
A Single-Item Inventory Model for a
Non-Stationary Demand Process

Stephen C. Graves

Working Paper Number 3944



A Single-Item Inventory Model for a Non-Stationary Demand Process

Stephen C. Graves

Leaders for Manufacturing Program and
A. P. Sloan School of Management

Massachusetts Institute of Technology
Cambridge MA 02139-4307

January 1997

In this paper, I consider an adaptive base-stock policy for a single-item
inventory system, where the demand process is non-stationary. In particular,
the demand process is an integrated moving average process of order (0, 1, 1),
for which an exponential-weighted moving average provides the optimal
forecast. For the assumed control policy I characterize the inventory random
variable and use this to find the safety stock requirements for the system.
From this characterization, we see that the required inventory, both in
absolute terms and as it depends on the replenishment lead time, behaves
much differently for the case of non-stationary demand compared with
stationary demand. I then show how the single-item model extends to a
multi-stage, or supply-chain context; in particular we see that the demand
process for the upstream stage is not only non-stationary but also more
variable than that for the downstream stage. We also show that for this
model there is no value from letting the upstream stages see the exogenous
demand. I conclude with some observations about the practical implications
of this work.
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1. Introduction

One major theme in the continuing development of inventory theory is to
incorporate more realistic assumptions about product demand into inventory
models. In most industrial contexts, demand is uncertain and hard to
forecast. Many demand histories behave like random walks that evolve over
time with frequent changes in their directions and rates of growth or decline.
Furthermore, as product life cycles get shorter, the randomness and
unpredictability of these demand processes have become even greater.

In practice, for such demand processes, inventory managers often rely on
forecasts based on a time series of prior demand, such as a weighted moving
average. Typically these forecasts are predicated on a belief that the most
recent demand observations are the best predictors for future demand. A
forecast based on an exponential-weighted moving average is a good and
common example of this practice.

In this paper I develop a simple inventory model that incorporates this type
of demand process, namely a demand process that behaves like a random
walk. I consider a class of non-stationary demand processes, for which an
exponential-weighted moving average provides the minimum mean square
forecast; I then build a single-item inventory model assuming a deterministic
replenishment lead time for this family of demand. From the analysis of this
model, I determine the safety stock requirements for a single item, and then
explore implications from applying the model to a multi-stage or supply
chain setting.

This work is related to a series of papers that develop optimal inventory
policies when the demand distribution depends upon some unknown
parameter and an estimate of the parameter is updated as actual demand is
observed over time. For demand distributions from the exponential family,
Scarf (1960) formulates the inventory problem as a dynamic program with a
two-dimensional state space, and shows how to reformulate as a single-
variable dynamic program. Azoury (1985) and Miller (1986) generalize and
extend these results to other classes of demand distributions. Lovejoy (1990)
shows that a critical-fractile inventory policy is optimal or near optimal for a
more general class of demand distributions.

This paper differs from the prior work in that I assume an inventory policy,
and then characterize its behavior for a class of demand processes. Whereas I
have not tried to establish the optimality of this policy, it is a critical fractile
policy, as will be seen. Furthermore, the analysis provides relatively clean
results for seeing how the inventory requirements depend upon various
problem parameters.
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2. Single-Item Single-Stage System

In this section we consider a single-item inventory system. The
replenishment lead time is fixed and known, call it L. We assume that the
demand process is a non-stationary stochastic process, that the inventory
control policy is an adaptive base-stock control policy, and that any demand
not satisfied by inventory is backordered. In the following, we describe in
more detail the demand process, a forecast model, and an inventory control
policy, and then present an analysis of the model. We will introduce
additional assumptions as needed.

Demand Process: The demand process is an autoregressive integrated
moving average (ARIMA) process given as follows:

dl = g + 1 and

dt+1 = d t - (1 - a)Et + t+l for t = 1, 2,.... (1)

where dt is the observed demand in period t, oc and ,g are known parameters,
and { t } is a time series of i. i. d. random variables. We assume that 0 < oc < 1,
and that Et is normally-distributed random noise with E[et] = 0 and Var [t] =

2
a . This process is known as an integrated moving average (IMA) process of
order (0, 1, 1), and is discussed in detail in Box et al. (1994)

By varying ox, we can model a range of demand processes. One way to see the
effect of the parameter a is to expand (1) as follows:

dt+l = t+l + t + a0Ct-1 + .... + al + (2)

Thus, when ca = 0, the demand follows a stationary i. i. d. process with mean
2

g, and variance ac. For 0 < a < 1, the demand process is a non-stationary
process, in which larger values of a result in a less stable or more transitory
process; that is, as grows, dt+l depends more and more on the most recent
demand realizations. We view a as a measure of the inertia in the process;
the larger ca is, the less inertia there is in the process. When = 1, the
demand process is a random walk on a continuous state space; from (1), we
see that demand in the next period is the demand in the current period plus a
noise term.

