An Ontolological and Semantical
Approach to Source-Receiver Interoperability

Jacob Lee
Michael D. Siegel

WP #3777  October 1994
PROFIT #94-16



Productivity From Information Technology

(PROFIT)

The Productivity From Information Technology (PROFIT) Initiative was established
on October 23, 1992 by MIT President Charles Vest and Provost Mark Wrighton "to
study the use of information technology in both the private and public sectors and
to enhance productivity in areas ranging from finance to transportation, and from
manufacturing to telecommunications." At the time of its inception, PROFIT took
over the Composite Information Systems Laboratory and Handwritten Character
Recognition Laboratory. These two laboratories are now involved in research re-
lated to context mediation and imaging respectively.

RESEARCH
LABORATORY
FOR
ELECTRONICS

Al
LABORATORY

CENTER FOR
COORDINATION
SCIENCES

CENTER FOR
INFORMATION
SYSTEMS
RESEARCH

LEADERS FOR

CENTER FOR
TRANSPORTATIO
STUDIES

MANAGEMENT

INTERNATIONAL PROGRAM

FINANCIAL SER-

In addition, PROFIT has undertaken joint efforts with a number of research centers,
laboratories, and programs at MIT, and the results of these efforts are documented
in Discussion Papers published by PROFIT and/or the collaborating MIT entity.

Correspondence can be addressed to:

The "PROFIT" Initiative
Room E53-310, MIT

50 Memorial Drive
Cambridge, MA 02142-1247
Tel: (617) 253-8584

Fax: (617) 258-7579

E-Mail: profit@mit.edu



*%

To appear in the Proceedings of the Workshop On Information
Technologies and Systems 1994

An Ontological and Semantical
Approach to Source-Receiver
Interoperability

October 1994

Jacob L. Lee*
Michael D. Siegel**

Rm E53-322

Sloan School of Management
MIT

Cambridge, MA 02139
lhlee@mit.edu

Rm E53-322

Sloan School of Management
MIT

Cambridge, MA 02139
msiegel@mit.edu



An Ontological and Semantical Approach to
Source-Receiver Interoperability

Jacob Lee Michael Siegel
Sloan School of Management Sloan School of Management
MIT MIT
Cambridge, MA 02139 Cambridge, MA 02139
lIhlee@mit.edu msiegel@mit.edu
Abstract

In this paper, we propose an approach to address the issue of semantic interoperability between a
data source and a data receiver in the framework of the context interchange architecture. A key component in
this architecture is the context mediator, an intelligent agent which performs data conversions between the
source and the receiver. In this paper, we are concerned with what a context mediator 'knows' and how it
'behaves' from an external perspective. We introduce the notion of a conversion axiom, which is a formal
and declarative means of specifying knowledge required by the mediator to perform desired conversions.
We also state, in formal terms, the behavior of the mediator which uses conversion knowledge to
translate data from the source context to the receiver context. Formal characterizations of what a context
mediator should know and its external behavior provide a specification for the subsequent design of the
knowledge representation and reasoning processes internal to the mediator. This approach draws upon
ideas and concepts discussed in Mario Bunge's Ontology and Semantics.

1. Introduction

The source-receiver model, in the framework of the context interchange architecture, has been used
in analyzing the problem of integrating multiple autonomous databases [4, 5, 6, 7, 8]. A source can, for
example, be a relation or a database while a receiver can be an application query. The source-receiver
model is shown in Fig. 1. A key component in this architecture is the context mediator, an intelligent agent
which performs data conversions between a source and a receiver. In this paper, we take an external
perspective of the context mediator. We are concerned with what a context mediator 'knows' and how it
'behaves'. We introduce the notion of a conversion axiom, which is a formal and declarative means of
specifying knowledge required by the mediator to perform desired conversions. Examples of how
conversion axioms may be specified for various types of conversions will be presented. We will also
state, in formal terms, the behavior of the mediator which uses conversion knowledge to translate data
from the source context to the receiver context. Formal characterizations of what a context mediator should
know and its external behavior provide a specification for the subsequent design of the knowledge
representation and reasoning processes internal to the mediator. These techniques and concepts although
described in terms of the source-receiver model can also be generalized to multiple autonomous
heterogeneous database systems.

