
Dynamic Modeling of Product
Processes

Development

David N. Ford
and

John D. Sterman

WP# 3943-97-MSA March, 1997

D-4672 2/2

Dynamic Modeling of
Product Development Processes

David N. Ford' and John D. Sterman2

January 1997

The authors thank the Organizational Learning Center and the System Dynamics Group at the
Sloan School of Management, and the "Python" organization for financial support. Special
thanks to the members of the Python project for their interest, commitment and time.

:7/97

Associate Professor, Department of Information Sciences, University of Bergen, N-5020 Bergen, Norway
<dnford@ifi.uib.no>

2 J. Spencer Standish Professor of Management, Sloan School of Management, Massachusetts Institute of
Technology, 50 Memorial Drive, E53-351, Cambridge, MA 02142 USA <jsterman@mit.edu>

�_1____1_

D-4672

Dynamic Modeling of Product Development Processes

David N. Ford and John D. Sterman

Abstract
Successful development projects are critical to success in many industries. To improve project

performance managers must understand the dynamic concurrence relationships that constrain the

sequencing of tasks as well as the effects of and interactions with resources (such as labor),

project scope and targets (such as delivery dates). This paper describes a multiple phase project

model which explicitly models process, resources, scope and targets. The model explicitly

portrays iteration, four distinct development activities and available work constraints to describe

development processes. The model is calibrated to a semiconductor chip development project.

Impacts of the dynamics of development process structures on research and practice are

discussed.

Introduction
Developing products faster, better and cheaper than competitors has become critical to success in

many markets whether the product is an office building, software package, or computer chip.

This has made the performance of product development projects an increasingly important area

of competitive advantage. In response to these pressures many industries have shifted from a

sequential, functional development paradigm to a concurrent, team based paradigm. Increasing

concurrence and cross functional development also dramatically increases the dynamic

complexity of product development (Smith and Eppinger, 1995; Wetherbe, 1995; Osborne,

1993). But the mental models used by developers and managers to evaluate, estimate and

manage projects have not generally improved to include dynamic influences on performance.

The resulting lack of understanding (Diehl and Sterman, 1995; Sterman, 1994; Paich and

Sterman, 1993; Rechtin, 1991) and inadequate decision heuristics (Kleinmuntz, 1993) have

contributed to the frequently cited poor management of development projects (CII, 1990;

Womack, Jones and Roos, 1990; Dertouzos, Lester and Solow, 1989; Davis and Ledbetter, 1987;

Pugh, 1984; Abdel-Hamid, 1984; Brooks, 1975).

Many aspects of projects influence performance including the development process, resources,

project scope, and targets. A project's development process describes the flows of work among

development phases and the completion of development tasks within each phase. The

1

D-4672

characteristics of a development process describe the relative difficulty of development

activities, concurrence relations among activities, delays within processes such as defect

discovery and iteration within and between phases. The quantity and effectiveness of resources

constrain the rate at which different development activities are performed by limiting

development capacity. A project's scope helps define completion by describing the amount of

work required to complete each phase of development. Targets describe acceptable levels of

performance and project priorities. The development process, resources, scope and targets of a

project interact in complex ways to drive project performance.

Traditional project management models based on the Critical Path Method and PERT (Moder,

Phillips and Davis, 1983; Halpin and Woodhead, 1980) staticly describe process, resources,

targets and scope with activity duration estimates and precedence relationships describing the

network flow of activities. These descriptions are used to predict the effects of process,

resources, targets and scope on performance (primarily schedule). These methods are limited by

their use of an indirect project measure (time) and by bundling the characteristics of and

relationships among scope, resources, and processes in each activity into a single duration

estimate. They also tend to ignore iteration or require that iteration be implicitly incorporated

into duration estimates and precedence relationships. For example if a product definition defect

is released to the designers who then discover the defect after design work has begun then the

development process must feed back the defect from the design phase to the product definition

phase and repeat the product definition (i.e. iterate), thereby increasing total project duration and

cost.

Other research approaches identify some dynamic consequences of different project structures on

project performance. For example the dynamic consequences of iteration among project phases

on cycle time have been addressed directly with Steward's (1981) and Eppinger, Whitney, Smith

and Gebala's (1994) Design Structure Matrix. The Design Structure Matrix has been used to map

(Smith and Eppinger, 1995) and predict (Morelli, Eppinger and Gulati, 1995) information flows

among development phases, study both time/quality tradeoff decisions (Chao, 1993) and

variability in cycle times (Osborne, 1993). Design Structure Matrix research demonstrates the

results of iteration between phases but does not describe or model the underlying processes

which drive cycle time. A description of the process structure in the form of the causal

relationships that generate project behavior is needed to investigate how project processes drive

performance.

2

D-4672

To be complete such a causal dynamic project model must explicitly model and integrate the

influences of processes, resources, scope and targets on performance. Three of these four

features have been modeled extensively by system dynamics researchers. Several system

dynamics models have been used to model project resources and investigate the effects of

resource management on project progress (e.g. Richardson and Pugh, 1981; Cooper, 1980,

Roberts, 1974; Homer, Sterman, Greenwood and Perkola, 1993). For example Abdel-Hamid

(1984) built a system dynamics model of software development in which progress is driven by

the daily work force of software developers (resource quantity) and software developer

productivity (resource effectiveness). Considerable attention has also been given to the

secondary effects of changes in project scope. Cooper (1980) and Reichelt (1990) related owner

initiated design changes to total scope of work and litigation costs, and Pugh-Roberts Associates

(Cooper, 1980) among others (Williams, Eden, Ackermann and Tait, 1995) have used such

models extensively and successfully in support of litigation over cost overruns in aerospace,

defense, shipping and construction. The influences of schedule targets on performance have been

modeled by Abdel-Hamid (1984), Richardson and Pugh (1981) and Roberts (1974) and the

evolution of one form of project targets (customer demands) in response to performance has been

studied by Fiddaman, Oliva and Aranda (1993). But little investigation of how the demands and

constraints of different development processes influence project performance has been made.

The general exclusion of development process structures from project models implicitly assumes

that development processes have no impact on project performance. Yet the availability of work

as described by the precedence relationships within and between phases is an important

constraint on project performance (Rosenau and Moran, 1993; Clark and Fujimoto, 1991;

Wheelwright and Clark, 1992; Modor et al., 1983; Halpin and Woodhead, 1980). This

simplifying assumption can also lead to grossly unrealistic performance predictions under

extreme conditions. For example a project model driven solely by resources allows schedule and

quality performance to improve as resources grow until, at the limit of infinite labor, the project

is predicted to be completed in an infinitesimally small time.

A more suitable description of development dynamics must include iterative flows of work,

distinct development activities and available work constraints. The existing system dynamics

models of projects which include process structures have focused on the roles of two

development activities. Cooper (1994, 1993a,b,c, 1980) first and several researchers

subsequently (e.g. Kim, 1988; Abdel-Hamid, 1984; Richardson and Pugh, 1981) modeled two

development activities by distinguishing between initial completion and rework. Ford, Hou and

Seville (1993) expanded this approach to model three development activities (initial completion,

required rework and optional rework to improve quality). However these models do not include

3

D-4672

other important development activities identified in the product development literature including

quality assurance (Rosenau and Moran, 1993; Rosenthal, 1992; Wheelwright and Clark, 1992)

and coordination (Adler, 1995, Cooper and Kleinschmidt, 1994; Clark and Fujimoto 1991).

Abdel-Hamid's model includes quality assurance and accounts for the impact of coordination on

the productivity of workers within a project but not between project phases. System dynamics

models of iterative flows have evolved from single flows of accurate work slowed by implicit

iteration through separate streams of correct and flawed tasks (Abdel-Hamid, 1984; Richardson

and Pugh, 1981) to more realistic closed-loop flows (Ford, 1995; Ford et al., 1993; Kim, 1988).

Homer et al. (1993) first described development processes with available work constraints

imposed by a development phase on itself or imposed on a downstream phase. The dynamic

concurrence constraints in the model described in this paper have their conceptual foundation in

the Homer et al. model. In this work distinct development activities, iteration and dynamic

concurrence are integrated in a single model to describe development processes in a generic and

flexible form.

This paper describes a product development project model which explicitly models all four

performance drivers - process structure, resources, targets and scope. We calibrated and tested

the model for the case of a medium-scale semiconductor product development project. We focus

on the modeling and role of dynamic concurrence on project performance. The importance of

integrating process structure with resources, scope, and targets in dynamic models of projects

and future research is discussed.

The Product Development Project Model
Our model simulates the performance of a multiple-phase development project. Each phase is

represented by a generic structure which is customized to reflect a specific stage of product

development such as preparing construction drawings for building an office complex, writing

software code or testing computer chip prototypes. The generic phase structure has four

subsystems which interact and impact project performance. The four subsystems are

development processes, resources, scope, and targets. We use the three traditional measures of

project performance (time, quality and cost). They are reflected in the model with cycle time,

defects, and cost. Primary phase subsystems interactions are shown in Figure 1, including a

floating goal structures, resource constraints and the generation of a demand for resources by

development processes. The development processes subsystem is the focus of this work. Ford

(1995) describes the other subsystems in detail.

