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Abstract

Current approaches to semantic interoperability require human intervention in detect-

ing potential conflicts and in defining how those conflicts may be resolved. This is a major

impedance to achieving "logical connectivity", especially when the number of disparate

sources is large. In this paper, we demonstrate that the detection and reconciliation of

semantic conflicts can be automated using tools and techniques developed by the data

mining community. We describe a process for discovering such rules and illustrate the

effectiveness of our approach with examples.

1 Introduction

A variety of online information sources and receivers (i.e., users and applications) has emerged

at an unprecedented rate in the last few years, contributed in large part by the exponential

growth of the Internet as well as advances in telecommunications technology. Nonetheless,
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this increased physical connectivity (the ability to exchange bits and bytes) does not necessarily

lead to logical connectivity (the ability to exchange information meaningfully). This problem

is sometimes referred to as the need for semantic interoperability [6] among autonomous and

heterogeneous systems.

Traditional approaches to achieving semantic interoperability can be identified as either

tightly-coupled or loosely-coupled [5]. In tightly-coupled systems, semantic conflicts are iden-

tified and reconciled a priori in one or more shared schema, against which all user queries are

formulated. This is typically accomplished by the system integrator or DBA who is responsible

for the integration project. In a loosely-coupled system, conflict detection and resolution is the

responsibility of users, who must construct queries that take into account potential conflicts

and identify operations needed to circumvent them. In general, conflict detection and recon-

ciliation is known to be a difficult and tedious process since the semantics of data are usually

present implicitly and often ambiguous. This problem poses even greater difficulty when the

number of sources increases exponentially and when semantics of data in underlying sources

changes over time.

It should be clear from the preceding discussion that automating the detection and recon-

ciliation process will be an important step forward in achieving the intelligent integration of

information. In this paper, we show how data mining techniques can be gainfully employed to

this end. Our strategy consists of the application of statistical techniques to overlapping subsets

of data present in disparate sources, through which rules for data conversion may be extracted.

The remainder of this paper is organized as follows. Section 2 presents a scenario in which

integrated access to heterogeneous information sources is required. We observed that when-

ever information content in disparate sources overlap, we will have an opportunity for engaging

in the automatic discovery of conflicts and their resolution. Section 3 presents a statistical ap-

proach for conflict detection and resolution and introduces the supporting techniques. Section 4

presents details of three experiments which are used in illustrating and validating the approach

taken. Finally, Section 5 summarizes our findings and describes the issues which need to be

resolved in the near future.
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LOCALDB:
hotel (hcode, location, breakfast, facilities, rate);

REMOTEDB:
hotel (hcode, state, breakfast, facilities, rate);
tax-rate (state, tax-rate);

hotel tax-rate
hcode state meal bath rate state rate
1001 1 0 0 50 1 6
1002 2 1 1 80 2 10
1003 1 1 2 100 3 15
3001 1 1 0 120 4 18

Figure 1: Two example databases.

2 Motivational Example

Consider the scenario depicted in Figure 1. Both databases keep information about hotels, for

which some are identical in both databases. For the purpose of this discussion, we assume that

key-values used for identifying individual hotels are common to the two databases: e.g., the

hotel with hcode 1001 in both LOCALDB and REMOTEDB refers to the same hotel.

Observe however that although both databases have an attribute rate, different values are

reported by the two databases even when the same real world entity is referenced. This anomaly

arises from the fact that the two databases have different interpretation of rate: in the case of

REMOTEDB, hotel rates are reported without taking applicable state taxes into consideration;

on the other hand, hotel rates in LOCALDB are reported as charges "after-tax". Intuitively, we

say that a semantic conflict exists between REMOTEDB and LOCALDB over attribute rate.

The meaningful exchange of information across different systems requires all semantic

conflicts to be resolved. For instance, it would not be meaningful to write a query which com-

pares hotel rates in REMOTEDB to those in LOCALDB without reconciling the conflict over

attribute rate in the two databases. In the current example, this conflict can be resolved by

3

hotel
hcode location breakfast facility rate
1001 1 0 0 53
1002 2 1 1 88
1003 1 1 2 106
2001 5 1 2 200



adding the tax-amount to the hotel rates reported in REMOTEDB. Notice that the computation

of tax-value requires the multiplication of the hotel rates in REMOTEDB with a correspond-

ing tax rate corresponding to the state in which the hotel resides. We refer to the operation

underlying the data transformation as a conversion function. Despite the critical role it plays

in enabling semantic interoperability, the identification of appropriate conversion functions is

a difficult task given that the assumptions underlying data representation are not always made

explicit.