Analysis of this model can be separated into two related but distinct levels: the symbol and
construct level. Symbols (e.g. character strings) are physical objects that stand for constructs. Constructs

on the other hand are the meaning assigned to the symbols and have no physical existence apart from



mental processes [2: pp. 21-23]. In cases where there is potential ambiguity, we will use double quotes " "
to indicate constructs. At the symbol level, we are concerned with how constructs are represented by
symbols in a non-uniform manner (i.e. symbolic heterogeneity). Examples of such heterogeneities are
naming differences leading to homonyms and synonyms, format differences and structural differences
[1]. In this paper, we move beyond the symbol level to the construct level where we are primarily
concerned with issues related to the comparison and conversion of constructs (i.e. construct heterogeneity).
Construct heterogeneities can exist even within a common symbolic representation. Differing monetary
units is an example of a construct heterogeneity. Construct heterogeneity has important implications for

achieving source-receiver interoperability.

Shared Vocabulary
Context
Mediator

Source Receiver
Context Context
Construct arrow 2 > Construct
arrow 1 ; w3
— Symbol
ymbo N
» Receiver
Source % arrow 4 @ .

Fig. 1 Source-Receiver Model

An information agent (i.e. source or receiver) has an associated set of constructs referred to as its
context. A source context defines the set of possible constructs that may be represented by a data source.
The receiver context defines the set of constructs that are meaningful or acceptable to the receiver. One
type of construct in a context is the statementl. A statement is a proposition or fact to which we can attach
a truth value. A data source represents some collection of statements or facts about the world which may
be retrieved by a receiver. A statement in a source context will not always be meaningful to a receiver.
Often, in order for the receiver to 'understand' the source statement, it has to be converted to an
'equivalent’ statement that exists in the receiver's context. For instance, the statement "The latest trade
price of the IBM stock is 80 USdollars" which is represented by a database may not be meaningful to an
application which expects all monetary amounts to be in Yen currency. In this case, the source statement
should be converted to "The latest trade price of the IBM stock is 8800 Yen" (assuming a conversion rate of

110) which can then be processed meaningfully by the receiver. Given a source context and a receiver

1The other types of constructs in a context are predicates and predicate arguments. These constructs will be
further explained in the discussion on context in Section 2.2.2.



context, the flow of data from a source to a receiver in response to a query? can be analyzed in three
stages as shown in Fig. 1. First, symbols in the source are mapped to a corresponding collection of
statements in the source context (arrow 1). Second, these source statements are then converted to
'equivalent’ statements in the receiver context (arrow 2). Third, these statements in the receiver context
are then mapped onto their symbolic counterparts on the receiver side (arrow 3). Arrow 4 represents the
overall process. In this paper, we restrict our analysis to arrow 2 which represents a fundamental and
essential aspect of source-receiver interoperability. We are concerned with the convertibility of statements
in the source context to 'equivalent’ statements in the receiver context.

In Section 2, we introduce some basic concepts and ideas from Mario Bunge's Semantics [2] and
Ontology [3] which will serve as a conceptual foundation for the research presented here. In Section 3 we
apply these concepts to context interchange. Specifically, we define the notion of a context and a shared
vocabulary. We then discuss conversion axioms and give examples of how these may be specified. We
also give a formal description of the context mediator in these terms. In Section 4 we discuss the
implications for further research on and the design of systems based on the context interchange

architecture. This paper concludes with Section 5.

