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Abstract

In this thesis, we construct a wavelet and filter bank framework for context-independent
phonetic classification, with the aim of extending it towards a full speech recogni-

tion system. The framework is implemented for feature extraction, and targets the

limitations of the commonly used STFT analysis. The wavelet transform allows a

multiresolution analysis and subsequently a good signal representation by exploiting

the time/frequency resolution trade-off. The wavelet transform can also be efficiently

implemented using an adequately designed filter bank.

Most of the work reported in the literature on wavelet-based analysis for speech
recognition involves off-the-shelf wavelets and dyadic filter bank implementation. The
original contribution of this work lies in extending previous work in two directions:
filter design and the implementation of rational filter banks. We adopt two filter
design techniques. The first minimizes the modulus between the designed and desired
filter imposing orthogonality through the lattice structure of the filter. The second
method minimizes the attenuation in the filter stopband. We first use tree-structured
filter banks to obtain various frequency partitions. We then adopt a method for the
design of rational filter banks. The latter naturally incorporates the critical band
effect.

A baseline classifier using MFCC acoustic measurement has a typical error rate of
24.6% on the TIMIT Core Test set. We match and exceed this result, as well as those
reported in the literature. For example, using a rational filter bank implementation
we obtain 24.0% on the Core Test Set. We also get 22.9% for the same acoustic
measurement using 4-fold aggregation.
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Chapter 1

Introduction

The theory of wavelets has been studied intensively over the past two decades. The
range of their application varies from image and signal processing to geophysics.
Wavelets are functions with compact support capable of representing signals with a
good resolution in the time and frequency domains. The wavelet transform is well
defined within the multiresolution framework which allows signal analysis at various
scales and thus enables us to see the forest and the trees. Wavelets, like sinusoids,
are basis functions that span the square-integrable space, Ly(R), and can be used to
develop series expansions of signals belonging to that space.

These attractive features led wavelet analysis to be studied as a mathematical tool
for signal processing and proposed as an alternative to Fourier analysis which, in its
simplest form as the Fourier Transform (FT) lacked any time localization. The Short-
Time Fourier Transform (STFT) was later proposed to overcome the limitations of
the FT. However, the fixed window-size in the STFT implied time-stationarity of
the signal within each time frame and provided only a fixed time and frequency
resolution. The Wavelet Transform (WT) was able to overcome this problem. Figure
1-1 illustrates the resulting time-frequency space for the Fourier and Wavelet analysis
respectively. As sinusoids are basis functions in Fourier analysis, wavelets form the
basis functions in Wavelet analysis. A sinusoidal function as well as a Daubechies
wavelet of order 10 are illustrated in Figure 1-2. The significant advantage is that

wavelets are localized in time while sinusoids are not.

13
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Time Time

Figure 1-1: Tiling of the time-frequency space in Fourier Analysis (left) versus Wavelet
Analysis (right).

Filter banks have also emerged as signal processing tools that decompose and
analyze signals. A filter bank is an array of filters, which can be low-pass, band-pass,
or high-pass, that are used to decompose a signal into subbands over different regions
of the frequency spectrum. Such an analysis is quite useful, especially when the signal

has a non-uniform spectral content as in the case of speech.

Wavelets and filter banks have evolved separately, where wavelets thrived in ap-
plications for theoretical and applied mathematics, such as the design of orthogonal
bases for the Ls(R) space[12], while filter banks have been applied successfully in
subband coding for speech compression [11]. Within the multiresolution framework,
continuous-time wavelets are closely connected to discrete-time filter banks where
it has been proved that a wavelet transform can be implemented using filter banks
(39, 42]. It is this relation that we study and exploit in the problem of phonetic clas-
sification. Given some desired filter characteristics, we design a filter and implement
it in a filter bank to obtain the wavelet transform. The filter bank features that we
wish to leverage are perfect reconstruction, regularity, and orthogonality. Figure 1-3
illustrates this scheme.

In Automatic Speech Recognition (ASR) systems, an acoustic-phonetic model
maps the speech waveform to a string of discrete phonetic units. Acoustic-phonetic
modelling requires first capturing acoustic observations necessary for phonetic distinc-

tion. This problem has always been a challenging research topic requiring efficient
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Time

Figure 1-2: A wavelet function (left) versus a sinusoidal function (right).

extraction of acoustic features that compactly represent the speech waveform and yet
preserve discriminatory information. Some of the commonly used acoustic measure-
ments are: perceptual linear prediction cepstral coefficients (PLPCC) [26], discrete
cosine transform coefficients (DCTC), linear predictive coefficients (LPC) [37], and
the dominantly used Mel-Frequency Cepstral Coefficients (MFCC) [13]. MFCCs will
be extensively referenced in this work and used as the reference point for comparative

studies with the new acoustic measurements developed in this thesis.

As illustrated in Figure 1-1, the flexible time-frequency representation that the
wavelet transform provides makes it a suitable tool for extracting speech features.
This feature has been used for the past decade for various applications in signal
processing such as denoising [22], compression [3], as well as speech recognition [14, 15,
16, 24]. Furthermore, within the realms of speech analysis and recognition, wavelets
have had diverse applications to problems such as pitch detection [29] and formant
tracking [20].

The goal of this thesis is to propose a new framework for wavelets and filter banks
for feature extraction in speech recognition systems. Specifically the work pertains
to context-independent phonetic classification. While a wavelet-based framework
for context-independent phonetic classification is a long way from automatic speech

recognition, we believe this examination will give us insight into the advantages and
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Figure 1-3: A flowchart illustrating a scheme initiated with filter design and termi-
nated with a wavelet-based analysis for the task of feature extraction.

limitations of the proposed techniques. Through our work in deriving a problem-
specific wavelet and filter bank architecture, we have successfully achieved results
that match and exceed the performance of MFCCs. It has been shown that such
gains in phonetic classification translate into gains in phonetic and word recognition

23, 34].

1.1 Previous Work

Acoustic Observations

In the acoustic modeling literature, numerous acoustic representations have been pro-
posed and evaluated [2, 13, 23, 26, 28, 37]. One of the earliest comparative studies on
parametric representation is done by Davis and Mermelstein [13]. Several short-time
spectral representations are presented and compared. Two groups of observations are
studied: the first is based on Fourier analysis such as MFCC and Linear Frequency
Cepstrum Coefficients (LFCC), and the second is based on linear prediction analysis
[37] such as LPC, Reflection coefficients (RC) and Linear Prediction Cepstral Co-
efficients (LPCC). A significant result of this work is that the MFCC outperforms

all the other acoustic representations. This can be attributed to its good capture
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of perceptual information. This work was the first to set the MFCC as the most
commonly used representation in speech recognition systems. It is implemented in
many current state-of-the-art recognizers [18]. Appendix A includes a description of
the MFCC computation scheme, and for further information, we refer the reader to
[13].

In a more recent PhD Thesis, Halberstadt examined several heterogeneous acous-
tic measurements such as MFCC, DCTC, and PLPCC [23]. All three are, again,
short-time spectral representations that aim to incorporate perceptual information.
For example, the PLPCC computation, which is based on an all-pole model of the vo-
cal tract, takes into account the critical-band spectral resolution, the equal-loudness
effect, and the intensity-loudness power law. It has been conjectured that PLPCC

and MFCC carry complementary information [23].

Wavelet-based Acoustic Observations

In an attempt to investigate acoustic measurements that could outperform the MFCC
or provide a more efficient representation of the speech signal, much research has been
done in the field of wavelet theory [10, 15, 24, 30, 38, 40, 41, 43]. We elaborate on
selected examples.

Wassner and Chollet replaced the Fourier analysis stage, required for the compu-
tation of the power spectrum, with the wavelet transform [43]. Based on empirical
results, the authors also shifted the log transformation stage and proposed differ-
ent energy-transformations. Their MFCC variant is evaluated on an HMM-based
speaker-independent connected word recognition using three sub-databases extracted
from Polyphone and Computer95'. The results showed improvement over the original
MFCC for both databases.

An important component of the aforementioned paper is an emphasis on the need
to search for a signal analysis tool different from the Fourier transform. This poses

the question of whether Fourier analysis provides an optimal representation of the

!The two databases were collected by IDIAP and the Swiss telecom PTT from French spoken
telephone speech.
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signal. Given its lack of good localization in the time-frequency space and lack of
flexibility in basis function design, we can say that it does not. However, this is not
a new fact. As we have seen in this section, much work within the scope of wavelet
analysis has been done, more than a decade ago, to overcome this limitation.

Tan et al. suggested the design of a hearing aid based on the wavelet transform
[40]. Their focus was on the classification of speech into four major classes - voiced,
plosives, fricatives, and silence. They proposed the use of the wavelet transform
instead of the STFT to segment and classify speech signals. They used the Daubechies
wavelet of order 10 [12] to decompose the signal up to 4 scales. The output of the
wavelet transform is windowed using a 4ms Hamming window every 0.8ms and the
RMS energy is computed for each frame. Maximum Likelihood (ML) is used for
speech /non-speech segmentation. The output at each scale of the wavelet transform

is used in order to classify the speech segment as voiced, plosive, or fricative.

1.2 Goal and Motivation

The goal of this thesis is to present a wavelet and filter bank framework for
phonetic classification with the motivation of extending the work towards
a full speech recognition system implementation. Limitations of previously
designed wavelet-based acoustic measurements are discussed, and a new
approach, proposed as an extension to the previous work, is implemented,

and evaluated.

In particular configurations, such as the simple dyadic case, the wavelet transform
corresponds to a filter bank with a logarithmic spectrum or constant relative band-
width. This is contrasted with the linear frequency scale of the STFT. We compare
with the STFT since, as mentioned earlier, the most common acoustic measurements
are short-time spectral representations with an initial Fourier analysis stage. The cor-
respondence between the discrete wavelet series and the constant- () filter bank will

become more clear in Chapter 2. It is this connection that renders wavelet analysis
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a natural option in audio applications since the filter bank can simulate the hearing
process by taking into account psychoacoustic effects such as the critical band —
filters are spaced linearly at low frequency and logarithmically at high frequency.

From a signal processing point of view, Fourier analysis is limited to a uniform
time-frequency resolution while the wavelet transform has a more flexible time-scale
representation. It is this flexibility that has made wavelets an appealing mathematical
tool for signal analysis. The ability to switch between good frequency resolution at
the low-frequency bands and good time resolution at the high-frequency bands allows
us to capture localized changes in the signal as well as coarse approximations of the
signal.