In general, conversion functions may take on various different forms. For example, it may

be a lookup table which maps one string representation to another (e.g., "IBM" to "Interna-

tional Business Machine"), or it may be any arbitrary "black-box" function (e.g., a dvips

program which transforms a . dvi file to a . ps file). For our purpose in this paper, we con-

sider only conversion functions which are arithmetic expressions. Although this represents

only a subset of all possible conversion functions, arithmetic conversions are commonly en-

countered in practise in a variety of different domains and are therefore important in their own

right.

The remaining discussion will be presented using the relational data model without any loss

of generality. For simplicity, we will use Horn clauses for representing conversion functions.

For the example described earlier, we will write

L.hotel(hcode, state, breakfast, facilities, roomrate2) -

R.taxrate(state, taxrate), R.hotel(hcode, state, breakfast, facilities, roomratel),

roomrate2 = (1 + 0.01 * tax-rate) * roomratel.

In the rest of this paper, we will demonstrate how conversion functions such as the one above

can be discovered through the use of tools and techniques developed by the data mining com-

munity.

3 A Statistical Approach for Conflict Detection and Resolu-

tion

Discovery of conversion functions proceeds in three steps. In Step 1 (semantic relevance anal-

ysis), we use the techniques of correlation analysis to isolate attributes which are potentially

semantically-related. In Step 2, we may rely on human intervention to identify attributes in
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distinct databases which are to be treated as synonyms (even though these may embody se-

mantic conflicts). Finally, in Step 3 (Quantitative Relationship Analysis), we apply regression

analysis to generate the relevant conversion functions that allow values in one databases to be

transformed to values that are meaning in a different context.

In the remainder of this section, we furnish the details of the statistical techniques employed

in our approach.

3.1 Semantic Relevance Analysis

Given two sets of attributes from two databases, the objective of semantic relevance analysis is

to find those attributes which either represent the same real world properties, or are derivable

from each other. Such analysis can be conducted at two levels: at the metadata level or at the

data level. In this study, we only discuss the second: i.e., we will attempt to isolate a subset of

the attributes which are semantically-related by analyzing the data set, as opposed to relying on

a thesaurus that tries to make sense of the attribute names (e.g., as in suggesting that attributes

revenue and income are related).

If we view the attributes as variables, the problem we have on hand is similar to the problem

of statistical correlation analysis. Given two variables, X and Y and their measurements

(xi, Yi); i = 1, 2, .. ., n, we shall attempt to measure the strength of association between the two

variables by means of a correlation coefficient r. The value of r is between -1 and +1 with r = 0

indicating the absence of any linear association between X and Y. Intuitively, larger values

of r indicate a stronger association between the variables being examined. A value of r equal

to -1 or 1 implies a perfect linear relation. While correlation analysis can reveal the strength

of linear association, it is based on an assumption that X and Y are the only two variables

under the study. If there are more than two variables, other variables may have some effects

on the association between X and Y. Partial Correlation Analysis (PCA), is a technique that

provides us with a single measure of linear association between two variables while adjusting

for the linear effects of one or more additional variables. Properly used, partial correlation

analysis can uncover spurious relationships, identify intervening variables, and detect hidden

relationships that are present in a data set.

In our study, we use PCA to analyze the semantic relevance among attributes. Given

two databases D1 and D 2, we can treat the records in relations as measurements. Let R1

(Al, Al,..., Al) with primary key Al be a relation from D 1, and R2 (A2, A2,... ,A2) with
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primary key Al be a relation from D 2. We also assume that two records r1 of R1 and r 2 of R 2

refer to the same "real world" entity if rl.Al = r2.A2. Therefore, we can form measurements

using records with the same key value from the two relations. Partial correlation analysis can

be then applied to the data sets with (m + n - 2) variables (where m and n are the number

of attributes in the two relations under investigation). The details of the various steps will be

illustrated in next section.

