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Abstract

The first part describes a fast string-editing algorithm. A
string-editing algorithm measures the distance between two character
strings by the minimal-cost sequence of deletions, insertions and
replacements of symbols needed to transform one string into the other.
The longest common subsequence problem can be solved as a special case.
An algorithm assuming a finite alphabet with restrictions on the edit
costs solves this problem in time O(nm/log n) where n, m are the
lengths of the strings. Bounded intervals of integral linear
combinations of the edit costs must not be dense. Otherwise the
algorithm might not work.

The second part describes work with decision graphs. Decision
graphs are like random-access finite-state machines where each state
can only look at one particular input character. They model space
complexity problems. Optimal real-time decision graphs are exhibited
for counting functions. A time-space trade-off exists using this
model. Boolean formulas and contact networks are modelled using
decision graphs. Matching upper and lower bounds are shown for the
complexity of arbitrary boolean functions -- (2n/n). Last
deterministic decision graphs model non-deterministic decision graphs

with c states using O(c l +lo1 c) states.
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Part I - A Fast Algorithm for the String Editing Problem
1. Introduction

Wagner and Fisher [5] presented an algorithm for determining a

sequence of edit transformations that changes one string into another.

The execution time of their algorithm is proportional to the product of

the lengths of the two input strings.

To define a notion of "distance", use the same 3 operations: (1)

inserting a character into a string; (2) deleting a character from a

string; and (3) replacing one character of a string with another.

Michael Paterson 4] developed a fast algorithm. It runs in time

proportional to the product of the lengths of the strings, divided by

the log of the length of the longer string, if both the alphabet for

the strings is finite, and the number of integral linear combinations

of edit costs for the edit operations within any bounded interval is

finite.

This algorithm is useful for computing the edit distance between

long strings. As a special case it can compute the longest common

subsequence of a pair of strings.

1.1 Basic Definitions

The following symbols will be used:

A A string of characters over some alphabet .

7
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IAI The length of string A.

An The nth character of the string A (IAnl=1).

A t' J The string Ai,...,AJ, (IAiJI=j-i+l).

An An abbreviation for Al 'n .

X The null string also denoted A0.

An edit operation is a pair (a,b)(X,(X) of strings of length less

than or equal to 1, also denoted as ab. String B results from string

A by the edit operation ab, written "A-+B via ab", if Aar and Bbr

for some strings and . Call a-+b a replacement operation if a and

bok; a delete operation if b; and an insert operation if ask.

Let S be a sequence sl,...s m of edit operations (alternatively an

edit sequence). An S derivation of A to B is a sequence of strings CO,

C1,..., Cm such that A CO, B C and for all •i<m, Ci_,l Ci via si.

The sequence S takes A to B if there is some S derivation of A to B.

Let be an arbitrary cost function assigning a nonnegative real

number to each edit operation ab. Let be defined for sequences S

of edit operations sl,...,s m by letting (S)= V(si). Define the

edit distance A,B from string A to string B to be the minimum cost of

all sequences of edit operations taking A to B. Formally A,B=

min(7(S) IS is an edit sequence taking A to B).

Assume (a#b)=la,b for all edit operations ab. (Equivalently

assume 'v(a+a)=O and (a-b)+7(b-c)_7(a-c).) This leads to no loss of

generality, for if is the distance function associated with a cost

8
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function , it is easily verified I is the distance function associated

with the cost function ' for which ' (a)b)=la,b and ' has the desired

properties.

Let always denote the distance function between the strings A

and B, and denote TAi,Bj by pij,. Write the cost of replacing a with b

as Ra,b, the cost of deleting a as Dal and the cost of inserting a as

Ia.

1.2 Previous Results

The best upper bound known on the time for computing A,B is

O(IAI*IBI) [5]. For infinite alphabets this result is optimal i[l;

however, using the idea of the 4 Russians algorithm [21 Michael

Paterson reduced the time needed to O(IAI-IBI/log (max (IAI, IBI))) if

the alphabet was finite and the edit costs were restricted. The

matrix-filling algorithm in [51 computes I by computing i j for each

pair of strings (At, B) using an (IAI+I) x (IBI+1) matrix for r

(Figure la). Wagner and Fisher [5] showed each element of the matrix

is determined by 3 previously computed matrix elements. Theorem 2

describes how the border is computed.

Theorem 1[]. For all i,j such that 1•i<IAI, 1<J<IBI:

ij min(i-l,J-l + RAiBt i-l, + DAi i, j- + IBj)*

9
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X b abaaa
X0 1 2345 .6
a1212345
b2 121234
a3 212123
b4 321234
b5432345
b6543456

Figure la

X babaaa
X0 123456
al 2 5
b2 1 4

a 3 212123
b4 1 4
b5 2 5
b6 543456

Figure lb

The alphabet is (a,b).

Assume I = D = 1, Ra,b = Rb,a - 2

and Ra,a = R b,b = 0.

Figure 1 Computing Distances with Matrices

The initial values (i,j) of a matrix are all entries with i-O or

j=0. The initial values for the matrix can be computed in O(IAI+IBI)

time. An initial value sequence is a sequence of initial values.

Theorem 2[5]. o,00, and for all i,J such that 1iIAI, 1<jIBI,

81,0= D and I'lj <J IB .

Each of the IAIoIBI entries in the matrix can be computed in

constant time, so the matrix filling algorithm runs in time O(IAI-IBI).

10
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2. The Faster Algorithm
A m+lX41i submatrix is associated with a pair of length m strings

and a pair of length m initial value sequences. (The initial values

for a submatrix can come from almost anywhere in the matrix.) A

submatrix computes the edit distance on the given strings assuming the

initial values are as specified. To compute the matrix more

efficiently precompute all possible m+xm+l submatrices, on all pairs

of length m strings and all possible length m sequences of initial

values. Then compute a IAI/m x IBI/m matrix on the alphabet Zm by

using the precomputed submatrices (Figure lb). To prove this is better

first show that all submatrices can be computed fast, then that using

the submatrices does not change the answer.

2.1 Bounded Intervals

To compute all possible submatrices enumerate all m length strings

and all possible length m initial value sequences. The alphabet is

assumed finite, so enumerating all strings is easy. There are too many

initial value sequences to enumerate economically, so enumerate all

sequences of steps instead. Define a step to be the difference between

any two adjacent matrix elements. The size of steps in a matrix is

bounded. Let nt= (the set of edit costs) and let I(i) be the

associated ideal. The set is sparse only if there exists some small

real constant r such that the difference between any two elements of

11
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I (0) is some integral multiple of r. Edit functions mapped from the

integers or the rational numbers are sparse, from the real numbers may

not be. If the set of edit costs is sparse and the possible steps are

bounded then there is a finite number of steps to consider. Consider

each initial value sequence as a starting value and a sequence of

steps. Showing the steps are bounded takes two operations. First,

show the initial value steps are bounded.

Lemma 1. For all i, J; if 1•:lAI, 1~jJIBI,

(1) (min Da)< i, - i-,0O DA• (max Da)

(ii) (in Ia)• 8o,J- 8 0,J-1 IBjg (max Ia).