The wavelet transform represents a signal at several scales making it easier to
separate the noisy component from the original signal. Again this contrasts with
the MFCC, which has the disadvantage of smearing a noisy band-limited component
across all cepstral coefficients. Hence, although MFCC is a fairly robust representa-
tion, it is not very reliable in adverse conditions such as noisy environments. We do
not focus too much on this point since our data set is clean as will be seen in Section
5.1.1. It is, however, an important fact since it implies the possibility of designing a
robust framework in noisy conditions.

As we have seen, wavelets are a compelling candidate for speech processing. In
the hope of providing further reinforcement for the motivation of this work, we look
at other examples of wavelet application in speech recognition.

Farooq and Datta used wavelet packets to obtain a 24-band filter bank that mimics
the MFCC [14]. The acoustic feature is obtained by computing the energy in each
frequency band, converting to a log scale, and performing a discrete cosine transform
(DCT) ending up with 13 coefficients. The Daubechies wavelet with 6 vanishing
moments is used. Phonetic classification is performed on the TIMIT corpus — over
a limited subset of the data and the phonemes — and compared with the MFCC.
Their results showed that the wavelet-based feature outperforms the MFCC in the
case of stops and unvoiced phonemes.

Kim et al. proposed a modified octave structured 5-level filter bank for speech
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recognition [31]. They experimented on Korean digit words, and various orthogonal
and biorthogonal Daubechies wavelets are tested. The biorthogonal filter 9-7 tab
filter (80.07%) outperformed both the best orthogonal filter (79.38%), the LPC-based
feature (75.38%), and the MFCC-based feature (77.23%). The results are averaged
over 13 test speakers.

Tan et al. studied and compared discrete wavelet transform (DWT) with sam-
pled continuous wavelet transform (SCWT) and MFCC as front-end processors in a
speaker-independent HMM-based phoneme recognition system [41]. The acoustic fea-
ture extracted with the SCWT used a Morlet wavelet [21] with a constant (-factor of
approximately 3.3. The output of the SCWT is half-wave rectified, low-pass filtered,
and downsampled from 16 kHz to 100 Hz. The result is then reduced to 12 coefhi-
cients using cepstral analysis. The acoustic feature extracted with the DWT used
Daubechies wavelet with 8 vanishing moments. The signal is analysed up to 6 scales
and the two largest coefficients in each scale are retained giving a 12-dimensional
observation vector. The experiments are performed over a subset of the TIMIT cor-
pus indicating a better recognition rate for the SCWT over the DWT but marginal
improvement over the MFCC.

Most of the work pertaining to wavelet analysis for speech recognition, suffer from

two main drawbacks which we will attempt to tackle in this thesis.

e The acoustic measurements are restricted to off-the-shelf wavelets such as Daubechies,
Coiflets, and Symlets wavelets depicted in Figure 1-4 with their corresponding
low-pass filters. While these wavelets might have appealing features such as
smoothness in the case of the Daubechies and near symmetry in the case of the
Coiflet and the Symlet, they are not optimized for speech processing tasks.

One possible direction, that we adopt in this thesis, is to design a

filter and hence a wavelet that matches desired features.

e The computation of the wavelet transform is typically restricted to the dyadic
case meaning that at each iteration of the filter bank, the spectrum is split in

half. This does not give us a fine resolution of the spectrum especially at the high
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Figure 1-4: An illustration of three wavelets: the Coiflet of order 1, the Symlet of
order 4, and the Daubechies of order 10 along with the corresponding low-pass filters.

frequencies. Wavelet Packets (WP) are a valid solution to solve the problem of
frequency resolution by allowing iteration at both the high and low channels of
the 2-channel filter bank. However, with WP, the constant-Q? characteristic of
the filter bank is lost, and so is the ability to naturally take into account the
variations of the ear’s critical bandwidths with frequency.

In this thesis, we propose to use rational sampling to obtain a finer
resolution of the frequency axis and naturally simulate the critical
bandwidths. The result is the ability to design a filter bank that

matches desired features in the more general rational case.

2The Q-factor of a filter is defined as the ratio of the bandwidth to the center frequency. A filter
bank is constant- when all its filter have the same @ factor.
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1.3 Thesis Structure

In this thesis we present and discuss a wavelet analysis framework for phonetic clas-

sification on the TIMIT corpus. The chapters are divided accordingly:

e Chapter 2: Theoretical Background
We present the theoretical basis on which the wavelet and filter bank framework
is built; we identify the basics of wavelets and filter banks required to understand

the content of the thesis.

e Chapter 3: Problem Specification
We define the problem of phonetic classification and the hypothesis proposing
a wavelet and filter bank framework, and discussing the advantages that it

provides in terms of flexibility in filter design and frequency band decomposition.

e Chapter 4: Implementation
We describe an implementation of the wavelet and filter bank framework: the
acoustic measurement, the initial implementation based on off-the-shelf wavelets
and dyadic sampling filter banks, the filter designs, and the final implementation

with 'pseudo-wavelets’ and rational sampling.

e Chapter 5: Evaluation
We define the experimental setup, the TIMIT corpus, the classifier, the baseline

classifier, then present and evaluate our results.

e Chapter 6: Conclusion
We summarize the work we have presented and propose possible extensions and

improvements.

e Appendix A:
We describe the MFCC computation algorithm.

e Appendix B:

We describe the frequency partitions implemented and tested in the thesis.
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Chapter 2

Theoretical Background

In this chapter, we present an overview of some of the basic concepts of wavelets and
filter banks with the aim of showing the close connection between the two fields and
setting up the background for filter design. We then move on to more advanced topics
such as rational sampling filter banks. The chapter includes all the building blocks
required to implement the wavelet and filter bank framework as well as the material
needed to understand the content of the thesis. Most of the material in this chapter
is based on the books by Vetterli [42] and Strang [39], where we refer the reader for

detailed explanations and proofs.

2.1 Notations and Brief Concepts

2.1.1 Notations

A boldfaced uppercase/lowercase character denotes a matrix/vector. For example,
M is a matrix and v is a vector. I denotes the identity matrix. The superscripts
T and ' denote matrix transpose and matrix conjugate transpose respectively. The
determinant of a matrix M is denoted det(M). The N root of unity is denoted

Wy =exp'~. 6 [n] denotes the Dirac function.
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Figure 2-1: The Noble Identities.

2.1.2 Brief Concepts
Noble Identities

Figure 2-1 illustrates the Noble Identities. The top diagram shows when it is possible
to reverse the order between filtering and a downsampler by a factor of M. The bottom
diagram illustrates the same for filtering and an upsampler by a factor of M. Such

properties will prove useful when optimizing filter bank implementation.

Polyphase Representation

A filter H(z) has a unique polyphase representation, which for M phases is:

H(z)= Z_ H;(2™)z* where H;(z) = Z h[Mn — iz (2.1)

Unitary and Paraunitary Matrix

A matrix M is unitary if:

MM =cl, ¢c#0 (2.2)

A matrix H(z) with real-valued coefficients is paraunitary if:

HT(z7Y)H(z) = dI, c#0 (2.3)

2.2 Filter Banks

Filter banks can be efficiently implemented using discrete finite impulse response

(FIR) filters, downsamplers, and upsamplers. Perfect reconstruction of the filter
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Figure 2-2: A 2-channel filter bank and the corresponding frequency spectrum parti-
tioning.
bank is a requirement meaning that the input signal processed by analysis filters at

one end of the channel should be perfectly reconstructed by some synthesis filters at

the other end. Furthermore,

Perfect reconstruction filter banks can be used to implement series expansions of

discrete-time signals in the l;(Z) space

Figure 2-2 shows such an implementation along with the corresponding frequency
bands for the 2-channel case. In this case, Hy(z) is the analysis low-pass, H;(z) is
the analysis high-pass, Fy(z) is the synthesis low-pass, and Fi(z) is the synthesis
high-pass.

2.2.1 The Modulation Domain

For simplicity, we study the 2-channel case for the time being. The output signal,

A

X(z), of the filter bank is:

%[Fo(z)Ho(z) + Fi(2)Hi(2)]X (2) + %[Fo(z)Ho(—z) + Fi(z)Hi(=2)]X(=2) (2.4)

- - -
v~

~
amplitude distortion aliasing component
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For perfect reconstruction, we would like the output to be a delayed version of the

input:

A~

X(2) =2 5X(2) (2.5)

In matrix form, this implies:

Ho(z) H0<—Z)

Hi(z) Hi(-2)| et o 20

[A() Fi(2)

The analysis modulation matrix is denoted:

H,,(z) = | o) Ho(=2) (2.7)
Hl(z) Hl(—Z)

The synthesis modulation matrix is denoted:

Fo = | PG R (2.8)
Fy(—z) Fi(—=2)

In the modulation domain, the condition for a perfect reconstruction filter bank

(PRFB) (see [42] for proof) is:
H,,(2)Fm(z) =21 (2.9)

Such a filter bank is referred to as biorthogonal. A perfect reconstruction filter bank

is orthonormal if it satisfies (see [42] for proof):
Hy(2)Hp (278 =21 (2.10)

When a filter bank is orthonormal, the analysis filter and its modulated version are

power complementary, meaning that:

|H;(e)? + |Hy(e?“ TP =2, i=0,1 (2.11)
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A similar relation holds for the synthesis filter. It is appealing to work with an

orthonormal filter bank since:

an orthonormal filter bank can tmplement an orthonormal expansion of discrete-time

signals in the l5(2) space.

In this thesis, we will be working only with orthonormal filter banks.

One problem with the modulation implementation is its inefficiency. To under-
stand this, we refer again to Figure 2-2. After the input signal is convolved with the
low-pass and the high-pass — filtering in the frequency domain is equivalent to con-
volution in the time domain — the result is downsampled by 2. Half of the computed
values are thrown away. On the other hand, at the synthesis side, the signals are
upsampled by 2 prior to convolution and twice the amount of computations is needed
although half of the values are set to 0 by the upsampler. To solve this problem, we

turn to the polyphase domain.

2.2.2 The Polyphase Domain

The M-component polyphase representation of a filter is given by Equation 2.1. Tt
shows how a system can be represented in terms of its phases. In the case of a filter
bank implementation, the analysis filters, for example, are decomposed into their
phases, which operate simultaneously on the phases of the input. The same can be
said of the synthesis filters. For example, in the 2-channel case, the input X (z) and
analysis filters H;(z), ¢ = 0,1, are represented in terms of their two phases. The

outputs Y;(2), i = 0,1, of this 2-input/2-output system are given by:

Yo(2) _ Hy(z) Ho(z)\ [ Xo(2) (2.12)
Yi(2) Hio(z) Hu(z)) \Xi(2)
where
Hz(Z) = H,-o(zz) + ZHH(Z2) (213)
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Figure 2-3: A polyphase implementation of the 2-channel filter bank.