2.  Bunge's Ontology and Semantics: A Brief Introduction
21  Bunge's Ontology

According to Bunge '...an ontology is not a set of things but a philosophical theory concerning the
basic traits of the world' [2: p. 38]. In Bunge's Ontology, the world is made up of things. Things possess
properties. We perceive the properties of things via attributes. That is, we only know properties as
attributes. A property is a feature that a thing possesses even if we are ignorant of this fact. On the other
hand, an attribute is a feature we assign to a thing [3: p. 58]. Therefore there is a distinction between an
attribute and a property of a thing. An attribute, (e.g. weight) represents a property in general while an
attribute value (e.g. 36 kilograms) represents a property in particular. A collection of objects possessing the
same property in particular is referred to as a class.

There are simple and complex things. A complex thing, or system, is made up of simpler things
that interact. There is a part-whole relationship between a system and its components. An example of a
system is the computer which is made up of simpler, interacting things such as the CPU, memory etc.
(Fig. 2). This is called an aggregation hierarchy. Complex things have inherited and emergent properties,
and hence, emergent and inherited attributes. An inherited attribute is an attribute common to a system
and one of its components and share the same attribute value. For example, the clock speed of computer

is an inherited attribute because it is also the clock speed of the computer's CPU. An emergent attribute is

2For the pupose of this abstract we ignore issues of data flow in the other direction from receiver to
source (e.g. query conversion).



an attribute of a complex thing but not of any of its components (e.g. the weight of the computer). We

denote the relationship between a particular CPU "a" and its respective computer "b" as APO (a, b, P)

where P is the inherited attribute.

Computer \
Keyboard / I \ VDU

Memory CPU Storage
Fig. 2 Aggregation Hierarchy
The state of a thing is represented by a combination of its attribute values. For example, the title
of an employee in an organization refers to a state of an employee. An event is a change in the state of a
thing and is represented as an ordered pair of states. For example, a promotion is an event where the title
of an employee changes. For a more detailed discussion on Bunge's Ontology and its application to

information systems, the reader is referred to [9, 10, 11, 12, 13].

2.2  Bunge's Semantics
2.2.1 Statements, Predicates and Predicate Arguments

Bunge describes the study of Semantics as '...concerned not only with linguistic items but also,
and primarily, with the constructs such items stand for and their eventual relation to the real world' [27p.
2]. Three types constructs we are concerned with in Bunge's Semantics are statements, predicates and
predicate arguments.

An n-ary predicate P is a function

P: A1 XA2X..XAp—>S

from domains A1,A),...,Ap of predicate arguments to a set of statements S. In other words, predicates are
functions that evaluate to statements when the argument list is instantiated. Statements are propositions
and can be assigned truth values3. Predicate arguments (constants or variables) can be classified
according to the following types (1) object, (2) property, (3) space, (4) time, (5) unit and (6) scale [2: p. 40].

The object variable ranges over a class of things. The object constant refers to an individual thing.
The property variable ranges over a set of attribute values while a property constant corresponds to an
attribute value. Time and space values indicate the temporal and physical location of a thing. For clarity,
the type of the argument is indicated by '/ followed by the argument type in italics when it is useful to
do so. Furthermore, arguments preceded by '?' are variables, otherwise, they are constants. As an
example, the predicate "TradePrice (?x/object, ?y/property, 7u/unit, ?t/time)" evaluates to "TradePrice of

?x (a stock) is ?y (some value) in ?u units (some currency) for a particular period of time ?t" where

3Note that this definition of a predicate differs from that in predicate calculus in that the range is a set of
statements instead of Boolean constants (i.e. True and False).



"TradePrice" is the attribute. The evaluation of predicates to statements is an important issue and a
further discussion is presented in Section 3.

One useful property of space-time variables not discussed by Bunge but which will prove useful
is the concept of granularity. Consider for example the day 4 July 1987. This date refers to a 24-hour
period within the month of July 1987 which is within the year 1987. This is an example of a granularity
hierarchy of time (Fig. 3a). The smallest granularity of time is an instant. No time periods can therefore
appear below an instant in a granularity hierarchy of time. Similarly, Chicago is in the USA is an example
of a granularity hierarchy of space (Fig. 3b). The smallest granularity of space is a point. No space values
can appear below a point in a granularity hierarchy of space. We will denote the granularity relationship
among time values and space values as InTime (a,b) and InSpace (c,d) respectively where "a" is within "b"
and "c" is within "d".

