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TENSION PILES

UNDER CYCLIC LOADING

by

Alain Marcel Goulois

Submitted to the Department of Civil Engineering

on December 13, 1982 in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

ABSTRACT

This thesis focuses on the study of a single tension pile embedded in clay
and subjected to undrained cyclic loading conditions of the type experienced
by Tension Leg Platform foundations during a storm. The proposed methodology

makes possible the following of the soil-pile contact degradation and the
estimation of the resulting redistributions of stresses and strains occuring
during the passage of the storm as well as the vertical displacements of the
foundation.

Three stages are distinguished. First a theoretical study of the cyclic
behavior of a class of elasto-plastic models (Iwan models) used to represent
the pile and the soil is presented. Then the effects of average stresses on
the cyclic behavior of Plastic Drammen Clay are discussed. The results of
12 constant volume stress-controlled direct simple shear (DSS) tests are used
to introduce a new format of presentation allowing for easy interpolations and
extrapolations of the data over a wide range of stresses. Finally the
development of the computer code TLPILE is detailed. It integrates the
mechanical model and the soil degradation data into an analytical tool leading
to estimates of the cyclic behavior of tension piles which are in general
agreement with experimental evidence. Parametric studies reveal the benefits
from having a stiff pile, and suggest that present regulations are adequate
for the particular configurations and soil studied.

Thesis Supervisor : R.V. Whitman
Title : Professor of Civil Engineering
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1 THE PROBLEM AND ITS CONTEXT

The Tension Leg Platform is certainly one of the favorite topics in

the offshore industry today because it might be the best option to produce

oil in deep waters*...

1.1 BACKGROUND OF THE RESEARCH SUBJECT

Most of the major oil companies have been involved for several years

now in the preliminary engineering of the Tension Leg Platform (TLP). What

are their motivations ? What exactly is a TLP ? And what type of problems

will the geotechnical engineer be faced with ? Such are some of the key

questions we should first consider.

1.1.1 Deep water production

Deep water discoveries of oil and gas have been made over the last

years, the presence of which cannot be ignored in today's energy-avid

society. Exploration techniques are now very well mastered to water depths

of some 3 000 feet and the first drilling by 6 000 feet of water is seriously

envisioned. New leases of blocks in deep water are made in large number

every year. In the United States the government, which had been until now

limiting these leases to some parts of Southern California, the Gulf of

* The term"deep" waters is very much dependent on the environmental conditions ;

in the Gulf of Mexico it could be depths greater than 1000 ft, while in the
North Sea "deep" water would start around 650 ft.
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Mexico and some East cost areas, has recently announced its intention to

issue exploration permits along the entire coast line. And this trend

is not limited to the US ; Norway has discovered major reservoirs by deep

waters and important new fields are thought to exist in Easter Canada,

Western Australia, in the Mediterranean sea, etc ...

The very difficult environment associated with large water depths

has required the development of totally new concepts in parallel with

extensions of the traditionnal jacket supports. But, as water depth in-

creases, the cost of the latter becomes prohibitive and their dynamic behav-

ior becomes problematic (their natural frequencies approaching the peak of

the sea wave spectrum), leaving the whole field open for innovation.

One way to minimize the impact of environmental loading is to use

compliant structures (the natural frequencies of which will be much smaller

than the peak of the sea wave spectrum). Four main concepts are presently

considered : semi-submersibles with catenary mooring, guyed towers, articu-

lated towers and tension leg platforms. Discussions of the pros and cons

of each concept can be found for example in Huslid et al., 1982 1471. At

the present time, feasibility studies have a tendency to favor the TLP over

the others and this explains the tremendous interest shown by the industry

for this new concept, which will now be described in some detail.

1.1.2 The Tension Leg Platform (TLP)

The tension leg platform has best been described by CONOCO engineers

as "a huge upside-down pendulum, with buoyancy replacing gravity"*. The

* "Hutton's TLP-CONOCO Reveals The Shape of Thing To Come", Offshore Engineer,
Feb. 1980.
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Tension Leg Platform is composed of two parts : a floating structure and

an anchorage system of vertical "legs" attached to the sea bed. These legs

are always in tension - even in the worst environment conditions - and

insure that the buoyancy of the platform is always in excess of its displace-

ment*. As a direct consequence the structure will have a very high vertical

rigidity, and essentially no heave motion. One such structure is represented

in Figure 1.1.1 : it is the first production TLP to be constructed and will

be installed on the Hutton field in the Northern North Sea in 1983 by CONOCO**.

This figure clearly shows the groups of legs positioned at the four corners

of the deck. There are four legs per corner connecting to the same founda-

tion template, and therefore a total of 16 legs for the entire structure.

The network of conductors visible in the center part of the structure, in

between the deck and the production template, corresponds to the production

risers and the injection lines. This network is itself maintained in constant

tension, which is one of the key advantages of the TLP as it minimizes fatigue

in the risers, eliminates the need for large heave compensators, and permits

the installation of the well heads on the deck. Other advantages of the TLP

concept include :

· a very limited sensitivity to water depth,

. the fact that it is an"early production system", - wells can be

predrilled before the installation of the structure and be producing

immediately after installation, which is very rapid since the whole

* Weight of the water displaced by the structure.
** See "Evolution of the Tension Leg Platform Technology" by J.A. Mercier

174 1.
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floating structure can be towed to the site fully equipped, - and

the foundation templates can be preinstalled -

that it is operational 90 % of the time,

and that it can be salvaged at the end of production.

There are also problems associated with this new concept. The behavior

of the risers and of the tension members under hydrodynamic conditions and

fatigue is certainly the most complex of these issues. In the design stage

the structure is also quite sensitive to weight, but it is the foundation

problem which will mostly draw our attention. This is a situation where the

foundation becomes a major issue affecting the feasibility of an offshore

project as a whole*.

1.1.3 The TLP Foundation

What type of loading will the Hutton TLP apply to its foundations ?

The newest information (Mercier 1741) indicates, per foundation template** :

. a mean load, due to pretension, of 3 550 tonnes***.

. a maximum load of 8 700 tonnes,

· and a minimum of = 0 tonne.

The actual foundation design calls for 8 piles per foundation template

(0 72 in, driven 60 m and grouted to the template sleeves). The horizontal

forces should remain less than 10 % of these vertical forces and at this

level are not considered to present a significant problem.

* This situation can be compared with the design of the Ekofisk reservoir,
the first gravity structure in the North Sea.

** The weight of the legs has been considered, but not the weight of the
foundation template itself. These loads are deduced from loads at the
surface.

***Tonnes will always refer to metric tonnes.
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The very nature of this loading has proved to be a psychological

handicap. Quite naturally designers have started worrying about the

behavior of the foundation with relation to its ability to withstand

"108 load reversals during its 20 year design life", about creep, about

possible large permanent displacements under extreme loading conditions,

about "pullout" etc ... All concerns which can be associated to the "nail-

out-of-the-wall" syndrome. The technical press has also given a large echo

to this wide-spread preoccupation :

"... Cyclic loading superimposed on the static

pretension load of TLPs represents one of the

most complex and challenging areas for geotech-

nical research and development. Cyclic loading

may have a detrimental effect on the side friction

of tension piles. Elastic elongation of the pile

under cyclic loading leads to two-way cyclic loading

and heavy degradation of strength along the upper

part of the pile, and further down the pile one-way

cycling may tend to increase creep velocity...".

(Petroleum Engineer, May 1982)*

"... A major influence in the overall feasibility

of the TLP concept is how the seabed soil around

anchor piles would perform under cyclic loading

in tension...". (Offshore Engineer, Feb. 1980)**

One may wonder why only piles have been mentioned as potential

solutions. Gravity foundations have also been considered : in such systems

* "Deep Water Operations Demand Safe, Stable Anchoring" by Olsen O.A. et al.** Rep.
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large masses in the foundation templates insure a total security against

the fatigue effects previously mentioned. It provides a good example of the

"change of statistical universe" advocated by De Mello in his Rankine Lecture

1731. It is also presents the advantage of having a better understood

behavior.

However the gravity option presentsmajor disadvantages. The installation

of gravity templates in large water depths and with tolerances* of a few

inches on the positioning is a fantastic task. The necessary support vessels,

cranes, etc... represent an enormous mobilization cost and new techniques

would have to be tested. There are two more good reasons for the lack of

enthusiasm of the industry : first, piles are a proven technique and offshore

civil engineering is conservative, and secondly the "drillers" have total

priority, and they don't like the idea of having these monstrous templates

restricting the area available around the wells.

The final choice is however a question of economics and of course of

site conditions.

"... Both gravity and piled anchorage schemes

provide viable solutions technically and

economically... However it has been confirmed

that a pile solution offers the more versatile

system to suit a larger range of field situations**..."t

* The levelness of the set of the four templates is a key requirement as well
as their relative positioning. Mercier, during the discussion of his paper
1741, has talked of "a distance between diagonals equal to within 1.5 meters".

** Perret G.R. and Webb R.M., OCT 3881, p. 264, 1980 "Tethered Buoyant Platform
Production System".
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As a matter of fact more and more engineers are thinking today of

using hybrid solutions which will include both piles and gravity.

Let us now see how this thesis will attempt to contribute to our

understanding of TLP foundations.
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1.2 THE PRESENT THESIS

1.2.1 Statement of objectives

In an effort to improve our understanding of the basic behavior of a

TLP pile foundation during the passage of a storm, this work has focused on

the study of a single tension pile embedded in clay and subjected to

undrained cyclic loading conditions.

The objective of the research is to contribute to the development of

methodology that will ultimately allow us to follow the evolution of the

pile-soil contact degradation and to estimate the redistributions of stresses

and strains occurring during the storm as well as the resulting displacements

of the foundation.

1.2.2 Research orientation

As a matter of introduction to the present thesis it may be useful to

present the logic of the research with simple ideas based on plain engineering

judgment.

Whereas the pile-soil system is a very complex one, the examination

of the problem at-hand reveals a comparatively simple pattern of loading.

The external force, P, applied to the top of the foundation is not only in

permanent tension but it is also characterized by fluctuations, P cyc, imposed

by the sea state around a mean value, Pave' which can be, in a first approx-

imation, considered as constant with time (Figure 1.2.1).
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Figure 1.2.1 Schematic of the force applied to the top of the foundation.

Consequently the overall system is force-controlled, and it seems thus

logical to envision the analysis of the local pile-soil behavior from a

stress-controlled point of view. Intuitively it is apparent that the value

of Pave, as compared with the pile ultimate capacity, may have a critical

impact on the overall behavior of the foundation. A given value of P can

be associated with various shear stress distributions*, each one corresponding

to a different history of loading. During calm sea states, and along a large

part of the pile, one expects that the soil will creep and consolidate and

therefore modify its physical characteristics, so that a particular average

shear stress distribution, Tcons, will develop. Thus this calm sea period

will directly affect the pile behavior during the next storm. During the

* Shear stresses applied on the soil immediately adjacent to the pile, on a

surface parallel to the pile surface and in the pile direction.

P
I

AV 0
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passage of this storm the shear stress distribution will change. At a given

time one can think in terms of a distribution T associated with the
max

maximum value of P during the cycle, P , and another distribution T in

corresponding to Pin The mean of these two distributions will be called

ave ( + in) / 2 ; while the fluctuation around this mean is termedave max min

= (Tmax - Tin) / 2 as shown in Figure 1.2.2.

The distribution of at an instant during the storm will usually
ave

be different from that of T , the shear stress distribution at the end
cons

of consolidation, but both will nonetheless be in equilibrium with P
ave

Along a large part of the pile, shearing will thus occur with a significant

mean value aves It can furthermore be expected that a large range of

values of and T will be encountered along the pile. Based on these
ave c

preliminary observations we may now envision the research directions in some

more details.

Depth

Figure 1.2.2 Shear stresses during cycling.
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There are essentially three research topics which must be properly

tackled if we want to be able to reasonably understand the behavior of

such a tension pile :

1. We need a pile-soil model that will insure the compatibility of the

displacements of the pile and of the soil as well as the equilibrium

of the forces in the whole system. The estimation of the shear

stress distributions previously mentioned is a direct result of the

application of such a model. The choice of the soil-pile parameters,

which describe the contact between the soil and the pile, is certainly

one of the most delicate problems ; in the case of static loadings

imposed to the pile, the profession has already developed methodologies

for making such a choice, but very little is known when the loading

is more complex and involves successive unloadings and reloadings.

An additional problem may stem from the fact that with a given

set of soil-pile parameters the pile-soil model may accumulate

permanent displacements and residual stresses at each successive

application of a cyclic loading at its top. It will be of paramount

importance to properly understand the behavior of the model under

cyclic loading if we want to be able to differentiate between this

phenomenon and the effect of the "soil cyclic degradation" which

is the object of the next point.

2. The soil fatigues under cyclic loading, and as a direct consequence

the characteristics of the soil-pile contacts (the soil-pile parameters)

change with time. The term "degradation" will refer to this modification
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of physical properties due to the repetition of loading.

It is a fundamental point of this thesis that the average shear

stresses existing along the pile before and during the storm should

be considered amongst the governing parameters of the degradation.

However the introduction of two new parameters (T and T ),
cons ave

in an area of soil mechanics where classically only T is considered,

is a formidable complication, and onemust restrict the

problem to a more practical formulation. The simplest starting

point is to study the cyclic behavior of the soil under a constant

value of average shear stress, i.e. with T = T , which
ave cons

corresponds to adopting at the local level a characteristic of the

global loading, P = constant. Our objective will be to accumulateave

a relevent set of experimental data on the fatigue of clay under

cyclic loading with Tve = cons while covering the wide range of

stresses encountered along the pile.

3. The third issue is to integrate the pile-soil model and the degradation

data into a consistent enginerring tool. One needs to properly define

how the soil degradation affects the pile-soil parameters and how our

limited data base can be used while the distributions of T and
max

T change as a cyclic force P is applied to the pile top.

Finally the elaboration of an iteration scheme that respects the

physical characteristics of the phenomenon and properly integrates

the pile-soil model and the degradation data is a key requirement

of the procedure.

All these issues must be considered in detail if we intend to develop

a rational means of studying the behavior of the tension pile under cyclic loading.
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1.2.3 Thesis organization

Chapter 2 presents an overview of the state-of-the art on the design,

testing and modeling of tension piles under cyclic loading. The emphasis

is placed on the test data obtained on instrumented piles tested in-situ

and on the analysis of theoretical models which generated the first impulses

of the present work.

Chapter 3 analyzes in detail the chosen pile-soil model, called the

"Pile Model", by providing a complete description of its behavior under

cyclic loading and in the absence of degradation of the soil-pile parameters.

The methodology used to estimate the soil-pile parameters from the local soil

properties is also described at this stage.

Chapter 4 details the program of tests which was carried out in order

to gather information on the degradation of Plastic Drammen Clay under cyclic

loading with Tave = cons. This chapter also reports these results in a

format allowing for easy interpolation and extrapolation of the data to a

wide range of stress conditions.

Chapter 5 then integrates the results of the two previous chapter

into a computational computer tool called TLPILE and presents examples of

its application to a typical offshore pile.

Chapter 6 summarizes the key contributions of this thesis and

indicates new directions for research.
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2. STATE OF THE ART

The present chapter summarizes the information gathered in the

technical literature on topics directly related to the behavior of tension

piles under cyclic loading. We shall focus our attention on three issues :

1. static pile tests, and more specifically the equivalence of skin

friction in clay for tension and compression and the effect of

sustained loading on piles,

2. cyclic tests on tension piles, with the main emphasis placed on

in-situ testing, and

3. theoretical models presently available to follow/explain/predict

the behavior of tension piles under cyclic loading.

Additional information on the cyclic behavior of clays relevent to

our problem is provided in Chapter 4.
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2.1 TENSION PILES UNDER STATIC LOADING

The least that can be said at the present time is that our experience

with tension piles is limited, and it could be added that for piles under

constant tension it is almost inexistent. Over the years the interest for

tension piles has essentially been associated with the foundations of high

voltage transmission towers, with those of high rise buildings and, more

recently, those of offshore jacket platforms. In all these cases the nature

of the loading is alternatively compressive and tensile and the mean loading

is compressive. Let us now review the information gathered from static

tension tests run in connection with the development of these structures.

The foundations of transmission lines involve very short concrete-cast-

in-situ bored piles. Sowa 951, who presented in 1980 an extensive review on

this subject, has concluded that in the case of cohesive soils the ultimate

pulling capacity of these piles could be reasonably well estimated from the

relationship between the cohesion c and the undrained shear strength as

proposed by Tomlinson. However in view of the scatter he recommended "a

suitable factor of safety to be selected", as well as pulling tests on

important projects. In the case of sandy soils the concluded that the scatter

of K values is significant and that "it is not possible to select a value of

K with a sufficient degree of confidence to estimate the pulling capacity of

cast-in-situ piles in sandy soils" and pulling tests were strongly recommended.

Driven piles have been frequently tested in tension but only a few tests

have been reported in the literature. Nearly all the piles that were studied

had an embedded length smaller than 80 ft with an average size of roughly

50 ft. Very different types of testing procedures were used, from long-term
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sustained loading of several hours or days to quick tests of a few minutes.

Most of the piles tested were steel pipe piles but one also finds precast

concrete and H-piles.

In 1980, Olsen at the University of Texas at Austin started

research founded by the American Petroleum Institute, whose objective

is to compile and analyze the maximum number of pile load tests of any type

(compression, tension, or both). In this study the observed ultimate capac-

ities are compared with those predicted by the various methods presently in

use in offshore design, namely for clays :

· the API RP 2A method,

the a method of Tomlinson,

the method of Burland,

. and the X method,

and for sands :

the N-value method.

Figure 2.1.1 gives an overview of the results obtained from tension

tests. The top diagram relates to clay and the RP2A method and the bottom

one to sand. The abscissa corresponds to the calculated value of the ulti-

mate pulling capacity and the ordinate refers to the measured value.

On the basis of all the tests analyzed,Olson concluded that :

1. in clay the RP 2A method gives the most consistent agreement between

calculated and measured ultimate capacities,

2. the prediction is far better for clay than for sands. A typical

factor of safety, against ultimate failure, to be applied in clay

would be two while a factor of three should be applied to sands,

3. we seem to consistently overestimate the calculated value of the
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ultimate capacities for the higher loads as shown by the slopes of

the regression lines (this observation was systematic with

all the test results).

These results indicate that the level of accuracy in the estimation

of the tension capacities is quite comparable to that traditionally obtained

in compression thereby justifying the procedure recommanded by API. The RP 2A

code II does not differentiate between skin friction in tension and in

compression in the case of clay, nor does the Canadian Foundation Engineering

Manual 118I or the "Rules for the Design, Construction and Inspection of

Offshore Structures" established by DnV 261. Furthermore all these codes

suggest the application in clay of the same factors of safety in compression

and in tension.

To further document the equivalence tension - compression Figure 2.1.2

shows measured values of ultimate friction capacities for piles in clay

tested in both compression and in tension (Chan 1191, Cox et al. 1211). It

can be seen that these results correlate very well, another indication that

the ultimate skin friction in clay can be taken as equal in compression and

in tension. (The results of Cox et al. also show that residual stresses may

play some role since the first type of test applied (compression or tension)

seems to give consistently a higher ultimate friction than the second one).

The ultimate base resistance in the compression tests was estimated from

the RP 2A recommendation (q = 9c ).

The estimation of the ultimate pulling capacity of piles in sand is a

more controversial topic. The failure mechanisms in sand are much more

affected by surface effects and as a result several theories predict a

different behavior in compression and in tension (Janbu 1511). The codes
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recognize this possible difference and RP 2A limits the value of K to 0.5

while the others simply state that the skin friction in tension should be

chosen different from that in compression.

Another very interesting topic is that of sustained loading on piles.

Until now we have only discussed the ultimate pile capacity but significant

displacements may be accumulated when the pile is subjected to a sustained

loading lower than its ultimate capacity. There is very little information

available on this subject for tension piles, and this is quite unfortunate

since this phenomenon is of great interest in the study of TLP foundations.

Gallagher and St John 1311 have reported results of sustained tension

loading on piles in the form of time versus pile head displacements for

different loads applied (Figure 2.1.3). The ultimate pulling capacity of

this pile is roughly 120 tonnes. It appears that for a load greater than

approximately 90 tonnes (75 % of the ultimate pulling capacity) there is a

change in the pattern of increase of the displacement with time leading to

creep failure.

The type of tests reported in Figure 2.1.3 have been directly included

in the French recommendations for the testing of piles 1271. Figure 2.1.4

recaps the principal aspects of this procedure. Each load step is applied

for a period of 90 minutes (sometimes 60 minutes) during which the

displacement is recorded on a log scale (diagram 1). The different rates

obtained for each load are then plotted (diagram 3) and usually show a

marked transition between a quasi-linear increase at low loads and a sharp

rate increaseat high loads. The transition load is called the creep load

("charge de fluage"). The acceptable load is then defined from this creep

load by application of an adequate factor of safety (usually 1.4).
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This procedure has been applied on tension piles by Puech and Jezequel

89. Figure 2.1.5 shows that in their example the creep load * corresponded

to 75 % of the ultimate pulling capacity - as in the case of Gallagher and

St John -. For a much longer period of application of the load (larger

than 100 or 90 minutes of the preceding examples) we may find that the

creep load is lower than given by these procedures. There is unfortunately

no information available on this critical issue.

* This creep load is estimated from 60-minute load steps.
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Figure 2.1.3 Sustained tension loading - history of the pile top
displacement.

(After Gallagher and St John 311).
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2.2 CYCLIC LOADING ON TENSION PILES

This review focuses on in-situ testing of piles but for reasons of

completeness we should first comment on the tests which have been run on

model piles of small dimension*. Many researchers have tested such model

piles under cyclic loading (usually under controlled strain conditions)**

and some under both cyclic loading and tension 1881.

Overall it is extremely difficult to interpret these tests which are very

affected by test conditions. The shafts used are very stiff compared to

actual piles and as a consequence the study of the redistribution of stresses

during cycling is difficult, if-not impossible. The results are erratic and

often contradictory (for example in the evaluation of excess pore pressures

during cycling 1841), and their extrapolation to actual pile sizes is extreme-

ly delicate. Overall it is felt that the model tests do not constitute yet a

satisfactory source of information for the design of TLP foundations and we

shall focus uniquely on in-situ piles of more practical sizes (diameters of

20 to 50 cm and length of 5 to 17 m). Note that even with these piles

the application of the results will require significant extrapolations for

offshore piles of 1.5 m-diameter and 100 m-length.

