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Abstract

Objectives: To investigate factors that may influence the success or failure of powerful

antiretroviral regimens to eradicate HIV-1 or to maintain viral loads at low levels.

Methods: A mathematical model is constructed that tracks the dynamics of CD4 + T cells,

a population of cells that remains long-lived when productively infected by HIV-1, and two

viral strains (wild-type and drug-resistant mutant), under a combination regimen of reverse

transcriptase and protease inhibitors. A mathematical analysis of the long-term (steady-

state) and short-term (transient) behavior of the model is undertaken, and various scenarios

are illustrated.

Results: The transient behavior of the cells and virus and the eventual eradication of the

virus are dictated by two factors: the strength of the combination therapy and the maximum

achievable increase in the uninfected CD4+ T cell concentration. A simple formula is given

which suggests under what conditions eradication might occur.

Conclusions: For eradication to occur, therapy needs to be nearly as efficacious (roughly

60-90% of potential infectious virus production needs to be blocked) against mutant strains

of virus as it is against the wild-type strain. The eradication condition for maintenance

therapy is the same as the eradication condition for induction therapy, despite the fact that

induction therapy is apt to be faced with a higher viral load. If induction therapy is unable

to achieve eradication then the steady-state viral load and CD4+ T cell count resulting from

maintenance therapy are independent of the timing of the switch to maintenance therapy.

Drug therapy is unlikely to maintain viral loads at low levels; it is apt to either eradicate

the virus or allow the viral load to return to near its pre-treatment level.

Keywords: Antiretroviral therapy, drug resistance, mathematical models
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Introduction

Combinations of reverse transcriptase (RT) and protease inhibitors have succeeded in

suppressing the level of human immunodeficiency virus of type 1 (HIV-1) in the plasma of

HIV-1 infected individuals to below the current threshold of detection [1, 2, 3]. While the

great majority of HIV-1-infected patients experience sustained viral suppression on these

potent drug regimens, initial indications suggest that after one year the HIV RNA becomes

detectable in the plasma in roughly 10% of patients adhering to a combination antiretroviral

regimen [1]. This observation raises the following questions: What causes the failure of

these powerful combinations of agents? For patients that maintain viral suppression, what

happens if they are switched from the powerful multidrug induction therapy to a less intensive

maintenance therapy [4], in an attempt to reduce cost, toxicity and possible noncompliance?

Perhaps most importantly, in patients with sustained suppression of virus, can the virus

eventually be eradicated by induction and maintenance therapies? This paper develops and

analyzes mathematical models to address these three questions. Because the model is not

tested against data, our results should be regarded cautiously.

A number of mathematical models have already been developed to describe the pop-

ulation dynamics of HIV-1 following drug treatment and the emergence of drug-resistant

mutants [5]-[16]. Our model follows the general strategy of this previous work but incorpo-

rates new data suggesting that to characterize the effects of drug therapy for longer than a

few weeks one needs to consider the infected CD4+ T cells plus other reservoirs of HIV-1 [3].

After potent antiretroviral therapy is initiated in HIV-1-infected patients, the concentration

of HIV-1 RNA measured in plasma exhibits an initial rapid exponential decline of nearly

2-logs (first phase) during the first two weeks of treatment, followed by a slower exponential

decline (second phase) which over the course of weeks to months lowers the viral load to an

undetectable level [3]. The first, rapid phase of decline has been observed in a number of
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studies [5, 6, 7, 17] and is due to the loss of productively infected CD4+ T cells [3, 7]. The

slower, second phase of decline may reflect the loss of cells, such as macrophages, which were

infected prior to treatment but which may live and produce HIV-1 for many weeks, the slow

activation of latently infected cells into productive infection or the release of virions trapped

in lymphoid tissue. A simultaneous analysis of both plasma viremia and the kinetics of

decay of HIV infection in peripheral blood mononuclear cells suggests that the activation of

latently infected cells is not a major source of HIV-1 during the second phase of viral decline

and can be ignored when compared with the contribution of virus from other sources [3].

The Model

Our mathematical model builds on the "long-lived infected cell" model, recently de-

veloped by Perelson et al. [3], which can account in a quantitatively accurate manner for

both the first and second phases of viral decline. As in their model, we consider CD4+ T

cells, denoted by T, which are short-lived after becoming productively infected, and a second

compartment, denoted by M, which is a long-lived source of virus. The second compart-

ment may be long-lived productively infected cells, such as macrophages, dendritic cells or

a combination of these plus other cell types, or a pool of virions trapped in lymphoid tissue

that decays and slowly leaks virions out into the plasma. For simplicity, we will refer to the

second compartment as a long-lived pool of cells, and occasionally as "macrophages", but

as of yet there is no conclusive evidence to support this interpretation.

Our model generalizes the model in [3] in three ways. First, it includes a drug-sensitive

wild-type strain and a drug-resistant mutant strain of virus, which are referred to as strains

1 and 2, respectively; to minimize confusion, the subscripts 1 and 2 are used to index

the virus strains, and the superscript M is used to denote parameters that are related to

the long-lived pool of cells. In the absence of therapy and mutations, infectious virus of
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strain i, Vi, infects CD4+ cells at rate ki and causes them to become productively infected

cells, *, and infects long-lived cells at rate kM and transforms them into productively

infected cells, M*. However, due to errors in reverse transcription, we assume that reverse

transcription of strain i results in cells infected by strain j at the mutation probability

mij, where mii is the frequency of error-free transcription. In this first model, we do not

consider the stepwise accumulation of mutations. Thus the mutation probability m 1 2 is the

probability that wild-type virus is transformed into a partially drug-resistant mutant strain

during reverse transcription. Productively infected cells Ti* and Mj* are lost at per capita

rate 5i and iM, respectively, and produce virions at rate rxi = Nii and iM = NiM6iM per cell,

respectively, where Ni and NiM are the total number of virions (the burst size), respectively,

produced during their lifetimes.

Our second generalization of the model in [3] is the incorporation of a combination

of RT and protease inhibitors that is not 100% effective, particularly against the mutant

virus. Although our analysis can incorporate differential drug efficacies, we assume the same

efficacy against the different cell populations because of the lack of data on this issue and

because the analytical results are more transparent in this case. For i = 1, 2, let ri denote

the fraction of new cell infections by virus strain i that are blocked by the RT inhibitors in

the drug regimen, and let Pi denote the fraction of newly produced virions of strain i that

are rendered noninfectious by the protease inhibitors. Here we envision all virus as being

part of an infectious pool unless it is rendered noninfectious by a protease inhibitor. The

values of ri and pi will depend on the drug dose administered, as well as the sensitivity of

the viral strains to the drugs. The inclusion of protease inhibitors in the model forces us to

distinguish between infectious and noninfectious pools of virus; we let Vi, i = 1, 2, denote

the total (infectious plus noninfectious) concentration of virions of strain i, V' denote the

concentration of infectious virus of strain i, and V denote the total viral load. For modeling
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purposes, we assume that all virus is infectious (i.e., part of an infectious pool of virions)

before treatment is initiated. Both infectious and noninfectious virus of strain i are assumed

to be cleared at rate ci.

The final generalization with respect to [3] is the incorporation of the dynamics of the

uninfected cell populations, T and M. The uninfected cells have a natural death rate of t

and M, respectively, in addition to the loss that is experienced by viral infection. Uninfected

long-lived cells are produced from a pool of precursors at constant rate AM. Uninfected CD4+

T cells are produced from precursors in the thymus at rate s; we assume that this source of

new cells is small compared with their proliferation and can be ignored. In the model, CD4+

T cells proliferate exponentially at a rate that follows a logistic growth function (see Figure

2b of [6]), with a maximum rate of A and a maximum uninfected CD4+ concentration of Tma,.

