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Abstract

This paper discusses the algorithm we are using for the mediation of queries to disparate
information sources in a Context Interchange system, where information sources may have
different interpretations arising from their respective context. Queries are assumed to be
formulated without regard for semantic heterogeneity, and are rewritten to corresponding
mediated queries by taking into account the semantics of data codified in axioms associated
with sources and receivers (the corresponding context theories). Our approach draws upon
recent advances in abductive logic programming and presents an integration of techniques
for query rewriting and semantic query optimization. We also demonstrate how this can be
efficiently implemented using the constraint logic programming system ECLiPSe.

1 Introduction

Context Interchange [GBMS96a] is a novel approach towards the achievement of semantic
interoperability of heterogeneous information systems [SL90, BHP92]. Using this strategy,
queries to disparate systems can be constructed without regard for (potentially) conflict-
ing representations or interpretations of data across different systems: for example, when
comparing the room rates of two hotels on different sides of the US-Canadian border, the
user asking the query need not be concerned with whether or not prices are reported using
the same currency, or whether the prices reported are inclusive of applicable taxes. Loosely
speaking, query mediation can be simplified to the following scheme: for a query expressed
in the terms of a receiver', i.e under the assumptions and knowledge of the user or required
by the application issuing the query, an equivalent query, in the terms of the component
systems providing the data, must be composed, and a plan for the resulting query must be
constructed, optimized and executed.

Our goal of this paper is to provide a logical interpretation of the query mediation
step and to demonstrate how this is realized in a prototype implementation [BFG+97a]
using the constraint logic programming system ECLiPSe. The inferences underlying query
mediation can be characterized using an abductive framework [KKT93a] and points to some
interesting connection between integrity constraint checking and classical work in semantic
query optimization [CGM90].

*Current address: Department of Information Systems & Computer Sc, National University of Singapore,
Kent Ridge, Singapore 119260. Email: gohch@iscs.nus.sg

which may be a user or an application
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The remainder of this paper is organized as follows. In section 2, we summarize the
novelty of our approach and describe the translation between a COIN (Context INterchange)
framework and a program (or, logical theory) written in COINL (the COIN language). In
section 3, we present and discuss the Abductive Logic Programming framework and some
aspects of the duality between abduction and deduction. We set the requirements for our
procedure and discuss the possible interpretations of its results. In section 4, we outline the
algorithm and discuss its implementation in the Logic Programming environment ECLiPSe
[ECL96]. In particular, we discuss the implementation of the consistency checking phase
of the abductive procedure as Constraint Logic Programming propagation [JM96] using
Constraints Handling Rules [FH93]. We also discuss the relationship between consistency
checking with integrity constraints and Semantic Query Optimization [CGM90]. Finally, we
conclude in section 5 on some more general aspects of our project and on future work.

We assume that the reader is familiar with notations of first order logic as defined,
for instance, in [Llo87]. We refer the reader to [KLW95a] and [GBMS96a] respectively
for formal definitions of the F-Logic and the syntax and semantics of our logical language
COINL. Where appropriate, we will explain those constructs used in the examples which are
necessary for the understanding of the discussion. Finally, we use the symbol l= to represent
logical consequence in the model theory and the symbol F- for the application of an inference
rule (the acronym of the rule is subscripted when ambiguous).

2 Context Mediation

Before describing what context mediation entails, it is necessary to provide a summary
of the motivation behind the architecture of a Context Interchange system, presented in
the form of a COIN framework. Following which, we introduce an example which illustrates
what context mediation entails. Finally, we show how the different components of a Context
Interchange system can be used in the construction of a logical theory which may take the
form of a normal (Horn) program [Llo87].

2.1 The Context Interchange Framework

Traditionally, two different approaches have been adopted for providing integrated access
to disparate information sources. The tight-coupling approaches to semantic interoperabil-
ity rely on the a priori creation of federated views on heterogeneous information sources.
Although they provide better support for data access, they do not scale-up efficiently given
the complexity inherent in the construction and maintenance of a shared schema for a large
number of autonomously administered sources. Loose-coupling approaches rely on the user's
intimate knowledge of the semantic conflicts between the sources and the conflict resolution
procedures. This flexibility becomes a drawback for scalability since the size of this knowl-
edge increases exponentially with the number of sources, and may require frequent revisions
as the semantics and structure of underlying sources undergo changes.

The Context Interchange approach takes a middle ground between these two approaches.
Unlike the loose-coupling approaches, queries in such a system need not be concerned with
differences in data representation or interpretation across sites; i.e., it allows queries to be
formulated on multiple sources as if these were fragments of a homogeneous distributed
database. Although it requires a common lexicon (called a domain model) for disambiguat-
ing types and role names, it is no longer mandatory for all conflicts to be resolved a priori
in one place (e.g., as in the tight-coupling approaches). Instead, sources and receivers need
only provide a declarative specification of the semantics of data pertaining to itself, while
deferring conflict detection and resolution to the time when a query is actually submitted
(when the sites involved in data exchange is identified). The Context Mediator takes on
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the role of conflict detection and resolution: this process is referred to as context mediation.
A more detailed comparison of the loose- and tight-coupling approaches, and the relative
advantages of Context Interchange can be found in [GMS94].