4

D-4672

Process Structure Resources
- -- -1 L/CIIIWIU I-

Development Activites

Phase Dependencies

Process Performance
Limit - -

(Cycle Time

TotalToal Defect Rate
Work I

"'Required I Cost

Scope Targets

Figure 1: Phase Subsystems

The links between project phases can be described with a project network diagram (Figure 2).

LEGEND
I--

* Products of Development Phase

\ / Return Errors for Correction

U7 Development Phase

N.1

Figure 2: A Project Network

Quantity

Allocation among
Development Activites

Effectiveness

I

L

5

"

_

D-4672

If the dependencies within individual phases and between the phases in this network are

described with a Design Structure Matrix (Eppinger et al., 1994) over 80% (13 of 16) of the cells

are occupied. This indicates a highly interdependent process in which iteration is particularly

important. These links shown in Figure 2 represent several forms of inter-phase interaction,

including:

* Work progress in upstream phases constrains progress in their dependent downstream
phases. These constraints are shown by the solid arrows in the project network.

* Defects inherited by downstream phases from upstream phases corrupt downstream
work which must then be corrected. When inherited defects are discovered by a
downstream phase they are returned for correction to the phase where the defect was
generated. These flows are shown by the dashed arrows in the project network.

* The correction of defects requires coordination between the phase that discovered the
defect and the phase that generated the defect.

* Schedule, quality, and cost performance in individual phases influence the
conformance of the entire project to the project targets. The responses of project
managers to performance affects the targets set for each project phase.

The model allows us to represent projects with an arbitrary number of phases which can be

linked in an arbitrarily complex network of concurrence relations, including sequential, parallel,

partially concurrent and other dependent relationships. The fundamental units which flow

through a project are "development tasks". Conceptually a development task is an atomic unit of

development work. Examples of development tasks include the selection of a pump, writing a

line of computer code and installing a steel beam. The unit of work used to describe a

development task may differ among project phases. For example a product definition phase

might use product specifications as the basis for tasks whereas the design phase of the same

project might use lines of computer code. We assume tasks within a phase are uniform in size

and fungible. This assumption becomes more accurate as task size decreases. Therefore

relatively small pieces of development work are selected as tasks. Fungible tasks are

characteristic of some development project phases (e.g. the delivery and placement of soil for a

roadbed). Many other development phases have interdependent but fungible tasks (e.g. software

code as in Abdel-Hamid, 1984). Tasks are also assumed to be small enough to be defective or

correct but not partially defective. This assumption also becomes more accurate as task size

becomes smaller. These assumptions help identify divisions among development phases and

development tasks.

We describe development within a project with four activities: initial completion, quality

assurance, iteration and coordination. Initial completion is finishing a development task the first

6

D-4672

time. Quality assurance is the inspection of tasks for defects. Work on tasks subsequent to their

initial completion to correct defects or improve quality is referred to as iteration. Coordination is

the integration of the product development project among phases. An example of coordination is

when designers work with marketers to refine product specifications. Project processes,

resources, scope and targets influence all four development activities. By customizing the

characterizations of these features the model can be used to represent many different types of

development projects. Process structures simulate the constraints which different development

activities, their interactions and the availability of work within and among phases impose on

progress. Resource structures simulate the effects of work force sizes, the allocation of labor

among the four development activities, productivity, experience and fatigue. Scope structures

model the original scope of work for each phase and scope changes in response to schedule, cost

and quality pressures. Target structures simulate the specification and modification of overall

project and phase-level targets for cycle time, quality, and cost relative to targets and the

pressures on developers due to poor performance.

Describing Development Processes
Development Processes in a Single Project Phase

Individual development phases include processes which can constrain project progress. Consider

as an example the erection of the structural steel skeleton for a ten story building. The steel

erection requires that the structural members (the columns, beams and bracing) be installed,

inspected for proper installation and corrected if the installation is found to be defective. For any

given technology an average amount of time is required for each of these three development

activities to be performed for each structural member, regardless of the quantity or effectiveness

of the resources (e.g. laborers and cranes) applied. These average process durations are unique

characteristics of the structural steel installation, inspection, and correction activities and

descriptive of the development process used in the steel erection phase of the project. An

additional constraint imposed by the structure of these three development activities is that they

cannot be performed simultaneously on any single structural member since inspection requires

that initial installation be complete and correction of defective work requires that any defects

have been discovered through inspection. Additionally, work on some steel members such as

beams must wait for the completion of other work such as the installation of the columns which

support those beams. Therefore not all the structural members can be worked on simultaneously.

This feature of the steel erection process limits the availability of work based on the amount of

work which has been completed and therefore limits the degree of concurrent development

possible within a single development phase. Finally, after installation, inspection and any

required correction of structural members which have been approved may not be released to

7

D-4672

subsequent development phases until a discrete number of members have been approved. For

example approved steel work may not be released for the installation of utilities until all the steel

on an entire floor of the building is approved. This can also delay the final completion of the

development phase. How can these constraints be modeled?

Our model uses three features to describe the development process in a single phase: circular

iteration, multiple development activities and dynamic concurrence. Circular iteration is

described with the stock and flow structure (Figure 3). In our model development tasks flow into

and through four states: tasks Completed but not Checked (CnC), Tasks to be Iterated (TtIter),

Tasks Approved (TAppr) and Tasks Released (TRel). Tasks are completed for the first time

through the performance of the initial completion activity (IC). They accumulate in the

Completed not Checked stock. If no tasks are defective or those defects are not found during

quality assurance (QA) the tasks leave the Completed not Checked stock and pass through the

Approve Tasks (ApprT) flow into the stock of Tasks Approved (TAppr). Approved tasks are

subsequently released through the Release Tasks (RelT) flow to the stock of Tasks Released

(TRel). This represents delivering tasks to the managers of downstream phases or to customers.

Defective tasks are discovered through the Quality Assurance (QA) activity. Tasks found to be

defective move through the Discover Defective Tasks (DDT) flow from the Completed not

Checked stock to a stock of Tasks to be Iterated. These tasks are corrected or improved through

the Iterate Tasks (IterT) activity and returned to the Completed not Checked stock. Defects can

be generated during both initial completion and iteration. The structure of these stocks and flows

is shown in Figure 3 with the variable name abbreviations and their equation numbers.

An analogy of paper passing among boxes on the project manager's desk can clarify the

movement of tasks through a development phase. Each task is written on a sheet of paper. The

scope of the phase is the number of sheets of paper. The tasks currently available for initial

completion are the papers in the project manager's "In" box. Initial completion activity completes

the tasks, shifting the pieces of paper from the "In" box to the project manger's "Work to be

Checked" box, which contains the contents of the Completed not Checked stock. Quality

assurance moves sheets of paper from the "Work to be Checked" box into the project manager's

"Corrections Required" box (Tasks to be Iterated) or to the "Okay" box (Tasks Approved). When

the project manager considers the number of sheets of paper in the "Okay" box to be sufficient he

shifts them into the "Done" file (Tasks Released).

8

D-4672

Ttlter (2)
Tasks to be Iterated

I-i _A

Discover Defective Task rate

DDT (7)

IterT (5)
Itprnt Trick rt

ApprT (8) ReIT (9)
· A Tl .. K r . . eea I .ak t

f ' '1 I 1Ifl II 1L1 1 () V
1Tasks Completed

CnC (1)

m_ ~-

L o
Initial Completion rate

IC (11)

ot Checked U- Tasks Approved U Tasks Released

TAppr (3) TRel (4)

Figure 3: Development Process Model
Stocks and Flows of a Single Phase

Four differential equations describe the flows of development tasks through any single phase j in

a project of n phases where j E { 1,2...,n }. We omit the subscript j for clarity.

(d/dt)(CnC) = IC + IterT - DDT - ApprT (1)

(d/dt)(Ttlter) = DDT - IterT (2)

(d/dt)(TAppr) = ApprT - RelT (3)

(d/dt)(TRel) = RelT (4)

The primary feedback loops in the model's process structure for a single phase are shown in

Figure 4. The negative loop depicts the reduction in the number of tasks available for initial

completion as work is completed. The initial completion rate is based on the Tasks Available for

Initial completion, the Average Initial Completion Duration and the Resource Constraint. An

increase in the initial completion rate increases the number of Tasks Completed, which decreases

the number of Tasks Available for Initial Completion, which reduces the initial completion rate.

This loop introduces the feature we use to describe each of the development activities in a

specific development phase, the Average Process Activity Duration. The Average Process

9

i
--- --

I 11 r -I

-11 I pprove aSK ra teI Helease ask rate

D-4672

Activity Duration is the average time required to complete a development activity on a task if all

required information, materials and resources are available and no defects are generated. It

describes the purest time constant the process imposes on progress by answering the question

"How fast (on average) would a development activity on a task be completed if everything

needed was available?" For example "How fast would a structural steel member be installed if all

the best equipment and installers were available and knew where and how to install the

member?" In Figure 4 the Average Process Activity Duration is applied to initial completion.