VA S AN

Jun 1987 Jul 1987 New York Chicago
@ ®

Fi

Conversion functions between units and between scale factors are also important relationships
not discussed by Bunge but which are needed for statement conversions. We therefore define two
relations. The relation ConvUnit is defined over D x Dy x D3 where Dy and D, are domains of units and
D3 is a domain of numbers and <?x, ?y, ?z> € ConvUnit iff ?z is the unit conversion factor from ?x to ?y.
The relation ConvScale is defined over Dy x Dy x D3 where Dy, D; and D3 are domains of numbers and

<?x, ?y, ?z> € ConvScale iff 2z =?x + ?y.

2.2.2  Context, Import, Purport and Intension

Bunge defines a context as the ordered triple <S,P,D> where P is a set of predicates, D is the
collection of all the arguments of the predicates and S is a set of statements formed by instantiating the
predicates in P with arguments from D. A source context is the space of possible constructs that may be
represented by a data source, while a receiver context is the space of constructs that a receiver
‘understands’.

The relationships among statements in S and predicates in P are formalized through the notion
of sense. There are three dimensions of the notion of sense : import, purport and intension [2: pp. 115-118].
The purport of a predicate is a set of predicates that "define" or prove it [2: p. 146]. The import of a
predicate is the set of predicates which, possibly in conjunction with other statements predicates, it
implies. Consider the formula ParentOf(?x,?y) AND ParentOf(?x,?z) AND (?x#?y) = SiblingOf(?y, ?2).
ParentOf(?x,?y) AND ParentOf(?x,?z) AND (?x#?y) is the purport of SiblingOf(?y, ?z) and SiblingOf(?y,



?z) is the import of ParentOf(?x,?y) AND ParentOf(?x,?z) AND (?x#?y). Similarly ParentOf(Peter,Mary)
AND ParentOf(Peter,Paul) AND (Mary#Paul) = SiblingOf(Mary, Paul) is an example of the purport-
import relationship among statements in S.

The intension of a predicate is the set of predicates which it subsumes. In Bunge's terms, a more
specific predicate subsumes a more general one. We will make adapt the notion of subsumption more
precisely as follows: Consider two predicates with predicate symbols P and Q and domains Dp and Dgq
respectively. Then the predicate with the predicate symbol P subsumes the predicate with predicate
symbol Q if and only if Dp cDgq and P(?xy,...,2Xp) = Q(?xy,...,7Xn). For example FatherOf (?x, ?y) =
ParentOf(?x, ?y). We represent subsumption relationships between predicates with the relation ISA
where <P, Q> e ISA if and only if P subsumes Q. Similarly, FatherOf (Peter,Paul) = ParentOf
(Peter,Paul) is a subsumption relationship among statements in S. These relationships will serve as
conversion axioms for context interchange. Statements in the source context may be converted to
statements in the receiver context via logical implication as specified by these axioms.

In summary, a context is made up of constructs which have relationships with each other. At the
highest level, a context is made up of a set of predicates P, a set of predicate arguments D and a set of
statements S. Predicates and statements are related to one another via purport, import and intensions.
The elements of D can be divided into several types: object, property, space, time, unit and scale. There
are also various relationships among each of these types as specified by the relations APO, InTime,
InSpace, ConvScale and ConvUnit. These various relations are important because, as we illustrate in the

next section, they are a convenient means for specifying various classes of conversion axioms.