This demand process, and the analyses that follow, permit negative demand.
We note this as a caveat since in most industrial contexts negative demand is
unlikely or not allowed. Hence, as with any model, some judgment is
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required as to the applicability of this model of the demand process to the real
world.

Forecast Model: A first-order exponential-weighted moving average provides
the minimum mean square forecast for this demand process [Box et al. (1994)]
To see this, consider an exponential-weighted moving average with
parameter a and initial forecast R.. We define Ft+1 to be the forecast, made
after observing demand in time period t, for demand in period t+1:

F1 = and

Ft,, = cad t + (1- o)Ft for t = 1, 2,.... (3)

By subtracting equation (1) from (3), one can show by induction that:

dt = Ft + t for t = 1, 2, .... (4)

Thus, we see that the exponential weighted moving average is an unbiased
forecast and the forecast error is the random noise term for time period t.
Hence, there is no better forecast model for this demand process.

Furthermore, from (4) we see that the variance of the forecast error does not
depend upon the magnitude of the demand process. Hence this assumed
demand process may not be an appropriate model if we expect the forecast
errors to grow with the mean demand.

From (3) and (4), we can re-express the forecast in terms of the random noise
terms:

Ft+ 1= Ft + .t = aOt + £t-l + at_2 + .... + aE1 + (5)

Inventory Control Policy: Let qt to be the order placed in period t for delivery
in period t + L. We assume that in each period t, we first observe d t,
determine this period's order (qt), receive the order from L periods ago (qt-L),
and then fill demand from inventory. Any demand that cannot be met from
inventory is backordered. The inventory balance equation for this system is

xt = xt- - dt + qt-L for t = 1, 2, .... (6)

where xt denotes the on-hand inventory (or backorders) at the end of period t.
We assume that we can set an initial inventory level x, and that qt = p. for t <
0.
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Suppose that we operate with a base-stock policy, but adjust the base stock as
the demand forecast changes. We propose the following rule to do this:

qt = dt + L* (Ft+1 - F t ) (7)

where F t is the forecast given by (3). As explanation, there are two
components to the order quantity. The first component replenishes the
demand for the immediate period, as with a typical base-stock policy. The
second component adjusts the base-stock level to accommodate the change in
the forecast. This adjustment increases the amount of inventory on order,
namely the pipeline stock, by the change in forecast multiplied by the lead
time.

In posing the ordering policy (7), we permit the order quantity to be negative.
Whereas this assumption is unrealistic in most contexts, it does make the
analysis of the model much easier. Based on experience with similar
modeling assumptions, we expect that the general nature of the results are
invariant to this assumption; nevertheless, this should be investigated.
Furthermore, in section 3, we show that I qt is an IMA (0, 1, 1) process with
known parameters. Hence, for a given value of qt, we can readily assess the
likelihood that the order quantity becomes negative in the future. In this
way, one may judge the applicability of this model of the order process to a
given context.

We do not contend that this policy is optimal. Rather, the policy seems
reasonable as an extension of the base-stock policy to the case of non-
stationary demand. Furthermore, we show below that we can set xO to assure
that the probability of stock out in each period equals some specified target
level. As such, this policy behaves as a critical fractile policy. [Johnson and
Thompson (1975) show that a base-stock or myopic policy is optimal for non-
stationary demand from a Box-Jenkins process, for the case of zero lead times,
and an assumed lower limit on demand in any period.]

