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Abstract

Isotopic measurements of skeletal bone, coupled with corresponding measurements of foods that

might have been eaten by prehistoric individuals, offer the promise of providing valuable information

about their diets. Linear mixing equations relating bone measurements to food measurements for each

of several isotopes serve to constrain the percentages of each food that could have been in the diet. Even

though it is seldom possible to determine the diet uniquely, it is always possible to set bounds on the

percentages of various foods that could have been part of the diet. The more isotopes that have been

measured, the tighter will be the bounds. The bounds are determined by means of linear programming.

We set up a basic linear model and illustrate the technique with simple examples. Then, using data and

implicit mixing equations from Spielmann, Schoeninger, and Moore (1990), an extended case

demonstrates how linear programming can answer archaeological questions.

PREHISTORIC DIETS, STABLE ISOTOPE RATIOS, LINEAR MIXING EQUATIONS, LINEAR

PROGRAMMING



Introduction

Isotopically speaking, you are what you eat. The foods people digest determine the chemical

content of their bones. Therefore isotopic studies of skeletal remains, coupled with corresponding

measurements of candidate foods, offer the prospect of teaching us much about prehistoric diets. For

example, Vogel and van der Merwe (1977) use carbon isotopes to provide evidence for the introduction

of maize into prehistoric diets in New York State. Schoeninger, DeNiro, and Tauber (1983) and Walker

and DeNiro (1986) show that carbon and nitrogen isotope ratios can identify marine and terrestrial

components of prehistoric diets.

Several difficulties confront the user of such data in trying to draw archaeological conclusions.

First of all, an isotope ratio found in skeletal bone is a function of the isotope ratios of all of the different

foods that the individual has eaten. In simple cases, the diet may have consisted largely of one type of

food, e.g., maize for certain populations, or salt water fish for others. A shift in diet from one type of

food to another can be detected if the two foods have markedly different isotope ratios. If the diet is a

mixture of two such foods, graphical analysis can often shed light on the archaeological issues being

addressed. However, as the number of foods increases and multiple isotope ratios become available, the

mixing possibilities become complex and the data difficult to interpret by simple comparisons and purely

graphical methods.

To a considerable extent, the situation can be sorted out mathematically with mixing equations.

As a good first approximation, the relationship between isotope ratios in food protein and those in bone

collagen may be presumed linear for high protein diets, an assumption made by Chisholm, Nelson, and

Schwarcz (1982), and supported by the recent experiments of Ambrose and Norr (1993). Then the

greater the percentage of a diet devoted to a particular food, the greater are the contributions of its isotope

ratios to the isotope ratios in skeletal bone. The contributions of a particular isotope ratio are directly
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proportional to its presence in the individual foods and are additive across foods. Such mixing equations

have been used to estimate the percentages of two foods in a diet by Chisholm, Nelson, and Schwarcz

(1982), Schwarcz et al. (1985), Keegan and DeNiro (1988), and Yesner (1988). Spielmann, Schoeninger,

and Moore (1990) have considered mixing equations with four foods. See also Schwarcz (1991). More

generally, by constructing relationships for multiple isotopes and multiple foods, one can define a set of

simultaneous mixing equations that involve the percentages of various foods in the diet. Manipulation

of these equations holds the promise of providing valuable information about the contribution of different

foods to the diet.

A second problem is fractionation. In the metabolism of foods into body tissues, isotopes usually

transfer differentially, orfractionate (van der Merwe and Vogel, 1978; DeNiro 1987). Therefore, the

isotope ratios for bone need to be adjusted to obtain the isotope ratios that existed in the actual diet. Still

another issue is that, if two or more foods resemble each other isotopically and nutritionally, we shall not

be able to distinguish them. Thus, it is necessary to collect foods that resemble each other into groups.

Finally, even after defining food groups, we shall usually have more candidate groups than isotopic

measurements. This creates ambiguity in the diet implied by the data; i.e., a range of possible diets is

consistent with the isotopic measurements.

The main goal of this paper is to show how to narrow the range of ambiguity in prehistoric diets

by setting upper and lower bounds on the percentage of each candidate food group in the diet. We shall

do this by applying the mathematical technique of linear programming. The method has been used by

Little and Schoeninger (1995) to answer questions about the diet on Nantucket Island, Massachusetts,

USA, between A.D. 1000 and A.D.1600.