3. Applying Bunge's Ontology and Semantics to Context

Interchange

We propose to use Bunge's formalization of the notion of context i.e. <S, P, D>. Let Cg = <Sg,
Pg, Dg> and Cr =<Sr, Py, D> be the source and receiver contexts respectively. Intuitively, Cg is the
space of constructs that are potentially expressible by the source. At any instant, the set of statements
asserted by the source as true is Sy ¢ Ss. Intuitively Cy is the set of constructs that a receiver understands
and can accept. Sy is the set of statements that are potential answers to a query. The shared vocabulary is
defined as V = <Svy, Py, Dy, A> where Sg, Sy € Sv; Ps, Pr ¢ Pyv; Dg, Dy € Dy; A is the set of

conversion axioms. We now formally state the behavior of the context mediator:

Given A, Sy and St, the context mediator outputs Sq < Sp that is the set of logical

consequences of A and Sg.

However, there may be potential problems in specifying conversion axioms. For example,
explicitly specifying conversions between all possible pairs of currency units for all predicates

representing monetary attributes is clearly not practical. This is where the various relations we defined in



the previous section become useful. Various classes of conversion axioms may be specified simply by
specifying these relations. This is because these classes of conversion axioms may be derived from these
relations. We will show several derivation rules that allow us to derive conversion axioms from the
relations for three classes of statements. We will focus on statements about (1) the attribute values (or
state) of things, (2) the class of things and (3) the instantaneous events undergone by things.
Correspondingly, we identify three types of predicates in P, namely attribute, class and event predicates.

The attribute predicate maps to statements describing the state or attribute value of a thing over a
particular period of time. The general structure of such a predicate is "Attribute-Predicate (object,
property, unit, scale, time)" which can be evaluated as "The Attribute-Predicate of object is property in
unit and _scale, for all of time". For example, "Title (John/object, Sales Manager/property, 1987/ time)" is
evaluated as "The Title of John is Sales Manager for all of 1987". The event predicate maps to statements
describing instantaneous events (i.e. changes in states of a thing) that occur at particular instant and at a
particular point in space. The general structure of such a predicate is "Event-Predicate (object, time,
space)” which can be evaluated as "The Event-Predicate of object is at some instant within time and at
some point within space”. For example, "Birth (John/object, 4 Jul 1958/ time, Chicago/space)" is evaluated
as "The Birth of John is at some instant within 4 July 1958 and at some point within Chicago". The class
predicate maps to statements describing the class of a thing. The general structure of such a predicate is
"Class-Predicate (object)" which can be evaluated as "The object is in the class Class-Predicate". For
example, "Male(John/object)" can be evaluated as "John is in the class Male".

We now present the derivation rules. We will use '=' to stand for 'implies’ or equivalently 'is
convertible to'. For clarity, the predicate names and arguments which are being converted in statements
are highlighted in bold.

Conversion Axioms based on ISA:
IF <P, Q> € ISA THEN P (?x,%y,?z,...) = Q (?x,?y,?z,...) is a conversion axiom.
E.g. Since <LatestTradePrice, TradePrice> € ISA, LatestTradePrice (IBM/object, 80/property,
1/scale, USdollars/unit) => TradePrice (IBM/object, 80/property, 1/scale, USdollars/unit).
Conversion Axioms based on ConvUnit:
IF <7?x, ?y, 72> € ConvUnit, THEN P (..., 2e/property, ?x/unit,...) = P (..., 2e*?z/property, ?y /unit,...)
is a conversion axiom.
E.g. TradePrice (IBM/object, 80/property, 1/scale, USdollars/unit) = TradePrice (IBM/object,
8800/ property, 1/ scale, Yen/unit).
Conversion Axiom based on ConvScale:
IF <?x, ?y, ?z> e ConvScale, THEN P (...,2e/property, ?x/scale,...) = P (...2e*?z /property,

?y/scale,...) is a conversion axiom.



E.g. TradePrice (IBM/object, 8800/property, 1/scale, Yen/unit) = TradePrice (IBM/ object,
88/property, 100/ scale, Yen/unit).