PROOF. (i) By Theorem 2, li, 0 -li DAr and i-l..lo= •il DAr

Therefore i, 0 - i-l,0 ' DAt so

(min Da)< ,0 - i-l,og DAi• (ax Da).

(ii) follows by a similar argument.O

And second, show all steps in the matrix are bounded.

Theorem 3. For all i,j; if l•i•lAI, l•j•lBI, then

(i) min((min Ra,b) - ( ma x Ia) (min Da))< i, - i-l,• DAi (max Da)

(ii) min((min Ra,b)-(max Da), (in Ia))< i,J4 i,jl• IBj< (max Is).

PROOF. (i) Proceed by induction on i+j.

If i+jlO the theorem vacuously holds.

12
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Now suppose the theorem holds for all i,j such that i+j < r. If

J=O Lemma 1 holds and the theorem holds. If i=O it is meaningless.

By Theorem 1, i,J= in(ll,jl + RAVBJP i-l,J + DAI, i,J-l +

IBS). In particular:

li,J i-l,j + DAi
or i, i-l,J - DAis (max Da).

To show the lower bound there are 3 cases corresponding to the 3

ways of computing iSj.

Case 1: Suppose i J ' i-i-l + RAIBJ The inductive hypothesis

yields:

ij> i-l,j - (max Ia) + RAt,Bj
liJ - i-l,J2 RAi,Bj - (max Ia)

> (min Ra,b) - (max I a).

Case 2: Suppose i,jx ji-l, + DA , then

ai, J - i-l, DA

> (min Da).

Case 3: Suppose ij= pi,-1 + IBj. By the inductive hypothesis:

ai,J- - i-l,j-> min((min Ra) - (max Ia), (min Da)), IBj > i-l,J -

i-1,aJ-l' Substituting yields

i-,j2 BJ - 1Bj+ min((min Ra,b) - (max I ) (min

Da))

> min((min Ra,b) - (max Ia ) , (min D)).

(ii) follows by a similar argument.O

13
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Now given the sparse domain show there is a finite number of steps

in the matrix.

Corollary 1. Given a sparse set of edit distances the set of

possible steps is finite.

PROOF. For all i,j such that OilIAI and OIBI ij is the su of

the costs of a series of edit operations. Therefore the steps are

merely linear combinations of . By Theorem 3 the steps are bounded.

Since the bounds on the step sizes are known, the number of possible

steps is finite.O

2.2 Submatrix Insertion Is Valid
Now show that using a submatrix produces the correct values.

First show any constant added to the initial values is uniformly

propagated through the entire submatrix. Let A and B be strings. The

pair (A,B) is said to have a common suffix of length if the last 

characters of A and B are identical.

Theorem 4. Given the pairs of strings (A,C), and (B,D) with common

suffixes of lengths n and m respectively.

Let pAI-n, r=lCI-n, slIBI-m and tlDI-m.

Assume acts on (A,B) and 8' acts on (C,D). If for all i,j such

that 0 < i < n, 0 < j m, aeR,

14
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p+i,s r+i,t + a

and p,s+j 'r,t+ + 

then p+i,s+j ' r+i,t+ + .
PROOF. Proceed by induction on i+j.

If iO or JO the theorem is true.

Now assume it is true for i+j<r, i>O and J2 0. By Theorem 1:

{p+i,s+j ' min({p+i-,s 1 R p+-l,s+ + +Dp+ i, ,s+-

+ IBs+J) 
By the inductive hypothesis:

p+i,s+J ' min('r+i-l,t+J-l + CriDt+j + A, 'r+i-l,t+J + DCr + a,

{'r+i,t+J-1 + IDt+ + a)

r+i,t+J +

2.3 Generating All Submatrices
A step sequence is a sequence of possible steps, a step sequence

and a starting value determines an initial value sequence. First

enumerate all length m strings and length m step sequences. Define

f:Z4 (0, ... , I11-1). Let J (all possible steps in I(a)), then

define g:J-. (0, ... , IJI-1). Enumerate all m length strings and all

sequences of m steps in lexicographic order using f and g. Using an

increment mod p algorithm, this can be done in time O(m2 k m) for some

appropriate k.

Next calculate the submatrices. This must be done for all pairs

15
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of length m strings and sequences of m steps-- O(IZ12mlJI 2 m) times.

Assume G(i,S) returns the ith step in the step sequence S. Calculate

each submatrix with step sequences S and S2 on strings C and D using

Algorithm Y [5]. The function store saves the matrix T so that it can

be easily recovered given the step sequences and the strings. The

algorithm takes time O(m2) for each submatrix, so calculating all of

the submatrices takes time 0(m224 im) for some appropriate . The

correctness of Y is shown in [5] using Theorems 1 and 2.

Algorithm Y
for each pair C,D of strings in Z and step sequences Si and S2 do
begin
T (0, O): 0;
for i=1 to m do begin

T(i,0):= T(i-1, 0) + G(i, Si);
T(0, i):. T(O, i-1) + G(i, S2);

end;
for i. 1 to m do

for j= 1 to m do begin
kl:= T(i-1, -1) + RCj,D;
k2:= T(i-1, j) + DCi;

k3:- T(i, J-1) + IDi;

T(i, j):= min(kl, k2, k3);
end;

store (T, Si, S2, C, D);
end;

2.4 Computing the Edit Distance
Finally compute using the information stored in T. Assume

E(x O, ... , xm) returns the sequence S of steps for the matrix values

xO , ..., xm. Assume F(S1, S2, C, D) returns a pointer to the submatrix

16
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with the step sequences S and S2 using the strings C and D, and T(P,

i, j) returns the (i, J) element of the submatrix pointed to by P.

(Note F and store are each other's inverses.) The functions E and F

can both be computed in time O(m). The additive constant result

(Theorem 4) ensures the algorithm works.

Algorithm Z
8 (0, 0): 0;
for i=1 to IAI do 1,0:= i-1,0 + DA1;

for Jul to IBI do J:' O, jo- 1 + IBj;
for i=O to IAI-m by m do

for J=O to IBI-m by m do begin
Si:. E(Bi,j, i+m,j);

S2:= E(ij , Pi,j+m);
P:= F(Si, S2, Ai+l'i+m, BJ+IJ+);
for d=l to m-1 do begin

Si+m,j+d : i, + T(P, m, d);
i+d,j+m:' i, + T(P, d, m);

end
end

The timing analysis of Z is straightforward, Algorithm Z runs in

time O(IAIIBI/m). Choosing m. min((log n)/k, (log n)/41) the entire

Algorithm CY and Z) runs in time O(IAI.IBI/log (max (IAI, IBI))). If

IAI>>IBI the algorithm uses time O(IAI-IBI/log IAI) using log IA x

log IAI submatrices.

3. Sparseness Is Necessary

The last section used an nxn matrix to compute the edit distance

between two strings assuming a finite alphabet and a sparse domain.

17
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This section presents an example demonstrating sparseness of the set of

edit costs is a necessary condition for using Algorithms Y, Z.

8.1 Computation with Paths
All possible ways of changing one string into another using

matrices must be described. A path in the matrix (Figure 2)

P((i,J), (k,)) is defined as a starting point (i,j), an ending point

(k,l), and a sequence of edit operations, such that k-i. the number of

replacements plus deletions and -j. the number of replacements plus

insertions. A replacement moves the path one space diagonally (i,j)*

(i+1,J+1); an insertion moves the path one space to the right (,J)-

(i,J+1); and a deletion moves the path one space down (i,j). (i+1,j).