The paper begins with an example of a linear diet model with two equations and two food

variables and then expands to consider three foods, which we analyze both graphically and by linear

programming. Next is a general linear model and a discussion of several linear equations relevant to
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archaeological research. Finally, an extended example draws on data from Spielmann, Schoeninger, and

Moore (1990) and illustrates how linear programming can address specific archaeological questions.

An Example of a Linear Diet Model

We start by focusing on an individual with a high protein diet. Let

j = 1 and 2 denote two types of high protein foods, for example, deer and geese.

Dj = the amount of food j in an individual's diet, expressed as a fraction of total

kilocalories/day consumed.

The percentages of kilocalories contributed by each food, added up across all foods, must sum to 100,

or, in terms of fractions, to one;

D1 + D2 = 1. (1)

Isotopes in foods and skeletal bone are measured by 6-values expressed in thousandths (o/oo).

For example, the 613C value of a substance is its 13C/ 12C ratio divided by the same ratio in a standard

material, minus one. As mentioned earlier, in going from food to bone collagen, b-values fractionate.

That is, the 613C value for bone collagen, adjusted by an experimentally estimated amount of -5 o/oo

(van der Merwe and Vogel 1978), gives the 613 C value for the diet. Similarly, for nitrogen, the 615N

value for bone collagen, adjusted by an amount, -3 o/oo (see Keegan and DeNiro, 1988), gives an

estimated 615N value for the diet.

In our two food example, let

/13Cj = 613C value in food j,

613Cdiet = 613C value in the diet.

We assume that, for any isotope, a food containing the isotope makes a contribution to the 6-value

of the diet proportional to the food's 6-value and to the fraction of the diet coming from that food. Thus,
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for the isotope 13C and two foods, we construct the mixing equation:

(6 13C1 ) D 1 + (613C 2) D2 = 613Cdiet. (2)

Collecting together (1) and (2), we obtain the following linear model, which we shall call M1:

D1 + D2 = 1,

(a13C1 ) D1 + (613C2) D2 = 613Cdiet. (M1)

Model M1 is a system of two simultaneous linear equations in two dietary variables. The as are known

constants obtained from laboratory measurements. The Djs are unknown variables that describe the diet.

Continuing our example, suppose that an individual had a diet made up of foods from two groups,

each constructed from animals having similar 613C values: (1) a deer group, which contains animals such

as white tailed deer that consume low 613C plants, and (2) a geese group, consisting of animals such as

brant geese that consume high 613C plants (e.g. eel grass). These foods have b-values that are quite

homogeneous within the groups but quite different across them. Assume that laboratory measurements

of meat samples from the two groups give 613C values of, respectively, -24 and -14 o/oo. Suppose

finally that bone collagen adjusts to a diet value, 613Cdiet of -16 o/oo.

Substituting these data into model Ml and calling the result M2 gives:

D1 + D2 = 1,

- 24 D 1 - 14 D 2 =- 16. (M2)

If the number of equations equals the number of foods, as is the case here, M2 can be solved

exactly by algebraic substitution, giving D1 = 1/5 and D 2 = 4/5. The same result can be worked out

by proportions, as illustrated in Figure 1. Therefore, the analysis of this case is straightforward: The

individual's diet consisted 20% of food from the deer group and 80% from the geese group.

Figure 1 about here
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Most of the time, however, we shall have more candidate foods than equations. This changes

the situation. Suppose that a third plausible food is salt water fish, with 613C value -18 o/oo. It is easy

to add a third dietary variable, D 3, the fraction of salt water fish in the diet, and extend model M2 to

M3:

D 1 + D2 + D3 = 1,

- 24 D1 - 14 D2 - 18 D 3 =- 16, (M3)

What can we now say about the diet? First of all, there are many combinations of values for D 1, D2,

and D3 that will satisfy both equations. Nevertheless, the equations do restrict the variables and there

are many combinations of Djs that will not work. In fact, we seek further ways to restrict the variables.

For example, we note that the fraction of a food in the diet cannot be negative. This may seem obvious

and trivial but actually turns out to be helpful and necessary, especially since we wish to perform the

calculations by computer and so must specify that only non-negative values are permissible. We use the

standard term, constraint, to refer generically to either equalities or inequalities that restrict the variables.