To support the functionalities described above, information about data sources and the
semantics of data therein are captured in a Context Interchange system in a slightly more
complex way. Loosely speaking, a Context Interchange system, as characterized by a COIN

framework, comprises of the following:

* a domain model, which provides a lexicon of types and modifiers corresponding to each
type;

* a collection of sources corresponding to heterogeneous extensional databases (which
we assume to be relational without any loss of generality);

* a collection of elevation theories, each comprising of a collection of elevation axioms
which define the types corresponding to the data domains in a source. Elevation
axioms are source-specific: i.e., each source is bound to one and only one elevation
theory;

* a collection of context theories, each of which is a collection of declarative statements
(in COINL) which either provide for the assignment of a value to a modifier, or identify
a conversion function which can be used as the basis for converting the values of
objects across different contexts; and finally,

* a mapping function mu which maps sources to contexts: in essence, this means that
several different sources can share the same context. This feature not only provides
for greater economy of expression but also allow context theories to be nested in a
hierarchy, facilitating the reuse of context axioms2 .

Our primary motivation behind this structuring of a Context Interchange system is to
provide the transparency of tight-coupling systems without the burden of reconciling all
conflicts in one or more federated views. We argue that by allowing data semantics to be
declaratively and independently captured in the form of context theories, changes in a local
site can be better contained: in most instances, these changes require only modification
of the context theory pertaining to the given site and have no repercussions on the global
system. An interesting "side-effect" is that receivers too can have context: by associating
a query with a context theory, we can request for answers to be returned in a form that is
meaningful with respect to the stated context. Finally, notice that evolution in membership
of sources have no effect the system: the addition or retraction of a source only involve the
introduction or retraction of the corresponding elevation theory (and possibly the introduc-
tion of a new context theory). This compares favorably to current tight-coupling systems
where the view definition needs to be modified corresponding to every of these changes.

2.2 Example

We consider a simple example where a user poses a query to a source (security), which
provides historical financial data about a stock exchange. The user and the source have
different assumptions regarding the interpretation of the data. These assumptions are cap-
tured in their respective contexts cl and C2. The Domain Model defines the semantic types
moneyAmount, date, currencyType, and companyName. The following query requests the
price of the IBM security on March, 1 2th 1995:

Qi: select security.Price
from security
where security.Company = "International Business Machines"
and security.Date = "12/03/95";

2A more detailed discussion can be found in [Goh97]
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Suppose the user's context cl indicates that money amounts are assumed to be in French
Francs, dates are to be reported in the European format, and that currency conversions
should be based on the date for corresponding to that for which the price is reported for.
Notice that this information is at least needed to avoid the confusion between March, 1 2th
and December, 3 rd 1995.

Let us assume, on the other hand, that the source context C2 indicates that money
amounts in the source are in local currencies of the country-of-incorporation of each com-
pany, and dates are reported in the American format. Under these circumstances, the
Context Mediator will rewrite the query to incorporate the proper currency conversion (as
of March, 12 th 1995, using ancillary source (cc) for the conversion rates), and also make
the appropriate transformations on dates to ensure that the query is correctly interpreted.
In addition, if both contexts use different naming conventions for companies involved, then
appropriate mapping between two naming conventions will be needed. For example, cl may
assume the full company name (" International Business Machines") while C2 uses company
ticker symbol ("IBM"). Under the above circumstances, the mediated query corresponding
to Q1 will be given by Q2 as shown below:

select security.Price * cc.Rate
from security, cc
where security.Company "IBM"

and security.Date = "03/12/95"
and cc.source = "USD"
and cc.target = "FRF"
and cc.date = security.Date;

A primary goal of this paper is to demonstrate that the kind of transformations which we
have exemplified can be understood as a special type of logical inference, which is sometimes
characterized as abduction [KKT93a]. The next section describes the representations in a
Context Interchange framework in somewhat more detail, and illustrate how this can be
transformed to a logical theory (comprising only of normal Horn clauses), thereby setting
the stage for the subsequent sections of this paper.

2.3 A Logical Interpretation of Context Mediation

The axioms in a Context Interchange framework are represented using a deductive object-
oriented formalism called COINL, which is a variant of F-logic [KLW95b]. The collection
of axioms present in an instance of this framework constituted a COINL program. The
mediation of queries submitted to a Context Interchange system proceeds as follows. First,
the user query and the COINL program are compiled into a goal (a negative Horn clause)
and a normal logic program respectively. Following this, the goal is evaluated against
the logic program using th the mediation procedure (which we will describe shortly) which
returns a set of conjunctive clauses and a set of variable substitutions associated with each
such clause. These are then translated back to SQL, which can then be evaluated using a
distributed database engine. In the remainder of this discussion, we will focus on the query
mediation procedure. An in-depth description of the query evaluation framework can be
found in [GBMS96b].

Figure 1 illustrates the approach taken towards the representation of contextual infor-
mation. Each data element, be it stored in a source database, or expected or expressed by
a receiver, corresponds to a semantic-object or equivalently, an instance of a semantic-type
defined in the domain model. In the above figure, we show only a portion of the domain
model with the semantic-types moneyAmount and curType (for currency type). The seman-
tic types may be arranged in a type hierarchy. The information on what types exists, their
relationship to one another, and the signature of methods (called modifiers) defined on each
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Figure 1: A summary of the COIN Framework.

type are defined in the domain model using the COIN language (COINL, examples of which
are shown below:

moneyAmt :: number.
curType :: string.
moneyAmt[currency(ctx) => curType].