Characterization of Inventory Random Variable: For the given assumptions
and control policy, we will demonstrate that

L-1
P1 xt = x - , £t-i (1 + i a) for t = 1, 2,

i=O
b

where £t = 0 for t < 0. [We assume the convention ,( ) = Ofor b < a.]
i=a
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Proof: First we remove qt-L from (6) by substitution of (7). By repeated
backward substitution, we then can rewrite (6) for t > L as

xt = x0 - d t - dt 1 -... - dt+1lL + L * Ft+1L

= x0 - (dt - Ft+l-L ) - (dt- 1 - Ft+l L )- -- -- (dt+l- L - Ft+l- L ) 

We use (2) and (5) to express xt in terms of the random noise terms:

Xt = o - (Et + (XEt-l + aCt-2 + .... + £CEt+l-L)

- (t- 1 + £t-2 + Ott-3 + ---.... + Et+l-L)

.... - t+2 -(£t+-L + L) - (t+l-L)

By combining terms, we get the desired result.

For 1 < t < L, one can demonstrate the property P1 in a similar manner by
direct substitution and by application of the stated boundary conditions.

Discussion: From P1 and the assumption that { Et } is a time series of
normally-distributed i. i. d. random variables with E[Et] = 0 and Var[£t] = c 2,
we find that xt is normally distributed with

E [xt] = x and

Std[xt] = 1 (1+ix)2 (8)
i=O

where t > L and Std[ ] denotes the standard deviation. We regard xO as the
safety stock for this inventory system and can show that Std[xt] is the standard
deviation of demand over the replenishment lead time L. To assure some
specified level of service, one would set the safety stock, namely x, to cover
the demand uncertainty over the lead time, as given by (8). For example, by
setting

x = z Std [xt],

one assures that the probability of not stocking out in any given period is
D(z), where 4( ) is the cumulative distribution function for the standard
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normal random variable. Thus, for the given assumptions, one can set x to
achieve any critical fractile of service.

As one implication of this, suppose that in each time period we incur a per
unit inventory holding cost h if x t > 0 or a per unit backorder cost b if x t < 0.
Then to minimize the expected costs in each period, one sets xO so that the
probability of not stocking out equals b/(h+b); that is, in each time period we
have the solution to a newsboy problem (e. g., Lee and Nahmias 1993). To
achieve this solution requires the prior assumption that we permit qt to be
negative. When this assumption is not appropriate, then I expect that the
optimal solution is more complex and would require the solution of a
dynamic program.

The standard deviation of xt is a surrogate for the safety stock requirements
for this inventory system. In the following we use equation (8) to show how
the safety stock depends on the lead time and on the parameter a, a measure
of the inertia of the demand process.

When a = 0, we get the familiar result that

Std [xt] = -L.

That is, when we have a stationary, i. i. d. demand process, the safety stock
grows with the square root of L. (see Lee and Nahmias, 1993; Nahmias 1993;
or Graves 1988)

When a = 1, the demand process is a random walk and we find

Std[xt] = L-; (1 2 = L(L + 1)(2L + 1)
Std [x(] = (1 + i) a :

i=O

Thus, the safety stock requirement, as a function of the replenishment lead
time, behaves much differently than in the stationary demand case. Instead
of having a concave relationship between lead time and the safety stock, we
have a convex relationship; one needs increasing amounts of safety stock as
the lead time grows, when the demand process follows a random walk.

To explore this relationship further, we plot in figure 1 the standard
deviation of xt as a function of the lead time for o=1 and various choices of a.

There are two key observations for the assumed demand process from this
figure.
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First, we observe that we require dramatically more safety stock when
demand is non-stationary, in comparison with the textbook case of stationary
demand (a = 0). For instance, the safety stock requirements are 50% greater
than the stationary case when L= 6 for a = 0.2, when L=3 for a =0.5, and when
L = 2 for a = 1.0. The safety stock requirements are 100% greater than the
stationary case when L= 10 for a = 0.2, when L=5 for a =0.5, and when L = 3 for
a = 1.0.

Second, we observe that the relationship between lead time and safety stock
becomes convex for non-stationary demand. That is, after some point, the
rate of increase in safety stock increases with the lead time. For instance, for a
= 0.2, the relationship is convex after L = 3, for a = 0.5 after L=2, and for a = 1.0
after L = 1. This is in stark contrast to the stationary-demand case where
safety stock is a concave function of the lead time for all values of L.
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Figure 1: Standard deviation of xt as a function of lead time for a = 1.
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Erkip et al. (1990) have also observed that significantly more safety stock may
be needed when demand does not come from a stationary i. i. d. process.
They consider a multi-echelon inventory system in which demand is
stationary but is correlated across sites and across time. They develop an
explicit expression for the safety stock requirements and show how these
requirements are impacted by demand correlation over time.

