
SYNCHRONIZD-AND-STABILIZE:
An Approach for Balancing Flexibility and Structure

in Software Product Development

Michael A. Cusumano* and Richard W. Selby**
*MIT Sloan School of Management

**University of California, Irvine

Working Paper #3930-BPS-96
June 11, 1996

Michael A Cusumano
Professor

Sloan School of Management
Massachusetts Institute of Trehnology

Rihard W. Selby
Associate Professor

Department of Information and Computer Science
University of Califoria, Ivine

June 11, 1996

Forthcoming Communications of the ACM

This artidcle is based onM/icoft Seets: How the Word's Most Pozrtfi Sofawre Co j Cates Tednology,

Sieqs Makets, and Manages People (New York The Free Press/Simon & Schuster, 1995), by Michael A

Cusumano and Richard W. Selby

Since the mid-1980s, Microsoft and other personal-computer (PC) software firms have gradually

been reorganizing the way they build software products in response to quality problems and delayed

deliveries.' Many companies have also found it neessary to organize larger teams in order to build

today's PC software products. These products now consist of hundreds of thousands and even millions of

lines of source code, and require hundreds of people to build and test over periods of one or more years.

As the world's largest producer of PC software, with approximately 18,000 employees, 200 products, and

annual revenues of $6 billion (fiscal year ending June 1995), Microsoft has probably tackled more PC

software projects than any other PC software company. Some of its products, such as Windows 95 (which

contains more than 11 million lines of code and had a development team of more than 200 programmers

and testers), rival the complexity of many systems produced by makers of software for mainframe

computers and telecommunication systems.

Microsoft's general philosophy has been to maintain its roots as a highly flexible, entrepreneurial

company, and not adopt too many of the structured softwareengine practices commonly promoted

by organizations such as the Software Engineering Institute (SEI) and the International Standards

Organization (SO).2 Rather, Microsoft has tried to "scale-up" a loosely structured small-team (some might

say "hacker") style of product development The oective is to get many small parallel teams (3 to 8

developers each) or individual programmers to work together as one relatively large tearn, in order to

build large products relatively quickly, but still allow individual programmers and teams freedom to

evolve their designs and operate nearly autonomously. These small parallel teams evolve features and

whole products irmementally, while occasionally introducing new concepts and technologies. Developers

are free to innovate as they go along however, so they must synctronize their changes frequently so that

product components all work together.

2

In this article, we summarize how Microsoft uses various techniques and melds them into an

overall approach for balancing flexibility and structure in software product development We are not

suggesting that the Microsoft-style development approach is appropriate for all types of software

development, or that Microsoft "invented" these development ideas. Nor are we suggesting that

Microsoft's software development methods have caused their great financial success. We are saying,

however, that there are several lessons that can be learned from how Microsoft builds software products.

Some of these lessons apply to other organizations - and some do not Software developers and managers

from other organizations can decide which ideas may apply to them, after considering various factors such

as company goals, marketing strategies, resource constraints, software reliability requirements, and

development culture.

FREQUENT SYNCHRONIZATIONS AND PERIODIC STABILZATIONS

We have labeled Microsoft's style of product development the synd-and-stabilize approach The

essence is simple: continually syndmize what people are doing as individuals and as members of parallel

teams, and periodically stabilize the productinncrements as a project proceeds, rather than once at the end

of a prjct Microsoft people refer to their techniques variously as the "milestone," "daily build," "nightly

build," or "zero-defect" process. (Ihe term "build" refers to the act of putting together partially completed

or finished pieces of a software product during the development process to see what functions work or

what problems exist usually by completely recompiling the source code and executing automated

regression tests.) Whatever label, these techniques address a problem common to many firms in highly

competitive, rapidly changing industries: Two or three people can no longer build many of the new, highly

complex products; they require much larger teams, who must also invent and innovate as they develop

the product Team members thus need to create components that are interdependent but difficult to define

accurately in the early stages of the development cycle. In these situations, projects must find a way to

proceed that structures and coordinates what the individual members do while allowing them enough

flexibility to be creative and evolve the produces cetails in stages. The development approach must also

3

allow a mechanism for developers to test the product with customers and refine their designs during the

development process.

