that tj < dj, j

1,...,n, and dj < dj+l, j = ,...,(n- 1).

Question: Find y to solve n
min E pjYj

j=1

s.t. tk(l--yk) < dy, j =1,...,n
k=l

yj E {0,1}, j=1,...,n,

which is a Triangular Knapsack problem. Setting dj = Ek= tk - dj, however, allows the Min JSD problem

to be formulated as a knapsack covering problem:

Min Job Sequencing with Due Dates (Min JSD), Version 2

Instance: (n,p, t, d). The number of jobs n; the profits pj, j = 1,...,n; the execution times tj, j = 1,..., n;

and the due dates dj, j = 1,. .. , n; are non-negative integers such that tj < dj, j = 1,. .. ,n, and

dj < dj+l, j = 1,...,(n- 1).

Question: Find y to solve n

min E pjyj
j=1

s.t. tkYk > d, jl,
k=l

yj E {0,1}, j .. ,n,

This is a Binary Arborescent Knapsack Covering problem. To our knowledge the Arborescent Knapsack

Covering problem has only been treated by considering the special case of this scheduling problem. It does,

however, satisfy the preconditions of Theorem 10. The previously known results for the Min JSD problem

can therefore be generalized to guarantee an FAS for the Integer Arborescent Knapsack Covering problem

with multiple criteria.

- 32 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

8 The Partially Ordered Knapsack Problem

Another special case of the Multi-Dimensional Knapsack problem whose structure allows for the existence

of an FAS is the Partially Ordered Knapsack problem. This is a variant in which items must be chosen in

accordance with specified precedence constraints. Such a constraint requires that, for instance, if an item j

is selected, then another specified item i must also be selected.

Requirements of this nature are quite common, and can arise in many ways. One source of precedence

constraints is physical structure. For example, a manufacturer must decide which items to produce in a

fixed time period, but must produce the components for certain complex assemblies before producing the

assemblies themselves.

Precedence constraints define a partial order "" on the set of items; if item i must be selected whenever

item j is selected, then i - j (read i precedes j). Such a partial order can be represented by a directed

graph G(--) = (N, A); N contains a node for each item, and for each i, j E N, A contains arc (i, j) if and

only if i -- j. The graph G(-) is assumed to be acyclic, that is, there is no group of items, all of which

must either be chosen or not chosen. The graph is also assumed to be connected. If this is not the case,

consider the maximal connected components of G(--); a "dummy" item can be added that precedes, or is

preceded by, one item from each component.

Several kinds of partial orders are particularly interesting.

Definition 9 A partial order is a tree partial order if the undirected version of G(-) is a tree. ·

Definition 10 A partial order * is an in-tree partial order if it is a tree partial order and G() contains

some node (the "root") toward which all its arcs point. ·

Definition 11 A partial order is an out-tree partial order if it is a tree partial order and G() contains

some node (the "root") away from which all its arcs point. ·

Figure 8 shows an in-tree partial order, Figure 9 shows an out-tree partial order, and Figure 10 shows a

general tree partial order that is neither an in-tree partial order nor an out-tree partial order. Figure 11

shows a partial order that is not a tree partial order.

The feasible set for a Partially Ordered Knapsack problem is defined as follows.

Partially Ordered Knapsack Feasible Set

Instance: S(n, V, v,). The number of items n; the knapsack volume V; and the item volumes vj,

j = 1,. .. , n; are non-negative integers such that vj < V, j = 1,..., n. The partial order -- is

defined on the set of items {1, . . ., n}.

- 33 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Figure 8: An in-tree partial order.

Figure 9: An out-tree partial order.

- 34 -

�__�_^4�_··_11_�·___�___1_1__11_________

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Figure 10: A general tree partial order.

[1 11

Figure 11: A partial order that is not a tree partial order.

- 35 -

11I

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Feasible Set: S(n, V, v, -.) is the set of all x E Zn+ satisfying

vj xj < V
j=1

zi zj i, j = , . . .,n such that i j

zj E {0,1} j=l,...,n

The Partially Ordered Knapsack problem with a single criterion of the form =1 pi xj is strongly n/P-hard

when general partial orders are allowed, but can be solved in pseudo-polynomial time when only tree partial

orders are allowed[GJ79]. A PTAS for the maximization form of this single-criterion problem, restricted to

in-tree partial orders, is described in [IK78]; it runs in time O (n2 +1//e). The algorithm of [IK78] is also

applied to the minimization form of the problem in which the knapsack constraint is of the covering type

and the precedence constraints form an in-tree partial order.