These are numerous problems associated with in-situ testing of piles

under cyclic loading the least of which is certainly not the proprietorship

of the data. These tests are extremely costly and their results are kept in

some secrecy. The discussion that will follow is based on the few papers

which have been released in the literature but it does not represent an

accurate image of what is really known. Four test programs have been reported :

the "Empire test program" in the USA 1561, the BRE test program in Great

* Usually in the laboratory.

**1331, 821, 1441, 81, 131, 1961, 15 I, 67



50

Britain (1311, 1701), the NGI test program in Norway 1521, and the IFP test

program in France (1891, 1861, 1871),all of them being funded by oil companies.

These tests are very complex to run, they require a sophisticated

instrumentation and some key choices of procedure to be made. Apart from

the choice of the pile and of the soil one has to select an installation

procedure (driving or jacking), the number of cyclic tests to be run on each

pile, the duration of the rest periods between tests, the loading period,

shape, amplitude,duration, etc... The number of parameters is such that the

results should be treated case by case.

It is very important to notice that none of these programs have

considered the application of a sustained average tension load prior to

testing. In other words the piles were cycled from zero-load conditions.

Kraft et al. (1561, and also Cox et al. 1211) have reported in 1981

some of the results obtained at the Empire Test Site in 1975 on four 14 "

(35.6 cm) -diam, open-ended, sections of steel pipe piles driven into strong

underconsolidated clays at depths varying from 150 ft to 360 ft. Their tests

were composed of various combinations of tension, compression and cyclic

loadings. In many cases, and in the own words of the authors, "qualitative

rather than quantitative conclusions (had) to be drawn from the test data".

These tests were load-controlled. Typical load-displacement responses under

cyclic loading are given in Figure 2.2.1. The one-way cyclic loading applied

did not affect the ultimate capacity, but large displacement began to accu-

mulate when the maximum load reached 80 % of the static capacity. It can be

observed from Figure 2.2.1 that the cyclic stiffness of the pile was not

significantly affected by the cyclic loading.
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(After Kraft et al. 1561).

Puech et al. (1861, 1871, 891) have reported very interesting results

on a 13 m long closed-ended steel pipe pile driven into recent deposits

of marine sediments including compressible silts, loose sands and silty

clays. (Plancoet site) Figure 2.2.2.a shows the type of loadings applied

to this pile : static (S), cyclic (C) and storm (T). (The static tests

corresponds to those of Figure 2.1.5). Figures 2.2.2.b and 2.2.3.a to c

give the displacements of the top of the pile as a function of the number

of cycles for 4 tests called C21, C12, Cll and T2.

Tests C21 and C12 (Figures 2.2.2.b and 2.2.3.a) have the same maximum

loads (defined from the creep load, Q (F)s, of Figure 2.1.5) of Q (max) =

0.52 Q (F)s, and they both show a steady accumulation of the deformation

with no indication-of future stabilization. Test Cll (Figure 2.2.3.b) has a

lower maximum load of Q (max) = 0.42 Q (F)s and shows a clear tendency to
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Figure 2.2.2.a TvDes of loadings
aDDlied to the
Plancoet pile.
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stabilize. The middle of Test T2 (Figure 2.2.3.c) has the highest Q (max)

of all and shows a marked acceleration of the displacement with time. Puech

considers the maximum load as the crucial parameter of the loading and

suggests that the range of acceptable loads be limited to Q (max) < 0.6 Qo

(F)s (and therefore Q (max) < 0.45 Qult) with this type of soil.

It can also be observed from these tests that the cyclic stiffness of

the pile does not change much with the cycling. In the preceding figures

the curves corresponding to the maximum and minimum load stay parallel to

each other, even in the case of the storm loading (Figure 2.2.3.c).

Puech also pointed out that the first 50 cycles or so are not

representative of the long term behavior (see insert in Figure 2.2.2.b), and

may lead to unsafe conclusions. Figure 2.2.2c shows the load distributions

in the pile during test C21 at cycles 2 and 1500 and compares them to the

static distributions of test S3. There is a clear transfer of the load

towards the tip of the pile under the maximum load, but under the minimum

load the cyclic and static distributions are essentially identical.

Puech also defines a cyclic creep load by considering the rate of

displacements of the pile (under the maximum load), and compares it to the

static creep load of Figure 2.1.5 (see Figure 2.2.4). The cyclic creep load

is found to be equal to 60 % of the static creep load.

Puech et al. 1871 also reported some preliminary results obtained with

a 17 m piles driven in an homogeneous slightly overconsolidated (OCR = 2)

plastic clay (Cran site). It appears that the behavior of the pile under

cyclic loading is strongly affected by the nature of the soil. Figure 2.2.5

compares the evolution of the top displacement with time for two sets, one at

Plancoet and one at Cran, having similar cyclic loadings.
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It is clear that the Cran pile shows a much lower rate of increase

of the displacement than the Plancoet pile. Puech suggests that

the cyclic creep load for the Cran pile is approximately equal to the static

creep load.

Mc Anoy, Cashman and Purvis 1701 also reported interesting results

from the BRE test program. Four piles were jacked into an overconsolidated

till to a penetration of 9.9 meters. The loading applied to one of the pile,

and presented in Figure 2.2.6, is of particular interest. Three cyclic

tension tests were performed. The evolution of the top displacement with the

number of cycles is given in Figure 2.2.7 where the top diagram represents

the cyclic component and the bottom one the mean component of the displacement.

It is clear that the cyclic component is not affected by the cycling, and

that rupture occurs in an average deformation mode (test B, lower diagram).

Figure 2.2.8 gives the load distributions along the pile at specific cycles

and in the static case. The cyclic distribution is not very affected by the

cycling and actually the only difference seems to be a slight increase in

the load taken at the tip of the pile.

In conclusion, it can be said that the published results agree on

several points :

1. the cyclic stiffness of the pile is not greatly affected by the cyclic

loading even around failure,

2. the shape of the stress distributions along the pile do not

significantly vary during loading but there is a clear indication

of a shift of load towards the tip of the pile,

3. the nature of the soil is a controlling factor,
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4. cycling with Q max < 0.5 Qult seems to lead to stabilization

in all cases.

Kraft et al. adequately concluded their paper by the following words

"(These tests) demonstrate the influences that the

combined but complex interaction of loading rate,

number of load cycles, magnitude of cyclic load,

loading history, and magnitude of sustained load

have on pile performance. Each of these factors

influences pile performance in a complex manner,

and their individual and combined effects can be

significant. In view of the complex loading history

of these piles, conclusions are more qualitative

than quantitative".

These conclusions are applicable to all the preceding tests, and

invite the researchers to have humility in attempting to model a

very imperfectly understood phenomenon.
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2.3 MODELS

The models which have been proposed for the analysis of tension

piles under cyclic loading will now be reviewed after a brief discussion

of the cyclic soil models on the basis of which they are developed.

2.3.1 Soil behavior under cyclic loading

The adaptation of monotonic* models to consider cylic loading has

been pursued over the past few years from two very different point of views.

The first option is to aim at developing general constitutive models which

would ultimately describe the complete cyclic behavior of the soil whereas

the second adopts a cruder, and less ambitious, approach based on degradation

laws obtained from simplified loading conditions and used to approximate

the evolution of the monotonic model parameters at a few points of the

cyclic history. The first category of models can be termed "implicit" since

the treatment of the degradation is inherently contained in the governing

equations of the model, while the second category can be called "explicit"

in order to emphasize the necessity of providing specific information charac-

terizing the degradation over a whole period of cycling in addition to the

description of the (monotonic) model in itself.

In the implicit models the cumulative effect of the degradation is

usually represented by a measure of the plastic deformation that directly

affects the constitutive parameters of the basic monotonic model (Figure

*Monotonic in constast to cyclic, but usually involves unloading and reloading.
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2.3.1.a. One example of such approach is given by Prevost 1851 who adopted

the "length of the plastic deviatoric shear strain trajectory", called "X"

in his model, as the degradation variable controlling the evolution of the

sizes of the yield surfaces and the values of the plastic moduli in his

anisotropically hardening model based on Mroz's concept of a "field of

hardening moduli". The effect of the number of cycles in such a model is

itself implicit since it is only indirectly represented by the build-up of

plastic strains. Other examples of implicit models include the ones proposed

by Hujeux and Aubry 1461, Lassoudiere et al. 601 and Darve and Labanieh

1241*. The implementation of any of these models requires a step-by-step

analysis of the loading with severe implications of cost and complexity as

they usually involve the use of elaborate finite element programs. At the

present time these techniques can be used with confidence for only a few

number of cycles. They should be viewed essentially as research tools

permitting a detailed comparison with experimental results.

The second group of models considers the effect of complete periods

of cycling under simplified loading conditions (e.g. controlled stresses)

and makes use of explicit relationships between these cyclic loads and the

plastic strains obtained at a given number of cycles (Figure 2.3.1.b).

Several of these techniques can be related to the "cyclic pseudo creep" of

Meimon and Hicher 1711, Boulon et al. 1161, or the viscoelastic formulation

of Urzua oil. Marr et al. 641 presented a comprehensive review of the

work done at MIT in this direction on the basis of equations fitted on the

results of numerous triaxial tests run on sand (Hedberg 1381 and Hadge

* See Darve and Labanieh 124 for a complete bibliography.
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1351) and showed practical applications of these models to the prediction

of the permanent deformations of foundations. One of the handicaps

of these techniques is the bias introduced by the fitting procedures. Marr.

et al. 641 fit their equations over a limited range of the experimental

results and as a consequence the rate of permanent strain accumulation that

they use decreases with each additional cycle, which is not very realistic

close to failure. To overcome this difficulty Andersen 1 * makes a direct

use of the test results in his graphical representation thereby eliminating

the need for a fit by functionalrelationships. In general these explicit

models do not require the use of complex constitutive laws. They simply

involve the adjustment of the (monotonic) model parameters to reflect the

effects of cyclic loading at the end of each loading sequence, but of course

they are constrained by fixed loading conditions. When large number of

cycles are considered their use is inevitable but they require some engineer-

ing judgment when used to obtain quantitative estimates since they may overly

simplify, or distort, the predictions by lack of respect for equilibrium and

compatibility requirements.

2.3.2 Models of tension piles under cyclic loading

The nature of the loading imposed by a storm should dictate the use of

an explicit procedure since the number of cycles is usually of the order of

1000, distributed in packages of different intensities. Yet some researchers

have used implicit schemes (Matlock and Foo 68 , Bea et al. 91 as will be

shown immediatly.

* See Chapter 4 for a discussion of this procedure.
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2.3.2.A. Impcit ptocedwtre

The first procedure that should be discussed consists in using an

equivalent monotonic pile model* ; it is the simplest and yet probably the

most popular approach in the profession. During the BOSS'79 Conference, Bea

and Audibert 91 made the following observations after "a study of. cyclic

axial load effects on pile behavior based on a review of published pile load

test case histories" :

... There appeared to be a definite trend toward

decreasing (pile) capacity with increased number of

cycles. The decreased capacity tends toward an

asymptotic value ranging from 0.80 and 0.90 of the

static capacity ... It can thus be concluded that

the axial capacity of a pile is only negligibly

affected by cyclic loads. However, cumulative

deformations ... can become extremely large ...

It is suggested ... that the sum of static and cyclic

axial loads be kept below 80 percent (of the ultimate

static axial capacity) in order to avoid large

cumulative settlements ...".

Since these suggestions have been made it has often been proposed that

equivalent monotonic pile models be used on the basis of the following criteria :

. the average limiting skin friction is to be multiplied by a factor

k = 0.85 to take into account the effect of cyclic loading on the
cy

ultimate capacity, and

* Strictly speaking it is a degenerate model where the degradation per se
is simply not considered, and it is classified amongst the implicit models
only for convenience.
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· the mobilized skin friction along any section of the pile is to be

kept below a maximum of 80 percent of its limiting value (even though,

in our opinion this requirement may prove too constraining for

flexible offshore piles).

Let us quickly skip this very primitive "model" to consider more seriously

the effects of the degradation.

The first real implicit procedure was proposed by Matlock and Foo 1681

in 1980 and was meant to permit the adaptation of the pile driving code DRIVE

7 to consider cyclic loading. Their basic model of the pile-soil system is

very similar to the one that will be used in this thesis, and consists, in

the words of the authors, of "an assembly of elasto-plastic sub-elements at

each node (used) to represent any desired non-linear inelastic behavior of

the axial support"*.

Let us quote from their description of the degradation model

"In the present program, a degradation procedure is

applied to each elasto-plastic sub-element separately.

A degradation factor X is applied to the ultimate

plastic resistance of each sub-element only on the

occurence of a full reversal of the direction of

slip of that sub-element**. In addition to the

initial ultimate resistance Q (of the sub-element)

and the factor X, the user specifies a lower-bound

resistance Qmin which is asymptotically approached

as degradation proceeds. Whenever the reduction is

applied, the existing ultimate resistance Q1 is

degraded to a new ultimate resistance Q2 according

to the following relationship :

* This is not exactly true as shall be shown in Chapter 3.

** Local "alternate plasticity" in the terminology of shakedown analysis
(Chapter 3).
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Q2 (1 - ) (Q1 - Qmin) + min .

Then the authors added :

"At present, there is limited knowledge about

such degradation"

which is an understatement.

At the BOSS'82 Conference, Bea et al. 101 adopted apparently an even

cruder procedure :

"In order to speed up degradation so as to minimize

computer time (sic), the selected cyclic degradation

law was formulated as follows : under each cycle the

soil shear strength, or shear transfer along the pile

shaft, decreased by 50 % of the value in excess of

the fully degraded strength, which was selected to be

50 % of the undisturbed initial shear strenght ".

It is probable however that Bea et al. were in fact using the procedure of

Matlock and Foo with X = 0.5 and Qmin = 0.5 Qinitial' with an alternate

plasticity criterion and not degradation at each cycle. The total lack of

evolution of this model in these two years clearly underlines its limits :

how do we select X and Q ? Is the evolution of the degradation satis-

factorily represented by a constant value of X ? etc ... Until these

questions are properly answered we see no reason to recommend the use of

this artificial model.

The latest example of an implicit scheme used to model a tension pile

under cyclic loading is furnished by Lassoudiere et al. 1601. In their case

the loading is restricted to a few cycles only and a good agreement with
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experiments is obtained. Their degradation procedure involves hyperbolic

relationships between the deviatoric hardening variables and the plastic

strains. Unfortunately much more effort will be necessary to permit the

use of such procedures for a moderately large number of cycles (100), but

it is certainly a direction of research that should be considered in the

case of extreme loadings.

2.3.2.B. Expicit pocedues

It is convenient to distinguish between the developments involving

finite element codes and those using much simpler one-dimensional models.

Boulon et al.114-161and Puech et al. 1871 report extensive works on

pile models capable of representing the soil behavior under a large range

of loading and drainage conditions. The implementation of these models

requiresthe elaboration of complex finite element codes integrating soil

models of the type of Darve's incremental law (Darve 123 I) with specific

slip boundary elements. These formulations however do not escape the

difficulties associated with the definition of the initial state of stress

before loading (and it should be noted that their treatment of this problem

is quite crude when compared with the developments made in this domain by

MIT researchers (Baligh, Levadoux, Kavvadas)). The explicit formulation of

the degradation, called the "extrapolation relationship", used by Boulon

et al. is of the form

N

plastic a + bN

where Eplastic is the irreversible strain and N the number of cycles. Due

to its simplified form, this extrapolation is only valid over a limited
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range of number of cycles. In practice it seems that these models can be

calibrated to accurately represent a posteriori the soil-pile behavior

(Puech et al. 1871) but it is still much too early to use them with confidence

in class-A quantitative predictions. These complex and costly models have

very weak points and it can be argued whether it is really justified to use

such a juxtaposition of powerful computational tools and fancy equations when

key elements of the problem, such as the initial stress conditions or the

extrapolation relationship, are oversimplified.

Much simpler models of the pile-soil interaction may lead to results

that are just about as satisfactory. The idea is to develop procedures that

have uniform degrees of sophistication in each of their constitutive elements :

pile-soil interaction definition, degradation laws, loading description,

initial state of stresses, etc ... Since they will be simpler and less costly

such models will offer the big advantage of permitting sensitivity analyses to

be made thereby significantly improving our qualitative understanding of the

overall system.

In other words it may be far more instructive to consider an approach

specifically designed to study the problem from a sound qualitative point

of view rather then to insist on developing only cumbersome and perhaps

misleading quantitative procedures.

Such has been the approach of Poulos 80-841 who has been attempting

to adapt his own computer codes, which are based on an unidimensional repre-

sentation of the pile-soil system and on Mindlin's equation (Mattes and

Poulos 1691), to consider the cyclic degradation of soil. Poulos made serious

efforts to gather information but the scarcity of the data forced him to
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elaborate a "semi empirical approach" in which engineering judgment was used

to patch results from different sources into a composite data bank. Since

this work is at the origin of the development of our own procedure it shall

now be analyzed in some detail.

The objective of Poulos is to estimate the "apparent" stiffness and

the ultimate capacity of the pile after undrained cycling. In order to do

this he originaly used a simplified effective stress analysis (Poulos 12, 31)

based on an approximate formulation of the evolution of the pore pressure

during constant-stress DSS cycling (Van Eekelen and Potts 021) in combination

with normalized properties obtained from monotonic results (SHANSEP, Ladd and

FoottI591). But this first attempt proved to be somewhat unsuccessful* and

was abandonned to the benefit of a more versatile total stress analysis.

He then gathered information on the evolution of cyclic stiffness with

number of cycles in two-way** constant strain undrained tests run on San

Francisco Bay Mud (Idriss et al. 1481), and on the evolution of the undrained

shear strength as a function of the cyclic shear strain level as given by Lee

and Focht 1611. Only in his last article does Poulos (Poulos 1841) introduce

the effect of the number of cycles on this strength degradation . All these

experimental results were expressed in terms of normalized cyclic strains

thereby requiring the (subjective) evaluation of "critical cyclic strains"

as references. It is fundamental to recognize that the degradation represented

by these data is only associated with cyclic shear strains and with symmetric

* Poulos estimates that the pore pressure build up is only one of the elements
of the degradation and that the progressive destruction of the contacts in

the soil skeleton is not taken into account by the effective stress analysis.
** Symmetric straining around the origin.
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loadings around = 0, and that consequently no average shear strains or

average shear stresses are considered. Thus such a formulation cannot be

used to study the evolution of the displacements of the pile during cyclic

loading since no provision is made for the accumulation of permanent defor-

mation with each cycle.

Let us now consider the iteration procedure used by Poulos assuming

for a moment that his data are satisfactory.

"The detailed analysis procedure is as follows

1. First estimates of soil modulus Es (and) ultimate

skin friction are choosen at each element (e.g.,

the values for static loading).

2. The pile is analyzed for the maximum load P

and the distribution of shear stress and

displacement along the pile is determined.

3. The pile is similarly analyzed for the minimum

load P
min

4. The cyclic shear stress Tc and the cyclic

displacement p are determined from the two

foregoing analyses by subtracting the minimum

values from the maximum values.

5. For the specified number of cycles and the

appropriate level of cyclic shear stress, the

following determinations are made : displacement

or cyclic shear strain at each element (depending

on the type of degradation analysis being performed) ;

the change in soil modulus ; and ultimate skin

friction ...
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6. The new modulus and ultimate skin friction values

are compared with the estimated values, and if the

difference is greater than a specified tolerance,

new values are selected and steps 2 to 6 repeated

until the desired degree of convergence is attained.

7. The cyclic deflection, the mean deflection, and the

values of ultimate skin friction ... are thus

obtained, from which the available ultimate load

capacity after cycling may be readily calculated".

The first four steps are quite acceptable, even though it is not clear

whether step 3 is carried out considering the residual stresses created at

step 2, as it should be. In step 5 it is not easy to see how the data

bank as previously described can be used with cyclic shear stresses as

input. But far more debatable is the iteration procedure described in

step 6. Why should we expect to have agreement within a "specified

tolerance" between estimated and final values of the modulus and of the

ultimate skin friction ? The modification of the estimated values at

each iteration masks their significance : if they are estimates of the

final values - as seems to be indicated by the convergence criterion -

why do we subject them to the degradation of the complete cycling at each

time ? It is really difficult to understand why and where such an iteration

procedure converges, if it does*.

* This iteration procedure has been systematically applied in all Poulos'

papers, which rules out a possible redaction error.
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2.3.2.C. Concluions

There are good reasons for wanting to develop a simple explicit

procedure, and Poulos' approach has been considered as one of the better

adapted ones (Gallagher and St John 1311), but there are also obvious

improvements which can be made in the description of the soil degradation

and in the iteration procedure employed. There are also experimental

motivations for rejecting a model such as Poulos' as it is. In a paper

recently presented at Austin in 1982 Mc Anoy et al. (1701) made the following

observations based on in-situ pile test results :

"No change in cyclic displacement occured within

any of the three tests, indicating that there was

no degradation of cyclic soil modulus, contrary

to the suggestion of Poulos (1980) that cyclic

shear degradation was a function of stress level

and number of cycles. It is particularly surprising

that no degradation occured during test B, especially

when the pile was failing ... "

As we shall see later, this phenomenon can be clearly explained on the basis

of the test results and of the analysis to be presented in this thesis.
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3. THE PILE MODEL

3.1 FUNCTION OF THE PILE MODEL

The Pile Model is one of the elements of the procedure which is

proposed to study the behavior of a tension pile under cyclic loading.

The two other constituents of this procedure are the Soil Degradation

data (which will be treated in Chapter 4), and the algorithm of Chapter 5

integrating the Pile Model and the Soil Degradation data into an analytical

tool : the computer code TLPILE.

What is the role of the Pile Model ? For a given set of soil-pile

parameters, initial conditions (plastic displacements, residual stresses)

and loading,the Pile Model estimates the distributions of forces and displace-

ments existing in the pile and in the soil around it. The Pile Model insures

that these displacements are compatible and that the forces are in equilibrium.