In a variety of industries, many companies now use protyping as well as multiple cycles of

conurrent design, build, and test activities to control iterations as well as incremental changes in product

development3 In the computer software community, since the mid-1970s, researthers and managers have

talked about "iterative enhancent," a "spiral model" for iterating among the phases in product

development and "concurrent development" of multiple phases and activities.4 Many firms have been

slow to adopt these recommendations formally. Nonetheless, the basic idea shared among these

approaches is that users' needs for many types of software are so difficult to understand, and that changes

in hardware and software technologies are so continuous and rapid, that it is unwise to attempt to design a

software system completely in advance. Instead, projects may need to iterate as well as concurrently

manage many design, build, and testing cycles while they move forward to completing a product.

This iterative as well as incremental and concurrent-engineering style contrasts to a more

sequential or "waterfall" approach to product development In the waterfall approach, projects attempt to

"freeze" a product specfication, create a design, build components, and then merge these components

together - primarily at the end of the project in one large integration and testing phase (Figure 1). This

approachto software developmentwas common inthe 1970s and 1980s. It also remains a basic model for

project planning in many industries.6 The waterfall model has gradually lost favor, however, because

companies usually build improved products if they can change speifications and designs, get feedback

from customers, and continually test components as the products are evolving. As a result a growing

number of companies in software and other industries - including Microsoft plus many others - now

follow a process that iterates among designing building components, and testing. as well as overlaps these

phases and contains more interactions with customers during development Many companies also ship

preliminary versions of their products, increentally adding features or functionality over time in different

product "releases." In addition, many companies integrate pieces of their products together fequently

(usually not daily, but often bi-weekldy or monthly). This is useful to determine what works and what does

not, without waiting until the end of the project - which may be several years in duration

4

STRATEGLES AND PRINCIPLES

We observed Microsoft over a two-and-a-half year period, conducted in-depth interviews with 38

key people (irluding Bill Gates), and reviewed thousands of pages of confidential project documentation

and "postmortem" reports. Through this field research, we identified two strategies and sets of principles

that seem critical to making the sy d-stabie style of product development work

Microsoft teams begin the process of product development by creating a "vision statement" that

defines the goals for a new product and prioritizes the user activities that need to be supported by the

product features (Figure 2). Product managers (marketing specialists) take charge of this task which they

do while consulting program managers, who specialize in writing up functional specifications of the

product Next the programmanagers, inconsultation with developers, write a fu tional specification that

outlines the product features in sufficient depth to organize schedules and staffing allocations. But the

specification document does not try to decide all the details of each feature, or lock the project into the

original set of features. During the project, the team members will revise the feature set and feature details

as they leam more about what should be in the product Experience at Microsoft suggests that the feature

set in a specification document may change by 30 percent or more.

The project managers then divide the product and the project into parts (features and small feature

teams), and divide the project schedule into three or four milestone junctures (sequential sub-projects) that

represent completion points for major portions of the product (Figure 3). All the feature teams go through

a complete cycle of development, feature integration testing, and fixing problems in each milestone sub-

project Moreover, throughout the whole project, the feature teams synchronize their work by building the

product, and by finding and fixing errors, on a daily and weekly basis. At the end of a milestone sub-

project, the developers fix almost all errors that have been detected in the evolving product These error

corrections stabilize the product, and enable the team to have a dear understanding of which portions of

the product have been completed. The development team may then proceed to the next milestone and,

eventually, to the ship date.

5

Defining Products and Development Proces us Creativity by Evoving Features and

'Wdng" Resourmces

To define products and organize the development process, leading product groups in Microsoft

follow a strategy that we describe as focus catiity by ewving fatuws and 'ing" tmourcs. Teams

implement this strategy through fve specific principles:

* Divide large projects into multiple milestone cycles with buffer time (about 20% to 50% of total project

time) and no separate product maintenace group.