Because we use the model to study events after combination therapy has begun, Tm,, refers

to the maximum uninfected CD4+ concentration that can be obtained in a patient whose

immune system may already be damaged through HIV infection. Thus, Tma, may be lower

than the T cell count in an healthy, HIV-1 uninfected person. The model is summarized in

Figure 1 and the system of equations describing it are given in the Appendix.

The model omits latently infected cells, which do not appear to play a big role [3], and

assumes that the strength of the immune response does not change over the time period

under study. We also assume that the plasma and the lymph system are in equilibrium [18],

and thus that measurements of viral load in plasma are indicative of the HIV-1 concentration

in extracellular fluids throughout the body.

This model is analyzed mathematically and solved numerically below. Table 1 contains

parameter values that are used in the numerical studies; see the Appendix for a derivation

of these values.
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Figure 1: Schematic diagram of the model. Virus, V, infects CD4+ T cells, T, with rate constant k and

generates productive infected T cells, T*. The virus also infects long-lived cells, M, with rate constant kM and

produces productively infected long-lived cells, M*. Productively infected T cells, T*, die at per capita rate 6

and produce a total of N virions during their lifetime. Thus the average rate of virion production is r = Nd.

Analogously, productively infected long-lived cells, M*, die at per capita rate 6 M and produce a total of NM

virions at an average rate of 7rM = NM6M. In the full model, described in the Appendix, uninfected CD4+

T cells are renewed by proliferation, whereas uninfected long-lived cells are renewed at a constant rate from

precursors. Both populations of uninfected cells have finite lifespans and die at rate /i and M, respectively.

The full model also considers two classes of virus, drug-sensitive wild-type, V1, and partially drug-resistant

mutant, V2 . After protease inhibitors are given some virus is rendered noninfectious. Thus wild-type

and mutant virus are further classified as "infectious" (i.e. protease not inhibited) or "noninfectious" (i.e.

protease inhibited).
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Variables Initial Values
Uninfected CD4 + cells
CD4+ cells infected by strain 1
CD4+ cells infected by strain 2
Uninfected macrophages
Macrophages infected by strain 1
Macrophages infected by strain 2
Virus of strain 1 (infectious, total)
Virus of strain 2 (infectious, total)

178.81 cells mm- 3

1.19 cells mm- 3

0.004 cells mm-3
49.2 cells mm- 3

0.49 cells mm-3
1.7x10 -3 cells mm-3
133.55 103 virions ml-1

0.45 103 virions ml-1

Values

Rate of supply of uninfected CD4+ cells
Max. growth rate of uninfected CD4 + cells
Maximum uninfected CD4+ cells
Death rate of uninfected CD4+ cells
Loss rates of infected CD4+ cells
Infectivity rates of virus
Burst size of strain 1
Burst size of strain 2
Death rates of virus
Mutation probabilities
Production rate of uninfected macrophages
Death rate of uninfected macrophages
Loss rates of infected macrophages
Infectivity rates of virus
Burst size of strain 1 from macrophages
Burst size of strain 2 from macrophages

0
0.01 day-l1

450 cells mm-3
0.0014 day- 1

0.69 day- 1

3.43 x 10- 5 ml 10- 3 virions-l day-l
480.1 virions cell-1
475.3 virions cell-1
3.07 day- 1

3.4 x 10- 5

2.0 cells mm- 3 day-l
0.04 day- 1

0.062 day- 1

4.67 x 10- 6 ml 10 - 3 virions-l day-l
534.4 virions cell - l
529.0 virions cell-1

Table 1. Parameter values for the model. See the Appendix for a derivation of these values.

Eradication

We assume that a potent antiviral regimen is applied to an HIV-1-infected patient

starting at time zero. This will cause a change in the viral load and eventually either a new

steady state will be reached or the virus will be eradicated. The eradication of the virus is

indicated by a post-treatment steady state in which the viral load is zero. We perform a

steady-state analysis and a dynamic analysis.
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Post-treatment steady-state results. We consider the following question: If the

drug regimen is very effective against the wild-type virus but not against the mutant virus,

then under what conditions will all the virus eventually be eliminated? Define the drug

efficacy of the combination therapy against virus strain i to be

ei= 1- (1 -r i)(1 - i) (1)

In the model, a fraction 1 - ri of potential viral infections is not blocked by the RT inhibitors

and, of the new virus produced by these infections, a further fraction 1 - Pi is rendered

noninfectious by the protease inhibitors. Hence, ei is the fraction of potential infectious

virus production in our model that is blocked by the antiretroviral regimen.

To determine the condition for eradication of the virus, we employ several assumptions

that simplify both the mathematical analysis and the mathematical results. For example,

in our mathematical analysis we assume that the drug regime is 100% effective against the

wild-type virus (i.e., r = pi = 1). In numerical investigations we relax the simplifying

assumptions; for example, we may assume that the drug regime is only close to being fully

effective (e.g. r = 0.9, Pi = 0.99). Our numerical investigations indicate that the math-

ematical results reported here are typically within several per cent of the exact (and much

more complex) mathematical results across a wide range of parameter values. A statement

of the simplifying assumptions and the ensuing mathematical analysis can be found in the

Appendix.

Our main mathematical result is that the virus is eradicated if the drug efficacy against

the resistant virus, e2, obeys the following inequality:

e2 >1 A 2 (2)
(A - jLt)k 2 N 2Tmax'
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derived from Eq. (27) in the Appendix. Because we have assumed that the drug regime is

100% effective against the wild-type virus, el = 1 and this parameter does not enter into

the condition for eradication. This equation predicts that resistant strains that have high

virulence (interpreted here as having a high value of the infectivity rate constant k2 or large

burst size N 2 ), will be more difficult to eradicate than less virulent strains; the drug efficacy,

e2, needs to be higher to eradicate strains with larger values of k 2N2 .

The inequality (2) can be rewritten in terms of other more directly measured parameters

by assuming that before treatment is initiated patients are in quasi-steady-state and very

little mutant virus is present. Then setting equations (15) and (20) in the Appendix to

zero gives the equations klT(O)V['(0) = 51T,*(O) and N1 6 1Ti (O) = r7cl1VI(O), where we have

assumed that a fraction qr of the newly produced virus is generated by productively-infected

CD4+ T cells. Eliminating 51dT 1 (O) from these two equations gives kN 1T(O) = r7cl. If we

assume that the clearance rate of both wild-type and mutant strains is identical (i.e., c = c2)

and let f = k 2N 2 /(klN 1 ), then equation (2) reduces to

The parameter f = k2N2/(kN) can be considered as a measure of the relative fitness(3)

The parameter f = ka2N2(klN1) can be considered as a measure of t he relative fitness

of the mutant virus, although it is not the usual ratio of Malthusian parameters used in the

formal population genetics definition [19].