Adding the non-negativity requirements to M3 gives a new model, M4, which has the constraints:

D1 + D2 + D 3 = 1,

- 24 D1 - 14 D2 - 18 D 3 = -16, (M4)

D 1 > O, D2 > O, D3 > 0.

In this three food example, the number of foods exceeds the number of equations. Since the data

and constraints do not completely specify the diet of the individual, we turn to new methods.

Analyzing the Model M4 by Linear Programming

A system of simultaneous equations and inequalities like M4 can have zero, one, or many

solutions. By a solution to M4 is meant a set of values of the Dj, which satisfy the inequalities and

5



which, when substituted into any of the equations, make the two sides equal. Most commonly in

archaeological studies we would expect to have relatively few equations and many candidate food groups.

Under these circumstances, there will be ranges of food percentages that could have made up the diet and

produced the observed isotopic measurements. Nevertheless, there will usually be valuable information

in the equations about how much (or how little) of a particular food group could possibly be in the diet.

This is the principal use that we make of the model.

To determine such upper and lower bounds for each food in a diet, we use linear programming.

For a general discussion of linear programming, see, for example, Hillier and Lieberman (1990), and,

for other archaeological applications, Reidhead (1979). Linear programming is a mathematical technique

that takes a linear model and finds values for its variables so as to maximize (or minimize) an objective

function. An objective function is a weighted combination of the variables of the problem. In our case,

we wish to find the largest or smallest amount of a particular food group, say the jth, that could be in

the diet and still be consistent with the data and model M4. To do this, we simply take Dj as the

objective function. Formally, we have the following linear program:

LP4: Find values for D 1, D2, and D3 that

maximize (or minimize) Dj,

subject to:

D 1 + D2 + D3 = 1,

- 24 D1 - 14 D2 - 18 D3 = - 16,

D 1 > 0, D2 > O0, D3 > 0.

Standard computational procedures solve LP4. For example, Microsoft's spreadsheet program,

Excel, has a software tool, Solver, that performs such maximizations and minimizations.

The process of solving a linear program like LP4 for each of the variables usually works

smoothly, leading to upper and lower bounds for the amount of each food in the diet. However, two
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other outcomes are possible. First, the upper and lower bounds may be equal for each variable. This

will be the case when there is only one solution to the linear system (as was true for two equations and

two foods). The solution is said to be unique. Second, the computational procedure may not be able to

find any collection of values for the variables that will satisfy the equations and inequalities of the model.

This is the case in which the system has no solutions. The meaning of this (assuming the mixing model

and the measurements are correct) is that no combinations of the candidate foods could have resulted in

the observed 613Cdiet, i.e., some other foods must also have been in the diet.

For the particular case of M4, the maximum and minimum percentages of the three food groups

in the diet are found by linear program LP4 to be as follows:

Food Group Max % Min %

deer (D 1) 20 0

geese (D2) 80 50

salt water fish (D3) 50 0

Thus the individual's diet could have been quite heavy in either geese or salt water fish.

Furthermore, the diet could not have been more than about 20% deer and must have included at least

50% from the geese group.

Note that each entry in the above table represents a separate linear programming analysis that asks

what is the largest (or smallest) percentage of a particular food that could be in a diet. Therefore, there

is no inherent reason that the percentages must add up to 100. For example, the maximum percentage

of geese in the diet is 80% and the maximum salt water fish is 50%, but obviously both these extremes

could not have happened together. If another isotope 6-value, such as 15N is measured and added as

a third equation, or as other constraining relationships are introduced, the limits on the foods will tend
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to grow tighter.

The numerical results just produced rely on calculations done off stage and so may seem

somewhat mysterious. For this small example, we can find the answers and illustrate the ideas

graphically. Use the first equation of M4 (rewritten as D 1 = 1-D2-D 3) to eliminate D1 from the second

equation by substitution. This gets rid of the first equation and makes the second become: 5D 2 + 3D 3 =4.

However, we must ensure that the model considers only values of D2 and D3 that keep D 1 > 0. This

can be done by requiring D1 = 1-D2-D 3 > 0. Thus we create M4a, a two variable model equivalent to

M4:

5 D2 + 3 D3 = 4,

D 2 + D 3 < 1, (M4a)

D2 > 0, D3 > 0.

Figure 2 diagrams model M4a using axes D2 and D3. Each point on the plane represents a set of values

for D2 and D3 and so defines a potential diet. For a diet to be feasible (i.e., possible), D2 > 0, which

means that satisfactory values lie above the D2 axis. D3 > 0 only allows values to the right of the D3

axis. The inequality, D2 +D 3 < 1, means that feasible values must lie under the D2 +D 3 =1 line.