Note that, correlation and semantic relevance are two different concepts. A person's height

and weight may be highly correlated, but it is obvious that height and weight are different in

their semantics. However, since semantic conflicts come from the difference in representation

scheme and such representational difference is uniformly applied to each entity, high correla-

tion should exist among the values of semantically related attributes. Correlation analysis can

at least isolate the attributes which are likely to be related to one another for further analy-

sis. In our approach exemplified in this paper, this step provides a preliminary clustering of

semantically-related attributes which are then presented to respective user groups, who must

now define the attributes which are to be treated as synonyms. Synonyms nonetheless may

continue to embody semantic conflicts. When these conflicts can be resolved through arith-

metic transformations, the underlying quantitative relationship can be uncovered automatically

as described in the next section.

3.2 Quantitative Relationship Analysis

The discovery of quantitative laws from large data sets is a classic machine learning problem:

to this date, various systems have been reported in the literature. Examples of these systems in-

clude BACON [4], ABACUS [2] and COPER [3]. BACON, being one of the earliest systems,

has made some interesting re-discoveries in physics and chemistry [4]. ABACUS improved

upon BACON and is capable of discovering multiple laws [2]. In the case of COPER [3], phys-

ical laws which can be modeled by a polynomial function can also be uncovered. A recently

reported system, KEPLER [7], is an interactive system which is able to check data correctness

and discover multiple equations. Another system, FORTY-NINER, borrows solutions from the

early systems and adjusts them to the specific needs of database exploration [8].

One of the basic techniques for discovering quantitative laws is a statistical technique

known as regression analysis. Thus, if we view the database attributes as variables, the re-

lationships we are looking for among the attributes are nothing more than regression functions.
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For example, the equation roomrate2 = (1 + 0.01 * tax_rate) * roomratel can be viewed as a

regression function, where roomrate2 is the response (dependent) variable, tax_rate and room-

ratel are predictor (independent) variables. In general, there are two steps in using regression

analysis. First step is to define a model, which is a prototype of the function to be discovered.

For example, a linear model of p independent variables can be expressed as follows:

Y = o +l3X + 2X 2 +...3pXp + 

where /3o,1 ,..., l3p are model parameters, or regression coefficients, and p is an unknown

random variable that measures the departure of Y from exact dependence on the p predictor

variables.

With a defined model, the second step in regression analysis is to estimate the model param-

eters i1, ... , l3p. Various techniques have been developed for the task. The essence of these

techniques is to fit all data points to the regression function by determining the coefficients.

The goodness of the discovered function with respect to the given data is usually measured by

the coefficient of determination, or R 2. The value R 2 ranges between 0 and 1. A value of 1

implies perfect fit of all data points with the function.

In our experiments reported in the next section, regression analysis is used primarily to

discover the quantitative relationships among semantically-related attributes. One essential

difference between the problem of discovering conversion functions and the classic problem

of discovering quantitative laws is the nature of the data. Data from experimental results from

which quantitative laws are to be discovered contains various error, such as measurement er-

rors. On the other hand, semantic conflicts we are dealt with are due to different representations

which are uniformly applied to all entities, the discovered function that resolves the conflicts

should apply to all records. If the database contains no erroneous entries, the discovered func-

tion should perfectly cover the data set. In other words, functions discovered using regression

analysis should have R 2 = 1.

In some instances, the R 2 value for a regression function discovered may not be 1. For

example, this may be the case when the cluster does not contain all attributes required to solve

the conflicts; in which case, no perfect quantitative relationship can be discovered at all. More-

over, it is also possible that the conflicts cannot be reconciled using a single function, but are

reconcilable using a suitable collection of different functions. To accommodate for this pos-
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hcode location breakfast facility L.rate meal bath R.rate taxrate
1001 1 0 0 53 0 0 50 6
1002 2 1 1 88 1 1 80 10
1003 1 1 2 106 1 2 100 6

Figure 2: The relation obtained by joining relations in REMOTEDB and LOCALDB.

sibility, we extend the procedure by partitioning the data set (whenever a suitable regression

function cannot be found) and attempting to identify appropriate regression function for each

of the partition taken one at a time. This partitioning can be done in a number of different ways.