The procedure that will be developed is founded on a explicit scheme of

the type presented in section 2.3. Thus the pile is analyzed at only a few

intermediate cycles of the loading and between each of these analyses the

evolution of the soil-pile parameters with cyclic loading are estimated from

soil degradation data obtained under simplified loading conditions (based on

the stress distributions estimated during the last application of the Pile

Model). In other words the cyclic degradation affects the pile behavior

through the soil-pile parameters but these parameters are fixed whenever the

Pile Model is used.
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The schematic stress-strain diagram of Figure 3.1.1 may help in

presenting this procedure. Suppose we are at some point located along

the pile and we wish to follow the evolution of the stresses and strains

as a cyclic load is applied at the top of the pile (P and P are
ave cyc

constant). Upon the first application of the load the soil leaves its

initial position A. Based on the soil-pile parameters estimated at point A,

the Pile Model can be used to trace the local stress-strain curve over a

few cycles. We should not, however, pursue this analysis too far since in

practice soil degradation will occur and the soil-pile parameters of point

A will no longer be representative. Thus the analysis is stopped at point C.

The explicit representation of the soil degradation is then introduced :

the stress range that has just been estimated by the Pile Model (T(B), T(C))

is applied to the soil for a specific number of cycles (zone 1 of Figure

3.1.1). The soil-pile parameters are then modified to account for this

degradation and the Pile Model is used again to estimate the new distributions

of stressses and strains (from points D, E to F, G), before a new package of

cycling (still under P cy) is applied (zone 2 ). The evolution of the pile

under P is therefore modeled by a succession of controlled stress approx-
cyc

imations.

When the value of P is changed during the loading such as in Figure
cyc

3.1.2 the Pile Model is used to estimate the changes in stress and strain

distributions. We must therefore distinguish between the use of the Pile

Model at changes of Pyc and its use corresponding to intermediate cycles

under a given value of P . In both cases the resulting effects at thecyc

local level are similar to the transition between points E, D and points F,

G of Figure 3.1.1. The local stressing at these transitions is "irregular"
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but it may become "cyclic" after a while (i.e. repeat itself). One of the

key issues in the discussion of the Pile Model is to understand these

irregular transitions. Are we going to reach a cyclic stabilization ?,

and, if so, when is it going to occur ?, and after how much strain ?. In

other words can the Pile Model constitute a mechanism leading to an accumu-

lation of deformation (even though the soil-pile parameters are maintained

constant) ? Can a tension pile, modeled in the specific Pile Model which

we shall use as a linear element and embedded in a soil represented by

assemblages of springs and slip elements of constant characteristics, be

pulled out by application at its top of a cyclic loading which never reaches

the pile's ultimate capacity ? These are a few of the questions which shall

be addressed in this chapter.
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3.2 FIRST DESCRIPTION OF THE PILE MODEL

The Pile Model is an unidimensional assemblage of linear springs and

slip elements as shown schematically in Figure 3.2.1. The pile itself is

modeled by a discrete number of linear springs connected at pile nodal

points. Each pile nodal point is in turn connected to a soil nodal point

through a discrete set of springs and slip elements placed in series and

in parallel while the soil nodal point is itself linked to a fixed reference

by a linear spring. The first connection (pile-soil) represents the DSS*

zone : a nonlinear inelastic domain located directly around the pile that

experiences all of the plastic strain. The second link (soil-soil) corre-

sponds to the elastic zone around the DSS zone**. No connection exists

between the soil nodal points apart from the pile itself (this corresponds

to Winkler's assumption). The stiffness coefficients of the springs together

with the yield strengths of the slip elements consitute the "soil-pile

parameters". (In chapter 5 we shall introduce imposed displacements to the

"fixed references" to which the elastic zone springs are attached. This will

be done by both adding very stiff springs in series with the elastic zone

springs and by imposing large internal forces. These additions do not modify

the overall behavior of the pile Model under irregular loading).

The Pile Model which has just been described has been used previously

in a slightly simpler form by Chan, Matlock and Foo (1191, 168 I). It is a

direct application of models proposed many years ago (100oo and section 3.3)

* Direct Simple Shear.
** A discussion of this DSS zone-elastic zone concept is presented in section 3.4.
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and commonly called Iwan models. These models are assemblages of springs

and slip elements decomposable in branches in series and in parallel. In

its discrete form (a finite number of springs and slip elements) an Iwan

model permits a multilinear approximation of the loading*, unloading and

reloading of a material obeying Masing's rules (see section 3.3). This

approximation applies reasonably well to soil (Pyke 1901). In the jargon

of Plasticity Theory, Iwan models can be used to represent the kinematic

hardening (without isotropic hardening) of elasto-plastic bodies admitting

multiple nested yield surfaces.

Further aspects of the description of the Pile Model will be presented

in section 3.4 on the basis of the theoretical understanding of its cyclic

behavior. These additional comments will concern the compatibility of our

Pile Model with the "t-z" curve concept and the procedure used to choose

the soil-pile parameters, and to define the DSS zone elements.

* Loading applies to the initial loading.
Unloading means decreasing the load.
Reloading means increasing the load after an unloading.
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3.3 BEHAVIOR OF THE PILE MODEL UNDER CYCLIC LOADING

3.3.1 An introductory example

The following example serves two purposes : it introduces, using a

simple assemblage, some of the key ideas of the next sections and it constitutes

a reference that the reader can use later on to put in concrete form the

future theoretical developments. Despite the elementary nature of this

example, tracing out the response of the assemblage is still a complex matter

which may be difficult to follow at first reading.

We shall focus on the behavior of one DSS zone assemblage and follow

its evolution under a preselected irregular (and ultimately cyclic) loading.

This Iwan model is composed of four elasto-perfectly plastic (EPP) springs

placed in parallel as shown in Figure 3.3.1. Each EPP spring is modeled by

a linear spring and a slip element placed in series. All the slip elements

are symmetric, i.e. their stress* thresholds (yield strengths) are the same

in extension and in compression. Originally all the EPP springs are in an

unstressed and unstrained condition (point 0 in Figure 3.3.2). As the load

is applied to the Iwan model it responds linearly until we reach the stress

threshold in EPP spring # 1 (point 1). Since the strain is common to all EPP

springs the first one to yield is the one with the lowest strain threshold

(stress threshold divided by the EPP stiffness). When the load is increased

after EPP spring # 1 has yielded we simply replace it by its constant yield

strength. The global stiffness of the Iwan model is now equal to the initial

* We shall work with stresses, but forces may be used equivalently.
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stiffness minus the stiffness of EPP spring # 1. The next EPP spring to yield

is number 2 (at point 2) which has the next lowest strain threshold, etc...

In Figure 3.3.2 the procedure has been carried on to point A where EPP springs

1, 2 and 3 have all yielded. Now we are going to decrease the load applied

to the Iwan model. Upon unloading all the EPP springs immediately re-enter

their elastic domains (see Figure 3.3.3). The plastic strains remain unchan-

ged until one EPP spring yields (at point 4). The first EPP spring to yield

during this unloading is also number 1 but it first has to pass through to a

no-stress condition before it is stressed in the direction of the unloading

(point 4 on diagram 3.3.3.b) i.e. this yielding will require twice the amount

of straining that was necessary to cause yield from the original position

(in this case where A is selected to be twice T1, this yielding occurs on

the strain axis). This property is true for all the EPP springs. The order

of yielding during unloading is the same as during loading. Since the stiff-

nesses remain the same and the incremental straining to yielding is twice its

value during the original loading, the whole unloading curve can be deduced

from the loading curve by applying a scaling factor of two.

Let us now stop the unloading at point B and start reloading to point

C (Figure 3.3.3). Along the path BC the order of yielding is again the same

as it was during the original loading. The shape of this reloading is

identical to that of the unloading curve from A towards B. Now we unload

from point C to follow the path CD. At point D, EPP spring 2 is still in

its elastic domain (point D on diagram 3.3.3.c).

We now reload once again to point C (path DC). The increment of strain

required to yield EPP spring 2 is then given by the difference of y(C) and
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y(D), (see path DC on diagram 3.3.3.c), which is less than twice the strain

threshold of EPP spring # 2. Next we continue the reload past point C to

point E. Note that the shape of the reloading curve on path DCE (diagram

3.3.3.a) is not identical to that of the reloading curve along path BCE and

cannot be obtained from the original loading curve by using a scaling factor

of two as before.

Let us now unload from point E to point F. The unloading curve will

pass through point B. The EPP spring # 3 will yield for y = 0 (this is a

coincidence) (diagram 3.3.3.d) and evidently E was in the elastic domain of

this spring. As a result the unloading curve along path EBF is not identical

to the original loading crve by using a scaling factor of two. (This situation

is exactly similar to the previous reloading along path DCE).

From point F we now reload to point G (where T(G) = (E)). At point

F all the springs are either yielding or have never yielded, and the same

is true at point G. The reloading curve along path FG is identical to the

original loading curve up to (G) expanded by a scaling factor of two.

Now we unload from point G. This unloading curve from point G will

pass through point F (represented by a dotted line in Figure 3.3.3), and

furthermore its shape will also be identical to the original curve when a

scaling factor of two is used. If the stress T is cycled from now on between

T(F) and T(G) the stress strain curve will describe a closed loop which is

symmetrical with respect to its center and such that its branches can be

obtained from the original loading curve by using a scaling factor of 2.

Another way of looking at this loading sequence is to see it as a

cyclic loading, with T varying between T(E) and T(F), applied to the system
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after it is at point D. The first branch of the closed loop is described by

the path obtained between the second and the third extreme values of T (T(E)

is the first, T(F) the second and (G) the third). In other words the determi-

nation of the closed loop requires the analysis of the loading through three

successive loading peaks, i.e. one and one half cycles of loading. As will be

shown in the following sections this example is characteristic of the cyclic

behavior of the Iwan models.

3.3.2 Masing's rules and Iwan models

The Iwan models are entirely defined by their original loading curves

(there are two such curves, one in extension and one in compression, both

starting from the unstressed and unstrained condition). In this section these

"first deformation curves" are assumed to be known.

What are Masing's rules ? They are rules which permit one to estimate the

unloading and reloading behavior of a material knowing only its loading curve,

as we shall now see. The utilization of the results of a monotonic test to

predict material behavior under irregular loading is a classical topic in

theoretical mechanics which has been traditionally approached in the past from

two different directions 1901 : through standard mathematical models on the one

side, and through mechanical analogs on the other.

The mathematical models articulate themselves on sets of rules which

have been experimentally established for some materials and are assumed to hold

for others. The most widely accepted set of such rules was suggested by Masing

I661, and states that 1 the shear modulus on each loading reversal assumes a

value equal to the initial tangent modulus for the initial loading curve

(Figure 3.3.4.a), and that;2 the shape of the unloading or reloading curves is

the same as that of the initial loading curve, except that the scale is enlarged

by a factor of two (Figure 3.3.4.b). Application of these rules allows behavior

under symmetric cyclic loadings to be described by means of a single
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analytical function*.

In order to study the behavior under irregular loading two more rules must

be added : 3 the unloading and reloading curves should follow the initial

loading curve if the previous maximum shear strain is exceeded (Figure 3.3.4.c),

and 4 if the current unloading or reloading curve intersects the curve

described in a previous unloading or reloading, the stress-strain relationship

follows this previous curve (Figure 3.3.4.d). The set of these four rules is

called the extended Masing rules.

Obviously, keeping track of the behavior under irregular loading

becomes a very tedious problem as it requires the memorization of the entire

past history.

The mechanical models involve the study of rheological analogs. Among them

are the Iwan models which offer the remarkable properties of adhering to all

four of Masing's extended rules and of inherently "memorizing" the relevant

portion of the past loading history so that no bookkeeping is required to

comply with both the third and the fourth rules above. The proof of these

facts is the object of the next section.

3.3.3 Properties of Iwan models

As already mentioned Iwan models are assemblages of springs and slip

elements placed in any order but always decomposable into branches in series

and in parallel. Figure 3.3.5 shows an example of both an Iwan model assem-

blage and a random assemblage that does not qualify as an Iwan model. Iwan

models placed in series or/and in parallel constitute an Iwan model in

itself. The dotted lines of Figure 3.3.5.a show how the whole assemblage

can be gradually reduced to a single Iwan model.

* For instance, the Davidenkov-class models and the Ramberg-Osgood-class
models in Table 3.3.1.
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Davidenkov-class models
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T=G ymax I

First
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Ramberg-Osgood-class models
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Table 3.3.1 Mathematical models for symmetric loading.
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Figure 3.3.5 Decomposition in series and parallel of an Iwan Model.

The definition of Iwan models can be extended to an infinite number of

springs and slip elements as shall be shown later. Figure 3.2.1 shows that

the Pile Model is an Iwan model.

W.D. Iwan was the first to recognize that the models which bear his

name are not his creation 1501. Masing used similar models as early as

1926, as did Prandtl, Duwez, Drucker and Ivlev among others over the years.

Timoshenko suggested this approach in 1930 10q, and Persoz 1781 had presen-

ted many of the results, which shall be considered later on here, in 1958.

This last paper was published in French, and as a result, received little

attention in this country. Since then the French school, lead by Mandel, has

produced mumerous results concerning the study of heological bodies, greatly

generalizing the Iwan models 491. Finally, let it be pointed out that

Iwan models have already been widely used in geotechnical engineering, partic-

ularly in areas related to earthquake engineering end in the study of

piles 167!, as was previously mentioned.
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3.3.3.A. The P.tandt bcdy

The basic constituent of Iwan models is a spring in series with a

slip element. Unfortunately, this constituent is the object of a varied and

confusing terminology. Earlier in this chapter, we used the term elasto-

perfectly-plastic (EPP) spring, but this name is not recognized in rheology.

Iwan calls it a Jenkin element - and he is about the only one to do so -.

Hereafter, we shall adopt the name "Prandtl body", abreviated P-body, as

used by Riener 921in his tree of heological bodies which is partly repro-

duced in Figure 3.3.6.

Figure 3.3.6 Riener's rheological tree.
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While the St Venant body in Figure 3.3.6 is associated with perfect

plasticity and the Hooke body with linear elasticity, the Prandtl body

represents elasto-plasticity and is composed of a St Venant body in series

with a Hooke body.

The St Venant body, also called a "rigid-plastic" or "slip" element,

is characterized by a stress threshold differentiating immobility from plastic

flow. Strictly speaking this threshold should be the same for "compression"

and "extension" but one also uses the term of St Venant body when the two

thresholds are different. A typical stress-strain diagram for a St Venant

body is shown in Figure 3.3.7.

r>O
Compression i

0o

Extension
I--

l p
L m

I

_e- reee tfn
- ZC ,V IIlll, ./l ill

stress threshold

r

-- T = - So Fxtension
N. I stress threshold

Figure 3.3.7 Typical St Venant body stress-strain diagram.
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The Hooke body on the other hand is associated with only one value

of the modulus of elasticity, E. The stress-strain diagram of Figure 3.3.8

is therefore not acceptable.

r

0o 

Figure 3.3.8 An unacceptable Hooke body stress-strain diagram.

In a Prandtl body the same stress T acts on both constitutive elementary

bodies and the deformation y is the sum of the elementary deformations, Ye for

the Hooke body, and yp for the St Venant body, as shown in Figure 3.3.9.

The "first-deformation" curve (or "first-loading" curve, "skeleton"

curve, "backbone" curve) is the combination of the two stress-strain relation-

ship obtained by both compressing the Prandtl body from the origin

(y = 0, T = 0) and by extending it from the origin, as shown in Figure

3.3.10.
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As can be seen in this figure, if the constitutive St Venant has two

different stress threshold values, the Prandtl body will have two strain

thresholds, e and ee, defined from the first deformation curve.

When T sc, for example, the strain becomes indeterminate. If the

stress is released from a point A where yp = YpA, the St Venant body freezes

so that p remains equal to YpA until further yielding occurs. The plastic

deformation, yp, can be associated with the system's "memory" of its

complete past history.

3.3.3.B. The genetraized P-body and the infinite P-body

The generalized Prandtl body is an association of a finite number of

P-bodies placed in parallel, while the infinite P-body will be its extension

to an infinite number of P-bodies. Only the properties of the latter need

to be studied, but the generalized P-body is usually the one used in practi-

cal applications.

We shall assume for the moment that each St Venant body has the same

stress thresholds in compression and in extension, so that each P-body is

characterized by one value of the strain threshold. We must now generalize

the notion of modulus that was introduced earlier. The density distribution

of the modulus, g"(e), is such that g"(de)dej is the sum of the moduli

corresponding to a strain threshold between e and e + de.

The equation of the first-deformation curve is obtained by separating

the P-bodies which are still elastic at a given value of the common stain y

from those that are not. The global stress can be expressed by Equation

3.1.
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oo
T = y f g"(e) de +

elastic part

fY e g"(e) de
0

plastic part

Eq. 3.1

which can also be written as :

T = g'() - g(y) Eq. 3.2

with g'(x) = x g"(e) de and g(x) =f g'(e) de.
0 0

The term g'(-) = f O g"(e) de is the initial modulus of the infinite P-body.
0

The geometrical interpretation of Equation 3.2 is shown in Figure 3.3.11 and

should be compared with the Davidenkov-class models of Table 3.3.1.

0 Y

Figure 3.3.11 Geometrical interpretation of Equation 3.2.

I
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Equation 3.2 will be functionally represented by :

T = S (y), which gives the first deformation curve.

Let us now consider unloading from a point A (YA, TA) belonging to

the first deformation curve (Figure 3.3.11). Upon the first sign of strain

release all the St Venant bodies will suddenly freeze and the system will

recover its original global modulus (Cf. first Masing rule). At point A

(Figure 3.3.12) all the P-bodies that have previously yielded have a stress

equal to their stress threshold. Upon unloading, any of these P-bodies can

thus tolerate a change of strain equal to twice the value of their strain

threshold before they start yielding in the opposite direction. At the same

time the P-bodies that have not yielded at point A will remain elastic for any strain

change smaller than 2 A. The order of yielding during unloading will be the

same as during the first deformation loading, i.e. by increasing value of

strain threshold. The global stress change for a change of strain smaller

than 2 YA will then be given by equation 3.3.

A = (Y - ) (A-)/2 g"(e) de + 2 (YA ) / 2 e g"(e) de. Eq. 3.3

The first term on the right corresponds to the P-bodies which have not yielded

during the unloading, and for which, therefore, 2 e > yA - Y.

Equation 3.3 will not apply if yA - y becomes larger than 2 A,' since

at that strain P-bodies which had never yielded previously may start yielding.

In fact, as soon as A - Y becomes equal to 2 A one reaches the symmetric

point, A', of point A with respect to the origin, and therefore the first

deformation curve. This can be clearly seen by recognizing the fact that

Equation 3.3 can be written as :
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Figure 3.3.12 Unloading from the first deformation curve.
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IA - T = IA - } g (c) 2 g(YA-Y)/2 or

A T 2 S IA-y /2 Eq. 3.4

When =YA' TA -T = 2 TA i.e. T =-A'

At point A' all the P-bodies which had previously yielded have now yielded

back. The situation is exactly symmetrical to that of point A and if the

unloading is pursued past A' the characteristic point (y, ) will follow the

first deformation curve (3rd Masing rule). One can also observe that the

slope of the unloading curve at A' is continuous since :

Y -Y- =s ·
Y=-Y Y=-y Y S =-Y

Let us now reload from any point B (yB' TB) of the previous unloading curve.

All the St Venant bodies will freeze and, once again, the same order of

yielding will be respected. One must however be cautious since there are now

three categories of P-bodies to be considered : 1) those which have yielded

in both directions, 2) those which have yielded in only one direction, and

3) those which have not yet yielded. If point B is on the first deformation

curve in extension, and therefore past A', there will be no P-body in the

second category, but this is not the case if B is in between A and A'.

In this case, and in our particular example (loading path OAB), the P-bodies

in the second category will remain elastic during reloading until Y = yA.

this is due to the fact that at point A all of the P-bodies were at their

threshold stresses. Thus, for the present reloading and for y - YB less

than or equal to A - YB' one has :
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= (Y - Y Y-Y g"(e) de + 2 e g"(e)de Eq. 3.5

T-TB = 2 S YYB Eq. 3.6

Evidently for y = A one gets T = tA, therefore one has a closed loop

between A and B that is symmetrical with respect to its center. Equation 3.6

can also be rewritten as :

TC = S ( c) Eq. 3.7

with T = TA B and y =YA-B
c 2 2

In the coordinate system oriented at the center of the closed loop, the

summits of the loop belong to a curve identical to the first-deformation

curve, (whatever the position of A and B).

If the reloading is now continued beyond point A the characteristic

point will follow the first deformation curve since the P-bodies which had

yielded during AB will have yielded back during BA. If B is not on the

first deformation curve (in extension) there will be a discontinuity in the

slope at point A between the reloading curve and the first deformation curve,

as shown in Figure 3.3.13.
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0

A

B

Figure 3.3.13 Slope discontinuity at A.

The properties of the cycle ABA have been known for some

time 72 . But how many of these properties can be associated with any

cyclic loading ? Persoz 1781 has proved the following general rules which

are valid for any infinite P-body :

1. the convexity of the first deformation curve is always turned

toward the strain axis,

2. any cyclic loading applied to an infinite P-body at a position M

(YM' TM) such that either y is varied between YM* and p, or T is

varied between TM and Tp, will result in a stabilized closed cycle

as soon as the strain-rate, or the stress-rate, will have changed

sign once (Figure 3.3.14a),

3. this closed cycle will be convex and symmetric with respect to

its center. Furthermore if the first-deformation curve can be

* Note that the loading involves the coordinates of point M itself, see
Figure 3.3.14a.

X



103

2 nd strain
rate change (a)

Loading with

YE ( Yr)
-----M-~--PZ

( M I'TM)
Ist strain
rate chang

.3rd strain
rate change

.1st strain
rate change

(b)

Loading with

YE (Y Y,).

2nd strain
rate chang

Figure 3.3.14 StabfLization to a closed loop.

-r

rp YM

.
L

A

I

I
!



104

written as = S (y), the unloading branch from the top of the

cycle (YT' TT) will be given by (T - T) = 2 S YT - Y Jand the

reloading from the bottom (yB' TB) by :

(T - TB) = 2 S [Y -

As a consequence one might observe that for a general cyclic

loading characterized by y (yp, YQ)*, or T £ (Tp, TQ), the stabilization

to a closed loop having the above mentioned properties will occur, at the

very latest, after the second sign change of the strain rate, or of the

stress rate. Practically speaking, this means that the closed loop will

have as its summits the points corresponding to the second and third changes

of strain rate or stress rate. The complete description of the behavior of

the infinite P-body under regular cyclic loading will require the determi-

nation of three successive extrema, i.e. one-and-one-half cycles of loading.