The model uses structure similar to the negative loop shown in Figure 4 to describe the role of

the Average Quality Assurance Duration in discovering defective tasks, the Average Iteration

Duration to correct defects, and the Average Coordination Duration to resolve inter-phase

concerns.

In-Phase
Task

Concurrence
constraint

Resource Tasks
Constraint + TasksConstraint +_ Completed

(labor quantity in Phase \
& productivity)

,I ¢ | Fraction of Tasks
Basework (Available

Minimum
Basework
Duration

Rate \ (In-Phase constraint)

Inter-Phase
Task

Concurrence
constraint

Number of
TsekLc in _r rTl-

Zraction of Tasks
A., lthl_

- MrdAIU I Ul I dlaSS 'VlIidUIrl

Phase Released from (Inter-Phase constraint)
Upstream
Phases

Figure 4: Feedback Loops in a Single Development Phase
for a Initial Completion Development Activity

10

I

i-

D-4672

Three development activities drive the flows of tasks in each project phase: initial completion,

quality assurance and iteration. Each activity requires both that sufficient resources are available

to undertake the work (that is, enough skilled workers) and that enough of the information and

material needed to complete the activity is available (that is, that there is a stock of tasks which

can be addressed as a result of completion of prior activities). Therefore the progress rate for

each of the three development activities is the minimum of the rate allowed by resources and the

rate allowed by the process of performing the specific development activity. The equations for

the four flows in a single phase which depend directly on development activities are based on the

Resource Constraint, the Average Process Activity Durations of the three development activities

and the work available for each activity. The work available for the iteration activity is the

number of tasks known to require iteration. Therefore the average iteration rate is the lesser of
the Iteration Resource Constraint (RCIterT) and the number of tasks waiting for iteration divided

by the average time which the process requires to perform iteration on a task, the average

iteration duration (AID):

IterT = Min(RCIterT, TtIter / AID) (5)

In a similar manner the work available for the quality assurance activity is the number of tasks

Completed but not Checked. Therefore the average quality assurance rate (QA) is the lesser of
the Quality Assurance Resource Constraint (RC QA) and the number of tasks waiting for quality

assurance (CnC) divided by the average time which the process requires to perform quality

assurance on a task (AQAD):

QA = Min(RCQA, CnC / AQAD) (6)

The two flows based on the quality assurance activity include explicit modeling of the generation

and discovery of defects. We assume that quality assurance efforts are not perfect and some

defects are missed. Therefore some defective tasks are mistakenly considered to be correct and

are approved and subsequently released to downstream phases with the tasks which do not

contain defects. We assume that no tasks which are not defective are mistakenly considered

defective. We model defect rates with the probability of a defect existing in a task (p(TDef)) and

the accuracy of quality assurance with the probability of discovering a defect if it exists

(p(DiscDef)). Defects are modeled with a parallel coflow structure similar to the development

task structure. The equations for the defect coflow structure are shown in the appendix. The

number of tasks found to be defective is the product of the quality assurance rate, the probability

of a defect existing in a task (p(TDef)) and the probability of finding a defect if it exists

11

D-4672

(p(DiscDef)). The Approve Tasks rate (ApprT) is the number of tasks checked by quality

assurance but not found to have defects. Therefore the formulations for the Discover Defective

Tasks rate (DDT) and Approve Tasks rate (ApprT) are:

DDT = QA * p(TDef) * p(DiscDef) (7)

ApprT = QA - DDT (8)

Approved tasks are released in packages whose size is defined by the Release Package Size

(RelPackSize) which activates a Release Trigger (RelTrig). This package size describes the

minimum number of unreleased tasks (in percent) to be released in a package. All the tasks

which have been approved are released when the number of Tasks Approved exceeds this

threshold. Therefore the equations for the Release Tasks flow is:

RelT = TAppr * RelTrig (9)

RelTrig = IF (RelPackSize / (PS - TRel) >= TAppr), THEN (1) ELSE (0) (10)

The Initial Completion rate (IC) is formulated similarly to the iteration and quality assurance
rates. The initial completion rate is based on the Resource Constraint (RCIC), the Average Initial

Completion Duration (AICD) and the work available for initial completion (ICAvail):

IC = Min(RCIC, ICAvail / AICD) (11)

The number of tasks available for initial completion (ICAvail) depends on the Internal Process

Concurrence relationship, another characteristic feature of the development process. A phase can

represent multiple activities, not all of which can necessarily be performed independently. The

positive loop shown in Figure 4 models the increase in the number of tasks which will become

available for initial completion as work within the phase is completed. For example in the

construction of a ten story building the structural work on the upper floors is not available until

the lower floors which support them are completed. The Internal Process Concurrence

relationship answers the question "How much work can now be completed based upon how the

work has progressed thus far?" We describe the specification and estimation of Internal Process

Concurrence constraints below. The number of basework tasks available for initial completion

can also be constrained by upstream phases. Testing, for example, cannot commence until a

prototype is completed. We model these inter-phase constraints with External Process

Concurrence relationship (described later).

12

D-4672

The tasks available for initial completion (ICAvail) are those which can be completed less those

for which initial completion has already been completed. Therefore the number of tasks available

for initial completion (ICAvail) is the difference between the Total Tasks Available (TTA) and

those tasks which are perceived to be initially completed satisfactorily (TPS) or are waiting for

iteration (TtIter). Finding a large number of defects while the initial completion rate is low can

reduce the fraction of tasks perceived to be satisfactory. This can in turn reduce the total tasks

available to a level below the number of tasks perceived satisfactory or to be iterated, causing an

infeasible negative number of tasks available for initial completion. The maximum function

prevents this condition.

ICAvail = Max(O, TTA - (TPS + TtIter)) (12)

The Total Tasks Available is the product of the fraction available as defined by the constraint set

by the Internal Process Concurrence relationship (%Avail Internal Concurr) and the number of

tasks required to complete the phase (the phase scope, PS). Tasks perceived to be completed

satisfactorily is the sum of the tasks Completed but not Checked (CnC), the Tasks Approved

(TAppr) and the Tasks Released (TRel):

TTA = PS * %Avail Internal Concurr (13)

TPS = CnC + TAppr + TRel (14)

The Fraction of Tasks Available due to the Internal Process Concurrence constraint (%Avail

Internal Concurr) is a function of the fraction of the phase scope which is perceived to have been

completed satisfactorily, Fraction Perceived Satisfactory (FPS). The function is defined by the

Internal Process Concurrence relationship (IPC). The Fraction of tasks Perceived Satisfactory is

the ratio of the tasks perceived satisfactory thus far (TPS) and the phase scope (PS). The tasks to

be iterated are not included because tasks known to be defective do not make additional work

available:

%Avail Internal Concurr = fPC(FPS) (15)

FPS = TPS / PS (16)

The process structure for a single phase as described by the preceding sixteen equations is shown

in Figure 5.

13

D-4672

probability Discover Defect

Average Quality Assurance Duration
AQAD

Quality Assurance Resource constraint

\ \ RCQA

Average Initial Completion Duration
AICD

Internal Process Concurrence
Tasks to be Iterated %Avail Internal Concurr (15)

Figure 5: The Development Process Structure for a Single Project Phase

Describing Internal Process Concurrence

A project phase's Internal Process Concurrence relationship describes the inter-dependency of

the tasks within the phase. In describing the construction of the structure for an office building

the Internal Process Concurrence relationship could capture the physical constraint that lower

floors must be completed sequentially one at a time from the ground up because lower floors

support those above. These constraints can act as a bottleneck in the availability of work. Most

previously published system dynamics models of projects have assumed that all uncompleted

tasks are available for completion (e.g. Abdel-Hamid, 1984; Richardson and Pugh, 1981;

Roberts, 1974). This assumption implies that all tasks are independent and could be performed in

14

D-4672

parallel. Product development research (e.g. Rosenthal, 1992; Wheelwright and Clark, 1992;

Clark and Fujimoto, 1991) and the example above show that processes frequently constrain the

availability of work. Without the Internal Process Concurrence relationship the existing models

would allow all tasks to be completed instantly if the work force were large enough.

Internal Process Concurrence relationships capture the degree of sequentiality or concurrence of

the tasks aggregated together within a phase, including possible changes in the degree of

concurrence as the work progresses. As shown in Figure 6, all Internal Process Concurrence

relationships for feasible projects must lie strictly above the 450 line, otherwise work could not

be completed until it was already completed. Within the feasible region a variety of functional

forms are possible including nonlinear concurrence relationships. In general more concurrent

processes are described by curves near the left axis of the Internal Process Concurrence graph

and less concurrent processes are described by curves near the 450 line. Figure 6 shows the

Internal Process Concurrence relationship for the construction of the structure for a ten story

office building in which the floors are erected sequentially from the ground up. At the beginning

of the project only the first floor (10%) is available to be completed. The completion of portions

of the first floor make available portions of the second floor. When the first floor is finished 10%

is completed and the second floor becomes available, making 20% completed or waiting to be

completed. This linear progression continues until the completion of the ninth floor releases the

final floor for completion (100% completed or waiting to be completed when the phase is 90%

complete).

