
Condition Number Complexity of an Elementary
Algorithm for Resolving a Conic Linear System

Marina Epelman and Robert M. Freund

WP# 3942-97-MSA February 1997



CONDITION NUMBER COMPLEXITY OF AN ELEMENTARY
ALGORITHM FOR RESOLVING A CONIC LINEAR SYSTEM

Marina Epelman 2

M.I.T.

Robert M. Freund3

M.I.T.

February, 1997

Abstract

We develop an algorithm for resolving a conic linear system (FPd), which is a system
of the form

(FPd): b- Ax Cy
E Cx ,

where Cx and Cy are closed convex cones, and the data for the system is d = (A, b).
The algorithm "resolves" the system in that it either finds an e-solution of (FPd) for
a pre-specified tolerance , or demonstrates that (FPd) has no solution by solving an
alternative dual system. The algorithm is based on a generalization of von Neumann's
algorithm for linear inequalities. The number of iterations of the algorithm is essentially

bounded by O (C(d)2 ln(C(d)) n (ll )) when (FPd) has a solution, and is bounded by
O (C(d)2 ) when (FPd) has no solution, and so depends only on two numbers, namely the
feasibility tolerance e and the condition number C(d) of the data d = (A, b) (in addition
to the norm of the vector b), and is independent of the dimensions of the problem.
The quantity C(d) is the condition number of (FPd), originally defined by Renegar as
C(d) Alldll/p(d), where p(d) is smallest change in the data Ad = (AA, Ab) needed to
create a data instance d + Ad = (A + AA, b + Ab) that is ill-posed, i.e., p(d) is the
"distance to ill-posedness". Each iteration of the algorithm performs a small number of
matrix-vector and vector-vector multiplications (that take full advantage of the sparsity
of the original data) plus a small number of other operations involving the cones Cx
and Cy that may be easy to compute or not, depending on the nature of the cones Cx
and Cy (and which are easy to compute when these cones are the nonnegative orthant
R+, the semi-definite cone Sk k, and/or the origin {0}). The algorithm is "elementary"
in the sense that it performs only a few relatively simple mathematical operations at
each iterations.
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Elementary Algorithm for a Conic Linear System

1 Introduction

The subject of this paper is the development and analysis of an algorithm for resolving
a conic linear system, which is a system of the form:

(FPd): b-Ax E Cy
x E Cx,

where Cx C X and Cy C Y are each a closed convex cone in the n-dimensional normed
linear vector space X (with norm lxl for x E X) and in the m-dimensional linear vector
space Y (with norm Ilyll for y E Y), respectively, and where n and m are finite. Here b E Y.
and A E L(X, Y) where L(X, Y) denotes the set of all linear operators A : X Y. We
denote by d = (A, b) the "data" for the problem (FPd). That is, the cones Cx and Cy are
regarded as fixed and given, and the data for the problem is the linear operator A together
with the vector b. The problem (FPd) is a very general format for studying the feasible
regions of convex optimization problems, and has recently received much attention in the
analysis of interior-point methods, see Nesterov and Nemirovskii[16] and Renegar [19] and
[20], among others.

We develop an algorithm called "algorithm CLS" (for Conic Linear System) that "re-
solves" the system (FPd) in that it either finds an -solution of (FPd) for a pre-specified
feasibility tolerance , or it demonstrates that (FPd) has no solution by solving an alter-
native dual system. Algorithm CLS is based on a generalization of the algorithm of von
Neumann studied by Dantzig [6] and [7].

There are three key motivating aspects of the research in this paper, namely the study
of "elementary" algorithms for solving linear inequalities, the study of condition numbers
for conic linear systems, and the merging of these first two aspects into an elementary
algorithm for resolving a conic linear system whose iteration complexity is bounded ap-
propriately by a function of the condition number. The first aspect has to do with the
development and study of elementary algorithms for finding a point in a suitably described
convex set, such as reflection algorithms for linear inequality systems (see [1], [15], [8], [13]),
the "perceptron" algorithm [21] [22] [23] [24], and the recently revived algorithm of von
Neumann (see [6], [7]). When applied to linear inequality systems, these algorithms share
the following desirable properties, namely: the work per iteration is extremely low (typi-
cally involving only a few matrix-vector or vector-vector multiplications), the algorithms'
iteration bounds do not typically rely on the dimensions m or n, and the algorithms fully
exploit the sparsity of the original data. (Also, the performance of these algorithms can be
quite competitive when applied to certian very large problems with very sparse data, see
[5].) We refer to these algorithms as "elementary" in that the algorithms do not involve
particularly sophisticated mathematics at each iteration, nor do the algorithms perform par-
ticularly sophisticated computation at each iteration, and in some sense these algorithms
are all very unsophisticated as a result (especially compared to an interior-point algorithm
or the ellipsoid algorithm). Part of the aim of this study is to develop a suitable gener-
alization of one of these algorithms, namely von Neumann's algorithm, that will resolve a
general conic linear system of the form (FPd). This is accomplished, for the most part, in
Section 6 wherein we develop algorithm CLS. Algorithm CLS does rely, however, on certain
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assumptions regarding the ability to work conveniently with the cones Cx and Cy. These
assumptions are presented in Section 2 along with a discussion of their applicability. Inci-
dentally, the assumptions are essentially satisfied when Cx is the nonnegative orthant R' or
the semi-definite cone SXk, and when Cy is the nonnegative orthant R'_, the semi-definite
cone Sl x k, or the origin {0}.

The second key motivating aspect of this paper is the further development and study of
algorithms for resolving (FPd) related to the inherent "conditioning" of the system (FPd).
A particularly relevant way to measure the intuitive notion of conditioning of (FPd) is
in the condition number C(d) and the closely related "distance to ill-posedness" p(d) of
the data for (FPd) as developed by Renegar in [18] in a more specific setting, but then
generalized more fully in [19] and in [20]. Before discussing these concepts in detail, we first
review what is known of their importance for the complexity of resolving (FPd). In [20],
Renegar presented an incredibly general interior-point (i.e., barrier) algorithm for resolving
(FPd) and showed, roughly speaking, that the iteration complexity bound of the algorithm
depends linearly and only on two quantities: the barrier parameter for the underlying
cones, and ln(C(d)), i.e., the logarithm of the condition number C(d). In [11], several
results regarding the geometry of feasible regions of (FPd) are developed that indicate that
a suitably modified version of the ellipsoid algorithm applied to (FPd) will resolve (FPd)
in O(n In C(d)) iterations, see also [12]. Both the interior-point algorithm and the ellipsoid
algorithm have an iteration complexity bound that is linear in ln(C(d)), and so are efficient
algorithms in a sense defined by Renegar [19]. Both the interior-point algorithm and the
ellipsoid algorithm are also very sophisticated algorithms, in contrast with the elementary
reflection-type algorithms discussed above. (The interior-point algorithm makes implicit
and explicit use of information from a special kind of barrier function (namely, a self-
concordant barrier) at each iteration, and uses this information in the computation of a
the next iterate by solving for the Newton step along the central trajectory. The work per
iteration is O(n3 ) operations to compute the Newton step. The ellipsoid algorithm performs
a particular linear transformation of the space at each iteration that is used to compute the
projection of the current point onto a violated constraint, which in turn is used to create
the direction for the next iterate, see [4]. The work per iteration of the ellipsoid algorithm
is O(n2) operations.) Intuition strongly suggests that this sophistication is partly or wholly
responsible for the excellent computational complexity of these methods. In contrast, the
elementary algorithms cited earlier do not perform any sophisticated mathematics at each
iteration, and one would not expect their complexity to be nearly as good as an interior-
point algorithm or the ellipsoid algorithm.

The third and final aspect of this paper is the merging of the first two aspects into
an "elementary" algorithm for resolving a conic linear system (FPd) whose complexity is
bounded appropriately by a function of the condition number C(d). This is accomplished
for the most part in Theorem 6.3, where we show that algorithm CLS has an iteration
complexity that essentially is

0 (C(d)2 1n(C(d))ln (bI))

iterations when (FPd) has a solution, and whose iteration complexity is essentially

0 (C(d)2)
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iterations when (FPd) has no solution. These bounds are exponential in ln(C(d)), which is
to be expected, given the nature of the algorithm. We do point out that the bounds are
independent of either of the dimensions m or n, and that the work per iteration is very low
in important cases such as linear inequality systems and semi-definite inequality systems.
In these cases, it is possible for algorithm CLS to outperform an interior-point method or
the ellipsoid algorithm when n is sufficiently large, the condition number C(d) is sufficiently
small, and when the underlying data are very sparse. This is discussed in greater detail in
Section 7.

We now present the development of the concepts of condition numbers and data pertur-
bation for (FPd) in detail. We denote by d = (A, b) the "data" for the problem (FPd). That
is, the cones Cx and Cy are regarded as fixed and given, and the data for the problem is
the linear operator A together with the vector b. The set of solutions of (FPd) is denoted
by Xd in order to emphasize the dependence on the data d, i.e.,

Xd = {x E X I b- Ax E Cy, x E Cx}.

The space of all data d = (A, b) for (FPd) is denoted by D. That is,

D = {d = (A, b) I A E L(X, Y), b Y}.

For d = (A, b) E D we define the product norm on the cartesian product L(X, Y) x Y to be

Ildll = (A, b)ii = ( max{llAl, llbll} (2)

where Ilbll is the norm specified for Y and IIAil is the operator norm, namely

IIAll = max{llAxIll Illxti < 1}. (3)

We define

.F = {(A, b) E I there exists x satisfying b - Ax C Cy, x E Cx}. (4)

Then F corresponds to those data instances d = (A, b) for which (FPd) has a feasible
solution. The complement of F is denoted by FC, and so FC consists precisely of those
data instances d = (A, b) for which (FPd) has no feasible solution.

The boundary of F and of ~F is precisely the set

B = O = F c = cl(F ) n cl(FC) (5)

where dS denotes the boundary of a set S and cl(S) denotes the closure of a set S. Note
that if d = (A, b) E B, then (FPd) is ill-posed in the sense that arbitrary small changes in the
data d = (A, b) will yield instances of (FPd) that have feasible solutions, as well as instances
of (FPd) that do not have feasible solutions. Also, note that B Z 0, since d = (0, 0) E B.

For a data instance d = (A, b) E 2), the ball centered at d with radius 6 is:

B(d, 6) = d E D I lid- dll < 6}.

For a data instance d = (A, b) E D2, the "distance to ill-posedness" is defined to be:

p(d) = inf{(lAdl I d + Ad E B},
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see [18], [19], [201, and so p(d) is the distance of the data instance d = (A, b) to the set B of
ill-posed instances for the problem (FPd). It is straightforward to show that

p(d)= jsup{6: B(d, 6) C 7} if d C, (6)
sup{6: B(d, 6) C FC} if d e 3C, (6)

so that we could also define p(d) by employing (6). The "condition number" C(d) of the
data instance d is defined to be:

C(d) = 1t4d1 (7)p(d)

when p(d) > 0, and C(d) = oo when p(d) = 0. The condition number C(d) can be viewed
as a scale-invariant reciprocal of p(d), as it is elementary to demonstrate that C(d) = C(cd)
for any positive scalar a. Observe that since d = (A, b) = (0, O) E B then for any d B3 we
have ldll = Ild - dll > p(d), whereby C(d) > 1. The value of C(d) is a measure of the relative
conditioning of the data instance d. Further analysis of the distance to ill-posedness has
been studied in [11], Vera [25], [26], [27], [28], Filipowski [9], [10], and recently by Nunez
and Freund [17].

The algorithm of von Neumann, which is generalized and used as a principal tool in
this paper, can be viewed as a variation of the so-called relaxation or reflection schemes for
solving systems of linear inequalities. In particular, let

c + > 0, i I

be a finite sytem of linear inequalities and let the solution set of this system be P C R ".
A general relaxation scheme is as follows. Choose the initial point x°0 arbitrarily. At the
kth iteration, if xk E P, the algorithm terminates. Otherwise, let jk E I be the index
of a violated inequality and let :k be the projection of xk onto the hyperplane Hk

{X I a, X + PJk = 0}. Then

xk+l = x k + A(&k _- k),

where A is chosen usually to be in the interval A E (0, 2]. Set k - k+ 1 and repeat iteration.

If Ak = 1 then xk+1 is the orthogonal projection of xk onto Hk; if Ak = 2 then xk+ l is the
(complete) reflection of xk through Hk; if Ak G (0,1) (Ak G (1, 2)) then xk+ l is considered
an underprojection (overprojection) of xk onto Hk.

There are a number of different rules for selecting the index ik at each iteration. The
three most studied of these rules are: the maximal distance rule (choose jk to be the index
of the furthest hyperplane Hk away from xk), the maximal residual rule (choose k to
maximize the value of atxk + bj, j E I), and systematic projection rule (choose indices k
in a cyclical fasion). It has been shown that under the maximal distance rule, depending
on the choice of A E (0, 1] and the dimension of the set P, the sequence generated by the
relaxation scheme either converges to a point in P or to a spherical surface having the affine
hull of P as its axis. Finite termination and/or a geometric rate of convergence have been
established for some of these methods (see [1], [15],[8], [13] for details). The von Neumann
algorithm can be viewed (in the dual) as a relaxation algorithm with parameter A E (0, 1)
being chosen dynamically at each iteration, with a particularly intelligent choice of the
parameter A at each iteration.
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An outline of the paper is as follows. Section 2 contains notation, definitions, assump-
tions, and preliminary results. Section 3 revisits Dantzig's analysis [6] [7] of von Neumann's
algorithm for solving a certain types of linear inequality systems, and presents further
(stronger) complexity results in the case when the linear inequality system is not ill-posed.
In particular, Theorem 3.2 essentially shows that von Neumann's algorithm is linearly con-
vergent when the linear inequality system is feasible and not ill-posed, and that the al-
gorithm produces dual variables that demonstrate infeasibility when the linear inequality
system is.infeasible. Section 4 presents a generalization of the von Neumann algorithm
(appropriately called algorithm GVNA) for resolving a conic linear system in a special com-
pact form (i.e, with a compactness constraint added). Theorem 4.1 essentially shows that
algorithm GVNA is linearly convergent when the system has a feasible solution and is not
ill-posed, and that algorithm GVNA produces dual variables that demonstrate infeasibility
of the system when the system is infeasible. Section 5 presents properties of a particular
parameterized conic linear system that are related to p(d), the distance to ill-posedness
of the data instance d = (A, b) of problem (FPd). Finally, in Section 6, we present the
algorithm for resolving the conic linear system (FPd). This algorithm is called algorithm
CLS. Algorithm CLS repeatedly calls algorithm GVNA to resolve a parameterized sequence
of problems related to (FPd), and so algorithm GVNA and its complexity analysis are the
main constructs behind algorithm CLS. The analysis of algorithm CLS also relies heavily
on the properties derived in Section 5 related to the distance to ill-posedness p(d) of the
data instance d = (A, b). Theorem 6.3 contains the main complexity result for algorithm
CLS, and is the main result of this paper. Section 7 contains an extensive discussion and
interpretation of several aspects of Theorem 6.3.