The inequality (3) can also be expressed in terms of the total CD4+ T cell count rather

than the concentration of uninfected CD4+ cells, T. For example, if we consider a patient

who before treatment has roughly 5% of his CD4+ cells infected [20] then CD4+(0)=1.05

T(0). If the concentration of uninfected CD4+ T cells ever reaches Tma then presumably very

few cells will be infected, and we can assume CD4+,x = Tma,,. Furthermore, the maximum

proliferation rate A of CD4+ T cells is much larger than the natural death rate ,u [21]. Using
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Figure 2: The virus eradication condition depends primarily on the efficacy of the drug combination

against the mutant virus, e2 , and the ratio of the pre-treatment CD4+ cell count to the maximum achievable

CD4+ cell count. As in equation (4), we set A/(A - ) = 1.16, tj = 0.96 [3], and f = 0.99.

the parameter values in Table 1, A/(A -/)=1.16, 7 = 0.96 [3], and assuming that the mutant

virus is only slightly less fit than the wild-type virus, f = 0.99 [22], we find that the virus is

eradicated if

CD4+(0)e2 > 1-1.16 CD4+ (4)
CD4max

The constant 1.16 depends on our choice of parameters but in general will be somewhat

greater than one. For example, if the mutant virus were only 90% as fit as the wildtype

virus, i.e. f = 0.9, then the constant 1.16 would be replaced by 1.28.

From (4) and Figure 2, we see that the condition for eradication depends mainly on

the drug efficacy against the mutant virus, e2, and the ratio of the pre-treatment CD4+

count to the maximum achievable CD4+ count; other factors determine the constant 1.16.
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Not surprisingly, the more efficacious the drug regimen is against the mutant virus, i.e., the

higher e2, the easier it is to eradicate the virus. Less intuitive is the observation that the

larger the value of CD4+a,, the larger the potential pool of uninfected CD4+ T cells, and

the more difficult it is to eradicate the virus.

The ratio CD4+(0)/CD4+a, is likely to vary significantly among HIV-infected individ-

uals. An upper bound on this ratio can be determined by observing the increase in CD4+

counts during combination therapy. For 30 patients on triple combination therapy for 48

weeks [1], the means were CD4+(0)=142 and CD4+(48)=360, which gives an estimated lower

bound for the critical value of e2 in (4) of 0.54 (although the ratio of the means is not equal

to the mean of the ratios). This aggregate calculation suggests that the drug efficacy against

the mutant virus must be at least 0.54 for eradication to occur.

The steady-state total viral load, V, and the steady-state CD4+ count, are plotted

versus the drug efficacy against the mutant virus, e2, in Figure 3, using the parameter values

in Table 1. The viral load is relatively insensitive to the drug efficacy for the resistant

virus until e2 approaches the eradication threshold (Fig. 3). Hence, except for a very narrow

window for the drug efficacy parameter, the drug regimen will either achieve viral eradication

or an essentially fixed viral load. A similar conclusion has been reached by Bonhoeffer, Coffin

and Nowak [23] using a different model of HIV dynamics. The post-treatment steady state

CD4+ count increases with the drug efficacy in a convex manner until the virus is eradicated;

thereafter, the CD4+ count is constant.

While our model was designed to examine the treatment consequences of combination

therapy, it can also be used to study treatments involving only RT inhibitors or only protease

inhibitors. Clinical trials using the RT inhibitors AZT and 3TC have shown that, unlike the

predictions made above, the viral load neither goes undetectable nor goes back to its pre-

treatment steady-state value. Rather, under long-term AZT-3TC treatment a new steady
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Figure 3: The steady-state viral load (solid line), V, and the steady-state CD4 + T cell count (dashed

line) plotted as a function of the drug efficacy, e2 , against the mutant virus. The curves were computed

under the assumption that the drug regime is 100% effective against wild-type virus so that at steady state,

V1 = 0, and all virus present is mutant. In this example, the threshold is e2 = 0.523, which is computed in

the Appendix to more precision than given by equation (4).
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state viral load is obtained that is 10-100 fold lower than the pre-treatment steady state [24].

However, as shown in Table 2, a steady state in which the viral load is diminished say 10-fold

(i.e. V2 = 0.1V(0)) when a combination of RT inhibitors is given can be obtained from our

model with a variety of parameter choices describing the relative fitness of the mutant, f,

and the effectiveness of the drug combination on the mutant, r2.

r2 f

0.15 0.581
0.25 0.655
0.35 0.752

Table 2. Some parameter combinations for the effectiveness of the RT inhibitors on the mutant, r2, and
the relative fitness of the mutant, f, that lead to a post-treatment steady state that is 10-fold lower than

baseline. All unlisted parameters have values as defined in Table 1.

Dynamic results. Our objective is to understand the transient behavior of the model

after a drug perturbation is given. We are particularly interested in the rate of growth of

mutant virus in the case where eradication does not occur. Our mathematical analysis is

presented in the Appendix; here we only describe the salient features of the results.

If we assume that the drug efficacy against the wild-type virus is 100% (rl = 1, pi = 1)

and ignore the small contribution from any back mutation from mutant to wild-type, then

the wild-type viral load after therapy is initiated, V (t), given by equation (2) in [3], exhibits

a biphasic decay. The first, rapid phase of viral decline lasts for several weeks and is due

to the loss of productively infected CD4+ T cells. This is then followed by a second, slow

phase of decline due to the loss of productively infected long-lived cells.

To calculate the dynamics for the mutant virus, V2(t), we need only assume that the

protease inhibitors are 100%o effective against the wild-type virus (P1 = 1), but can allow

the RT inhibitors to be imperfect at blocking wild-type viral infections. Further, we make

two important assumptions to simplify the analysis: First, we ignore the long-lived cells.

Mathematical and numerical investigations of the problem including long-lived cells reveal
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that these long-lived cells have little effect on the dynamics when eradication does not occur.

Second, as in [3, 5, 6, 7], we assume that the uninfected CD4+ concentration T(t) remains

at its pre-treatment steady state value, T(O); as a consequence, our analysis is only valid for

a short time period after treatment initiation.

Under these assumptions, we find that the mutant virus, V2 (t), after therapy is initiated

is determined by a sum of several exponentials, and is dominated by a term of the form e2t,

where 02 = [-(C2 + 62) + (c2 62)2 + 4k2N 2(1 - e 2) 2T(O) ] /2. The pre-treatment quasi-

steady-state analysis leading to (3) places constraints on the parameter values, which imply

that 02 is negative. Thus, the mutant virus decreases initially. We only expect this dynamic

analysis to be valid for a short period of time, since we have assumed T(t) = T(O). However,

because the viral load changes much faster and more dramatically than the CD4+ T cell

concentration [5, 6], a reasonable approximation for the dynamics of V2 (t) over longer time

periods can be constructed by replacing the pre-treatment value T(O) by the dynamic value

T(t) in the expression for 02. That is, we claim that a good approximation for the mutant

viral load is

V2(t) V 2 (O)-C+Ceo2()ds where 02(t) =-(C 2 + 62) + /(c 2 - 62)2 + 4k2N 2 (1 - e2)6 2T(t)V2(t) = V2(0)-C+Cef o2(S)S where 02(t) 22
(5)

Numerical solutions of the model (equations (14)-(16), (20)-(23) in the Appendix) using

the data in Table 1 and Figure 4 confirm that this approximation is accurate: When the

proportionality constant C is chosen appropriately, the absolute value of the relative error

of our approximation for logo V2 (t) averaged over the first 500 days (i.e., jS0°°(j log10 V2(t) -

log( {V2(0) - C + Cefo2(s)dI/V2(t))dt/500) is 1.0%, and the trajectory of logO V2 (t) is

visually indistinguishable from its approximation. However, the accuracy of (5) deteriorates

in the full model that includes long-lived cells because it fails to capture the second phase

of the biphasic viral decay curve.
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Equation (5) implies that after therapy is initiated the mutant virus V2(t) will drop.