I UVI

Percent
Completed

or
Available

to Complete

0 100

Percent Completed and Released

Figure 6: A Linear Internal Process Concurrence Relationship

15

D-4672

In contrast with the office building example many such relationships are not linear. The Internal

Process Concurrence relationship shown in Figure 7 is based upon the design of software code

used to create the layout of a new computer chip and was derived from fieldwork with the design

team (Ford 1995). The code to be produced is aggregated into several blocks. A few of these

blocks of code must be designed and written before other blocks can be started. Therefore only

these important blocks (estimated to be 20% of the code) can be worked on at the beginning of

the design phase. More code does not become available until these blocks approach completion.

The increased potential concurrence of subsequent code is reflected in the steep rise of the

function between 20% and 30% Perceived Satisfactory. When most of the blocks of code have

been written the work of integrating the blocks into a single operational program begins.

Integration is fundamentally less parallel, producing the flat tail on the right side of the graphical

function.

Percent
Complete

or
Availablb

to Comple

0 100
Percent Completed and Released

Figure 7: A Nonlinear Internal Process Concurrence Relationship

Development Processes Among Multiple Project Phases

We capture the links among project phases in two ways: External Process Concurrence

relationships and coordination. External Process Concurrence relationships are used to describe
available work constraints between development phases in a manner analogous to the internal

available-work constraints described by Internal Process Concurrence. An External Process

Concurrence relationship describes the amount of work that can be done in a downstream phase

based on the percent of work released by an upstream phase. For example the testing of a

16

D-4672

prototype cannot begin until the prototype is built and the amount of detailed design work which

can be completed is constrained by the amount of product definition work which has been

released to the detailed design phase.

The purpose of External Process Concurrence relationships is similar to the purpose of the

precedence relationships used in the Critical Path and PERT methods: to describe the

dependencies of development phases on each other. However External Process Concurrence

relationships as used here can describe these relationships in greater detail and richness than the

precedence relations used in the Critical Path and PERT methods for several reasons:

* External Process Concurrence relationships describe the dependency between two
phases along the entire duration of the phases instead of only at the start and finish of
the phases as in the Critical Path and PERT methods.

* External Process Concurrence relationships can be nonlinear whereas precedence
relationships used in the Critical Path and PERT methods cannot. That is, the External
Process Concurrence relationship can represent changes in the degree of possible
concurrence between two phases as work on the upstream phase progresses.

* External Process Concurrence relationships describe a dynamic relationship between
development phases by allowing the output (Percent Tasks Available for Initial
completion) to vary over the life of the project depending on the current conditions of
the project. For example if design drawings are returned from construction (the
downstream phase) to design (the upstream phase) for iteration then the work available
to construction is reduced, possibly requiring construction to cease until the drawings
are iterated and re-released. In contrast the precedence relationships used in the
Critical Path and PERT methods are static.

External Process Concurrence relationships can be applied from any upstream development

phase on which a phase depends. In our multiple phase model the Total Tasks Available for

Initial Completion (TTA) is based on the minimum (i.e. tightest) of the constraints set by the

phase's Internal Process Concurrence relationship (%Avail Internal Concurr) and the External

Process Concurrence relationships (%Avail External Concurr) which link the phase to upstream

development phases. The revised equation for the total tasks available is:

TTA = PS * Min(%Avail Internal Concurr, %Avail External Concurr) (13a)

The Fraction of Tasks Available due to the External Process Concurrence relationship (%Avail

External Concurr) is the minimum of the constraints between the phase and each upstream phase
in the project network (%Avail External Concurri). The fraction available due to each constraint

17

D-4672 18

is a function of the Fraction of tasks Released from the Upstream phase in the project network
(FRelUpi). The function is defined by the External Process Concurrence relationship (EPCi,j)

between the focal phase (denoted with subscript j where j E ({ 1,2...n}) and each upstream phase

in the activity network (denoted with subscript i). The Fraction of tasks Released from the

Upstream phase is the ratio of the number of tasks released by the upstream phase (TReli) to the

scope of the upstream phase (PSi):

%Avail External Concurrj = Min(fEPCi,j (FRelUpi)) for i j

FRelUp i = TRel i / PSi

(17)

(18)

Note that the External Process Concurrence relationship fEPCi,j = 1 for upstream phases i

which do not constrain downstream focal phases j as shown in Figure 8a. In general External

Process Concurrence relationships describe more concurrent processes with curves near the

upper and left axes of the External Process Concurrence graph and less concurrent processes

with curves near the lower and right axes.

Pernt . of Up..ream Taks RrI{.d

Figur.e 8: N. Inter-Phas Rd.tmd-ship

rm~~~~~~~~uo l~ ..r,,ul~'m _ _ _ , _ _ t , _ ._ ._~~e _^ = _ .~~

O -__
Peem) ltea risRlr

Figure k: Pill Inttr-Pha- Rdtd-nhip

P.rat o Up-l..m Tk. Rd.-d

F Pgur a : ". lkt p" Inl.-Phs Rdat.lr-,ip

Pecmnt ,f
Dooartram

Avilohle

Initilly
Colmprlte

rgrc Oh ot upsIr-m P sks Rltiiseo

Figure Sh: Squentii Inter-Phe Relid,.phip

Pemnt

% ;.kil'.

_P.
Initdly
Ctrmplete

-i-
- I~oo fU~oo ok itooo

P1g erent ., Ulp tru Tl-Pk Rtelerd i

i gure Bd: Ddayed St inr-Phise Rd-latinshi

P rrn l -f s *

Initiallv _
Glmpce t e

o -

Permnt tf Uptrm Taks Raed

Figur. $f: Deby 'it Prtil0y Cnurm nt
Inr-Pb ReiatIdl hip

Figure 8: Examples of External Process Concurrence

Percent of

AniloMh

Initially
Cmpete

P" p.. of

Pent .!DovsntrrTook.

Initilly
C.rnpe..

Avoilokle

1t} =- m lo
II II - - -

IIIIXIX�

XI�XII

Illp

· lll�n LIllllll

4111

__

aXII
111*

·r�llll�XI

II

I�X�

IIC

XII

ll�L1l*

i^ X

I I I IIIIII

m

o _ ,.. _ . K . .~(

10

o

!O

D-4672

Figure 8 illustrates several possible External Process Concurrence relationships. Four of the

examples (8a, 8b, 8c and 8d) demonstrate how External Process Concurrence relationships can

be used to describe inter-phase relationships commonly used by the Critical Path Method and

PERT. For example infinite order delays between phases based on development progress can be

described by shifting the point along the abscissa at which the first downstream tasks become

available (Figure 8d). Two of the examples (Figures 8e and 8f) show inter-phase relationships

which can be described with External Process Concurrence but cannot be described with the

Critical Path method or PERT. Different levels of concurrence among phases can be described

with External Process Concurrence relationships by altering the shape of the curve in the

graphical function. For example Figure 8e describes an inter-phase relationship in which the

downstream phase can proceed at the same rate as the upstream phase. The development process

allows them to proceed in "lockstep". Figure 8f describes an inter-phase relationship in which the

downstream phase must wait until the upstream phase has released 20% of its tasks and then can

proceed at varying degrees of potential concurrence.

Coordination

The second development process which directly links project phases is coordination.

Coordination describes the inter-phase effects of releasing and inheriting defects. For example,

detailed designers may need to meet with product architects to explain why certain product

specifications cannot be met within the time and budget available, and then revise the

specifications. Our explicit modeling of coordination allows us to distinguish between two

important types of defects encountered in product development, defects caused by factors

internal to a development phase and defects caused by using defective work from upstream

phases as the basis for development work.