The above assertions state that moneyAmt is a subtype of number, whereas curType is a
subtype of string. In addition, the semantic-type moneyAmt is modified by a method
currency which returns an instance of the type curType

Semantic-objects are instantiated through the use of elevation axioms. For each re-
lation R exported by a source, a semantic relation R' is defined. The semantic relation
R' is isomorphic to the extensional relation R in the sense that it has the same arity m
(i.e., number of arguments) and for every tuple r(xl,...,xm) E R, there exists a tuple
r'(ol,..., om) E R' such that the value of oi in the context corresponding to R is given
by xi. For instance, for the relation security(company, price), the corresponding se-
mantic relation is given by security' (companyName, moneyAmt), where companyName and
moneyAmt are semantic-types. Semantic-objects are syntactic constructs (Skolem functions)
of the relation, the attribute, and the tuple. For instance:

01 = f(security, company, ["IBM", 144, "03/12/95"]).

is a semantic-object. The value of this object in the source context (of the relation security)
is "IBM". This is expressed in the elevation by the following axioms. The first axiom defines
the semantic relation and the semantic objects for security. The three other axioms define
the respective values and attributes of the semantic objects. Notice that the value is a
function of the context. The context associated with security is given by the mu function.
mu is defined for each source when the source joins the mediation system.

security'( f(security, company, [N,P,D]),
f(security, price, [N,P,D]),
f(security, date, [N,P,D]) ) <- security(N,P,D).

f(security, company, [N,P,D):companyName
[value(C)->N]<- mu(security, C).
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f(security, price, [N,P,D]):moneyAmount

[value(C)->P] <- mu(security, C).

f(security, date, N,P,D]):date

[value(C)->D]<- mu(security, C).

Notice that semantic-objects are "virtual" in the sense that they are never actually instan-
tiated but are present solely for the purpose of allowing us to reason with the different
meanings of syntactic tokens which may appear identical.

In addition to the above, integrity constraints on sources can also be introduced to
facilitate their use in semantic optimization of the mediated queries. For example, we may
introduce the functional dependency company - price via the following assertion:

security(N, P1, D), security(N, P2, D) -> P = P2.

As we will see later, such constraints allow superfluous references to extensional data sources
to be pruned and can result in significant savings.

Intuitively, a semantic-object is a syntactic construction which allows information in a
source to be abstracted the peculiarities of its representation and from the assumptions
underlying its interpretation. For example, the same semantic-object may have different
"values" in different context because different currencies are used for their reporting. In
general the assumptions can be characterized by a number of orthogonal concepts (e.g. unit,
scalefactor, format, rounding etc). To each semantic-type, and therefore to each semantic
object, we associate a modifier corresponding to each of the relevant notion defining the
interpretation of the data. On Figure 1, the semantic-object o of type moneyAmt has a
modifier currency which may take on different values (e.g., "French Francs" or "US Dollars")
in different contexts.

A context theory is the set of definitions for the modifiers corresponding to each seman-
tic type in the domain model (context inheritance allows the reuse and specialization of
context definitions). In our example, the context cl and c2 define the currency modifiers
as returning string (also a semantic-type) whose value will be respectively "United States
Dollar" and "Japanese Yen". Notice that the modifier are in turn assigned semantic-objects
whose values are to be interpreted in a context. Indeed, different contexts may represent
the data element for United States Dollar as, for instance, "USD", or "$", or "US", etc. In
complex situations we may use modifiers of modifiers. Let us consider a simple situation
and give the axioms for the modifier currency in the context ci.

X : moneyAmount[currency(cl)->currency(cl,X)].

currency(cl,X):string[value(cl)->"FRF"].

Notice that the modifier is a function of the context. The semantic-object currency(ci,X)
(assigned to the modifier currency of X) is created by the first axiom. The second axiom
assigns the value of this object which must is a printable string.

Conversion functions define the the mapping of a value to its corresponding counterpart
under different assumptions, i.e for different values of the modifiers. Typically, a conversion
function for the currency conversion is multiplying the money amount by the currency
exchange rate. Administrators and users contribute to a library of conversion functions.

The process of mediation consists, for each data element encountered in mediating a
query, in the following steps. The source and associated context of the corresponding se-
mantic object are identified. They are retrieved from the information in the skolem function
identifying the semantic object. The target context, i.e. the context in which the data ele-
ment needs to be interpreted is identified. It is primarily given by the context in which the
query is asked. Then the modifier values of the semantic objects are compared. For each
mismatch in the modifier values, the corresponding conversion function is introduced. This
mechanism is expressed by built-in axioms.
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The user queries the relations exported by the component sources. However the query
is expressed under the assumptions of the receivers, i.e. in her context. The query (Q1 in
the example from the introduction section) needs to be rewritten to take these assumptions
into account. The mediated query Q1' is:

answer(P) <- security'(01, 02, 03),
01[value(cl)->"International Business Machines"],
03[value(cl)->"12/03/95"],
02[value(cl)->P].

Qi1' expresses the user's intention to query about the values of the semantic objects in the
relation security' in her context.

The query constitutes a goal for the program composed of all the basic axioms, elevation
axioms and context axioms. It is evaluated by the mediation procedure. The answers are
the mediated queries which only contain atoms from the component databases and the
conversion functions as we have shown in the introduction.