However, if 02 (t) changes sign and becomes positive, then V2 (t) declines to a nadir and begins

to increase when 02 (t) first becomes positive. Assuming the clearance rate constants of the

mutant and wild-type virus are equal, this occurs when T(t) (respectively, CD4+(t)) rises to

the level

T(0) _ 1.05T(0) (respectively, CD4+ (0) (6)

r//(I - e2) 1 - e2 1 - e2

where again as an illustration we have chosen qr = 0.96 and CD4+(0)=1.05 T(O). Similarly,

V2 (t) will reach a peak and then begin to decrease again when and if 02(t) becomes negative

again. The oscillations in viral load (and T cell count) are what have been called predator-

prey oscillations. As the viral load decreases, the T cell count recovers. This provides

additional targets for viral infection, and if the antiretroviral therapy is not sufficiently active

against mutant virus, the virus can replicate. Whether the virus will replicate depends both

on the efficacy of the drug regime and the T cell count as indicated by equation (6).

The hypothesized reversal in the viral load decline as the CD4+ T cell count increases

is confirmed by Figure 4, which displays the exact numerical solutions to the full model for

a particular example. Although equation (5) is not an accurate approximation in the full

ten-dimensional model that includes long-lived cells, Figure 4 shows that the concomitant

CD4+ crossing times and viral extremes predicted in (6) do indeed hold for the full ten-

dimensional model. We also computed numerical solutions of the full model under various

values of the CD4 + proliferation rate A, the maximum uninfected CD4+ count Tm,, and the

drug efficacy against the mutant virus, e2, because these parameters vary significantly across

HIV-1-infected individuals. When A is increased from 0.01 day-' to 0.068 day-1 (the value

suggested by Figure 2b of [6]), the CD4 + count rises to almost Tm, within several months

and the mutant virus emerges much earlier. There are also less pronounced oscillations, and

the system attains a new steady state within eight months. An increase in Tm,, from 450 to
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680 (Figure 2b of [6]) also induces an effective increase in the T cell proliferation rate, which

speeds up the dynamics of the system. Finally, smaller values of e2 lead to earlier emergence

of the mutant strain.

Maintenance Therapy

One possible strategy under consideration for management of HIV-infected patients is

to administer a potent antiretroviral regime to rapidly bring the viral load to an undetectable

level and then to reduce the potency of the drug regime by withdrawing one or more of

the drugs. This would decrease the drug cost and diminish the risk of drug toxicity and

other possible long-term side-effects. Here we analyze the potential consequences of such a

treatment strategy within our model.

Assume a powerful inductive regimen is applied at time zero and that at time tin, the

patient is switched to a less intensive maintenance therapy. Because a switch to maintenance

therapy would only be recommended if virus suppression is maintained, we assume in our

mathematical analysis that resistant virus has not arisen and, because of the low viral load,

will not arise during maintenance therapy. Thus we omit the mutant virus strain from the

analysis, i.e., we assume that T2 = M = V = V2 = m12 = m21 = 0, thereby reducing

our original model from ten equations to six. However, we also use numerical methods to

analyze the case in which resistant virus does arise during induction therapy but remains

below the detection limit. In this case, during maintenance therapy the resistant strain can

either grow or be eradicated.

In this section, the system is only analyzed from time t onwards. The mathematical

analysis of the steady-state and dynamic behavior of the model is essentially equivalent to

our earlier analysis, and so we omit the analysis and only present the main results.

Steady-state results. The key question in this setting is: Under what conditions
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Figure 4: The dynamics of the total virus, V(t) (solid line), and the uninfected CD4 + T cells, T(t)

(dashed line), in a case where mutant virus breaks through combination therapy as computed from the full

ten-equation model given in the Appendix. The efficacy of the combination therapy is r = 0.9, Pi = 0.99,

r2 = P2 = 0.25. The wild-type viral load, V(t), follows a biphasic curve and drops below 0.25 (which

corresponds to the detection limit of the standard branched DNA assay of 500 HIV-1 RNA copies/ml) on

day 50. Although the virus is no longer detectable, the theory predicts that V1 continues to decay so that

the rebound in total viral load seen after day 230 is due to the growth of mutant virus. We predict that

the mutant viral load attains a peak (respectively, nadir) at about the time when the infected CD4+ cell

concentration passes through the value given by equation (6), which for the parameters in Table 1 equals

333.8 (dotted line) from below (respectively, above). We have also assumed r7 = 0.96 and f = 0.99. The

CD4+ crossing times, days 230, 523, 678 and 780, coincide well with the corresponding times for the viral

extremes, days 225, 526, 653 and 795, respectively. After several of these oscillations, the mutant viral load

and the uninfected CD4+ count settle into steady-state levels that are close to the values V2 = 6.91 x 104

virions/ml, T = 326.9 cells/mm 3 calculated in the Appendix.
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will the maintenance regimen eradicate the wild-type virus? The answer is if

el> 1- (7)

or for a patient in quasi-steady state before therapy was begun, so that N 1 klT(O) = rcl, if

> 1 A -- T(O) (8)

These are in essence equations (3) and (4) for the wild-type virus. If we assume = 0.96,

A = 1.16(A - ) and that 5% of CD4+ T cells are infected at treatment initiation, then the

condition reduces to

el > elc--= 1-1.15 (9CD4 )
CD4max

Using equation (8), we compute in Table 3 the critical maintenance drug efficacy, el, required

to completely eradicate the virus for various values of T(O) and Tm . Notice that if the initial

T cell count is high, the drug regime need not be very efficacious (recall e = 1 implies a

completely inhibitory regime).

The steady-state viral load and CD4+ T cell count as a function of the strength of the

maintenance therapy are well described by Figure 3, with the subscript 1 in place of the

subscript 2. The intersection of these two curves with the vertical axis corresponds to the

pre-treatment quasi-steady-state values. Hence, the model predicts that it is difficult to find

a maintenance therapy to maintain viral loads at a low level; a maintenance therapy is highly

likely to either eradicate the virus or allow the viral load to return to near its pre-treatment

value.

19



T(0) Tmw el,
50 200 0.698
50 400 0.849
50 600 0.899
50 800 0.924
50 1000 0.936
100 200 0.396
100 400 0.698
100 600 0.799
100 800 0.849
100 1000 0.879
200 400 0.396
200 600 0.597
200 800 0.698
200 1000 0.758
400 600 0.194
400 800 0.396
400 1000 0.517
600 800 0.094
600 1000 0.275

800 1000 0.033

Table 3: The critical maintenance drug efficacy, elc, for various values of T(0) and Tmax, where = 0.96

[3] and = 1.16(A- ).

Dynamic results. The goal here is to analyze the dynamic behavior of the system

after the switch to a maintenance therapy. As in the previous dynamic analysis, we omit

the long-lived cell terms, and hence only analyze a system of four equations: (14), (15), (20)

and (22) in the Appendix. By our earlier analysis, the viral load V1(t) after time tm is

approximated by Vi(t) - C + Ceft"m (s)ds, where 01 (t) is defined similarly to 02 (t) (5), but

with the subscript 2 replaced by the subscript 1. Hence, we predict that immediately after

the switch in therapy, the viral load decreases exponentially if 0 (t) is negative, i.e, if

> T(0) CD4+(0)
V T(t,) = u. CD)'

(10)
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where the equality sign is based on our example values of i] = 0.96 and CD4+(0)=1.05 T(0).