Asymptotic Behavior: To this point, the inventory system operates with
periodic review where the review period is one time period, however
defined. An open question is how does the inventory vary with changes in
the length of the review period.

To investigate this, we develop the model on the time continuum where the
length of the review period is A = 1/n, for n a positive integer. The analogous
model for the demand process for the review period A is:

d(A) = pA + E(A) and

d(t + A) = d(t) - (1 - aA) (t) + (t + A) for t = A, 2 , ....

where d(t) is the observed demand at time t for t = A, 2A, .... Alternatively,
one can interpret d(t) to be the demand over the interval (t-A, t). To reflect the
change in review period, the initial demand estimate is now ptA, and the
inertia parameter is aA. The i. i. d. random noise over the interval (t-A, t),
given by £(t), is normally-distributed with E[(t)] = 0 and Var [(t)] = o2A.

We can now restate P1 for the review period A to obtain an expression for x(t),
the on-hand inventory at time t:

nL-1

x(t) = x(0) - I E(t - iA) (1 + i cA)
i=O

where £(t) = 0 for t < 0 and A = 1/n for n a positive integer. [Actually the
above expression is true as long as nL is a positive integer. When n and nL
are not integer, one can define two processes that bound x(t) below and above
by running the summation to LnL - 1 and to LnLJ respectively.]

We then find for t > L the standard deviation of x(t) to be:
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1l (L-2
Std [x(t)] = - Y + i -

n ~i=O n

(9)

6
= L j+ a(L , 1n) + (L - n) (2L- in)

Of interest is what happens in the limit as the review period becomes smaller
(n - O):

2L2

Std[x(t)] = + ol + a (10)

The equations (9) and (10) show clearly how the safety stock depends upon the
replenishment lead time, the inertia of the demand process (as measured by
(x), and the length of the review period.

We note from (9) that the standard deviation of the inventory increases as we
make the review period smaller, suggesting that more safety stock is needed
with smaller review periods. This anomalous result is an artifact of how we
define the replenishment lead time and the timing of events. We assume
that an order placed at time t - L is available to serve demand at time t. As we
partition the time continuum into time intervals of length A, we have
assumed that an order placed at the end of the time interval (t-L-A, t-L) is
available to serve demand in the time interval (t-A, t). Thus, the order placed
at time t-L may serve demand that occurs as early as t-A, implying that the
lead time can be as small as L-A. Given these assumptions, as we reduce A, we
actually increase the average lead time and hence increase the variance of the
inventory.

If we were to assume that an order placed at the end of the time interval (t-L-
A, t-L) is available to serve demand in the time interval (t, t+A), then we
would find (9) to be:

1 2
Std[x(t)] = L n + + 6 (2L+ n) (11)

Equation (11) has the same limit as (9), but now the inventory requirements
decrease with smaller review periods.

10
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In practice, one's choice of (9) versus (11) depends on the context.
Nevertheless, the general behavior of the two models is effectively the same.
For this presentation, I prefer the model associated with (9) since it implies
that no safety stock is required when L=O.
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3. Single-Item Multi-Stage System: Implications for A Supply Chain

In the previous section we present an inventory model for a single item and
single stage. Suppose now that we have two stages in series, where the prior
model and analyses apply to the downstream stage.

Order Amplification: First consider the demand process of the upstream
stage, namely the order stream { qt I from the downstream stage.
and (7), we find

qt = (1 + La) Et + at_1 + a£t 2 + -.... + a1 + 

From (2), (5)

for t = 1, 2, .... (12)

From (12) we can express the time series { qt in the standard form for an
ARIMA process, namely:

q = + and

for t = 1, 2, .... (13)

where t = (1 + La) Et and = a/(1 + La).

Thus, the demand process seen by the upstream process is also an IMA (0, 1, 1)

process. From the assumptions for { et , we see that { ~t } is i. i. d. normally-
distributed random noise with E[t] = 0 and Var[it] = (1 + La) . And : =

ao/(l + La) is the parameter for the inertia of the process. Since Var[t] >
Var[Et] and 0 < D < a < 1, the upstream demand process is more variable than
the downstream demand, but also has more inertia.

The following exponential weighted moving average provides the minimum
mean square forecast for the upstream demand process:

G1= g and

Gt+l = qt + (1- )G t for t = 1, 2, ....

where Gt+1 is the forecast for (qt+l), the upstream demand in period t+1, made
after observing the upstream demand qt in time period t.