Finally to satisfy the equation, 5D2 +3D 3 =4, values must lie on the line represented by this equation.

Therefore the only feasible diets satisfying M4 are those cross-hatched in Fig.2. The maximum and

minimum values for D2 are seen to be 0.8 and 0.5 and for D3, 0.5 and 0. This confirms the answers

for D2 and D3 as found earlier by linear programming. One can also confirm the answers for D 1 by a

similar graphical process in which D2 or D3 , instead of D 1, is eliminated from model M4.

Figure 2 about here
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A General Linear Model

Different researchers will make different assumptions in analyzing diets. Linear programming

techniques will apply if the assumptions lead to linear models. The purpose of this section is to indicate

what linear models encompass. We do this by formally writing down a quite general case. Consider,

therefore, model M5 with F variables and I constraints. Let

Dj = the jth variable of the model, j = 1,.., F. Ordinarily, each j refers to a food, but

other variables are possible, in which case F will be larger than the number of

foods.

bi = right hand side constant in the ith constraint, i= 1,..., I. For the most part, each

i will refer an isotope, but other constraints (such as the sum of the food

fractions equals one) will be present, making I larger than the number of

isotopes.

aij = coefficient of Dj in the ith constraint.

Model M5 is

all D1 + a12 D2 + ...... + aF DF = bl

ahl D 1 + ah2 D2 + ...... + ahF DF = bh (M5)

ah+,11 D1 + ah+1,2 D2 + ...... + ah+l,F DF < bh+l1

aI1 D1 + ai2 D2 + ...... + aIF DF < bI

Dj > 0 j = 1, ... , g Dj unrestricted in sign for j =g+1l,..., F.

9
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As may be seen, constraints 1 through h are equations and h+ 1 through I are inequalities. Variables 1

through g are restricted to be non-negative and g + 1 through F are unrestricted. Although more general

linear models can be defined, they can all be converted to the form of M5 by transformation of variables

and manipulation of constraints. Any archaeological model that can be put into the form M5 by suitable

definition of the variables, Dj, and specification of constants, aij and bj, can be analyzed by linear

programming.

Model M5 becomes a linear program if we add the goal of maximizing or minimizing an

objective function. Let

cj = the coefficient of Dj in an objective function.

Then we can define a linear program:

LP5. Find: values for D1,......, DF

to maximize (or minimize) c1 D1 + ...... + cF DF,

subject to: the constraints of model M5.

What makes M5 and LP5 of interest in studying prehistoric diets will be the details of how the

variables Dj and the constants aij, b i, and cj are defined so as to create constraints and optimizations that

are archaeologically meaningful. In the case of the optimizations, most of our usage here is to maximize

or minimize a single variable. In LP5 terms this means one of the cj is unity and the rest are zero.

However, in the extended application to Pecos Pueblo data later, we shall have occasion to use a slightly

more complicated objective function.

Linear Equations from the Literature

There are many possible ways to define constraints. We give here three types found in the

archaeological literature.
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(1) Diet fractions sum to one.

Let Dj = the fraction of kilocalories/day in an individual's diet supplied by food j,

j = 1....., F = the foods in the diet.

Then j Dj = 1 (3)

is a required equation in the model. This generalizes (1) of our initial example to an arbitrary number

of foods. Although we have defined Dj in terms of energy (kilocalories/day), this is not required and

any consistent units will work from a mathematical point of view, for example, g/day.

The next two cases are algebraic versions of mixing equations implicit in Spielmann, Schoeninger

and Moore (1990: 758, Fig. 4.)

(2) Energy weighting of 613C values.

613Cj = 613C value for food j (o/oo),

613Cdiet = 613C value for the diet (o/oo).

Energy weighting of the food 6-values to give 613Cdiet yields:

Fj (613Cj) Dj = 613Cdiet. (4)

This is a generalized version of the mixing equation (2).

(3) Energy and protein weighting of b15N values.