There are three cases that are likely to occur (the mathematical existence of the fourth case

may be due to the different assumptions used in the steady-state and dynamic analyses):

If the maintenance therapy is very strong (i.e., if equations (8) and (10) are satisfied) then

the viral load initially decreases and eventually is eradicated. If the maintenance therapy

is intermediate in strength (i.e., if (8) is violated and (10) is satisfied) then the viral load

initially decreases but eventually attains a positive steady state; we have only observed this

case numerically when the switch to a maintenance therapy is very early, so that T(tm) is

much smaller than Tm,,. Finally, if the maintenance therapy is relatively weak (i.e., both

(8) and (10) are violated) then the virus initially increases exponentially, attains a peak

(respectively, trough) when the uninfected CD4+ count T(t) reaches the level

1 T(0)
771 -- el

from above (respectively, below), and slowly settles into a positive steady state. The dynam-

ics for this last case are illustrated in Figure 5, which shows the exact numerical solution of

the six-equation model that includes long-lived cells but omits mutant virus.

Figure 6 compares a weak maintenance therapy versus discontinuation of therapy at

nine months. Relative to maintenance therapy, discontinuation of therapy leads to a much

steeper viral increase, a higher initial viral peak, more pronounced oscillations and a slightly

higher steady-state viral load. In fact, the model predicts that the viral load returns to

its pre-treatment level after discontinuation, which is consistent with anecdotal evidence of

discontinuation [25, 26]. Because discontinuation leads to a very rapid increase in the viral

load, it should become apparent in a matter of weeks after therapy is stopped if the virus

has been eradicated. In this example, without the switch to maintenance therapy, the virus
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Figure 5: The dynamics of the viral load, V(t) (solid line), and the uninfected CD4+ T cell count, T(t)

(dashed line), before and after maintenance therapy computed from the model without mutant virus. The

combination therapy rl = 0.9, P1 = 0.99 is applied from time zero until time tm = 6 months. At time t,

the patient is switched to a low efficacy maintenance therapy given by r = pi = 0.2. As predicted, the

virus initially rises after time tm and achieves its maximum on day 342, which coincides well with the time

(day 341) at which T(t) drops to the critical level of 290.6 (dotted line) predicted by equation (11). The

subsequent times of viral extremes are days 450, 563, 658 and 760, compared to the corresponding uninfected

CD4+ crossing times of days 468, 557, 685 and 740. The oscillations eventually dissipate and the viral load

and uninfected CD4+ count stabilize near the steady-state levels V1 = 104.7 x 103 virions/ml, T = 283.5

cells/mm 3 predicted in the Appendix.
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Figure 6: The dynamics of the viral load V (t) when induction therapy (rl = 0.9, pi = 0.99) is switched to

maintenance therapy (rl = pi = 0.2) at nine months (solid line) or is discontinued at nine months (dashed

line). Without a switch to maintenance therapy, the virus would be eradicated, which corresponds in the

model to dropping below the level of one virion in the extracellular fluid compartment of the body (dotted

line), on day 305 and would stay eradicated (not shown).

would have been eradicated on day 305. Here the criterion for eradication is having the

virion concentration fall below one virion in 15 liters, the extracellular fluid volume in a

typical adult. A more stringent criterion would delay eradication somewhat.

The basic qualitative results in Figures 5 and 6 also hold for higher values of the CD4 +

proliferation rate A and the maximum uninfected CD4+ value, Tm,. Higher values of A and

lower values of Ta,, allow the CD4 + cell count to nearly attain the value of Tm,, at the time

of discontinuation. Consequently, in these cases the post-maintenance oscillations are less

pronounced and dissipate quicker than in Figures 5 and 6.

Our formal mathematical model for maintenance therapy assumes that no mutant virus

is present. More realistic numerical calculations are shown in Figure 7 and Table 4. Here we
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have simulated the ten-equation model under the proposed protocol of ACTG 343 [4] in which

patients on combination therapy will either continue receiving RT and protease inhibitors, or

at six months have either the protease inhibitor indinavir or the RT inhibitors ZDV and 3TC

discontinued. As we have tried to emphasize throughout, the precise outcome will depend

heavily on the efficacy of the drug regime against the mutant virus. This dependence can

be seen in Table 4, which displays the outcome (either the day the virus becomes detectable

or the day the virus is eradicated) under the three arms of ACTG 343 for various values

of the maintenance drug efficacy against the mutant virus, (r 2, P2), and the relative fitness

of the mutant, f. When r2 = P2 = 0.55 in Table 4, eradication is achieved under both

maintenance arms; in contrast, under the more pessimistic values of r2 = 0.2, P2 = 0.4 in

Table 4, neither maintenance arm is able to eradicate the virus. Our model predicts that the

two maintenance arms will achieve the same outcome as when they are used for induction

therapy; hence, we predict that the ZDV-3TC arm will not be able to eradicate the virus

but will achieve about a one log reduction from the pretreatment steady-state viral load [24],

and that indinavir monotherapy will maintain the viral load below the level of detection for

one year in only a minority of patients [27, 28]. To be conservative we have assumed that the

mutant virus has a high relative fitness. However, as can be seen in the first two blocks of the

table, assuming a lower relative fitness only makes a small change in the time of detection.
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Table 4: Simulation of the three arms of the proposed ACTG 343 study for various values of the

mutant drug efficacy, (r2 ,p2), and the relative fitness of the mutant virus, f. At six months, the induction

therapy (ri = 0.9, pi = 0.99 and r2 , P2 above) is switched to a maintenance therapy of only RT inhibitors

(RT) or only the protease inhibitor (Protease), or is continued (Both). In all 23 scenarios, either the virus

becomes detectable again (i.e., attains the level of 500 HIV-1 RNA copies/ml) or is completely eradicated
(i.e. drops below one virion in the extracellular fluid volume of the body). The viral dynamics of scenarios

15-17 are graphed in Figure 7.

25

Day of Day of
r 2 P2 f Therapy Detection Eradication

1 0.25 0.25 0.99 RT 236 -
2 0.25 0.25 0.65 RT 270 -
3 0.25 0.25 0.99 Protease 236
4 0.25 0.25 0.99 Both 413 -
5 0.35 0.35 0.99 RT 301 -
6 0.35 0.35 0.75 RT 330 -
7 0.35 0.35 0.99 Protease 301
8 0.35 0.35 0.99 Both - 307
9 0.45 0.45 0.99 RT 498 -

10 0.45 0.45 0.99 Protease 498
11 0.45 0.45 0.99 Both - 306
12 0.55 0.55 0.99 RT - 312
13 0.55 0.55 0.99 Protease - 308
14 0.55 0.55 0.99 Both - 306
15 0.2 0.4 0.99 RT 236 -
16 0.2 0.4 0.99 Protease 354
17 0.2 0.4 0.99 Both - 330
18 0.3 0.5 0.99 RT 273 -
19 0.3 0.5 0.99 Protease 1112
20 0.3 0.5 0.99 Both - 306
21 0.4 0.6 0.99 RT 366 -
22 0.4 0.6 0.99 Protease - 306
23 0.4 0.6 0.99 Both - 305
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Figure 7: Simulation of the three arms of the ACTG 343 study. The viral load V(t) is computed from

the full model assuming induction therapy (rl = 0.9, pi = 0.99, r2 = 0.2, p2 = 0.4; see Table 4 for less

pessimistic values for r2 and P2) is either continued (dashed-dotted line), or switched at six months to

maintenance therapy using only RT inhibitors, i.e., rl = 0.9, r2 = 0.2, pi = P2 = 0 (dashed line) or only

protease inhibitors, i.e. pi = 0.9, P2 = 0.4, rl = r2 = 0 (solid line). In this example, continuation of the

combination therapy is predicted to lead to eradication at day 330 when the viral load passes a threshold

value (dotted line), here corresponding to one virion in the total extracellular fluid of the body. The two

maintenance therapies are predicted to result in emergence of the mutant virus. Note, if the maintenance

therapy were delayed to one year while keeping the other parameter values fixed as above, then the model

would predict eradication.
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Discussion

Our mathematical analysis yields very simple conditions for the eradication of the virus.