The key point in using a polyphase implementation is that we can incorporate the
Noble Identities from Section 2.1 to shift the downsamplers and upsamplers before
and after the filters respectively. Figure 2-3 shows a polyphase implementation of the
filter bank in Figure 2-2. Notice the locations of the upsamplers and downsamplers.
The analysis polyphase matrix is denoted:

Hoo(z) Hoi(z)

H,(z) = (2.14)
Hl()(Z) Hll(Z)

The synthesis polyphase matrix is denoted:

Fo(z) = Fonlz) Fiol2) (2.15)

Fm(z) F11(Z)
where, for example, H;;(z) is the j% polyphase component of the ™ filter. In the
polyphase domain, the condition for a perfect reconstruction filter bank (see [42] for
proof) is:

H,(2)Fp(z) = I (2.16)

In the polyphase domain, the condition for orthonormality of the filter (see [42] for
proof) is:

H,(2)H,T(z7!) =1 (2.17)
Based on the definition given in eq. 2.3:
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For an orthonormal filter bank, both modulation and polyphase matrices are

paraunitary (lossless) matrices.

In this thesis, filter banks are implemented in the polyphase domain.

2.2.3 Lattice Factorization

One method to design an orthogonal filter bank is based on lattice factorization. The
idea behind it is that any paraunitary matrix can be factorized into basic building
blocks consisting of delays and Givens rotation matrices, G;

cosf; —sinb;

G; = (2.18)
sinf; cosb;

where G is unitary. The lattice structure of the polyphase analysis filter Hp(2)

becomes:
[1 0-| il [cos 0; —siné?z--| [1 0 -| [cos #; —sin 01-|
Hpls:6) = [0 —IJ i=0 ( [sin 0; cosb; J [O z 1J [sian cos 0; J (219)
where the parameter
0 = [6o,61,--.,6]] (2.20)

and we have [ delay blocks and [ + 1 Givens rotations. Such a structure imposes
orthogonality on the filter bank design. The problem is now that of solving for 6

given some desired constraints, such as matching the frequency response of a filter.

2.2.4 Householder Factorization

Another way to factorize a paraunitary matrix is based on the Householder factor-
ization. The basic building blocks in this case are the Householder matrices. Hence,

the lattice structure of the polyphase analysis filter H(z) becomes:

H,(z) = Ap HVi, where V; = (I — (1 — 27 'vv))) (2.21)

i=1
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Figure 2-4: A filter bank iterated on the low-pass channel and the corresponding
frequency partitioning.

vi, t¢=1,..., M are unitary vectors and Ag is a constant orthogonal matrix.

2.2.5 Tree-Structured Filter Banks

The filter bank that we have seen so far is a simple 2-channel one. If one iterates it
on the low-pass channel as shown in Figure 2-4, we obtain a constant-() octave band.
In this simple case, the filter bank is said to have a dyadic structure meaning that at
every iteration, the input spectrum is split in half.

It is fairly simple to extend this idea to arbitrary tree-structured filter banks
by allowing iteration on the high-pass channel too. Figure 2-5 illustrates such an
example. These structures are used to implement wavelet packets. An important
issue worthy of mentioning is the following: when iterating on the high-pass channel,
the spectrum, after downsampling, will be the mirrored version of the corresponding
input spectrum. For example, when one is expecting the frequency band [7/2, 7]
one will actually obtain [, 7/2]. This is something to keep in mind when extracting

specific frequency bands using wavelet packets.

2.3 Wavelets and the Multiresolution Framework

Now that we have presented the basic concepts of filter banks, we turn our attention
towards wavelets and show the relation between wavelets and filter banks within the

multiresolution framework [42].
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Figure 2-5: A tree-structured implementation of a filter bank and the corresponding
frequency partitioning.

In multiresolution analysis (MRA) the space L2(R) of signals can be spanned by

successive spaces of detail at different resolutions.

2.3.1 The Scaling Function

Consider the sequence of nested approximation subspaces:
Vi VeV .. (2.22)

where V,,, are complete — span all the Ly(R) space —, exclusive, and shift-invariant.

There exists an orthonormal basis for Vj
p(t—mn) |neZ, where ¢€V (2.23)
more generally, there exists an orthonormal basis for V_,,
Im2p(2Mt —n) |neZ (2.24)

The multiresolution concept arises from the fact that the embedded spaces are scaled
versions of the space V. This is also observed in the bases spanning the spaces as
shown in Equations 2.23-2.24. ¢(t) is called a scaling function.

Dilation Equation 2.25, also known as a 2-scale equation, shows how the scaling

property can be used to represent the scaling function ¢(t¢) € V; as a linear combina-
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tion of the basis of V_q, since Vy C V_;.
ot) = V2 honlp(2t —n) (2.25)

The Fourier transform of Equation 2.25 gives:

1

d(w) = %Ho(efwﬂ)@(w/z) (2.26)
where
Hy(e?) =Y ho[n]e ™" (2.27)

Equation 2.26 is a key one since it shows the connection between discrete-time se-
quences (or filters in this case) and continuous-time (scaling) functions. It gives an
idea of how one can construct continuous-time wavelet bases from an iterated filter

bank. We also obtain the following properties:

|Ho(e?)|? + |Ho(e!@t™)|2 = 2 (2.28)
> [®(2w + 2km)P =1 (2.29)
k=—00

|Ho(1)| =2 (2.30)
Hy(-1)=0 (2.31)

2.3.2 The Wavelet Function

Every approximation space V,, is complemented by a detail space. Hence, we consider

the space W,, such that it is the orthogonal complement of V,, in V,,_1:

Vi1 = Vi & Wi, (2.32)
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By iterating this process, we obtain:
Ly(R) = P W, (2.33)
€z

Equation 2.33 restates the statement that using multi-resolution analysis, the Ls(R)
is spanned by spaces of successive detail at different resolutions. Hence, we can

introduce the orthonormal basis for Ly(R):
Vmn(t) = 27™2(27™t —n), mne€ Z (2.34)

and {¥mn},n € Z is an orthonormal basis for W,,,. 9(t) is called a wavelet function

and 9(t) € Wy C V4. Thus the wavelet function also satisfies a 2-scale equation:
9(t) = V2 Y halnlo(2t — n) (235)

and the Fourier domain equivalent:

1 .
U(w) = —=Hy(e7/?)®(w/2 2.36
(w) 7 1(e"7) @ (w/2) (2.36)
It can be shown [42] that ho[n] and h;[n] are low-pass and high-pass filters re-
spectively of a 2-channel filter bank and the iterations of Equations 2.26 and 2.36

converge to piecewise smooth scaling and wavelet functions if the corresponding fil-

ters are reqular.

For a filter to be reqular, it is necessary, but not sufficient, for it to have at least one

zero at the aliasing frequency — m for the dyadic 2-channel case.

The concept of regularity is also related to smoothness of the scaling and wavelet

functions where continuity and differentiability are desired features of the functions.
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2.3.3 The Wavelet Series Computation

Given function f(t) € V,, we can write:

o 0]
Ft) =" aolnle(t —n) (2.37)
n=-—00
The key idea is to project f(t) € V, onto the approximation and detail spaces, V;
and W; respectively, and then iterate the same process on V; and so forth. Using

Equation 2.25, we obtain

ai[n] = Z holk — 2n]ao[k] (2.38)

di[n] = ha[k — 2n]ao[k] (2.39)

Equations 2.38 and 2.39 show that the projection coefficients are obtained by filtering
with hg[n] and hq[n] and downsampling by 2. This procedure is iterated to obtain the
detail of the signal at several resolutions along with one coarse approximation. Using
a discrete-time algorithm, we are able to implement a wavelet series expansion. The
only issue is with Equation 2.37, which requires continuous-time processing. However,
if the first approximation space, V;, has a very fine resolution, then sampling the signal

f(t) is equivalent to Equation 2.37, [42]. Hence, we obtain:
ag[n] = f[n] (2.40)

We have previously mentioned that orthogonality of the filter bank filters leads to
orthogonal transforms. This is an appealing feature since it reduces the correlation
of the obtained expansion coeflicients and also satisfies Parseval’s relation where the

energy of the transform is the same as that of the input signal.
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2.4 Orthonormal Rational Filter Banks and Wavelets

The contents of this section are based on the work of Blu [5, 6, 7|, where we refer
the reader for further detail and proofs. The aim is to extend iterated dyadic filter
banks to the more general rational case. This notion is first proposed in [32]. One
motivation for such a direction is that a rational sampling factor will give a finer
frequency resolution, which will be more suitable for the analysis of signals such as
speech.

In the previous sections, we showed how an iterated filter bank is equivalent to
a wavelet series expansion. This is an attractive feature since the wavelet transform
can be implemented by a discrete-time algorithm. A rational filter bank, on the other
hand, can only approximate a wavelet transform. In other words, rational sampling
factors with FIR filters do not lead to a multi-resolution analysis and the iteration of
a filter bank does not generate a unique limit function. This is due to the lack of the

shift property:

The ‘wavelet’ function corresponding to a rational filter bank is not shift-invariant.
The shift error, however, can be made arbitrarily small when the function reqularity

increases.

We are only concerned with the consequences, rather than the justifications, of such
a statement. In [7], Blu designed an algorithm for the rational case. We briefly
describe the algorithm in Section 4.4, while in this section, we restrict the discussion
to the basics of orthonormal rational filter banks. We use the term rational wavelets
as mentioned in [7], since the functions do not satisfy the shift-invariance property
and effectively are not wavelets. Also, we concentrate on the rational sampling factor
M /(M —1), although the references study rational filter banks with general sampling
factor p/q. Figure 2-6 illustrates a simple branch of a rational filter bank. For an

input z[n|, the output y[n| of such a branch is:

yln] = > glnp — kqlak] (2.41)
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Figure 2-6: The basic branch of a rational filter bank of sampling factor p/q.

Figure 2-7 depicts the analysis bank of a general rational filter bank of sampling
factor p/q along with the corresponding frequency partitioning. The equations satis-
fying the orthonormality conditions for the rational filter bank illustrated in Figure

2-7 are given by:

M-1
— GWi, W2 HYGWE2) =6[s], s=0...M—2 (2.42)
(M -1)M &
1 M-1
17 2 HOWViWy, ke NYH(WE2) =6[s], s=0 (2.43)
k=0
M-1
HWWE 2= M=)G(Wk2)=6[s], s=0 (2.44)
k=0
=2 £+ 1
]271'M1 2 —|H j2nf 2:1 2.4
Ml_0|Ge )"+ 77 H(ET) (2.45)

z —1z 1—1)K :

A rational filter bank that has K regularity factors implies that (% —-*—— is

a factor of G(z) (see [6] for a proof). This can be written as:

Z (k+nM) gfln] = (nM)g'[n], VI<k<M-—1 (246)

n

32 b+ (M — Y6l = 3 (0 = DYl e, VISESM -2 @40

n

r=0...K -1
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Figure 2-7: The analysis channel of a rational filter bank of sampling factor p/q along
with the corresponding frequency partitioning.
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Chapter 3

Problem Specification

In this chapter, we describe the problem at hand: Feature Fxtraction for Phonetic
Classification, the limitations of the commonly used MFCC, along with the suggested
alternative: a Filter Bank and Wavelet Framework. We discuss the features studied

in the thesis that make such a framework appealing for speech analysis.