A variety of stronger results is presented in [JN83]. An FAS is presented for out-tree or in-tree partial

orders. The FAS is based on the standard "bottom-up" dynamic programming approach and runs in time

0 (n3 /e2 + n3 log(P*)). A new dynamic programming paradigm, the "left-right" approach, that yields an

FAS that runs in time O (n2/E 2 + n2 log(P*)) for out-tree partial orders and O (n 3 /e) for in-tree partial

orders is introduced in [JN83]. Here P* is the optimal value, and the log(P*) factors can be replaced by

log(n) in the time bounds.

The following theorem generalizes the results of [JN83] by allowing multi-criteria objective functions.

Theorem 12 Let J be the collection of feasible regions for the Partially Ordered Knapsack problem with

general tree partial orders and let w E QR. Then the problem (, AM (w) ,w, Opt) has an FAS.

Proof. The standard dynamic programming approach can be used to solve the STT Network Flow problem

(*, AP (w l) ,w = , Opt) in VPP time. An explanation of the details can be found, for example, in [JN83].

Applying Lemma 2 and Lemma 4 in [S094] with Theorem 2 proves this theorem. ·

Reversing the constraints that define the feasible region produces a Partially Ordered Knapsack Covering

problem with precedence constraints the reverse of those in the original problem. Application of Theorem 10

would yield a solution to the wrong problem.

Note, however, that if the original precedence constraints form a tree partial order, then the reversed con-

straints also form a tree partial order. If the original precedence constraints are reversed before the covering

transformation is applied, then a covering problem with the original precedence constraints results. The

following conclusion is therefore valid, even though not all the original constraints are reversed to pose the

covering form of a Partially Ordered Knapsack problem.

Corollary 4 The Partially Ordered Knapsack Covering problem with general tree partial orders has an FAS.

- 36 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

9 Production Planning Problems

The production planning problem considered here is a capacitated single commodity dynamic lot sizing

problem. The deterministic, dynamic demand must be satisfied, but may be backlogged. Time-dependent

production capacities are specified. The object is to determine how many units, if any, of the item to produce

each period in order to minimize the (possibly non-linear) costs of production and inventory storage over a

finite horizon.

Given demands dj,

quantities:

production capacities cj, and production quantities zj, define the following cumulative

i
Dj = E di

i=1
i

Cj = Lci
i=l
i

X = Xi
i=l

cumulative demand through period j,

cumulative capacity through period j,

cumulative production through period j, and

Ij = Xj- Dj inventory at the end of period j.

The feasible set for this problem is defined as follows:

Capacitated Single Commodity Dynamic Lot Sizing Feasible Set

Instance: (n, d, c, s, t). The number of periods n; the demands dj, j = 1,..., n; the production capacities

cj, j = 1,..., n; the inventory capacities sj, j = 1,..., n; and the backordering capacities tj,

j = 1,..., n; are non-negative integers such that Dj < Cj, j = 1,..., n.

Feasible Set: S(n, d, c) is the set of all x G Zn + satisfying

xj < cj,

Ij < sj,

Ij > -tj,

Io = 0

I, = 0

j = ,...,n

j=l,...,n

j=l,...,n

The assumption that Dj < Cj is sufficient for the feasible set to be non-empty[FK71, FLRK80]. The

constraint that Io = 0 can be removed, if desired; simply add another period j = 0 at the beginning in which

x0 = Io is produced at a suitably small cost[FLRK80]. The constraint that I = 0 is added without loss of

generality[Zan66], and is commonly used to simplify calculations.

- 37 -

___��___^·______1_1__� ___ _

Multi-Criteria Flow, Knapsack, and Scheduling Problems

The cost functions typically used with this problem are:

pj (xj) cost of producing xj units in period j,

hj (Ij) cost of holding Ij units of inventory at the end of period j, and

bj(Ij) cost of backordering Ij units in period j.

This is an important problem that has received a lot of attention in the literature. A good review of previous

results for this and related problems can be found in [BRG87]. A snapshot of the state-of-the-art with regard

to known complexity results for variants of this problem appears in [FLRK80]. That paper has provided a

framework for classifying many subsequent results.

The uncapacitated case, i.e. cj = oo, with concave functions pj and hj, was first treated in [WW58]. An

0 (n3) algorithm for the problem was presented in that paper. Backlogging for a limited number of periods

is accommodated by an 0 (n2) algorithm that appears in [Zan66]. An 0 (n4) algorithm for the capacitated

problem with constant capacities is described in [FK71]; time-dependent capacities are allowed in [LL82].