The eradication condition is given by (7) in the absence of mutant virus and by (2) in the

presence of mutant virus. If the mutant virus is nearly as fit as the wild-type virus then these

conditions are almost identical. Also, the eradication condition for maintenance therapy is

the same as the eradication condition for induction therapy, despite the fact that induction

therapy is apt to be faced with a higher initial viral load. More generally, the analysis

predicts that the performance of a maintenance therapy will be similar to its performance

as an induction therapy, unless the virus unknowingly has already been totally eradicated at

the time of the switch to maintenance therapy. Consequently, if induction therapy is unable

to eradicate the virus then the outcome (e.g. new steady-state viral load and CD4+ count)

of maintenance therapy is independent of the timing of the switch to maintenance therapy.

These results suggest that a drug combination that is very effective against the wild-type

virus but only moderately effective against the mutant virus will only achieve transient

suppression and will not eradicate the virus; for eradication to occur, the antiviral regimen

must be nearly as effective against the mutant strains as against the wild-type strain. Hence,

research efforts should focus on constructing drug combinations that are sufficiently (in the

sense of equations 2 and 7) efficacious against all strains that may pre-exist or arise during

the course of therapy (see also [29]).

The eradication conditions are not relevant if the drug efficacy against the wild-type is

100% (rl = pi = 1) and there is no mutant virus initially (V2(0) = T2 (0) = M2(O) = 0). In

this case it is not possible to produce mutant virus and eradication is certain to occur. This

scenario is not likely to arise in clinical practice because a variety of partially drug-resistant

strains are usually present at low levels (near 1%) in drug-naive individuals [30].

The model on which our predictions are based is deterministic. A probabilistic model
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would more realistically capture the mutation-selection process and the viral dynamics when

the viral load becomes low somewhere along its trajectory. Extrapolating from results for

simpler models [31], we expect that in a properly formulated stochastic model the eradication

conditions would take on a probabilistic flavor, e.g., if (2) or (7) hold then a large steady-state

viral load is highly unlikely; if these conditions are violated then there is still a (perhaps

small) chance that the virus will be eradicated.

The pre-treatment quasi-steady-state assumption allows us to express the eradication

conditions (2) and (7) in a more transparent form; see equations (3)-(4) and (8)-(9). These

inequalities highlight the fact that eradication is essentially determined by two factors: the

drug efficacy ei and the ratio T(O)/Tm, of the pre-treatment uninfected CD4+ cell con-

centration divided by the maximum achievable concentration. Preliminary estimates of the

ratio T(O)/Tma, suggest that the drug efficacy required for eradication of a strain of virus

is in the 0.6 to 0.9 range, which should be satisfied by most drug combinations against a

wild-type virus, but may not be satisfied against drug-resistant strains.

The ratio T(O)/Tmax arises as a result of predator-prey (or host-parasite) dynamics:

The smaller this ratio, the larger the potential relative increase in the pool of uninfected

CD4+ T cells (prey), and the more difficult it is to eventually eradicate the virus (predator).

Predator-prey effects have been observed in many mathematical models for HIV [8, 9, 10,

11, 12, 32] and have recently been used to offer a possible explanation for the reduction

in virus during primary infection [33] and to explain the initial loss of viral suppression

under AZT therapy [13, 14]. To the extent that Tmax corresponds to the potential capacity

of a person's immune system, our results suggest the perhaps counterintuitive notion that

individuals with potentially stronger immune systems (as measured by their potential for

CD4+ T cell recovery) require more powerful drug regimens for eradication. These results

also imply that it is easier to eradicate the virus when the pre-treatment CD4+ count, T(0),
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is high (this increases the ratio T(O)/Tmax), which is consistent with the "hit early, hit

hard" philosophy [34]; Table 3 articulates this philosophy in quantitative terms. Also, the

eradication conditions depend on the viral burst sizes Ni and NM, the smaller the burst

sizes the easier it is to eradicate (see equation 27). Because a CTL response may kill the

cells before much viral release occurs, which would effectively reduce the burst sizes Ni and

NM, the stronger the CTL response the easier it is to eradicate the virus.

The steady-state results in the Appendix and Figure 3 offer more refined information

than the eradication condition, by predicting the new steady-state viral load if eradication

does not occur. The steep drop of the viral load curve in Figure 3 suggests that after induction

or maintenance therapy, the virus is likely to either be eradicated or return to roughly its

pre-treatment level. Table 2 provides a range of drug efficacies against the mutant virus and

relative fitness of the mutant virus that will result in a non-zero viral load that is significantly

less than the pre-treatment viral load.

Our dynamic analysis reinforces the notion that the predator-prey dynamics between

the uninfected pool of cells and the virus is a driving factor behind system behavior. In

particular, equation (5) allows us to predict the viral dynamics in terms of the trajectory

of the CD4+ count; previous models (e.g., [3, 5, 6, 7]) predict the viral dynamics only in

terms of the initial CD4+ count, and so are only valid for short time intervals. Numerical

solutions confirm the accuracy of (5) and two of its implications: The mutant virus emerges

at about the time when the uninfected pool of CD4+ cells T(t) first rises to the level in

equation (6), and the viral load after the switch to maintenance therapy has a peak (nadir,

respectively) when T(t) crosses the level in equation (11) from above (below, respectively).

The first implication predicts a positive correlation between the observed increase in CD4+

cell count during therapy and the speed or likelihood of mutant viral escape. This prediction

is consistent with Figures 1 and 5 in [35], where low-dose saquinavir leads to a higher
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and faster initial CD4+ increase and a quicker emergence of mutant virus than high-dose

saquinavir. Nonetheless, it remains to rigorously test equation (5) using clinical data.

Equation (5) can also be used to estimate the slope of the initial viral drop after the

administration of an imperfect drug regimen. If we assume that the patient has very little

mutant virus and is in quasi-steady state before therapy, then after therapy is initiated, the

wild-type viral load, V1(t), decays exponentially at rate 01, where

-(C+ + 6) + /(c- )2 + 47(1 -e)6 1
Ol = (12)2

For the typical values of cl = 3.07 [7], 61 = 0.69 [3] and 77 = 1.0 (the initial viral drop occurs

during the first phase of the biphasic curve in [3], before long-lived cells have a major effect),

numerical plots of 01 as a function of the drug efficacy, el, reveal that 0l is well approximated

by -e 1 l 1. Hence, the predicted rate of viral decay for a drug combination of efficacy el is

simply el 1 l. Note that a completely ineffective regimen, el = 0, causes no reduction in the

viral load, 0 = 0, and a completely effective regime, el = 1, gives the results in [6, 5],

01 = -1. (When el = 1 another solution to equation 12 is 01 = cl. This is the rate at which

virions would be cleared if there were no productively infected cells present).

Although our dynamic analysis of (14)-(23) shows that the transient behavior is dic-

tated primarily by the drug efficacy and the predator-prey dynamics, other factors still play

a significant, albeit smaller, role. In particular, the mutant viral load, V2 (t), increases lin-

early with the initial mutant viral load V2(0) and the mutation probability m 1 2, and decreases

linearly with the efficacy of the RT inhibitors against the wild-type virus, rl. Equations (33)-

(34) in the Appendix quantify the relative importance of pre-existing mutant virus, (T2(0),

V2 (0)), versus mutant virus that is generated during therapy due to escape from the RT in-

hibitor (determined by m1 2 , rl, and V1 (0)). Equations (36) and (38) in the Appendix imply

that the pre-existing mutant virus is the more dominant of these two factors if either the

30



pre-treatment fraction of virus that is mutant is significantly larger than 3.6 x 10 - 5 or if the

concentration of CD4+ cells infected by mutant virus at the start of therapy, T2*(0), is signif-

icantly larger than 5xl0 -4 cells/mm 3 . These calculations, as well as the findings in [30, 36],

suggest that pre-existing mutant virus is the more dominant factor in most HIV-1-infected

individuals. This conclusion is consistent with recent evidence that new strains do not seem

to arise under potent therapeutic regimens [28].