* Use a "vision statement" and outline specification of features to guide projects.

* Base feature selection and prioritization on user activities and data

* Evolve a modular and horizontal design arhitecture, with the product structure mirrored in the

projectstructure.

* Control by individual commitments to small tasks and "fixed" project resoures.

These principles are signficant for several reasons. While having creative people in a high-

technology company is important, it is often more iportant to ct their creativity. Managers can do this

by getting development personnel to think about features that large amounts of people will pay money

for, and by putting pressure on projects by limiting their resources, such as staffing and schedule.

Otherwise, software developers run the risk of never shipping anything to market This risk especially

becomes a problem in fast-moving industries, when individuals or teams have unfocused or highly

volatile user requirements, frequently change interdependent components during a prject or do not

syrhronize their work

Microsoft also gets around these problems by structuring projects into sequential subprjects

containing prioritized features, with buffer time within each sub-project to allow people time to respond to

unexpected difficulties or delays. It uses vision statements and outline specfications rather than complete

product specifications and detailed designs before coding. because teams realize that they cannot

determine in advance everything that the developers will need to do to build a good proluct This

approach leaves developers and program managers room to innovate or adapt to changed or unforeseen

6

competitive opportunities and threats. Particularly for applications products, development teams also try

to come up with features that map directly to activities that typical customers perform and this requires

continual observation and testing with users during development

Most product designs have modular architectures that allow teams to irnrementally add or

combine features in a straightforward, predictable manner. In addition, managers allow team members to

set their own schedules but only after the developers have analyzed tasks in detail (half day to 3-day

chunks, for example) and asked developers to commit personally to the schedules they set Managers then

"fix" project resources by limiting the number of people they allocate to any one project They also try to

limit the time projects spend, especially in applications like Office or multimedia products, so that teams can

delete features if they fall too far behind (Cutting features to save schedule time is not always possible with

operating systems or communications products, since reliability of the system is more important than

features, and many features are dlosely coupled and cannot be so easily deleted individually.)

Developing and Shipping Products Do Eve ingin Parallel with Frequent Synchroizations

To manage the process of developing and shipping products, Microsoft follows another strategy

that we describe as do eenjing in mel ithfiequent syndwnizations. Teams implement this strategy by

following another set of five principles:

* Work in parallel teams but"sync-up" and debug daily.

"Always" have a product you can ship, with versions for every major platform and market

* Speaka "commonlanguage" ona single development site

· Continuously test the product as you build it

* Use metric data to detemine milestone completion and product release

These principles bring considerable discipline to the development process without tying to control

every moment of every developer's day. For example, managers in many different companies talk about

making their companies less bureaucratic, more innovative, and faster to react through organization and

process "m-engineering" and "restrcturing;" such as to speed up product development But complex

7

products often require large teams of hundreds of people, not small teams of a dozen or fewer engineers;

and large teams can make communication and coordination extremely difficult and slow. Large-scale

projects are simpler to schedule and manage if they proceed with dearly defined functional groups and

sequential phases, and precise rules and controls. This approach, however, may excessively restrain

innovation, and underestimate the importance of syrchronizing work frequently. Communication and

coordination difficulties across the fumtions and phases may also result in the project taking more time and

people to complete than projects that overlap tasks and make people share responsibilities and work in

small, nimble teams. What Microsoft tries to do, then, is allow many small teams and individuals enough

freedom to work in parallel yet still function as one large team, so they can build large-scale products

relatively quickly and cheaply. The teams also adhere to a few rigid rules that enforce a high degree of

coordination and communication.