For our purpose, we use the simple heuristic of partitioning the data set using categorical at-

tributes present in a relation. The rationale is, if multiple functions exist for different partitions

of data, data records in the same partition must have some common property, which is most

likely reflected by values assumed by some attributes within the databases being investigated.

4 Automatic Discovery of Conversion Functions

To provide a concrete illustration of this approach proposed in the preceding section, we de-

scribe below three experiments. The first two are based on the scenario introduced in the

motivational example; the last presents a simplified version of a real example which we have

encountered.

4.1 Experiment One

We shall consider the databases REMOTEDB and LOCALDB as shown earlier. Since hotel

and taxrate are in the same database, we assume that they do not have any conflicts on the

attribute state. To simplify the ensuing discussion, we shall assume that these two tables are

"joined" to yield the relation shown in Figure 2; the attribute rate in LOCALDB and REMOT-

EDB are prefixed with L and R respectively to avoid any ambiguity. The attributes in this

relation will be used as inputs to Step 1 of our procedure and serve as the basis for identifying

attributes which are semantically-related. For simplicity, we shall also ignore attributes meal

and bath in the joined database since they have the same value as breakfast andfacility.

To allow us to demonstrate the validity of data mining techniques for the discovery of
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Table 1: Domain values used in materializing the synthetic databases.

attribute state taxrate facility breakfast R.roomrate
values 0-40 1-18 {0, 1, 2} {0, 1} 20-500

semantic knowledge in the form of conversion functions, we created the synthetic databases

corresponding to LOCALDB and REMOTEDB. This is accomplished by generating the values

of the attributes identified earlier using a uniform distribution, according to Table 1. Values of

L.roomrate are generated using the following formula:

L.roomrate = (1 + 0.01 * taxrate) * R.roomrate

The number of tuples in the dataset is 1000.

We now present detailed descriptions of the three steps corresponding to our strategy.

1. Identifying semantically related attributes

To identify attributes which may be semantically-related, a partial correlation analysis is

performed on the dataset. Table 2 lists the result.

Table 2: Zero-Order Partials for Experiment 1.

L.roomrate breakfast facility taxrate R.roomrate state
L.roomrate 1.0000
breakfast .0396 1.0000
facility .0320 .0567 1.0000
taxrate .1447 .0067 .0927 1.0000
R.roomrate .9958 .0386 .0241 .0626 1.0000
state .0040 .0124 -.0584 -.0530 .0071 1.0000

It can be seen that if 0.1 is chosen as a threshold, L.roomrate, taxrate, and R. roomrate

will be considered to be correlated. To verify this, we further perform a PCA analysis

while controlling for the other three attributes, i.e. state, breakfast, and facility. Table 3

shows the result of analysis:
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Table 3: PCA results when controlling for state,

L.roomrate R.taxrate R.roomrate
L.roomrate 1.0000
taxrate .1429 1.0000
R.roomrate .9958 .0611 1.0000

We can see from Table 3 that L. roomrate and R. roomrate indeed have a very strong linear

relationship. But the relationship between L.roomrate and R.taxrate is not so obvious

(0.1447). To further determine whether L.roomrate and R.taxrate are correlated, we

make another partial correlation analysis between them by controlling R.roomrate. The

result is shown below in Table 4:

Table 4: PCA results when controlling for R. roomrate.

L.roomrate R.taxrate
L.roomrate 1.0000
taxrate .8975 1.0000

This result indicates that L.roomrate does correlated highly with taxrate. We there-

fore conclude that attribute L.roomrate is highly related to two attributes, taxrate and

R.roomrate, in the remote database.

2. Defining the synonyms

From a user or application perspective, certain attributes present in different databases

may be treated as synonyms. Thus the rate attribute in both LOCALDB and REMOT-

EDB are treated as synonyms (having the same meaning). Notice that they two attributes

may or may not be identical syntactic tokens: i.e., having the same attribute name (al-

though they happen to be the same in this instance). Furthermore, two attributes may be

viewed as synonyms by one user and are yet semantically distinct from another user's

viewpoint. Hence, a knowledgeable user may understand the semantic disparity between

hotel rates reported in REMOTEDB and LOCALDB and therefore choose to treat the

two attributes as different. For this reason, it is mandatory for synonyms are to be de-
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fined by users depending on their understanding. This however does not mean that users

will have to peruse through the thousands of attributes which are present in disparate

databases. Clearly, the attributes which have been identified in Step 1 above serve as a

useful starting point whereby potential synonyms can be identified.