We have chosen to implement the mediation process by separating it into a general
purpose procedure and the explicit set of axioms. The generic mediation axioms and the
application contexts, conversions, and elevation axioms are expressed in COINL and compiled
into Datalog [CGT90]. The alternative of specializing the procedure by hard coding the
generic axioms is attractive. However by maintaining the separation clear we achieve another
objective: we provide a uniform query mechanism for both data level query mediation, i.e.
queries to the sources as illustrated in the previous examples, and knowledge level queries,
i.e queries involving elements from the domain model and contexts. For instance we can ask
the following query: "what are the names of the companies reported in the security relation
and in which currency are their stocks reported in context cl?".

3 Abduction

3.1 Abduction

Abduction [KKT93b] is a form of reasoning initially defined by C.S. Pierce as the inference
of the case from the rule and the result. For example, from the observation of G and the
knowledge of the rule D -+ G, one can infer D by abduction.

G A (D - G) Habd D

Let us, more generally, define the abduction inference in terms of the model semantics, where
T is a set of sentences constituting our theory, G is the sentence describing our observation,
and D is the

(T A G) FHabdD

if and only if
(TUD) G

Informally, we could say that D is a "logical antecedent" of G under T.
In order to make a practical use of abduction as a reasoning mechanism, we also want to

avoid non-constructive inferences such as GFabdD where D contains literals which are not
"interesting" for the application. A trivial example could be a situation where D is G itself.
We therefore add to our definition the condition that only certain literals are acceptable in
the sentence D. Such literals are called abducible literals. They are identified as such from
their predicate name which are explicitly defined as abducible predicates and be declared in
a set called Pabd-

Furthermore we notice that a formula F such that TUF is inconsistent (TUF = 0) is a
logical antecedent of anything. Indeed, for all formulae G: 0 k G and therefore TU F = G.
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We add to our definition the requirement that T U F is consistent. Thus, we can enrich this
framework by considering a set of integrity constraints IC, i.e a set of formulae that are
statements about the universe of discourse. We assume that these statements are consistent
with our theory T. We also require in our definition that T U IC U D is consistent.

We can now give the complete definition for the abduction framework, which is consistent
with that given elsewhere (e.g., [KKT93a]): Given a set of sentences T called a theory, a
set of sentences IC called integrity constraints, a sentence G called the observation, and a
set of predicates Pabd, given that T U IC is consistent, we say infer D by abduction from T
and G under IC:

(T U G) b) D

if and only if

* TUD kG;

* T U IC U D is consistent; and

* all predicates used to form literals in D belong to Pabd-

3.2 Applications of Abduction and Abductive Procedures

In [KKT93b], Kakas and Kowaslki present the abductive framework and a survey of re-
cent work on abduction. Abduction has been applied to many categories of problems
such as design synthesis [FG85], planning [CP86, Esh88], or database updates (view and
intensional updates) [KM90, Bry90O, Dec]. In fact, as recalled in [KKT93b], the Abductive
Logic Programming framework combines many aspects of deduction, truth maintenance,
non monotonic reasoning, and default reasoning and can serve as a general problem solving
programming environment. Many of these work observe the duality between deduction and
abduction [Sha89].

An important aspect of the abductive framework is the notion of integrity constraints
and integrity checking. It offers the opportunity to include semantic query optimization and
constraint logic programming features into the inference mechanism.

Wetzel, Kowalski, and Toni [WKT95] have presented a Theorem Proving approach to
Constraint Logic Programming which attempt to unify abductive logic programming, con-
straint logic programming, and semantic query optimization. One implementation of this
framework is the Procalog [WKT96] programming language. This work as been developed
in parallel with our effort. It focuses on a general programming environment while we have
concentrated on mediation.

Several procedures have been developed for the abductive framework.
The residue procedure [FG85] is a resolution based procedure that operates on clausal

programs. The procedure includes inference steps for both abduction and constraint prop-
agation. We borrow and adapt an example from [FG85] in appendix A.

In [Esh93], Eshghi defines a suitable notion of minimality for abductive answers and
prove that there exists a polynomial algorithm for computing them when programs are
acyclic propositional horn theories. His algorithm is based on unit resolution which has
been proven equivalent to input resolution [Cha70] (For a general discussion and references
on resolution see [BJ87]).

An issue which we do not address in this paper but is useful to consider for the application
of abduction to non monotonic reasoning such as planning and database updates, is the
management of negation [Bid91]. Several semantics and procedures have been developed to
handle this problem. We refer the reader to [EK89], [Dec], and [DS92] for instance.
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3.3 An Abductive Framework for Context Mediation

The COINL program resulting from the definition of a domain model, elevation axioms and
contexts for the integration of a set of disparate information sources can be equivalently
transformed to a normal Horn program (equivalently, a Datalogn e g program). Similar trans-
formations of object-oriented logical formalisms to predicate calculus based languages have
been described in several places (for example, [ALUW93, McC92]). Let us call this program
T.

In this paper, we consider an integrity theory composed of integrity constraint statements
expressed in Datalogn eg3 on the exported schemas of the sources. We restrict ourselves to
constraints of the form 11 A ... A In -+ lo where the li are atoms and 10o is a constraint literal.
This form is equivalent to 11 A ... A In A lo -+ where lo is -lo. Integrity constraints are Horn
clauses without positive literals, i.e. denials. Let us call the set of integrity constraints IC.