The number of operations in P is IPI. Write P(k,l) for P((O,O),

(k,A)). The concatenation of two paths P((i,j), (k,l)) and Q((k,i),

(s,t)) is written PoQ. The edit operations for PQ are the edit
operations for P followed by those for Q. Let Hp(i) be the ith edit

operation applied by P for 1<i<IPI.

Each operation is associated with the letters it affects. Let

C(P) be the sum of the costs for each operation, or more precisely

C (P)" 2 Y(H(i)). An alternate definition for I is min( C(P(IAI,1< i<PI
IBI))).

Describe the eccentricity of P((i,j), (k,A)). Define d as:

18
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Xababaa,0123456
b 12 1234 5
a 2 21234
a 3 2 2 223
b 43 2 3 234
a 5432 3 23
b6 543234

Assume Ra,a Rb b 0, Ra b

Rb,a 2, and I D . 1.

The underlined entries of the matrix form the path
P((0,0), (6,4)) P(6,4).

Hp - (D, D, I, R, R, R, D), and D(P) = (0, 1, 2).

C(P) = 8, so P is not optimal.

Figure 2 Paths in Matrices

/ i-j if m0
d(m)= { d(m-1) +1 if H(m) is a delete operation

I d(m-1) -1 if H(m) is an insert operation
\ d(m-1) if H(m) is a replace operation

The eccentricity of P is D(P)= (d(m) I 0 m< IPI). The function d

describes how far the path gets from the center. The set D gives all

distances P can get from the center. If D is a singleton set, then P

consists of just replacements. Now describe some simple results giving

the effects of concatenation and eccentricity on costs.

Lemma 2. For all i,j,k,,m,n such that 1 i k m IAI and 1 Js Ia

n• IBI and there are paths P((i,j), (k,l)), Q((k,I), (m,n)) such that

19
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IPIa s and IQI t:

(i) C(PoQ)= C(P) + C(Q);

(ii) if D(P)= (d) then C(P)= RA B+
l<r<lIPI i+r, j+r

PROOF. (i) By the definition of C(P)

C(P) +C(Q). 2 v(Hp(i)) + (HQ(J))
IP 11I

Since HpoQ(i)u Hp(i) and Hp*Q(IPI+i)- HQ(i),

C(P)+C(Q). It I ' t(HpoQ (i))
IPI+IQI

WC (POQ).

(ii) Since D(P) (d), Hp(i)- replace. By the definition of C(P),

C (P) - I RA B r 0
lr<PI i+t' j+r

3.2 The Cost Funotion Exa mple

Define the cost function for the example. Let Z(a,b,c), then

for all a,beZ define the cost function :

R, x= 0 for ap

Ra,bs Rb,a' I

Rc,b= Rc,a = Ra,c Rb,c 6

Iz- D= 20.

Use to generate A and B (Figure 3) as follows.

Set Al1 b, Ba, S(1)-20, M(1)=;

If k is odd let Ak-b, Bk-a, S(k) S(k-1)+RAk,Bk_ 1 M(k) 

M(k-1) +RAkk

If k is even and S(k-1)+20<M(k-1)+2r

20
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then Ak=Bk=c, S(k) - S(k-1)+RAk B l' M(k) - M(k-1)+R BkA

else Akla and Bklb; S(k) · S(k-l)+RAk Bkt1 M(k) -

M(k-1) +RBA;

A5 0 = babababababcbababcbabcbababcbabcbabcbababcbabcbaba

B50 s abababababacababacabaabbacabacabacababacabacabab

Figure 3 The first 50 characters of A and B

The matrix used to compute has O(n) steps. In the example M(k)

is the cost of P with Hp. (replace") and S(k) is the cost of Q with HQ=

(delete, replacek'l). If P and Q are optimal the Algorithm Y,Z will

not work because the number of possible step sequences will not be

finite. Inserting c's in the construction of A and B is vital. If no

c's were inserted Q would become optimal for computing P (add an

insertion at the end of the path) after 13 characters (13r > 40). When

a 'c' is inserted P becomes more efficient than Q at that point. The

alphabet and cost function are designed so the matrix is symmetric

across the main diagonal.

8.8 Symmetries in the Matrix

There are many useful symmetries in the strings A and B. The even

diagonals behave like M, and the odd diagonals behave like S. Figure 4

describes even and odd diagonals.

21
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X a c a bab a c a b
FP

bSM OFF
c SM OFF
b S M OFFP
a SM OF
b E S M
a E SM

b E SM

c E SM

b E SM
a SM

M is the path M(i) uses.
S is the path S(i) uses.

E is an even diagonal, D(E) 4.
0 is an odd diagonal, D(O)= -5.

0 and P are adjacent odd diagonals.
F is an even diagonal adjacent to 0 and P.

Figure 4 Diagonals in Matrices

Lemma 3. For all i,J such that liAI, 1<jIBI, kO--

(i) if li-l is even AiBj-c or AioBj;

(ii) if li-jl is odd ABj iff Ai-c or Bj-c.

PROOF. (i) If li-Ji-2k, i and j are both even or both odd. If they

are odd Ai-b and Bj-a. If they are both even one of AB-c; Ai.a and

Bj=b or c; or B=b and Ai=a or c must hold.

(ii) If i-jl=2k+1 i and j are alternatively even and odd.

If i is even and odd Aia=Bj or A=cia=Bj.

22
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If is even and i odd AiubB j or AbscBj.O

The cost function is symmetric.

Lemma 4. For all i,j such that 0<i<lAI, O<j<IBI, RAiB j RAjB i

PROOF. An examination of R shows it is invariant whenever a's and b's

are transposed. In addition switching c's from insert to delete and

vice versa do not change R. 

Now show symmetry across the main diagonal in the matrix used to

solve .

Lemma 5. V i,J such that OilAI, 0<jIBI, ija= Ij,.

PROOF. The insert and delete costs are all equal. The replacement

costs are equal by Lemma 4. Since A-B with the a's and b's switched,

any minimum value for i,j will be a minimum value for iji. 0

To show S and M model look at all ways of changing A into B.

Compare the costs of different sections of paths with S and M. The

necessary relationships do not hold for paths with either coordinate

less than 10. The next lemma allows these paths to be ignored.

23
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Lemma 6. For all i,J such that O<i<lAI, O<jIBI where i<10 or J<10:

(i) if i>J then Hp= (delete, replace j, delete i 'j' l ) is optimal.

(ii) if i<j then Hp= (insert, replace i , insertj-i-l) is optimal.

(iii) if ilj then Hp= (replacei) is optimal.

PROOF. (i) If i>j then IAil>IBJI, so at least i-J deletions from A are

necessary to match their lengths Each deletion is of cost 20, so ij>

20 (i-J).

For k10 S(k-1) + 20> M(k-1) + 2 holds. Therefore ABglc

implies 1>10. Consider the path P, all of the replacements have cost 0,

so C(P). 20(1-J). This is the lower bound for ij, so P is optimal.