Tasks requiring inter-phase coordination such as meetings to explain or resolve problems

accumulate in a stock of Tasks to be Coordinated before they are coordinated and moved to the

Tasks to be Iterated stock (Figure 9). Two flows fill the Tasks to be Coordinated stock. First,

tasks which are discovered to be defective due to the inheritance of defects from upstream phases

flow from the Completed not Checked stock into the stock of Tasks to be Coordinated. We call

this flow Discover Inter-Phase Defective Tasks (DisclnterPhaseDef). Second, the defective tasks

which have been released, discovered by a downstream phase and returned for coordination and

iteration are removed from the upstream phase's stock of Tasks Released and enter the stock of

Tasks to be Coordinated (TtCoord) through the flow of Coordination due to Downstream Quality

Assurance (CDQA). Tasks leave the Tasks to be Coordinated stock and enter the Tasks to be

Iterated stock through the coordination activity (Coord). Therefore the equation for the stock of

19

D-4672

Tasks to be Coordinated (TtCoord) and revised equations for the Tasks Completed but not

Checked, Tasks to be Iterated, Tasks Released stocks, the Approve Tasks flow (ApprT) and the

Tasks Available for Initial Completion and which reflect coordination are:

(d/dt)(TtCoord) = DiscInterPhaseDef + CDQA - Coord

(d/dt)(CnC) = IC + IterT - DisclntraPhaseDef - DiscInterPhaseDef - ApprT

(d/dt)(Ttlter) = DiscIntraPhaseDef + Coord - IterT

(d/dt)(TRel) = RelT - CDQA

ApprT = QA - DiscIntraPhaseDef - DiscInterPhaseDef

ICAvail = Max(O, TTA - (TPS + TtIter + TtCoord))

(19)

(la)

(2a)

(4a)

(8a)

(12a)

CDQA (22)
Coordination due to Downstream Quality Assurance

Tasks to be Iterated Tasks to be Coordinated
(2a) TtCoord (19)

Minimum External Process Concurrence
%Avail External Concurr (17)

Figure 9: Multiple-Phase Process Concurrence and Coordination Structures

20

D-4672

Modeling the discovery of defects caused by inheriting defective tasks from upstream phases

(DiscInterPhaseDef) requires that we distinguish between flows of tasks with internally and

externally (upstream) generated defects. This is because the flow of tasks with internal defects,

which we call Discover IntraPhase Defective Tasks (DiscIntraPhaseDef), goes directly from the

Completed not Checked stock to the Tasks to be Iterated stock but the flow of tasks with defects

due to inherited defects (DiscInterPhaseDef) flows from the Completed not Checked stock to the

Coordination stock before going to the Tasks to be Iterated stock. We model internal defects with

a coflow structure with a structure similar to the development tasks structure as described above.

We model defects due to inheriting upstream defects with a second coflow which is also based

on the development tasks structure. The equations for both coflow structures and their basis in

the development tasks structure are shown in the appendix.

An assumption is required to allocate the tasks defective due to both internal and external defects

to the flow of Discover Defective Tasks or Discover InterPhase Defective Tasks. We assume that

developers will correct defects generated within their own phase before bringing those tasks to

coordination so as to avoid revealing to colleagues that they have made errors (a behavior

observed in our field studies). Therefore the overlapping discoveries can reasonably be assumed

to go directly to the Tasks to be Iterated stock. Other assumptions are easily accommodated.

Based on this reasoning and the densities of the two kinds of defects in the stock of tasks

Completed but not Checked we redefine the flows of defective tasks from the Completed not

Checked stock as:

DiscIntraPhaseDef = QA * p(DiscDefTask) * p(IntraPhaseDefect) (7a)

DisclnterPhaseDef = QA * (p(InterPhaseDefect) -

(p(InterPhaseDefect) * p(IntraPhaseDefect))) (21)

where the Intra-Phase and Inter-Phase defects are calculated by the defect coflow

structure (see appendix for equations).

The flow of Coordination due to Downstream Quality Assurance (CDQA) is based on the reality

that not all defects are caught by quality assurance within a phase. Often defects are released and

subsequently discovered by downstream phases. This flow is the sum of the IntraPhase Defects

and InterPhase defects released by the phase and discovered by all its downstream phases. These

flows are modeled in the defect coflow structure based on the probability of the focal phase

(denoted j) releasing a defect to a downstream phase (denoted i e { 1,2...n}), the probability of the

receiving phase discovering the inherited defect (p(DiscDefi)) and the rate at which the receiving

phase is checking tasks for defects through quality assurance (QAi). The probability of the focal

21

D-4672

phase releasing a defect is the ratio of the number of defects released (IntraPhaseDefRelj or

InterPhaseDefRelj) to the number of tasks released (TRelj). Simultaneous discovery of the same

inherited defect by multiple downstream phases is assumed insignificant. This assumption is

valid for relatively small released defect densities and a sufficiently short time step in the

simulations:

CDQA = ([((IntraDefRelj / TRj) * p(DiscDefi) * QAi) +

((InterDefRelj / TRj) * p(DiscDefi) * QAi)] for i X j (22)

Note that p(DiscDefi) • 0 only for phases which utilize the output of the focal phase. The Tasks

to be Coordinated stock is drained through the coordination of tasks. The Coordination Rate
(Coord) is based on the resource constraint for coordination (RCCoord) and the rate each

development process allows tasks to be coordinated. Using a formulation similar to that used for

initial completion, quality assurance and iteration this process rate is the work requiring

coordination (the Tasks to be Coordinated, TtCoord) divided by the Average Coordination

Duration (ACD):

Coord = Min(RCCoord TtCoord / ACD) (23)

For simplicity we have assumed coordination across phases can be accomplished asynchronously

with tools such as memoranda, sharing of CAD/CAM files or electronic mail. An extension to

the model would explicitly require various degrees of simultaneity in the resolution of inter-

phase coordination. In the extreme case where all coordination requires full simultaneous

participation of employees from all affected phases the coordination rate would be constrained

by the minimum of resources devoted to coordination supplied by the involved phases.

Coordination has effects on development projects beyond the resolution of inherited errors

described above. A beneficial side effect of coordination is learning about developments in

dependent phases by developers. Improved understanding decreases the generation of errors and

increases the likelihood of developers finding their own and inherited errors and thereby

increased their productivity. Since these effects influence underlying rates of defect generation,

defect discovery and productivity we model them with nonlinear graph functions. A still more

detailed model of coordination would model proactive coordination as well as the reactive

function described above.

�·� _0_�111�_

22

D-4672

Model Testing
The full model includes structures describing resources (labor), targets such as overall and phase-

specific deadlines, and scope as well as the process structure described above. These structures

have been generally based upon previously developed system dynamics models (Fiddaman et al.,

1993; Homer, 1985; Abdel-Hamid, 1984; Richardson and Pugh, 1981; Roberts, 1974). Resources

are allocated to initial completion, quality assurance, iteration and coordination based upon the

relative pressures for each activity as perceived by developers. Pressures for resources are driven

by the demand for each activity as modeled by the process structures above and are influenced

by delays in perception and cognitive processes along with schedule, quality, and cost targets.

Complete model equations and documentation are available from the authors. A somewhat

simpler version is fully documented in Ford (1995).

Validation of the process portion of the model structure was considered particularly important

since these structures are absent in the system dynamics and project management literature.

Direct structure tests (Barlas, 1989; Forrester and Senge, 1980) included discussions with

developers and managers in the product development organization at a multinational

semiconductor firm to confirm that our model structure closely reflected their process. These

tests and interview data support the previously discussed inadequacy of development project

mental models and helped validate our model structure. Of particular significance here is that

several of the negative loops systematically missed by the managers and developers are

described by our model's process structure and are not related to resources, targets or scope.

These loops include the constraint on available work imposed at the beginning of a phase by its

Internal Process Concurrence relationship and the negative loop in which completing work

reduces the amount of work available to be done. Extreme conditions tests helped validate the

integration of process, resource, target and scope structures.

Behavior-reproduction tests (Forrester and Senge, 1980) were also used to validate the model by

comparing simulations to field data for a mid-size chip development program, which we call the

Python project. Historical data and reference modes were developed from records of the Python

project. Specification items were selected as the basis for development tasks in the Product

Definition phase. Numbers of specification items and changes to those items in sequential

versions of the product specifications were counted to generate time series data of the

progression of the Product Definition phase. The Design phase consisted primarily of writing the

computer code used to lay out physical chip components in the available space. The firm

graciously provided the full source code to us for model calibration. The number of lines of code

is considered by the company to be sensitive information. However inspection of the code

- ----- -- ___ -

23

D-4672

revealed a uniform code density so we used vertical inches of code on a printout page as the

basis for Design tasks. The code was written in several blocks. Each block included a record of

the original completion date and notes describing subsequent revisions. These dates and notes

were used to generate time series data for the initial completion and iteration performed on each

block of code. These were then aggregated to generate time series for the Design phase. Similar

approaches were used for the other development phases.

Workshops were conducted with developers and managers on the Python project to estimate the

relevant Internal and External Process Concurrence relationships. The protocol for the elicitation

of the concurrence relationships is described in Ford (1995). These workshops proved to be

useful not only for eliciting the data needed to calibrate the model but also helped the members

of different development groups understand each other's mental models better. As an example

Figure 10 shows expert estimates of the External Process Concurrence relationship between the

product definition and design phases of the Python project. The product definition phase

develops product specifications describing the Python chip's market, target performance and

architecture. The designers use these specifications as the basis for writing the software code

used to lay out the chip's individual components. Each estimate in Figure 10 describes the mental

model of a participant in the product definition or design phase concerning the question "How

much-design work can be completed based on how much product definition work has been

completed and released?"

100

Percent
of

Design
Tasks

Available
to

Initially
Complete

0.00

0.00 100
Percent of Product Definition Tasks

Released
Figure 10: Four Estimates of External Process Concurrence Relationship

between the Product Definition and Design Phases

24

D-4672

It is interesting to note that the two "upstream" people (the marketing representative and the

product architect) believe the "downstream" people (the design manager and designer) can and

presumably should begin their work quite early, when few product specifications have been

released, while those downstream believe their work can only progress when a majority of the

specifications have been released. This difference in mental models led to conflict in prior

development projects. Different process concurrence relationship estimates were used as the

basis for sensitivity testing of the model. Basing sensitivity tests on actual expert estimates can

increase confidence in the sensitivity tests over tests based solely on modeler estimates of those

relationships.