Linear production and holding costs and time-dependent set-up costs are handled by an algorithm in

[BDMS78]; it runs in time 0 (n3 Dn + nDnC,). A modification that allows time-dependent capacities and

backlogging and runs in time 0 (n4 Dn + n2 DnCn) is described in [FLRK80]. More general production and

holding costs are treated in [BY82]. The performance of various heuristics is studied in [BMY84, BM86],

and an FAS for a continuous-time problem appears in [GJ90].

Note that quantities other than the production amount can be restricted. In [Lov73], for instance, a maximum

and minimum inventory level for each period is specified. Also, most authors assume that the production

cost functions are concave, most often consisting of a component consisting of a set-up cost and a component

that is linear in the amount produced. An exception is [Vei64], in which convex cost functions are assumed.

The time bounds for previous algorithms for the problem considered here, although pseudo-polynomial, are

not VPP. This means that none of them can be directly converted into an FAS in the manner described in

[S094]. The only exception is the FAS presented in [D081].

Nevertheless, as the following theorem shows, the Capacitated Single Commodity Dynamic Lot Sizing prob-

lem does have an FAS. It therefore also has a VPP algorithm which, for some situations, may be preferable

to the pseudo-polynomial algorithms already known.

Theorem 13 Let T be the collection of Capacitated Single Commodity Dynamic Lot Sizing feasible sets and

o E Q. Then (F,AM (w) ,w, Opt) has an FAS.

Proof. Let nl = (, AM (w),w, Feas) and II2 = (C2 ,AM(w) ,w,Feas), where the feasible set C2 =

(A1/CG/M1/ND/FE). The reduction HII1 oCvp 2 will be shown. By Lemma 4 in [S094]and Theorem 7,

this will prove the present theorem.

Suppose that an instance I = (S, f, w, M) of Hi is given, with S = S(n, d, c). The objective function f is

- 38 -

4�__�1___1___1_·_11�_-_-� -���

Multi-Criteria Flow, Knapsack, and Scheduling Problems

the sum over the decision time periods of the functions pj, hj, and bj described above. Define an instance

I2 = (C2 , f, W, M) of H2, where C2 is defined by an STT network G = (N, A, u, , b). The set N has (n + 1)

nodes: a node 3j corresponding to each period j, with demand dj; and node 0. The set A has (3n - 2) arcs

that are described in the following table:

The production in period j corresponds to the value xo,j, and the cost of a production schedule is the same

as the cost of the corresponding flow in C2. The reduction associates a solution of I1 with a solution of 12

that has the same objective function value. ·

10 Summary

This work introduced the STT Network Flow problem, which generalizes a wide variety of commonly-studied

combinatorial optimization problems. A VPP algorithm for solving a simple version of this problem was

demonstrated and then used to show that the problem has an FAS. The boundary between easy and hard

problems on STT networks was explored in some detail.

The computational complexity of finding approximate solutions to several problems that arise frequently

in applications was also studied. The previously known FAS for the binary case of the single-criterion

Arborescent Knapsack problem was generalized to the integer case with multiple criteria. An FAS for the

covering form of this problem was also demonstrated; this problem has not been considered before except

for the special case of the Min Job Sequencing with Deadlines problem.

An FAS for the multiple criteria form of the Partially Ordered Knapsack problem with general tree constraints

was also shown, thereby generalizing the previously known single-criterion results. The covering form of this

problem, which has not been discussed previously, was also shown to have an FAS.

Finally, the Capacitated Single Commodity Dynamic Lot Sizing problem was considered. The previously

known pseudo-polynomial time algorithms for this problem were not VPP, and so could not be used directly

to show the existence of an FAS. By reducing this problem to an STT Network Flow problem, however, the

existence of an FAS was demonstrated. This also implies the existence of a VPP algorithm that might be

more useful in some situations than are previously-known algorithms.

- 39 -

Arc Capacity Multiplier Value

(O, f3j), j = 1...n j 1 j(xoj)

(P#j,/3j+), j = 1, . .,n-1 sj hj(xj,j+l)

(j+l, 3j), i 1, . . .,n-1 tj 1 bj (xj+l,j)

�^'^"--"��I----�����-��

Multi-Criteria Flow, Knapsack, and Scheduling Problems

Acknowledgments

It is a pleasure to acknowledge and thank our colleagues for their assistance with this research. Tom

Magnanti and Cliff Stein provided stimulating discussions and comments. The following people helped us

locate relevant previous work: Steve Graves, Toshihide Ibaraki, David Johnson, Francesco Maffioli, Tom

McCormick, Alexander Rinnooy Kan, Paul Tseng, and a host of librarians. Special thanks are due to

Hitendra Wadhwa for reading and commenting on an earlier version of this manuscript.