3.1 Problem

The performance of an ASR system is heavily reliant on the adequate design of an
acoustic model. Acoustic-phonetic modelling is concerned with the link between the
abstract phonetic representation and the physical speech signal. An acoustic model
typically attempts to model the probability of an acoustic feature given the speech
signal, and hence is, in turn, dependent on adequate feature extraction. It is this

specific point that we study in the thesis.

Feature extraction, also known as front-end processing, is the process of measuring
acoustic observations that compactly describe the speech segment preserving the
necessary information for discriminatory analysis. The acoustic observations are

also required for the complete parameterization of the acoustic models.

An acoustic model usually takes into account the different sources of variability;

those due to linguistic context such as coarticulation effects and non-linguistic con-
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text such as speaker gender and dialect. However, in this thesis, we restrict the task
to context-independent phonetic classification and assume that we are given the seg-
mented speech — hence dealing with statistically independent phonetic models —
and asked to classify individual phonetic segments.

Having said that, our aim is to investigate new acoustic observations that can be
extracted from the signal. There are many approaches to feature extraction such as
capturing knowledge-based or event-based acoustic parameters — cues for voicing,
place and manner of articulation — where the emphasis is on acoustic-phonetics
(1, 2, 4, 28]. However, the most commonly extracted measurement in ASR front-
end analysis remains the MFCC. Indeed, the MFCC dominates despite its obvious

limitations:

e It is inherently a short-time spectral representation based on Fourier analysis
which is limited in its time-frequency representation. More specifically, the
STFT is used to analyse the signal with a fixed resolution which is especially

inadequate for transient signals.

e Its computation is based on the inner product of the signal power spectrum with,
typically, 40 triangular band-pass filters where the selection of the triangular
filter shape is quasi-arbitrary. This validates the investigation of other filter
designs.

e Its performance is not robust under noisy conditions.

In this thesis, we stress and seek solutions for the two initial points. The question

that naturally poses itself is:

How do we overcome the shortcomings of the STFT-based MFCC and what do we

hope to accomplish by doing this?

3.2 Proposed Solution: Wavelets and Filter Banks

In answer to the questions posed in the previous section, we propose a filter bank and

wavelet framework as a solution.
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Over the past two decades, wavelets and filter banks have been studied as potential
alternatives to STFT analysis. In Chapter 2 we gave an overview of filter bank and

wavelet theory. Two important points should be emphasized:

e The wavelet transform permits a multiresolution signal analysis. By exploiting
the time/frequency resolution trade-off, we are able to obtain a good signal rep-
resentation that captures transients as well as coarse approximations. Wavelets
form basis functions that are well localized in time and frequency unlike the

sinusoidal functions in the Fourier analysis.

e A filter bank implemented with FIR filters, upsamplers, and downsamplers can
be used to carry out the wavelet transform efficiently through a discrete-time

algorithm.

The overview also showed how the basic filter bank with integer sampling factor is
used to generate octave bands and arbitrary tree-structures that implement wavelet
packets. The integer sampling factor filter bank is extended to the more general
rational sampling factor. Keeping in mind that such filter banks do not lead to shift-
invariant functions in the limit, an algorithm is presented [7] that designs rational filter
banks and consequently rational wavelets with minimum shift error. We restricted
the overview, for the most part, to orthonormal filter banks and provided insight on
how one can design such systems imposing orthonormality through structure such as

lattice and Householder factorization.

In this thesis, as in most work on the topic, wavelets and filter banks are considered
to be strongly related since a wavelet transform can be implemented using filter
banks. With proper design, we are able to obtain desired filter properties such as

lower attenuation bands and regularity.

From the mentioned overview description, we can already see where the flexibility

of such a framework illustrated in Figure 3-1 might lie.
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Figure 3-1: An illustration of the proposed wavelet and filter bank framework for
feature extraction.

3.2.1 Flexibility in Filter Design

As reported in the literature, most of the filter banks implemented for speech analysis
make use of off-the-shelf wavelets such as the Daubechies. While this is straightfor-
ward from a design point of view, it does not necessarily lead to adequate filters such
as ones with sharp cutoff and low attenuation in the stopband. Furthermore, op-
portunities for filter optimization and customization arise with the flexibility of filter

design.

Given constraints such as orthonormality and desired filter features such as regu-
larity we adopt two approaches for filter design. The first method attempts to match
a desired filter shape while the second minimizes the attenuation band. There are
definitely limitations to the proposed algorithms and we do not claim the ability to
design any arbitrary filter. In fact, the first algorithm is relatively simple and based
on a constrained quasi-Newton method. Despite their limitations, the two methods

give insight into the advantages of designing task-optimized filters.
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3.2.2 Flexibility in Frequency Partitioning

For the most part, the literature mentions filter banks implemented for speech analysis
that generate octave bands by iteration of the low-pass channel, or wavelet packets by
iteration of both channels. The frequency partitions obtained in these cases, especially
in the former, are not suitable for the task. This is because the octave band filter
bank does not have a good frequency resolution at the high frequency bands. Trying
to solve this problem by using wavelet packets will lead to a loss of the constant-()
characteristics. Again this is not ideal and it motivated our interest in filter banks
customized for speech analysis. The objective is to develop filter banks that have a
fine frequency resolution and can mimic the auditory filters. Fairly recently, there has
been work done on filter banks with rational sampling factor. Iterated rational filter
banks give more flexibility in the frequency partitioning. More specifically, where the
iterated dyadic filter banks are restricted to a single () factor value, iterated rational
filter banks can be designed to meet a wide range of () values such as the one that

matches the Bark scale — see Section 4.4.

43



44



Chapter 4

Implementation

In this chapter we describe the wavelet and filter bank framework proposed for the
task of phonetic classification. The basic building blocks are based on the concepts
presented in Chapter 2. We describe the implementation step by step starting with
the acoustic measurement extracted using wavelet analysis. Then we explain the
initial implementation that used off-the-shelf wavelets and a dyadic sampling. We
propose filter design and rational sampling to overcome the limitations of the initial

implementation.

4.1 The Acoustic Measurement

Figure 4-1 illustrates the stages involved in the computation of the frame-based acous-

tic measurement.

Stage 1. Computes the wavelet transform of the input speech frame. In all the
experiments related to the wavelet-based acoustic measurement, the frame
rate is 200 frames per second (5 ms per frame) with a frame size of 20 ms.
In this stage, we also need to specify the wavelet type and the frequency

decomposition, whether we are using wavelet packets or rational sampling.

Stage 2. Computes the Ly(R) norm of each frequency band giving a total of N

energy coefficients where N is the number of frequency bands analysed in
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Figure 4-1: A flowchart of the computational stages for the wavelet-based acoustic
measurement.

the previous stage.

Stage 3. Computes the log transform of the energy coefficients. We note empirical
evidence that the dynamic range reduction of the coefficients also made

them more robust and consistent.

The result of the three stages is an N-dimensional acoustic measurement. For
simplicity we will refer to the acoustic measurement as wavelet-based coefficients
(WBCs).

Initially, we adopted a slightly different acoustic measurement with a DCT stage
inserted at the end. The transform was used to whiten the feature space and decrease
its dimensionality to 14, for example. However the presented measurement gave more
consistent results.

This N-dimensional measurement is used to generate a segmental feature of di-
mension (5N+6), which is extracted over given phonetic segments. The segmental

feature consisted of:

e 3 WBC averages computed over the segment in a 3-4-3 proportion

2 WBC derivatives computed using linear least-squared error regression over a

time frame of 40 ms centered at the start and end of the segment

3 average energies computed over the segment similarly to the WBC averages

2 derivative energies computed similarly to the WBC derivatives

a log duration

This configuration is chosen to match the one used for the baseline segmental

feature. Since N can range between 18 and 30 coefficients, the dimensionality of the
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| Wavelet type | # Zeros at w = m | Filters length |

Haar 1 2
Daubechies (Daub2) | 2 4
Daubechies (Daub4) | 4 8
Daubechies (Daub6) | 6 12
Daubechies (Daub10) | 10 20
Daubechies (Daub12) | 12 24

Table 4.1: Description of the implemented off-the-shelf wavelets.

segmental feature vector can be anywhere between 96 and 156. Principal component
analysis is used to project the feature space onto a lower dimension ranging between
70 and 90 as well as whiten it.

We refer the reader to Section 5.1.3 for a description of the baseline acoustic

measurement.

4.2 Off-The-Shelf Wavelets and Tree-Structured Fil-

ter Banks

After designing the acoustic measurement, the first step was to test it on off-the-shelf
wavelets. Tree-structured filter banks are used to obtain the frequency partitions.
Table 4.1 lists the implemented wavelets along with a brief description. All the
wavelets excluding the Haar are from the Daubechies family. The Haar and the
Daub2 are implemented purely to test the algorithm on the simplest filters. The
number of zeros at 7 is attributed to the low-pass filter corresponding to the wavelet.

From Figure 4-2, we notice that the larger the number of zeros at 7, the narrower
the transition region and the sharper the filter cutoff. Sharp cutoff is a desired
characteristic of filters since it implies good frequency selectivity. However, we also

point out that the filter length should be increased to achieve reasonable cutoffs.

We also experimented with several frequency partitions obtained with tree-structured

implementations of the filter banks. Figure 4-3 shows a tree structure that is used to
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Figure 4-2: The low-pass filters corresponding to the Haar, Daub2, Daub4, Daub6,
Daubl10, and Daub12.
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Figure 4-3: A tree structure generating a 26-band filter bank.

obtain a specific frequency partitioning of 26 bands and Table 4.2 describes, in more
detail, the generated band-pass filters.

Table 4.3 shows the wavelet types and the corresponding frequency partitions —
represented by the number of filters — that are implemented for each. See Appendix

B for a detailed description of the rest of the frequency partitions.