Notice that there is no right or wrong synonyms. If two attributes are identified as syn-

onyms, they will be used as input to the next step in the discovery process in which

an attempt is made to identify the relationship between the two. Two attributes which

are semantically-related in some way may however not be labeled as synonyms. For

instance, the attribute rate could have been treated as distinct in REMOTEDB and LO-

CALDB. This however will not pose any problem so long as the user do not attempt to

compare them under the assumption that they are referring to the same thing.

3. Discovering the relationship

The final step in our process is to find the quantitative relationship among attributes

which are identified as synonyms. For the example at hand, we need to find the re-

lationship among L.roomrate, taxrate and R.roomrate, assuming that L.roomrate and

R.roomrate are identified as synonyms.

To perform the regression analysis, we choose one of the synonyms as the dependent

variable. Suppose L.roomrate is chosen for this purpose, with taxrate and R. roomrate as

independent variables. Since we have two independent variables, a multiple regression

model is used. Let Y denote L.roomrate, x1 and x2 denote taxrate and R.roomrate

respectively. The regression analysis is to find the coefficients, /i3, 1 < i < 3 of the

following model:

Y = fPlx + 32X + 33X 1X2 + X (1)

By applying the multiple regression analysis to the given dataset, we obtain the following

result:

P1 = -4.61989E-14

P2 = 1.000000
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p/3 = 0.010000

e = 0.000000

Since 31 is negligible, we obtain the following by substituting the variables with the

original attribute names:

L.roomrate = R.roomrate + 0.01 * taxrate * R.roomrate (2)

The preceding result can be rewritten into the following Horn clause

L.hotel(hcode, state, breakfast, facilities, roomrate2) +-

R.tax(state, taxrate), R.hotel(hcode, state, breakfast, facilities, roomratel),

roomrate2 = (1 + 0.01 * taxrate) * roomratel.

which is what we have used in creating the synthetic databases for this experiment.

4.2 Experiment Two

In this experiment, we modified the test data set by deleting the attribute taxrate. In other

words, we have a data set of 1,000 tuples, comprising of the attributes: (hcode, state, L. roomrate,

breakfast, facility, R. roomrate).

1. Identifying semantically-related attributes & define synonyms

Similar to what described in the previous experiment, we concluded from the partial

correlation analysis that L.roomrate is highly correlated to R.roomrate. As before, the

user may choose to treat L.roomrate and R.roomrate as synonyms. This prompts us to

proceed on with the next step.

2. Discovering the relationships

Applying the regression analysis to the data set, we obtained the following:

L.roomrate = 1.07 * R.roomrate - 0.88 (3)
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where the coefficient of determination R2 = 0.99123.

3. Partitioning the data set

Since R 2 is not equal to one, we may suspect that the equation obtained does not rep-

resent the true relationship among the attributes. (A high-value for R 2 may however be

acceptable if the values are known to be "noisy".) One approach for circumventing this

problem is to partition the data set so that a more "consistent" relationship can be identi-

fied. For this purpose, we note that there are three categorical attributes: state, breakfast,

and facility, with 40, 2, and 3 distinct values respectively. Consequently, we partition

the dataset according to each of the three attributes in turn and regression analysis was

applied to each partition. The results can be summarized as follows:

* Partitioning based on state

Since there are 40 distinct values in the dataset, 1000 tuples were partitioned into

40 partitions. For each partition, regression analysis was applied. We obtained the

following results:

State Equation discovered R 2

0 L.roomrate = 1.00 * R.roomrate 1

1 L.roomrate = 1.09 * R.roomrate 1

..