(ii) follows by symmetry.

(iii) Calculate in the beginning of the matrix to confirm it is

K3 O

8.4 Costs Along the Odd Diagonals
The next lemma gives bounds for the costs associated with

subpaths. It is important to remember that in an odd diagonal section

(D(P)a (2k+1)) A Bj c cannot occur. The cost of the diagonal is 6

times the number of c's in the relevant portions of A and B. Let Ep be

the positions of c's in the relevant parts of A and Fp be the positions

of c's in the relevant parts of B. More formally, if P((i,J), (k,))

is a path then Ep= (el i<e<k and Ac) and Fp= (flJ<f•1 and Bf.c). If

there is no possibility of ambiguity the subscripts will be omitted.
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Lemma 7. Given P((i,j), (k,i)), if D(P)z(m) odd then C(P)- 6(IEI+IFI).

PROOF. Let IPI s, since D(P)= {m) Lemma 2(ii) holds.

C(P) RAi B lgr~s ir' j+r
But all of those terms but the ones with c's being inserted or deleted

are 0 (Lemma 3 and equal replacements are 0), so C(P) is just 6 times

the number of c's in the relevant portions of A and B. There are

precisely IEI+IFI of these terms, so C(P)= 6(IEI+IFI).O

Equal length adjacent odd diagonals affect almost identical

portions of A and B; however, one diagonal can only affect 2 string

positions not affected by the other diagonal. And even if both string

positions are 'c' one string cannot cost more than 12 units more than

the other.

Lemma 8. i,j,k,I such that li<kIAI, lgj<QIIBI, there exists paths

P(i,j), (k,)) and Q((i-1,j+l), (k-1,A+l)) so that if D(P)- (r) and

D(Q)- (r+2), odd then C(P)+12 2 C(Q).

PROOF. Lemma 7 says C(P)= 6(IEpI+IFpl) Since Ep + Fp + 2 EQ + FQ,

C(P) > 6(IEQI+IFQI-2), or C(P)+12> C(Q).O

Now compare any odd diagonal path with a center odd diagonal path.

For every 'c' on the outside diagonal there may be two in the center,

except for the edges. Indeed since a center path looks at slightly
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different sections there may be one more 'c' on the outside. The

outside odd diagonal may cost 6 units more than the center.

Lemma 9. i,j,k,2 such that 1<i<k<AI, 1<j•<•IBI, assume P((i,j),

(k,5)) exists such that D(P)= (2s+1).

(i) if IEI21FI then C(P)• S(k)-S(i)+6,

(ii) if IEI<IFI then C(P)< S()-S(j)+6.

PROOF. (i) Lemma 6 says C(P)= 6(IEpl+lFpI). Assume i>j, and define

Q((i,i-1), (k,k-1)) such that D(Q)-(1).

Since every Ai-c implies Binc then if eEQ then eFQ unless ek,

so IEQI<IFQI+l.

Then C(P) 6(IEp I +Fpl) <

• 6(IEpl+lEpI) 

- 6(IEQI+IEQI) 

6 6(IEQI+IFQI+l)

C(P) C (Q)+6.

C(Q) S(k)-S(i), therefore C(P) < S(k)-S (i) +6.

The case i<j follows by similar argument.

For (ii) prove the lemma for Q((j-,J), (1-1,)) then use symmetry

to show the lemma for Q((j,j-1), (1,1-1)).
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3.5 Costs along the Even Diagonals
The adjacent even diagonals are not comparable, but the even

diagonals (D(P)-2m) are comparable with adjacent odd (D(P) 2m-1)

diagonals. If the relationships between an even diagonal and the

center even diagonal (D(P)- 0) can be computed, then given the

relationship between S and M, the even-odd diagonal relationship can be

evaluated. First show the center even diagonal is an upper bound for

the outer even diagonals.

Lemma 10. V i,,k,I such that i<k<lAI, I<j <<IBI, if the paths

P((i,j), (k,i)) and D(P)- (2m*0); then

(i) C (P)> M (k) -M(i),

(ii) C (P) M () -M ().

PROOF. (i) Define Q ((i, i), (k, k)) such that D (Q) =0. Assume C (Q)>

C(P). Then there exists some pair of terms. for C(P) and C(Q) such that

RAi+r Bj+r < RAi+r,Bi+r

Case 1. Ai+rx c. By the construction Bi+r- c, this gives i+r,i+r 0

the smallest possible cost for an edit transformation.

Case 2. Ai+rc. The construction gives RABi+r Bi+ r By Lemma 3(i)

since D(P) is even Ai+rB+r, so RAtrBr .

So C(P) M(k) -M(i).

(ii) follows by a similar argument.E
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3.6 Interval Bounds

If S and M are used to compare the even and odd diagonals then

bounds are necessary for M(k)-S(k). The definitions for S and M yield

the relationship 20 M(k)-S(k) > 8-v, but only after S and M have had

a chance to get started (about k=10).

Lemma 11. Vk k> 10, 20> M(k)-S(k)> 8-w.

PROOF. If k=10 S(10)= 20 and M(10)= 10v and 20> 10f-20>8 -.

So M(k)-S(k) starts in the interval (8-u, 20]. Show it can never

get out of the interval. While Akn c, M(k)-S(k) is increasing, so the

maximum value for M(k)-S(k) occurs at the largest k when k is odd and

S(k-2)+20 > M(k-2)+2w, or M(k-2)-S(k-2) < 20-2w.

This gives M(k)= M(k-2)+2w and S(k)= S(k-2).

Substituting yields

M (k) -S (k) M(k-2) +2w-S (k-2)

S 20-2w+2w

· 20.

Whenever a 'c' is inserted M(k)-S(k) gets smaller. The smallest

M(k)-S(k) occurs just after the smallest M(k)-S(k) difference where a

'c' has been inserted. If Ak= c then S(k)- S(k-1)+6= S(k-2)+12 and

M(k)= M(k-l)+w= M(k-2)+w. The minimum value occurs when k is odd and

20+S(k-2)< M(k-2)+2f, or M(k-2)-S(k-2) > 20-2w. In that case

M (k) -S (k) = M (k-2) +f-S (k-2)-12
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> 20-2f+w-12

> 8-u. 

3.7 Sparseness Is Neoessary
Now show S(k) represents k, k- and M(k) represents sk.k' Use an

induction on the eccentricity of the optimal paths.

Lemma 12. For all k>l

(i) S ()= k,k-l

(ii) M(k) k, k

(iii) S(k) k-l k

PROOF. (i), (ii). Construct P(k,k) and Q(k,k-1) such that Hp=

(replacek) and H.= (delete, replace k) then show k,k C(P) ( M(k)) and

Sk,k-l C(Q) ( S(k)). Since is the minimum over all paths, kk<

M(k), and k,k-1 S(k).

Show equality by a double induction. First on k, the length of

path, then on the eccentricity of the "better" path.

For k10 (i) and (ii) hold by Lemma 6 (M and S have not

stabilized yet).

For k>10, assume (i) or (ii) does not hold for some k. Let k be

the least value where (i) or (ii) fails. If both fail for the same k

the proof for (i) fails still holds. There are three cases.