An example is shown in Figure 3.3.15 and should be compared to Figure 3.3.3.

One should also stress that as a direct consequence of the third

property, with = TT - B, and y = YT - YB
2 2

one has :

T = S (Yc)

independent of the values of T T = T + B and y y YT + YB
ave ave 2 ave ave 2

* See Figure 3.3.14b.

* See Figure 3.3.14b.
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IT,

F

-- -- Preloading

N---- Cyclic loading

Figure 3.3.15 Example of stabilization under regular cyclic loading.
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3.3.3.C. lwan modes and Radom asembie6

Now, can these observations be extended to any Iwan model ?

The answer is yes (Persoz 1791*).

To prove these properties we simply need to show that any Iwan model

can be seen as an infinite (or a generalized) P-body. This proof is recur-

sive. First it is observed that two infinite P-bodies placed in parallel

constitute an infinite P-body. Then, in a second stage, we show that when

placed in series they also behave exactly like an infinite P-body. Each

branch of the model can thus be represented by an infinite P-body and gradu-

ally the whole Iwan model is replaced by a infinite P-body.

Other observations can then be made :

the variation of stress or strain in an elementary component is a

non-decreasing function of the variation of stress or strain

applied to the whole assemblage,**

a closed loop on the stress-strain diagram of the Iwan model

corresponds to a closed loop at the element level.

These results indicate that the Pile Model will never be "pulled

out" by a cyclic loading applied at its top and that the irregular response

under cyclic loading will stabilize after one-and-one-half cycles of loading

etc...

Finally one may ask the question : what do we know of the behavior

of random assemblies under cyclic loading ? These assemblies have been

extensively studied by Mandel and his co-workers (Mandel 1631, Halphen 1371,

, But the observation he made stating that "any cycle of stress corresponds
to a cycle of strain" is wrong.

**In other words an increase (resp. decrease) in the stain or stress applied
to the whole assemblage cannot result in a decrease (resp. increase) of

strain or stress at the elementary level.
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Nguyen Quoc Son 1761 and Zarka 1031) who have arrived at the following

observations :

1. stabilization to a closed loop under regular cyclic loading

occurs after one cycle* or it does not occur at all,

2. ratchetting is possible (see Section 3.3.4),

3. the limiting state, when it exists, is generally a function

of the initial state.

At this level of complexity we reach the domain of present research.

Let us now return to the study of Iwan models but this time looking at them

from another angle which may prove helpful to further enhance our understand-

ing of their behavior under cyclic loading.

3.3.3.D. A phyica analcg ito TIwn models

Since it has been shown that Iwan models and infinite P-bodies are

equivalent concepts we shall restrict the discussion to the latter.

For the time being we will maintain the use of true St Venant bodies

(equal properties in extension and in compression). Let us reconsider the

stress-strain diagram of a P-body in Figure 3.3.16a. Assume there is a

third dimension, called t, as shown in Figure 3.3.16b. The plane (y, t) is

used only for plotting an annulus of diameter equal to twice the strain

threshold. The center of this annulus is always located along the axis' and

originally corresponds to point 0 of Figure 3.3.16b. As the loading is

increased from the origin to point A we remain in the elastic domain, and

the position of the annulus is unchanged. At point B the strain y or rather

* "One-and-one half" cycles.
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the characteristic point which is the projection of point B on the Yaxis'

touches the annulus. The characteristic point is constrained to stay in

or on the annulus the diameter of which is constant. As yielding occurs

the annulus is thus translated by the characteristic point until the loading

is reversed (point C). Then, between C and D the annulus remains immobile.

A new translation in the opposite direction will occur when the P-body begins

to yield again at point D. The annulus may be thought of as a yield surface,

the translation representing kinematic hardening. There is no isotropic

hardening since the diameter remains constant. The annulus is only a conven-

ient representation, its use being to represent a constant distance (its

diameter), and the dimension t is just an artifice. The position of the

center of the annulus gives at all times the plastic strain yp of the

Prandtl body.

Let us now consider what will be the mechanical analog of a

generalized P-body. Since the strains are common to the assemblage we can

use the same characteristic point but now we shall have a set of nested

annuli of different sizes such as those in Figure 3.3.17.

Again each annulus is representing a P-body and its diameter is

equal to twice the P-body strain threshold. Again the locations of the

centers of these annuli give the plastic strains of their associated P-bodies.

Now, how does the analog model work ?

As the global strain y is varied the characteristic point, Pc, will

carry with it all the annuli with which it comes into contact. Upon reversing

the sign of the strain rate, the contact will be broken before new contacts

are made in the direction of straining. Each time an annulus is carried by



* Characteristic point

Figure 3.3.17 Physical analog of a generalized P-body.
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the characteristic point some plastic yielding occurs since the position of

the annulus center is modified.

Figure 3.3.18 is an example of a complete cycle of straining.

The initial position of the assemblage is given in Figure 3.3.18a. At its

right, on Figure 3.3.18b, one extreme of the straining has been reached.

Annuli 1, 2, 3 and 4 have been moved by the characteristic point, but

annulus 5 has not been touched. In Figure 3.3.18c the other extreme of the

straining is obtained. Now the five first annuli have moved. If we then

re-impose the first extreme, as in Figure 3.3.18d, the behavior stabilized

to a symmetric cycle. Note hoever that the change from b to c is quite

different from that occuring between c and d. The latter change defines

the stabilized cycle. In other words we need to reach the situation of

Figure 3.3.18d to know what the stabilized cycle will be. These results are

perfectly analogous to the properties of the preceding section (and could be

directly compared to Figure 3.3.15).

3.3.3.E. A uew extensions of Pc,% oz's rte.suts

What new properties can be derived from this annuli representation ?

In the case of a generalized P-body such as the one represented in the

previous figures it can be easily understood that the system can be restored

to its virgin condition (with the characteristic point and all the centers of

the annuli positioned at the origin) by applying as many strain changes as it

has off-centered annuli (P-body with non-zero plastic strain). Of course,

the P-bodies are restored in decreasing order of their strain threshold. An

infinite P-body could similarly be restored by an infinite number of strain

changes of decreasing amplitudes around the origin.
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(a) (b)

(c) (d)

Example of stabilization under regular cyclic loading.Figure 3.3.18
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What would happen if the plastic strain of each P-body were not

necessarily associated with the center of each annulus but with a point,

Q, of fixed coordinate with respect to the annulus, and placed inside the

annulus along the line of the centers (see Figure 3.3.19) ?

Y

Figure 3.3.19 Analog of an asymmetric P-body.

The evolution of the annuli with the movement of the characteristic

point would not be changed at all and it can be seen that stabilization to

a closed loop would occur in one-and-one-half cycles under a regular cyclic

straining. The original condition (virgin condition) of the system would be

different since it would exhibit an asymmetry : the centers of the annuli
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would no longer be positioned at the origin, they would be replaced there

by the points Q. The first deformation curve in compression would be

different from that in extension. Obviously this situation corresponds to

the case of asymmetric St Venant bodies. During one of the branches of a

closed loop cycle, the amount of plastic strain for each P-body will be the

same as that of a symmetric P-body such that e = (e + e )/2 and this plastic

deformation will start at exactly the same position of the characteristic

point. The closed loops of the two systems - the asymmetric infinite

P-body and the symmetric infinite P-body defined by the previous relation -

have therefore the same shape ! All the properties introduced earlier are

applicable to an asymmetric infinite P-body, except for the use of the first

deformation curve to describe the closed loop. Even though the infinite

P-body is asymmetric, the closed loop will be symmetric with respect to its

center.

In the case of asymmetric P-bodies it is thus obvious that the

second Masing rule does not apply but there is always a function S such

that the branches of the closed loop between A and B are given by the

relationships previously described. It is also interesting to note that the

first Masing rule will not apply when the first deformation curve does not

have a continuous slope at the origin (which is now possible).

Let us now consider a specific type of asymmetric infinite P-body

which will be used in the pile analysis. Initially one defines a symmetric

first-deformation curve which corresponds to a reference symmetric infinite

P-body. The associated function is T = S ().
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The first deformation curve of the asymmetric P-body is then given by

T =X S Y in compression, and by :

7 = S I in extension.

Figure 3.3.20 shows these two curves together with the geometric constructions

which permit to derive them from the symmetric T = S (y) curve.

r = XS(y/X)

1O

OP2 = OP I * X

OP4 = OP,- .-I '
Figure 3.3.20 Construction of the asymmetric first deformation curves.

_ _

P3

J

By)
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In the case of the symmetric infinite P-body we again define (g"(e)de)

as the sum of the moduli corresponding to a strain threshold e between e and

e + de. In the case of the asymmetric infinite P-body we use a new variable,

e', which is the sum of the strain thresholds in compression and in extension,

e' = e + e Then we define h"(e')de' as the sum of the moduli corresponding
C e

to e' between e' and e' + de'.

With our particular construction of the asymmetric infinite P-body

we have :

h"(e')de' = g"(e)de

with

e'= ( + i) e.

Thus on the unloading branch of a closed loop between A and B one will have

a change of strain defined by:

YA-Y
TA - T = (YA - Y ) f h"(e')de' +f e'h"(e')de'

YA-Y 0

or,

TA = (Y - Y ) A g" (e)de + f (YA- Y)/(+) (X+>) e g"(e)de

and upon integrating,

"YA-Y
T - T = (A - ) g (o)+ (X + ) g A-]

Hence : a : S A-Y 
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Similarly one can show that during reloading from B,

T - T B

In particular, if X + p = 2 these expressions become equal to those

characterizing the closed loop of the symmetric infinite P-body.

It should however be observed that an assemblage of asymmetric

P-bodies, each of the type described earlier (i.e. obtained from a symmetric

first-loading curve by scaling) does not usually have this property. That

is, the overall force-deformation relation for a cycle cannot be obtained

by scaling the overall force-deformation curve for first loading. Rather,

this assemblage constitutes a standard asymmetric Iwan model.

We now conclude our theoretical presentation of Iwan models with

a final remark. The Pile Model that we have considered has only one source

of external variable loading, the force P applied at its top. All we have

shown is that the structure that exists between the top and the reference

base could be treated as an Iwan model. Now if other external variable forces

were applied at different points on this structure the previous conclusions

would not apply globally to the Pile Model. Such is the case for example

with piles under dynamic loading.
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3.3.4 Shakedown analysis

In the course of this research shakedown analysis was the first

body of theory that was considered in order to study the behavior

of Iwan models under cyclic loading. At the time the properties of Iwan

models were not known to the author and it seemed logical to turn to a

branch of engineering specifically concerned with the behavior of elasto-

plastic structures under irregular loading. Since it now appears that

shakedown analysis is becoming a source of real interest in the profession

1431, it was decided to present here a short discussion of what was learned

concerning the potential and the limitations of these little-known techniques.

Some complementary information is given in Appendix 3.

Let us consider an elasto-plastic element subjected to a regular cyclic

loading expressed in terms of stress. There are essentially four types of

possible responses as shown in Figure 3.3.21 in order of complexity :

a) a purely elastic response, b) a stabilization to a linear elastic response,

called elastic shakedown, c) a stabilization to a closed loop response called

alternate plasticity and d) an accumulation of plastic strain at each cycle

without stabilization, called ratchetting. The previous terminology is per-

fectly valid on the global level of structure composed of elasto-plastic

elements. Global elastic shakedown can be locally associated with either

purely elastic response or elastic shakedown, and in general global responses

may include all forms of simpler local responses.

Shakedown analysis aims at determining the range of loading ultimately

leading to elastic shakedown. However, shakedown analysis will never permit

one to establish when (in how many cycles) this limiting stage can be reached.

* See Appendix 3.B for detailed terminology.



a'

/

(a) Purely Elastic

a'

(c) Alternate Plasticity

(b) Elastic Shakedown

(d) Ratchetting

Figure 3.3.21 Cyclic responses of an elasto plastic element.

3.3.4.A. Melan's theotem

Let us consider a structure S, and the set of external forces to which

it is subjected, X (t). Let aE (t) be the artificial stress distribution

resulting from the application of X (t) if S were perfectly elastic. A

stress distribution p will be termed statically admissible if it satisfies

119

I
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the equations of equilibrium everywhere in S and at its boundary. By

definition a residual stress distribution, , is statically admissible with

no external forces applied. Let us finally define (a) = 0 as the equation

of the yield surface at each point.

The fundamental theorem of shakedown analysis, Melan's static

theorem, states that 165j :

The structure will shakedown if, and only if, any time-

independent distribution of residual stress, , can be

found such that :

{aE (t) + p} < 0 everywhere. Eq. 3.8

"In essence, this states that if the structure can shakedown, then it will

shakedown", as Hodge 1421 most beautifully put it.

It is easy to show that any stress distribution (t), which is

statically admissible with X (t), can be disassembled into the sum of the

artificial elastic stress distribution aE(t) and a residual stress distri-

bution p(t)

E
a (t) = E (t) + p (t)

Thus if the structure shakes down there will be a time independent residual

stress distribution pO such that in the elastic shakedown state

a (t) = (t) + Po '

It is very important to see that p0 is dependent on the loading history, and

that the time independent residual stress distribution of Melan's theorem

does not have to be equal to p.

Let us consider a graphical representation of the theorem. For

convenience the stress space is represented by the axes xi, xj, and in this
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space of the residual stress distribution is represented by the curve C.

The yield condition () = 0 can also be written as :

~ (t) - {- aE(t)} l= 0,

so that the residual stress p (t) is constrained to remain inside the volume

E E3.3.22.
V "centered" on the point (- a, - a.) as shown in Figure 3.3.22.

Xjxj

- o". (t)
J

0
-- E (t) Xj

I "

Figure 3.3.22 Graphical decomposition of the stress.

For an elasto-perfectly-plastic structure the equation of V relative to origin

a E (t), - E (t) is (a) = 0, and is therefore independent of

E (t). As the loading changes, so does the position of aE (t) and the

volume is translated accordingly, as seen in Figure 3.3.23.
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x i

tV xi

Figure 3.3.23 Changes of stresses.

The residual stress distribution will only change when the point M comes into

contact with V, at which stage it will be carried away by the boundary of V

along curve C. Upon reversal of the loading the point M will be immobilized

until further yielding occurs. This representation shows a clear similarity

to the physical analog of Iwan models presented earlier (with the exception

that it is now the surface that moves the characteristic point).

Melan's theorem states that if there is one point belonging to C that

remains inside V as the loading proceeds then shakedown will occur.

Hopefully, this graphical representation will have shown that the

idea behing Melan's theorem is rather simple. However, the use of the

theorem is not. Whereas it is easy to deal with a , it is sometimes difficult

to find a residual stress distribution satisfying Melan's theorem.

In some cases it is simpler to define the shakedown domain by studying

the boundary between elastic shakedown and alternate plasticity, as will be

shown in the following example.
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3.3.4.B. A simple pie model

Consider an elastic pile embedded in an elasto-perfectly plastic

soil. The pile model is defined in Figure 3.3.24 as an infinite Iwan model.

E- Modulus of elasticity

A - Cross-section area

P - Perimeter

L - Lengh

----- Pile

Soil-pile interface defined by a continuous set
of winkler springs with the following"t-z"curve:

Tyc

Slope

- Tye

k Tyc > Tye

-l U

Local pile displacement

Figure 3.3.24 Simple pile model.

The value of k is assumed constant along the whole pile as well as the

values of t and 
yc ye

The equation of equilibrium characterizing the elastic solution

is :

A2u
EAx-- Pku= 0.

aX

Q

0

T I t U

-

-

t ±,LQ
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Which gives the elastic solution :

(t, x) = Q() XL (ch x + th L sh x)' (tx) PL thXL

where A2 = Pk/EA

The purely elastic range is defined by :

Q + AQ < and Q - AQ XL
PL thAL yc PL thAL ye

where it is assumed that there were no initial residual stresses.

Melan's theorem can be used to establish the equation of the

boundary between elastic shakedown and alternate plasticity. On the boundary

there exists a residual stress distribution p (x) such that :

max (x, t) + p (x) = T
max yc

and

E
TE (x, t) + ( T
min ye

Hence by difference :

E E
T (x, t) - T (x, t) = + T
max min yc ye

which can be written as :

2 Aq L (ch X x + th XL sh x ) = T + T
PL thAL yc ye

(where the portion in parenthesis is a maximum at x = 0).

Therefore the boundary is defined by :

AQ AL _ yc + ye
PL thAL 2

Since one knows that only pure elasticity, elastic shakedown and alternate

plasticity can occur for this Iwan model a complete description of the pile
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behavior under cyclic loading can be given as in Figure 3.3.25. :

Q
- DIyc r- .

T c PL th tXL
XL

lasticity

S

E A

ryePL thXL th XL
y eP L XL rycPL L

TycPL

Figure 3.3.25 Recap of the results of the pile example.

Even though this is an over-simplified example, it shows the kind of results

that can be obtained from shakedown analysis for the type of pile models of

interest. The information it provides is far less complete than the one

deduced from the study of Iwan models. Applications of shakedown analysis to

the case of two independant external forces are given in Appendix 3.A.

(
I
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3.4 BACK TO THE DESCRIPTION OF THE PILE MODEL

The composite action of the DSS zone and of the elastic zone on

a pile nodal point is traditionally handled through the concept of "t-z"

curves. These "'t-z" curves are relationships between the absolute displace-

ment, di, of the pile nodal point # i and the force, fi, applied by the soil

at this nodal point. Such curves have been evaluated from monotonic tests

on piles 122 and have been semi-empirically adapted to the analysis of the

axial behavior of piles in clay and sand in general 1571. An example of a

set of "t-z" curves for clay is presented in Figure 3.4.1.

-,
C

-J

2.5

2.0

1.5

1.0

0.5

0
0 0.05 0.10 0.15 0.20

Pile movement (in.)
0.25 0.30

Figure 3.4.1 "t-z" curves.

(From Ref. 221).

i I
Curve A for 0-10 ft
Curve B for 10-20 ft -
Curve C for 20 ft'

Curve C

- .
-

i l

_ I54r

B~~ A

I l

I



127

It is important to recognize that the "t-z" curves were originally

established without consideration of the residual stresses existing before

loading was applied. The use of the "t-z" curves therefore implicitely

assumes that these residual stresses can be ignored during the loading. In

other words the "t-z" curves are treated as first-loading curves. The "t-z"

curves are in effect the first loading curves of the Iwan models composed

of the DSS zone assemblages and the elastic zone springs.

The construction of "t-z" curves is an empirical procedure. The first

step is to estimate the ultimate skin friction along the pile. Quoting from

Kraft et al. 1571, "ax is computed in the same way as it would be for shaftmax

friction in pile capacity computations, but some discretion should be used to

select the distribution of T along the pile". This very delicate stage
max

can, unfortunately, not be avoided. In a second step an estimate of the

original slope of the "t-z" curve is made on the basis of elastic theory

1911. Analysis of the shearing of concentric cylinders of soil yields the

following relationship :

T r r
o o m

z - InG l

where, z is the displacement,

T the shear stress at the pile wall,
o

r the pile radius,

G the soil shear modulus,

r the distance from the pile axis to a boundary where displacements
m

are considered to be zero.

It is usually assumed that r is of the order of 10 to 20 r , so that

m willvary between 2 and 3. The initial slope of the "t-z" curve for a

0
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unit length of pile is therefore taken as where X varies between

2 and 3. The shape of the "t-z" curve between the origin and the ultimate

value of t is still not well defined. Many researchers 1701 have found that

the "t-z" curve exhibited an almost elasto-perfectly-plastic behavior. One

very consistent observation made on experimental "t-z" curves is that

mobilization of the ultimate skin friction occurs for pile displacements

of the order of 1 % of the pile diameter 170I. In clay the range of

z /2 r seems to be between 0.5 % and 1 %. It is important to note that
max o

this relationship was obtained over a very limited range of pile diameters

and it is only assumed to hold for different pile diameters 701 such as

those encountered offshore.

The estimation of "t-z" curves by a rational analysis is one of the

objectives of present research on the behavior of piles. This work requires

the study of the stress and strain conditions existing during installation,

consolidation and loading 71. Kawvvadas 531 recently studied the case of

a pile in normally consolidated Boston Blue Clay (BBC) on the basis of both

the strain path method 17 - used to model the installation - and of a

new soil model 1531. Figure 3.4.2 presents some stress-strain relationships

corresponding to direct simple shear undrained conditions computed* at

different distances from the pile wall. Several observations can be drawn

from this figure. First the ultimate skin friction predicted by this model

corresponds to approximately 50 % of the CK UDSS shear strength on NC Boston

Blue clay (for which T trength/Cvo = 0.22), i.e. the a-factor is equal to 0.5

* These results are theoretical.
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Direct simple shear.

(Loading of pile).

BBC.
Normally consolidated.
Installation : strain path method.
Model : Kavvadas (1982).
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Figure 3.4.2 Stress strain relationships for DSS specimen at
several distances away from the pile corresponding
to pile loading conditions.

(Private communication from Kavwadas).

0.20

0.15

0
lb

I.

0.10

0.05

u

04

1



130

(if the DSS strength is taken as the value of C in a = C /Cu, Ca being the

adhesion or the ultimate skin friction). Secondly, there is a marked variation

of the stress-strain diagrams with distance from the pile wall.

One way of interpreting these predictions is to consider the stress

distribution existing when the ultimate skin friction is reached. A good

estimation of the shear stress distribution away from the pile is given by

Tr = o , ro, where r is the pile radius, T the shear stress at the pile wall

and T the shear stress at a distance r from the pile axis. The relationship

allows us to locate the points corresponding to T = strength along each

curve of Figure 3.4.2. The plotting of these points indicates clearly that

the soil remains essentially linear elastic as close as one radius away from

the pile wall (r = 2 r ). In other words these results justify the distinction

we have made in the Pile Model between the DSS zone and the elastic zone.

This observation leads to the proposal of a simple construction for the

"t-z" curve. The DSS zone is associated with a DSS stress-strain relationship

normalized to the ultimate skin friction - let us call it T = f (y) - while the

elastic zone has a shear modulus G*. The stiffness of the elastic zone is taken

as 2 G/X. Let us now consider Figure 3.4.3.

The displacement of the DSS zone is equal to the DSS strain, y, multiplied

by the DSS zone width. This width is adjusted so that the ultimate skin friction

is obtained for a total displacement z roughly equal to 1 % of the pile diameter.