38 L.roomrate = 1.08 * R.roomrate 1

49 L.roomrate = 1.04 * R.roomrate 1

* Partitioning based on breakfast

There are 2 distinct values for breakfast in the data set, 1000 tuples were partitioned

into 2 partitions. The result of regression analysis is as follows:

Breakfast Equation discovered R2

1 L.roomrate = 1.06 * R.roomrate - 0.133591 0.99189

2 L.roomrate = 1.07 * R.roomrate - 1.724193 0.99121
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* Partitioning based on facility

There are 3 distinct values for facility in the data set, 1000 tuples were partitioned

into 3 partitions. The result of regression analysis is as follows:

Facility Equation discovered R 2

1 L.roomrate = 1.066 * R.roomrate - 1.702022 0.99235

2 L.roomrate = 1.058 * R.roomrate + 0708756 0.99187

3 L.roomrate = 1.076 * R.roomrate - 1.728803 0.99070

It is obvious that state is the best choice for achieving a partitioning that yields a consis-

tent relationship.

From the equation that is discovered, we can create a new relation, called ratio, which

reports the tax-rate for each of the 40 states:

ratio(0, 1.00).

ratio(l, 1.09).

ratio(38, 1.08).

ratio(39, 1.04).

This in turn allows us to write the conversion rules:

L.hotel(hcode, state, breakfast, facilities, roomrate2) +

ratio(state, ratio), R.hotel(hcode, state, breakfast, facilities, roomratel),

roomrate2 = 1 + ratio * roomratel.

4.3 Experiment Three

In this final experiment, we created two synthetic relations which are presumably obtained

from two distinct sources:

stock (scode, currency, volume, high, low, close);

stkrpt (scode, price, volume, value);
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Relation stk rpt is derived from the source relation stock. For this experiment, we generated

500 tuples. The domain of the attributes are listed in the following table, together with their

variable names used in the analysis.

Variable Relation Attribute Value Range

X1 stock, stkrpt scode [1, 500]

X2 stkrpt price stock.close*exchange-rate[stock.currency]

X3 stkrpt volume stock.volume * 1000

X4 stkrpt value stkrpt.price * stk rpt.volume

X5 stock currency 1, 2, 3, 4, 5

X6 stock volume 20-500

X7 stock high [stock.close, 1.2*stock.close]

X8 stock low [0.85*stock.close, stock.close]

X9 stock close [0.50, 100]

It can be seen that, there are rather complex relationship among the attributes. We proceed with

conflict detection and reconciliation as before.

1. Identifying correlated attributes

The zero-order partial correlation analysis on the data set gave the result as shown below:

X3 X4

1.0000

.3243

-.0645

1.0000

-.0307

-. 0309

-.0349

1.0000

.5416

.3243

.3331

.3318

.3357

X5

1.0000

-. 0645

-.0245

-. 0217

-.0193

X6

1.0000

-.0307

-.0309

-.0349

X7 X8 X9

1.0000

.9905

.9946

1.0000

.9959 1.0000
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X1

1.0000

.0508

-.0829

.0425

-.0311

-.0829

.0762

.0661

.0725

X1

X2

X3

X4

X5

X6

X7

X8

X9

X2

1.0000

-.0607

.7968

.6571

-. 0607

.4277

.4355

.4397

Using 0. 1 as the threshold value and treating variables representing attributes from stkrpt

as the dependent variables, we identify the following correlated variable sets:

_ _
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Table 5: Correlated Attributes Sets

No Dependent Variable Independent Variables
0 X3 X6
1 X2 X4,X5,X7,X8,X9
2 X3 X4
3 X4 X2,X3,X5,X7,X8,X9

2. Discovering relationships among related attributes

Each correlated attribute set was analyzed using regression analysis to discover the rela-

tionships.

* SetO

Since the coefficient of X3 and X6 is 1 and the values of X3 are not equal to that of

X6, linear regression analysis was conducted on these two variables. The following

result was obtained:

X3 = 1000 * X6 (4)

This is consistent with the semantics of data used in creating the synthetic databases.

* Set 

A brute force method is to use the following model which consider all one and two

variable terms:

X2 = B1*X4+B2*X5+B3*X7 (5)

+ B4*X8+B5*X9

+ B6*X4*X5+B7*X4*X7

+ B8*X4*X8+B9*X4*X9

+ B10*X5*X7+Bll*X5*X8

+ B12*X5*X9

16



The following regression equation was obtained with R 2 = 0.90602:

X2 = 1.2762 * X5 + 1.6498 * X7 + 1.0075 * X8 (6)