A query to be mediated is transformed into a COINL and further into a Datalog query.
This transformation is not a logical transformation. The query is interpreted with respect
to the user contexts. We refer the reader to the example in the previous section. Let us
call the Datalog rule Q. Let assume that Q is of the form G -+ answer(X) where X is the
vector of variables projected out.

Let us assume that the set of data in the disparate information sources is a single
database DB. G is a query on the deductive database < P, DB > where P is the intensional
database and DB the extensional database. DB U IC is consistent by definition of IC. An
answer to the query G is a substitution 0 such that T U DB t (G). Such an answer is
usually found by refutation: one looks for 0 such that T U DB U -(G) °. For Horn
clause programs, resolution is a complete inference rule for refutation [Llo87, BJ87]. For
non recursive Datalog programs, SLD-resolution is a complete inference rule for refutation
[GM78, CGT90]. A SLD-resolution proof will also construct the substitution 0:

T U DB U -0O(G) F-SLD °

Let us assume that we want to separate the resolution with clauses from T from the
resolution with facts in the database DB. In other words, let us assume that we want to
rewrite the query according to the intensional database before we access the extensional
database. Since T is a non recursive program, we should be able to achieve this objective
by performing some kind of unfolding of the query against the program only keeping certain
literals. We need to slightly modify the selection function of the SLD-resolution. We need
to decide to postpone indefinitely the resolution of literals in the query which correspond to
literals of the extensional database DB and delaying the resolution of the constraints unless
they are ground (when they can be evaluated e.g. 2 > 1). Once all the possible resolutions
have been attempted, we remain with a resolvant containing extensional database literals
and constraints literals that could not be evaluated because of they are non ground.

For the program T = {p(X, Y) A r(X, Z) -+ q(X, Y, Z),p(a, Y) A Y > 10 -+ r(a, Y)}
and the extensional database relation p(X, Y, Z) and the query q(U, 9, V), the modified
SLD-resolution we are discussing stops with the resolvant

p(a, 9),p(a, Z),Z > 10

and the substitution 0 = {U/a, V/Z}. A resolvant -G' obtained with that procedure is such
that: T U -O(G) F-SLD -G' and therefore: T U -(G) -iG' or T U G' k (G).

In other words, if we describe the literals of the extensional database as abducible, and
consider G as an observation for an abductive proof, G' is an abductive answer for G against
T. we have:

T = G' -+ answer(0(X)))

3Datalog ' ge is a subset of COINL. (For brevity, we will refer to the target language as simply Datalog.)

9
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The union of all the formulae G' -+ answer(O()e)) (the mediated queries) for G' and 0
corresponding to each successful branch of the modified SLD-resolution is a program which is
equivalent to T for the processing of Q against the extensional database. The completeness
of the result is given by the completeness of SLD-resolution for refutation of the type of
programs we consider.

If now we restrict the answers G' to those consistent with the integrity constraints,
given a sound consistency procedure, we are filtering out some mediated queries which
would result in an empty answer if evaluated against the extensional database. It must be
clear that in the context of mediation of queries to disparate information sources, where the
sources are remote, such an elimination of useless network access is a crucial optimization.
In addition, any propagation of the constraints that can be performed in the process of
consistency checking can also increase the performance of the mediation service by pushing
more selections to the remote sources and potentially leading to smaller amounts of data
transported over the network.

We are indeed talking about a logical optimization. If the consistency test is not per-
formed, the subsequent query evaluation would still provide sound and complete answers.
For this reason we can satisfy ourselves with a sound test as opposed to a sound and complete
test. We accept a looser third condition in the definition of the abductive framework.

In our example we now consider a functional dependency integrity constraint on p ex-
pressed in Datalog by the clause: p(X, Y)Ap(X, Z) AY Z -+, meaning Y and Z cannot be
different for the same value X of the first attribute of p. The resolvant p(a, 9), p(a, Z), Z > 10
can be simplified in three stages. First the integrity constraint is used to determine that Z
must be equal to 9: p(a, 9),p(a, 9), 9 > 10. Second, one of the two syntactically identical
literals p(a, 9) can be eliminated: p(a, 9), 9 > 10. Third, the constraint solver for inequalities
on integers (e.g.) figures out that 9 > 10 is inconsistent. The resolvant is inconsistent with
the integrity constraints and can be rejected.

4 The Procedure

The procedure we propose is therefore a modified SLD-resolution where the literals corre-
sponding to constraints or relations in the remote data sources are not evaluated. From the
point of view of abduction, they are abducible (abducible boolean function below).

The definition of the abductive framework suggest an algorithm which generates the
candidate abductive answers and subsequently tests the consistency against the integrity
constraints. Following the Constraint Logic Programming framework [JM96, Wal96], we
argue that, if the consistency testing can be done incrementally during the construction of
the SLD-tree, we are likely to have an improvement of the performance of the algorithm.
This is a heuristic which depends on the shape of the proof tree.

We replace the generate and test procedure by a constraint and generate procedure
[JM96]. From such a point of view, the resolvant is a constraint store whose consistency is
maintained by a propagation algorithm.

Figure 2 is a sketch in pseudo code of the main algorithm of the abduction procedure.
.tail, . head respectively access the tail and the head of a list or the body and the head of
a horn clause. El[] is the empty list. append and add respectively append two list and add
an element to list. We assume that lists can have a boolean value False different from []
or other values of lists with elements.