This research was supported in part by NSF Presidential Young Investigator grants to James B. Orlin and

Shafi Goldwasser, as well as by Air Force Office of Scientific Research grant AFOSR-88-0088 and NSF

contract DDM-8921835.

References

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1993.

[BRG87] Harish C. Bahl, Larry P. Ritzman, and Jatinder N. D. Gupta. Determining lot sizes and resource
requirements: A review. Opns. Res., 35(3):329-345, May 1987.

[BDMS78] Kenneth R. Baker, Paul Dixon, Michael J. Magazine, and Edward A. Silver. An algorithm for
the dynamic lot-size problem with time-varying production capacity constraints. Management
Sci., 24(16):1710-1720, December 1978.

[Be161] Richard Bellman. Adaptive Control Processes: A Guided Tour. Princeton U. Press, Princeton,
NJ, 1961.

[BY82] Gabriel R. Bitran and Horacio H. Yanasse. Computational complexity of the capacitated lot
size problem. Management Sci., 28(10):1174-1186, October 1982.

[BMY84] Gabriel R. Bitran, Thomas L. Magnanti, and Horacio H. Yanasse. Approximation methods for
the uncapacitated dynamic lot size problem. Management Sci., 30(9):1121-1140, September
1984.

[BM86] Gabriel R. Bitran and Hirofumi Matsuo. Approximation formulations for the capacitated lot
size problem. Opns. Res., 34(1):63-74, January 1986.

[DO81] M. Dada and James B. Orlin. The capacitated multi-item dynamic lot-size problem: Exact and
E-optimal algorithms. Presentation at Spring CORS/TIMS/ORSA Conference, Toronto, 1981.

[FK71] Michael Florian and Morton Klein. Deterministic production planning with concave costs and
capacity constraints. Management Sci., 18(1):12-20, September 1971.

[FLRK80] Michael Florian, Jan Karel Lenstra, and Alexander H. G. Rinnooy Kan. Deterministic produc-
tion planning: Algorithms and complexity. Management Sci., 26(7):669-679, July 1980.

[FF62] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton U. Press, 1962.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., San Francisco, CA, 1979.

[GJ90] Bezalel Gavish and Robert E. Johnson. A fully polynomial approximation scheme for single-
product scheduling in a finite capacity facility. Opns. Res., 38(1):70-83, January 1990.

- 40 -

Multi-Criteria Flow, Knapsack, and Scheduling Problems

[GL78] Georgii V. Gens and Eugenii V. Levner. Approximate algorithms for certain universal problems
in scheduling theory. Engineering Cybernetics, 16(6):31-36, November 1978. Translated from
Russian.

[GL79a] Georgii V. Gens and Eugenii V. Levner. Computational complexity of approximation algorithms
for combinatorial problems. In J. Bevaf, editor, Mathematical Foundations of Computer Sci-
ence 1979: Proceedings of the 8 th Symposium, pages 292-300. Springer-Verlag, New York, 1979.
Volume 74 of Lecture Notes in Computer Science. Held in Olomouc, Czechoslovakia, on 3-7
September 1979.

[GL79b] Georgii V. Gens and Eugenii V. Levner. Fast approximation algorithms for knapsack type
problems. In K. Iracki, K. Malanowski, and S. Walakiewicz, editors, Proceedings of the IX IFIP
Conference on Optimization Techniques, Part 2, pages 185-194. Springer-Verlag, New York,
1979. Volume 23 of Lecture Notes in Control and Information Sciences. Held in Warsaw on 4-8
September 1979.

[GL81] Georgii V. Gens and Eugenii V. Levner. Fast approximation algorithm for job sequencing with
deadlines. Discrete Applied Math., 3(4):313-318, November 1981.

[GLLRK79] Ronald L. Graham, Eugene L. Lawler, Jan Karel Lenstra, and Alexander H. G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: A survey. In
Peter L. Hammer, Ellis L. Johnson, and Bernhard H. Korte, editors, Discrete Optimization II,
pages 287-326. North-Holland Publishing Co., New York, 1979. Volume 5 of Annals of Discrete
Mathematics. Proceedings of the Advanced Research Institute on Discrete Optimization and
Systems Applications. Held in Banff and Vancouver, Canada, August 1977.