For example, one of the few rules developers must follow is that on whatever day they decide to

check in their pieces of code, they must do so by a particular time, such as by 2{00 PM or 5.00 PM This

allows the team to put available components together, completely recompile the product source code, and

create a new "build" of the evolving product by the end of the day or by the next moming and then start

testing and debugging immediately. (This rule is analogous to telling children that they can do whatever

they want all day, but fey mustgo to bed at 9.00 o'codck) Another rule is that, if developers check in code that

"breaks" the build by preventing it from completing the recompilation, they must fix the deect

immediately. (This actually resembles Toyota's famous production system, where factory workers stop

the manufacturing lines whenever they notice a defct in a car they are assembling.7)

Microsoft's daily build process has several steps. First, in order to develop a feature for a product, a

developer checks out private copies of source code files from a centralized master version of the source

code He implements his feature by making charnes to his private copies of the source code files. The

developer then creates a private build of the product that contains his new feature, and tests it He then

checks in the changes from his private copies of the source code files into the master version of the source

code. The check-in process includes an automated regression test to help assure that his changes to the

8

��_�I_____

source code files do not cause errors elsewhere in the product A developer usually checks his code back

into the master copy at least twice a week, but he may check it in daily.

Regardless of how often individual developers ck in their dchanges to the source code, a

designated developer, called the project build master, generates a complete build of the product on a daily

basis using the master version of the source code. Generating a build for a product consists of executing an

automated sequence of commands called a build script This creates a new internal release of the product

and includes many steps that compile source code. The build process automatically translates the source

code for a product into one or more executable files, and also may create various library files that allow end

users to customize the product. The new intemrnal release of the product built each day is called the "daily

build." Daily builds are generated for each platform, such as Windows and Macintosh, and for each

market such as US. and the major international versions.

Product teams also test features as they build them from multiple perspetives, including bringing

in customers from "off the street" to try prototypes in a usability lab. In addition, nearly all Microsoft teams

work on a single physical site with common development languages (prmnaily C, with some C++ and

assembler, as well as Visual Basic for user interfaces), common coding styles, and standardized

development tools. A common site and common language and tools help teams communicate, debate

design ideas, and resolve problems face-to-face Project teams also use a small set of quantitative metrics to

guide decisions, such as when to move forward in a project or when to ship a product to market For

example, managers rigorously track progress of the daily builds by monitoring how many bugs are newly

opened, resolved (such as by eliminating duplicates or deferring fixes), fixed, and active (Figure 4).

STRUCIURING THE "HACKER" APPROACH

Some people may argue that Microsoft's key practices in product development - daily

synchonizations through product builds, periodic milestone stabilizations, and continual testing - are no

more than process and technical "fixes" for a "hacker" software organization that is now building huge

software systems. We do not really disagree, but we also think that Microsoft has some insightful ideas on

9

how to combine structure with flexibility in product development It is worthwhile to note that the term

"hacker is not necessarily a bad word in the PC industry. It goes back to the early days of computer

programming in the 1960s, when long-haired, unkempt technical wizards would sit down at a computer

with no formal plans, designs, or processes, and just bang or{' a keyboard and "hack away" at coding8

This approach worked for small computer programs that one person or a small handful of people could

write - such as the first versions of DCS, Lotus 1-2-3, WordPeffect, Word, or Excel It became unworkable

as PC software programs grew into hundreds of thousands and then millions of lines of code

Fonmal plans and processes existed first in the mainframe computer industry, where software

systems had grown to this million-line-plus size even by the end of the 1960s.9 Yet PC software companies

have been unwilling to give up their traditions and cultures completely. Nor would it be wise for them to

do so, given the rapid pace of change in PC hardware and software technologies, and the need for

continual innovation.

No company has taken advantage of the exploding demand for PC software better than

Microsoft Similarly, we believe, no PC software company has done a better job of keeping some basic

elements of the hacker culture while adding just enough structure to build today's and probably

tomorrow's PC software products. It continues to be a challenge for Microsoft to make products reliable

enough for companies to buy, powerful enough so that the products' features solve real-world problems,

and simple enough for novice consumers to understand. To achieve these somewhat conflicting goals for a

variety of markets, Microsoft still encourages some teams to experiment and make lots of changes without

much up-front planning. Projects geerally remain under control, however, because of how teams of

programmers and testers frequently syrnhronize and periodically stabilize their changes.