The input Goal is a list of atoms corresponding to the initial query (a conjunctive query).
Initially, the store Store (the data structure used for propagation) is empty. Rules is a
data structure containing the program. Abducted contains the result of the procedure.
It is the list of lists that contains the conjunctive components of the mediated query. It
is initialized to []. The unification procedure unify return a substitution in the form
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of a list of equalities. If the element do not unify it returns False. The propagation
procedure, propagation tests the consistency of the store and returns false if it detects
an inconsistency. Otherwise, it returns the store which may have been modified by the
propagation.

The idea of the algorithm is to traverse the resolution tree. We opted for a depth first
traversal. This basic component is implemented by the if and elsif clauses. When the
goal is emptied (if clause), a leaf of the resolution tree is reached. One can collect the
answer from the store. Indeed, all abducible atoms have been posted to the store in the
else clause. Notice that algorithm assumes that abducibles can not be heads of rules.

Figure 2: Pseudo Code Procedure

Variant algorithms for this procedure correspond to variant strategies for the traversal
of the proof tree. For a depth first strategy, they correspond to the various Prolog meta
interpreters described in the literature [SS94]. As a matter of fact the procedure is straight-
forward in Prolog, since the basic control of Prolog is exactly what we are trying to realize
here. Any of the classical vanilla interpreter can be used and extended as, for instance, the
one of figure 3. We will see different implementations of the propagation techniques in the
next subsection.

4.1 Implementation of Constraint Propagation and Consistency
Checking

In both the algorithms we have presented, the propagation procedure implements the con-
sistency test we have discussed in the previous section. This procedure either returns the
store, possibly modified, if no inconsistency is detected, or interrupts the search tree traver-
sal (False or failure) if an inconsistency is detected.

The minimum set of constraints to be considered are Clark's Free Equality axioms, i.e.
the axioms defining the consistency of a set of equations between variables and constants.
They will manage the consistency of the store with regard to the substitutions produced
by the unify procedure. However, the unification procedure could include this test as it
is the case in the second algorithm. Here, we rely on Prolog's unification not only for
creating the substitutions, but also for applying the substitution and producing a failure
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Procedure abduct(Goal, Store){
if (Goal eq [])

{Abducted := append(Abducted, Store);}
elsif (!(abducible(Goal.head))

{foreach Rule (Rules))

{Substitutions := unify(Rule.head, Goal.head);
if (Substitutions)

{NewGoal := Goal.tail;

Store := add(Store, Goal.head);
Store := propagation(Store);

if (Store) {abduct(NewGoal, Store);}}}}
else (abducible(Goal.head))

{NewGoal := Goal.tail;

Store := add(Store, Goal.head);
Store := propagation(Store);

if (Store) {abduct(NewGoal, Store);}}

}

_____�_I_____________I_� _�_



Figure 3: First Prolog Vanilla

we an inconsistency occur. Notice that, when constraints are posted in the store, the
store may generates new equations. For instance if it contains the two literals p(a, b) and
p(a, X) and knows a functional dependency of the second argument of p from the first:
p(X, Y),p(X, Y 2) -+ Y = Y2, the equation b = X is propagated. We may limit the
propagation to within the store, but we may also decide to propagate it outside the store
in order to take it into account in the subsequent phases. In Prolog, this is achieved by
unifying X with a. The advantage is that the result of such a propagation can be accounted
in the next rule selection and unification phase of the resolution.

In general a consistency procedure for the class of integrity constraints we propose to use
can be implemented by means of a production system where for a constraint B(X) -+ A(Y)
where Y C X. The consistency procedure controls the application of the propagation rules
in a fixpoint iteration. We have been using the Constraint Handling Rules (CHR) library
[FH93] of the ECLiPSe parallel logic programming platform.

CHR is a language extension of ECLiPSe for the definition of of constraint solvers.
CHR is a rule based language. Rules in the program correspond to individual propagations
operated on the store. The host language, Prolog, posts constraints into the store. The
propagation is automatically triggered by the posting of a new constraint or an event such
as the unification of a variable involved in the store. Figure 4 shows the possible forms of
Constraint Handling Rules.

A simplification rule: Head , Head] <=> Body.. Such a rule replaces a
part of the store matching the left hand side by the right hand side.
A propagation rule: Head , Head] ==> Body.. Such a rule adds the right
hand side to the store whenever some element in the store match the left hand
side.
A "simpagation" rule: Head \ Head <=> Body.. Such a rule is a short hand
for a combination of propagation and simplification.

Figure 4: Constraint Handling Rules

An example of a constraint domain that can be implemented with the CHR is for instance
inequalities. Figure 5 gives a simplified excerpt of the code from the "lower or equal", leq,
constraint from [ECL96] by Thom Friihwirth and Pascal Brisset. Each rule is prefixed by
its name and the separator . The body of the rules may contain a guard, a procedural
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abduct(Goal, Result) :-
setof(Store, sub_abduct(Goal, [], Store), Result).

sub_abduct([], Store, Store).

sub_abduct([HeadlTail], StoreIn, StoreOut):-
rule([RHeadIRTail]),
append(RTail, Tail, NewGoal),
propagation(StoreIn, Store),
sub_abduct(NewGoal, Store, StoreOut).

sub_abduct([HeadTail], StoreIn, StoreOut):-
abducible(Head),
propagation([HeadIStoreIn], Store),
sub_abduct(Tail, Store , StoreOut).
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escape, before the symbol .

reflexivity X leq X <=> true.

antisymmetry X leq Y, Y leq X <=> X = Y.

transitivity X leq Y, Y leq Z ==> X leq Z.

subsumption X leq N \ X leq M <=> N<M I true.
subsumption M leq X \ N leq X <=> N<M I true.