Data and model simulations for the four phases shown

Figures 11 through 14.

1 00-

90-

80-

70 -

60 -

50-

W 40

30a. 30 -

20

10

in the network in Figure 2 are shown in

L

0 10 20 30 40 50 60 70

Time (weeks)

80 90 100 1 10 120

Figure 11: Reference Mode and Simulation of Product Definition Phase

Error Statistics
R 2 = 99% Root Mean Squared Error (RMSE) = 0.42%
MAE as percent of mean = 6%, n = 92
Theil Inequality Statistics: Bias = 7% Variation = 8% Covariance = 85%

r

~ --.~--- |/I |l l I l i I I J i ii

25

· . · · · . . . ·

...- - .

D-4672

0.

Cco

a)

0C.a)

c

0
CL

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (weeks)

Figure 12: Reference Mode and Simulation of Design Phase
Error Statistics
R2 = 98% RMSE = 0.57% MAE as percent of mean = 13% n = 117
Theil Inequality Statistics: Bias = 10% Variation = 6% Covariance = 84%

-'- Data

- Simulation

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (weeks)

Figure 13:
Error Statistics

Reference Mode and Simulation of Test Prototypes Phase

R = 99% RMSE = 0.55% MAE as percent of mean = 12%
Theil Inequality Statistics: Bias = 31% Variation = 40% Cc

n =43
)variance = 29%

26

9 I

90

80

70

60

50

40

30

20

10

0

100

80

70

60

50

40 -

30

0

(Du

a)

0.

20

10

0 I --- - -······~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~··l~~~~~~~~~n~~~~u i i i t I~~~~~~~~~~~~~~~~~~~~~
....

n nI

L

D-4672

Iuu

90 -

80-

o 70-
aD

at 60 -a)

50-
C
ax 4 0-
a)
0. 30.

20-

10 -

04

....- Data

.-.n Simulation

I........ .' .. 1......... I I

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (weeks)

Figure 14: Reference Mode and Simulation of Reliability/Quality Control Phase
Error Statistics
R 2 = 100% RMSE= 1.75% MAE as percent of mean = 21% n =6
Theil Inequality Statistics: Bias = 54% Variation = 46% Covariance = 0%

The behavior patterns of our four project phase simulations closely replicate the patterns of the

reference modes. Error statistics were calculated for reference mode and simulated behavior

patterns only over times when phases were active. This prevented including data in error

statistics which matched exactly due to inactivity and would inappropriately reduce calculated

error measures. Errors for the four phases are reasonable (average R 2 = 99% and average MAE

as percent of mean = 13%). Partitioning the mean squared error (MSE) using the Theil inequality

statistics (Sterman, 1984) reveal low MSE (average MSE = 0.98%) dominated by unequal

covariance in the phases with the largest errors. This indicates closeness in the means of actual

and simulated values and similar dominant trends with error caused primarily by a fairly constant

temporal shift between the simulated and actual values, such as the difference in the timing of

the drop in the design phase near week 70, or significant noise. The fit between simulated and

actual data could be improved beyond that shown by specifying process concurrence

relationships with higher resolution. However this would require specification beyond the data

resolution justified by the knowledge elicitation process and would result in calibrating the

model to process and measurement noise. Process noise can be caused by the natural variations

in work effort and productivity around the averages represented in the model. Measurement

�__

27

D-4672

noise can be caused by the way the original data was coded (e.g. errors in dates of completion of

design code) or data reduction errors.

Impacts of Development Process Dynamics on Projects
We use our model to demonstrate that in systems with high iteration, such as product

development, modeling process concurrence relationships endogenously and separately from

other processes is critical to understanding the dynamics of projects. To illustrate differences in

the influence of development activities on performance we simulated project durations with

Average Process Activity Durations for a single development activity in all project phases at

levels of 25, 50, 100, 200, 400, and 800 percent of the base value used in the model tests

described above. These durations can represent process differences across industries or firms or

differences within a firm due to varying levels of process complexity and through variation in the

use of process improvement tools such as information technology. The resulting project schedule

performance for each of the four development activities is shown in Figure 15.

,.C0

o

cO

m0

o
o

JCo

0

a-

3.25

2.75

2.25

1.75

1.25

0.75

0.25 0.5 1 2 4

Activity Duration / Base Activity Duration

8

Figure 15: Impacts of Average Process Activity Durations on Project Duration

Project durations change significantly more in response to changes in the initial completion

duration than in response to changes in the other development activities, as indicated by the

steeper slope of the line representing different initial completion durations. In the case of long

durations the difference exceeds 50%. Different performance measures may be more or less

' Initial Completion

- Quality Assurance

_. Iteration

- Coordination

28

D-4672

sensitive to specific development activities depending on process descriptions. However the high

sensitivity of project duration to the initial completion duration relative to the other development

activities in this example demonstrates the need for modeling development activities separately.

To illustrate the importance of modeling process concurrence relationships explicitly and

dynamically we simulated a project three times using a different external process concurrence

relationship between the Product Definition and Design phases in each simulation. The three

relationships are: 1) the dynamic relationship described by the designer (Figure 10), 2) the

dynamic relationship described by the strategic manager (Figure 10) and 3) a purely parallel and

static relationship such as would be modeled with the Critical Path Method (Figure 8c). Figure

16 shows the number of design tasks to be coordinated using each of the three descriptions. Both

dynamic external process concurrence relationships capture the significant coordination impact

of concurrence but the traditional concurrence description recognizes very little coordination.

This demonstrates the importance of modeling development concurrence relationships explicitly

and endogenously to capture the dynamics of projects.

. 60
u

o50) 50
Ia)

o 40

a, 30
I-

I, 20

0C 1 0

0

i ',

I 't

I x\I

I

0 10 20 30 40 50 60 70

Time (weeks)

80 90 100 110 120

Figure 16: Design Tasks Requiring Coordination under
three External Process Concurrence Relationships

-.--- Design Tasks to be Coord -
Traditional Concurrence
Description

---- Design Tasks to be Coord -
Dynamic Concurrence
Description (strategic
manager)

- - Design Tasks to be Coord -
Dynamic Concurrence

29

D-4672

Conclusions
We have described a dynamic structure for modeling development processes separately from

project resources, scope, and targets and have demonstrated the importance of distinguishing

process dynamics from other project dynamics for understanding projects. We suspect that

previous dynamic project models which reflect actual behavior have incorporated some of the

development processes which we have made explicit into resource structures and parameter

estimates. However capturing how development processes affect project performance by

explicitly modeling those processes provides significantly improved descriptions of development

team mental models, project constraints and the drivers of project performance. The significant

effects which these process structures have on performance demonstrate the need for integrated

project models which include processes, resources, scope and targets.

Our work contributes to the modeling of project management by adding development processes

to the three domains identified by Rodrigues and Bowers (1996) as currently being addressed

with system dynamics (monitoring and control, rework and human resources). We have

improved the modeling of development projects by explicitly describing and testing structures

for process concurrence, four distinct development activities, two types of defects, bi-directional

flows of defects between phases, and defect coflow structures in a generic project model. The

model can be used to further investigate the impacts of process, resources, scope and targets on

project performance. We have also identified process concurrence relationships as an important

aspect of practitioner mental models as a topic for future work.

Project performance problems can be expected to increase as competitive forces and new

development paradigms increase project complexity. Our work points to an important gap

between the primary methods currently used to describe, model, communicate and manage

projects in practice and the complexity of the structures which actually drive the behavior of

those projects. Current project management literature directed toward practitioners is based on

open-loop, single-link linear relationships which are often reduced to lists of rules-of-thumb (e.g.

Thomsett, 1990). Field data collected during our research indicates that development practice

also suffers from these limitations (Ford, 1995). Current project modeling tools are incapable of

capturing the dynamics produced by the development processes described here. Barring reduced

project complexity performance cannot significantly improve without the development of tools

for the description, modeling, and management of dynamic development processes. Our model

helps fill this gap by providing a framework for designing and testing development process

structures and management policies. By explicitly modeling development processes and relating

process, resources, scope, and target features to performance our model plays a similar role for

30

D-4672

dynamic project features as the Critical Path and PERT methods provide for static project

features.

Future research can test the broader application of our model by applying it to other development

projects and processes. This will provide a basis for comparing concurrence relationships across

project characteristics (e.g. big versus small projects or simple versus complex projects) and

project types (e.g. different industries or different objectives). The results of such work can lead

to the abstraction of more general dynamic lessons for managers and improved project

performance. The resulting models can be used to further integrate the influences of process,

resources, targets and scope on quality, cost and schedule performance. Improved descriptions of

development processes in models can also improve the use of those models as learning tools to

improve development team mental models.

References

Abdel-Hamid, Tarek K. 1984. The Dynamics of Software Development Project Management:
An Integrative System Dynamics Perspective. doctoral thesis. MIT. Cambridge, MA.

Adler, Paul S. 1995. Interdepartmental Interdependence and Coordination: The Case of the
Design/Manufacturing Interface. Organization Science. 6: 2: 147-67. March-April, 1995.