From (13) and (14) one can show by induction that

qt = Gt + t for t = 1, 2,....

But by substituting (5) into (12), we also find that

12'
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qt = Ft + (1 + La) t for t = 1, 2, ....

Thus, since t = (1 + La) t, the downstream forecast is the same as the

upstream forecast, namely G t = F t , and this forecast is an unbiased estimate
not only for d t but also for qt.

Furthermore, by comparison with (4), we see that the order stream qt is more
variable than d t. For a given value of F t = G t, we have that

Std [qt I Ft ] = (1 + La) a = (1 + La) Std [dt I Ft ] .

Thus there is amplification of the exogenous demand process as the
downstream stage passes orders to the upstream stage. A simple measure of
the amplification is (1 + La), the ratio of the standard deviation of the
downstream order to that of the demand process.

This is an example of the phenomenon termed the "bullwhip effect" in Lee et
al. (1994). Indeed, the above result is similar to that presented in Lee et al. for
the "demand signal processing" cause for the bullwhip. However, since we
assume a different demand process, we find an explicit expression for the
increase in order variability.

This phenomenon has also been described by Forrester (1958; 1961) as an
example of industrial dynamics. Sterman (1989) explores and documents this
phenomenon using the "beer distribution game" as an experimental context.

Hetzel (1993) as part of a supply chain project at the Eastman Kodak Company
also discovered this phenomenon, which he termed the "springboard effect."
Hetzel shows how Kodak's safety stock policies could lead to a springboard
effect up a supply chain, triggered by a forecast change in customer demand.

Baganha and Cohen (1996) provide empirical evidence for the bullwhip effect
and present a model for explaining the phenomenon as well as for
developing mechanisms to mitigate its effects.

Drezner et al. (1996) demonstrate for the case of stationary demand how a
moving-average forecast can induce a bullwhip effect in a two-stage system,
and then quantify the size of the variance amplification. In a related paper,
Chen et al. (1997) extend this analysis to an exponential forecast process, and
to the case when the demand process has a linear trend. Their findings
complement those in the current paper, which assumes a non-stationary
demand process.
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Order Correlation: The demand process given by (1) is serially correlated. In
particular, given a value of F t, one can show that

Cov [dt+ j, dt+ k Ft ] = (a+ ja2) 2 for 0 < j < k and

Var [dt+ j I F t ] = (1 + j ) 2 for O< j .

Since { qt } is also an IMA (0, 1, 1) process, it is is also serially correlated:

Cov [qt+ j, qt+ k Ft ] = ((1+La) +jc 2) c2 for 0 < j < k and

Var [qt+ j I F t ] = ((1 + La) 2 +ja 2) 2 for 0 < j.

We observe that the covariances for the time series { qt I are greater than their
corresponding terms for { d t , where the difference increases with both the
lead time and the parameter a. This is consistent with the observation that
there is more inertia in the upstream demand process than in the
downstream demand process.

Upstream Inventory: We now examine the inventory requirements for the
upstream stage. Let Pt be the order placed in period t by the upstream stage
upon its supplier. The lead time for replenishment to the upstream stage is
K: an order placed in period t is for delivery in period t + K. We assume
that in each period t, the upstream stage first observes qt, determines this
period's order (Pt), receives the order from K periods ago (Pt-K), and then fills
the downstream order from inventory. Any demand that cannot be met from
inventory is backordered. The inventory balance equation for the upstream
stage is

Yt = Yt- - qt + Pt-K for t = 1, 2,.... (15)

where yt denotes the on-hand inventory (or backorders) at the end of period t.
We assume an initial inventory level yo, and that Pt = g for t < 0.

Suppose that the upstream stage operates with an adaptive base-stock policy,
similar to (7) for the downstream stage:

Pt = qt + K*(Gt+ - G t ) . (16)

Again, there are two components to the order quantity. First the upstream
stage must replenish the demand for the immediate period, namely the order
placed by the downstream stage. Second, the upstream stage adjusts the order

14;
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quantity to account for the change in the forecast, given by (14). This
adjustment is the increase to the base-stock level at the upstream stage due to
the change in the forecast. This adjustment increases the amount of
inventory on order, namely the pipeline stock, by the change in forecast
multiplied by the lead time.

We assume that the order quantity in (16) either remains non-negative for
any relevant problem instances, or is permitted to be negative.