Conversion Axioms based on APO:
IF <?x, 7y, P> € APO, THEN P (?x /object,...) & P(?y/ object,...) is a conversion axiom.
E.g. (See Fig. 2). Since APO (CPU/object, Computer/object), Speed (Computer/ object,
33/property, 100/scale, Hz/unit) <> Speed (CPU/object, 33 /property, 106 /scale, Hz/ unit).
Explanation: The CPU is a part of the Computer in this aggregation hierarchy. In this example,
the speed of a computer is 33 MHz and speed is an inherited attribute from the CPU. Therefore
we can perform conversions both ways.

Conversion Axioms for Attribute Predicates based on InTime:
IF P is an attribute predicate AND <?x, ?y> € InTime THEN P (..., ?y/time,...) = P (..., ?x/time,...)
is a conversion axiom.
E.g. (See Fig. 3a). Title (John/object, Sales Manager/property, 1987/ time) = Title (John/object,
Sales Manager/property, Jun 1987/ time)
Explanation: "John was Sales Manager for all of 1987" means that "John was Sales Manager for all
of Jun 1987".

Conversion Axioms for Event Predicates based on InTime:
IF P is an gvent predicate AND <?x, ?y> € InTime THEN P (..., ?x/time,...) = P (..., ?y/time,...) is a
conversion axiom.
E.g. (See Fig. 3a). Birth (John/object, 4 Jul 1958/ time, Chicago/ space) = Birth (John/object, Jul
1958/ time, Chicago/space). ,
Explanation: Since John was born at some instant within the day 4 Jul 1958, it is also true that John
was born at some instant within the month Jul 1958.

Conversion Axioms for Event Predicates based on InSpace:
IF P is an event predicate AND <?x, ?y> € InSpace THEN P (..., ?x/space,...) = P (..., ?y/space,...) is
a conversion axiom.
E.g. (See Fig. 3b). Birth (John/object, 4 Jul 1958/time, Chicago/space) = Birth (John/object, 4 Jul
1958/ time, USA / space).
Explanation: Since John was born at some point within Chicago, John was therefore born at some
point in the USA.

Other Classes of Conversion Axioms
There are other classes of conversion axioms which may not be specifiable through such relations
and have to be specified directly.
E.g. ParentOf(?x,?y) AND ParentOf(?x,?z) AND (?x#?y) = SiblingOf(?y, ?z).

4. Implications and Future Research



The reliability of data interchange in a federation of information agents based on the context
interchange architecture is determined by the correctness and consistency of specifying the shared
vocabulary, source and receiver contexts. As a new source or receiver is introduced into an existing
federation of interoperable information agents, its context is defined in terms of constructs that are in the
shared vocabulary. This task is referred to as context definition. The shared vocabulary must therefore be
sufficiently rich so that the source and receiver context can be appropriately defined. Methodologies and
an application independent specification language need to be developed to facilitate specification.

Specification of contexts and the shared vocabulary must be encoded in some representation for
implementation purposes. We assume that the shared vocabulary, source and receiver contexts will share
a common representation (i.e. a common language). In all likelihood, this common language will differ
from that used by the information agents. Therefore, after the context of an information agent is defined,
vocabulary mappings need to be specified. Vocabulary mappings relate the symbolic items in the language
of an information agent to the common language used to represent its context. It is through the
vocabulary mappings that symbolic heterogeneities are resolved. Developing the appropriate
representation for contexts and shared vocabulary as well as techniques for specifying vocabulary
mappings are further research issues.

Finally, this research has implications for the design of the context mediator. We have already
specified the external behavior of the context mediator in terms of conversion axioms, source context,
receiver context and the output expected of the mediator. The choice of an appropriate knowledge
representation for building the context mediator is an ongoing research issue and will be influenced by

this specification.

5. Conclusion

In this paper, we proposed an approach to address the issue of semantic interoperability between
a data source and a data receiver in the framework of the context interchange architecture. This approach
draws upon ideas and concepts discussed in Mario Bunge's Ontology and Semantics. We introduced the
notion of a conversion axiom, which is a formal and declarative means of specifying knowledge required
by the mediator to perform desired conversions. We gave examples of how conversion axioms may be
specified for various types of conversions. We also state, in formal terms, the behavior of the mediator
which uses conversion knowledge to translate data from the source context to the receiver context.
Formal characterizations of what a context mediator should know and its external behavior provide a
specification for the subsequent design of the knowledge representation and reasoning processes internal

to the mediator. We also discussed implications and future research issues.