4.3 Filter Design

In this section, we describe the two filter design techniques that are implemented.
The first is based on matching a desired filter shape while the second minimizes the
attenuation in the stopband. The designed filters are then tested in iterated 2-channel

filter banks with a downsampling factor of 2.
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Filter # || Lower cutoff | Upper cutoff | Bandwidth
frequency frequency (Hz)
(Hz) (Hz)
1 0 125 125
2 125 250 125
3 250 375 125
4 375 500 125
5 500 625 125
6 625 750 125
7 750 875 125
8 875 1000 125
9 1000 1250 250
10 1250 1500 250
11 1500 1750 250
12 1750 2000 250
13 2000 2250 250
14 2250 2500 250
15 2500 2750 250
16 2750 3000 250
17 3000 3250 250
18 3250 3500 250
19 3500 3750 250
20 3750 4000 250
21 4000 4500 500
22 4500 5000 500
23 5000 5500 500
24 5500 6000 500
25 6000 7000 1000
26 7000 8000 1000

Table 4.2: The frequency bands of the 26 filters obtained with the tree structure in
Figure 4-3.

‘ Wavelets ‘ # Filters

Haar, Daub2 26
Daub4, Daub6, Daub10, Daub12 | 24, 26, 28, 30

Table 4.3: The implemented wavelets with the corresponding number of filters that
are tested.
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4.3.1 Filter Matching

Filter matching is implemented using a simple method that minimizes the difference
in modulus between the designed and desired filter given some constraint. The min-
imization is formulated in the frequency domain. We only design orthogonal filter
banks where the analysis and synthesis systems can be modeled as paraunitary ma-
trices, Hp and Fy. In Chapter 2, Section 2.2.3, we showed that a paraunitary matrix
can be factorized into smaller building blocks that are a function of 6;. If we denote
the magnitude response of the desired filter as |Hy(w)|, the problem becomes one of
minimizing:

cen= [ " Haw)] — N Hy(w; 6) P (4.1)

(e}

given the following constraint:

le()(w)

Tb:w:O [=0...N -1 (4.2)

where Hy(w) is the frequency response of the analysis low-pass filter hg[n| and N is
the number of desired vanishing moments which is also the number of zeros at 7 for
Hy(w). Orthogonality of the filter bank is constrained by the lattice factorization. The
algorithm implementation is based on a sequential quadratic programming method
for constrained optimization.

We tested the algorithm by matching it to two desired signals: the Butterworth
filter of order 10 and cutoff frequency 7/2 and the ideal low-pass filter. The resulting
filters are described in Table 4.4. They are denoted Match_{ Filter it matches}. As in
Section 4.2, each designed filter is tested with the 26-band tree-structured filter bank.
Figure 4-4 shows a 30-tap filter that is designed to match the Butterworth filter given

the constraints of orthogonality and having 3 zeros at 7.

4.3.2 Attenuation Minimization

This method is fully described in Section 4.4 for the general case of orthonormal

rational filter banks. Attenuation minimization is straightforward to implement for
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Filter name # zeros at | Desired Filter Filter
w=m length
Match_Butterworth | 3 Butterworth of order 10 and | 30
cutoff frequency /2
Match_Ideal 3 Ideal filter 30

Table 4.4: Description of the filters designed using the matching technique.

15¢
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—— Matched_Butterworth
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=
2
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Normalized Frequency

Figure 4-4: A low-pass filter designed to match the Butterworth filter of order 10.
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the simple dyadic case.

The key point behind the technique is to match the filter to an ideal low-pass filter
by minimizing the difference in modulus between the two filters. However, as we will
see in Section 4.4, according to the power complementary Equation 4.5, setting the
values of the filter in the passband will uniquely set its values in the stopband. Thus,
the problem is reduced to a minimization of attenuation in the stopband although it
originated as a filter matching problem also.

The filters that are designed using the attenuation minimization algorithm are
listed in Table 4.5. All the filters have a regularity order set to 1 in order to guarantee
convergence of the algorithm. We refer to the designed filters by the generic name
Filter_#. Figure 4-5 illustrates the magnitude response of Filter_5, a 30-tap filter
designed using this method. For comparison we include the ideal filter and the Daub12
filter. Unlike Daub12, Filter_5 exhibits a very good attenuation in the stopband.

All the filters, are tested with the 26-band tree-structured filter bank.

4.4 Orthonormal Rational Filter Banks and Wavelets

In this section, we describe the design of orthonormal rational filter banks with sam-
pling factor p/q or M /(M — 1) as in the case we adopt.
The filter banks that we have seen so far are of the octave band type or implement

the more general arbitrary tree structures. If we define, the @-factor as the ratio of

Filter Regularity | Filter
name order length
Filter.1 |1 10
Filter2 |1 16
Filter 3 |1 20
Filter 4 |1 26
Filter 5 |1 30
Filter 6 |1 34

Table 4.5: Description of the filters designed using the attenuation minimization
technique.
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Figure 4-5: The designed low-pass filter with the corresponding ideal filter it matches
to and the Daub12 filter.

the bandwidth to the center frequency of a band, then the value obtained for the
octave band is 2/3. Suppose now that we want to consider a more general case, in
the hope of obtaining a @-factor tunable to the human auditory system, for example.
As mentioned before, in the dyadic case, the input spectrum is split in half at each
iteration. This can surely be extended to include a more general partitioning ratio
such as (M — 1)/M. Hence, at each iteration of the filter bank, the spectrum is split
into the ratios 1/M and (M — 1)/M instead of 1/2 and 1/2 as in the dyadic case.

The next section shows how this can be done using uniform M-band filter banks.

4.4.1 Rational Filter Banks from Uniform M-band Filter Banks

When we first attempted to design a filter bank with a rational sampling factor, we
obtained Figure 4-6 and the corresponding frequency partitioning. At each iteration of
the filter bank, we have a uniform M-band analysis filter bank which decomposes the

spectrum into equipartitions of bandwidths 7- each. Then an (M-1)-band synthesis

filter bank generates a single output by upsampling and interpolating the M-1 inputs.
In the frequency domain, this has the effect of combining the first M-I bands into

one, resulting finally with two frequency bands: [0, 2] and [22x, «]. All of this

is simply the analysis channel of the rational filter bank, and should not be confused
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Figure 4-6: An M-band uniform filter bank implementing the rational sampling factor
M/(M — 1) and the corresponding frequency partitioning after one iteration.

with a full analysis/synthesis filter bank.

To calculate the @-factor corresponding to such a filter bank, we refer to the
frequency partitioning after one iteration: the bandwidth of the highest frequency
band is 7- and the center frequency of that band is 53: + %ﬂ'. The expression for
(), in this case, becomes:

bandwidth i

1
= = M—1_ 1 MM—l = (4.3)
center frequency sa7 T = + M—-1/2

With this formula, we can obtain the M that matches a desired (). For example, if
we wanted to obtain the (-factor of the MFCC which is 0.1376, Equation 4.3 gives
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Figure 4-7: The equivalent filter bank of rational sampling factor M /(M — 1).

M = 7.76, which is rounded to 8. The resulting sampling ratio is 8/7. Another
interesting sampling ratio is 6/5 which closely approximates the Bark scale analysis

resulting in a filter bank that naturally mimics the human auditory system.

The filter bank depicted in Figure 4-6 requires the design of M analysis filters and
M-1 synthesis filters solely for the analysis bank. The filter bank architecture itself
seems bulky requiring a reconstruction stage at each analysis iteration in order to
recombine the first M-1 frequency bands. Hence, although our first approach gave an
indication of how to obtain rational filter banks and a formula that links the number
of bands M to the ()-factor, it was cumbersome to design. It has been shown that a
filter bank of the form given in Figure 4-6 can actually be put in the form illustrated

in Figure 4-7 [32].

Thus, we are now dealing with a rational filter bank. Fortunately, there has been
research on perfect reconstruction filter banks with rational sampling factors [32] and
non-uniform multirate filter banks [27]. More specifically, we have already seen this
specific structure in Section 2.4, as part of the work of Blu [7], which we describe

briefly in the following sections.

4.4.2 Design Algorithm for the Low-Pass Filter

The motivation behind this algorithm is to find the best frequency selective low-pass
filter G(z) given constraints of orthogonality and regularity of the filter bank. The

degree of selectivity is defined as the difference in modulus between G(z) and the
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ideal filter D(z) whose normalized frequency response is:

VM -1)M we[-3,

0 elsewhere

[D(e™)| = (4.4)

This choice is such that the rational branch shown in Figure 2-6 will discard frequen-

cies above W%.

In Section 2.4, we specified the conditions for orthonormality (Equations 2.42-
2.44) and the implications of regularity (Equation 2.46).

The problem is reduced to a minimization with constraints. In order to further
simplify it, we make the following observation: setting s to zero in Equation 2.42,

will give the power complementary Equation:

T

|G(eXmUHR/(M=1)y2 — (pf 1)\ (4.5)
0

£
Il

This equation shows that in order to minimize the difference between G(z) and D(z),
we only need to minimize the attenuation band of G(z) since the values of |G(e’?)|?
in the attenuation band [{7 + ¢, 7| dictate those in the passband [0, 7z — €]. The filter
matching problem is now reduced to minimization of the attenuation band. The

Ly(R) norm can be used to quantify the attenuation:

@)= [ ey p=tm e L e
Wreol=) = [ 17 T Y VL) Vi ‘

The minimization algorithm is formulated using the Lagrange multiplier method for

constrained minimization where we minimize:

J(G) = function(G) — A(constraints of orthonormality and regularity)  (4.7)

In order to ensure perfect reconstruction of the filter bank, Blu devised a recur-
sive implementation of the algorithm where the condition for convergence is minimal

perfect reconstruction error [7]. By doing so, the algorithm itself focuses on the at-
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tenuation while the iterations minimize the reconstruction error. The algorithm is
initialized with a filter G of degree N, where it is insensitive to the initialization and
its convergence, in the limit, is independent of the filter choice. The procedure de-
scribed is repeated until the reconstruction error becomes smaller than a predefined
value. The value selected is 10! similar to the choice of Blu [7].

The convergence of the algorithm is not always guaranteed unless the downsam-
pling factor is 1. If the downsampling factor is larger than 1, then convergence is
again guaranteed if the regularity order is set to 1. In our implementation, we set the

regularity order to 1 since it suited the application, and it also ensured convergence.

4.4.3 Solution for the High-Pass Filter

We have shown how to design the low-pass filter, GG, in the rational filter bank. We
now turn our attention to the high-pass filter, H. It can be shown that if the difference
between the upsampling and downsampling factors is 1, as in our case, then there is
a unique high-pass filter corresponding to the designed low-pass filter [7]. We know
that:

e G is designed to be paraunitary to a high accuracy where G is the polyphase
representation of G(z) of size (M — 1) x M.

e the rational filter bank is orthonormal and can also be represented by a parau-
nitary matrix ', = [G H|” where H is the polyphase representation of H(z)
and is of size 1 x M. In this case, it is a row vector.