2 Preliminaries, Assumptions, and Further Notation

We will work in the setup of finite dimensional normed linear vector spaces. Both X and
Y are normed linear spaces of finite dimension n and m, respectively, endowed with norms
Ilxl for x E X and ]lyJJ for y E Y. For x E X, let B(x, r) denote the ball centered at x with
radius r, i.e.,

B(x, r) = x X X lix-Hll < r}.

and define B(y, r) analogously for y E Y.

We associate with X and Y the dual spaces X* and Y* of linear functionals defined on
X and Y, respectively, and whose (dual) norms are denoted by IIul* for u c X* and jjwll*
for w E Y*. Let c E X*. In order to maintain consistency with standard linear algebra
notation in mathematical programming, we will consider c to be a column vector in the
space X* and will denote the linear function c(x) by ctx. Similarly, for A E L(X, Y) and
f E Y*, we denote A(x) by Ax and f(y) by fty. We denote the adjoint of A by At.

If C is a convex cone in X, C* will denote the dual convex cone defined by

C* = {z E X* I ztx > O for any x E C}.

We will say that a cone C is regular if C is a closed convex cone, has a nonempty interior.
and is pointed (i.e., contains no line).
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Remark 2.1 If we identify (X*)* with X, then (C*)* = C whenever C is a closed convex

cone. If Cx = X, then Cx = {O}; if Cx = {O}, then Cx = X. Also, C is regular if and

only if C* is regular.

We denote the set of real numbers by R and the set of nonnegative real numbers by R+.

We now recall some facts about norms. Given a finite dimensional linear vector space
X endowed with a norm IIxlH for x E X, the dual norm induced on the space X* is denoted
by Jljzl, for z E X*, and is defined as:

iizil* = max{ztx I 11x I< 1, (8)

and the H61der inequality ztx < llxllllzll* follows easily from this definition. We also point
out that if A = uvt, then it is easy to derive that IlAll = IIjvi*llull.

We make the following assumption throughout concerning the cone Cx:

Assumption 1 The cone Cx is a regular cone.

One consequence of the assumption that Cx is regular is that the norm function 1lx!
can be approximated by a linear function over the cone Cx. We will measure the extent to
which the norm lxll can be approximated by a linear function over the convex cone Cx by
the number /3, see [11], which is defined as follows:

Definition 2.1

P= sup inf utx

u E X* xECx (9)

ull* = I lxIll =

Examining Definition 2.1 in detail, let denote that value of u E X* that achieves the
supremum. Then for any x E Cx, /3JJxll < utx < lx, and so jjlxl is approximated by
the linear function tx to within the factor /3 over the cone Cx. Therefore, 3 measures
the extent to which ]lxli can be approximated by a linear function iitx on the cone Cx.
Furthermore, the linear function utx is the "best" such linear approximation of Ilxll over
the cone Cx. It is easy to see that B < 1, since, for example, utx < Ilull*,xIi = 1 for u and
x as in (9). The larger the value of ,B, the more closely that lx is approximated by a linear
function utx over x E Cx. For this reason, we refer to as the "coefficient of linearity" of
the norm ]lxII over the cone Cx. We have the following properties of P and u:

Remark 2.2 (see [11]) 0 < 3 1. There exists iu E int Cx such that iluII = 1 and

/ = min{utxlx E Cx, Ilx = 1}. For any x E Cx, /3xl < tx < lxli. The set {x E

Cx I utx = 1} is a bounded and closed convex set.
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We note that the constant /3 depends only on the norm xif and the cone Cx and is
independent of the data (A, b) defining the problem (FPd). We also make the following
assumption:

Assumption 2 The linear functional U of Remark 2.2 is known and given.

Given any linear function ctx defined on x E X, we define the following conic section
optimization problem parameterized by c:

(CSOPc) z*(c) = min ctx
X(10)

s.t. x E C(10)
utx = 1.

Note that (CSOPc) is the problem of minimizing a linear function ctx over the inter-
section of the cone Cx and the hyperplane defined by itx = 1. The algorithm developed
in this paper will need to solve the problem (CSOPc) at each iteration. Let T1 denote the
number of operations needed to solve (CSOPc). We predicate our algorithm on the premise
that T1 is not excessive, for otherwise the algorithm will not be very efficient.

We now pause to illustrate the above notions on two relevant instances of the cone Cx,
namely the nonnegative orthant R_ and the positive semi-definite cone S+X. We first
consider the nonnegative orthant. Let X = Rn and Cx = Rn = {x E Rn x > 0}. Then we
can identify X* with X and in so doing, C> = R+ as well. If jxll is given by the L 1 norm
ixl = Cjn=1 Ixjl, then note that xll = etx for all x E Cx (where e is the vector of ones),

whereby the coefficient of linearity is / = 1 and u = e. Furthermore, for any c, the problem
(CSOPc) is simply the problem of finding the smallest index of the vector c, so that the
solution of (CSOPc) is easily computed as xc = ei where i E argmin{cj j = 1,.., n}, and
z*(c) = ci. If instead of the L 1 norm, the norm Ilxil is the Lp norm defined by:

lxllp = Xjl P ,

for p > 1, then for x E Cx it is straightforward to show that u (n (P-i)) e and the

coefficient of linearity is P = n(P1-). The solution of (CSOPc) is the same as in the case of
the L 1 norm up to a scalar multiple.

Now consider the positive semi-definite cone, which has been shown to be of enormous
importance in mathematical programming (see Alizadeh [2] and Nesterov and Nemiroskii
[16]). Let X = Sn x n denote the set of real n x n symmetric matrices, and let Cx
Sn+x = {x E Snxn I x - 0), where x - 0 is the Lowner partial ordering, i.e. x >- w if x- w
is a positive semi-definite symmetric matrix. Then Cx is a closed convex cone. We can
identify X* with X, and in so doing it is elementary to derive that Cx = Sxn, i.e., Cx
is self-dual. For x E X, let A(x) denote the n-vector of ordered eigenvalues of x. That is,
A(x) = (Al(x),..., An(x)) t where Ai(x) is the ith largest eigenvalue of X. For any p C [1, oo),
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let the norm of x be defined by

lxII = 1ixiip= lAj(x i)lP 1

i.e., IllJJp is the Lp-norm of the vector of eigenvalues of x. (see Lewis [14] for a proof that
Ixlp is a norm.) When p = 1, Ilxi1i is the sum of the absolute values of the eigenvalues

n
of x. Therefore, when x E Cx, lxi1ii = tr(x) = E xii where xij is the ijth entry of the

i=1
real matrix x, and so IIxll is a linear function on Cx. Therefore, when p = 1, we have
i = I and the coefficient of linearity is P = 1. Furthermore, for any c E X*, the problem
(CSOPc) corresponds to the problem of finding the normalized eigenvector corresponding
to the smallest eigenvalue of the matrix c, i.e., (CSOPc) is a minimum eigenvalue problem
and is solvable to within machine tolerance in O(n3 ) operations in practice (though not
in theory), and the solution of (CSOPc) is computed as xc = vv t where v is a normalized
eigenvector corresponding to the smallest eigenvalue of c, and z*(c) = A(c). We note
that solving (CSOPc) does not involve much more than testing whether or not c - 0, i.e.,
testing if c E Sn x n = Cx. When p > 1, it is easy to show for the norm Ilxllp over Cx

that ii = n(p )) I has lfU6* = IiiIIq = 1 (where l/p + 1/q = 1) and that ,3 = n( - 1).

The solution of (CSOPc) is the same as in the case when p = 1, up to a scalar multiple.
Note that when p = 2, iixii2 corresponds precisely to the Fr6benius norm of x, alternatively
defined as IIx i2 = vtr(xt x).

The next assumption concerning the problem (FPd) has to do with the space Y.

Assumption 3 . The vector space Y is a subspace of a real finite dimensional space Z

with Euclidean norm.

For a vector y E Y, define Prcy [y] to be the Euclidean projection of y onto the cone
Cy. The algorithm developed in this paper will need to compute at most three projections
of vectors onto Cy at each iteration. Let T2 denote the number of operations needed to
compute the projection Prcy [y]. We predicate our algorithm on the premise that T2 is not
excessive, for otherwise the algorithm will not be very efficient.

We illustrate these additional ideas on three relevant instances of the cone Cy, namely
the nonnegative orthant R', the origin {O}, and the positive semi-definite cone Sk+X k. First
consider the nonnegative orthant, ie, i.e. Cy = R endowed with the Euclidean norm. Then

Prcy[y] = [y]+ where [y]+ = max{yi,0}, i = 1,..., m, and so is very easy to compute,
using only m operations. Second, consider the origin, i.e., Cy = {0}, whereby Prc, [y] = 0
and is trivial to compute (using no operations). Thirdly, consider the positive semi-definite
cone, i.e., Cy = Sxk, where Y = Skxk (and m = k(k + 1)/2) and Z is the set of all k x k
real matrices, with the Euclidean (i.e., Frobenius) norm specified on Z. For any y E Cy,
y = QDQt, where Q E Rkxk is an orthonormal matrix of eigenvectors and D E R kXk is a
diagonal matrix of eigenvalues. Let [D]+ be the nonnegative part of D in the following sense:
[D]+ is a diagonal matrix with [D]i+ = [Dii]+ , [D]+ = 0, i j. Then Prcy [y] = Q[D]+ Qt .
Therefore the computation of the projection Prc, [y] is roughly as difficult as computing
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the eigenvector decomposition of a symmetric matrix, which in practice can be computed
to machine tolerance in O(k3 ) = O(m(2)) operations.

The last assumption is:

Assumption 4 b Cy.

Note that if Assumption 4 is not satisfied, then (FPd) has a trivial solution x = 0.

We conclude this section with the following miscellaneous remarks and properties:

Remark 2.3 If y E Y, then Prcy [y] - y G C~.

Remark 2.4 (see [11]). Whenever Cx is a regular cone, then it is possible to choose the

norm on X in such a way that the coefficient of linearity P = 1.

The following lemmas give a more precise mathematical characterization of the problem
of computing the distance from a given point to the boundary of a given convex set. Let S
be a closed convex set in R m and let f E R m be given. The distance from f to the boundary
of S is defined as:

r = minllf- zlI I z E S). (11)

Lemma 2.1 Let r be defined by (11). Suppose f E S. Then

r = min max 0

v Z

Ivl 1 1 s.t. f -- = O

zE CS.

Lemma 2.2 Let r be defined by (11). Suppose f ' S. Then

r= min IIf-zll

s.t. zE S.

The following separating hyperplane result will also be used, whose proof is included
here for completeness.

Proposition 2.1 For every x E X, there exists z E X* with the property that IIzli* = 1

and jIxj = Ztx.
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Proof: If x = 0, then any z E X* with IIzII* = 1 will satisfy the statement of the proposition.
Therefore, we suppose that x / 0. Consider llxll as a function of x, i.e., f(x) = xll. Then
f (.) is a real-valued convex function, and so the subdifferential operator f (x) is non-empty
for all x E X, see [3]. Consider any x E X, and let z E f(x). Then

f(w) > f(x) + t(w- x) for any w E X. (12)

Substituting w = 0 we obtain Ijxii = f(x) < ztx. Substituting w = 2x we obtain 2f(x) =
f(2x) > f(x) + z t (2x - x), and so f(x) > ztx, whereby f(x) = ztx. From the H6lder
inequality it follows that izll,* > 1. Now if we let u E X and set w = x + u, we obtain from

(12) that f(u)+f(x) > f(u+x) = f(w) > f(x)+zt(w-x) = f(x)+zt(u+x-x) = f(x)+ztu.

Therefore, ztu < f(u) = hu I, and so from (8) we obtain lzl, _< 1. Therefore, jIlzlj = 1. I

3 Further Complexity Results for von Neumann's "Simple"

Algorithm for Solving Linear Inequalities

The main algorithmic construct in this paper is an extension and generalization of a very
simple algortihm due to von Neumann for solving certain types of linear inequality systems,
that was presented and analyzed by Dantizig in [6] and [7]. In this section, we review
the algorithm of von Neumann, and revisit and expand the complexity results of Dantzig
[7]. The purpose of this section is to develop insight into the geometry of von Neumann's
algorithm for linear inequalities and to see the underlying simplicity of the algorithm. This
section serves as a guide and a prelude to the main algorithmic ideas developed in subsequent
sections; however, this section can be skipped with no loss of continuity in the mathematical
results.