The displacement of the DSS zone is then given by : Zdss = * widthDsS = f -

(T) * widths or : Zdss = f * widthDSS with A equal to the pile surface

* This G is the equivalent shear modulus of the whole (linear) elastic zone.
While the ratio G./a for y = 10 -3 is roughly 100 for NC BBC the (equivalent
G/a ) was calculate to be 16 when the curves of Figure 3.4.2 are integrated
between r = r and 4 r.

o o
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t0

nox

Z

- 0.02 ro

Figure 3.4.3 Construction of "t-z" curve.

area on wich T is applied. The equation on the "t-z" curve is then given

as a function of t as :

2f-1 A widhDSS

An almost elasto-perfectly-plastic "t-z" curve of the type previously

observed in practice corresponds to a very narrow DSS zone width. The Pile

Model is perfectly compatible with this construction. Now the last question

we need to answer is : given a stress-strain relationship for the DSS zone

how can we construct the Generalized P-body which will represent this

zone ?

The answer is quite simple. First integrate the stress-strain curve

in the DSS zone by considering the area A on which T is applied and the width

of the DSS zone. This yields a force-displacement relationship for each DSS
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zone, which is then approximated by a multi-linear curve. The last step is

to decompose this multi-linear relationship into elementary elasto-perfectly-

plastic springs (or Prandtl bodies, but expressed in terms of forces and

displacements). The algorithm used is as follows. At point I of Figure

3.4.4 the change of stiffness is equal to the stiffness of the P-body that

just yielded, therefore :

Fi+

Fi

Fi I

0
Di-I Di Di+I D

Figure 3.4.4 Algorithm used in the decomposition in Prandtl bodies.

K. = Fi-Fi 1.. F+ - Fi
1 D - D 1 D i+ D

The strength of this P-body is simply equal to K D.. There are as many1 c
P-bodies as there are points where the slope changes.
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We have now gathered enough information concerning the Pile Model

to envision the next critical element of our procedure : the Soil Degradation

data. As a mean of concluding this chapter and introducing the next one,

Figure 3.4.5 recaps some of the key information we have obtained by up-dating

Figure 3.1.1 and by answering the questions we asked at the beginning of the

chapter.

D

A

Pave t-

In

Figure 3.4.5 Update of Figure 3.1.1.

!

# PyC

IV
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Are we going to reach cyclic stabilization ? and, if so, when is it going

to occur ?, and after how much strain ?

Cyclic stabilization to a closed loop, which is convex

and symmetrical with respect to its center, occurs after

one-and-half cycles of loading. Furthermore, when the pile

model is symmetric in tension and in compression the

equation of the first-defbrmation curve is directly applicable

to the unloading and reloading branches of the closed loop

with a scaling factor of two. The strains accumulated until

stabilization are therefore always finite.

Can the pile constitute a mechanism, that is can a tension pile (as represented by

the Pile Model) be pulled out by application at its top of a cyclic loading

which never reaches the pile's ultimate capacity ?

No, such behavior cannot be represented by the present model.

Cyclic degradation will have to be introduced in order to

permit this type of evolution to be predicted. Such is the

purpose of the next chapter 4, which will detail the soil

behavior during periods such as zones O and of Figure

3.4.5. Chapter 5 will then explain how the soil-pile

parameters are modified to account for the physical changes

occuring during one of these periods of cycling, so that

the Pile Model can be used again - as shown by curve DEFG -

to prepare for a new package of loading.
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4. CONTRIBUTION OF AVERAGE SHEAR STRESSES TO THE CYCLIC DEGRADATION OF CLAY

4.1 BACKGROUND

As observed in the introductory chapter, an important characteristic

of the stress tensor applied to the clay surrounding the piles of a TLP

during a storm is the existence of a sustained (or average) shear stresses,

Tave, on the very plane where the cyclic shear stresses, Tc are applied.

Moreover it was also suggested that the "consolidation" shear stress, TIcons'

applied during the calm sea state preceding the storm may play an important

role as well on the cyclic behavior of this clay.

During the passage of the storm the distributions of ave and T along

the pile will change as a result of degradation. However from a practical

point of view the composite action of the three shear stresses (cons'

Tave' Tc) - two of them being time dependent - on the cyclic behavior of the

clay is yet intractable. Thus some restrictions must be imposed to reduce

the number of parameters while hopefully maintaining the essential character-

istics of the problem, and our choice in this study is to limit ourselves to

the case where T = throughout the loading.
ave cons

This situation corresponds to that of an infinitely rigid pile embedded

in an uniform profile of normally consolidated clay with normalized behavior

(Figure 4.1.1). Since the same shear strain is common to the whole pile,

the local shear stresses are proportional to the vertical effective stress

a at all time, and they are also proportional to the force applied to the
vo

top of the pile. The average force being constant, it directly results that
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P ( Pave constant)

Tmin

TaVe Tcons

Figure 4.1.1 Rigid pile in uniform NC clay exhibiting
normalized behavior = Tave cons
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T = everywhere along the pile. Hence the proposed approach
ave cons

corresponds very well to the case of the stiff piles used in the cyclic

tension tests reviewed in Chapter 2. This "rigid pile approach" is viewed

as a reasonable starting point but it is clearly understood that future

consideration of very flexible piles will require a refinement of this lim-

ited data base. It should however be noted that the model which will be

presented later does allow for a variation of Tae', and T , during the load-

ing, but it will be assumed that for any value of Tave one can use in some

way degradation data obtained from a cyclic test run with Tcons equal to

this very Tave

Several researchers 194, 39, 411 have already been working on the

effect of T and T on the cyclic behavior of clay but nobody has yet
ave cons

presented a clear description of it or of the = c case, most of
ave cons

the results being related to only one value of T per clay. All of the
cons

tests were conducted with cyclic triaxial apparatuses.

In order to clarify the research background let us quickly review some

of the key results available today. In a remarkable paper published in

1966, Seed and Chan 1941 presented the first extensive report on this sub-

ject and actually set much of the presentation framework that will be adopted

for the display of our results. Their study was based on a series of CIU

triaxial tests run on three NC clays* by maintaining constant Tave and Tc

during each test (which was therefore characterized by a couple (Tave T c)

and cons = 0.). The results are presented in a set of (Tave , Tc) coordinates

* Vicksburg silty clay, Pittsburg sandy clay and San Francisco Bay Mud.
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both normalized by the static strength, so that each test is associated with

one point, which in turn can be assigned a test variable such as, for

example, the number of cycles required to reach failure*. Lines can then be

fitted to represent the conditions of failure in any given number of cycles,

as shown in Figure 4.1.2.a and b for N = 1, 10 and 100. When T = 0, failure
C

occurs for equal to the static strength, and for a given value of T
ave ave

fewer cycles of loading are needed to reach failure as Tc is increased. The
c

ordinate axis corresponds to T = 0 and hence to a symmetrical application
ave

of shear stresses around zero.

c, . - -- .I i U"4. ,.. t,., ,'" t. a............ e/.. 
-e:,, ¢~*~, , f. ·

K I- ...... _ ....... L b

In~i- , -i- I
e. )q 20 5 . ,( - e Figur e , ,1., , of i

Fiur 4.' i oT
.} .: ; to MS~~sto )t~r- lJu eSascn

Fiur 4.1. Cobiaton o 

5,,,,.,-(- -rr '.,~1·

ve 

and causing failure.

(1941).

* Their definition of failure is not stated explicitly.

_w . -____
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It is also interesting to note that all the points placed above the

diagonal, i.e. with Tc > aves correspond to "two way loading" and reversal

of the shear stress sign, whereas the points below the diagonal are associ-

ated with "one way loading" in which the shear stresses are always of the

same sign. The diagonal itself corresponds to T = T , and thus to

Tmin = 0. The cyclic stresses can be larger than the static strength due

to the high strain rates used during the cycling.

In place of reporting the number of cycles to failure one can more

generally study the number of cycles required to reach any given strain.

The resulting fitting lines are shown in Figure 4.1.3 in the case of 10

and 100 cycles, but since these particular results were obtained with an

apparatus which could not apply extension to the triaxial specimen all the

points positioned above the diagonal should really be reported on the diag-

onal as for any other test for which T . = 0*.
min

Several researchers, among which it is worth mentioning Houston and

Herrmann 1451, and Hicher 1411, have since then presented results concerning

the same subject. As schematically shown in Figure 4.1.4, Houston and

Herrmann used mostly anisotropically consolidated specimens (with one K

value imposed for each clay) whereas Hicher started with isotropically

consolidated specimens.

Houston and Herrmann reported their results for four marine clays**

of various origins in the same form as Seed and Chan using a (Tave' Tc)

* Similar results were obtained by Ellis and Hartman 1281.
** Atlantic and Pacific hemi-pelagics, Pacific pelagic clay and San Francisco

Bay Mud.
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coordinate system and plotting failure* lines corresponding to three

different number of cycles (30, 300 and 30 000), as shown in Figure 4.1.5.

For the three clays that were anisotropically consolidated and for each of

their failure curves there appears to be an optimum value of ave, different

from zero, at which there is a maximum resistance to cyclic degradation.

For the values of K used (0.45 and 0.55) it seems that these maxima occured

for a value of approximately 20 to 25 % lower than T cons, with a ten-
ave cons

dency for the higher-number-of-cycle-curves to have a higher value of opti-

mum . A possible interpretation of this phenomenon is suggested in
ave

Figure 4.1.6 where the maximum-resistance-T corresponds to an approachave

of the effective stress strength envelops simultaneously in extension and in

compression, whereas rupture of an anisotropically consolidated specimen

sheared around T = is likely to occur in compression, and for
ave cons

Tave = 0, in extension.ave

In the case of the San Francisco Bay Mud the failure curves obtained

by Houston and Herrmann (Figure 4.1.5.d) are quite similar to those of Seed

and Chan (Figure 4.1.2.a) which however show a much quicker degradation**.

It is worth noting that a non-zero Tave value corresponding to a maximum

resistance to cyclic degradation may also exist for some isotropically consol-

idated NC clays. Some evidence of this fact was furnished by Seed and Chan

with Vicksburg silty clay 94 , and by Hicher 41 1 with argile noire for

which a given value of T was found to be more destructive with Tave = 0

* Defined as 10 % axial strain.
** May be due to a variety of reasons : different definition of failure,

different sampling, preparation and testing techniques, etc...
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than with T = T , but there is however no clear confirmation of these
ave c

results.

Hicher also emphasized the fact that, for a given value of a the

cyclic shearing gets more destructive as the value of T increases, which

seems to be in agreement with all the available data.

Such is approximately the extent of our understanding of the

contribution of Tave' T and T to the cyclic behavior of clay. At the

present time no information is available for the Tave = Tcons case for one

clay and for more than one value of T ns However the phenomena that have

already been observed may prove useful in the future when deviations from

the T = situation will be studied.
ave cons

Even though many different clays have been tested under various

conditions, a comprehensive synthesis of the available experimental results

has not yet been made. This situation can be partly explained by the

sensitivity of the results to the nature of the clay and to the applied

stress system, but it is also true that very few programs have been large

enough, and systematic enough, to present a satisfactory overview of the

cyclic behavior of one specific clay. The unchallenged example of such a

comprehensive study is the 1975 program led by NGI concerning the repeated

loading of Drammen clay under the supervision of Knut Andersen 2 , 4 .

Yet the 1975 program dealt with limited cyclic loading conditions and the

aspect of soil behavior that we are concerned with was not examined even

though the original testing program called for tests, later cancelled, of

the type that we shall consider. The present program was tailored to fill

this specific gap while capitalizing upon the experience previously accumu-

lated by NGI.
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In order to meet this objective, a series of simple stress-controlled

DSS tests was performed during which K-consolidated specimens were incre-

mentally loaded and allowed to consolidate and creep under a constant shear

stress, T . The same specimens were then cyclically sheared at constant
cons

volume with an average component of the shear stress, T, equal to T oave' cons

The time history was modelled after the field conditions. The loading

stages are schematically represented in Figure 4.1.7 where one also finds

definitions of the notations* to be used in this work.

O

Lu
I I ' TIME

Ko - consolidation drained
I I creep
I I

" drained" shear

Figure 4.1.7 Shear loading and notations.

* Note that the deformations are defined by the envelopes.

ro
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The average strain ave is the total average strain resulting from the

application of T and from the cyclic degradation. The choice of each

test loading characteristics was dictated by our desire to cover a wide

range of different couples (ave' Tc). In order to visualize this range,

extensive use will be made throughout this thesis of the plane of Seed and

Chan having normalized values of T and as axes. The normalizing
ave c

factor is the DSS shear strength, Tstrength, of a K-consolidated specimen

of undisturbed Drammen clay, with ' = 4 kg/cm2 (392.4 kN/m2) which was
vC

common to all tests. Drammen clay has a normalized behavior with

(strength/C'o )NC = 0.215, so that Tstrength =4 * 98.1 * 0.215 = 84.3 kN/m.

1.0

0.9

0.8

0.7
4-

0.6 =0

4-

0.5 ..

0.4 -,

0.3

0.2

0.1

(3

Tove /Tstrength

Figure 4.1.8 Test stress range.
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Figure 4.1.8 shows the location of the test points in this plane. It is

very important to note that the 1975 program covered the behavior of the

clay along the vertical axis (T c-axis). This axis corresponds to a symmetric

loading where T varies from + c to - Tc which is the case of a classical

cyclic DSS test. Values of Tmax and Tmin can be read directly from the
max min

figure.

The organization of chapter 4 pursues the following steps.

In the next section we shall comment on the test conditions of the specimens,

and the loading program including the K -consolidation, the static shearing,

the drained creep, and the cyclic shearing. The results from the cyclic

shearing will be the subject of a section of its own, then' we shall give a

global representation of these results permitting a synthesis of the behavior

of the clay over a wide range of loading. Ultimately some comments and inter-

pretations of some key results will be developed. Pertinent data for each

step will also be presented in the appendices.

All the tests were run by the author in the laboratory of the Norwegian

Geotechnical Institute (NGI) in Oslo.
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4.2 TEST CONDITIONS

4.2.1 Equipment

The equipment is composed of three parts which are first the DSS

apparatus adapted for stress-controlled loading, secondly the height

control mechanism and finally the data acquisition system. A general

view of the set-up is given in Figure 4.2.1 where one can see the classical

h.12 Geonor DSS as well as the loading system and the height regulation

circuit (LVDT, Regulator and Motor).

4.2.1.A. The DSS apparatu

Two holes were drilled in the base of the apparatus near the center

in order to accommodate a set of cables, between the pulleys and the hanger

on the right side of the specimen. On the left side of the specimen one

sees a contact box, and a piston* acting under the left hanger. The princi-

ple of the application of the cyclic shear is the following. In the config-

uration of Figure 4.2.1 the left hanger is not in contact with the contact

box ; the piston is in its upper position and supports totally the left hang-

er and its load. The only weights applied on the left are those on the load

cell, the contact box and the vertical portion of the cables. These weights

can easily be balanced by applying an appropriate counterweight on the right

hanger, taking also into account the weight of the right hanger itself and of

the vertical sections of the cables**. The additional load applied on the

* In fact we have a set of two pistons, the upper one controlling the
"stiffness" of the pulse and the lower one controlling the vertical
displacement and the period.

** All the pulleys are virtually frictionless.
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I - -water
supply

The experimental set up.Figure 4.2.1
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right hanger is applied directly to the specimen and the membrane.

Knowing the correction for the membrane horizontal deformation and the area

of the specimen (A = 50 cm2) one can easily obtain the shear stress applied

to the clay. This shear stress corresponds to T since we associate a
max

positive sign to stresses inducing a deformation towards the right.

Let us now imagine that we lower the piston enough to establish

contact in the contact box and thus we totally lose contact between the

piston and the bottom of the left hanger ; this action insures that the

left hanger and its load are now acting against the loads applied on the

right. The net resulting stress applied on the clay is T in. The shape of

the pulse (trapezoidal) and the period (10 seconds) are imposed by

controlling the displacement, stiffness and speed of the pistons.

4.2.1.B. The height contAro mechanism

The cyclic loading was imposed at a constant volume. Since the

membrane cannot expand much laterally*, our only concern is to maintain the

height of the specimen constant. In order to do this we have placed a ver-

tical LVDT between the base of the apparatus and the top cap; the reading

in mV is transmitted to a regulator which will activate the motor when spe-

cific bounds are reached. The motor will act directly to modify the dis-

placement of the level arm and thus that of the specimen top. We can

control both the range of allowable variation of height and the speed of

the corrective action.

4.2.1.C. The data acquisition system

This system is not represented on Figure 4.2.1 but one can see the

* A maximum of 0.2 mm extension of the diameter is accepted.
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location of the transducers. Three channels are continuously recorded on a

strip chart.

Channel 1 corresponds to the vertical load applied to the specimen.

This load will be converted into a reading of vertical effective

stress and, by difference, into increments of pore pressure during

the cyclic loading.

. Channel 2 is associated with the load acting on the left side of

the specimen. It is used to control the pulse shape and the period.

· Channel 3 is connected to a horizontal LVDT giving the lateral

displacement of the top cap, and ultimately the lateral deformation.

Two complete set-ups* were available and have been used in parallel.

4.2.2 Clay and specimen

NGI provided undisturbed plastic Drammen clay from a site and a depth

compatible with the 1975 testing program as shown on Table 4.2.1.

Sampler
Site Depth diameter

1975 program Museumsparken, 6.6 - 11.2 m 95 mm
Drammen.

1982 program Danviksgt.50301, 7.0 - 7.5 m 200 mm
Drammen.

Table 4.2.1 Origin of the clay.

* Apparatuses #i 4 and 5. Note also that the same membrane was always used
with the same set-up. The tests with an even (resp. uneven) number were
run on apparatus 5 (resp. 4).
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The profile corresponding to the borehole from which the 1982

specimens were obtained is given in Figure 4.2.2. Other site descriptions

including a profile of the Museumsparken site (1975 program) and a list of

typical Drammen clay properties can also be found in Appendix 4.A. (Some

key properties are also reported in the summary of the test conditions of

Table 4.2.2).

The cylindrical specimens have an area, A, of 50 cm2 and an original

height, ho, of 16 mm. They were cut with their flat surfaces parallel to

the ground surface (perpendicular to the axis of the sampling tube). The

porous stones were equipped with 1.3 mm long anti-slippage pins placed in

a regular square pattern at 5 mm intervals. The membranes are made in

Ni alloy ("iron-nickel") by Geonor. They have an index of rigidity, asso-

ciated with the wire type and the thickness of the rubber, C = 1.3*. Final-

ly the pore water salinity was taken as 25 g/l**. The preparation of the

specimens followed exactly the NGI procedures. The originality of the sam-

ples was their unusual size : 200 mm in diameter. We worked with two orig-

inal cakes of clay which each gave six specimens (specimens O to

where obtained from cake 39-2, while specimens C to O came from cake

39-1). The details of the preparation are given, and commented on, in

Appendix 4.B. The index properties obtained at the same time*** (w, wL,

Wp, PI, and fall cone strengths) are reported in Table 4.3.1, Figures 4.B.3

to 4.B.5, and Table 4.B.1. These results show that the two cakes correspond

* To be used in the corrections for membrane deformation, both vertically
and horizontally.

** The drainage tubes of the caps are saturated with water before the
cyclic loading.

*** The Atterberg limits were obtained independently by NGI personnel a few

days after the end of the testing.
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to slightly different clays - and probably to somewhat different disturbances.

We shall later come back to this apparent discrepancy.

4.2.3 Loading program

As already mentioned the loading program was designed to simulate a

simplified field situation in which a pile is first installed and the soil

is allowed to consolidate around it (K -consolidation). The tension legs

are then attached to the foundation ("drained" test*) and the pile is sub-

jected to sustained tension (drained creep) until a storm loading occurs

(cyclic loading**). A typical loading schedule is given in Figure 4.2.3.

Time in hoi

0 2 4 6 8 10 12

1, ,I I DRAINED C

K -CONSOLIDATION DRAINED SHEAR
0

urs

14 16 18 20 22 24

R E , I

REEP I

CYCIC

CYCLIC

Figure 4.2.3 Loading schedule.

Let us now analyze this loading schedule one step at a time.

* The term "drained" test is used to describe a loading during which
the volume of the specimen is not maintained constant.

** The time required for consolidation being much smaller for piles than for
gravity structures, it was considered that the typical large storm would
occur after some drained creep.

26 28

-
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4.2.3. A. Consolidation

Again the NGI procedure was used. The clay was subjected to a

final ' = 4 kg/cm2 (392.4 kN/m 2 ') applied in 4 steps (0.5, 1, 2 and

4 kg/cm2 ). Each step was maintained for 30 minutes except for the last

one which lasted 30 minutes + 2 hours, at which time the drained shear

was applied. All specimens are normally consolidated, Details of the

procedure are given in Appendix 4.C.1. The maximum past pressure** is of

the order of 1 kg/cm2. The curves ( versus log a vc) of Figure 4.C.1

clearly indicate again a slight difference of behavior between the two

cakes. At the high final value of a' used, differences due to sample
vc

disturbance are believed to be minimal. It is important to realize that the

differences between specimens must have been also observed during the 1975

program***. These variations are therefore considered implicit in the res-

sults of K. Andersen et al., and as such should not be a source of concern

in the present attempt to expand their data base.

4.2.3. B. ained heae and cretep

The shear load applied to the specimen was increased by 4 kg every

6 minutes (the increase of the shear stress was therefore 4/50 = 0.8 kg/cm2

(or 7.85 kN/m2) every 6 minutes). The maximum shear stress, T was
cons

attained in roughly 30 minutes. It was then maintained for a total period of

19 hours before the start of the cyclic loading. Details such as the

* Well beyond the maximum past pressure of 100 kN/m2 (see Figure 4.2.2).
** See discussion on the apparent preconsolidation pressure, pc, and aging

by Bjerrum L.

*** No real comment on this question is however available in the literature.
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deformations reached at the onset of cyclic loading are given in

Appendix 4.C.2.

4.2.3.C. Cyc&ic toaing

The pulse imposed was trapezoidal in shape as shown in Figure 4.2.4

and the period was 10 seconds (except for test 2 and 12 for which the

period was 12 seconds). The loading was limited to 2000 cycles or to a

failure condition defined either by yave reaching 15 %, or y reaching

3 % (based on the end of K -consolidation height). Two types of tests
o

have been realized : 10 simple degradation tests with constant (Tave , Tc
)

and 2 variable cyclic loadings. In an effort to check our capacity to

reproduce the results, two of the simple degradation loadings were

duplicated, and the first 175 cycles in the variable cyclic tests are

also identical. Let us now consider the results of this cyclic program.