[Har83] Roger Hartley. Survey of algorithms for vector optimisation problems. In Simon French, Roger
Hartley, L. C. Thomas, and Douglas J. White, editors, Multi-Objective Decision Making, pages
1-34. Academic Press, New York, 1983. Proceedings of a conference on multi-objective decision
making. Held at the University of Manchester on 20-22 April 1982.

[Hen85] Mordechai I. Henig. Applicability of the functional equation in multi criteria dynamic program-
ming. In Paolo Serafini, editor, Mathematics of Multi Objective Optimization, pages 189-213.
Springer-Verlag, New York, 1985. CISM Courses and Lectures, Number 289, International
Centre for Mechanical Sciences. Proceedings of Mathematics of Multi Objective Optimization,
International Centre for Mechanical Sciences, Udine, Italy, 3-4 September 1984.

[IK78] Oscar H. Ibarra and Chul E. Kim. Approximation algorithms for certain scheduling problems.
Math. of Opns. Res., 3(3):197-204, August 1978.

[JN83] David S. Johnson and K. A. Niemi. On knapsacks, partitions, and a new dynamic programming
technique for trees. Math. of Opns. Res., 8(1):1-14, February 1983.

[Knu73] Donald E. Knuth. The Art of Computer Programming, volume 1: Fundamental Algorithms.
Addison-Wesley Publishing Co., Reading, MA, second edition, 1973.

[Kre77] David M. Kreps. Decision problems with expected utility criteria, I: Upper and lower convergent
utility. Math. of Opns. Res., 2(1):45-53, February 1977.

[LL82] Anne-Marie Lambert and Hanan Luss. Production planning with time-dependent capacity
bounds. Eur. J. Opnl. Res., 9:275-280, 1982.

[LM69] Eugene L. Lawler and J. M. Moore. A functional equation and its application to resource
allocation and sequencing problems. Management Sci., 16(1):77-84, September 1969.

[Law79] Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Math. of Opns. Res.,
4(4):339-356, November 1979.

- 41 -

�---�--

Multi-Criteria Flow, Knapsack, and Scheduling Problems

[LH90] Duan Li and Yacov Y. Haimes. New approach for nonseparable dynamic programming problems.
J. Opt. Theory and Appl., 64(2):311-330, February 1990.

[Lov73] Stephen F. Love. Bounded production and inventory models with piecewise concave costs.
Management Sci., 20(3):313-318, November 1973.

[RND77] Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo. Combinatorial Algorithms: Theory
and Practice. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

[Rot64] Michael H. Rothkopf. Scheduling Independent Tasks on One or More Processors. PhD thesis,
School of Industrial Management, MIT, Cambridge, MA, January 1964.

[S094] Hershel M. Safer and James B. Orlin. Fast approximation schemes for multi-criteria combina-
torial optimization. October 1994.

[Sah76] Sartaj Sahni. Algorithms for scheduling independent tasks. J. ACM, 22(1):116-127, January
1976.

[SG76] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM, 23(3):555-
565, July 1976.

[Sah77] Sartaj Sahni. General techniques for combinatorial approximation. Opns. Res., 25(6):920-936,
November 1977.

[Sni87] Moshe Sniedovich. A class of nonseparable dynamic programming problems. J. Opt. Theory
and Appl., 52(1):111-121, January 1987.

[Vei64] Arthur F. Veinott, Jr. Production planning with convex costs: A parametric study. Management
Sci., 10(3):441-460, April 1964.

[VK82] Bernardo Villareal and Mark H. Karwan. Multicriteria dynamic programming with an applica-
tion to the integer case. J. Opt. Theory and Appl., 38(1):43-69, September 1982.

[WW58] Harvey M. Wagner and Thomson M. Whitin. Dynamic version of the economic lot size model.
Management Sci., 5(1):89-96, October 1958.

[Whi69] Douglas J. White. Dynamic Programming. Holden-Day, San Francisco, California, 1969.

[YS81] P. L. Yu and L. Seiford. Multistage decision problems with multiple criteria. In Peter Nijkamp
and Jaap Spronk, editors, Multiple Criteria Analysis: Operational Methods, chapter 14, pages
235-244. Gower Publishing Company, Limited, Aldershot, England, 1981.

[Zan66] Willard I. Zangwill. A deterministic multi-period production scheduling model with backlogging.
Management Sci., 13(1):105-119, September 1966.

- 42 -

___�P\aPI_______III__·-·��__