For the given assumptions and control policy, we now demonstrate that

K-1

Yt = YO - £t-i (1 + (L + i) a)
i=O

for t = 1, 2, ....

where t = O for t < 0.

Proof: To show P2, we first observe that P1 applies to the inventory of the
upstream stage since the upstream demand process { qt } is an IMA (0, 1, 1)
process and since the order policy (16) is structurally the same as (7). Hence
from P1, we have by direct substitution that

K-1

Yt = YO0- 
i=O

K-1

= YO- 
i=O

K-1

= YO -
i=O

pt-i (1 + i P)

(1+ La)Eti (1 + i
( a 
Y1+LaP

£t-i (1 + (L + i) a )

which is the desired result.

Discussion: From P2 and the assumption that { t I is a time series of
normally-distributed i. i. d. random variables with E[et] = 0 and Var [Et] = 2,

we find that for t > K, yt is normally distributed with

E [yt] = Yo and

15

P2

��----I·� ��



Std[yt] = (1+(L + i) a) 2 (17)
i=0

For this discussion we assume that the upstream stage intends to provide a
high level of service in filling the downstream orders. We note, though, that
providing a high level of internal service in such a supply chain may not be a
good policy in terms of total inventory costs (e. g., see Graves, 1996).

Given the assumption of a high level of internal service, then y0 is the safety
stock for the upstream stage, and the standard deviation of Yt is a surrogate for
the upstream safety stock requirements. In the following we discuss several
observations from (17) for the assumed non-stationary demand process.

First, since the form of (17) is similar in structure to that for the downstream
stage (8), the observations for the downstream stage apply to the upstream
stage too. Namely, we require dramatically more upstream safety stock when
demand is non-stationary, in comparison with the textbook case of stationary
demand (a = 0); and the relationship between the upstream lead time and the
upstream safety stock becomes convex for non-stationary demand.

Second, when a > 0, the standard deviation of the upstream inventory (17)
depends not only on the upstream lead time and the inertia of the exogenous
demand process, but also on the downstream lead time. Hence, for non-
stationary demand, the downstream lead time impacts the safety stock
requirements at both the downstream and the upstream stages of a two-stage
supply chain. One implication of this is as a guide for focusing improvement
efforts: there may be more impact from reducing the downstream lead time
than the upstream lead time. Indeed, when K >L, we can show that a unit
reduction in the downstream lead time will always result in a greater
reduction in inventory holding costs than a unit reduction in the upstream
lead time.

As a third observation, for this model there is not any benefit from providing
the upstream stage with additional information about the exogenous demand
or about the order process of the downstream stage. If the downstream stage
follows the adaptive base-stock policy, as specified by (7), then the optimal
forecast of the upstream demand process is given by (14). The upstream stage
needs to know the parameters for this exponential weighted moving average,
and needs to observe its demand process { qt . But there is no benefit to the
upstream stage from directly observing the demand {dt I at the downstream
stage.

16
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For instance, there is no way for the upstream stage to alleviate the bullwhip
effect by having more information. Rather, to decrease the amplification of
the demand process, there must be a reduction in the downstream lead time
L, or an increase in the inertia in the demand process (smaller a), or a change
in the downstream order policy that somehow smoothes the response to a
forecast change.

We state these three observations for a two-stage serial system. But it should
be clear that they extend immediately to an n-stage serial system, as long as
each stage has a deterministic lead time and follows an adaptive base-stock
policy. Under these assumptions, for an n-stage serial system, the orders
placed by any stage on its supplier will be an IMA (0, 1, 1) process with known
parameters. This leads to a fourth observation: as the order process moves
further upstream, it becomes more variable but also has more inertia.

As a final observation, consider a two-stage supply chain with replenishment
lead times of L and K time periods for the downstream and upstream stages,
respectively. Suppose the upstream stage produces an intermediate good, and
the downstream stage converts the intermediate good into a finished good.

If we were to only hold safety stock of finished goods, then from (8) the safety
stock requirements would be proportional to

L+K-1 2
a (1+ iC) (18)

i=O

since the safety stock must protect against demand variability over the entire
lead time of L+K.

But if we were to hold an intermediate safety stock, then the finished goods
safety stock would be proportional to

La WE(1 + i )2 (19)
i=O

where we assume for the sake of discussion that the intermediate safety stock
will provide a high level of service, so that the lead time seen by the finished
goods stage is L. In effect, the intermediate inventory is a decoupling
inventory for the supply chain.