From Section 2.2.4, we know that both I', and G can be factorized into:
M
Ao J]Vi= AT (1 -2 'viv)

=1

Since we are able to obtain G, we factorize it into the form given above to obtain
a rectangular constant matrix Ag of size (M — 1) x M. The key to finding H is to

complete Ag so that it becomes a square orthonormal matrix, that is by adding a
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Filter Regularity | Low-pass filter | High-pass filter | # Filters
name order length length

Filter 6/5 1 194 44 18

Filter 7/6 |1 226 43 20

Filter 8/7 |1 226 41 22

Filter 10/9 | 1 191 32 26

Table 4.6: Description of the designed filters for the rational filter banks.

single row to it, in this case. Hence I'p can now be written as:
Tp=[A¢ Hiow] . (I- (1 =2 'vyvD))...(I— (1 — 2 'vpviy)) (4.8)

where H,w is chosen such that it adds one line to the rectangular matrix Ay to make

it a square orthonormal matrix. Now that we have I'p, we can compute H as:

H=H,onI-(1-2'vyiv]))...(I— (1 -z 'viyvyy)) (4.9)

4.4.4 Implementation

Using the algorithm as described, we design the rational filter banks listed in Table
4.6. We refer to the filters as Filter {sampling factor}. The regularity order is again
set to 1 for all. The rational filter banks are iterated on the low-pass channel N
times to generate N bands. We chose to iterate until the lower cutoff of the last
band-pass filter obtained is at or close to 1 kHz. We then used Filter_5 designed
in Section 4.3.2 to divide the 0-1 kHz region into 8 equipartitions. This is done in
order to obtain a frequency partition that models the critical-band spectral resolution.
Another observation is that the length of the filters is quite large. This is necessary
in order to obtain filters with narrow passbands and also good frequency selectivity
as is the case here.

Figure 4-8 shows the low-pass and high-pass filters for the rational filter bank of
sampling factor 8/7.
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Figure 4-8: The low-pass and high-pass filters corresponding to the rational filter
bank of sampling factor 8/7.
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Chapter 5

Evaluation

5.1 Experimental Setup

In this chapter, we evaluate the wavelet and filter bank framework on the task of pho-
netic classification. First, we describe the experimental setup including the TIMIT
corpus and the classifier. Then we present the baseline classifier used as a reference
point in the analysis of our results. Finally we provide an evaluation of the ex-
periments performed and a comparison with the baseline classifier and other results

reported in the literature.

5.1.1 The TIMIT Corpus

TIMIT is a corpus of continuous speech. Its design and preparation was a joint col-
laboration between Texas Instruments, and the Massachusetts Institute of Technology
[33]. It includes speech from 630 speakers, 438 males and 192 females, representing 8
major dialect groups of American English. Each speaker recorded 10 phonetically-rich
sentences. Along with the speech waveform files, the corpus includes the correspond-
ing time-aligned phonetic transcriptions.

There are 61 phones in the TIMIT corpus. Their IPA and ARPAbet symbols are
shown in Table 5.1. We will refer to the phones through their ARPAbet symbols.

Following common practice, the 61 phone labels are collapsed into 39 labels prior
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IPA | TIMIT | Example IPA | TIMIT | Example
al | aa bob i ix debit
x| | ae bat i iy beet
Al ah but j jh joke
o] | ao bought k] |k key
av] | aw bout ko] | kel k closure
o] | ax about 1] 1 lay
" | ax-h potato m] | m mom
>] | axr butter n] |n noon
@] | ay bite p] | ng sing
b] [ b bee f] | nx winner
b7 | bel b closure o | ow boat
¢] ch choke > | oy boy
d |d day pl | p pea
d | del d closure o] pau pause
0] dh then P | pcl p closure
t] dx muddy ? q glottal stop
€] eh bet 3 r ray
1] el bottle s s sea
m] | em bottom § sh she
n] | en button t t tea
p] | eng Washington t | tel t closure
0] | epi epenthetic silence || [0] | th thin
3] | er bird O uh book
e] ey bait u uw boot
t] | f fin i ux toot
qg |8 gay v v van
¢ | g g closure w] | w way
h hh hay y] |y yacht
h] | hv ahead z z zone
1] ih bit Z zh azure

- h# utterance initial and final silence

Table 5.1: TPA and ARPAbet symbols for the phones in the TIMIT corpus with
sample occurrences.

to scoring and the glottal stops are ignored [35]. The mapping is shown in Table 5.2.
The sentences in TIMIT fall under three categories: dialect (SA), phonetically-

compact (SX), and phonetically-diverse (SI).

e The SA category consists of 2 sentences read by all 630 speakers and is typically
used to study the dialectical variation between speakers. It is excluded from
the training, development, and test data sets.

e The SX category consists of 450 sentences that are phonetically comprehensive
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1 |iy 20 | n en nx
2 |ihix 21 | ng eng
3 | eh 22 | v

4 | ae 23 | f

5 | ax ah ax-ah || 24 | dh

6 | uw ux 25 | th

7 | uh 26 | z

8 | ao aa 27 | s

9 | ey 28 | zh sh
10 | ay 29 | jh

11 | oy 30 | ch

12 | aw 31| b

13 | ow 32 | p

14 | er axr 33| d

15 | 1el 34 | dx

16 | r 35|t

17 | w 36 | g

18 |y 37 | k

19 | m em 38 | hh hv
39 | bcel pcl dcl tel gel kel q epi pau h# not

Table 5.2: The mapping from 61 to 39 labels prior to scoring.

‘ Phonetic Class H

TIMIT labels

Vowels & Semi-vowels (VOW)

aa ae ah ao aw ax axh axr ay eh er ey ih
ixiyowoy uhuwuxellrwy

Nasals & Flaps (NAS)

em en eng m n ng nx dx

Stops (STP)

bdgptk

Weak Fricatives )WFR)

v £ dh th hh hv

Strong Fricatives (SFR)

s z sh zh ch jh

Closure (CL)

bcl dcl gel pel tel kel epi pau h#

Table 5.3: A list of the phonetic classes used in subsequent experiments.

and compact. Each of the 630 speakers read 5 sentences.

e The SI category consists of 1890 sentences that are selected from existing text

sources and are phonetically diverse. Each of the 630 speakers read 3 sentences.

The data sets used in the classification experiments are described below and their
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| Set | # Speakers | # Utterances | # Hours |

Train 462 3696 3.14
Development || 50 400 0.34
Core Test 24 192 0.16
Full Test 118 944 0.81

Table 5.4: Number of speakers, utterances, and hours for each of the Train, Develop-
ment, Core Test, and Full Test data sets.

‘ Dialect H Speakers ‘
New England mdab0 mwbt0 felcO
Northern mtasl mwew0 fpas0
South Midland mlll0 mtlsO fjlmO0
Southern mbpm0 mklt0 fnlp0
New York City mcmj0 mjdh0 fmgd0
Western mgrt0 mnjm0 fdhc0
Army Brat (moved around) || mjln0 mpamO fmld0

Table 5.5: The 24 speakers included in the TIMIT Core Test set.

contents are displayed in Table 5.4.

e The Train set consists of 462 speakers. It is used for training in all the experi-

ments.

e The Development set consists of 50 speakers. It is heavily used, for classification

as well as confidence scoring, in the subsequent experiments.

e The Core Test set includes 2 males and 1 female from each dialect group. Table

5.5 shows the 24 selected speakers and their corresponding dialect region.

e The Full Test set consists of 118 speakers. It is primarily used for evaluating

confidence scores.

There is no overlap of speakers between any of the data sets, and the sentences in the

training set are different from those in the development and test sets.
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5.1.2 The Classifier

The classification experiments are performed using the SUMMIT segment-based
speech recognizer [19]. This recognizer processes the temporal sequence of acoustic
measurements (MFCC) to generate a segmentation graph. Each segment in the graph
is represented by a fixed-size feature vector. In this thesis we are not concerned with
recognition nor the generation of such a segmentation network. Since we only deal
with phonetic classification, we obtain the segments from the phonetic transcriptions.
We work only with segmental acoustic models and extract acoustic measurements
over the given segments.

In all the experiments, normalization and principal component analysis (PCA)
are performed on the acoustic observations in order to whiten the feature space. The
measurements are then modeled using diagonal Gaussian mixture models (GMMs).
K-means and Expectation-Maximization (EM) algorithms are used to initialize and
estimate the parameters of the Gaussian models respectively. Classification is imple-
mented using Maximum A Posteriori (MAP) incorporating the priors in the acoustic

models.

5.1.3 The Baseline Classifier

A baseline classifier is set up to serve as a reference in the analysis of the results. The
speech waveform is preemphasized by a factor of 0.97 prior to any processing. Next
a Hamming window is applied to obtain speech frames and the 256-point STFT is
computed for the 25.6 ms frames at a rate of 5 ms. 14 MFCCs are computed using the
method described in Appendix A. A 76-dimensional observation vector is extracted
for each segment in the TIMIT phonetic transcriptions. Similarly to the acoustic

observation described in Section 4.1, the segmental measurements consisted of:
e 3 MFCC averages computed over the segment in a 3-4-3 proportion

e 2 MFCC derivatives computed using linear least-squared error regression over

a time frame of 40 ms centered at the start and end of the segment
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e 3 average energies computed over the segment in a 3-4-3 proportion
e 2 derivative energies computed similarly to the MFCC derivatives
e a log duration

Diagonal GMMs are used to model the acoustic measurements with a minimum of
61 datapoints per mixture component and a maximum of 96 mixture models per
phone. The same is done in the case of the wavelet-based coefficients. With this
baseline configuration, we obtain a classification error of approximately 23.9% on the

Development set, 24.6% on the Core Test set, and 24.4% on the Full Test set.