Case 1 M(k)>ik,k and S(k)=1k,kl1. By the inductive hypothesis and
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symmetry S(k)= 8k,k1= k-l,k By Theorem 1 k k= min(M(k), S(k)+20,

S(k)+20). Since k,k# M(k), M(k)> S(k)+20 or M(k)-S(k)> 20 which

contradicts Lemma 11.

Case 2 S(k)>k, k-l and S(k)>M(k)+20. By Theorem 1 kk-1

minO((k-1)+20, S(k), k,k-2+20). Then Mk)< M(k-1)+w, M(k)-S(k)> 8-

(Lemma 11). Substituting yields M(k-1)+f-S(k) > 8-v or M -1)-8+2 >

S(k) > M(k-1)+20.

Case 3 S(k)>Sk,kl. and S(k)> k,k-2+20. This means there exists a

path R(k,k-1) such that C(R)< S(k) and 3ceD such that c>1. Note

symmetry guarantees that for all c, c20. Show no such R exists by

induction on the eccentricity of R.

It holds for max(D(R))•S 1, the induction hypothesis.

The induction variable is m, the induction hypothesis is
max(D(R))< 2m+1 and C(R) is optimal then max(D(R))_1. The induction

step shows max(D(R))S 2m+3 and C(R) is optimal implies max(D(R))< 1.

This implies C(Q) is optimal. Assume there exists a path R such that

C (R) <S(k) and max(D(R)): 2m+3=p+2.

Divide R into sections where d(R)>p and dR)<p. Let U((i,i-p),

(J,j-p)) be a section of R where max(D U)) p, and d(U)up exactly twice

(at the end points). Define T((i,i-p), (J,j-p)) such that DCT)- (p).

If C(T)< C(U) then the subpath U of R can be replaced with T to get a

path which is no worse than R. Now show C(T)<C(U).

Split U into 3 types of sections.
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(1) UI - (il HU(i)= insert or delete), all insertions and deletions of

Q.

(2) UE= (i HU(i)= replace and d(i)= p+t), all replacements along the

p+1 (even) diagonal.

(3) U (i HU(1) replace and d(i)= p+2), all replacements along the

p+2 (odd) diagonal.

UE and U0 can be organized in sections of one or more consecutive

replacements. Compute the cost of all UE and UO sections by summing

the costs of each UE and U section.

Compare the costs of the paths T and U. The replacements of T will

be mapped onto the operations of U. Figure 5 describes all possible

paths for U. The sections of U can be split into two types -- E (DVI,

R*, DVI) which pass through state E, and 0= R*) which stay in state

0. For each subpath of E with r+2 map subpaths of T with r+1

replacements onto it as follows (Figure 6). Apply the mappings to each

subpath of U in order. If more c's are inserted than deleted in that

subpath then map the first r replacements of T onto the r replacements

of E, and map the r+lst replacement of T onto the second insert or

delete of E. Otherwise map the 2nd thru r+lst replacements of T onto

the r replacements of E and the first replacement of T onto the second

insert or delete of E. Each r replacements of 0 are mapped onto by the

next r replacements of T in order.

Redistribute the costs for the sections of U as follows.
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RI I RI I

IV I V
_______ D _

I I D I I--->1 I

I Start I--->) I I I 0 I

I I I I<---I _ I

II I

I I

I End I

I I

Figure 5 The State Transition Diagram for all Possible U Paths

(a) Add the total cost for each insert or delete just before an UE

section to the cost of the corresponding UE section.

(b) Add 12 units of the cost for each insert or delete just before an

UO section to the cost of the corresponding UO section. Add 2 more

units of the cost to the UE section directly preceding it.

Given these transformations but no change in the cost of U, the

cost of each UE section has been increased by 22 and the cost of each

UO section has been increased by 12. The insert or delete directly

preceding a UE section is not mapped onto by T, so its cost can be

reduced to 0. The costs for the rest of the insertions and deletion are

now 6. If there is no replacement in a section to add the costs to
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M is the path M(i) uses.
S is the path S(i) uses.
F is the starting point for paths U and T.
Operation n of T is mapped onto operation n of U.
The operations of U are underlined.
Numbers in the center show the parts of S and M used to
compare the adjacent even and odd diagonals.
Note 1 and 2 map to C and D which translates to 1 and 2 on S.

The X's are the operations of U not mapped onto. Sections
1.2.3 and 6.7.8 are the two different types of E sections.
Section 4.5 is an 0 section.

Figure 6 A Sample U-T Mapping
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assume the costs in U have been reduced as if there was a section

there.

Now compare the edit operation costs of T with their corresponding

costs in U. There are three types of mappings.

(1) A mapping of T onto an insert or delete (UI). This only

occurs directly following UE sections. They all have cost 6 (the

maximum cost for replacements), so T is just as good as U.

(2) A mapping of T onto a section of UE. Assume the first r

replacements of T were mapped in the r replacements of UE. Compare the

subpaths TE((i,j), (i+r,j+r)) and UE((i+l,j), (i+r+l,j+r)). The

mapping guarantees Lemma 9(ii) holds, so C(TE)< S(j+r)-S(j)+6. By

Lemma 10(ii) C(UE)2 M(J+r)-M(J). Each section of UE has 22 units

added to its normal cost, so TE is worse only if

C (TE) > C(UE)+22

S(j+r)-S(J)+6> M(j+r)-M() +22

M(j)-S(J)> M(j+r)-S(j+r)+16

Use what is known about M(k)-S(k) (Lemma 1i)--

20> 8-w+16

0> 4-f.

(3) A mapping of T onto a section of UO. Here Lemma 8 applies and

C(T) 12+ C(UO). Each section of U0 has been increased by 12, so T is

not worse.

Replace each section U with a section T, that does not increase
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the cost of R. Repeat the replacement process for all sections of R

with d(i)> p until max(D(R))< p. This new path is no worse than the

old one, but by the inductive hypothesis if max(D(R))< p-2 then R is

no better the path with D(R)•1, or S(k). Therefore S(k)=- ik,k-l

(iii) follows by symmetry. 0

Now show there is no finite set containing all of the intervals of

a matrix computing .

Theorem 5. Given the infinite strings A and B as generated, there does

not exist a finite set W such that {~t l-il i}W

PROOF. By Lemma 12 lii- il, i - M(i)-S(i). Assume W exists and

IWlIn. Consider the prefixes of A and B such that IAI=IB123n. Since

equal multiples of may exist only twice in M, there must be at least

1 pair (k,i) such that M(k)- pf, M(l) mr, mop, and M(k)-S(k)- M(I)-S(I).

All values of S are integers, let S(k)= x and S(1) y so

mr-x=pW-y

or . (x-y) /(m-p). Since m,p,x,y are all integers and mp no such

W exists. O

In this example all conditions but sparseness hold and the

algorithm does not work, so sparseness is a necessary condition.
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Corollary 2. Sparseness is a necessary condition for using the

Algorithms Y Z.

PROOF. If not give it the example. The number of intervals IJI in the

program is too large (O(IAI)), so there are too many m length sequences

of J to enumerate. 

4. Longest Common Subsequence

Let U and V be strings. U is a subsequence of length n of V if

there exists lrl<...<rnlUI such that Ui=Vri. U is the longest

common subsequence of A and B if U is a subsequence of both A and B and

there is no longer subsequence of both A and B.