References

(1]
[2]
(3]
(4]
(5]
6]
(71
(8]
9l

[10]

[11]

(12]

(13]

Bright, M. W., Hurson, A. R., & Pakzad, S. H. A Taxonomy and Current Issues in Multidatabase
Systems. IEEE Computer: 50-60, March 1992.

Bunge, M. Semantics I: Sense and Reference. D. Reidel Publishing Company, Boston, 1974.
Bunge, M. Ontology I: The Furniture of the World. D. Reidel Publishing Company, Boston, 1977.
Goh, C. H., Madnick, S., & Siegel, M. Context Interchange: Overcoming The Challenges of Large-

Scale Interoperable Database Systems in a Dynamic Environment. In Third International Conference
on Information and Knowledge Management, Blatimore, MD, 1994.

Sciore, E., Siegel, M., & Rosenthal, A. Context Interchange Using Meta-Attributes. In First
International Conference on Information and Knowledge Management: 377-386, Baltimore, MD, 1992.

Sciore, E., Siegel, M., & Rosenthal, A. Using Semantic Values to Facilitate Interoperability Among
Heterogenous Information Systems. To appear in Transactions on Database Sytems, 1994.

Siegel, M., & Madnick, S. Context Interchange: Sharing the Meaning of Data. SIGMOD Record, 20,
4:77-79,1991.

Siegel, M., & Madnick, S. E. A metadata approach to resolving semantic conflicts. In Proceedings of
the 17th International Conference on Very Large Data Bases: 133-145, Barcelona, Spain, 1991.

Wand, Y. A Proposal for a Formal Model of Objects. In W. Kim & F. Lochovsky (Eds.), Object-
Oriented Concepts, Databases, and Applications: 602, ACM Press, New York, N.Y., 1989.

Wand, Y., & Weber, R. An Ontological Analysis of Some Fundamental Information Systems
Concepts. In Proceedings of the Ninth International Conference on Information Systems, Minneapolis,
Minnesota, USA, 1988.

Wand, Y., & Weber, R. Mario Bunge's Ontology as a Formal Foundation for Information Systems
Concepts. In P. Weingartner & G. J. W. Dorn (Eds.), Studies on Mario Bunge's Treatise, Rodopi,
Amsterdam, 1990.

Wand, Y., & Weber, R. An Ontological Model of an Information System. IEEE Transactions of
Software Engineering, 16, 11: 1282-1292, 1990.

Wand, Y., & Weber, R. Toward a Theory of the Deep Structure of Information Systems. In
Proceedings of the Twelfth International Conference on Information Sytems, 1991.

10



Using Ontologies to Facilitate Context Interchange

Cheng Goh (chgoh@mit.edu)

Scott Hofmeister (hofmeist@mit.edu)
Stuart Madnick (smadnick@mit.edu)
Michael Siegel (msiegel@mit.edu)

It is the goal of our project to provide explication and resolution of context
differences among information systems and users. Our approach is declarative, it
requires that source and receivers describe their context in some common
vocabulary. A mediator approach is used to compare these contexts to determine
semantic conflicts and, where possible, provide transformations to resolve these
conflicts. We hope to simplify the process of developing context descriptions by
extending ontologies of concepts that have been developed under other projects.
These ontologies will need to be extended so that attributes, meta-attributes (i.e.,
properties used to define the context or assumptions at the source or receiver),
and their values can be mapped to terms in the ontology.

..need to put some meat in here about data objects vs. non-data objects ...perhaps
we can include pictures for those who can read postscript....anything else we can
do to talk about our needs for ontologies and desing methods for building data
objects...stuff etc.....temptations is to spend a minimum amount of time on this
and see how it looks...i.e., determine if there is value to send it...