Implicit in model (14)-(23) are three very important assumptions. First, we consider

only two compartments of cells, CD4+ T cells, which when productively infected are short-

lived, and a longer-lived productively infected cell compartment. We thus ignore the possible

existence of any even slower decaying, small compartments or any sanctuaries (e.g., the brain

or the central nervous system [39]) that are unaffected by the antiretroviral agents. Second,

our model only contains one mutant HIV-1 strain. If new strains do not arise under potent

therapeutic regimens (cf. [28]), then the mutant strain in our model can be interpreted

as a surrogate for the pre-existing strain that is most likely to emerge under the modeled

combination therapy. Such a strain typically would have a high level of drug resistance (i.e.,

a low value of e 2, the drug efficacy), and a high fitness, f. If therapy was sufficiently potent

to eradicate the surrogate strain, we would expect all strains to be eradicated; hence, for

purposes of steady-state analysis, it suffices to include only one mutant strain in our model, as

long as it is interpreted appropriately. Because significant phenotypic resistance requires the

stepwise accumulation of multiple mutations in HIV-1 protease [37], the drug efficacy against

the mutant virus, e2, (and hence the likelihood of eradication) is likely to depend greatly

on the specific viral strains that exist prior to treatment: patients who possess pre-existing

multiple mutations would be expected to have lower e2 values (i.e. greater phenotypic drug

resistance) than patients that have only single mutations. To the extent that patients in

more advanced disease stages are more apt to have lower values of e2, equation (3) predicts
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that viral eradication would be more difficult to achieve in these patients, as observed in [38].

Finally, we also assume that the immune system remains constant over the time period

of study. While this assumption might be reasonable for short periods of time, there is

reason to believe that some of the model's parameters might change if the virus and CD4+

count experience major fluctuations. In particular, the parameter Tm, which is indicative of

the recuperative powers of the immune system, might increase when the virus is suppressed

to very low levels [40]. Also, the loss rates of infected cells, i and 6M , may change. The

loss rates may increase over the course of combination therapy because of restored immune

function and an increase in memory cells; on the other hand, the decrease in infected cells

during combination therapy may lead to diminished stimulation of a CTL response, and a

reduction in the loss rates.

To investigate the assumption regarding a constant immune system, we re-solved the

discontinuation case in Figure 6, but assumed that the parameters Tma,, 61 and V6 vary

over time according to

Tax(t) = TmxaT(t) - T(O), l(t) = aT(t)- T(O) and J6m(t) = maT t) - T(O), (13)

where the constant a was chosen so that a100 = 1 + e; that is, every increase in the uninfected

CD4+ T cell count of 100 causes an x 100% increase in these parameter values. However, we

kept the viral production rates per unit time, ri = NiSi and 1r = NJM6M in equations (20)-

(23), constant at their original values. First, allowing only Tma to change by setting = 0.05

and 0.1 for Tm,, only, we found that the viral spike after maintenance therapy and the

subsequent steady-state viral load were higher with larger values of , and the steady-state

CD4+ count was not significantly affected by changes in . Dynamically increasing the

value of Tma,, during induction therapy forces further increases in the CD4+ count after

discontinuation, which exacerbates the predator-prey dynamics and makes eradication more

32



difficult. In contrast, larger values of e for the cell loss rates Xi and J5M led to a decrease

in the viral spike and steady-state viral loads, and an increase in the steady-state CD4+

count. Hence, if the infected cell loss rates are significantly increased during induction

therapy, as in (13), then the eradication condition for maintenance therapy is less stringent

than under induction therapy. When is set equal to 0.05 for all three parameters in (13)

simultaneously, the effect of Tm,x appears to win out, and there is an increase in the viral

peak and steady-state viral load.
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Appendix

The model. The equations describing our model are:

T(t) = s+AT(t) (1 _ T ( t ) T ( t ) + T (t ) ]1
T(t) = s+AT(t) I - T~t)±TM.t)+T;(t)) ~tT(t)-kI(1-r)T(t)V11 (t)-k 2(1-r 2 )T(t)V2 (t),

(14)

T;*(t) = milkl(1 - r)T(t)V 1 (t) + m 21k2 (1 - r2 )T(t)V2 (t) - T (t), (15)

T2*(t) = m 22k 2 (1 - r2)T(t)V 2I(t) + ml 2kl(1 - rl)T(t)V1'(t) - 2T2*(t), (16)

M4(t) = AM - pLMM(t) - k(1 - rl)M(t)V/1 (t) - k(1 - r2 )M(t)2(t), (17)

M;(t) = mllkM(1 - rl)M(t)VI(t) + m 2lk(1 - r2 )M(t)V2
1(t) -V2M(t), (18)

M*(t) = m 22 kM(1 - r2)M(t)V 2 (t) + ml 2klM(1 - rl)M(t)V 1 M(t) - M M(t), (19)

I1/i(t) = (1 -pl)NldlT (t) + (1 - pl)NMJMMl(t) - 1VI(t), (20)

K'2(t) = (1 - p2)N 26 2T(t) + (1 - P2 )NfM62 I2*(t) - C2 V2I(t), (21)

V1(t) = N 1J1T1 (t) + Nm J Ml*(t) - c1V(t), (22)

V 2(t) = N 252T2*(t) + p 2N2M2M2*(t) - C2 V2 (t). (23)

Before therapy, we assume all virus is infectious and thus V(0) = V1 (0), V2(0) = V2(0).

Parameter values in Table 1. The CD4+ proliferation rate A is set so that the

rate of increase in the CD4 + count under a powerful drug regimen corresponds to the rate

of increase observed in [3] (an increase of 95 after six weeks). The logistic growth parameter

Tmax is determined so that T(O)/Tm,, = 0.40, which corresponds closely to the observed

increase in the uninfected CD4+ cell concentration under triple combination therapy in [1].

The T cell death rate p is consistent with a mean lifetime of two years (see [21] for estimates).
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Estimates for i and M are from [3], ci is from [7] and i 1 2 and m 21 are from [41]. The

infectivity rate k is derived by simultaneously solving the three equations A (1- Tmax i

p + k1V 1 , k1TIVI' = 5IT[ and T + T1 = 180 for the three unknowns k 1, T and T[, where the

first two equations are the pre-treatment, no mutations, quasi-steady-state conditions for

equations (14)-(15), and 180 is the average CD4 + T cell count in Table 1 of [6]. The burst

size N1 is derived from N 13 1Tl = 0.96c1V I', which is the pre-treatment quasi-steady-state

equation for (20), along with the estimate in [3] that about 96% of the virus is produced by

infected CD4 + T cells. The burst size N 2 is set equal to 0.99N1.