To compute it define over the integers as

Ra,b = 0 if a=beZ,

=2 otherwise

D = I 1.

Now = IAI+IBI-21UI, or IUI= (IAI+IBI-8))/2. The domain is sparse,

so if IZl is finite, IUI can be computed in time O(IAI * IBI /

log(max(lAl, IBI))), using Algorithm Y Z. The cost function in this

section is due to 5].

5. Conclusion

An algorithm for computing the shortest edit distance between two

strings of length n in time O(n2/log n) was presented. The alphabet
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must be finite and the domain for the cost function must be sparse. If

the domain is not sparse the algorithm might not work. The problem

remains to find a better algorithm for the finite alphabet case without

the sparseness condition.

For the infinite alphabet case Wong and Chandra 6] obtained O(n2)

upper and lower bounds using a slightly restricted model of

computation. Hirschberg, Aho and Ullman [1] obtained similar results

for the longest common subsequence problem. Lowrance and Wagner [3]

extended the results of [51 to include the operation of interchanging

adjacent characters. They developed an O(n2 ) algorithm for the

extended problem under some cost constraints.

The question of the complexity of the shortest edit distance

problem for finite alphabets remains. The best lower bound is O(n)

[61, the upper bound is O(n2) or O(n2 /log n). This gap seems too

large. The work done so far seems to indicate the O(n) lower bound can

be raised.
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Part II -- Decision Graph Complexity

1. Introduction

Decision graphs were developed by C.Y. Lee to compute

switching functions [6]. This paper shows how they are useful for

studying space complexity problems. In the first section of the

paper the decision-graph model is presented and related to the

space complexity of Turing machine (TM computations. The second

section looks at the space complexity of real-time programs. The

third section compares decision-graph complexity with boolean

formula and contact network complexity. The last section looks at

the complexity of decision graphs for arbitrary boolean functions.

1.1 Basic Definitions

Decision graphs are like "random-access" finite-state machines

where only one input character can be looked at in any state. Let

2 be an alphabet and R be some arbitrary set. Define the decision

graph A computing f:Zn-R as a 9-tuple <S,s,X,t,F,Q,Z,R,n>, where S

is the set of states in A, s is the initial state, and F is the set

of final states. For each intermediary state the function

A: (S-F)-{(1,...,n) determines which input character is tested and

v: (S-F)xZUS describes the state-transition function. The

computation starts in state s with input X- x, ... , xn. A graph
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computation is denoted by a sequence of states (a path) s o, ... , sM

where s o - s, me FP, and Vi, 1 i < m, r (si. 1, Xx(sil)).

When the computation reaches state s the graph prints the output

I (sm). (Here 0 maps F into R.) The decision graph complexity of

any finite function f, denoted by C(f), is the minimum number of

states required by any decision graph to compute f. A graph which

solves a problem using this minimum number of states is an optimal

graph. In all of the following assume is (0,1). Figure 1 gives

an example of a decision graph. The following theorem shows how

The numbers in the circles denote the bit tested at that state.
The numbers in the boxes are the outputs.

Figure 1. A real time bit counting decision graph for n3.

decision graphs model TM space complexity.
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Theorem 1. If f has complexity C(f), then a TM with a read-only

input tape and a read-write work tape using s states must use at

least k bits of storage, where C(f) 2kksn.

Proof. Assume there exists a TM M such that the theorem does not

hold for inputs of length n. An instantaneous description (id) for

M consists of <q,W,w,h> where q is the state M is in, W is the

work-tape contents, w is the work-tape head position and h is the

input head position. Write down all achievable id's for inputs of

length n, and construct the decision graph A from the id's. Let

each id represent a state. A particular id gets transformed into at

most two other id's determined (since the tape contents is already

known) entirely by an input bit. Let A use the same transitions to

go to the corresponding states. Whenever a TM halts the work tape

gives the answer. Make the id's for halt states decision graph

output states and let the graph output the work-tape contents in

that id. There are no more than 2kksn id's, so A computes f with

less than C(f) states, a contradiction. 

2. Real Time Complexity

A decision graph computes f in real time if no input bit is

ever looked at twice during a particular computation -- like the

graph in Figure 1. Most programs with input (0,1) n try to look at

each bit only once, and remember it. This is real-time computation.
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It is a very restrictive model, so it is easy to show algorithms

are optimal. A label, ce (0,1,*) n , will be used to describe the

progress of a real-time computation. A '*' in the label will

represent a bit not yet asked about, a '0' or 'l' will represent a

bit already asked about.

2.1 Optimal Real-Time Graphs
The real-time constraint can be circumvented. A function f on

n bits that needs to look at each bit three times to be computed

efficiently could be computed as a function g on 3n bits. Just

define g so that f(X)=g(XXX) for all inputs X. To prevent this,

call a problem real time (different from a real-time algorithm)

only if for all possible labels the function on the remaining bits

is trivial (they all give the same answer) or there exists some

assignment of O's and 's to the *'s so that all input bits must be

looked at. Most interesting real-time algorithms compute real-time

problems, and it is usually easy to show algorithms for real-time

problems are optimal. Associate each state of a decision graph with

the labels of computations occuring there. Two labels are

incompatible if either (1) the *'s are not in the same positions,

or (2) they do not have the same output for identical assignments

to the *'s. Incompatible labels cannot be associated with the same

state in real-time graphs computing real-time functions.
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Theorem 2. Let A be a decision graph computing a real-time function

f. If any incompatible labels are associated with the same state,

then A is not a real-time decision graph.

Proof. Assume A computes f in real time and two incompatible labels

1 and 2 are associated with the same state in the graph. There

are two cases.

Case 1. Condition (1) is violated. Consider the assignment to the

*'s in 11 when the whole input must be looked at. Apply the same

assignment to 2, it must follow the same path. Therefore if a

position in 11 has a '*' then the corresponding position of 2 must

have a '*'. By a similar argument, every position of 2 with a '*'

guarantees a '*' in 1l; so the *'s are in the same positions for

both labels.

Case 2. Condition (2) is violated. Follow the path taken by Al when

the answer is different. A real-time decision graph would follow

the same path for 12 and give the same (wrong) answer. O

Theorem 2 can be used to give a lower bound on the number of

states needed to compute the sum of the input bits.

Corollary 1. Any real time graph counting the number of inputs set

to one uses at least (n+2) (n+1)/2 states.

Proof. This is trivially a real-time problem. After k bits have

been asked about there must be k+l states one for each possible
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answer 0, 1, ... , k. By Theorem 2 the decision graph must have

I< k+l (n+2) (n+1)/2 states. 

Other optimal real-time decision graphs Theorem 2 describes

include computing the sum of the inputs mod p, and f(X) * "Zxism".

Corollary 2. Any real-time decision graph computing the sum of the

bits on mod p (nkp) uses p(p+l)/2 + (n+l-p) (p+l) states.

Corollary 3. Any real time decision graph computing f(X) a "Zxiam"

uses at least m(n-m+l)+2 states.