5.2 Results

The first experiments involved off-the-shelf wavelets of the Daubechies family, where
the filter banks are implemented in a tree-structured fashion. Several tree-structures
are tested (See Appendix B and Section 4.2 for details). Figure 5-1 shows the classi-
fication error rate on the Development set for four Daubechies wavelets as a function

of the adopted frequency partitioning. From the plot, we deduce the following:

e The higher the order of the Daubechies wavelet, the better the performance of
the classifier. Figure 4-2 illustrates the low-pass filters corresponding to each of
the wavelets. We recall that the higher the wavelet order, the more frequency
selective the filter is and the lower its attenuation in the stop band. Hence the

performance of the classifier is dependent on the filter choice.

e For each filter, there is no significant change in the error rate as a function
of the frequency partitioning. We recall that the dimensionality, N, of the
extracted acoustic observation is dictated by the number of frequency partitions.
Furthermore, as seen in Section 4.1 the dimensionality of the final feature vector
is 5N + 6. Subsequent principal component analysis reduces the dimensionality
of the resulting feature space to 76 in this case. We suggest that this particular

scheme does not take full account of the variability induced by implementing
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Figure 5-1: Variation of the classification error rate on the Development set as a

function of frequency partitions. The acoustic measurements are extracted using the
Daubechies wavelets.

| Acoustic Measurement || (%)Error rate on the dev set |

Haar 30.3
Daub2 27.1

Table 5.6: Error rates on the Development set for the Haar and Daub2 wavelets.

one structure as opposed to the other. Possibly, additional processing to the
feature vector or the acoustic observation itself would reflect these variations
better. We adopt the 26-band structure in the following experiments since it

most closely mimics Mel-spaced filters taking into account the critical band

effect.

Table 5.6 lists the error rate on the Development set for the Haar and Daub2
wavelets. The results are quite good given that the filters are short — Haar is a
2-tap FIR while Daub2 is a 4-tap FIR —, and consequently they have a very bad
selectivity in the frequency domain. Also, as we switch to the Daubechies wavelet,
the improvement in performance is noticeable.

Using the first filter design technique described in Section 4.3.1, we obtain and test
the two filters listed in Table 4.4. Table 5.7 shows the error rate on the Development
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| Acoustic Measurement || (%)Error rate on the dev set |

Match_Butterworth 24.1
Match_Ideal 23.5

Table 5.7: Error rates on the Development set for the two filters designed to match
the Butterworth and ideal filters respectively.

set for both filters with a clear improvement when the filter is designed to match an
ideal filter with a sharp cutoff.

The second filter design technique described in Section 4.3.2, is used to generate
six different filters of various lengths. The filters are listed in Table 4.5. Figure 5-
2 shows the error rates on the Development set for the six filters. We observe the

following:

e Again, the notion of frequency selectivity comes up where the longer the FIR

filter, the better its selectivity and the better the performance of the classifier.

e As we saw in Figure 4-5, the filters designed using the attenuation minimization
technique match the ideal filter fairly well and have a much better attenuation
in the stopband than the Daub12 filter. This explains why the designed filters

have the best results seen so far.

Finally, rational filter banks with sampling factors of the form M /(M —1) are im-
plemented and tested. Table 4.6 lists the four different filter banks that are analysed.

As we have previously mentioned, principal component analysis is used to project
the feature space onto a lower dimension which is set to 76 for most of the experiments.
For the rational filter banks, we experimented with this dimensionality and Table 5.8
gives a listing of the tested values. Figure 5-3 shows the error rate on the Development
set for the four rational filter banks as a function of the feature space dimensionality.

We make the following observations:

e Filter 8/7 outperforms the rest of the tested filters. We recall that the 8/7 ratio
matches the @-factor of Mel-spaced filters, and we suggest that this could be

the reason for the better performance.
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Figure 5-2: Error rates on the Development set for the six filters designed using the
attenuation minimization technique.

Dimension

70
76
80
90

Table 5.8: Listing of the implemented feature space dimensionality.

e The dimensionality value 76 seems to result roughly in the best performance

although there is not much change in error rates for each of the filters.

For further evaluation of the results we selected the five acoustic measurements

described in Table 5.9.

For a qualitative comparison of the selected acoustic measurements, we include
Figure 5-4 which illustrates the low-pass filters corresponding to A;-A;. The ideal
low-pass filter with normalized cutoff frequency 0.5 is also included for reference. The
low-pass filter corresponding to As is not included here, but is illustrated in Figure
4-8, since it corresponds to the rational filter bank of sampling factor 8/7 and covers

a different and narrower frequency band.
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Figure 5-3: The classification error rate on the Development set for the rational filter
banks as a function of the feature space dimension.

Acoustic Measurement Description
Label Wavelet /Filter | Feature Space | # Frequency
Dimension Partitions
Ay Daub12 76 26
As Match_Ideal | 76 26
As Filter_5 76 26
Ay Filter_6 76 26
As Filter 8/7 76 22

Table 5.9: Listing of the acoustic measurements A;-As with a brief description of
each.

Classification results on the phonetic subclasses are listed in Table 5.10. The

results for the baseline classifier are included for comparison. The performance is

again evaluated on the Development set. We make the following observations:

e The classification error rates corresponding to all the acoustic measurements

match or exceed that of the MFCC on the Development set.

e The results listed in Table 5.10 are reminiscent of those obtained by Halberstadt
[23]. Although the overall error rates corresponding to the different acoustic
measurements are close to each other, there is an obvious difference in per-

formance over the phonetic subclasses. For example, Filter 6 gives the best
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Figure 5-4: The low-pass filters corresponding to the acoustic measurements A;-A,.
The ideal low-pass filter is included for reference.

Acoustic (%) Error rate on the dev set
Measurement || ALL ‘ VOW ‘ NAS ‘ STP ‘ WFR ‘ SFR ‘ CL
MFCC 23.9 | 31.6 | 256.3 | 274 | 285 | 21.5 | 4.2
A 23.6 | 304 | 26.5 | 28.9 | 28.1 | 21.2 | 4.2
A, 234 | 315 | 26.5 | 289 | 254 | 23.8 | 3.7
As 23.4 | 30.7 | 23.5 | 2.7 | 269 | 21.2 | 4.3
Ay 23.1 | 304 | 234 | 287 | 276 | 21.0 | 3.6
As 23.2 | 30.5 | 25.5 | 264 | 27.7 | 22.7 | 3.3

Table 5.10: Classification performance (overall and phonetic subclasses) of the acous-
tic measurements described in Table 5.9 and the baseline (MFCC) on the Development
set.

results for strong fricatives and nasals while Filter 8/7 gives the best results for
stops and closures. This suggests the possibility of implementing a hierarchical

architecture where filters optimized to the different subclasses are designed.

The five acoustic measurements are also evaluated on the Core Test and Full Test
sets. Significance scoring is performed on the Development and the Full Test sets and
not on the Core Test set since it has a small size. The McNemar significance test is

used [17]. We make the following observations based on Table 5.11:

e A; which corresponds to Daubl12 does not perform well on the Core Test and
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Acoustic (%) Error rate McNemar significance
Measurement, || Core Test | Full Test Dev | Full Test
MFCC 24.6 24.4 - -

A, 25.9 547 | 0.39 (N) -

4, 25.2 245 | 0.15 (N) -

A, 24.9 243 | 0.15 (N) | 0.56 (N)
A, 24.6 241 | 0.019 (Y) | 0.137 (N)
A, 24.0 238 | 0.045 (Y) | 0.011 (Y)

Table 5.11: Classification performance of the acoustic measurements described in
Table 5.9 and the baseline (MFCC) on the Core Test and Full Test sets. McNemar
significance scores for the Development and Full Tests are also listed. (Y) or (N)
indicates whether the difference in results is statistically significant at the 0.05 level.

Full Test sets in comparison to the other acoustic measurements as well as the

MFCCs.

e The improvement of A;-Ajz over the baseline on the development set is not

significant.

e Acoustic measurement Ay, which corresponds to the rational filter bank of sam-
pling factor 8/7, consistently outperforms the rest of the measurements and the

baseline. The difference in results over the baseline is also significant.

5.3 Evaluation of the Results

Our results compare favorably to those mentioned in the literature as well as those of
the baseline classifier. Though the results mentioned here are for context-independent
phonetic classification, they should not be used entirely for direct comparison since
the training and test conditions might differ from one another.

The best reported result for context-independent phonetic classification is by Hal-
berstadt [23]. He successfully experimented with heterogeneous measurements and
multiple classifiers, and obtained an error rate of 18.3% on the Core Test set. One of
the issues addressed is that of aggregating several acoustic models in order to boost

the performance and robustness of the models [25]. To get an idea of the extent
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of expected improvement upon implementing aggregation on our acoustic measure-
ments, 4-fold aggregation is tested on As. Error rates of 21.8% on the Development
set, and 22.9% on the Core Test set are obtained. These results compare very well
with the performance of the 4-fold aggregated models tested for various segmental
measurements in [23]. The error rates Halberstadt reported on the Development set
ranged between 21.4% and 22.7%.

Other results are provided by Clarkson and Moreno who implemented Support
Vector Machines (SVM), with various kernel functions, applied to phonetic classifica-
tion. They obtained error rates that range between 22.9% and 23.7% on the Core Test
set [9]. Chigier et al. experimented with several signal representations and reported
22.0% using PLP features and a neural net classifier [36]. Chengalvarayan and Deng
developed a new hidden Markov model that integrates generalized dynamic feature
parameters into the model structure. The best result they reported is an error rate
of 31.8% on a 20-speaker test set [8]. Zahorian et al. obtained 23.0% on the Core
Test set using spectral /temporal features and binary-pair partitioned neural network
classifier [44].

The results we obtain are generated with relatively simple acoustic measurements
and classifier. However, they are comparable to those reported in the literature. This
is encouraging and portends further improvement upon the combination of several

generated measurements in addition to acoustic model aggregation.
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Chapter 6

Conclusion

In this thesis we addressed the problem of feature extraction for context-independent
phonetic classification. We presented a wavelet and filter bank framework in which
we exploited various dimensions of the wavelet and filter bank theory such as filter
design and the extension of the 2-channel dyadic case to the rational case. We now
provide a brief summary of the thesis as well as possible future extensions to the

current framework.

6.1 Summary

Seeking an alternative to the STFT and its limitations in the task of feature ex-
traction for speech recognition, we investigated wavelet and filter bank theory. The
wavelet transform allows a multiresolution analysis and subsequently a good signal
representation by exploiting the time/frequency resolution trade-off. Furthermore,
the wavelet transform can be efficiently implemented using an adequately designed
filter bank. Taking advantage of these key points, we proposed a signal analysis
framework.

The basic building block of our framework was filter design, where we presented
two different techniques for designing orthonormal filter banks based on paraunitary
matrix factorization. This came as an alternative to the use of off-the-shelf wavelets

that do not always result in filters suitable for speech analysis. The first technique
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Acoustic (%) Error rate
Measurement || Development | Core Test | Full Test
MFCC 23.9 24.6 24.4
Aq 23.6 25.9 24.7
Ao 23.4 25.2 24.5
A; 23.4 24.9 24.3
Ay 23.1 24.6 24.1
As 23.2 24.0 23.8

Table 6.1: Summary of the classification performance of the acoustic measurements
described in Table 4-1 and the baseline (MFCC) on the Development, Core Test, and
Full Test sets

minimized the modulus between the designed and desired filter imposing orthogo-
nality through the lattice structure of the designed filter. Another constraint in this
method was the number of wavelet vanishing moments which ensured some degree of
regularity, a desired wavelet feature. The second method minimized the attenuation
in the stopband of the designed filter. The constraints are again orthonormality of

the filter bank as well as a regularity of order 1.