Since the late 1980s, Microsoft has used variations of the syh-andstabilize approach to build

Publisher, Works, Excel Word, Office, Windows NT, Windows 95, and other products. Of course, the

sync and-stabilize process does not guarantee on-time or completely bug-free products. Creating new,

large-scale software products on a precisely predicted schedule and with no major defects are extremely

difficult goals in the PC industry. Microsoft and other PC software companies also try to replace products

quickly and usually announce overly ambitious deadlines, which contribute to their appearance of being

10

chronically late Nonetheless, without its syn-and-stabilize structured approach Microsoft would

probably never have been able to design, build, and ship the products it now offers and plans to offer in the

future

We have noted that Microsoft resembles companies from many industries that do incremental or

iterative product development as well as concurent engineering. It has also adapted softwaengiering

practices introduced earlier by other companies (such as various testing techniques), and "reinvented the

wheel" on many occasions (such as concluding the hard way that accumulating historical metric data is

useful to analyze bug trends and establish realistic projecthedulesl°). Microsoftisdistictie, however, in

the degree to which it has introduced a strucured hacker-like approach to software product development

that works reasonably well for both small as well as large-scale products. Furthermore, Microsoft is a

fascinating example of how culture and competitive strategy can drive product development and the

innovation process. The Microsoft culture centers around fervently anti-bureaucratic PC programners

who do not like a lot of rules, structure, or planning. Its competitive strategy revolves around identifying

mass markets quickly, introducing products that are "good enough" (rather than waiting until sorneting

is "perfct"), improving these products by irrementally evolving their features, and then selling multiple

product versions and upgrades to customers around the world

BENEFITS OF SYNCH-AND-STABILIZE

Although the principles behind the sync nd-stabilize philosophy add a semblance of order to

the fast-moving often chaotic world of PC software development there are no "silver bullets" here that

will solve major problems with a single simplistic solution Rather, the are specific approaches, tools, and

techniques, a few rigid rules, and highly skilled people whose culture aligns with this approach As we

have suggested, several elements distinguish syrch-andstalize from older, more traditional sequential

and more rigid styles of product development (Fable 1).

Microsoft does have its weaknesses. For example, the company needs to pay more attention to

product architectures, defct prevention mechanisms, and some more conventional engineering practices,

11

such as more formal design and code reviews. New product areas also pose new challenges for their

development methods. In particular, new product areas such as videro-on-demand have many tightly

linked components with "real-time" constraints that require precise mathematical models of when video,

audio, and user data can be delivered reliably and on time Many existig and new products have an

extremely large or infinite number of potential user conditions or scenarios to test, ased on what hardware

and applications the customer is using. These new products can benefit from some irrermmtal danges in

the development process. They will also require more advance planning and product architectual design

than Microsoft usually does to minimize problems in development, testing and operation.

Nonetheless, the synh-and-stabilize approach provides a farmework that has several benefits for

managers and engineers engaged in product development

* It briaks down large ptducls into manageable peces (a prioritized set of product features that small

feature teams can create in a few months).

* It enables prjecls to pxrd sysmiahly ewn wzen tey annot eteine a colet and stable pnuct

design atthe projects begining.

* It allows arge ams to zrtkire smnl teams by dividing work into piees, proceeding in parallel but

continuously synchronizing dhanges, stabilizing the product in increrrnts, and continuously

finding and fixing problems.

* Itfiacitates comtition on customer input, preductfieafes, and shoft dLawopment tmes by providing a

mechanism to incorporate customer inputs, set priorities, complete the most important parts first,

and change or cut less important features.