Proof, The proofs for both corollaries are left to the reader. 0

2.2 Real-Time Programs Are Not Always Optimal

The definition for real-time computation is very restrictive,

so it is not surprising that real-time decision graphs are not

always optimal. Michael Fredman [1] exhibited an algorithm

computing f(X)= "xizn" using O(nlog 2 n/loglog n) states.

Theorem 3. (Chinese Remainder Theorem) 5]. Let ml, m2,...,mr be

positive integers which are relatively prime in pairs, i.e.,

gcd(mj,mk)=1 when j#k.

Let m mlm2...mr, and let a,ul,u2,...,ur be integers. Then there is

exactly one integer u which satisfies the conditions

a < u < am, and u = uj (modulo mj) for l<J<r.
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Theorem 4. (Prime Number Theorem) [2]. Let r be some real number.

(a). There are O(r/log r) prime numbers between 2 and r.

(b). The product of all primes less than r is O(er).

The Chinese Remainder Theorem and the Prime Number Theorems

can be used to find a quick algorithm to compute f(X).

Theorem 5. f(X) = "Zxi=m" can be computed with a decision graph

using O(nlog2n/loglog n) states.

Proof. Take the first k primes whose product is greater than n and

let be the largest of the k primes. Precompute the residues ml,

... , mk such that m(mod pi) = mi . Make the decision graph compute

the residues of the n input bits mod Pl, ... , Pk respectively. If

the ith residue is not mi for any i there are not exactly m bits

on. If all k residues are correct there are exactly m bits on
(Chinese Remainder Theorem). Counting mod p with the real-time

counting mod p graph for each of the k primes uses O(nkl) states.

The Prime Number Theorem gives minimum values for k and . The

largest prime needed is O(log n). There are O(log n/loglog n)

primes between 2 and log n. The decision graph uses

O(nlog 2 n/loglog n) states. 

Theorem 5 shows looking at bits more than once can be useful.

However for some problems real-time graphs seem to be optimal, in
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particular the bit counting problem.

8. Using Deoision Graphs for Other Models

This section compares decision graphs with boolean formulas

and contact networks. Turing-machine space complexity is an upper

bound on decision graph complexity (Theorem 1).

3.1 Modelling Boolean Formulas

Decision graphs model almost all boolean formulas easily.

Theorem 6. Any boolean formula E without or with n literals

can be computed with a decision graph using n+2 states.

Proof. By induction of the connectives in the formula. First

rewrite the formula in terms of A and -'. Since and are not

allowed, this does not increase the number of literals. Let T(E) be

the number of connectives in the formula E, and let N(E) be the

number of literals in the formula E.

If T(E).O then E is just a literal, say xi. Use a graph like

Figure 2. There is one literal, and 1+2=3 states.

Assume the theorem holds for all formulas F such that k>T(F),

now show it holds for k=T(F). There are 2 cases.

Case 1. F = -G, k=T(G)+1 and N(F)=N(G)=m+2. Compute G using m+2

states. Relabel the true output of G false, and vice versa. The

graph now computes F using m+2 states.
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The i in the circle is the bit tested.
T and F are the true and false labels.

Figure 2. A decision graph building block.

Case 2. F GAH, k T (G)+T (H) + and N(F)-N (G)+N(H)-2. Compute

G, then send the true output of G to the start state of H. Leave

the true output of H alone, and send the false output of G to the

false output of H. The output states of G are no longer used, and

no new states are introduced, so P takes N(G)+N(H)-2 states to

compute. O

3.2 Modelling Contact Networks

The number of edges in a directed-contact network and the

number of states in a non-deterministic decision graph are

asymptotically equal within a constant factor. There is only one

difference between non-deterministic decision raphs (NDDG's) and

deterministic decision graphs -- the state-transition function 

maps into sets of possible states rather than just one state. A

NDDG graph A outputs reR for input X if and only if there exists a
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computation on X with output 'r'. Notice a NDDG may have several

outputs for the same input.

A contact network [3] is a 6-tuple <G,g,R,Z, ,n> where G is

an undirected graph, g is the designated start node, R is the set

of output markings for the nodes, is the input alphabet, a is

the set of marked nodes in G, and n is the number of inputs. Each

arc of G is labeled with a statement "xi s", seZ. A contact

network outputs r on input X if there exists a path from g to a

node marked 'r' and the statement on each arc of the path is true.

Figure 3 is a contact network. A contact network is directed if the

T

Figure 3. A sample contact network.

graph G is a directed graph (then any computation must follow a

directed path). Non-deterministic decision graphs can model contact

48



May 12, 1976

networks using twice the number of states as edges in G.

Theorem 7. Let C be a contact network with E edges computing f,

there exists a non-deterministic decision graph with 2E states

computing f.

Proof. Let G=(E,V) be the graph describing C. First discard any

portions of G not connected with g, the start vertex. Use one state

for each vertex of G as a vertex state. Each vertex state of A will

initiate the decision graph's simulation of paths in G through that

vertex. For each non-output vertex repeat the following process.

List all edges going out of it with their respective conditions.

For each edge (except the first one) add a state. For each state s

(including the vertex state) test the bit the corresponding edge

tests, then define a transition for s in corresponding to the

condition on the edge being true to the vertex state corresponding

to the vertex the edge goes to, and define two more transitions for

s in r -- one with the same condition, and one with the condition

does not hold -- to the state testing the next edge (direct the

last state to the vertex state of the present vertex). Every path

possible in C is now possible in A. Each vertex has at least one

edge coming into it and each edge is represented by 2 states so

C(A) < 2E. 
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Undirected contact networks cannot model decision graphs

easily because spurious paths may be introduced, however decision

graphs may be simulated with directed contact networks using as

many edges as lines coming out of the decision graph states.

Theorem 8. Let A be a decision graph with m lines leading out of

its states, there exists a directed contact network C computing A

with m edges.

Proof. Let the graph G=(E,V) for C be identical to the graph for A.

Label each edge of G with the condition tested in the state the

edge comes out of. Mark each vertex of C corresponding to an output

state of A with the same output of A. Define the output of C in the

same manner as the output of A. 

Notice Theorem 8 is not restricted to deterministic decision

graphs.

4. Deoision-Graph Complexity for Arbitrary Functions

This section describes three problems dealing with the

decision graph complexity of arbitrary functions. The first result

describes the complexity of arbitrary predicates on n bits. The

second provides an upper bound for predicates on the sum of the

bits. The last result gives a better than exponential, but not

polynomial method for simulating non-deterministic decision graphs
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with deterministic decision graphs.

4.1 Simulating Arbitrary Boolean Funotions

Lupanov[7] described upper and lower bounds on the complexity

of circuits for simulating boolean functions. The same ideas can be

used to determine the decision graph complexity for arbitrary

boolean functions. (The results in this section were independently

discovered in [6].)

First determine the lower bound. There are nkk2k different

decision graphs with k nodes. Even if each one of them computes a

different one of the 22 n possible boolean functions on n variables,

there must be 2n'l/n states to compute all possible functions.

Theorem 9. There are boolean functions on n variables requiring

0(2n-1/n) states to compute.

Proof. Consider a decision graph with k nodes. Each state can test

any one of n bits then branch to any 2 of the k states. This

results in nk2 possible configurations for each state, or nkk2 k

different graphs with k states.