In order to keep the presentation simple and concrete, we suspend (for this section
only) the more abstract notions of normed vector spaces, cones, dual operators, etc., as
articulated in Section 2, and instead work with real m x n matrices in Rm x n , etc. We let e
denote the n-vector of ones, i.e., e = (1, 1,..., )t, and let ei denote the ith unit vector in
R n. If M is a matrix in Rm x n , the ith column of II is denoted by N/i.

We consider the following linear inequality system:

(P) g - Mx = 0
x > (13)

etx - 1,

where g E Rm , M E Rm x n , and x E Rn. We regard the data for this system to be
the pair (M,g). Throughout this section we endow R n with the L1-norm, namely Ilxll =

jxjll1 = j=l Ixjl for x E R n , and we endow R m with the L 2-norm, namely Iisll = 1Is112 =

ZIpi JSj2 for s E Rm. Furthermore, we define the matrix norm for M to be the operator
norm, namely,

IIMI = maximum{llMxli I jxll < 1} = max{llIMill i = 1,..., n}.

10
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The "alternative" system of (P) is:

(A) Ms - e(gts) > 0. (14)

Farkas' Lemma yields the following theorem of the alternative:

Proposition 3.1 Exactly one of the systems (P) in (13) or (A) in (14) has a solution.

Notice that solving the sytem (P) in (13) is equivalent to solving the following optimiza-
tion problem:

(OP) min 19g-Mxl

~~X~~~~~ ~~(15)
s.t. x>O0

etx = 1.

If (P) has a feasible solution, the optimal value of (OP) is 0; otherwise, the optimal value
of (OP) is strictly positive. For a given positive we call x an e-solution of (P) if x is a
feasible point for optimization problem (OP) with objective value at most , i.e., x is an
e-solution of (P) if

11g- Mx < ,
x>0 (16)

et 1.

Given a pre-specified positive tolerance e > 0, the algorithm of von Neumann seeks an
e-solution of (P) (as defined in (16)) by iteratively improving the objective value of (OP).
It will produce upon termination either an e-solution of (P), or will produce a solution s of
the alternative system (A) (14), thus proving infeasibility of (P).

Througout this section, we will say that a point x is "admissable" if x is feasible for the
optimization problem (OP), i.e., x is admissable if x > 0 and etx = Ifxll1 = 1.

As a means towards motivating von Neumann's algorithm geometrically, it is helpful to
view the problem (P) in the "column" space Rm, by viewing the vector g and the columns
of the matrix M as points in the space Rm. Let N = {Mx I x > 0, etx = 1} be the convex
hull of M 1,..., M, i.e., 7H is the convex hull of the n columns M 1,..., Mn of M. (P) can
then be interpreted as the problem of assigning nonnegative weights xj to the points Mj,
j = 1,..., n, so that the weighted combination yields the point g, i.e., Mx = g, x > 0, and
where the weights xj sum to one, i.e, etx = 1.

We now describe a generic iteration of the von Neumann algorithm. At the beginning
of the iteration we have an admissable point , i.e., > 0 and etJ = 1. Let be the
"residual" at this point, namely, = g - Mx. Then the objective value of (OP) at is
IFVil. If IlVll < , where e is a pre-specified tolerance parameter, then x is an e-solution of
(P), and the algorithm terminates. Otherwise, the algorithm finds an index i such that
i E argminj=l,..., {t(g - Mj)}. Note that this computation is equivalent to solving the
problem

min{t(g - Mp) p > 0, etp = 1} = min{ut(g - Mp) I p is admissable}

11

= minfV'(g - M) j = 1,. .. , n.
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Let ei be the unit vector corresponding to the index i found above. If vt(g - Me i ) > 0,
it follows that s = -v satisfies Mts - e(gts) > 0, whereby s is a solution of the alternative
system (A) of (14), and so the algorithm terminates, having established infeasibility of (P).
Otherwise, the direction ei - x turns out to be a direction of potential improvement of the
objective value of (OP). The algorithm takes a step in this direction, with step size found
by a constrained line-search. In particular, let x(A) = x + A(e i- ). Then the next iterate
of the algorithm is computed as x = 5(A*) where A* = argminAC[0o1]] g - M(A)l . The
value of A* is the solution to the one-dimentional optimization problem:

min Jg- M( + A(ei - :))[I = min ]J(1 - A)v + A(g - i)JI
s.t. 0 < A < s.t. O < A < 1.

This second portrayal of the of the one-dimensional is equivalent to a simple quadaratic
program in one variable, and its optimal solution is computed as:

t(V - (g9 - Mi))

11 - (9 - i)1 2'

Note that A* > 0 since Vt(g-Mi) < 0, and therefore the numerator is positive. Furthermore,
Il (g-- Mi)[I2 = Ilf,1 2 + Ig - Mill2 - 2v t(g - Mi) > llv[f2 -_ i(g - i) = -t(- (g -_ i)).
This implies that the numerator of A* is no larger than the denominator, therefore A* < 1.

Notice that the new point 5 found above is a convex combination of the points x and
the unit vector e, and therefore is also an admissable point, i.e, x > 0 and eti = 1.

A picture of the algorithm is shown in Figure 1. In the figure, the point g lies in
the convex hull of the points M1,... , 5, and so (P) has a feasible solution. The current
admissable point is x, but note in the figure that Mx is not equal to g. The direction
M 5 - g makes the most negative inner product (most obtuse angle) with Mx - g, and so
the index i = 5 is chosen for the computation of the next iterate. The next iterate, x, is
chosen by computing that convex combination of the current iterate x and the unit vector
e5 for which the resulting vector 5(A) = (1 - A) + Ae5 minimizes the value of IMI(A) -g11.
The resulting value is shown as Mx5 in the figure.

12
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Figure 1:

The formal description of the algorithm is as follows:

von Neumann Algorithm:

* Data: (M, g, x ° , e); x ° admissable: x° > 0, etx = 1, e > 0.

* Initialization: The algorithm is initialized with x° .

* Iteration k, k > 1: At the start of the iteration we have an admissable point x k -

xk - 1 O etxk- l = 1.

Step 1 Compute the residual at x k- l: vk - i = g - Mxk- 1. If JIvk-lll < e stop.
Return as output xk- 1 as an -solution to (P).

Step 2 Else, find a unit vector ei such that

(vk-i)(g Me ) = (vk-)t(g - Mi) = min{(vk-l)tg M ) I

If (vk-1)t(g- Mi) > 0, stop, return as output s = -v k- as a solution to (A).

Step 3 Else, let

k-1 (Vk-1)t(vk- 1 - (g - M))
11vk-1 - (- Mi)112 

xk = k-1 + k-l(ei Xk-1).

Step 4 Let k -- k + 1, go to Step 1.

We regard this algorithm as very "elementary" in the sense that the mathematics of
each iteration is not very sophisticated, and consequently the work per iteration involves
very few computations. At iteration k, the algorithm must perform a small number of
vector-vector and matrix-vector multiplications (where these computations can take full
advantage of the sparsity of M and/or g as appropriate). In addition, the algorithm must
identify the smallest component of the n-vector (egt - Mt)v k - (which takes n operations).

We now analyze the computational complexity of the algorithm. We first present the
following result of Dantzig [7] that provides an upper bound on the size of the residual
throughout the algorithm. We include the proof for completeness as well as to motivate
and lay the foundation for subsequent analysis.

Lemma 3.1 (Dantzig [7]) Suppose that the von Neumann algorithm has completed k iter-

ations, k> 1. Then xk > 0, etxk = 1, and

19- Mxkll = lvkjl < IM- get ll < IMI + 11911V - V

13
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Proof: From the prior discussion, all iterates of the algorithm are admissable, so that
xk > 0 and etx k = 1 for all k. We prove the bound on the norm of the residual by induction
on k.

For k = 1, v1 = g - Mx 1 = g(etx1) - Mx 1 = (get - M)xl, since x 1 is an admissable
point. Hence,

Ilviil = I(get - M)x1ll < [lget - MIl Ijx1 j1I = Ilget - Mll etxl = IM - getll

Next suppose by induction that Ilvk-ll < IIM-get ll At the end of iteration k we have

ljvkIl = lIg- MxkI = lg- M (Xk-1 + Ak-l(ei- _ k-1))

= 1(1 - Ak-1)(g - Mxk-1) + Ak-l(g - Mi)ll = 11(1 - Ak-l)v k - 1 + Ak-(g - i)l, (17)

where ei was found in Step 2 of the algorithm at iteration k. Also, recall that Ak-1 is the
value of A that minimizes Ilg - M (x k - + A(ei - Xk-l)) I over all A E [0, 1]. Therefore, to

obtain an upper bound on lvklI we can substitute any value of A E [0, 1] instead of Ak-1
in (17) above. We will substitute A = 1. Making this substitution and squaring (17), we
obtain

jIvkI2 = (1 - Ak-l)k-1 + Ak-l(g_ Mi)12 < k-ivk1 + I(g-_ i)2

(1) [(k - 1)211 vk-112 + lg- I1ill2 + 2(k- 1)(vk) t (g- Mi)] (18)

Since the algorithm did not terminate at Step 2 of the kth iteration, it must be true that
(vk-1)t(g - Mi) < 0. Furthermore,

jIg - Mill = JI(get - M)eill < max 11(ge t - M)xl = Ilget - Ml.
I 11 i11=1

Substituting these two inequalities into (18) we obtain

VkIi 2 (1)2 [(k- 1)211 vk- i 12 + I get
- M12] .

From the inductive hypothesis, we have jvk - l ] < M-ge" and substituting this in the

above yields:

VkI 2 < (1)2 [(k- 1)2 IIM- get ll2 Ilge t - M112 = - getll2
k-k

Therefore, IvkllI < IM-geetII < IIM-I+llge'1 IIMIl+lglII

Lemma 3.1 can then be used directly to establish the following complexity bound:
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Theorem 3.1 (Dantzig [7]) Suppose that the von Neumann algorithm is initiated with data

(M, g, x° , e). If (P) has a feasible solution, the algorithm will find an e-solution of (P) in

at most

4 max{f]lMl 2 , 119gl2}1
62

iterations. I
Note in Theorem 3.1 that the dimension n of the problem plays no direct role in the

complexity bound, which is interesting and potentially advantageous. Note also that Theo-
rem 3.1 only covers the case of when problem (P) has a feasible solution, and so says nothing
about the infeasible case. Furthermore, note that the complexity bound is exponential in
ln(1/e), and so it would seem that the von Neumann algorithm is an exponential algorithm.
However, as shown below, a different analysis of the algorithm shows that the algorithm is
actually linear in ln(1/e) when problem (P) is "well-posed". We now develop this result.

In order to motivate this next complexity result, we first introduce another geometric
construct. Recall the definition of H: H = {Mx x > 0, etx = 1), i.e., H is the convex
hull of the columns of the matrix M. Now let r denote the distance from the vector g to
the boundary of Hi. More formally, we define:

r = inf{[lg-hll h 0} where = {Mx x > O, et x = 1}. (19)

Recalling the geometric interpretation of K, r = 0 in (19) precisely when the vector g is
on the boundary of the convex hull of the columns of M. Thus, when r = 0, the problem (P)
has a feasible solution, but arbitrarily small changes in the data (1, g) can yield instances
of (P) that have no feasible solution. Therefore when r = 0 we can rightfully call the
problem (P) unstable, or in the language of data perturbation and condition numbers, the
problem (P) is "ill-posed." One can obviously intrepret r as the smallest change in the data
right-hand-side vector g needed to cause the resulting perturbed instance of (P) to be ill-
posed. (However, it should be mentioned in passing that this interpretation can actually be
strengthened, and that r is in fact the smallest change in the data (M, g) needed to cause
the resulting perturbed instance of (P) to be ill-posed.)

The following proposition gives a useful characterization of the value of r.

Proposition 3.2 Let r be defined by (19).

If (P) has a feasible solution, then

r = min max 0 = min max 0

v h v x

Ilvl < 1 s.t. -h-Ov=0 Ilvil < 1 s.t. g-Mx -v=o

h H x >0

etx = 1.

15
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If (P) does not have a feasible solution, then

r= min lig-hll = min fIg-MxI

h x

s.t. h E s.t. x > O

etx = 1.

Proof: The proof is a straighforward application of Lemmas 2.1 and 2.2. If (P) has a
feasible solution, then g E AH, and the characterization of r follows from Lemma 2.1. If (P)
does not have a feasible solution, then g 7El, and the characterization of r follows from

Lemma 2.2. 1

Essentially, Proposition 3.2 states that when (P) has a feasible solution, then r is the
radius of the largest ball centered at g and contained in the convex hull of the columns of
M; when (P) does not have a feasible solution, then r is the distance from g to the convex
hull of the columns of M.

We now present an analysis of the performance of the von Neumann algorithm in terms
of the quantity r.

We first prove the following technical result.

Proposition 3.3 Suppose that (P) has a feasible solution. Let vk 0 0 be the residual at

point xk, and let ei be the unit vector computed in Step 2 at the (k + 1)st iteration. Then

(vk)t(g - Me i) + rlvk'l < 0.

Proof: Since (P) has a feasible solution, r is the radius of the largest ball centered at g that
is contained in 7H. From Proposition 3.2, there exists a point h E - such that g+r iivk l = h.

By the definition of 7, h = Mx for some x > 0 and eta = 1, and so

g-Mx = -r ilvkil.

Recall that ei = argmin{(vk)t(g- Mp) p is admissable). Therefore,

k

(vk)t(g - Mei) < (vk)t(g - Mx) = -(vk) t r 1Iv -- rlvkll,

which implies that

(vk)t(g- Mei) + rllvkll < . l

Now let us estimate the rate of decrease of the norm of the residual at each iteration of
the von Neumann algorithm. As we observed in the proof of Lemma 3.1.