* It allots a ptdud team to be zmy rsnosi t e ni in tf mketpla by "always" having a product

ready to ship, having an accurate assessment of which features have been completed, and

preserig process and product flexbility as well as opportumn troughout the lifecydle.

The ideas and examples revealed here provide ufid lesss for firms and managers in many

inustries. The sync-and-stabilize approach used at Microsoft is espediay suited to fast-paced markets

with comp .ex systems products, short life cycles, and competition based around evolving product features

and de facto technical standards. In particular, how to coordinate the work of a large team building many

12

interdependent components that are continually changing requires a constant and high level of

communication and coordination It is difficult to ensure that this communication and coordination take

place while still allowing designers, engineers, and marketing people the fireedom to be creative.

Achieving this balance is perhaps the central dilemma that managers of product development face - in PC

software as well as in many other industries.

13

.1 C. r u
cci Oj grJ f jC 5r

n

0S, aau

0

MI

(U

o,0)0
a

C

8 tO

Iv)

a- . 17

",e10ata Qu

= S

CLU
= .

-@ X14 9
o

o* Q2!0 0

Um;t
(A

rI

r

Figure 2 Overview of Synch-and-Stabilize Development Approach

Microsoft Secrets, p. 194.

· Vision Statement Product and program management
use extensive customer input to identify and prioritize
product features.

* Specification Document Based on vision statement,
program management and development group define
feature functionality, architectural issues, and component
interdependencies.

* Schedule and Feature Team Formation Based on
specification document, program management coordinates
schedule and arranges feature teams that each contain
approximately 1 program manager, 3-8 developers, and
3-8 testers (who work in parallel 1:1 with developers).

i · 7-r-i--n-- --

se.:udam-isubprolet that eaci results ma ilestone release.

Program managers coordinate evolution of specification.
Developers design, code, and debug. Testers pair up with
developers for continuous testing.

* Subproject I First 1/3 of features: Most critical features
and shared components.

· Subproject II Second 1/3 of features.

· Subproject III Final 1/3 of features: Least critical
features.

Program managers coordinate OEMs and ISVs and monitor
customer feedback. Developers perform final debugging and
code stabilization. Testers recreate and isolate errors.

* Internal Testing Thorough testing of complete product
within the company.

* External Testing Thorough testing of complete product
outside the company by "beta" sites such as OEMs, ISVs,
and end-users.

· Release preparation Prepare final release of "golden
master" diskettes and documentation for manufacturing.

_ __. _ _

Source:

Figure 3: SYNCH-and- STABILIZL Development Phase Breakdowns

Time: Usually 2 to 4 monthls per Milestone

MILESTONE 1 lfrst1/3 features)
::-::.Development (Design,.Coding, Prototyping)

-... : : -: : --: :- ---:: : . .-- .-.. .. . -- - . -. -. -.. .-- -- .- . :::-
. ..-. -:: U sability -.Lab : : - . --- . - : -.- .
DailyV Builds.. - a-........

. -.--:.::- -Private Release:lesting : ::----
Feature Debuggig:

- - F:: :-:--: - -eature Integration--:..- -- - --:
.Code Stabilization (no. severe bugsJ):

- --::.Buffer time: (20-50%)-

MILESTONE2 (next 1/3)-
::-Development-
Usability Lab

:::: :-: :Dail Builids .
Private Release Testing

-- ----FeatureDebugging::
Feature.Integration
Code Stabilization--:- - -

Buffer time : ::

: ' MILESTONE3(lstsef)--'"':,''
Development,

- -. -Usability LAb .:..-.... : :..-'-. L:-
:: - : -' - '': -,, , -:: . :. -..' ,- i::- 'i-- ' . ' " .::. -- l-: -:-:: :, 'Dail Buid

.-: ': Private Release Testing'.
Feature Debugging
Feature Integration ;:.