(A summary of the tests conditions is presented in Table 4.2.2).

max

L ___

- 11ill

2s. 2s.

3s. 3s. 3s.
period 10 s.

TIME

Figure 4.2.4 Pulse shape.

T A

IF
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Plastic Drammen Clay

Depth = 7.3 m Sa.

cf = 0.6 kg/cm 2

VO

linity 25 g/l 

O' - = 1.0 kg/cm 2

vm

Initial height: h = 16 mm Area: A = 50 cm2

Filter pins: Length = 1.3 mm Spacing = 5 mm

Ni alloy membrane (C = 1.3)

K -Consolidation
--

To a Normally Consolidated State

in 4 steps of 30 minutes to o = 4 kg/cm 2

Drained Shear

Drained Creep

Cyclic loading

2.5 hours after the end of K -consolidation
0

0.08 kg/cm2 applied every 6 minutes to T
cons

Under c
cons

and a' = 4 kg/cm2
vc

24 hours after start of K -consolidation
0

trapezoidal pulse, period 10 seconds

DSS stress-controlled tests with T = T
ave cons

Table 4.2.2 Summary of test conditions.

Clay

Specimen
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4.3. RESULTS OF THE CYCLIC TESTING

The exact locations of the tests in the ( , Tc ) plane are shown in

Figure 4.3.1 ; also reported are the test numbering* and the eventual fail-

ure (F) with their associated number of cycles or the number of cycles at

which the test was stopped. Another very useful summary of the program is

given in Table 4.3.1 where the essential test parameters have been reported

for all stages of the loading. Table 4.3.2 gives the details of the shear

stresses applied during each test.

All failures occurred in an "average deformation mode", i.e. y **

reached the failure criterion of 15 %. However it should be noted that the

cyclic deformation failure criterion of 3 % was simultaneously attained with

tests ®, ® and ®. The number of cycles to failure proved to be rather

insensitive to the ave failure criterion since rupture - the rapid acceler-

ation of the degradation to the complete destruction of the specimen -

occurred over a rather limited number of cycles.

* Which corresponds to the chronological order. The "best" cake was first
used, and a simple diamond shape grid was covered by tests Q, Q, 
and . To insure a good link with Andersen's results, the duplicate

tests and were run. With the second cake the initial grid was
expanded to tests 7 and ®, before the variable cyclic tests 9and
1~ were completed. Finally, since more time was available, test -

was selected at low stress level and test attempted to duplicate
test .

** Once again y is the result of the combined effect of the drained creep
and the cyclaeloading.and the cyclic loading.
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c / ave/
Test Tmax Tmin st t St Tave
Number kN/m2 kN/m2 in % kN/m in % kN/m2 Cycle range

1O 75.93 25.31 30 25.31 60 50.62 o - end

O 84.37 16.87 40 33.75 60 50.62

O 84.37 0 50 42.18 50 42.18

O 92.80 - 8.44 60 50.62 50 42.18

O 75.93 - 16.87 55 46.40 35 29.53

75.93 - 16.87 55 46.40 35 29.53

O 192.80 25.31 40 33.75 70 59.06

92.80 8.44 50 42.18 60 50.62 0 - end

75.93 25.31 30 25.31 60 50.62 0 + 98
300 3 349

84.37 16.87 40 33.75 60 50.62 100 149
174 223

150 - 173
92.80 8.44 50 42.18 60 50.62 225 + 298

350 - end

0 + 101

75.93 25.31 30 25.31 60 50.62 2 08 307

452 end

102 - 152

84.37 16.87 40 33.75 60 50.62 198 207

308 - 357

G . i I ) 153 -+ 177

92.80 8.44 50 42.18 60 50.62 188 - 197
358 - 402
408 - 450

101.24 0 60 50.62 60 50.62 178 + 187
403 - 407

O 75.93 8.44 40 33.75 50 42.18 o - end

O 184.37 16.87 40 33.75 60 50.62 o - end
_____ 50.62__0___en

Table 4.3.2 Shear stresses aDDlied.
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The strip charts generated for each test will not be provided here,

but tables presenting the observed deformations and pore pressures at spe-

cific numbers of cycles can be found in Appendix 4.D for each test. All

the tests were run with a 10 second period except for D and X for

which the period applied was 12 seconds. On the basis of past NGI experi-

ence the difference is believed to be of little importance in this study.

The results will also be presented in the form of graphs of deformations and

pore pressure versus time. On these graphs the mean excess pore pressures

have been indicated by dashed lines and are reported in kN/m 2. The defor-

mations are represented by the envelopes of ax and ymin (expressed in %

of end of K -consolidation height).
o

The results of the simple degradation tests are reported in Figures 4.3.2

through 4.3.5. Figure 4.3.2 covers the high number of cycles range,

while Figure 4.3.3 deals with more rapid failures. Figures 4.3.4 and 4.3.5

relate specifically to the tests which are duplicated. A few observations

can be made on the overall behavior;

all tests presented a very similar evolution both in deformation

and pore pressure,

as already mentioned the average component of deformation becomes

far larger than the cyclic one, which. does not vary much even upon

reaching the rupture zone,

there is a clear change of curvature of the deformation versus

time curves, with the possibility of an intermediate linear region*,

* This trend can be compared to the evolution of deformation during creep tests.
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the pore pressure curves show a very rapid increase followed by a

slower, almost linear, region.

It is not very easy to compare the test results amongst themselves in

this format of presentation and, a fortiori, to interpolate or extrapolate

the results to new stress conditions. As a matter of fact this is precise-

ly our argumentation for developing the interpretation of the next section.

The traditional way to compare the tests is to plot on one graph test param-

eters associated with a constant stress characteristic (Tave, Tc' Tmax or

Tmin ) ; this corresponds to studying tests placed on vertical, horizontal or

diagonal lines of Figure 4.3.1. Examples of such a procedure can be found

in Appendix 4.E.

Duplicate tests and ® agreed very well (Figure 4.3.4). They

were run on the same cake quarter (see Figure 4.B.2 in Appendix 4.B) and in

parallel (i.e. with the same know-how on the part of the author). On the

other hand tests and G yielded quite different responses (Figure

4.3.5). It has been decided to discard the results of test for two

reasons: a marked heterogeneity and a lack of compatibility with neighbor-

ing tests. Details of this comparison are presented in Appendix 4.E.

Variable cyclic loading was imposed during tests ® and Q by

rapidly changing the loads at given values of N on both sides of the DSS

apparatus*. The results of these two tests are presented in Figures 4.3.6

and 4.3.7, and will be analyzed later in this chapter.

* Special thanks to Dr. Suzanne Lacasse.
By comparison, during the 1975 program the cycling was interrupted at
each load level change to allow for weight ajustment.
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Note the good agreement in the two tests over the first 175 cycles during

which the same loading is applied. Also, as a first indication of their

coherence with other tests, Figure 4.3.8 shows a comparison between test

with segments of tests and G corresponding to the same loading. The

overall fit appears to be satisfactory. It is also very interesting to

observe the marked steps in the evolution of the pore pressure each time

the loading is reduced, and the clear increases that occur when the applied

stresses recover their past highest value.

A few words should be said on the evolution of the cyclic shear modulus

(defined as T /Yc). The curves obtained by K. Andersen for 100 and 1000

cycles are replotted on Figure 4.3.9 together with our data. It should be

pointed out that our measurements are less accurate since we are studying a

wider range of deformations. It appears however that our results are

consistent with the 1975 observations ; they follow the trend and lie below

the two lines as should be expected since the level of shearing is higher.
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4.4 SYNTHESIS OF THE RESULTS

There is an evident need to organize the previous results in a

physically coherent and practical manner. It would certainly be very helpful

to find a graphic representation allowing for easy interpolation and even

extrapolation from our data base. The concept of 3-D strain contour

diagrams can be used in this purpose as shall now be shown.

The 3-D (three dimensional) contour diagrams are simply an extension

of Andersen's 1975 strain contour diagrams to a third dimension, the average

shear stress. Let us first recall Andersen's plotting procedure. In a

(normalized) T versus log N plane one reports for each test - i.e. along

lines of constant Tc - observed values of Yc at specific N. Examples of

this operation can be seen in Figure 4.4.1. Also shown in the same figure

are curves joining points associated with given values of yc (e.g. 0.15 %

and 0.5 %). These curves form a "strain contour diagram". They can also

be seen as S-N curves in a fatigue study.

Since our tests are not characterized by T only, but by a couple

(Tave TC), it seems logical to add a third dimension to Andersen's repre-

sentation : the (normalized) Tave value. The corresponding axis will be

perpendicular to Andersen's plane. The same procedure as above can then

be used to report experimental readings of ave' for example, at given

values of N along a line corresponding to a fixed couple (ave' Tc). By

joining points associated with equal Yave one can then create surfaces.

These surfaces form a "3-D strain contour diagram", by analogy with

Andersen's appellation. This particular 3-D strain contour diagram will

also be referenced to as the iso-y (surface) network. Of course similarave
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surfaces can be obtained for Yc ; they will form the iso-yc (surface)

network*.

Since it is not very easy to graphically represent a network of

surfaces, cross-sections at specific values of N will be used, which corre-

spond precisely to the planes (Tave, Tc) introduced earlier in this chapter.

In these planes one will see networks of iso-deformation curves which will

also be called - abusively perhaps - the iso-yave and iso-yc networks. Let

us now study how these networks can be obtained from our data.

4.4.1 Iso-yc and iso-yave networks

The basic results of section 4.3 are replotted in the form of cross-

sections of the 3-D strain contour diagrams for N = 50, 100, 200, 500 and

1000 cycles. At each number of cycles we present the iso-yc network corre-

sponding to y = 0.15, 0.25 and 0.50 %, as well as the iso-yave network for

yave = 2.5, 3, 4 and 6 %. Andersen's results, as presented in Figure 4.4.1

are reported on the T axis on the iso-yc networks. It will be seen that

they agree very well with our present set of data. Figures 4.4.2 to 4.4.6

show these networks superimposed on the test points with their associated

deformation values (underlined). The letter F indicates a specimen failure.

As already mentionned these failures occurred in the average deformation mode

and should be interpreted as such even on the iso-yc networks.

The iso-yc networks are not very sensitive to change in Tave, except

for very large values of Tmax (of the order of 100 % of T strength) We

shall come back on this phenomenon in the next section.

* We could have iso-a x iso-ymin , iso-pore pressure... networks.max" min'
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The iso-yave networks are represented with an accumulation point on

the T -axis (see also next section for interpretation). It is believed that

the locus of the accumulation points corresponds to an imaginary curve on

Andersen's plane (Figure 4.4.1) towards which the iso-yc network converges

for large yc. Along the T axis, and for all N values, the iso-yave

networks are consistent with the deformations obtained at the end of the

drained creep, which requires the assumption that the undrained creep

occuring during the storm loading is negligible. The locations of the 4 %

and 6 % points had to be extrapolated (see Figure 4.C.3). It can also be

seen on Figures 4.4.3 through 4.4.6 that curves extrapolating the behavior

to Yc = 3 % and to c = 15 % ("failure") have been added (they will be

needed to define a complete data base for the future estimation procedure).

4.4.2 Degradation of the iso-y network

Let us now consider the degradation with time of each specific iso-

deformation curve by first superimposing on one diagram all the iso-yc

curves corresponding to a given y (e.g. 0.5 %). Each of these curves will

be indexed by its corresponding number of cycles (50, 100, 200, 500 or 1000).

Figures 4.4.8.a to c present the resulting diagrams (for y = 0.15, 0.25 and

0.50 %). One can see that :

the degradation is very consistent. There is no overlapping of the

curves, and a rather regular pattern appears.

the lower is the c, the flatter the curves. There is very little

dependence of y c on Tave for the lower values of c, and for all

Yc one notes a very flat zone close to the TC axis.

the lower is the yc, the denser are the curves. It will take a
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large number of cycles to reach Yc = 0.15 % at point P of Figure

4.2.1.a while y = 0.5 % will be obtained more quickly at point Q

of Figure 4.4.8.c. The high density of the curves is an indication

of stability in the zone located underneath.

4.4.3 Degradation of the iso-y av network

Similar results are presented in Figures 4.4.8.a to d for the iso-yave

curves. These figures also show a very characteristic pattern. A low values

of T the iso-y curves are seen to be relatively insensitive to changes of
c ave

T . The curves converge very abruptly on the Tave axis. For large values
c ave

of ave this zone will probably be controlled by the drained creep under

T and the undrained creep which should not be neglected (as we have done).

More tests are necessary in this zone.

For high values of T and low values of T the curves seem to maintain
c ave

their overall shape with a tendency to become flatter as the number of cycles

increases. The erosion of the domain of stability (between the network and

the axes) is clearly associated with T rather than with T . For a given
c max

value of T there seem to be anoptimal value of T at which the resistance
max c

to degradation is maximum (the iso-yave curves are tangential to the lines of

equal Tax at such a point).

These graphs allow for a simple estimation of the number of cycles

necessary to reach a selected value of Yave' Another interesting represen-

tation permitting one to appreciate the evolution of the networks with N is

given in Figure 4.4. 9 where the graphs of Figures 4.4.3 (N = 100) and 4.4.6

(N = 1000) have been superimposed.
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Figure 4.4.7.b Sections of iso-y surface for y = 0.25 %c c 
at various numbers or cycles.
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With some practice it will be seen that all these representations

allow for an easy reading of the clay behavior under our specific test

conditions through clear interpolations and extrapolations covering a

wide range of loadings.
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4.5 COMMENTS AND INTERPRETATIONS

The preceding section has introduced ideas concerning the shape of the

3-D strain contour diagrams which merit some comments before we consider the

study of the variable cyclic loading tests.

4.5.1 Shape of the strain contour diagrams

4.5.1.A. The btst cycl aof oacdinq

Our data do not permit the construction of the N = 1 deformation

networks because very small deformations occured on the first cycle for the

specific loading grid that was selected. The objective of the present para-

graph is to estimate these N = 1 networks from the consideration of monotonic

stress-strain properties. This estimation will then prove to be useful for

explaining some of the characteristics of the networks after the first cycle.

The application of tcons during the drained creep modifies the stress-

strain behavior of the clay. The increase of the shear strength with Tcons

and the stiffening of the stress-strain curve for a loading applied in the

same direction as T are now well documented for several clays (e.g. Ladd
cons

and Edgers 1581 for Boston Blue Clay (BBC)). Unfortunately such results are

still scarce in the case of the Plastic Drammen Clay. Andersen 12 pre-

sented results obtained for two static tests run respectively from = 0
cons

and from T = 0.35 t under conditions very similar to ours. The
cons strength

T-a plots and the -y curves for these two tests are shown in Figure 4.5.1.a

and b. It can be seen that there is effectively an increase of the shear

strength of approximately 15 % for the anisotropically consolidated specimen,
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and only a very slight decrease in the peak deformation from about 6 % to

5 % (note that this deformation is measured from the end of anisotropic

consolidation position). The stiffening of the stress-strain curve is not

really apparent. Based on this limited information, and on the indication

from previous studies that the increase of strength and the decrease in

peak deformation can be considered, as a first approximation, as proportional

to T one can estimate* the stress-strain curves that would be obtained
cons

at the end of the drained creep. Figure 4.5.2 shows such estimations for

T str = 0.35, 0.50 and 0.60 in the case of a quick test. The
cons strength

fast test corresponds to a rate of loading compatible with the cycling.

The effect of the higher strain rate can be modeled in the present case by

a 10 % increase of the shear stress at a given strain, based on the compar-

ison between a typical stress-strain curve (Andersen 14 ) and the N = 1

curve given by Andersen 12 (this increase is also compatible with the

results of Bea and Audibert 19 ). The "19 hour curve" of this diagram is

identical to the one of Figure 4.C.3. There is very little information on

the behavior of the clay from an anisotropic consolidation state when the

shearing is applied in the direction opposite to T . The only report of
cons

such a test in the literature is presented by Bjerrum and Kenney 11 in

1967, and is reproduced in Figure 4.5.3. (In the case of Drammen clay

there is apparently little strain softening so that we will ignore this

aspect of the results).

* These curves are obtained by scaling down the fast undrained test curve,
corresponding to T = 0, to fit the peaks which are estimated on the

basis of the twons
basis of the two diagrams on the right of Figure 4.5.2.
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The shapes of the two branches A and B up to the peaks are very similar

within a scale factor of roughly 6 (the increments of stresses and the

increments of strains to the peak are in this ratio :

I5/0.9 = (0.21 + 0.15) / 0.06 = 6). Furthermore the absolute difference

in strength (0.27 + 0.15) is approximately equal to twice the strength

obtained without T (= 0.21)*. It appears therefore that the following
cons

construction may be useful to estimate the stress-strain curves (first

deformation curve of Chapter 3) of an anisotropically** consolidated specimen

(see Figure 4.5.4).

_ I

rTcons 0 (symmetric)
RO= OP

loading A (Figure 4.5.3)
from Tcons X 0.

loading B and A+ = Z
from 'cons X

Figure 4.5.4 Use of asymmetric P-bodies to model effect of consolidation
under T

* The consolidation shear stress was applied during a drained test.
** T # 0.

cons
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In this figure T' is equal to T - T and y' to - Y . Distance OQ
cons cons

is obtained by scaling OP by a factor X while OS = OR, with X + = 2.

The slope at point 0 is therefore the same for curves ROP and SOP. In

other words, in the case of the Plastic Drammen Clay any fast test curves

starting from anisotropic conditions can be very simply estimated from the

fast test curve starting from isotropic condition by a symmetry with respect

to the origin of the same type as the one that was introduced in section 3.3

followed by a translation to match the post-consolidation position. The

associated Iwan models will have the property of sharing the same relation-

ship

c ( c )

whatever the value of Tons
cons

The trace of the iso-Yc network on the N = 1 plane will therefore be consti-

tuted of lines parallel to the axis.
ave

Let us now return to Figure 4.5.2. For the three values of T
cons

that are represented we can easily obtain the y corresponding to a
max

given T . This has been done systematically in Figure 4.5.5 for ax = 2.5,
c max

3, 4 and 6 % where the trace of the iso-ymax network has also be estimated.

With the knowledge of the horizontal yc network we can then construct point

by point the trace of the iso-yave network by difference. (To illustrate

the procedure on two points let us consider the estimated fast undrained test

curve for T /T = 0.60 in Figure 4.5.5 at y = y = 4 % (point A).
cons strength max

This point is obtained for = 1.4, so that m = 1.4 and

T strength Tstrength

Tave 0.60 leads to c 0.8 (the corresponding point in Figure

Istrength Tstrength
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4.5.5 is also called A). Point B on Figure 4.5.5 corresponds to

Yave = 2.5 % since it is at the intersection of the y = 3 % curve with

the y = 0.5 % curve). This estimated iso-yave network at N = 1 has been

reported in Figure 4.5.6 together with the results for N = 100 and 1000 of

Figure 4.4.10.b.

It is important to note the existence of an accumulation point at

IT = 1.1 Tstrength and T = 0 in Figure 4.5.5. All the iso-y curves
c strength ave max

converge at this point and it should be clear that by construction all the

iso-yave curves must also converge.

4.5.1.B. After te ~tt cyce

The study of Figures 4.4.2 to 4.4.6 has shown that the yc-network

remained quite independent of the average shear stress T for values ofave

T smaller than approximately 100 % strength. This observation seems to
max strength

indicate that the use of an asymmetric Iwan model (with X + = 2) might be

reasonnable during the cyclic loading, but of course the characteristics of

this Iwan model will change with time.

One of the most delicate ideas introduced in the y ave-networks of

Figures 4.4.2 to 4.4.6 is the existence of an accumulation point on the

T axis at each N (and therefore of a locus of accumulation points in the

Anderson plane). The interpretation of these points is not as clear as in

the N = 1 plane. The idea is that when y becomes very large a very small

change of T * may result in a large value of yave ; however at the presentave ave

time this idea cannot be proved and remains a convenient assumption. It has

been suggested to us that the network of yave might become asymptotic to

the T axis but it should be recognized that the trace of this same ave

From the beginning of the cycling.

* From the beginning of the cycling.
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network on the N = 1 plane is an absolute bound. In other words a point in

the N = 1 plane corresponding to a high value of and a low Ta andmax ave'

associated for example with Yave = 4 %, can only be associated with a higher

value of yave for N > 1. This does not mean that the yave network will

converge exactly at a point, but we think that it will correspond to a

small region along the axis that will follow the zone of very large

yc in pure symmetric shearing (av e = 0) as the number of cycles increases.

4.5.2 Interpretations of the variable cyclic tests

Tests G and O of the program have variable cyclic loadings in

which T is maintained equal to but where the value of T is changed
ave cons c

at selected cycles. The problem then becomes to estimate the evolution of

the deformation on the basis of the elementary tests run at constant value

of .
c

4.5.2.A. Anda n' pocedue

An approximate procedure of estimation has been proposed with some

success by Andersen 3 for the case of ons = 0. In essence Andersencons

assumes that the whole past history of the soil is implicitely included in

Yc (Yave is always zero in this case). Let us consider yc = Yc,N correspond-

ing to the cyclic strain in cycle N of the loading while = TcN (see

Figure 4.5.7). If we change the applied stress at the end of this cycle

there will be an immediate change of y c, called Ay c i (i stands for immediate),

corresponding to the stress change from T N to N+1 Then if AN cycles

are applied with T = T N+1 the resulting yc will be Yc N+AN where :
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Yc,N

Yc,N+AN

'1
Cyclic Shear

Strain after

N + AN cycles

+ A Yc,i
C,)

+ A Yc,AN

Immediate Change

in Yc due to change

of Tc from TcN tocN +
c c,N c,N +

Cyclic Shear

Strain in cycle N

with cyclic shear

stress TcN

Increase in

cyclic strain

due to AN

cycles under

cyclic shear

stress

c,N+1

t
Xc, N-

N

/

/ /

Cycle no.:

Y

Yc, N.AN

Figure 4.5.7 Andersen's procedure.
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Andersen then assumes that :

the immediate change in shear strain, Ay c i due to the change in

cyclic shear stress, T - TcN is the same as the one that

would have been obtained in the first load cycle (N = 1),

the increase in cyclic shear strain Ayc,AN due to AN cycles with

a cyclic shear stress Tc = T is the same as that which would
c c,N+1

be obtained from a constant stress test with T = T from
c c,N+1

ic,N+l = Yc,N + AYc i J and for AN cycles. (See Figure 4.5.8).