Schoeninger (1989) argues that only foods containing protein can contribute to the nitrogen 6-

value of skeletal bone, but such foods may also contain non-protein energy sources and some foods in

the diet may contain practically no protein. Following this line of reasoning, we should determine how

much of Dj is protein before using it to weight the 615Nj of the individual foods. Let

pj = the amount of protein in food j (g/kilocalorie),

pjDj = contribution of food j to protein in the diet (g/kilocalorie),
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P = j pj Dj = total protein in the diet (g/kilocalorie), (5)

pjDj/P = fraction of protein in the diet coming from food j,

615Nj = 615N value for food j (o/oo), and

615Ndiet = the 615N value for the diet (o/oo).

Weighting the 615Nj for each food by its fractional contribution to the protein in the diet yields the

equation

Ej (pjDi/P) ( 15Nj) = 615Ndiet.

This equation is not linear in the Dj's because they are contained in P. However, we can multiply

through by P, substitute (5), and collect terms to obtain the linear equation:

Ij (615Nj - 615Ndiet) pj Dj = 0. (6)

Still other variations are possible. For example, Little and Schoeninger (1995) use protein

weighting not only for the 615N mixing equation but also for the 613 C equation, which is then the analog

of (6) rather than (4). Generally speaking, the more equations and inequalities, the more the diet will

be restricted by the data, and the tighter will be the limits we can put on the diet variables.

An Extended Example of Linear Programming

Spielmann, Schoeninger and Moore (1990) analyze human diet at Pecos Pueblo, New Mexico,

with a model that can be described by linear equations, although the authors do not express them

algebraically. Their data and models provide an archaeologically interesting application for linear

programming. Relevant excerpts of their data appear in Table 1. We can build a model, M6, to

reproduce their Period II analysis, using as variables, MII, PII, DII and BII, the fractions of calories in

maize, non-maize plants, mule deer and bison respectively. The first equation is (3), the sum of the food

fractions equals one. The authors use protein weighting for the 615N equation but not for 13 C.

Substituting data from Table 1 into (4) for carbon and (6) for nitrogen yields the second and third
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equations of M6. Finally, adding the non-negativity conditions, we obtain:

MII + PII + DII + BII = 1,

(-11.2) MII + (-25.0) PII + (-20.7) DII + (-11.5) BII = -12.5, (M6)

(7.0-5.9)(.026) MII + (5.6-5.9)(.066) PII + (3.9-5.9)(.167) DII + (6.8-5.9)(.181) BII = 0,

[or, simplifying, 0.0286 MII - 0.0198 PII - 0.334 DII + 0.1629 BI = 0],

MII, PII, DII, BII > 0.

Table 1 about here

Various new questions can be addressed to model M6 using linear programming. As suggested

throughout the paper, we can set bounds on the percentages of foods in the diet: What is the largest (and

smallest) percentage of each food that could have been in the Period II diet (and be compatible with the

measured data)? The answers are:

Food Item Max % Min %

Maize (MIi) 88.3 72.4

Non-maize plants (PII) 4.4 0

Mule deer (DII) 13.2 7.3

Bison (BII) 14.4 0

A similar analysis applies to Period VI. The authors' data yields model M7:

MVI + PVI + DVI + BVI = 1,

(-11.2) MVI + (-25.0) PVI + (-20.7) DV + (-11.5) BVI = -13.5, (M7)

(7.0-6.3)(.026) MVI + (5.6-6.3)(.066) PVI + (3.9-6.3)(.167) DVI + (6.8-6.3)(.181) BVI = 0,

[or 0.0182 MV - 0.0462 PVI - 0.4008 DVI + 0.0905 BVI = 0],

MVI, PVI, DVI, BVI > 0.

13
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Table 1.

Table 1. Food and skeletal bone measurements for Pecos Pueblo, New Mexico, from Spielmann,

Schoeninger and Moore (1990: 758,9, Table 2, Table 4).

Food Item

1. Maize (M)

2. Non-maize plants (P)

3. Mule deer (D)

4. Bison (B)

Skeletal Bone

Collagen values

Period II

Period VI

Diet-collagen adjustment

Diet values

Period II

Period VI

13C (o/oo)

-11.2

-25.0

-20.7

-11.5

615N (o/oo)

7.0

5.6

3.9

6.8

-7.5

-8.5

-5.0

Protein (g/kilocalorie)

.026

.066

.167

.181

8.9

9.3

-3.0

-12.5

-13.5

5.9

6.3
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Linear programming provides bounds on food consumption in period VI:

Food Item Max % Min %

Maize (MVI) 82.7 0

Non-maize plants (PVI) 15.3 2.8

Mule deer (DVI) 17.6 2.0

Bison (BVI) 79.6 0

Spielmann, Schoeninger and Moore (1990) investigate a variety of archaeological issues. To

illustrate how linear modeling could be used for their purposes, we address one of their questions:

Did bison largely replace mule deer in the Pecos diet between periods II and VI?