Ivkll = II(1 - Ak-I)vk - 1 + Ak-l(g - M/i)ll.
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Substituting the expression for Ak- 1 given in Step 3 of the algorithm, algebraic manip-
ulation yields:

¢1k2__ IIvk-1 - (g - Mi) 2 1-Xlvk-ll 2 - ((vk-1)t(vk-1 _ (g - M))

Ivk- - (g9 - Ai)112

_ lVk-11111l9_ Mi112 - ((vk-l) t (g - Mi)) 2 IIVk-1112 Ig _ MI 2 - ((vk-l) t(g_ - ))2

IIvk- 1 - (g - Mi)112 IlVk-112 + 9ig - Mil 2 - 2(vk-l)t(g- Mi)'

Recall from Proposition 3.3 that (vk-1)t(g- Mei) < -rllvk-ll < 0. Therefore, the
numerator in the above expression is bounded from above by llvk-l 121g-Mil12-r 2 1fvk-li 2 ,
and the denominator is bounded from below by 119g- Mi 2, which yields:

k 1 2 k-42e 1,12 1k 2 < vk-llv 2l -Mi 2
- r211vk-l2 k- 1 IIge -_

< Ivl (1- 11get_/112 < [11e- ),

since 119g - Mill = I(get - M)ell < Ilget - Mfl and 1 - t < e- t for all t.

We can therefore bound the size of the residual I vkll inductively:

( kr2
IVk|j < fv~lleje (21get-lMIt

2

Therefore, to guarantee that IIvkl < 6, it suffices that

1 vIIe (2lgel-,2N) < e

From the above inequality, it is easy to derive that

k= 2let - M2 In (liv )11) < 8maxf{l g 12 IlIMl 2}l (lvOl)j

iterations is sufficient, when (P) has a feasible solution.

When (P) does not have a feasible solution, the quantity r of (19) is characterized as r =
inf{jlg - Mxl I x is admissable}, from Proposition 3.2. Therefore, IIvkII = 119g - Mxk > r

for all k. On the other hand, Lemma 3.1 states that if the kth iteration is completed (i.e.,
the algorithm completes all four steps of the iteration, without establishing infeasibility or

an -solution), then I vkl < g19e11I Therefore, if k iterations are completed, it follows
that

r < Vkl < Iget - Ml

Hence,
I Iget - M 112 4max{fI lgl 2 1 IMI 12}

- r2 - r 2
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Therefore, at most

4 max{'IIg] 2 , IfM]l2}
r 2

(complete) iterations of the algorithm will be needed to establish the infeasibility of (P).

Combining these results obtained for the two cases we obtain the following:

Theorem 3.2 Let r be defined by (19), and suppose that r > O. Then the von Neumann

algorithm initialized with data (M,g, x° , e) will either find an e-solution of (P) or prove

infeasibility of (P) by exhibiting a solution of (A). The algorithm will terminate in at most

8maxIlllg 12, 1 IM 2} Iln 11 - Mx11° 

iterations when (P) has a feasible solution. The algorithm will terminate in at most

4 max{Ig{[1', IMI 2}1
r2

iterations when (P) does not have a feasible solution. I

Now let us compare and contrast the complexity results in Theorem 3.1 and Theorem
3.2. When (P) has a feasible solution, r is the radius of the largest ball centered at g and
contained in the convex hull of the columns of M. The bound in Theorem 3.2 will dominate
when e is small and when r is not too small, as the bound grows only linearly in ln(1/e)
and linearly in 1/r. When r = 0, the bound in Theorem 3.2 is meaningless, but in this case
problem (P) is ill-posed in the sense that arbitrarily small changes in the data (M, g) can
yield instances of (P) that have no feasible solution. When (P) has no feasible solution, it is
straightforward to show that r > 0, and so the complexity bound in Theorem 3.2 is always
meaninfgul in this case. Recalling the geometric interpretation of r as the smallest change
in the data (M, g) needed to create an ill-posed instance of (P), we see that the bounds in
Theorem 3.2 are exponential in ln(1/r). This is inferior to the interior point algorithm of
Renegar [20] (as one would expect), whose complexity results for solving (P), for instance,
are linear in ln(1/r). However, the work per iteration in the von Neumann algorithm is
very low as compared to an interior point algorithm.

Last of all, the von Neumann algorithm can be viewed as an instance of the Franke-Wolfe
algorithm applied to the problem

min 11g-Mxljl2

x

s.t. x>0
etx 1.

This observation was communicated verbally to the second author by Yurii Nesterov.

18
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4 A Generalized von Neumann Algorithm for a Conic Linear

System in Compact Form

In this section we consider a generalization of the linear inequality system (P) of (13)
to a more general conic linear system in compact form, and we extend the von Neumann
algorithm of the previous section to handle the more general conic linear system.

We will work with a conic linear system of the form:

(P) g-M E Cy
x E Cx (20)

it = 1,

where Cx C X and Cy C Y are each a closed convex cone in the (finite) n-dimensional
normed linear vector space X (with norm fIxll for x E X) and in the (finite) m-dimensional
linear vector space Y (with norm Ilyll for y E Y), respectively. Here b E Y, and A E L(X, Y)
where L(X, Y) denotes the set of all linear operators A : X - Y. where Cx E X and
Cy E Y are closed convex cones. Assumption 1, Assumption 2, and Assumption 3 are
presumed valid for this system, and in particular the linear function tx in (20) is as
described in Assumption 2. Notice that the system (20) is a generalization of (13). Indeed,
setting i = e and letting Cy = (0) and Cx = {x E R n I x > 0}, we obtain (13).

The "alternative" system to (P) of (20) is:

(A) Mts - (gt s) E intC} (21)
s C(

and a generalization of Farkas' Lemma yields the following duality result:

Proposition 4.1 Exactly one of the systems (P) in (20) and (A) in (21) has a solution.

Notice that solving the feasibility problem (P) in (20) is equivalent to solving the fol-
lowing optimization problem:

min jig- Mx- y[
X,y

s.t. x E Cx (22)
tx = 1

y E Cy.

By the definition of the projection operator Prcy,[], y = Prc, [g - Mx] achieves the best
objective value of the optimization program in (22) for a given x satisfying x E Cx and
utx = 1, over all y E Cy. Therefore, the optimzation problem (22) can be reformulated as