I

/C

'C, N+I

V

st with

C: TC,N+I

N

Figure 4.5.8 Use of data base in
Andersen's procedure.
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4.5.2.B. Extension to ave # 0

Every step of Andersen's procedure can be extended to the consideration

of both yave and y except his second assumption. If we fix the test condi-

tions to T = and T t= and look for the cycle at which
c co ave ave o

ave = Y and c = Yco', where yaveo and yco are also predetermined, we
ave ave o co ave o co

usually will find no solution. We can always fit one of the strains but not

both. In the case of tests and we have adopted Andersen's procedure

with a fit on yave' The construction is thus made by fitting parts of test

results O, and so that the continuity of Yave is maintained (the

immediate changes of Yave due to changes in Tc are negligible and there is

no change of Tave). The resulting predictions are shown in Figures 4.5:8

and 4.5.9.

The "prediction" of test on the basis of Andersen's procedure and

the fitting of ave is found to be very satisfactory. The maximum error

over 90 % of the test is less than 20 % and the number of cycles at failure

is established with an error of 10 cycles (but an extrapolation of the

results of test Q is necessary). Furthermore the prediction is seen to be

consistently somewhat conservative.

The "prediction" of test Q requires the extrapolation of the

results from test as well as the estimation of the Tave = 0.60 Tstrength]

test results. A posteriori it can be said that the choice of this test was

not justified, and that it is too complex. However it should be noted that

the first 175 cycles of loading reproduce very well the result of test ,

and that the y fitting appears to work well. The prediction of the

number of cycle to failure is in error by roughly 10 % on the conservative

side.
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These two tests suggest that Andersen's procedure can be used with

the fit on ave to provide a very reasonnable first approximation of the

clay deformation behavior for this range of loading. This condition might

have to be revised however in the case of loadings producing rupture in

combined cyclic and average deformations.
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4.6 SUMMARY

This chapter presents original results on the cyclic behavior of

plastic Drammen Clay tested with Tave = r . The concept of 3-D strain

contour diagrams greatly expands our ability to use these data by allowing

for easy interpolations and extrapolations as well as a visualisation of

the degradation occuring over a wide range of loading. All the results

reported here-in are compatible with those obtained during Andersen's 1975

program. It is interesting to note that all the failures occured in an

average deformation mode. (large ave) . Furthermore the extension of

Andersen's procedure with a fit on ave permits a satisfactory estimation

of the clay behavior under variable cyclic loading (with ave = 'cons)a cons
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5. TLPILE : THE ANALYTICAL TOOL

TLPILE is the name of the computer code which has been developed

to integrate the Pile Model of Chapter 3 and the Soil Degradation data

of Chapter 4 into an engineering tool specifically adapted to the analysis

of a tension pile under cyclic loading. The organization of the chapter

is as follows : first we shall present the modification of the soil-pile

parameters resulting from the soil degradation, secondly we shall reconsider

the results obtained in the preceding chapters from a numerical point of

view - i.e. how the Pile Model is implemented and how the soil degradation

data are stored and used - then we shall consider TLPILE and the Iteration

Procedure in itself. Finally a detailed example of application to a

typical offshore pile will be treated.

5.1 MODIFICATION OF THE SOIL-PILE PARAMETERS

As already mentioned the soil-pile parameters are the stiffnesses and

the yield strengths of the generalized P-bodies representing the DSS zone

(see Chapter 3). They determine the elasto-plastic characteristics of the

soil-pile system. It was also shown in Chapter 3 that these parameters

are obtained on the basis of a DSS stress-strain relationship, and it is

the study of the evolution of such stress-strain relationships under cyclic

loading that will now be used to estimate the modification of the soil-pile

parameters.
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Experimental evidence of the effect of cycling on the stress-strain

relationship is provided by immediate changes of stress level during

storm loadings and by static loadings run after a period of cycling. The

results that we shall consider are for a symmetric stress loading ( = 0).
ave

Figures 5.1.1.a and b show storm loading results obtained by Hicher on an

Illite and a Bentonite. During the storm build-up period the N = 1 curve

can be used to estimate the change of cyclic strain associated with an

immediate change of cyclic stress as proposed in the Andersen procedure

(Figure 5.1.2). However when the stresses are decreased as the storm fades

away, a clear softening occurs. The same effect is seen when a static

loading is performed after a cyclic period. Figure 5.1.3.a shows the stress-

strain curves obtained by Andersen 2 at the end of five cyclic tests.

Straight lines join the origin to the last summits reached during the cycling,

and thus represent the cyclic stiffnesses at these instants. There is

obviously some scatter but one can detect a clear tendency for softening and

lower strength with decreasing cyclic stiffness (Andersen 12 and Hicher

|411, among others, have pointed out that the soil behaves as if it were in

an overconsolidated state after cyclic loading, the maximum past pressure

being given by the original effective stresses existing before cycling).

Our intention is to model the results of Figure 5.1.3.a using only the

first loading curve (for the normally consolidated case). A scaling factor,

SF, is applied to the strain coordinates of this first loading curve as

shown in Figure 5.1.3.b for SF = 2, 4, 8 and 16. The range of strain of

interest spans the whole figure (y varying between 0 and 15 %), and it can

be seen that over this range the scaling technique represents both the

softening and the reduction in strength observed above. Once the position
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Plastic Drammen Clay

DSS tests

Figure 5.1.3.a
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of the last summit is given the proposed construction allows for a very

reasonable estimate of the stress-strain relationship during subsequent

static loading.

Now consider the case of an asymmetric stressing with TVe 0.

Figure 5.1.4 shows the original stress strain curve (OABC) at some point

along the pile. The explicit procedure is applied between points BC and

B'C' to represent the effect of N cycles of loading (chapters 2 and 3). The

cyclic stiffness given by B'C' is now different from the one obtained from

BC. We assume that the elasto-plastic properties of the soil are preserved

after cycling. By scaling curve OABC along the strain axis so that the

image of BC has the same slope as B'C' we can obtain the stress-strain curve

O'A'B'C' which inherently contains the stress-strain properties necessary to

follow its evolution under a subsequent (static) loading. The fit of the

image of BC with B'C' requires the translation 00' of the origin. The

scaling factor determined from the evolution of the cyclic stiffness controls

the modification of the soil-pile parameters while the translation 00' is

equivalent to a global slippage of all the St Venant bodies of a generalized

P-body. The modification of the soil-pile parameters requires the change

of the stiffnesses of the P bodies and of the plastic strains but the yield

strengths are not affected. We have represented the translation 00' by

imposing a permanent displacement to the "fixed" references to which the

soil nodal points are attached (Chapter 3). Figure 5.1.5 shows the schematics

of the artifice employed : a very stiff spring is added in series together

with a very large internal force (see Cook 1201). It is clear that the

addition of these springs and forcesdoes not change the fact that the Pile

Model is an Iwan model.
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5.2 NUMERICAL ASPECTS OF THE PILE MODEL

How are we going to treat numerically the non-linearity of the

Pile Model ? We shall proceed by successive solutions of linear problems.

The idea is to replace a Prandtl body by a linear spring and set of internal

forces proportional to the plastic strains. Figure 5.2.1.a shows the P-body

on the left and both the equivalent linear spring and the internal forces

on the right.

Shear modulus G

Plastic strain p

T l

G rp

t

Shear modulus G a)

Gyrp

T 

A,

I -- yI

/ I I
,,/ I I
/ I 

' I,
-- -- -------- t ~-- A

/' !

YPA YA

Figure 5.2.1 a) P-body and the equivalent linear force

and internal forces,

b) stress-strain diagram explaining the

equivalence.
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Figure 5.2.1.b explains the equivalence on the stress-strain curve.

The behavior at point A is studied in fact at point A' as a linear problem

in the new system of coordinates (TA, Yv).

Consider the Pile Model of Figure 3.2.1 with a force P applied at its

top, and study its evolution as force P is changed to P'. Before this force

is changed we replace all the P bodies in the Model by their equivalent linear

springs and sets of internal forces. A linear elastic analysis is then

performed under load P'. The objective is to locate the first P-body that

will yield as the external force is changed from P to P'. Since the system

is linear any change in displacement, or force, is proportional to the

change of external force. Let us consider the stress strain diagram of

Figure 5.2.2, corresponding to Prandtl body number j.

Ci

n-

-j Tstrength

v

7

Figure 5.2.2 Relative position of the result of

the elastic solution with respect

to the starting and yield points.

TI
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Point A is the original condition under force P, point B corresponds

to the yield strength and point C to the result of the elastic analysis

under P'. The first P-body to yield will be the one for which the ratio

AB/AC will be the smallest (in the case of Figure 5.2.3 it is P-body number

2).

Cl

-- - strngth

Al

0

P- body # I
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03A3Tstrength
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0

C2

B2-02-- .__- ' TTstrength
A2

yr
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B4---- rFrtstrngth
C4

A4

P -body # 3 P-body # 4

Figure 5.2.3 Example of determination of the next P-body to yield.

Once this P-body is located it is replaced by a constant reacting

stress equal to its yield strength, and the stresses existing in the other

P-bodies when the yielding first occurs are then calculated. These stresses

correspond to a point D between Ai and Ci such that AiDi/AiCi is the smallest
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ratio previously obtained (A2B2/A2C2 in the example of Figure 5.2.3). These

points Di are the new starting points. The new equivalent linear system

(new since P-body number 2 has been replaced by a constant force and thus

its stiffness is ignored) is then analyzed under P' and the previous procedure

is repeated to obtain the next P-body to yield. If no P-body yields the

solution has been found. The analysis requires therefore one iteration per

element yielding.

If the force at the top is now changed from P' to P" we can differentiate

between two cases : either the change from P' to P" is of the same sign as

the change from P to P' in which case all the Prandtl elements that yielded

during PP' are still yielding during P'P", or the sign is different. In

the first case we can simply pursue the preceding iteration procedure (keeping

the last equivalent linear system obtained and its internal forces) while

in the second case we start from the original equivalent linear system and

a new set of internal forces ("Back to Elastic" option).

In the Pile Model the global nodes are numbered as shown on the left

of Figure 5.2.4. The top of the pile is node number 1, and further down the

pile-node number i is numbered as 3 * (i - 2) + 2 in the global system. A

schematic representation of the global stiffness matrix is given on the

right of the same figure. A banded matrix T(NPOINT,4) can be used

to store it (NPOINT is the total number of nodal points 3 * NLAYER + 1).

This matrix is assembled by the Direct Stiffness Method (Cook 201. The

linear equation which is then to be solved is :

FORCE (i) = TI(i,j) R (j)
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Figure 5.2.6 Numerical check of the behavior of the Pile Model
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where :

FORCE (i) is the global force on global node i and

R (j) is the global displacement on global node j.

The basic flow chart of the Pile Model is presented in Figure 5.2.5.

Tl(i,j) is the initial stiffness matrix while T (i,j) and S (i,j) are

temporary storages. T (i,j) is the modified stiffness matrix at each

iteration while S (i,j) is the stiffness matrix which is reduced during the

Gauss elimination procedure. The calculated displacements R (j) are used

to estimate the elastic forces FELAS in each P-body. If the force in

P-body # K, in layer I was FG (I,K) and the strength FL (I,K) the P-body

which yields in this iteration is the one for which

[FL (I, K) - FG (I,K))/ FELAS - FG (I,K)J is minimum.

Once it is determined the stiffness of the P-body is subtracted from the

T (i,j) matrix and the strength is subtracted from the appropriate global

forces ;then new values of FG (i,k) are obtained and the Gauss elimination

is reactivated. The index IPL (I,K) is set to one to indicate that P-body

# K in layer I has yielded. The numbers indicated on the flow chart correspond

to the addresses in the TLPILE code (Figure 5.2.5).

A graphical check of the Pile Model is given in Figure 5.2.6 which shows

the calculated force-displacement relationship for the whole Pile Model under

a loading pattern similar to the one of Figure 3.3.15.
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5.3 SOIL DEGRADATION DATA BASE

The data obtained in Chapter 4 have been stored as multilinear

3-D strain contour diagrams defined by their cross-sections at N =

1, 50, 100, 200, 500, 1000 and 5000 cycles. This last value of N (5000)

was added by extrapolation and corresponds to the iso-y networks of

Figure 5.3.1.a and b We have introduced the iso-yave networks for yav =

2.5, 3, 4, 6 and 15 % as well as the iso-yc networks for yc = 0.15, 0.25,

0.5 and 3 %. The digitization of networks at a particular number of cycles

(N = 100) is shown in Figure 5.3.2.a and b together with the description of

the storage arrays. Figure 5.3.3 give a partial axisymmetric view of the

av = 4 % network as it evolves with number of cycles.

A subroutine called CYCDEG (for cyclic degradation) has been developed

to estimate the new values of ave and Yc (GAV and GCY) resulting from the

application during DN cycles of a loading characterized by normalized values

of T and T (TAV and TCY) and initiating with an average strain Yave,o

(= GAVO). CYCDEG is based on Andersen's procedure with a fit on Yave

(Chapter 4). A simplified flow chart of CYCDEG is presented in Figure 5.3.4.

The call of CYCDEG is represented by :

input output

CYCDEG (TAV, TCY, GAVO, DN, GAV, GCY).

The complete listing of CYCDEG is provided in Appendix 5.A.

*Extrapolations using Figures 4.4.7 through 4.4.8.
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5.4 ORGANIZATION OF TLPILE AND ITERATION SCHEME

The present version of TLPILE differentiates between three stages :

i) a static pre-loading which generates the T distribution, 2) a
cons

modification of the model parameters to account for the effects of consoli-

dation on the future cyclic loading, and 3) the cyclic loading in itself.

The static preloading stage corresponds to the calm sea state

condition during which the soil around the pile is subjected to "drained

creep" : the stresses applied to the soil are almost constant, excess pore

pressure dissipates, and some creep deformation accumulates. The soil is

healing after the passage of the last storm (or after the pile installation).

The purpose of this preliminary stage is to establish the T distribution
cons

as well as some estimates of the strains and displacements that can exist

before the passage of the storm. This period is represented in TLPILE by

an equivalent static loading during which the soil parameters are adapted

to account for the time of application of the load. The approximation

consists in using stress-strain relationships of the type of the "19 hour

curve" of Figure 4.5.2 in place of the regular loading curves obtained

during static loading (and typically a strain rate of 5 % per hour, see

the curve labelled "reference undrained loading" in this same figure).

In the second stage the soil-pile parameters are modified to account for

the stiffer and stronger response obtained during an undrained loading applied

after consolidation under average shear stresses. These changes correspond

to the two diagrams placed on the right hand side of Figure 4.5.2. As a

consequence of these modifications the Iwan models become asymmetric.

rom now on the analysis is performed incrementally.
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Finally the cyclic loading stage involves the iteration procedure as

such and will be given the major emphasis. The loading is specified by

imposing the forces applied to the top of the pile while the degradation

of the soil is estimated from a data base obtained from the tests reported

in Chapter 4.

The procedure relies on the decomposition of the evolution of the

shear stress distributions in successions of periods of constant average

and cyclic shear stresses separated by instant modifications of the soil-pile

parameters.

Figure 5.4.1 shows a schematic flow chart of the basic iteration

scheme. Given some initial conditions and the loading P, representing both

P and P , the Pile Model is used to determine the stress and strain
ave cyc

distributions T and y (also representing both their average and cylic

components). These distributions are respectively in equilibrium (with P)

and compatible (in terms of displacements).

The soil degradation is estimated for the values of T just obtained

and will result in a new distribution of shear strains, Y , corresponding

to N cycles of cyclic loading under P. This shear strain distribution y'

will usually not be compatible with the overall pile displacements.

The modifications of the soil-pile parameters are then made on the

basis of this new y distribution (translations and scalings of section 5.1)

before the Pile Model is used again to derive a set of new shear stress and

shear strain distributions, T and y (respecting equilibrium and compati-

bility).
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The criterion that will be used to decide whether T' and y are

acceptable is based on the difference of and T . Since the degradation
ave ave

assumes a constant value of Tave we feel it is logical to accept the

iteration outcome when T is not too different from T
ave ave

If 1T is too different from T the number of cycles is decreased and
ave ave

the procedure is re-initiated on the basis of T and y. When T is satisfactory

the cycling is completed to the original N value, and if necessary a new set

(P, N) is considered.

The basic variables used in TLPILE are schematically defined in

Figures 5.4.2 and 5.4.3. Figure 5.4.2 gives an overview of the discretization

of the pile-soil system both vertically and horizontally.. The boundaries of

the layers used in the model correspond either to an actual soil layer change

or to a pile wall thickness change. The pile nodal points are placed at the

center of the model layers. The top of the pile is a pile nodal point while

the tip is not.

The bottom part of Figure 5.4.2 shows the geometrical description and the

horizontal decomposition in laver number i while Figure 5.4.3 introduces the

variables used in the computation. There are three global nodal points in

each laver : one for the pile on the left, one for the soil (at the demarcation

of the DSS and elastic zones) in the center of the figure and one for the

"fixed" reference on the right. The bottom of Figure 5.4.3 gives the basic

first-deformation curve of the DSS zone in layer i and the force-displacement

diagram of one of the P bodies.

Figure 54 A presents the TLPILE general flow chart as a support for

the listing provided in Appendix 5.B (variables appearing in the flow chart

and not previously described are introduced in COMMENTS as they appear in the

listing).

ave T, <ave * £strength ; = 10 % was subjectively selected in our analyses.
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Figure 5.4.4 Flow chart of TLPILE.
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5.5 EXAMPLES OF APPLICATION OF TLPILE

The objective of this section is to study the storm behavior of a

pile foundation designed according to the state-of-the-art.

5.5.1 Presentation of the examples

The profile under study is composed of Normally Consolidated Clay

(exhibiting normalized behavior) as can be encountered in several deep

water environments such as the Norwegian Trench and offshore Western

Australia. These clays will usually fall in the category of "low to moderate

plasticity" of the API RP2A*, recommendations, as does Plastic Drammen Clay

(the properties of the clay used in the examples will be those of Plastic

Drammen Clay). The a-method will therefore be the same for all these clays.

This method considers average values of the soil shear strength and of the

ultimate skin friction over the whole pile length. In the present case of

a linear distribution of shear strength with depth this will be equivalent

to using the values at mid-depth (typically around - 50 m) where the shear

strength is slightly larger than the 72 KN/m2 corresponding to the transition

to a = 0.5. We shall use this value of a in all our examples and over the

whole pile length.

The loading applied at the template level**, and per foundation

template, is characterized by :

. an average tension of 5600 tonnes (54.93 MN)

. and a maximum tension of 10000 tonnes (98.10 MN).

* By contrast with the highly plastic clays of the Gulf of Mexico.
** The weight of the template has already been considered.
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Two design options will be considered : an 8-pile template and a

12-pile template. Neglecting group effects, the resulting loadings per

pile are :

· for the 8-pile template :

maximum 1250 tonnes (12.26 MN)

average 700 tonnes ( 6.87 MN)

minimum 150 tonnes ( 1.47 MN),

· and for the 12-pile template :

maximum 835 tonnes ( 8.19 MN)

average 470 tonnes ( 4.61 MN)

minimum 105 tonnes ( 1.03 MN).

The load package which we shall apply to the pile top is composed of

two successive levels : the first one corresponds to 73 % (of the cyclic

component, P ) of the maximum loads and is effective over 1 + 2 + 50 + 500 =
cyc

553 cycles, then the maximum load is applied over 1 + 2 + 5 + 50 = 58 cycles.

This loading pattern is obviously very simple - much too simple in fact to

satisfactorily represent a storm - but it has been selected for two reasons :

1 We want to study the effect of a sustained loading comparable

to those applied in the in-situ tests (section 2.2) which were

extremely simple.

2 We do not know the site and the sea conditions.

The loading at the lower level (553 cycles) is characterized by :

. for the 8-pile template :

maximum 1100 tonnes (10.79 MN)

average 700 tonnes ( 6.87 MN)

minimum 300 tonnes ( 2.94 MN),
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· and for the 12-pile template :

maximum 735 tonnes ( 7.21 MN)

average 470 tonnes ( 4.61 MN)

minimum 205 tonnes ( 2.01 MN).

The choice of the factor of safety* (F.S.) is delicate (as usual).

We shall adopt FS = 1.5 as recommended in the RP2A rules for extreme environ-

mental conditions. An additional factor of safety will be introduced in the

form of the material coefficient k = 0.85 (see Chapter 2). The ultimate

pile capacities are therefore given by :

for the 8-pile template : 1250 * 1.5 = 1875 tonnes (18.39 MN),

and for the 12-pile template : 835 * 1.5 = 1250 tonnes (12.26 MN).

The RP2A rules explicity include the effective weight of the pile in the

ultimate capacity.

The length of the pile is then governed by the choice of the pile

diameter (and to a lesser extend by the wall thickness since it affects the

pile weight). We shall consider two pile diameters typically used offshore :

72" (183 cm) and 48" (122 cm). The reference thickness will be taken as 2"

(5.08 cm), and later increased up to 3" (7.62 cm).

The basic example (number 1) has the following characteristics :

FS = 1.5,

k = 0.85,
cy

diameter = 72 ",

wall thickness = 2 ", and it

belongs to an 8-pile template.

* This factor of safety corresponds to the ratio of the ultimate pile capacity
to the allowable pile capacity as defined by the RP2A rules (section 2.26).
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Let us evaluate its length to meet the ultimate capacity of 18.39 MN. The

ultimate skin friction of depth z (in meters) is :

C = a * k * 0.22 * o (KN/m2)
a cy vo

= a k * 0.22 * .7 * 9.81 * z (KN/m2)
cy

or

C = .755 * .85 z (KN/m 2 ),
a

so that the ultimate capacity is given by :

2
18393 (KN) = .755 * 0.85 * p + 1 (A * 6 + A soil * 7) 9.81

2 steel soil

where p is the pile perimeter,

1 is the pile length,

A is the cross-sectional area of steel,
steel

A soil is the cross-sectional area of soil inside the pile,
soil

+ 1 = 90.69 meters.

The other examples will constitute variations around this basic

example. We shall study the effect of varying five of the key parameters :

1. ky , by using both k = 0.85 and k = 1.00

2. FS, by considering FS = 1.5, 1.3, 1.1, 1.0 and 0.9

3. the pile diameter by using 72" and 48"

4. the type of template (8 piles or 12 piles)

5. the wall thickness by considering two uniform thickness of 2" and

3" and a variable thickness of 2" at the tip and 3" at the top.