Figure 5: Constraint Handling Rules for Inequalities

The only implicit elimination we are considering is the duplicate elimination which is
optionally performed by the CHR engine.

Each integrity constraint of the form B(X) - A(Y) where X C X is compiled into a
CHR propagation rule. For instance, the functional dependency p(X, Y1) Ap(X, Y2) - Y1 =
Y2 is compiled into p(X, Y1), p(X, Y2) ==> Y1 = Y2.

It is sufficient to declare the different abducible predicate as constraints and to post
them into the store (post/i which is then equivalent to the Prolog built-in call/i). The
consistency checking and constraint propagation will be performed automatically and trig-
gered, as we wished, by constraint posting and unification. When the search tree traversal
terminates, the constraints are collected from the store by the predicate store/i. The
revised procedure now is shown on figure 6.

Figure 6: Second Prolog Vanilla

We see that normal SLD-resolution is not only the skeleton of the search tree traversal
strategy but is actually implemented directly by the first and second clauses of sub_abduct/i.
In appendix A we illustrate the application of this general procedure with a simple classical
example not related to mediation.
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abduct(Goal, Result) :-
setof(Store, abduct_and_collect(Goal, Store), Result).

abductandcollect(Goal, Store):-
sub_abduct(Goal),

store(Store).

subabduct( []).

sub_abduct([Head Tail]):-

rule ( [RHead RTail]),
append(RTail, Tail, NewGoal),

sub_abduct(NewGoal).

sub_abduct([HeadITail], StoreIn, StoreOut):-

abducible(Head),

post(Head),
subabduct(Tail).



4.2 Semantic Query Optimization

Semantic Query Optimization as described in [CGM90], is the process of optimizing (in-
creasing the potential for an efficient evaluation) of database queries using the semantic
information contained in the integrity constraints.

A query may be answered without accessing the database if enough knowledge is con-
tained in the integrity constraints. For instance, a query requesting the names and security
prices of companies whose pre-tax earnings are lower than $2.5 million and which take part
in the Dow Jones definition may be answered (no such company exists) on the premise of
integrity constraints. The constraints are stating that a company must have earned more
than $2.5 million before tax to be listed in the New York Stock Exchanged (NYSE) and
that the Dow Jones is exclusively composed of companies from the NYSE.

When accessing the database can not be avoided, the potential for the evaluation of
a query can still be improved by the introduction or elimination of elements. A query
requesting the price of the securities participating in the definitions of both the Dow Jones
and the Value Line Composite Index can restrict its access to the relations reporting prices
from the NYSE because of the constraint on the Dow Jones (the Value Line Composite
Index combines securities from NYSE, AMEX and other markets).

King has identified six types of transformations that can result from the use of integrity
constraints knowledge:

1. Index Introduction: the specialization of one element of an accessed relation that can
be used to improve the indexed access;

2. Join Elimination: the elimination of a redundant access to a relation (typically in the
case of an inclusion dependency);

3. Scan Reduction: the introduction of a constraint (e.g. company.netsales < 25000000)
which may optimize the scanning of the relation;

4. Join Introduction: the introduction of an access to a relation which may be used to
accelerate the elimination of tuples (e.g. a join index [VB86]);

5. Detection of Unsatisfiable Conditions: cases where the result of the query will be
empty regardless of the database content.

6. No Transformation: cases where no transformation is useful even if possible.

We see that introduction and elimination are opposite actions and that a strategy must
be define for the utilization of the constraints.

Chakravarthy et al. [CGM90] present a method for compiling integrity constraints into
residues attached to the rules (view definitions) of a deductive database program and show
how to exploit the residues at the query optimization stage to identify opportunities for the
application of one of the six cases. The compilation of the residue for a rule is based on
a partial subsumption algorithm. The different types of transformation proposed by King
are shown to correspond to different possible transformations corresponding to the type of
residue obtained. There are four different types of residue: the null clause, a goal clause, a
unit clause, a Horn clause with non-empty body and head.

In comparison, our algorithm is based on a plain subsumption because it is used dur-
ing the resolution rather than at compile time. There is no significant loss in efficiency:
indeed, our constraint propagation also implement the decision of which transformation is
to be made. This is possible because of the current restrictions we made to the integrity
constraints we are using. We are mainly aiming at the detection of inconsistencies which,
in our case, not only optimize the subsequent evaluation of the query but also optimize, be-
cause of the early detection in the traversal of the search tree, the mediation process itself.
We need however to guarantee that the constraint solver we use is sound and converges.
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Minimality of the result and completeness of the solver are wishable properties but are not
necessary. In general we are considering to use off-the-shelf CHR libraries.

For the above reason, we only compile integrity constraints into propagation rules which
propagate constraint literals.

However, it is clear that, if we can decide of a strategy to apply other transformations
such as join introduction or join elimination, we can compile the integrity constraint into
simplification or "simpagation" constraints handling rules. For instance let us assume a
situation where we are querying two relations in two separate sources:

* r (cname, revenue, currency), a relation reporting for several companies their revenue
and the currency the revenue is expressed in;

* r2 (cname, ticker, last) a relation reporting for the same companies as above their ticker
name (the company identification code in the stock exchange) and the last price of the
share.