(OP) min g- Mx-Prc [g- Mx] 

~~~~~~~~x ~(23)
s.t. x E Cx

itX = 1.
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If (P) has a feasible solution, the optimal value of (OP) is 0; otherwise, the optimal value
of (OP) is strictly positive. For a given positive we call x an e-solution of (P) if x is a
feasible point for optimization problem (OP) with objective value at most e, i.e., x is an
e-solution of (P) if

I9g- Mx- Prce[g- Mx]I{ < e
x E Cx (24)
Utx = 1.

Given a pre-specified tolerance e > 0, the algorithm we describe in this section seeks an
e-solution of (P) (as defined by (24)) by iteratively improving the objective value of (OP). It
will produce upon termination either a point x that is an e-solution of (P), or will produce
a solution s to the alternative system (A) (21), thus demonstrating infeasibility of (P).

Throughout this section, we will say that a point x is "admissable" if x is feasible for
the optimization problem (OP), namely x E Cx and utx = 1.

We now describe a generic iteration of the algorithm. At the beginning of the iteration
we have an admissable point x, i.e., x E Cx and iit = 1. Let = g - An and = Prc [z].
Let v be the "residual" at the point x, namely, = - y. From Remark 2.3, we know that

E -C. Notice that lvl = l 2- JI =Ig - Mr- Prcy [g - M] 1, so, lvl is the objective
value of (OP) at point x. If IIDI < e, where is a pre-specified tolerance parameter, then
x is an e-solution of (P), and the algorithm terminates. Otherwise, the algorithm calls an
oracle to solve the following instance of the conic section optimization problem (CSOP) of
(10):

min t(g- Mp) = min t(gut - M)p
p p

s.t. pE Cx s.t. pE Cx
tp = 1 uitp = 1,

where (25) is an instance of the (CSOPc) with c = (-Ait + Ugt)V. Let p be a solution
to the problem (25). If vt(git - M)p > 0, then it follows from the optimality of p that
vt(git - M) E intC~. Therefore, = - E C and satisfies MtS - iu(gt ) E intC.
Therefore, is a solution to (A) (21), and the algorithm terminates, having established the
infeasibility of (P).

On the other hand, if vt(giit - M)P < 0, p - 5t turns out to be a direction of potential
improvement of the objective function of (OP). The algorithm takes a step in the direction
p - · with stepsize found by constrained line-search. In particular, let

x(A) = + A(p-x ) and y(A) = Prc[g - M(A)].

Then the next iterate x is computed as x = :(A*), where

A* = argminxA[0,1] I - MX(A) - f(A)IJ.

The value of A* and the corresponding value of y(A*) is the solution to the following opti-
mization problem:

min 19g-M(t+A(p-7 ))-yI = min (1-A)z +A(g-MA/p)-y(l
s.t. 0 < A < I s.t. 0 < A < 1 (26)

y E Cy E Cy.

20
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Notice that x is a convex combination of the two admissable points x and fi and there-
fore x is also admissable. Also, A* above is computed as the solution of the nonlinear
optimization problem (26). Finding such A* can be a difficult task computationally, even
when the projection operator Prcy [] is easy to compute. Fortunately, the analysis below
will show that certain approximations of A*, which can be computed easily in closed form,
are sufficient for our purposes.

The formal description of the algorithm is as follows:

Algorithm GVNA

* Data: (M,g, x °, ); x °0 is admissable: x ° E Cx, tx = 1, e > 0.

* Initialization: The algorithm is initialized with x °.

* Iteration k, k > 1: At the start of the iteration we have an admissable point x k - 1

x k - 1 E CX, txk-1 = 1

Step 1 Compute z k- l = g - Mxk-l and yk-1 =-Prc [zk-l]. Compute the residual
at the point xk-l: v k - 1 = zk - 1 - yk- 1 . If Ilvk-ll < , stop. Return as output
xk- 1 as an e-solution to (P).

Step 2 Else, solve the following conic section optimization problem:

min (vk-1)t(g-AMp) = min (vk-l)t(gut - M)p

13 P (27)
s.t. pECx s.t. pECx

utp = 1 utp = 1.

Let pk-1 be an optimal solution of the optimization problem (27). If (vk-1)t(g 2it -

M)p k - l > 0, stop. Return as output s = -v k- 1 as a solution to (A).

Step 3 Else, (vk-1)t(gu t
- M)pk- 1 < 0, and let

(Ak-l,yk) = argmin{ g--j(xk-l+Ak-l(pk-l- k-1))-< A 1, y C Cy},

and
Xk = xk-1 + A k-(p k- 1 _ Xk-1).

Step 4 Let k - k + 1, go to Step 1.

Notice that yk is defined twice for each value of k > 1: first, it is computed as a solution
to the minimization problem in Step 3 of iteration k, then it is calculated in Step 1 of
iteration k + 1. It can be easily shown that the values of yk are the same in both cases.

Analogous to the von Neumann algorithm, we regard algorithm GVNA as "elementary"
in that the algorithm does not rely on particularly sophisticated mathematics at each iter-
ation (each iteration must perform a few matrix-vector and vector-vector multiplications,
in addition to several Euclidean projections onto Cy and must solve an instance of the
conic section optimization problem (CSOPc)). Furthermore the work per iteration will be
low so long as T1 (the number of operations needed to solve the conic section optimiza-
tion problem (CSOPc)) and T2 (the number of operations needed to perform the Euclidean
projection onto Cy) are small. This is seen as follows. At iteration k. the algorithm must
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perform a small number of vector-vector and matrix-vector multiplications (where these
computations can take full advantage of the sparsity of M and/or g as appropriate). At

Step 1 of iteration k, algorithm GVNA must compute a projection onto the cone Cy. At

Step 2 of iteration k, the algorithm must solve an instance of the conic section optimization

problem (CSOPc) (10) (with c = (-Mt + ugt)vk-1). At Step 3 of iteration k, the algorithm

calls for exact minimization over A E [0, 1] and y E Cy of the distance from the point

g - M(xk- 1 + A(pk- 1 - xk- 1)) to the cone Cy when defining Ak- 1 and yk . However. in the

analysis of the algorithm which follows, we will show that it is only necessary to evaluate

this minimum distance problem at two particular values of A E [0, 1] and y E Cy, the com-

putation of which involves only a few matrix-vector and vector-vector multiplications. A

thorough evaluation of the work per iteration of algorithm GVNA is presented in Remark
4.1 at the end of this section.

We now analyze the computational complexity of the algorithm. We first prove a result,

analagous to Lemma 3.1, that provides an upper bound on the size of the residual throughout

the algorithm. In the following Lemma, recall the definition of P as given in (9).

Lemma 4.1 Suppose that algorithm GVNA has completed k iterations, k > 1. Then xk C

Cx, fUtk = 1, yk E Cy, and

IIg9 Mxk - ykIl = Ilvkll < -M - tll < IIMit + 11911

Proof: First note that if x is any admissable point (i.e., x E Cx and iitx=l), then flxII <
tz _ i and so

i - Mxl = II(gut- M)xll < I - gt IIlxll < II- g .11 (28)

From the discussion preceding the formal statement of the algorithm, all iterates of the

algorithm are admissable, so that xk E Cx and utxk = 1 for all k. We prove the bound on

the norm of the residual by induction on k.

For k = 1, jlvl1J = lizl-Prcy[zl]Il < fz -011, since 0 E Cy. Substituting the expression

for z1 and using the fact that x1 is admissable, we obtain:

l11vi I 19- M[x 11 = (g '- M)II < I M-ii g t lf 1 1 1 

where the last inequality above derives from (28).

Next suppose by induction that Ivk-l[ < I M-gi t ll At the end of iteration k we have

IIVkll = Ig - Mxk - YklC = 1(1 - Ak-1)(g - Mx k - 1 ) + Ak-l(g - Mp k- l ) - yk[I

(29)
= I1(1 - Ak-l)z k - l + Ak-l(g _ Mpk-1) _ ykll,

where pk-l found in Step 2 of the algorithm satisfies (vk-1)t(gut - IM)pk-l < 0 (from Step
3). Also, recall that Ak-l and yk were defined in Step 3 as the minimizers of II(1 - A)zk- +
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A(g - Mpk- l) -yll over all A E [0, 1] and y E Cy. Therefore, in order to obtain an upper
bound on l vk I, we can substitute any A E [0, 1] and y C Cy in (29). We will substitute

/l ak-1 k-1
A= -A and y= (30)

k k

Making this substitution, we obtain:

skI < k -I zk-1 + 1 (g - mpk-1) k yk- = [I(k-1)vk-l+(g-Mpk-1)l. (31)

Squaring (31) yields:

Ilvkll 2 < 1 ((k l)2 1vk-1 1 2 + Ig- Ip k- 1 112 + 2(k - )(vk-l )(g- Mpk-1)) (32)

Since the algorithm did not terminate at Step 2 of the kth iteration, it must be true that
(vk-l)t(g - Mpk-) < O. Also, since pk-1 is admissable, ig - A/lp-llI < I-gu (from

(28)). Combining these results with the inductive bound on IIvk - 1IJ and substituting into
(32) above yields

I1IkII 2 < ((k1)2 IIM - g1tJ2 IIM - gj t Jj2 IM-gUt 112
< - 32 (k- /g2}2 k (33)

Also, IM - gutjl < I + lIguill = IMIJ + g11911 IUj*, = IIMII + Ilgl. Combining these
results together, we obtain

ilvkl < JIM - g t < MII +lgfl 

Lemma 4.1 implies the following complexity bound:

Lemma 4.2 Suppose that algorithm GVNA is initiated with data (M, g, x °, e). If (P) has

a feasible solution, the algorithm will find an e-solution of (P) in at most

4 max{IlM 2 , I19gl2}1

iterations. I

Note as in the von Neumann algorithm that the dimension n of the problem plays no
role in this iteration complexity bound, and that this complexity bound is exponential in
ln(1/e).

We now develop another line of analysis of the algorithm, which will be used to show
that the iteration complexity is linear in ln(1/e) when the problem (P) is "well-posed". Let

= 1tM = {MX + y I x E Cx, utx = 1, y E Cy}. (34)

Define
r = r(M,g) = inf{llg - h I h E }
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where H is defined above in (34). As in Section 3, it is possible to interpret r as the smallest
change in the data (M, g) needed to create an ill-posed instance of (P). This interpretation
of r will be proved in Section 5, and then will be utilized in Section 6.

Notice that both t- = NAM and r = r(M, g) are specific to a given data instance (M, g)
of (P), i.e., their definitions depend on the problem data MA and g. We will, however, often
omit problem data M and g from the notation for N- = N/M and r = r(M, g). It should be
clear from the context which data instance we are referring to.

Proposition 4.2 Let r = r(M,g) be defined as in (34) and (35). If (P) has a feasible

solution, then

r= min max 0 = min

v h

max 0

v x,y

Ivj < I s.t. g- h - Ov = O lIvll < 1

x E Cx

tx = -1

YE Cy.

If (P) does not have a feasible solution, then

r = min g-h-Prcy[g-h]l = min

h x,y

s.t. h E H s.t. x Cx

utX = 1

Y E Cy.

Proof: The proof is a straightforward consequence of Lemmas 2.1 and 2.2. If (P) has
feasible solution, then g E It, and the characterization of r follows from Lemma 2.1. If (P)
does not have a feasible solution, then g 7-N, and the characterization of r follows from

Lemma 2.2. 1

We now present an analysis of the performance of algorithm GVNA in terms of the
quantity r = r(M, g).

We first prove the following technical result.

Proposition 4.3 Suppose that (P) has a feasible solution. Let vk O 0 be the residual at

point xk, and let pk be the direction found in Step 2 of the algorithm at the (k+ 1)st iteration.

Then (vk)t(g - Mpk) + rllvkll < 0, where r = r(M, g) is defined in (34) and (35).

s.t. g-M - Ov - y = O
(36)

lg - Mx - Iyl

(37)
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Proof: Since (P) has a feasible solution, r is defined by (36). Therefore, there exists a
point h E Xl such that g - h + rI = 0. By the definition of 7, h = Mx + y for some
admissable point x and y E Cy. It follows that

v k

g- Mx =y- r k

for some y E Cy. Recall that pk = argmin{(vk)t(g - Mp) I p E Cx, tp = 1}. Therefore,

(vk)t(g - Mpk) < (k)(g M ) =

k

(vk) t y- (vk)trI V = (vk) ty -rlvkI < -rllvkll,

since vk E -CY from Remark 2.3. Therefore

(vk)t(g - Mpk) + r vk i < O . I

Now let us estimate the rate of decrease of the norm of the residual at each iteration of
algorithm GVNA. As we observed in the proof of Lemma 4.1,

livkI- = [[(1 - Ak- 1 )z k - 1 + Ak-l(g _ Mp k - 1) _ yk[I, (38)

where Ak- and yk were defined in Step 3, and are the minimizers of 11(1 - A)zk -1 + A(g -
Mp k -1 ) - Yj] over all A e [0, 1] and y E Cy. Therefore, in order to obtain an upper bound
on [v k1 [j, we can substitute any A E [0, 1] and y C Cy in (38). We will use

= A (vk-)t(vk-1 - ( - Mpk- 1 )) A kIvk-1 _ ( Mpk- 1 )[I2 and y = = (1 - )yk- 1 (39)

First, notice that 0 < A < 1. To see why this is true, recall that at Step 3 of the algorithm,
that (vk-)t(g- Mpk- l ) < 0, and therefore the numerator of A is nonnegative. Also,
Ivk-1 - (g - Mpk- 1 )112 = 1 k-1112 + g - Mpk- 11 [ 2 _ 2(vk-1)t(g _- lpk-1) > Vk-1 11 2 -

(vk-1)t(g - Mp k -1 ) = (vk- 1)t(v k- 1 - (g- Mpk-1)). This implies that the numerator of A
is no larger than the denominator. Also, from Proposition 4.3, the denominator is positive,
whereby 0 < A < 1.

Substituting the above values of A and y into (38), we obtain the desired overestimate:

[Ivk[l < 11(1 - A)(z k - 1 _ yk- 1 ) + (g _ Mpk-1 )II = ,( - A)v-l + A(g - Mpk-1 )l. (40)

Squaring (40) and substituting the expressions for A and y given in (39), algebraic manip-
ulation yields:

[[vk 1f 2 < (1 - A)2 1lvk-1112 + 21g _ Mpk-1112 + 2A(1- A)(vk-l) t (g - Mpk- l)

11 - Mp-1 12 1Vk-1 112 - ((vk- 1 )t(g - Mpk1 1 )) (41)
1|Vk- 1 - ( - Mpk-1)112
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Recall from Proposition 4.3, that (vk-)t(g - Mp k - l ) < -rllvk-1II. Thus, ljvk- 1lI 2 (lg 

Mpk- 1l l2 - r2 ) is an upper bound on the numerator of (41). Also, Iv k - 1 - (g - Mpk-1)l12 
I k-112 + Ig - Mpk-11l2 - 2(Vk-l)t(g _- Mp k -l) > Jig- l/Mpk-1112. Substituting this into
(41) yields

lvkll2 < 11-112(11g - Mpk-11 2 -_ 2)

Ig - Mpk-112

2 r/
( 1 -1gMpk-1112 g 1 1-l2 1- - M11211pk-112) 11

< (1-(II, ( r ,1) ) [k-142 (42)

where the last inequality derives from (28). Applying the inequality 1 - t < e - t for t =

(Iigt-MI ), we obtain:

IVk|12 < IIvk-|It2e (I git-A ll)

or

Ivk < IIVk-1lle- 2 ('gl'tAT)I (43)

We can therefore bound the size of the residual I lvkI inductively:

1k 1Or 

flvkII < lIvolle 2IIglut-AIII)

Therefore, to guarantee that Ilvkll I< , it suffices that

iiv tl -2 gt- I <E

From the above inequality, it is easy to derive that

k= 211iit - Ml 2 In IIV · 8<max{lll I IM112} In E )VOI

iterations is sufficient, when (P) has a feasible solution .

When (P) does not have a feasible solution, r = r(M, g) is characterized by (37). There-
fore, for the kth iterate of algorithm GVNA, Ilvkfl = 11g- Mxk - yklil r. On the other

hand, Lemma 4.1 states that if the kth iteration is completed (i.e., the algorithm com-
pletes all four steps of the iteration, without either finding an e-solution or demonstrating

infeasibility), then Iv/kl < lg t I-ll Therefore, if k iterations are completed, it follows that

r < IIv kIIl < 10 - M

Hence,

k< ut _ MlJ12
- 32r2
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Therefore, at most

I 'O t - Mll2 (1gi + g IIM ± l4l)2 j L 4max{I 2 1 IM 12}j
02r2 - 2r2 -L2r2

(complete) iterations of the algorithm will be needed to establish the infeasibility of (P).

Combining these results obtained for the two cases we obtain the following:

Theorem 4.1 Let r be defined by (34) and (35), and suppose that r > O. Then algo-

rithm GVNA initialized with data (M, g, x °, e) will either find an e-solution of (P) or prove

infeasibility of (P) by exhibiting a solution of (A). The algorithm will terminate in at most

8 max{fll9g2, IlMl 2} In (lg - llX0 - Y°'l)

iterations when (P) has a feasible solution. The algorithm will terminate in at most

(it + 11MI) 2 1 4 max{I gJJ2/IMI 2}j
/32r2 - 32r2

iterations when (P) does not have a feasible solution. I

Recall now that Step 3 of the algorithm calls for exact minimization over A E [0, 1] of
the distance from the point g - M(x k - + A(pk-l - xk-l)) to the cone Cy when defining
Ak- 1. However, in our analysis of the algorithm we only used upper bounds on the size of
the residual at the kth iteration given by particular values of A [0, 1] and y E Cy. In
particular, in the proof of Lemma 4.1 we used the values A = 1 and y = k-ly-1 (see (30)),

and in the proof of Proposition 4.3 we used the values A = (vk-l) _(g_ Ak- )) and =
]lvk-t(gMpk-)l]2 and !)

(1 - )yk-l (see (39)). Therefore, if we use A or A as Ak- 1 (choosing the one that provides
us with a residual of a smaller size), we can avoid solving an exact line-search problem
while maintaining all the complexity results stated in the Lemmas and the Theorem of this
section.

To complete the analysis of algorithm GVNA, we now discuss the computational work
performed per iteration. At Step 2 of the algorithm, the algorithm must solve an instance of
the conic section optimization problem (CSOPc), and recall that T1 denotes the number of
operations needed to solve an instance of (CSOPc). The algorithm also computes projections
of three vectors onto the cone Cy at each iteration (to compute yk-1 as well as to choose
which of the values A and A to use as a stepsize, where A and A are defined in (30) and (39)),
and recall that T2 denotes the number of operations needed to compute a projection onto
the cone Cy. (It is presumed that neither T1 nor T2 are excessive.) We have the following
Remark:

Remark 4.1 Each iteration of algorithm GVNA requires at most

T1 + 3T2 + 5m + n + 3mn
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operations, where T1 is the number of operations needed to solve an instance of (CSOPc) and

T 2 is the number of operations needed to compute a projection onto the cone Cy. The term

5m+n+3mn derives from counting the matrix-vector and vector-vector multiplications. The

number of operations required to perform these multiplications can be significantly reduced

if the matrices and vectors involved are sparse.

5 Properties of a Parameterized Conic Linear System in Com-

pact Form

In this section we return to the feasibility problem (FPd) for a general conic linear
system, defined in (1):

(FPd) b- Ax E Cy (44)
x G Cx.

We motivate an approach to solving (FPd) using algorithm GVNA as a subroutine, and we
prove several properties related to this approach that will be necessary for an analysis of
the algorithm for solving (FPd) that will be presented in Section 6.

The "alternative" system of (FPd) is:

(FAd) Ats E Cx
s G C (45)
stb < 0,

and a separating hyperplane argument yields the following partial theorem of the alternative:

Proposition 5.1 If (FAd) has a solution, then (FPd) has no solution. If (FPd) has no

solution, then the following system (46) has a solution:

Ats E C~

s E Cy
(46)

stb < 0

s O.

!
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We will call a point x an e-solution to the problem (FPd) if there exists a point y such
that

lib- Ax - yll <
x E Cx (47)
y E Cy.

Notice that x is an e-solution if and only if x is a feasible point for the following optimization
problem corresponding to (FPd):

min lib-Ax-Yll
x,y

s.t. x E Cx
y E Cy

with objective value at most e.

Proposition 5.2 For any given e > O, either (FPd) has an -solution or (FAd) has a

solution, or both.

Proof: Suppose that > 0 is given, and that (FPd) does not have an -solution. We
will show that in this case (FAd) has a solution. Consider the following two sets: S1 =
{b + v Iv E Y, Ilvll < 1}, and S2 = {Ax + y x E Cx,y E Cy}. Since (FPd) does not
have an e-solution, then S1 2 = 0. Moreover, S1 is a convex set, and S2 is a convex cone.
Therefore, these two sets can be separated by a hyperplane containing 0. In particular,
there exists s E Y* such that s $ 0 and

s t (Ax + y) > 0 for any x E Cx, for any y E Cy, and s t(b + v) < 0 for any Ivl I <1.

Therefore, in particular, s E C~ and Ats E C}. Let v E Y be chosen such that Ilvl = 1
and stv = IlsII* (see Proposition 2.1). Then 0 > st(b+ v) = stb+ elL. Therefore, stb < 0.

Hence, s is a solution of (FAd). I

The set of solutions of the system (FPd) is not necessarily a bounded set. In order to
apply algorithm GVNA as a means to solve (FPd), it seems reasonable to homogenize the
right-hand-side of (FPd) and to add a compactifying constraint, such as:

(Po) b- Aw E Cy
[ + tw = 1 (48)
L> O, w E Cx.

Notice that (Po) is a feasibility problem of the form (P) (see (20)), where

g' = 0, M' = [-b, A],

x' = (, w),

C = { I > 0 x CX,

1' = (1, ).
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It can be shown that in the space X' = Xx R 1 with the norm defined as II(,u, w) l = Ijl+llw I
the linear approximation of the norm function over the cone C: (see Definition 2.1) is indeed
given by the vector ii' = (1, ). Moreover, if /3' is the coefficient of linearity of the norm
I1(p, w)II over the cone Cx as given in Definition 2.1, it is easy to see that /3' = .

Since (Po) is a feasibility problem of the form (P), we could apply algorithm GVNA to
the system (Po). If we have a point (, w) that is a feasible solution of the system (Po) with
/ > 0, then x = w is a solution to the original system (FPd). However, if At = 0, we cannot
apply the above transformation to obtain a solution for the original system. Even if A > 0,
another problem arises if we seek an e-solution of (FPd): if the above transformation is to
yield an e-solution of (FPd), we must ensure that (w, ) is an (eu)-solution of (Po), which is
troubling in that algorithm GVNA cannot guarantee that tL will stay sufficiently positive.

In order to overcome this difficulty, we propose a different transformation of the system
(FPd) which has the structure needed for applying algorithm GVNA and at the same time
has certain tractable properties, as will be shown later in this section. For a given scalar 6,
consider the parameterized system

(Pa) b + b - Aw E Cy
>O, wE Cx (49)
+tw = 1.

Notice that (P 6) is system of the form (P) (20) where

g = b, M = [-b, A],

x' = (, w),

CX = {l I o > 0} x Cx,

i' = (1, i),

and solving (Pa) is equivalent to solving the optimization problem

(OP6 ) min jIb6 + b - Aw - Prcy[b6 + blt - Aw]I

/1,w

s.t. u 0, wCx
+ ttw = 1

which is of the form (OP) (23). As in Section 4, we call a vector (, w) "admissable" if
([t, w) is feasible for (OP 6), and we call (, w) a y-solution of (P 6) for a specified tolerance
y > 0 if (, w) is admissable and llb + b - Aw - Prc, [b + bt - Aw] < y.

It is easy to obtain approximate solutions to the system (FPd) from approximate solu-
tions to the system (P6 ):

Proposition 5.3 If 6 > 0 and (ft, w) is an e. 6-solution of the system (Pa), then x = ~+

is an e-solution of the system (FPd). I
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Finally, observe that the system (Po) can be viewed as the instance of the system (P6)
with the parameter 6 = 0.

Recall from Theorem 4.1 of
complexity bound for algorithm
vector g of the system (P) to the
1, y E Cy}, defined in (34) and
and the appropriate substitution
for this system, we first describe

Section 4 that one of the important parameters in the
GVNA is the distance r = r(M, g) of the right-hand-side
boundary of the set = - = = {Mx + y I x E Cx, utx =
(35). For the system (Pa), we have M = [-b, A], g = b,
for ti is u' = (1, ). Then in order to describe r = r(M, g)
the set - corresponding to the sytem (Ps):

t = tM = ({Mx' +y I x' E CO, y E Cy, (')tx' = 1}

= {-by + Aw + y I t > 0, w E Cx, y c Cy, + utx = 1. (50)

For each value of the parameter 6, let R(6) denote the corresponding value of the distance
r to the boundary of 7-, i.e, R(6) = r = r(M, g) = r([-b, M], b8) for the choice of M and g
above. Using Proposition 4.2, we can characterize R(6) as follows:

Proposition 5.4 If (P6) has a feasible solution, then

R(6) = min max 8

v h,O

vll < 1 s. t. bS- h- Ov = O

h E t

= min max 0

v I, w, y, 8

11vl < 1 s.t. b6 + bM - Aw - Ov - y = 0
(51)

t > 0, w E Cx

+ tW = 1

Y E Cy.

If (Ps) does not have a feasible solution,

R(6) = min l(b- hi

h

- min lIb8 + by - Aw - yll

/, W, y

s.t. > 0, w E Cx

bft- + tw = 1

Y E Cy.

I

(52)
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Notice that if b E a7/t, both definitions (51) and (52) will yield R(6) = 0.

We now develop properties of (Pa) and R(6) relevant to our analysis. Suppose that
(FPd) has a feasible solution. Then 0 E K. Furthermore, by the definition of 'H (see (50)),
the system (Ps) is feasible if and only if the vector b E 'H. Therefore, we are interested in
the values of 6 for which b E . Define

6 = max{6 I (Pa) has a solution} = max{6 I b6 E I}. (53)

Since KH is a closed convex set, 6 is well-defined. Note
true that b E 7, which is illustrated if Figure 2.

that with this definition, it must be

; not feasible

Figure 2

Also, notice that 6 < +oo, which is an immediate consequence of Assumption 4. We
have the following result, which further characterizes the behavior of R(6):

Lemma 5.1 Suppose (FPd) has a solution and R(O) > O. Then 6 given by (53) satisfies 0 <

6 < +oo. R(6) is a concave function over the range 6 E [0, 8], and R(6) is a nondecreasing

convex function over the range 6 E [, +oo). Furthermore, R(6) > [_6 R(O) for all > 0.

Proof: If (FPd) has a solution, then (PO) also has a solution. From (51) of Proposition
5.4 and using v = - TV we see that there exists 0 > R(O) > 0 for which. Therefore

(P6 ) has a solution for 6 = -i, and hence > 6 > 0, since 0 > 0.

Next, we show that R(6) is a concave function over the range 6 C [0,6]. Suppose
61,62 E [0,8] and A E [0,1]. Let 6 = A 1 + (1- A)62. We want to show that R(6) >
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AR(6 1) + (1 - A)R(6 2). This is equivalent to showing that for any vector v with unit norm,
b6 + (AR(6 1) + (1 - A)R(6 2))v E K.

We know that b61 + R(S1)v E t and b62 + R(62)v E KH. Therefore,

b6 + (AR(6 1) + (1 - A)R(6 2))v = A(b61 + R(61)v) + (1 - A)(b6 2 + R(62)v) E K,

since K is a convex set, thus demonstrating the concavity of R(6) over the range 6 E [0, 6].

As argued earlier, 6 < oo and R(6) = 0. Hence for 6 E [0, 6]

R(6)=R(6+ (1-)0) > R() + (1-h)RR(O)= R(= R(O).

Next we examine the behavior of R(6) for 6 > 6. First we show that R(6) is a non-
decreasing convex function for > 6. Suppose 61, 62 > 6. From (52) of Proposition 5.4,
we have R(6) = minllb - hll I h E } for all 6 > 6 . Suppose h1, h2 E H are such that
R(61) = Ilb 1 - hill and R(62) = Jlb6 2 - h2ll. Let 6 = A61 + (1- A) 2, A E [0, 1]. Then

R(6) = minllb6 - hil I h E }) < llb6 - (h 1 + (1 - A)h 2)ll

= IlA(b61 -hl)+(1-A)(b62 -h 2)ll < Allb6i-hill+(1-A)llb62 -h 2ll = AR(j1)+(1-A)R(62),

and therefore R(6) is a convex function over the range 6 > 6.

To show monotonicity, observe that R(6) = 0 and R(6) is nonnegative for all 6 > 6.
Therefore the convexity of R(6) over all 6 > 6 implies that R(6) is nondecreasing for all
values of 6 > 6.

Since b E 0- and T is a closed convex set,there exists a supporting hyperplane of T
at $b, i.e., there exists a vector h with llhll2 = 1 such that hth < htb for all h E KH. Also,
since R(O)h E KH,

R(O) = R(O)hth < Sht b.

Now, for any h E -H and 6 > 6,

[lSb - h1 2 = 116b - hl 2llhll2 > ht (6b - h) ht (6b - h + (6- 6)b)

(6 -- )htb + tb - hth > ( - )htb > R(O) R(O).

As a last step in our analysis of the properties of the family of problems (Pb), we establish
a relationship between the distance to ill-posedness p(d) (see (6)) of the system (FPd) and
R(O) for (FPd).

First suppose that (FPd) has a solution. Then (Po) also has a solution, and by substitut-
ing 6 = 0 into (51) and applying Theorem 3.2 of [11], it follows that pR(O) < p(d) < R(O).
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Next suppose that (FPd) does not have a solution. By substituting 6 = 0 into (52) and
applying Theorem 3.9 of [11], it also follows that PR(O) < p(d) < R(O).

Therefore
PR(O) < p(d) < R(O) (54)

and, as a result, we can restate Lemma 5.1 as follows:

Lemma 5.2 Suppose (FPd) has a solution and p(d) > O. Then 6 given by (53) satisfies 0 <

6 < +oo. R(6) is a concave function over the range 6 E [0, ], and R(6) is a nondecreasing

convex function over the range 6 E [, +oo). Furthermore, R(6) > I p(d) for all 6 > 0.

We conclude this section with a lower bound on 6 in terms of the condition number C(d)
(see (7)) of the system (FPd):

Proposition 5.5 Suppose (FPd) has a solution. Then

1 p(d) -
<- - < '6. (55)C(d)- aJbj 6

Proof: We have R(O) > p(d) from (54) and R(O) = inf{l0 - h I h E 0H} < llbIIl,
since b E 07-t by the definition of 6. Therefore, llbIlS = IIb611 > R(O) > p(d). Since b # 0
from Assumption 4, we have

> p(d)
- Ilbl'

Recall that C(d)= Iidll maxllAl!,llbll > Ilbl. Therefore,p-(- p (d ) pd - '

p(d), 1
IbI - C(d)'

and the statement of the Proposition follows. 

6 Algorithm CLS for Solving a Conic Linear System

In this section, we present an algorithm called "CLS" (for Conic Linear System) for
resolving the conic linear system (FPd), and we establish a complexity result for algorithm
CLS in Theorem 6.3. Algorithm CLS either finds an e-solution of (FPd) or demonstrates the
infeasibility of the system (FPd) by providing a solution to the alternative system (FAd) (see
(45)). Algorithm CLS is a combination of two other algorithms. namely algorithm FCLS
(Feasible Conic Linear System) which is used to find an -solution of (FPd), and algorithm
ICLS (Infeasible Conic Linear System), which is used to find a solution to the alternative
system (FAd). We first proceed by presenting algorithms FCLS and ICLS, and studying
their complexity. We then combine algorithms FCLS and ICLS to form algorithm CLS and
study its complexity.
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6.1 Algorithm FCLS

Algorithm FCLS is designed to find an c-solution of (FPd) when (FPd) is feasible, by
constructing an (eS)-solution (, w) of the system (Ps)(where 6 > 0 is chosen in such a way
that (Pa) is feasible if (FPd) is feasible), and by transforming (, w) into an e-solution x
of (FPd) via the transformation x = w/(6 + ) (see Proposition 5.3). It follows from (53)
that it is necessary that the parameter 6 satisfies 6 E (0, 6] to ensure that (P6 ) is feasible
whenever (FPd) is feasible. From Proposition 5.5, then, it is sufficient to choose 6 E (0, P(d)I
to ensure that (Ps) is feasible whenever (FPd) is feasible. However, the value of p(d) is not