By application of (17), the safety stock of intermediate goods should be
proportional to
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(1 + (L + i) ) (1 + i (20)

The last observation is to note how the summation within the square root of
(18) gets split into (19) and (20) when we decouple the supply chain with an
intermediate inventory. If we view the summation as a proxy for the
demand variability over the total lead time, then we see that the downstream
(finished goods) inventory is responsible for the first L elements of this
summation whereas the upstream (intermediate goods) inventory must
cover the remaining K terms.

If we were to have more stages and more than one decoupling inventory, this
pattern would continue. Given this understanding of how the demand
variability gets split up by decoupling inventories, one can easily explore
various strategies for the positioning of decoupling stocks.
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4. Conclusion

In the first part of this paper we have presented a model for a single-item
inventory system with a deterministic lead time but subject to a stochastic,
non-stationary demand process. We propose an adaptive base-stock policy for
inventory replenishment and show that it yields a critical fractile policy.
From the analysis of this policy, we observe that the safety stock required for
the case of non-stationary demand is much greater than for stationary
demand; furthermore, the relationship between safety stock and the
replenishment lead time becomes convex when the demand process is non-
stationary, quite unlike the case of stationary demand.

The practical significance of this single-item model is that it provides an
alternative inventory model for contexts where the assumption of stationary
demand is not applicable. In particular this model is suited for items for
which an exponentially weighted moving average is an appropriate forecast
model. Since many text books on inventory present exponential smoothing
as being the model of choice for single-item forecasting, it would seem that
the inventory model presented here would have wide applicability (e. g.,
Brown 1963, Nahmias 1993).

Indeed, in teaching and in consulting, my treatment of forecasting and simple
inventory models has often been inconsistent. I have advocated or taught
exponential smoothing as a realistic forecast model for many contexts. But
whereas this implies that the underlying demand process is non-stationary, I
have then assumed a stationary demand process for setting safety stock
policies. Possibly this inconsistency is one explanation for why inventory
managers often carry more inventory than recommended by textbooks.

The inventory model developed in this paper will at least let me have a
consistent story between how we forecast and how we plan safety stocks.
Unfortunately, this model will recommend more inventory than what we
would typically recommend. A typical practice would be to use the forecast
errors from an exponentially smoothed forecast to estimate the variance of
the demand process, or equivalently the standard deviation a; often this has
been done by computing the mean absolute deviation (MAD) of the forecast.
Given this estimate of a, we then assume that demand is from a stationary
process and recommend safety stock proportional to aciL. But if the demand
process is truly non-stationary with parameter , then the safety stock should
be larger since the standard deviation of demand over the lead time is larger,
as seen from (9) or (10).

In the second part of the paper, we examine how the model extends to a
supply chain context. We saw that the upstream demand process is also non-
stationary and has the same form as for the exogenous downstream demand
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process. Hence, if the upstream stage also uses an adaptive base-stock policy,
then the analysis for the downstream stage applies directly to the upstream-
stage inventory. We also saw how the demand process becomes more
variable and has more inertia as it is passed back to the upstream stage, and
that this bullwhip effect cannot be mitigated by providing more information
to the upstream stage.

The two-stage model provides some insight into supply chain behavior. The
fact that the analysis of the upstream stage looks the same as for the
downstream stage suggests that the single-stage model might serve as a
building block for the analysis of more complex systems. But it is somewhat
disheartening that if the exogenous demand is non-stationary as specified in
this paper, then there is no recourse for the upstream stages from the
bullwhip effect, given fixed replenishment lead times. The analysis for the
two-stage model does show the importance of lead-time reduction in a supply
chain context; in particular we see that reducing the downstream lead time
impacts both the downstream and upstream safety stocks and is likely to
provide more benefit than a similar reduction of the upstream lead time.

There are a lot of unanswered questions or open issues worthy of further
research. We examine the simplest of non-stationary processes in the
simplest inventory context. It would certainly be of interest to enrich either
the model of the demand process or the inventory context or both. For
instance, what happens if the replenishment lead times are stochastic? What
happens if forecast errors grow with the magnitude of demand? There is also
value from validation of the demand process model in industrial settings,
and verification of the applicability of the inventory models. Finally, the
optimality or near-optimality of the adaptive base-stock policy is an open
question, as well as the implications from allowing replenishment orders to
be negative.
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