Barlas, Yaman. 1989. Multiple test for validation of system dynamics type of simulation models.
European Journal of Operational Research. 42 (1989), 59-87.

Brooks, Frederick P. 1975. The Mythical Man-month. Addison-Wesley. Reading, MA.

Chao, Linda 1993. Improving Quality and Time to Market in the VLSI Product Life Cycle.
unpublished master's thesis. Sloan School of Management. MIT. Cambridge, MA.

Clark, Kim B. and Fujimoto, Takahiro 1991. Product Development Performance, Strategy,
Organization, and Management in the World Auto Industry. Harvard Business School Press.
Boston, MA.

Construction Industry Institute 1990. The Quality Performance Management System: A
Blueprint for Implementation. Report 10-3. Construction Industry Institute. University of
Texas. Austin, TX.

Cooper, Kenneth, G. 1994. The $2,000 hour: How Managers Influence Project Performance
Through the Iteration Cycle. Project Management Journal. v. 25. n. 1.

Cooper, Kenneth, G. 1993a. The Iteration Cycle: Benchmarks for the Project Manager. Project
Management Journal. v. 24. n. 1.

Cooper, Kenneth, G. 1993b. The Iteration Cycle: How It Really Works...And Iterations. Project
Management Journal. v. 24. n. 1.

Cooper, Kenneth, G. 1993c. The Iteration Cycle: How Projects are Mismanaged. Project
Management Journal. v. 24. n. 1.

Cooper, Kenneth, G. 1980. Naval Ship Production: A Claim Settled and a Framework Built. In
Interfaces, 10:6, Dec., 1980. the Institute of Management Sciences.

Cooper, Robert G. and Kleinschmidt, Elke 1994. Determinants of Timeliness in Product
Development. The Journal of Product Innovation Management. v. 11. n. 5. pp. 381-96.

31

D-4672

Davis, Kent and Ledbetter, W.B. 1987. Measuring Design and Construction Quality Cost.
Construction Industry Institute. University of Texas. Austin, TX.

Dertouzos, Michael L., Lester, Richard K. and Solow, Robert M. 1989. Made in America,
Regaining the Productive Edge. MIT Press. Cambridge, MA.

Diehl, Ernst and Sterman, John 1995. Effects of Feedback Complexity on Dynamic Decision
Making. Organizational Behavior and Human Decision Processes. 62(2), 198-215.

Eppinger, Stephen D, Whitney, Daniel E. Smith, Robert P. and Gebala, David A. 1994. A
Model-Based Method for Organizing Tasks in Product Development. Research in
Engineering Design. v.6, n.1, pp. 1-13.

Fiddaman, Thomas, Oliva, Rogelio, and Aranda, R. Rembert 1993. Modeling the Impact of
Quality Initiatives Over the Software Product Life Cycle. Proceedings of the 1993
International System Dynamics Conference, Cancun, Mexico.

Ford, David N. 1996. Impacts of Product Development Process Structure on Cycle Time and
Project Manageability. Proceedings of the Third International Product Development
Conference, European Institute for Advanced Studies in Management. Fountainbleau, France.
April 15-16, 1996.

Ford, David N. 1995. The Dynamics of Project Management: An Investigation of the Impacts of
Project Process and Coordination on Performance. doctoral thesis. Massachusetts Institute of
Technology. Cambridge, MA.

Ford, David, Hou, Alex, and Seville, Donald 1993. An Exploration of Systems Product
Development at Gadget Inc. Technical Report D-4460, System Dynamics Group, Sloan
School of Management, Massachusetts Institute of Technology. Cambridge, MA.

Forrester, Jay W. and Senge, Peter M. 1980. Tests for Building Confidence in System Dynamics
Models. TIMS Studies in the Management Sciences. v. 14, pp. 209-28.

Graham, Alan K. 1980. Parameter Estimation in System Dynamics Modeling. Randers, Jorgen,
ed. Elements of the System Dynamics Method. Productivity Press. Portland, OR.,

Halpin, Daniel W. and Woodhead, Ronald W. 1980. Construction Management. John Wiley &
Sons. New York.

Homer, Jack. 1985. Worker Burnout: a dynamic model with implications for prevention and
control. System Dynamics Review. v. 1. n.1, pp. 42-62.

Homer, Jack, Sterman, John, Greenwood, Brian, and Perkola, Markku. 1993. Delivery Time
Reduction in Pulp and paper Mill Construction Projects: A Dynamic Analysis of
Alternatives. Proceedings of the 1993 International System Dynamics Conference, Cancun,
Mexico, Monterey Institute of Technology.

Kim, Daniel H. 1988. Sun Microsystems, Sun3 Product Development/Release Model. Technical
Report D-4113, SD Group. Cambridge, MA. MIT.

Kleinmuntz, Don N. 1993. Information Processing and Misperceptions of the Implications of
Feedback in Dynamic Decision Making. System Dynamics Review. v. 9, n. 3, Fall, 1993.

Moder, Joseph J, Phillips, Cecil R. and Davis, Edward W. 1983. Project Management with CPM,
PERT and Precedence Diagramming. Van Nostrand Reinhold Co. New York.

Morelli, Mark D., Eppinger, Steven D and Gulati, Rosaline K. 1995. Predicting Technical
Communications in Product Development Organizations. IEEE Transactions on Engineering
Management. v.42, n.3, Aug. 95, pp. 215-22.

Osborne, Sean M. 1993. Product Development Cycle Time Characterization through Modeling
of Process Iteration. unpublished master's thesis. Sloan School of Management. MIT.
Cambridge, MA.

32

D-4672

Paich, Mark and Sterman, John 1993. Boom, Bust, and Failures to Learn in Experimental
Markets. Management Science. vol. 39, no. 12, pp. 1439-58. Dec., 1993.

Pugh, Emerson W. 1984. Memories that Shaped an Industry, Decisions Leading to IBM
Systems/360. MIT Press. Cambridge, MA.

Rechtin, Eberhardt. 1991. Systems Architecting, Creating and Building Complex Systems.
Prentice Hall. Englewood Cliffs, NJ.

Reichelt, Kimberley S. 1990. Halter Marine: A Case Study in the Dangers of Litigation.
Technical Report D-4179, System Dynamics Group, MIT Sloan School of Management.
Cambridge, MA.

Richardson, George P. and Pugh III, Alexander L. 1981. Introduction to System Dynamics
Modeling with Dynamo. Cambridge, MA. MIT Press.

Roberts, Edward B. 1974. A Simple Model of R&D Project Dynamics. In E.B. Roberts (Ed.).
Managerial Applications of System Dynamics. pp. 293-314. Cambridge, MA. Productivity
Press. 1978.

Rodrigues, Alexander and Bowers, John. 1996. System Dynamics in project management: a
comparative analysis with traditional methods. System Dynamics Review. 12:2:121-139.

Rosenau, Milton D. and Moran, John 1993. Managing the Development of New Products,
Achieving Speed and Quality Simultaneously Through Multifunctional Teamwork. Van
Nostrand Reinhold. New York.

Rosenthal, Stephen R. 1992. Effective Product Design and Development. Business One Irwin,
Homewood, IL.

Smith, Robert P. and Eppinger, Steven D. 1995. Identifying Controlling features of Engineering
Design Iteration. Working Paper WP#3348. MIT Sloan School of Management. Cambridge,
MA. USA

Sterman, John 1994. Learning in and about Complex Systems. System Dynamics Review. vol.
10, no. 2-3, pp. 291-330.

Sterman, John 1984. Appropriate Summary Statistics for Evaluating the Historical Fit of System
Dynamics Models. Dynamica. 10-2:51-66. Winter, 1984

Steward, Donald V. 1981. The Design Structure System: A Method for Managing the Design of
Complex Systems". IEEE Transactions of Engineering Management. Aug., 1981.

Thomsett, Michael C. 1990. The Little Black Book of Project Management. American
Management Association. New York. USA.

Wetherbe, James C. 1995. Principles of Cycle Time Reduction: You Can Have Your Cake and
Eat It Too. Cycle Time Research. vol. 1, no. 1, pp. 1-24. 1995. FedEx Center for Cycle Time
Research. Memphis TN.

Wheelwright, Steven C. and Clark, Kim B. 1992. Revolutionizing Product Development,
Quantum Leaps in Speed, Efficiency, and Quality. The Free Press. New York.

Williams, Terry, Eden, Colin, Ackermann, Fran and Tait, Andrew. 1995. The Effects of Design
Changes and Delays on Project Costs. Journal of the Operational Research Society. 46:809-
18.

Womack, James P, Jones, Daniel T. and Roos, Daniel 1990. The Machine that Changed the
World. Rawson Associates. New York.

33

D-4672

Appendix: The Defect Coflow Structures

The defect coflow structures simulate the movement of defects arising within a development

phase (internal) or due to inherited defective work (external) with a stock and flow structure

directly parallel to the development task sector described above. The defect coflow structures

will be described by following process equations from the development tasks sector (in italics

here) with the parallel defect coflow equation. Coflow parameter abbreviations without

subscripts apply to both internal and external defect coflows. Differences in equations describing

internal defects (subscripted with "i") and external defects (subscripted with "e") follow the

general coflow equations, as do coflow parameter abbreviations.