known in advance, and its determination is no easier than solving (FPd) itself (see [11]). To
overcome this difficulty, consider the strategy of applying algorithm GVNA to try to find
an ()-solution of (Ps) for a sequence of values of 6 of the form 6 = 1, 2 4, , , If
algorithm GVNA finds an (6)-solution (, w) of (Ps) then x = w/(6 +,u) is an e-solution of
(FPd) and the procedures stops. If algorithm GVNA establishes infeasibility of (Ps) (which
corresponds to the case when 6 is "too large", i.e., 6 > 6), the value of 6 is halved and one
then applies algorithm GVNA to the new system (Ps). The algorithm repeatedly halves 6
until 6 becomes smaller than 6, and the system (P6 ) becomes feasible.

Each iteration of the above strategy involves applying algorithm GVNA to the system
(Ps). We know from Theorem 4.1 that the bound on the running time of algorithm GVNA
applied to the system (P 6) is quadratic in R1)* Furthermore, the analysis of the function
R(6) in Lemma 5.2 shows that as 6 approaches 6, R(6) approaches 0, which implies an
excessive running time for algorithm GVNA if 6 is very close to 6. Since the value of is
unknown, the above strategy cannot guarantee that the choice of 6 at each iteration will
stay sufficiently far away from 8. We therefore utilize the following strategy to overcome this
difficulty: at each iteration, we apply algorithm GVNA simultaneously to the system (Ps)
and to the system (Ply) where 6 is chosen as discribed above and run the two algorithms in
parallel until one of the two algorithms terminates. We will show below that for any value
of 6 > 0 at least one of the two systems (P6 ) and (Pi5) will have a tractable running time,

which will lead to good bounds on the running time of the entire method. Let $ denote
the value of either 6 or 6, corresponding to the run of algorithm GVNA on system (Pa) or
(P½5) that terminates first. If algorithm GVNA finds an (ES)-solution (, i') of (Pa), then

x = zb/(6 + A) is an e-solution of (FPd) and the procedures terminates. If algorithm GVNA
establishes infeasibility of (PS) (which corresponds to the case when is "too large", i.e.,
6 > 8), the value of 6 is halved again, and one then applies algorithm GVNA in parallel to
the new systems (P6 ) and (P5 6 ). The formal statement of the algorithm is as follows:

Algorithm FCLS

* Data: (A, b, e)

* Iteration k, k > 0
Step 1 6 k = 6 = 2 - ( k -1) a,, = 1,

Step 2 Simultaneously run algorithm GVNA with the data sets (M', g', (x°)', E') and
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(M", g", (x°)", e") defined as follows:

(M', g', ( 0)', E') = ([-b, A], 6'b, (0, 1), 6'E)

(Mi", g", (x0 )ll, ") = ([-b, A], 6"b, (0, 1), 6"e)

and with ii' = (1, fi) substituting for i, until one of the two runs terminated.

Step 3 Let (, e, , e) denote the data set of the run that has terminated first, and
let denote the corresponding value of 6 (either 6' or 6").

If algorithm GVNA has returned an solution (, b) of Pb, stop. Return x -= as

an -solution of (FPd).

Else, set k -- k + 1 and repeat Step 1.

(Note that although Step 2 of each iteration of algorithm FCLS calls for algorithm
GVNA to be run in parallel on two data sets, terminating when one of the two runs ter-
minates, there is no necessity for parallel computation per se. Let d' and d" denote the
two data sets of Step 2 of the algorithm. A sequential implementation of Step 2 is to run
one iteration of algorithm GVNA on data d', followed by one iteration of algorithm GVNA
on d", followed by the next iteration of algorithm GVNA on data d', followed by the next
iteration of algorithm GVNA on d", etc., until one of the iterations yields the stopping
criterion.)

We now analyze the complexity of algorithm FCLS. We assume that (FPd) has a feasible
solution, and that p(d) > O. The analysis of the complexity of the algorithm FCLS consists
of three steps. First, we analyze the running time of the kth iteration. Next, we will provide
an upper bound on the total number of iterations. Finally, we will combine the two results
to derive a worst-case running time of FCLS.

We start by analyzing the running time of the kth iteration of FCLS. Each iteration
of FCLS consists of running algorithm GVNA in parallel on the data instances for the
two problems (P 6i) and (Pp6 ), until one of the runs terminates. Note that computing the
running time of either of the two instances provides an upper bound on the running time of
the kth iteration. We will therefore estimate the running time of algorithm GVNA on the
more "convenient" instance, i.e., the instance that will give a better complexity bound. As
should be intuitively clear, the running time of the kth iteration of FCLS will be strongly
related to the values of 6' = 6 k and 6" 1= ' and their position relative to

First consider the case when 6" > 6. In this case, both (Pa,) and (Pa,,) have no feasible
solution. We will analyze the running time of algorithm GVNA running on (P6 ,). It follows
from Theorem 4.1 that algorithm GVNA will take at most

32 R(6')2 (56)

(completed) iterations of algorithm GVNA to establish infeasibility of (P6,). In order to
estimate R(6'), notice that 6' = 26" > 2. From Lemma 5.2. we conclude that

R(6') > R(26) > 2 p(d) = p(d). (57)
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Substituting for R(8') in (56) and recognizing that I [-b, Al II IIdl and 8' < 1, we conclude
that it will take at most

(Ilbil + fldj)I2
2 p(d)2 (58)

iterations of algorithm GVNA to terminate the kth iteration of FCLS.

Next, consider the case when 6" < 6 < 6'. In this case, (P5,,) has a solution and (P6 ,)
does not have a solution. Note the following trivial fact: either 6' > 4, or " < 2 . We
will analyze these two sub-cases separately below.

In the first sub-case, 6' > 43, and we analyze the running time of algorithm GVNA on
the system (Pi) for the sub-case . It follows from Theorem 4.1 that it will take at most

(I lbl16' + I[-b, A]1() 2 )
L 2R(6')2 J (59)

(completed) iterations of algorithm GVNA to demonstrate the infeasibility of (P6 ,). In
order to estimate R(6'), we exploit the inequality 6' > 34. From Lemma 5.2, we conclude
that

R(8') Ž > p(d)= p(d). (60)

Substituting for R(6') in (59) and recognizing that Il-b, A] II = I Idll and 6' < 1, we conclude
that it will take at most

I9(jjbfl + I dI)2 (61)
32p(d)2 (61)

iterations of algorithm GVNA to terminate this iteration of FCLS.

In the second sub-case, 6" < 3, and we analyze the running time of algorithm GVNA
on the system (Pp6 ) for this sub-case. It follows from Theorem 4.1 that it will take at most

8 max{ b6"l12 , 1I[-b,A] 112} In (lb +b l-A.- 0 I ) (62)

iterations of algorithm GVNA initialized at the point (, w) = (1,0) to find an (e6")-
solution of (P,,). To estimate R(6"), let 6" = a6. From the inequality 6" < 26, it follows
that 0 < a < 2. From Lemma 5.2, we conclude that

R (") = R(ca) > p(d) = (1 - a)p(d) > 3p(d). (63)

After substituting for R(6") in (62) and recognizing that 6" < 1, algebraic manipulation of
(62) yields that at most

72max{lIlb112 ,1 Ild112} _ _lb6_ + byll 72dl2 l b6'+ b - yoll 64
in (11b8" 32~~ 0 l) j - in ±b 2 I In (64)

2p(d)2 V2p(d)2 E V

iterations of algorithm GVNA are needed to find an (6")-solution of (P,,).

Combining (61) and (64), we conclude that in the case when 6" <8 < 6', at most

max {L 9(db + Id)2 1 721d 2Ilbd n + b - yll) (65)
maX \ ( bLl+ 2(d1)2 I ' |32p(d)2 E1
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iterations of algorithm GVNA are needed to complete the kth iteration of FCLS.

Lastly, consider the case when 6' < . In this case, both systems (P6 ,) and (P6 ,") have
solutions. We will analyze the running time of algorithm GVNA running on (Pa,,). It
follows from Theorem 4.1 that it will take at mostF8max{Ib6'112 , I[-b, A]1j2} In l(1lb" + b-YoIll (66)

2R(61")2 6E"

iterations of algorithm GVNA initialized at the point (, w) = (1, 0) to find an (8")-solution
of (P/,,). To estimate R(5"), let " = ac. Since 2" = ' < , it follows that 0 < a < 
From Lemma 5.2, we conclude that

R (6") = R(a) > a- p(d) = (1 - a)p(d) > -p(d). (67)
8 -2

After substituting for R(6") in (66) and recognizing that " < 1, algebraic manipulation of
(66) yields that at most

3211 dl2 n 11" + b - y0 )1 (68)

iterations of algorithm GVNA are needed to find an (8")-solution of (Pa,,).

Now let us analyze the number of iterations that algorithm FCLS will perform. Observe
that both (Ps6 ) and (Ps,,) have no feasible solution when '" = 16k > . Since k (1)k-1
it is easy to see that algorithm FCLS will perform at most

max (log2 (),0) - log2 () (69)

iterations in which both systems (P,6 ) and (Pa,,) are infeasible.

When 8 k satisfies 6k = 6 < < k = 8', algorithm FCLS perfoms an iteration in which
exactly one of the two systems (P6 k) and (P 1k) has a feasible solution. If algorithm FCLS
does not find an approximate solution of that system, algorithm FCLS proceeds with the
next iteration, in which k+ l = 6k, and it follows that both systems (P 6 k+l) and (P½6k+l)

have solutions. Therefore, an approximate solution of one of the two systems will be found
during this iteration, which will terminate algorithm FCLS.

Summarizing, algorithm FCLS will perform at most [log 2 ()J+ iterations in which
both systems (Pa,) and (Pa,,) are infeasible, one iteration in which exactly one system of
(Ps,) and (Pi,,) is feasible, and at most one iteration in which both systems (Pe,) and (P6 ,,)
are feasible.

Substituting the lower bound on 6 from Proposition 5.5 into (69) and (58), algebraic
manipulation of these expressions yield that algorithm FCLS will perform at most

1log 2 (1) log2 (C(d))J (70)

iterations in which both systems (Ps,) and (Pa,,) are infeasible. Each of these iterations will
perform at most

z2 (llbll + ld21 d)2< 2 4C(d)2 (71)
32p(d)2 - [.2p(d)2 32 J
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iterations of algorithm GVNA (from (58) and since algorithm GVNA is run in parallel on
two systems).

Then algorithm FCLS will perform one iteration in which exactly one of the systems
(P6) and (P6s) is feasible. This iteration will perform at most

2nla{ 36jd 2mj 72d2 In (lb" + b - )1 } (72)
2(d)2' 2p(d)2 e6"

iterations of algorithm GVNA (from (65) and, again, since algorithm GVNA is run in
parallel on two systems). Since y was chosen so as to minimize lIb6" + b - yll over all
points y E Cy, we can replace y0 by 0 to obtain an upper bound. Also, during this iteration
6 < 6' = 26" < 61 = 1, so we can bound the expression in (72) above by

36mdlx2 In t2lbii + iibl 
2max {[ J n2p(d)2 , 2p(d)2 I () I

=2maxL 2 ] ]032 ln )

36C(d)2 F72C(d) 2 1 3C(d)jbl} (73)
< 2max L ' 2 In (73)

Lastly, algorithm FCLS will perform at most one iteration in which both systems (POs)
and (P6 ") are feasible. This iteration will perform at most

2 p32p(d 2 "+ b - yl)1 (74)f32p(d)2 I c6"

iterations of algorithm GVNA (from (68) and, again, since algorithm GVNA is run in
parallel on two systems) . Again, we can replace y by 0. Suppose the current iteration is
not the first iteration of algorithm FCLS. Then at the previous iteration of algorithm FCLS
one of the two systems was infeasible. Hence, 16 < ' < 6, whereby " > ¼1. Also " < 
Therefore, we can bound the expression in (74) above by

32C(d)2 In ([ ½llb +b )]
2 /32 In 6(12

= 2 32C(d)2 I (6Jbll) 

<2 () In ( (d) 1 (75)

using Proposition 5.5. If, however, the current iteration is in fact the first iteration of
algorithm FCLS, then 6" = and 6' = 1 < 6, whereby an upper bound on (74) is

321 dl2p)2 In 11bII )1[~~~~~~~' 
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= 2 I2 In (3b)< 2 F /32C(d) n C(d)b I 1 (76)

Combining (70), (71), (73), (75), and (76), we obtain:

Theorem 6.1 Suppose (FPd) has a solution and that p(d) > O. If we apply algorithm

FCLS with data (A, b, e) where e > O, then the algorithm will return an -solution of (FPd)

in at most

2 0(lo2 (C(d))J L4C) 2 + max {36(d)2 , 7d)2 in ( 3C(d) lb[)j 

+ i32C(d) 2 In 6C(d)bl1 )

iterations of algorithm GVNA. The work per iteration of algorithm GVNA is as described

in Remark 4.1. I

6.2 Algorithm ICLS

Algorithm ICLS is designed to demonstrate infeasibility of (FPd), by providing a solution
of the alternative system (FAd) (45), in the case when (FPd) is infeasible. Recall the system
Po of (48), which is an instance of (P6) for 6 = 0. Using (21), the alternative system of (Po)
is

(Ao) Ats E intC:
sE Cy
stb < 0,

and note that if s is a solution of (Ao), then s is also a solution of (FAd). Therefore
it is appealing to use algorithm GVNA on the system (Po), to seek a solution of (Ao),
which is precisely what we do. This leads to the following algorithm for demonstrating the
infeasibility of (FPd), called algorithm ICLS:

Algorithm ICLS

* Data: (A, b, e)

· Step 1 Run algorithm GVNA with data set (, g, , e) = ([-b, A], 0, (0, 1), 0) and
with u = (1, i!) substituting for u. If algorithm GVNA terminates and returns a
solution s of (Ao) then s solves (FAd), demonstrating infeasibility of (FPd).

Note that in algorithm ICLS, that algorithm GVNA is run on the system (Po) with a
feasibility tolerance of e = 0, at Step 1. Suppose that (FPd) has no solution, and suppose
that p(d) > 0. Then algorithm GVNA cannot return an = O-solution of the system (PO).
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To see why this is true, suppose the contrary. Then there exists (, w) feasible for (48), and
so from Theorem 3.9 of [11], p(d) = 0, a contradiction.

Suppose that algorithm GVNA demonstrates the infeasibility of the system (Po). It
follows from Theorem 4.1 that it will do so in at most

II[-b, A]l1 2 7
i 2R(o0 )2 (77)

iterations. Furthermore, recall from (54) that R(O) > p(d). Also, I[-b, A]Il = Ildll. There-
fore, an upper bound on (77) is:

2p(d12 < L )2J (78)
iterations of algorithm GVNA. This leads to the following complexity bound:

Theorem 6.2 Suppose that (FPd) has no solution, and that p(d) > O. If we apply algorithm

ICLS with data (A, b, e), then the algorithm will terminate in at most

C(d)2 1

iterations of algorithm GVNA. Upon termination, algorithm ICLS will return a solution s

of (FAd), thereby demonstrating infeasibility of (FPd). The work per iteration of algorithm

GVNA is as described in Remark 4.1. 1

6.3 Algorithm CLS

Algorithm CLS, described below, is a combination of algorithm FCLS and algorithm
ICLS developed above. Algorithm CLS is designed to resolve the system (FPd) by either
finding an -solution of the system (FPd) or demonstrating the infeasibility of (FPd) by
providing a solution of (FAd). Since it is not known in advance whether (FPd) has a
solution or not, the algorithm CLS will run both algorithms FCLS and ICLS in parallel,
and will terminate when either one of the two algorithms FCLS or ICLS terminates. The
formal description of algorithm CLS is as follws:

CLS

* Data: (A, b, e)

* Step 1 Run algorithms FCLS and ICLS simultaneously on the data set (A, b, e), until
one of the two algorithms terminates. If algorithm FCLS terminates first, stop and