A filter bank generates an array of filters that cover different bands of the spec-
trum. In the simplest case, a dyadic filter bank iterated on the low-pass channel
will generate an octave band. We extended this idea in two ways. First, using tree-
structured filter banks, we obtained various frequency partitions. With proper tree
configuration, we obtained a frequency decomposition that mimics Mel-spacing. The
second method involved the design of rational filter banks, which incorporated the
critical band effect more naturally. Instead of being restricted to a sampling factor of

2, we are able to generate more general factors of the form M /(M —1).

The final stage is to implement the filter bank and generate the acoustic measure-
ment. Energy is computed over the generated bands and log-scaled. The resulting
acoustic measurement is further processed to generate a large feature vector consist-
ing of concatenated averages and derivatives of the original observation as well as
energies and durations. The high dimensionality of the resulting feature vector is

reduced using principal component analysis.
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Table 6.1 summarizes the performance of sample acoustic measurements on the
Development, Core Test, and Full Test sets. We observe a gradual improvement in
the results as we progress from the first to the last measurement. A; corresponds
to an off-the-shelf wavelet, A, corresponds to a designed filter using the matching
technique, As and A4 are generated using the attenuation minimization technique,
and Ajs corresponds to a designed orthonormal filter bank with sampling factor 8/7.
The results compare favorably to those reported in the literature as well as the base-
line classifier. We note again that, most of the research, specifically on wavelet-based
analysis for speech recognition, reported in the literature involves only off-the-shelf
wavelets and dyadic filter bank implementations. Unfortunately, we are unable to
perform direct comparison with these studies, since the data sets were often different
and smaller than ours. However, we are able to show that off-the-shelf wavelets do
not necessarily give the best results, and there is a need for wavelet and, consequently,
filter design. We also showed that a dyadic filter bank implementation is not optimal,
and we adopted a method for the design of rational filter banks with sampling factor
M /(M —1). These structures naturally incorporate the critical band effect while pro-
viding a fine resolution of the spectrum. The results shown in Table 6.1 indicate that
a rational filter bank consistently outperforms the rest of the acoustic measurements

as well as the baseline classifier.

6.2 Future Work

The framework that we have presented gives insight into the effect of filter design and
rational filter bank on the performance of phonetic classification. It is however, still
primitive in terms of design as well as implementation. We cite some of the future
challenges in its improvement:

The wavelet and filter bank framework was tested on the TIMIT corpus which is
a clean data set. It would be even more challenging to implement it on a noisy data
set. With the multi-scale analysis provided by wavelets, and the ability to isolate

noisy components — under the assumption that they would be localized in scale —,
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it is encouraging to attempt such an implementation.

The framework is also limited to the task of phonetic classification. A natu-
ral extension would be phonetic recognition taking into account linguistic context-
dependency such as coarticulation. Obviously, the final aim would be to develop a
full speech recognition system.

With the flexibility in filter design and frequency partitioning, the framework lends
itself to hierarchical approaches where it will be possible to adaptively design filter
banks that are optimized for the classification or recognition of a class or subclass of
signals. Halberstadt investigated the use heterogeneous measurements and acoustic
model aggregation to improve model performance [23, 25]. We are currently imple-
menting acoustic model aggregation where our latest error rates are 21.8% on the
Development set and 22.9% on the Core Test set. The results are obtained for a 4-
fold aggregated model corresponding to acoustic measurement As, which is presented
in this thesis. It is comparable to the error rates reported by Halberstadt for the
4-fold aggregated models corresponding to his segmental measurements [23]. Table
6.2 shows the results reported by Halberstadt in [23] on the Development set as well
as those corresponding to As.This is a very promising result and we hope that the

combination of various aggregated models will lead to even better performance.

The filter and filter bank design techniques that we used in this thesis are quite
simple and do not always give satisfactory results or even converge. For example,
the filter matching method did not give a very good attenuation in the stopband nor
did it always give a good match to a wide range of filters. It would be interesting to
modify the method, devise a new one, or implement different optimization techniques
in order to experiment with various filter shapes.

As far as filter bank implementation, we have not mentioned the complexity of the
algorithm in terms of computation and consequently processing time. We discuss it
briefly here giving another example of the extensions that can be done to the frame-
work. For example, ideally we would like our system to operate as close as possible
to real-time. However, this is currently not the case. Our core wavelet transform

algorithm, has a polyphase implementation (See Figure 2-3 and Equation 2.1 for the
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Acoustic (%) Error rate

Measurement || ALL | VOW | NAS | SFR | WFR [ STP | CL
S1 21.52 | 284 | 224 | 19.8 | 26.9 | 23.7 | 3.8
S2 21.60 | 289 | 222 | 182 | 284 | 23.7 | 34
S3 21.46 | 279 | 204 | 189 | 29.0 | 26.5 | 3.8
S4 2247 | 279 | 20.7 | 19.5 | 30.1 | 24.8 | 4.0
S5 22.10 | 28.8 | 23.1 | 20.2 | 30.0 | 249 | 3.6
S6 22.64 | 284 | 246 | 20.8 | 325 | 26.6 | 4.4
S7 22.68 | 29.6 | 25.7 | 204 | 30.3 | 25.2 | 3.3
S8 22.08 | 28.3 | 25.8 | 194 | 30.3 | 246 | 3.9
As 21.79 | 28.6 | 22.7 | 204 | 24.2 | 26.7 | 3.6

Table 6.2: Classification performance (overall and phonetic subclasses) of the acoustic
measurements designed in [23] and one of the acoustic measurements proposed in this
thesis, As. 4-fold aggregation is performed on all models and classification is done on
the Development set.

dyadic case). If we look at the 2-channel case, the computation of the output requires
four convolutions of the polyphase inputs with the polyphase filters of length L/2 —
the original filters were of length L. Thus the number of operations/input sample is
L multiplications and L — 1 additions. On the other hand, an FFT-based convolution
would require much less operations/input sample. For example, the split-radix FFT
algorithm will take a.L.log, L + O(loglog L) [42]. Since we are dealing with large
input signals (frames of 320 samples) and large FIR filters of lengths more than 100
taps, it becomes advantageous to consider optimized FFT-based algorithms for filter
bank implementation.
More importantly, the proposed feature extraction framework can be pipelined. Since
the underlying algorithm is frame-based, it is possible to implement it in real-time
where frames are processed independently while the signal is input to the system.
Wavelets and filter banks are, indeed, compelling tools to pursue further in the

field of speech analysis.
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Appendix A

MFCC Computation

In this appendix, we describe the stages involved in the MFCC computation algorithm
[13, 23]. Figure A-2 illustrates the different stages in the MFCC computation:

Stage 1. Compute the short-time energy spectrum by calculating the magnitude
squared of the STFT over frame intervals of predefined width, for example

25 ms.

Stage 2. Multiply the energy spectrum by N triangular band-pass filters. As illus-
trated in Figure A-1, 40 is a typical value for N, where 40 triangular filters
are enough to cover the whole spectrum when the speech signal has been
sampled at a rate of 16 kHz. Compute the Mel-frequency spectral coeffi-
cients (MFSC), as the energy outputs of each filter. The triangular filters
are designed to incorporate a Mel-frequency warping with linear spacing

below 1000 Hz and logarithmic spacing above that.

f

"= 25951 14+ —
f Oglo( + 700

)

Stage 3. Compute the log transform, 10log;o() of the N MFSCs

Stage 4. Take the DCT of the logged MFSCs to whiten the MFSC space and project
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Figure A-1: 40 triangular filters used for the MFSC computation.
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Appendix B

Description of the Frequency

Partitions

In this appendix, we describe the frequency partitions that are implemented using
tree-structured filter banks. Tables B, B, and B list in detail the lower and upper
cutoff frequencies as well as the bandwidths of the spectral bands obtained for three

different tree-structured filter banks.
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Filter # || Lower cutoff | Upper cutoff | Bandwidth
frequency frequency (Hz)
(Hz) (Hz)
1 0 125 125
2 125 250 125
3 250 375 125
4 375 500 125
5 500 625 125
6 625 750 125
7 750 875 125
8 875 1000 125
9 1000 1250 250
10 1250 1500 250
11 1500 1750 250
12 1750 2000 250
13 2000 2250 250
14 2250 2500 250
15 2500 2750 250
16 2750 3000 250
17 3000 3500 500
18 3500 4000 500
19 4000 4500 500
20 4500 5000 250
21 5000 5500 500
22 5500 6000 500
23 6000 7000 1000
24 7000 8000 1000

Table B.1: The frequency bands of the 24 filters obtained with tree-structured filter
banks.
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Filter # || Lower cutoff | Upper cutoff | Bandwidth
frequency frequency (Hz)
(Hz) (Hz)
1 0 125 125
2 125 250 125
3 250 375 125
4 375 500 125
5 500 625 125
6 625 750 125
7 750 875 125
8 875 1000 125
9 1000 1250 250
10 1250 1500 250
11 1500 1750 250
12 1750 2000 250
13 2000 2250 250
14 2250 2500 250
15 2500 2750 250
16 2750 3000 250
17 3000 3250 250
18 3250 3500 250
19 3500 3750 250
20 3750 4000 250
21 4000 4250 250
22 4250 4500 250
23 4500 4750 250
24 4750 5000 250
25 5000 5500 500
26 5500 6000 500
27 6000 7000 1000
28 7000 8000 1000

Table B.2: The frequency bands of the 28 filters obtained with tree-structured filter
banks.
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Filter # || Lower cutoff | Upper cutoff | Bandwidth
frequency frequency (Hz)
(Hz) (Hz)
1 0 125 125
2 125 250 125
3 250 375 125
4 375 500 125
5 500 625 125
6 625 750 125
7 750 875 125
8 875 1000 125
9 1000 1250 250
10 1250 1500 250
11 1500 1750 250
12 1750 2000 250
13 2000 2250 250
14 2250 2500 250
15 2500 2750 250
16 2750 3000 250
17 3000 3250 250
18 3250 3500 250
19 3500 3750 250
20 3750 4000 250
21 4000 4250 250
22 4250 4500 250
23 4500 4750 250
24 4750 5000 250
25 5000 5250 250
26 5250 5500 250
27 5500 5750 250
28 5750 6000 250
29 6000 7000 1000
30 8000 8000 1000

Table B.3: The frequency bands of the 30 filters obtained with tree-structured filter
banks.
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