- 2.0270 * X9 - 2.4475 * X5 * X7

- 0.5275 * X5 * X8 + 3.8573 * X5 * X9

Since the the coefficient of determination R 2 # 1, we partitioned the data according

to the only categorical variable X5. Since X5 has five distinct values, the 500 tuples

were partitioned into 5 partitions. Furthermore, the result of model 5 reveals that

coefficients B1,B6,B7,B8, and B9 are zero. We can construct for each partition a

simpler model

X2 = B3*X7+B4*X8+B5*X9 (7)

The regression results are given below:

X5 equation discovered R 2

0 X2 = 0.4 * X9 1
1 X2 = 0.7 * X9 1
2 X2 = 1.0 * X9 1
3 X2 = 1.8 * X9 1
4 X2 = 5.8 * X9 1

In fact, the coefficient shown in Table 2 are the exchange rates used in generat-

ing stkrpt.price from stock.close based on stock.currency. The regression analysis

correctly discovered this fact automatically.

* Set 2:

As the R 2 value of the regression analysis on the whole data set is not equal to 1,

we repeat the regression analysis after partitioning the data set based on X5. The

results are as follows:

17
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Data Set X5 Equation Discovered R 2

nonpartitioned all X3 = 0.0012 * X4 + 232938.0964 0.10517

partition 0 X3 = 0.2005 * X4 + 163787.2507 0.37291

1 X3 = 0.1259 * X4 + 154285.2230 0.41848

2 X3 = 0.0068 * X4 + 180850.1938 0.38318

3 X3 = 0.0054 * X4 + 144068.7345 0.35892

4 X3 = 0.0016 * X4 + 126240.6993 0.50320

In both instances, no consistent relationship is found.

* Set3:

The regression analysis on set 4 yields the following result:

X4 = X2 * X3 (8)

with R 2 = 1.

The above results can now be summarized in the following conversion rule:

stkpt(scode, price, volume2, value) -

stock(scode, currency, volumel, , , close), exchange(currency, rate),

volume2 = 1000 * volumel, price = close * rate, value = price * volume2.

exchange(0, 0.4).

exchange(l, 0.7).

exchange(2, 1.0).

exchange(3, 1.8).

exchange(4, 5.8).

where exchange is a new relation with two attributes (currency, rate), in which rate is

presumably the exchange-rate for converting other currencies into the currency used in

stkrpt.
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5 Conclusion

The quest for semantic interoperability among autonomous and heterogeneous information

systems has led to a proliferation of prototypes. However, as far as we know, no one has yet

done any work on the automatic detection and discovery of semantic conflicts. In this paper, we

have presented the motivation for this problem, and have demonstrated how conflict detection

and resolution can be mostly automated using various statistical techniques. We also presented

three experiments in which the techniques are applied to uncover hidden relationships between

data elements. While it is clear that we have only addressed a small subset of the problems, we

are convinced that the work reported here remains significant for the role it plays in breaking

the ground for an important class of problems.

The astute reader may object to the approach proposed in this paper by pointing out that the

statistical techniques are expensive and cannot be used to support ad hoc queries at real-time.

Our response is that it is never our intention to apply the regression methods at real-time. On

the other hand, data analysis should be performed off-line and at the time when a new system

is brought into the "federation" of inter-operating systems. The rules which are discovered

during this process can be used as input to the definition of a shared schema where the conflicts

are being resolved. In loosely-coupled systems where shared schemas are not defined a priori,

the rules may be stored as part of a user's profile which can be drawn upon (as part of the local

knowledge base) whenever a query is to be formulated.

We are currently examining extensions to this work that will allow it to be incorporated

into a Context Interchange System [1]. The key observation here is that the extraction of the

conversion function alone is not sufficient, and that further work is needed to be able to also

uncover the meta-data that is associated with different information sources. For example, in

the case of Experiment 2, it is not good enough to identify the ratios (state-tax) that are needed

for computing the tax-value: it would have been more valuable if we are able to match the

ratios to yet another data source furnishing the state-tax percentage and figure out instead that

different hotels have different tax rates by virtue of its location. Thus, if we know indeed that

all hotels reported in a given database have a uniform tax rate of 6%, we might formulate a

hypothesis that these are all hotels located in Massachusetts. In principle, these conclusions

can be derived using the same statistical techniques as those which we have described. Further

work however remains necessary to verify their efficiency.
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