We restate this as:

How large could the change in bison consumption have been between periods II and VI and

still be consistent with the data?

For this analysis combine models M6 and M7 into a single system and add another linear relation

implicit in the authors' discussion. They argue, from the constancy of strontium measurements on skeletal

bone across the two periods, that total meat consumption was unchanged. Expressed in our variables,

this says:

DII + BII = DVI + BVI. (7)

Combining the models and adding (7) yields a new set of constraints that will be called model M8. We

can then solve a linear program that maximizes the difference in bison consumption between the two

periods, (BVI - BII), subject to M8. The computational procedure determines this to be 0.07. Therefore

the answer to the question is:

The largest change in bison consumption consistent with the data is 7 % of the diet.

This result quantifies the authors' argument that the bison content in the diet of the Pecos inhabitants did

not increase substantially between periods II and VI. Note that, although the analysis of Period II

14
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indicates that not much bison was in the diet, the analysis of Period VI in isolation left open the

possibility of rather high bison consumption at this later time -- up to as much as 80%. However, the

introduction of the further constraint that the total meat consumed was equal in the two periods, resulted

in a much tighter bound on the increase in consumption in bison between periods.

As part of their analysis, the authors systematically devise many hypothetical diets (i.e., plausible

sets of values of MIi, PII, DII, BII that add to 100%), substitute them into the left hand sides of the

second and third equations of model M2, and determine how closely the results match the right hand

sides. They construct a composite measure of the differences as a score to help identify which diets

might most likely be characteristic of the Pecos population for that time period. Small values of the score

are better. Linear equation techniques could simplify the authors' task. In fact, it can be shown that

there are many diets that would give a zero score.

Sensitivity Analysis

The development so far has assumed that the data being used in the linear programs are exactly

correct. This, of course, is never true. At present the precision of the input parameters is probably

limited to an accuracy of about 8-10% (Ambrose 1993:112). Errors and uncertainties in the original

inputs will propagate into the upper and lower bounds on diet percentages. This does not necessarily

happen in a simple way, since different manipulations of the original data will enter into the calculation

of different bounds.

A standard approach to understanding the effects of measurement error on model outputs is to

perform a sensitivity analysis. After analyzing a model with one's best data estimates, one can vary them

in a systematic way and rerun the model. For example, the original estimate of a particular 6-value can

be replaced by a slightly different one, considered to be within the range of measurement error. Then
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the analysis can be rerun. The changes in the resulting bounds indicate their sensitivity to errors in that

particular 6-value. Wagner (1995) describes how to conduct this process on all the input data at once in

a formal, global sensitivity analysis.

Conclusions

We have demonstrated how isotopic measurements of skeletal bone can be combined with

corresponding measurements on candidate foods into linear mixing models and then manipulated to

provide insights about archaeological issues relating to prehistoric diets. Each measured isotope defines

an equation. Usually there are more candidate foods than equations. Then the diet will not ordinarily

be unique, but, by using linear programming, we can set bounds on the largest and smallest amounts of

each food that could have been in the diet. Sometimes these bounds may be quite far apart, in which case

we have not learned much. In other cases they may be quite tight and instructive. In general the more

isotopes measured, the more equations, and the tighter will be the bounds.

In this paper we have derived linear models by making specific assumptions about how food

isotope ratios affect bone isotope ratios or have adopted archaeological or biochemical models implicit

in the work of others. However, the linear programming technique of bounding the contributions of

foods to diet will work with any linear model, no matter how derived. The quality of the answers, of

course, will be entirely dependent on the quality of the data input and of the model.

Although we have assumed that linear additive models relate the isotopic ratios of skeletal bone

to those of foods eaten, this is not strictly required to determine bounds on the components of diet. Quite

likely, some of the processes involved are nonlinear. However, if archaeological scientists, as challenged

by Sillen, Sealy, and van der Merwe (1989), can determine the relationships, the bounds can, in

principle, be determined using the techniques of nonlinear programming, even though the computations
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are likely to become more extensive and complex.
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