Stocks:

(d/dt)(CnC) = IC + IterT- DisclntraPhaseDef - DisclnterPhaseDef - ApprT (la)

(d/dt)(UDef) = GDIC + GDI - DiscInternalDef - DiscExternalDef - ApprDef (24)
UDef - Undiscovered Defects
GDIC - Generate Defects in Initial Completion'
GDI - Generate Defects in Iteration
DiscInternalDef - Discover Internal Defects
DiscExternalDef - Discover External Defects
ApprDef - Approve Defects

(d/dt)(Ttlter) = DisclntraPhaseDef + Coord - IterT (2a)

(d/dt)(KD) = DiscInternalDef + CoordDef - GDI - CorrDef (25)
KD - Known Defects
DiscInternalDef - Discover Internal Defects
CoordDef - Coordinate Defects
GDI - Generate Defects in Iteration
CorrDef - Correct Defects

(d/dt)(TAppr) = ApprT- RelT (3)

(d/dt)(DefAppr) = ApprDef- RelDef (26)
DefAppr - Defects Approved
RelDef - Release Defects

(d/dt)(TRel) = RelT - CDQA (4a)

(d/dt)(DefRel) = RelDef - RecRelDef (27)
DefAppr - Defects Approved
RelDef - Release Defects
RecRelDef - Receive Released and Discovered Defects

· __1__1__1___________s_____·�_I_____ ___·_1

34

D-4672

(d/dt)(TtCoord) = DiscInterPhaseDef + CDQA - Coord (19)

(d/dt)(DefCoord) = DiscExternalDefects + RecRel Def - CoordDef (28)

Flows and Defect Densities:
IterT = Min(RCIterT, Ttlter /AID) (5)

GDI = (KD / TtIter) * p(GenDef)int * IterT (29)

CorrDef = (KD / TtIter) * (1 - p(GenDef) int) * IterT * (30)
GDI - Generate Defects in Iteration
p(GenDef)int - probability of generating an internal defect
CorrDef - Correct Defects

Iteration has two effects on defects: the generation of new internal defects (equation 29) and the

correction of discovered defects (equation 30). We consider defects generated during iteration on

tasks rendered defective by external defects to be externally caused and therefore model them in

the external defect coflow. However since the iteration is being done within a phase the

probability of generating a defect during iteration in the external defect coflow is the same as the

probability of generating an internal defect. The complement of the tasks which become

defective during iteration are corrected without generating new defects.

DisclntraPhaseDef = QA * p(DiscDefTask) * p(IntraPhaseDefect) (7a)

DiscInternalDef = DiscIntraPhaseDef (31)
p(IntraPhaseDefecti) = (UDefi / CnC) (32.1)

p(IntraPhaseDefecte) = 0 (32.2)
DiscInternalDef - Discover Internal Defects
UDef - Undiscovered Defects

DisclnterPhaseDef = QA * (p(InterPhaseDefect) -

(p(InterPhaseDefect) * p(IntraPhaseDefect))) (21)

DiscExternalDef = DiscIntraPhaseDef (33)
p(InterPhaseDefecti) = 0 (34.1)

p(InterPhaseDefecte) = (UDefe / CnC) (34.2)
DiscExternalDef - Discover External Defects
UDef - Undiscovered Defects

ApprT = QA - DiscIntraPhaseDef - DisclnterPhaseDef (8a)

ApprDef = QA - DiscInternalDef - DiscInterPhaseDef (35)
ApprDef - Approve Defects
DiscInternalDef - Discover Internal Defects
DiscExternalDef - Discover External Defects

~~~ ·II~~~~~~~ ___----- 

35



D-4672

RelT = TAppr * RelTrig (9)

RelDef = DefAppr * RelTrig (36)
RelDef - Release Defects
DefAppr - Defects Approved

IC = Min(RCIC, ICAvail/AICD) (11)
GDICi = IC * (p(GenDefi) (37.1)

GDICe = IC * (p(GenDefe) -(p(GenDefe) * p(GenDefe)) (37.2)

GDIC - Generate Defects in Initial Completion
p(GenDef) - probability of generating a defect

We assume that those tasks made defective by both internal and external causes (represented by

the intersection of the probabilities of the generation of a defect due to internal or external

causes) are processed as being internally defective. This is consistent with reasoning presented in

the body of this paper and the formulation of the separation of discovered defects due to internal

and external causes (equations 7a and 21).

CDQA = ( [((IntraDefRelj / TRj) * p(DiscDefi) * QA i) +

((InterDefRel / TRi ) * p(DiscDefi) * QA i)] for i Xj (22)

RecRelDef = (DefRel / TRel) * p(DiscDefDown) * QADown (38)
RecRelDef - Receive Released and Discovered Defects
p(DiscDefDown) - probability of downstream phase discovering defect
QADown - - Quality Assurance rate in downstream phase

Coord = Min(RCCoord, TtCoord /ACD) (23)
CoordDefi = 0 (39.1)

CoordDefe = Coord (39.1)

-I�-----^--�-I'��--��

36



D-4672

Complete Equation Listing

(d/dt)(CnC) = IC + IterT - DDT - ApprT (1)

(d/dt)(CnC) = IC + IterT - DiscIntraPhaseDef - DiscInterPhaseDef - ApprT (1 a)

(d/dt)(Ttlter) = DDT - IterT (2)

(d/dt)(Ttlter) = DiscIntraPhaseDef + Coord - IterT (2a)

(d/dt)(TAppr) = ApprT - RelT (3)

(d/dt)(TRel) = RelT (4)

(d/dt)(TRel) = RelT - CDQA (4a)

IterT = Min(RCIterT, TtIter / AID) (5)
QA = Min(RCQA, CnC / AQAD) (6)

DDT = QA * p(TDef) * p(DiscDef) (7)

DiscIntraPhaseDef = QA * p(DiscDefTask) * p(IntraPhaseDefect) (7a)

ApprT = QA - DDT (8)

ApprT = QA - DiscIntraPhaseDef - DiscInterPhaseDef (8a)

RelT = TAppr * RelTrig (9)

RelTrig = IF (RelPackSize / (PS - TRel) >= Tappr) THEN (1) ELSE (0) (10)
IC = Min(RCIC, ICAvail / AICD) (11)

ICAvail = Max(O, TTA - (TPS + TtIter)) (12)

ICAvail = Max(O, TTA - (TPS + TtIter + TtCoord)) (12a)

TTA = PS * %Avail Internal Concurr (13)

TTA = PS * Min(%Avail Internal Concurr, %Avail External Concurr) (13a)

TPS = CnC + TAppr + TRel (14)

%Avail Internal Concurr = fIpC(FPS) (15)

FPS = TPS / PS (16)

%Avail External Concurrj = Min(fEPCi,j (FRelUpi)) for i j (17)

FRelUpi = TReli / PSi (18)

(d/dt)(TtCoord) = DiscInterPhaseDef + CDQA - Coord (19)

DiscInterPhaseDef = QA * (p(InterPhaseDefect) -

(p(InterPhaseDefect) * p(IntraPhaseDefect))) (21)
CDQA = ( [((IntraDefRelj / TRj) * p(DiscDefi) * QAi) +

((InterDefRelj / TRj) * p(DiscDefi) * QAi)] for i • j (22)

Coord = Min(RCCoord TtCoord / ACD) (23)

(d/dt)(UDef) = GDIC + GDI - DiscInternalDef - DiscExternalDef - ApprDef (24)

(d/dt)(KD) = DiscInternalDef + CoordDef - GDI - CorrDef (25)

(d/dt)(DefAppr) = ApprDef - RelDef (26)

37



D-4672

(d/dt)(DefRel) = RelDef - RecRelDef (27)

(d/dt)(DefCoord) = DiscExternalDefects + RecRel Def - CoordDef (28)

GDI = (KD/ TtIter) * p(GenDef)int * IterT (29)
CorrDef = (KD / TtIter) * (1 - p(GenDef)int) * IterT * (30)

DiscInternalDef = DiscIntraPhaseDef (31)

p(IntraPhaseDefect)i = (UDefi / CnC) (32.1)

p(IntraPhaseDefect)e = 0 (32.2)

DiscExternalDef = DiscIntraPhaseDef (33)

p(InterPhaseDefect)i = 0 (34.1)

p(InterPhaseDefect)e = (UDefe / CnC) (34.2)

ApprDef = QA - DiscInternalDef - DiscInterPhaseDef (35)

RelDef = DefAppr * RelTrig (36)

GDICi = IC * (p(GenDefi) (37.1)

GDICe = IC * (p(GenDefe) -(p(GenDefe) * p(GenDefe)) (37.2)

RecRelDef = (DefRel / TRel) * p(DiscDefDown) * QADown (38)

CoordDefi = 0 (39.1)

CoordDefe = Coord (39.1)

38