Let us consider the query:

select rl.cname, r2.last from rl, r2 where rl.cname=r2.cname;

An integrity constraint expressing that the correspondence between company names and
tickers is also accessible from a third relation r3 (cname, ticker) can be used to generate the
transformed query:

select rl.cname, r2.last from rl, r2, r3
where r.cname=r2.cname

and r3.cname = ri.cname
and r3.ticker = r2.ticker;

The constraint in Datalog: r(N, R, C) A r2 (N, T, L) -4 r3 (C, N) is compiled into a
propagation rule of the form ri(N, R, C), r2(N, T, L) => r_3(C, N). which will add
r 3 (C, N) to the store whenever rl and r2 tuples matching the rule are found.

Such a join introduction is not only interesting if r2 is indexed on the ticker value but also,
as it is the case with information sources such as wrapped web sites [BL] or on line services,
when the capabilities of the source are limited [BFG+97b, LR096, PGGMU95, Ce95]. In
this case the auxiliary relation r 3 provides a means to generate values for the ticker before
querying r2 . This type of use of the semantic query optimization mechanism available in
our system is part of our future plans. The question being to determine the strategy guiding
the compilation of integrity constraints.

5 Conclusion

We have gathered results coming from several different research areas, theorem proving
and abductive logic programming, constraint solving and constraint logic programming,
deductive databases and semantic query optimization, and we have applied them in the
unifying framework of abductive logic programming to design a procedure for the mediation
of queries to disparate information sources.

The resulting algorithm is powerful yet it has a particularly simple implementation
(Figure 6) when one uses state of the art, industrial strength, constraint logic programming
technology.

Such a result comes from the fact that the logic of mediation is declaratively encoded
into a COINL program which is the control of the procedure. This was made possible by the
deductive and object oriented features of the COIN language which constitutes an appropriate
and and expressive support for both the representation of semantic knowledge and the
reasoning about semantic heterogeneity. It also encourage us to exploit opportunities to
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extend our approach to the application of mediation to new areas such as query planning,
integrity management, and update management. We have good guidelines for this future
work since a number of extensions of the generic abductive framework to these type of non
monotonic problems have already been proposed.

We have not only succeeded to keep the "declarativeness" of the context knowledge, i.e.
its relative independence from the particular task of query mediation, but also to maintain
a separation between the mediation itself and the subsequent generation and realization of
a query execution plan. Nevertheless, as we see opportunities to exploit context knowledge
to optimize and execute queries, we are constantly challenging this frontier.

The procedure we have presented is operational in a complete mediation prototype envi-
ronment which has been discussed [BFG+97b] and demonstrated [BGa97]. The prototype
is used in several application domains such as financial analysis and logistic in liaison with
our industry partners.

A A Simple Example

In order to illustrate the use of the abductive procedure independently from explaining its
application to mediation, we will use a simple classical example of circuit analysis proposed
in [FG85] and solved by the Residue procedure.

The example is the one of a circuit with two inputs A and B taking positive integer
values, two outputs E and D, E outputs positive integer values and D outputs 1 or 0. The
circuit of figure 7. It is composed of two adders and one comparator.

Figure 7: Circuit Analysis.

We can write the following Horn clauses to describe the circuit:

* a(Xi), b(X2 ),X1 + X 2 = X 3 - C(X3);

* a(X), c(X 2), Xi + X 2 = X 3 - e(X5);

* b(X),X 3 d(1);

* b(X), X > 3 -+ d(O).

Additionally, some constraints can be stated:

* We need several constraints stating that each input or output has at most one value:
e.g. a(XI), a(X 2) - X1 = X2 (notice that these constraints are functional dependen-
cies);

* a(Xi), C(X2),X1 + X2 = X3 - e(X 3 )
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* We constrained the input and output to be strictly positive integers. here, without
going into the details, we assume a simple solver for integer linear arithmetic (cf.
[Wal96] for references).

The initial goal is the negation of the wished output of the circuit, D is 1 and D is 1.
We write the goals and the resolvant in their conjunctive counterpart:

e(14) A d(l)

the resolution with the second rule leads to the resolvant:

a(Xi) A c(X 2 ) A X1 + X2 - 14 A d(l)

The integer linear arithmetic figures out in the propagation phase that X1 and X 2 may
only have values between zero and fourteen. The next selection, a(X1) is then posted in the
store. c(X 2 ) is resolved with the first rule (after renaming variables):

a(X 3 ) A b(X 4 ) A X3 + X 4 = X2 A X1 + X2 = 14 A d(l)

a(X 3 ) is then posted in the store. The functional dependency constraint applies and figures
out that X3 = X1.

b(X4) A Xi +X 4 = X2 A X1 + X2 = 14 A d(l)

before the resolvant is reduced to d(1), the propagation in the store discovers that 2 * X 1 +
X4 = 14. Then d(1) is resolved against the first rule for d and after further resolution and
propagation of the functional dependency for b, the propagation can discover That X 4 has
to be even and is lower or equal to three. Therefore it must be two and X1 is six. The store
once the resolvant is emptied (the result of the procedure) is:

[a(6), b(8)]
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