The identity of the long-lived compartment is not known. HIV-1 infected macrophages

are present in vivo [42, 43, 44], and in vitro infected macrophages can continuously re-

lease virions for weeks [45, 46], making them a suitable candidate population. The lifes-

pan of macrophages in different human tissues is not well characterized but is likely to be

weeks to months. We thus choose M = 0.04 day-1 consistent with a mean lifetime of 3-4

weeks. The parameters AM, k and NM" are jointly derived from solving five equations -

the three quasi-steady-state equations AM = TMM + kJmMV/' (17), kMV1 = 5MM (18)

and N 1 d"JMMr = 0.04c1 VI (20), M = 99M' (1% of the macrophages are infected) and

NMG6M = 0.1N 1J1 (the viral replication rate in infected macrophages is taken to be 10% of

the replication rate of infected CD4+ T cells) - for five unknowns: AM, k, N~M, M and

M. We also considered an alternative set of parameters that were derived by replacing

the fifth equation, NMJM = 0.1N1 I, with the pre-infection steady-state for equation (17),

AM = 1.43 x 103amM = 57.2 cells/mm 3/day, where 1.43 x 106 cells/mm 3 is an estimate for the

total macrophage concentration [47]. The latter method causes a three-fold change in several

of the macrophage parameters, but had only a negligible effect on the numerical solutions

of the model as a whole. Similarly, sensitivity analysis reveals that the numerical solutions

are highly insensitive to our crude estimates for ,u and M.
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The values of the drug efficacy parameters ri and Pi varied by run, and are described

in the text. The mutation probabilities i1 2 and m 2 1 have been chosen to correspond to the

frequency of a single base change during HIV reverse transcription. For some drugs, such as

3TC and nevarapine, a particular single base change can render substantial drug resistance.

For other drugs, multiple mutations may be needed or there may be multiple nucleotide

positions at which mutation can confer resistance. In either event, this would need to be

modeled by using a higher effective mutation probability, ml 2. Sensitivity analysis shows

that the model dynamics studied in the text are insensitive to any mutation probability m 1 2

between 10 - 5 and 10- 3. If multiple, stepwise mutations are involved in generating resistance

then the back mutation probability n2 1 would be expected to be smaller than the forward

mutation probability m 1 2. Finally, the pre-treatment steady state was taken as the starting

point of our model in the numerical runs.

Post-treatment steady-state analysis. We make a number of simplifying assump-

tions in our analysis. First, we assume that the drugs are 100% effective against the wild-type

virus. Second, because the reverse mutation probability m 2 1 is small, we assume that the

wild-type virus will eventually be eradicated, and set T* = M1 = Vi' = V = 0 in steady

state. We also ignore the T2 term in the logistic growth equation in (14). Finally, during

our calculations, we set the value m 22 , which is very close in value to one, equal to one.

By equations (16) and (19), we have 62T2* = k 2 (1 - r2)TV2 and 62MM2* = kM(1-

r 2)MV2. Substituting the right sides of these equations into (21) and cancelling the VI's

yield

N 2 k 2 T + N2 MkIMM-1 C2 (24)
1 - e2

Equations (14) and (17) can be expressed as

v A(1 TA) (25) m
-j2I Tmax and V' (25)

k2(1 - r 2) 2 2 M(1-r2)M(
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Solving (24) for T, substituting this expression into the first equation in (25), and equating

the right sides of the two equations in (25) lead to the following quadratic equation for M:

m 2] 2N M 2 + M 2xNk2(1 - ) + ( - Mk2 - AkM) + AMk = 0. (26)

Equation (26) is only valid if V2I > 0 and T > 0. By (25), V2 > 0 if M < AM/mM. Using the

solution (the -/ solution is the useful root) to equation (26), this inequality after squaring

both sides reduces to

- e2 > 2A (27)
TmaxN2 k2 (A - ]M) + AAMNMkM/ M '

By (24) and the solution to (26), T > 0 if

C2[(A - tt)k + Lmk2]1-- e2 < (28)
AMN2M k2kM (

According to our parameter estimates, the first term in the denominator of (27) is several

orders of magnitude larger than the second term. Hence, we ignore the second term, which

gives rise to equation (2). It turns out that (2) is the exact eradication condition for the

simpler model that omits long-lived cells.

We have three possible cases for the steady-state behavior. If (27) is violated then

the virus is eradicated, and the steady-state solution is simply T = (A - )Tmax/A and

M = AM/pM. If (27) and (28) are both satisfied then we get a steady-state solution in

which the quantities T, M, T2, M2, V2I and V2 are all positive (for brevity's sake, we do not

write out this solution). Finally, if (27) is satisfied and (28) is violated then the steady-state

solution has virus but no uninfected CD4+ cells. However, substituting the parameter values

from Table 1 into the right side of (28) yields 25.7, and hence shows that the inequality is
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satisfied for our default parameters. Further sensitivity analysis of (28) suggests that this

inequality will always be satisfied, making it impossible to eliminate all uninfected CD4+ T

cells.

Dynamic analysis. If the drug regimen is 100% effective against the wild-type virus

(rl = 1, pi = 1) and we ignore back mutation from mutant to wild-type ( 2 1 = 0) then the

model can be solved in closed form, as in [3], to get

V 1(t) =- 6- N 1Tj(0) - N M ) - (°- N)T -(0) NM *(0) eclt
cl - l - M cl - 61 a 1

(29)

To obtain a closed form expression for the mutant virus we can relax the assumption

of 100% drug efficacy against wild-type RT. If Pi = 1, then VI(t) = V 1 (O)e- e t. Substituting

into equations (14)-(23), ignoring the long-lived cells (i.e., assuming that M(t) = MC(t) 

M2 (t) = 0), and for simplicity setting m 2 2 = 1 then

N 2 2C10et N 262C 2 e¢/2t+(2 ( N262C1 _N 2 2 2 t, (30)
V2() C(30)

C2 + 2 C2 + P2 c2 + 02 C2 + 2

where

= V/(C2 - 2)2 + 4k2N 2(1 - e2 )62 T(0), (31)

02 =-C 2 - 2 + 2 -C 2 -6 2 - c (32)
2 2

= 7m1 2k1(1 - Tr)T(O)Vl'(0), (33)

- T*(O) + co _ a + C2 - 2 V2(O)k 2 (1 - r2)T(0) (34)

and we have assumed that cl = c2.
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Because the first term dominates the expression in (30), we investigate the constant C1

to find its most significant factors. Notice that C0 is proportional to the mutation probability

m 1 2 , where as the last factor in (34) is independent of the mutation probability and depends

only on the level of pre-existing mutant virus, V2I(0). Substituting the values for ml2 and k1

from Table 1 into (33) gives Co = 1.2 x 10-9(1 - rl)T(O)V l(0). Because 02 > -62, a crude

upper bound for the following term in (34) is

Co < 1.2 x 10-9(1 - r1)T(O)V()0) 1.2 x 10-9(103)(103)
Co < < = 5.0 10 - 4, (36)cl + 02 c1 - 2 2.38

where the second inequality in (36) assumes that T(0) < 1000 cells/mm3 and VjI(O) < 1000

virions/ml and that cl and 62 take on their values in Table 1. Hence, if T2*(0) > 5.0 x 10- 4

then the term in (36) will be negligible in (34).

Also, because + c2 - 62 < 2 and rl > r2, equation (36) implies that

(Co'\ + C2 -62\ 1.2 x 10-9(1 -r 2)T(O)V1
1 ()

c + 02 2a - cl - 2

Substituting the values for k2 and a from Table 1 into the last term of (34) yields

Co ) ( + C2 - 2 < V2()k 2(l - r2 )T(0) if K' (0) > 3.65 x 10 - 5 . (38)

Therefore, if the fraction of virus that is mutant at time zero is significantly higher than

3.6x10 -5 then the term in (36) will again be negligible in (34), and the concentration of

mutant virus observed during therapy will mainly depend on the level of pre-existing mutant

virus and depend little on the generation of drug resistant virus during therapy.
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