There are 22 different boolean functions on n bits, so even

if every different graph computed a different function, 22n > nkk 2 k

would have to hold for k. Let k 2n'l/n.

2n" 2klog k + klog n, substituting for k
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2n 22n-11o0 2n- l - 22n'llo2 n + 2n'llog n.
n n n

2 > 2(n-l) - lo n. 0
n n

Decision graphs can simulate arbitrary boolean functions with

n variables using 0(2n/n) states using a two stage construction.

The first stage separates the inputs into the 2 k possible

arrangements of the first k bits, then each state is fed into a
zn-k

graph computing all 22k functions on the remaining n-k bits.

Lemma 1. All functions of bits can be computed with the same

network of 22 states.

Proof. Proof by induction on the number of bits 1. If 1.0 there are

2 possible functions, constant true or false.

Assume the lemma holds for 1-1 bits, show it holds for bits.

There are 221 functions on bits. However, 22 of them do

not depend on the first bit. Simulate them using the 2 states

of the -l1st stage of the induction. Use one state for each of the

22 - 22 remaining functions. The outputs for these states are

functions on 1-1 bits, so attach them to the appropriate state in

z-1 21the 2 section. The decision graph uses 2 states. 

If the first n - log(n-log n) bits are split, and all

functions on the remaining log(n-log n) bits are simulated, then
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all boolean functions can be computed using 0(2n/(n-log n)) states.

Theorem 10. All boolean functions on n variables can be computed

using a decision graph with 0(2n/n) states.

Proof. The computation is split into 2 stages.

Stage 1. Decode each n-k length input prefix into the 2 n - k

possible configurations using a binary tree with 2n-k-1 states.

Stage 2. Construct the complete graph for k bits. Direct each

output of Stage 1 into the state which describes its function on

the last k bits. This uses 22 states (Lemma 1).

The decision graph uses 2n ' k + 2 2k states. Let k = log (n-log

n), the decision graph uses 2n/(n-log n) + 2n/n = 0(2n/n) states.

Notice the decision graph computes the functions in real time.

It uses about 4 times the states required by the lower bound. The

lower bound counts many meaningless programs, like the one which

never leaves the start state.

The number of states needed to compute some fraction of the

possible functions can be calculated using the method in Theorem 9.

Theorem 11. [6] Given any , 0 < < 1, a fraction 1-2 *2n of boolean

functions on n variables will need at least 2n(2n)'l(1-s) states to

be computed.
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4.2 Computing Arbitrary Predicates on Bit Sums

The same idea, computing in stages, works for computing

arbitrary predicates on sums of bits (such as "are there at least k

bits on?"). Most graphs use O(n2) states for these problems.

Michael Fredman noticed the Chinese Remainder Theorem makes these

problems solvable using O(n2/log n) states. The first stage counts

the bits mod 2n/log n and the second counts them mod (log n)/2.

There are relatively few ways of assigning outputs to the (log n)/2

answers, so all possible functions can be computed using

O(n 2 /log n) states.

Theorem 12. Let f be a boolean predicate on the sum of the input

bits, then f can be computed with a decision graph using

O(n 2/log n) states.

Proof. The computation is split into two stages. Pick two

relatively prime numbers roughly 2n/log n and (log n)/2. Count the

bits mod 2n/log n using O(n 2 /log n) states. Then count the bits mod

(log n)/2 for each answer. Each sum mod (log n)/2 has (log n)/2

outputs and there are 20 n/2 n/2 ways of assigning values to

the outputs. Compute all possible second stages using O(n 3 /21og n)

states. Attach each of the first stage answers to the correct

second stage. This requires ust (n 2 /log n) + O(n3 /2/log n) 

O(n 2 /log n) states. 
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4.3 Simulating Non-Deterministio Deoision Graphs
Jones and Laaser [4] introduce log space-complete for P

problems. They showed finding a path between 2 points in a graph is

a log space-complete problem for P. Savitch 8] related

non-deterministic space s with deterministic space s2 . The same

result applies to decision graphs.

Theorem 13. A non-deterministic decision graph A with c states can

be simulated with a deterministic decision graph B using

0 (cl+1og c) states.

Proof. Assume there is a unique state for each output of A. All

outputs of A can be reduced to the existence of length c paths to

specific output states. B computes what A computes if B can decide

what A can compute in c steps. Number the states of A in increasing

order. Let s be the start state of A, and t be an output state for

A -- B computes A goes from s to t in no more than c steps,

abbreviated (s,t,c). Let f(a,b) ask the question needed to go from

state a to state b in A, then Find (B) computes A.

Find (s, t, c):
begin
if c1 then return f(s,t);
for u = 1 to c
do if Find (s,u,Lc/2J) A Find (u,t,rc/21) then return

true;
return false;
end Find;
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Let F(i) be the number of steps Find uses to find length i

paths. F(i) 2cF(i/2), and F(1) 1. Therefore B uses O(c l + l °o g c)

states. 

4.4 Circuits in Optimal Graphs

A decision graph has a circuit if there is a series of arcs

leading from one state back to itself. R.A. Short [9] showed the

graph in Figure 4 was optimal. He used an exhaustive case analysis

to prove it.

Theorem 14. [9] There exists an optimal decision graph with a

circuit.

5. Conclusion

Decision graphs provide a precise method for calculating the

storage necessary to compute functions. Optimal decision graphs

give lower bounds on the space complexity. Real time constraints

are tight, and showing non-trivial optimal real time graphs optimal

without using the real time constraint is difficult. However, real

time bit counting seems to be optimal. The most important problem

related to this model is whether deterministic decision graph
complexity is polynomially related to non-deterministic decision

graph complexity.
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The numbers in circles are the bits to test.
The letters in boxes are the outputs.

Figure 4. An Optimal Decision Graph with a Circuit.

6. Referenoes

[1] Fredman, M., Private Discussions with Ron Rivest (1975).

[2] Hardy, G.H. and E.. Wright, An Introduction to the Theory of
Numbers, Oxford at the Clarendon Press, (1960), Oxford.

[3] Harrison, M.A., Introduction to Switching and Automata Theory
McGraw-Hill Book Company, (1965), New York.

[4] Jones, N.D., and W.T. Laaser, "Complete Problems for
Deterministic Polynomial Time", 6th SIGACT Proceedings, (1974),
40-46.

[5] Knuth, D.E., The Art of Computer Programming. Vol. 2
Seminumerical Algorithms, Addison-Wesley Publishing Company,
(1969), Reading, Massachusetts.

57



May 12, 1976 58

[6] Lee, C.Y., "Representation of Switching Functions by Binary
Decision Programs", Bell Sys. Tech. J., 38(1959), 985-999.

[7] Lupanov, O.B., "On the Complexity of the Realization of
Formulas of the Functions of an Algebra of Logic", Probl.
Kibernet. 3(1960), 61-80.

[8] Savitch, W.J., "Relationships Between Nondeterministic and
Deterministic Tape Complexities", Journal of Computer and
System Sciences, 4:2 (April 1970), 177-192.

(9] Short, R.A., "A Theory of Relations between Sequential and
Combinatorial Realizations of Switching Functions", Stanford
Electronics Laboratories, Menlo Park, Calif., Tech. Report.
098-1, 1960.