return its output as an e-solution of (FPd). If algorithm ICLS terminates first, proceed
to Step 2.

�1�1�1__��� __
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* Step 2 If algorithm ICLS return a solution s of (FAd), stop: (FPd) is infeasible. Else,
continue running algorithm FCLS until it terminates.

(Again, there is no necessity for parallel computation per se in Step 1. A sequential
implementation of Step 1 is to run one iteration of algorithm FCLS, followed by one iteration
of algorithm ICLS, followed by the next iteration of algorithm FCLS, followed by the next
iteration of algorithm ICLS, etc., until one of the iterations terminates.)

Note that Step 2 of algorithm CLS is necessary for the following reason. If algorithm
ICLS terminates first, it will return exactly one of two possible outputs: (i) either it will
return a solution to (FAd), thus proving infeasibility of (FPd), or (ii) it will find an exact
solution of (Po), if (FPd) is feasible. In the latter case, the solution returned by GVNA
in algorithm ICLS is an exact solution of (Po), but it cannot necessarily be transformed
into an -solution of (FPd) (see the discussion in Section 5). For this reason, we discard
the solution of (PO) and continue running algorithm FCLS until it provides an e-solution of
(FPd).

Combining the complexity results for algorithms FCLS and ICLS from Theorems 6.1
and 6.2 we obtain the following:

Theorem 6.3 Suppose that p(d) > O. The algorithm CLS will either find an e-solution of

the system (FPd) or prove infeasibility of (FPd) by exhibiting a solution of (FAd). It will

terminate in at most

L(21C(d ) 2 (log2(C(d)) max {l, in 6C(d)jlbl) +8 (79)

iterations of algorithm G VNA when (FPd) has a solution. It will terminate in at most

212 L (80)

iterations of algorithm GVNA when (FPd) does not have a solution. Each iteration of

algorithm GVNA uses at most

T1 + 3T 2 + 5m + n + 3mn

operations, where T1 is the number of operations needed to solve an instance of (CSOPc)

and T2 is the number of operations needed to compute a projection onto the cone Cy.

Proof: The proof is an immediate consequence of the discussion above, and the results of
Theorems 6.1 and 6.2. For (79), note that two times the bound in Theorem 6.1 is:

4( (C(d)) C 2 J +max {L )2 2C(d) n (3C(d) bl ) } (81)
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+ 32C(d)n (6C(d)(bll

< 4 (log2 (C(d)) 4C()2 + max 36C(d)2 72C(d)2 in 3C(d) lb

32c(d)2 (6C(d) b 2)) ±

+ I In ( () + 8

which in turn is bounded above by the simpler expression (79), where the bound of Theorem
6.1 is doubled due to the running of algorithms FCLS and ICLS in parallel. Likewise, (80)

follows from doubling the bound in Theorem 6.2. I
The next section contains a discussion of several aspects of this theorem, including

strengths and weaknesses, etc.

7 Discussion

Observe that algorithm CLS (as well as algorithms FCLS and ICLS) consists simply of
repetitively calling algorithm GVNA on a sequence of data instances (M', g'), all with the
same matrix operator M' = [-b, A], but where the right-hand-side is of the form g' = b
for a geometric sequence of values of the parameter 6. Viewed in this light, algorithm CLS
is essentially no more than algorithm GVNA applied to a sequence of data instances all of
very similar form. We regard the "inner" iterations of algorithm CLS as the iterations of
algorithm GVNA, and the "outer" iterations of algorithm CLS then consist of the repeated
application of algorithm GVNA to the sequence of data instances. The total workload of
algorithm CLS, as presented in Theorem 6.3, is the total number of iterations of algorithm
GVNA that are called in algorithm CLS. In this perspective, algorithm CLS is "elementary"
in that the the mathematics of each inner iteration is not particularly sophisticated, only
involving some matrix-vector multiplications, three Euclidean projections, and the solution
of one conic section optimization problem (CSOPc), see Remark 4.1.

Discussion of Complexity Bound. The iteration bounds on the number of iterations
of algorithm GVNA in Theorem 6.3 depend only on four quantities, namely: the "coefficient
of linearity" / for the cone Cx (which is independent of the problem data instance d =
(A, b)), the condition number C(d) of the data instance d = (A, b), the feasibility tolerance
e, and the norm Ilbll of the right-hand-side vector b. As discussed below, the coefficient of
linearity 3 can actually be ignored, as one can always choose the norm JIx[i in such a way
that 3 = 1 without affecting the mechanics of the algorithm. Also, the dependence of the
bound (79) on the norm Ilbll arises naturally so that a re-scaling of the problem data has
the desired effect on the number of iterations needed to achieve a given feasibility tolerance.
Therefore, the only critical components of the bounds of Theorem 6.3 are the condition
number C(d) and the feasibility tolerance e.

The iteration bounds in Theorem 6.3 are linear in ln(1/e) (see 79), which is a desirable
feature. However, the bounds are polynomial in the condition number C(d) of the data
instance d = (A, b) (see (79) and 80)), and so are exponential in ln(C(d)). This exponential

���I_ _I__�__�___
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factor is undesirable both aesthetically as well as practically, and in the language of com-
putational efficiency (see Renegar [19]), algorithm CLS is inefficient. Indeed, to the extent
that the bounds in Theorem 6.3 are attained, the algorithm's exponential sensitivity to
ln(C(d)) would be troubesome. Of course, this is offset somewhat when the work per inner
iteration is low, i.e, when T1 and T2 are not excessive. In this case, algorithm CLS trades
off low work per inner iteration for a greater number of inner iterations, where the number
of inner iterations could be exponential in ln(C(d)). We note that the iteration bounds in
Theorem 6.3 do not depend at all on either n or m (just as in von Neumann's algorithm of
Section 3).

It is useful to compare the bounds in Theorem 6.3 to those of an interior-point algorithm
applied to problem (FP), see Renegar [20]. In an interior-point algorithm, the work per
iteration is the work in solving for the Newton step, which is typically O(n3) operations.
The bound on the number of iterations is, generally speaking, linear in ln(C(d)), which is
efficient, and also is linear in V-'F+ 2, where 01 and 02 are the barrier parameters for the
cones Cx and Cy. (For most applications, it is convenient to think of 19 as O(n) and 02

as O(m) in the worst case.) While an interior-point algorithm will generally have better
worst-case complexity than that of algorithm CLS, the complexity bound of algorithm CLS
will dominate an interior-point algorithm to the extent that the dimensions n and/or m are
large, the condition number C(d) is small, and T1 and T2 are small.

For example, consider an instance of (FP) corresponding to the linear programming
primal feasibility problem: Ax = b, x > O. Here we have T 1 = n and T2 = 1, and the work
per inner iteration of algorithm CLS is O(n2) as opposed to O(n3) operations for an interior
point algorithm. Also, algorithm CLS can exploit sparsity in the data d = (A, b) in a way
that an interior-point algorithm cannot. The iteration bound of an interior-point algorithm
is linear in v/n. If n is sufficiently large and C(d) is sufficiently small, then algorithm CLS
would have a better worst-case complexity bound than an interior-point algorithm.

As another example, consider an instance of (FP) corresponding to the semi-definite
programming primal feasibility problem: Ax = b, x _ O, where n = k(k+1)/2 and x E Skxk.
Here we have T1 = O(k3) in practice (but not in theory) and T 2 = 1, and the work per inner
iteration of algorithm CLS is 0(k 4 ) as opposed to O(k 6) operations for an interior point
algorithm. As above, algorithm CLS can exploit sparsity in the data d = (A, b) in a way
that an interior-point algorithm cannot. The iteration bound of an interior-point algorithm
is linear in (k)4. Here again, if k is sufficiently large and C(d) is sufficiently small, then
algorithm CLS would have a better worst-case complexity bound than an interior-point
algorithm.

Together, these two examples point out two possible ways that algorithm CLS might
have some practical significance, in spite of its inferior exponential bound in terms of
ln(C(d)).

The value of 3 is not consequential. As stated in (79) and (80), the complexity bound
of Theorem 6.3 depends on the coefficient of linearity /3 defined in Definition 2.1. However,
as is shown in [11], it is always possible to choose the norm JiJx] on X in such a way that
/3 = 1. In fact, if u' is any given interior point of the dual cone C, then it is possible to
construct the norm Ilxil in such a way that ,/ = 1 and that the "best" linear operator ii is
u = u'. As a consequence, Theorem 6.3 could actually be restated with no dependence on
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,3. (Of course, since the operator norm IIAil of the matrix A depends on the norm on X,
the condition number C(d) would change with the changed norm.) We chose not to assume
,3 = 1 to show the generality of the results, and to facilitate using results from [11] in the
analysis.

Data Instances where Cx is not regular. One of the critical assumptions needed for
the development of algorithm CLS is that the cone Cx is a regular cone. This assumption
does not hold for important cases of (FP) such as Ax < b (linear inequalities and Cx = R n)

and Ax b (semi-definite inequalities and Cx = Rn). However, by instead working with
the dual system (i.e., the "alternative system") for these cases ((Aty = 0, bty = -1, y > 0)
or (Aty = 0, bty = -1, y >- 0)), one can still utilize algorithm CLS to solve these systems by
interchanging the roles of the primal and the dual conic linear systems, and interchanging
the role of the cone Cx with the cone C~. This interchange works whenever the cone Cy
is a regular cone.

Improved Starting Values of Algorithm FCLS. Algorithm FCLS uses the explicit
starting point of (x°)' = (x°, °0 ) = (0, 1) and the explicit starting value of 6 of 6 = 1 at
each call of algorithm GVNA. There may be better choices of these two starting values that
would lead to lower iterations when a good starting point is known or guessed in advance
and/or when a good estimate of the condition number C(d) is known or guessed in advance.
For example, notice that algorithm FCLS runs algorithm GVNA on the same system (Ps)
during two consequent outer iterations. One might wish, therefore, to initialize the second
run of GVNA on this system using the last iterate of the first run as a starting point. This
may be the subject of future investigation.

Converting an Approximate Solution to an Exact Solution. In [6], Dantzig employs
a clever trick to extend the von Neumann algorithm into an exact algorithm that computes
an exact solution to (13). His method involves solving n + 1 suitably chosen instances of
(13) and then taking an appropriate convex combination of the resulting solutions, see [6]
for details. This approach presumably could be extended to algorithm CLS, with minor
modifications, and would probably increase the complexity of algorithm CLS by a factor of
O(nln(n)). We chose not to present or analyze this extension, as it would involve the use
of another outer loop of iterations into algorithm CLS, which already consumes too many
pages of analysis for most readers' tastes.

Converting Algorith CLS into an Optimization Algorithm. Converting algorithm
CLS into an optimization algorithm is a logical extention of the work presented in this
paper. Suppose that we are interested in minimizing a linear function ctx over the feasible
region of (FP). Then algorithm CLS could be modified with the addition of another outer
loop that will add an objective function cut of the form ctx < ctx whenever an e-solution x
is produced at the previous iteration. This may be a topic of future research.

Complexity of Algorithm CLS when (FP) is ill-posed. The complexity bound of
Theorem 6.3 relies on the hypothesis that (FP) is not ill-posed, i.e., that p(d) > 0. Algorithm
CLS is not predicted to perform well in cases when p(d) = 0. We illustrate the possibility
for extremely poor computational performance when p(d) = 0 with two simple examples.
For the first example, let X = R2 , Y= R 2 , jxll = Ilxlll,

A=(O ), =(1 ), Cx = R, and Cy =-R 2 , and =(1,l)t.

��)-e�B�l�onma��rr�rr�-----^-l�---�-
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The system (FP) then is
O - Oxl - 0x2 < 0

1 - OX1 - 0X2 < 0

Xl > 0, x2 > 0,

and clearly (FP) does not have a solution. Note that by perturbing the coefficients of A
arbitrarily small, it is possible to create an instance of (FP) that has a solution, and so
p(d) = 0, i.e., (FP) is ill-posed. The system (Po) is:

0/ - Owl - OW2 < 0
1/~ - OWl -W2 < 0

A > 0, wl > 0, W2 > 0
+ WI + W2 = 1,

and (Po) has a solution (, w 1, w2) = (0, 0, 1). Since (Po) has a solution, algorithm ICLS will
not be able to prove infeasibility of (FP). Therefore, the only possible output of algorithm
CLS is an ()-solution of (P6 ) for some 6 > 0, if one exists. The system (Ps) is

(P6) 06 + O - wl - 0w2 < 0
16 + 1 - Owl - Ow2 < 0

> O, wl > O w2 > 0
/ + W +W2 = 1,

and so if / is part of an (e6)-solution of (Ps) then / E [0, 1] and + _t < eS. Therefore, if
e < 1, then no (ES)-solution of (P6) can exist for any value of 6 > 0. Therefore, algorithm
CLS will not terminate if applied to this ill-posed data instance.

Next, consider the following example: let X = R 2, Y = R2 , Ilxli = lxll,

A =(0 1 Cx = R, Cy= {(O,O)t}, and i=(1,l)t.

Then system (FP) is the feasible system:

1 - 2xl - 0x 2 = 0

0 - OX1 - 1x2 = 0

X1 > 0, X2 > 0.

Note that for this data instance that p(d) = 0. (To see this, observe that by making the
second component of the vector b negative but arbitrarily small, that the perturbed system
(FP) has no solution, and this implies that p(d) = 0). Problem (P6) for (FP) is:

16 + - 21 - 0x2 = 0
06 + Ot - Ox1 - 1X2 = 0

xi > 0, 2 > 0
+ - X1 +X 2 = 1.

It is easy to see that the largest value of 6 for which (Pb) has a feasible solution is = 2.
and therefore 6 = 2. Let us now examine the performance of algorithm CLS applied to
(FP). Algorithm ICLS will not terminate with a demonstration of infeasibility, since (FP)
has a solution. Algorithm FCLS will start with ' = 1 and 8" = , which both yield feasible
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instances of (Pa) . From Lemma 4.2, the bound on the number of iterations to achieve an
e-solution of (Pa) (for = 1 or = ½) will be

iterations, which is exponential in ln(l/e). Furthermore, the geometry of the problem
indicates that this bound would probably, and unfortunately, be achieved.

These two examples illustrate the possibilities for poor computational complexity when
the problem (FP) is ill-posed, i.e., when p(d) = 0.
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