Feature:Complete:::.,
ode'Comple'te:-

Code Stabiliation::-.
-- , ,-Buffer tme, -. i000

Zero Bug' ease
:Release. to Manufacitung .. '

16

sfOng pa,Iosa-/pauado

£6/6 1/Z

£6/8 I/Z

6/1L I/Z£619 I/

£6/£ I/Z

£6/1 I/Z

£6/1 I/Z

£6/01/

£6/6/Z

£6/8/12

£6/L/Z

£6/9/Z

£6/1/7

£6//Z

£6//7

£6/I/2

£6/I £/1

£6/0£/1

£6/6/I

£6/8/I

£6/SZ/I

g6/9Z/I
£6/£Z/I
£6/2/1

£6/0Z/I

£6/61/1

£ '/8I/1

N

_cU
Z

Z3

-

*_e,

_*;-IE

ZcO

.Z&,

c~I ,,,,

C3

"Z

c,

IR
cZ
Z

:1

:j
5V)

1��___1____1__4^11__1.�_·���� _

Table 1: SYNCH-AND-STABILIZE VS. SEOQUENTIAL DEVELOPMENT

Synch-and-Stablize Sequential Development

Product development and testing
done in parallel

Vision statement and evolving
specification

Features prioritized and built in
3 or 4 milestone subprojects

Frequent synchronizations (daily
builds) and intermediate stabilizations
(milestones)

"Fixed" release and ship dates and
multiple release cycles

Customerfeedback continuous in
the development process

Product and process design so large
teams work like small teams

Separate phases done in sequence

Complete "frozen" specification and
detailed design before building the
product

Trying to build all pieces of a
product simultaneously

One late and large integration and
system test phase at the project's end

Aiming for feature and product
"perfection" in each project cycle

Feedback primarily after development
as inputs for future projects

Working primarily as a large group
of individuals in separate functional
departments

Source: Microsoft Sects,p.407

18

_ _

Michael A Cusumano is Professor, Sloan Sciool ofManagem9 i, Massamtusts Institute of Technology, 50 Meanorial
Drive, Cambridge,MA02139. email: auenanoeitdu

Richard W. Selby is Associate Professor, Dept of formation and Con er Sdence, Uiversity ofCaifornia, Irvine, CA
92717. email: sebygics.ucdedu

19

END NOTES

I See yA SnA thaxndMididAA mm B "'Bdtte S&cNeFacoy A Can dassiad'PC Sthmedcs"

(Canbrd1 MA, MT Skn Sdo Wking Par #3607-93BPS, S~ 993)

SeXWattS.Hn eSo(N eYAm Wley, 989).

3 SeiiSteiC. WlXr ightandKimB. C , Peling i D(NewYo FiP 1992).

4 See VR Bali and Albert J. Tun,'Iteraive EnA tt A Pratkial TVedt for Sofhaieft," IEEE Tranaios on

Sofrte EEngi VoL SE-1, No. 4 (Dmit 1975); Bany W. Bof n,"A Spiral y of Sdhm Dem't aEnd 1e" l IEEE

Coaiter, MLy 1988; and Mikio Aoar, 'Youm4Mt-1cqm PPxro ocMkd," IEE Sdware, July 1993.

5 See Wlhn W. Rov,"i-amging thDevIe Sohre SNm-,s," S EE WESCOON, Augst 1970, pp. 1-9.

6 See Wlhvarihn and Clak as en asefnoemp, GL. UanidJhn arsJrR Desiann vPNocds (Eood

Clif; NJ., Prntio Hal, 199).

7 See MidA Cmano,The JA utonTstr TdogvadiMmamant atandToa (C MA, H

UnPmssP 1985).

8 See SLtevLay, , Haost rCQonRe(o (NewivYoisAd , 1984).

9 SeeMididelA Q,LJas 's SfeFad: AClhalltoUS.M Managant YcPx U, 1991).

1 See RidmdW. Sby, 'EncayBasd AsofFaihsin Satamre S3,"TaIEEETIr oliabson v. VoL 39, No. 4, tder

1990,pp. 444-454

20