We therefore have a total of 10 examples has presented in Table 5.5.1.
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We therefore have a total of 10 examples has presented in Table 5.5.1 :

Pile diameter

72 "
(183 cm)

48 "

(122 cm)

8-pile template

FS = 1.5 /1/

k = 0.85
cy

2" uniform

1 = 90.69 m

FS = 1.5 /47

k = 0.85
cy

variable

thickness

1 = 90.56 m

FS = 1.5

k
cy

= 0.85

2" uniform

1 = 115.29 m

FS = 1.5 /2/

k
cy

= 1.0

2" uniform

1 =84.80 m

FS = 1.5 /5/

k = .85
cy
3" uniform

1 = 89.61 m

Table 5.5.1 Definition of examples.

ate

k = 0.85
cy

2" uniform FS = 1.3 1 = 84.48 m /7/

72" 0

8-pile template

If FS = 1.1 1 = 77.07 m /8/

It FS = 1.0 1 = 73.11 m /9/

, t FS = 0.9 1 = 68.95 m /10/
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5.5.2 The basic example

5.5.2.A. Desciption of the input

The pile is composed of 10 segments. It has a free standing length

of 5 meters, so that the total length is 95.69 meters. The fixed boundary

is taken 10 radii away from the pile, while the DSS zone is half a radius

in width. The ratio G/Oa is taken as 100, which is representative ofvo

Plastic Drammen Clay at a strain of 10 3.

The DSS stress-strain relationship used in each layer is multilinear

with 6 intermediate points, excluding the origin. It is obtained from

Figure 4.5.2 so that, with the strain rate correction factor of 1.1, it fits

the fast undrained test curve. The ultimate friction (on the t-z curve) is

reached for a displacement of 0.91 % of the pile diameter.

Since the clay exhibits normalized properties these parameters are

applied all along the pile. Appendix 5.C presents the data file corresponding

to example/_and can be used together with the Fortran listing to complete the

description of TLPILE (including the soil degradation data base).

5.5.2.B. Static oading

It is useful to start our analysis by considering the behavior of the

pile under static loading. Let us first recognize that the pile's true ultimate

friction capacity is equal to 18.0 MN which corresponds to (18.39 MN - the

effective weight of the pile : 3.1 MN) / 0.85. If the pile is loaded rapidly

before consolidation the ultimate capacity can be estimated as : 18.0 * 1.1

+ 3.1 = 22.9 MN. After consolidation under 6.87 MN applied at its top, the

pile will have accumulated some additional resistance as shown in Figure

5.5.1 which gives the force-displacement curve to failure. The ultimate

capacity in this case is 24 MN.
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Figure 5.5.1 Force displacement curve to failure,

basic example.
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Of great interest to our research are the shear stress and force

distributions along the pile. Let us consider the following (fast) loading :

first we consolidate under 6.87 MN, then we go to 10.79 MN, down to 2.94 MN,

up to 12.26 MN and finally down to 1.47 MN. This loading will define all

the distributions which would be encountered during the first cycle of

application of the lower load level (10.79 MN, 2.94 MN) and of the upper

load level (12.26 MN, 1.47 MN) when applied just after consolidation. The

corresponding distributions with depth of the force and of the shear stresses

are shown in Figure 5.5.2.a and b. At a given depth the shear stress is

proportional to the slope of the force distribution. These curves will be

used later on to estimate the changes associated with the cycling.

5.5.2.C. CycZic oading

The results of the analysis will be presented graphically through four

types of diagrams :

1 the force-displacement relationship at the top of the pile,

2 the history of the displacement at the top of the pile,

3 the distribution of the force in the pile, and finally

4 the distribution of the shear stresses along the pile.

The first two diagrams are given in Figure 5.5.3.a and b. The

force-displacement diagram of Figure 5.5.3.a shows* :

. a very small permanent displacement (0.45 mm) accumulated during the

cycling (this displacement is a lower bound since it is obtained

by reloading from the minimum load to the consolidation load),

. a very small change of the cyclic stiffness of the pile.

* The preliminary loading curve shown on the figure leads to the consolidation
load of 6.87 KN and its associated displacement. Also represented are the
permanent displacement and the cyclic stiffness at the end of each load level.
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The history of the top displacement (Figure 5.5.3.b) shows in

addition that :

_ the main changes in the rate of displacement seems to occur in

the first 50 to 100 cycles of the initiation of the cycling (even

though these changes are small).

Let us consider the distributions of the force and shear stresses

along the pile, first by considering the lower level of loading in

Figure 5.5.4.a and b. The curves corresponding to N = 1 are evidently

the same as those obtained during the static loadings of the last section

(Figure 5.5.2.a and b). The load distribution diagram (Figure 5.5.4.a

shows that :

. the maximum load is progressively transfered towards the tip

of the pile,

. the minimum load distribution is rather stable.

The shear stress distribution curves of Figure 5.5.4.b allows us to

add that :

. there is a systematic loss of cyclic shear stress in the top

30 meters of the pile,

. under the maximum load, the effect of the first 50 cycles is

very similar to that of the last 500 cycles,

_ the tip of the pile is subjected to an increase of both cyclic

and average shear stresses.

Similar distributions for the upper load level are given in Figure

5.5.5.a and b. Figure 5.5.5.a clearly indicates :

. a loss of residual stresses under the minimum load (comparison

with curve of Figure 5.5.2.a),
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and finally Figure 5.5.5.b allows us to distinguish between :

. three zones along the pile corresponding to a loss of T at the

top, a loss of in the middle and a gain in both and 
ave ave c

at the tip of the pile.

This schematic description of the results of example /1/ will now

serve as references in our study of some design variations.

5.5.3 Variations around the basic example

We shall differentiate between geometric parameters such as thickness,

diameter of the pile and the choice of the template type and safety parameters

such as the factor of safety F.S. and the material coefficient k
cy

5.5.3.A. A geomzetic paametet

a) Thickne :

Example /5/ corresponds to a uniform thickness of 3", all the other

parameters being essentially the same as those of example /1/ (with

the exception of the total length of 89.61 + 5 = 94.61 meters). The

pile is therefore stiffer than in the basic example.

The force displacement relationship of Figure 5.5.6.a greater cyclic

stiffness and leads to a permanent displacement of 0.31 mm. At the same

time the history of the displacement (Figure 5.5.6.b) is very similar

in evolution to that of example /1/ with the exception of the displace-

ment range ; very little degradation actually occurs.

Figure 5.5.7 compares the shear stress distributions in example /1/

(5.5.7.a) and those of example /5/ (5.5.7.b). (The format of
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presentation is different* but the scaling is the same as before).

The two patterns are also very similar ; the stiffer pile of

example /5/ leads to more linear distributions (recall Figure 4.1.1

for an infinitly rigid pile). In the lower part of the pile the

shear stresses under maximum load increase regularly with time,

while at the top of the pile, there is a decrease of shear stress

at each load level (but a higher stress at the begining of the

upper load level than at the end of the lower one).

Example /47 dealt with a variable thickness (3" of top 30 % of pile,

2.5" over next 30 % and 2" over the remaining 40 %). It led to a

permanent displacement of 0.35 mm, and in general as was expected,

to a behavior intermediate to those of example // and /5/. Overall

the change of thickness was not found to affect significantly the

pile response.

b) Diametet :

A change of pile diameter, keeping the other parameters constant,

affects both the length and the section of steel, and results in a

much softer response as we shall now see.

Example /6/ considered a 48" (122 cm)-diameter pile of 115.29 meters.

The force-displacement at the top (Figure 5.5.8.a) indicates a

* The numbering on the plots corresponds to the following sequence :

-lower level- -upper level-
number of cycles 1 53 553 1 58
max. load ... 2 4 6 8 10

min. load ... 3 5 7 9 11

number 12 is assigned to the reloading to the mean load (6.87 IMN),
number 13 and 14 are ignored.



14

12

10

8

6

4

2

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

TOP DISPLACEMENT !N CM

Figure 5.5.8.a Force-displacement at top, example /6/

pile diameter

300

Figure 5.5.8.b

N v C ' v_-_.

History of displacement at pile top, example /6/

pile diameter 48".

Z
:

LJ
U
cr
CD

t,

Pi

d:

1

*6 1 I 1 1

261

3.0

48".

3 .0

2.5

2.2C-

2z

LL

C_

I:

I1

x

0. 
_ i ,

.. c 'll -I 

_

i v

x X,,_?
1 .2, C C L .



14

12

10

5

4

2

- 1,I r Y

DEPTH IN 

Figure 5.5.9.a Force distribution in pile, example /6/

pile diameter 48".

30

10

- ?2C

- .12

Figure 5.5.9.b Shear stress distribution on pile, example /6/

pile diameter 48".

262

z
zr

U

Li
LLC:11
I 

c'j

x7

L1-

! ,

_..J

-C_z
LL
,V

L.N

c
cr.

- 1711 -17 p - ).'II L,

- I .. - Q - 4i

, C, _ , 7 ' N
L, _ I , d 



263

marked increase in the permanent displacement to 1.28 mm and

noticeable changes of cyclic stiffness at both load levels. It is

interesting to note that once again the response during the 50 to

100 first cycles cannot be extrapolated to cover the remaining

cycles at the lower load level. Also the minimum displacement seems

to actually decrease during the first cycles of application of each

load level, this period corresponding to a sharp decrease of the

cyclic stiffness which then seem to stabilize after 100 cycles in

the case of the lower load level.

The force distribution (Figure 5.5.9.a) and the shear stress

distribution* (Figure 5.5.9.b) confirm the significant changes

occuring along the pile. The shear stress distributions correspond-

ing to the first cycle at the lower load level have been highlighted

by thicker lines whereas dotted lines have been used for the last

cycle curves (of the upper load level). The shift of the distribu-

tions towards the tip of the pile is obvious and the loss of

resistance at the pile top is severe.

The pile diameter is thus viewed as an important parameter affecting

the pile response. A smaller diameter, and thus a slender pile,

results in more cyclic degradation.

c) Choice o tpaate :

Example /3/ analyzed the case of a pile belonging to a 12-pile

template. Its length was 73.19 meters and its section characteristics

* Note that the change of diameter results in higher stresses on the pile.
The scaling of the plot is still the same as for example /1T.
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were those of example /1/. The shortening of the pile affects the

behavior as would the increase of the thickness (example /5/). The

force-displacement at the top (Figure 5.5.10.a) shows an essentially

elastic response with no permanent displacement (our lower bound

is 0.0 mm) and no degradation of the cyclic stiffness. The same

results are found from the history of the displacement (Figure

5.5.10.b). The shear stress distribution was almost identical to

that of example /5/ (Figure 5.5.7.b).

5.5.3.B. Safety paametes

The change of ky from 0.85 to 1.00 with FS = 1.5 is equivalent to

keeping ky = 0.85 and changing FS to = 1.3, and therefore example /2/ and

example /7/ lead to essentially the same results. In other words, we can

restrict ourselves to the variation of F.S. while maintaining k = 0.85.
cy

Table 5.5.1 sketches the different types of ultimate capacities

which can be considered :

there is the design ultimate capacity obtained with k = 0.85,
cy

the "actual" ultimate capacity obtained with ky = 1.00,

_ and its correction for strain rate effects.

We do not consider in this table the gains accumulated during

consolidation. It can be seen that the design factor of safety F.S.

(column # 2) is well lower than the effective factor of safety against

a fast pull-out as given by column # 7. Now what will be the effect of

F.S. on the cyclic behavior of the pile ? Figure 5.5.11 presents a compar-

ison of the force displacement relationships and of the histories of

displacement at the pile top for tests/7/ through /10/. It can be seen
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# 1 2 # 3

Ultimate
Example F.S. capacity

with
k =0.85
cy

2,7

8

9

10

1.3

1.1

1.0

0.9

13.170

10.960

9.860

8.770

4

Actual
ultimate

capacity

15.495

12.895

11.60

10.32

# 5

Estimate
actual
ultimate
capacity
+ strain
rate effect

17.05

14.18

12.76

11.34

# 6 # 7

Results
Weight Total column # 7

divided
12.26 MN

2.77

2.53

2.34

2.26

19.82

16.71

15.10

13.60

1.60

1.36

1.23

1.11

Does not consider gains from consolidation.

Table 5.5.2 Various definitions of the ultimate capacities and factors of safety.

that at the lower load level the evolution with decreasing F.S. is steady but

such is not the case for the upper load level where cyclic rupture is clearly

initiated in example /10/. The cyclic stiffness does not change very much,

even upon reaching this zone of quick degradation. The permanent displacements

have been also plotted versus F.S. in Figure 5.5.12. The results of the

analyses are very consistent and demonstrate a tendency for a abrupt change

of behavior around F.S. = 1. The state-of-the-art design corresponds to a

very safe situation in terms of accumulation of displacements.

5.5.4 Conclusions

The results of these analyses should not be accepted as such before

confirmation of their validity is granted by experimental means. Many
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delicate assumptions had to be made throughout the construction of the

methodology on which TLPILE is based, and we cannot overlook the fact that

some fundamental aspects of soil behavior have been crudely represented

(drained and undrained cyclic creep for example). However it is legitimate

to express some satisfaction in view of the apparent fit existing between

our results and the experimental evidence.

The limited degradation of the cyclic stiffness, the importance of

the first 50 to 100 cycles (forbidding extrapolation), the transfer of

force and shear stresses down the pile under maximum load and the complex

distributions under minimum load are all key elements of actual pile

behavior under cyclic loading.

Finally, a word should be said of the cost of running an analysis.

The preparation of the input, without previous knowledge of the program,

is a matter of 3 hours and the actual runing takes 46 seconds of CPU time

on the VAX 11/782. Most of the plots shown in this section are provided on

request by the program as well as print outs of the results of various

levels of sophistication.
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6 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 SUMMARY

6.1.1 Recapitulation of objectives

The thesis focuses on the behavior of a tension pile embedded

in clay and subjected to undrained cyclic loading. The motivation behind

this study is the development of foundations for Tension Leg Platforms

(TLPs). The objective of the research was stated as follows in the

introductory chapter :

"to contribute to the development of a

methodology that will ultimately allow

us to follow t evolution of the pile-

soil contact degradation and to estimate

the redistributions of stresses and

strains occurring during a storm as well

as the resulting displacements of the

foundation"

6.1.2 Contributions

The key contributions of this work can be reviewed within the

framework of the trilogy used throughout the thesis : the Pile Model,

which deals with the theoretical behavior of the mechanical component

of the methodology, the Soil Degradation Data, which relate to the

experimental study of the fatigue of soil, and the analytical tool

TLPILE.
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6.1.2.A. The PZe Model

The Pile Model, title of chapter 3, is composed of a one-dimensional

segmented elastic pile embedded in a soil represented by elasto-perfectly-

plastic elements (the P-bodies) grouped in assemblages (the Iwan models)

which are decomposable in branches placed in series and in parallel. These

assemblages are representing the behavior of Direct Simple Shear (DSS) zones

located directly in contact with the pile and where plastic strains are

concentrated so that away from this zone the soil remains elastic. The Pile

Model is an extension of traditional models used to study piles under static

loading and based on the concept of "t-z" curves. A construction of these

"t-z" curves, which relate the local displacement of the pile to the local

force applied by the soil to the pile, was proposed on the basis of local

DSS stress-strain relationships. The concept of "t-z" curves was then

adapted to cyclic loading by considering them as first-deformation curves

of Iwan models. These models respect, in their symmetrical form, the

extended Masing rules, but are restricted to time-independent elasto-plastic

parameters. In other words the soil degradation per se (the soil fatigue)

is not considered at this stage.

It was shown that the Pile Model as a whole could be viewed as an

Iwan model. Properties of symmetrical Iwan models under cyclic loading

can be summarized by the following points.

1. Stabilization to a closed loop occurs in one-and-one-half

cycle of loading.

2. This loop is convex and symmetrical with respect to its center.

3. The equations of the unloading and reloading branches of the closed
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loop correspond to translations of the first deformation

curve with a scaling factor of two.

In the case of an asymmetrical Iwan model this last result does not

hold but the first two are still applicable. Random assemblies of P-bodies

(which are not Iwan models) subjected to cyclic loading will stabilize

either after one-and-one-half cycle of loading or never. A physical analog

of an Iwan model was also presented ; it allows for a visualization of the

intricate memorization of the model strain history.

Parallel to these results the conditions of application of shakedown

analysis were examined but led to comparatively minor benefits for the

specific type of model considered (a more detailed discussion of shakedown

analysis and examples of its use in geotechnical engineering can be found

in Appendix 3).

The resultsshowed that a tension pile represented by this Pile Model

could not be pulled out by application at its top of a cyclic loading which

never reaches the pile's ultimate capacity.

6.6.2. . The soai degradation data

Chapter 4 introduced the experimental component of the methodology

in the form of a study of the contribution of average shear stresses to the

cyclic degradation of Plastic Drammen Clay.

A series of 12 Direct Simple Shear tests was run, using the Geonor

device and NGI procedures, to investigate the combined effect of

T = and on the cyclic behavior of the clay. These tests
ave cons c

involved a K -consolidation to a Normally Consolidated State, followed

by a "drained" shear and consolidation under T . The cyclic loading
cons
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was applied under constant volume condition. A detailed description of

the testing is provided in chapter 4 and Appendix 4. Ten out of 12 tests

were run to failure which occurred in an average displacement mode (defined

as ave reaching 10 %). The results proved to be quite consistent, and

were perfectly compatible with those of the 1975 NGI program. They also

validated the use of the concept of 3-D strain contour diagrams as a

convenient way to interpolate and extrapolate the clay behavior to a

wide range of loadings. Numerous charts presenting cross-sections of

these 3-D strain contour diagrams at chosen number of cycles are found

in the body of chapter 4. Also included is the estimation of the behavior

during the first cycle over the whole range of stresses. Note that undrained

creep was neglected throughout the cycling.

Two tests were run with variable cyclic loading and were used

satisfactorily to check the validity of the use of Andersen's procedure

with a fit on the average shear strain to predict the strain evolution with

number of cycles. Many more tests would however be necessary to insure a

proper verification over a large range of loadings.

6.2.3.C. TLPILE

TLPILE is the name of the computer code integrating the mechanics of

the Pile Model and the degradation of the soil. It can be viewed as the

numerical - or the analytical - component of the methodology, and was

treated in chapter 5.

The modification of the soil-pile parameters due to the cyclic

degradation of the soil was based on the evolution of the cylic stiffness.

Then the numerical treatment of the Pile Model was documentated, and the



274

key parameters introduced. The data storage capacity and the implementation

of Andersen's procedure with a fit on Yave was presented in an introduction

to subroutine CYCDEG which estimates the parameters of the soil degradation

along the pile. Then the iteration procedure which is the backbone of TLPILE

was detailed before specific examples of application to an offshore pile

were given.

These examples have shown that a stiffer pile minimizes the cyclic

degradation. An increase in the pile wall thickness or in the number of

piles per foundation template results in beneficial effects on the overall

cyclic behavior, but the increase of the pile diameter has the most

significant impact since it affects both the length (for a given ultimate

capacity) and the cross sectional area.

The use of a factor of safety of 1.5 as defined by the RP2A regulations

for extreme environmental conditions together with a material coefficient

k = 0.85 applied on the shear strength give a satisfactory combination
cy

resulting in very small permanent displacement (of the order of 0.5 mm)

under a simplified storm loading.

The code TLPILE allows for a thorough description of the redistribution

of stresses and strains, and of the displacements and forces in the model at

any desired number of cycles. The program is flexible in use and inexpensive to

run. However at the present stage of development it should not be forgotten

that it leads to results of only qualitative interest. Table 6.1.1 recaps

the key points of this summary.
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PILE MODEL

Theoretical

. Generalization of Iwan Models

- decomposable assemblies

- cyclic behavior (stabilization in 1 cycle

to closed, symmetrical, loop, etc...)

- asymmetry

_ Shakedown Analysis

. Construction of t-z curve

SOIL DEGRADATION :

Experimental

TLPILE :

Analytical

. DSS Tests on Plastic Drammen Clay ( = cons)-~~~~- ~ave cons

- compatible with 1975 program

- consistent set of data

. 3-D strain contour diagrams

- interpolation ; extrapolation ; visualization

- wide range of stresses

· Extension of Andersen's procedure for variable

loading

- direct use of data base

. Adaptation of t-z curves to cyclic loading

. Code, explicit procedure, iteration scheme

examples, compatible with experimental

evidence.

Table 6.1.1 Summary.
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6.2 CONCLUSIONS AND RECOMNENDATIONS

The behavior of tension piles under cyclic loading is still poorly

understood both experimentally and analytically. This should come as no

surprise since the static behavior of piles is itself far from being mastered

despite the considerably larger experience that has been accumulated. While

all the limitations encountered in modeling the static behavior of piles

are clearly transferred to the cyclic case, one must also consider the precar-

ious state of development of the study of creep and fatigue of soil. The

problem is further complicated by our quest for a displacement approach.

One cannot however postpone the inquiry into the cyclic behavior of

tension piles until their static behavior is fully understood. This unscien-

tific conclusion is forced upon the engineer by the need to provide satisfactory

answers to a continuous flow of new problems. In such circumstances experimental

evidence and engineering judgment must guide the design of the new facilities.

Exploratory modeling of a physical phenomenon such as presented in the thesis

should be only considered as a support to engineering judgment.

How much confidence can be placed in the proposed methodology ?

The main structure of the procedure is the development of a string of well-

established geotechnical methods of analysis, and as such one can expect to

at least preserve the quality of estimation acquired by its components.

However acceptation of the model must be conditioned upon experimental

verification of its validity. Unfortunately this check cannot be performed

satisfactorily at this stage due to the lack of both pile test and laboratory

data. Thus the results presented earlier are only judged qualitatively for

their respect of observed trends. The author acknowledges this serious
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limitation of his work and can only point out to the careful construction

of the model on the basis of his best understanding of the physics of the

phenomena involved.

The prime achievement of this work has perhaps been to correct some

of the obvious limitations of existing analyses. Poulos (see section 2.3)

had the great merit of initiating a quest for simple and flexible engineering

models of pile cyclic behavior that would allow sensitivity analyses of the

key design parameters to be performed quite easily. The governing idea of

the approach is to maintain a uniform degree of sophistication over all

the composite steps of the methodology. By no means it is suggested that

more elaborate techniques of analysis (such as finite element approaches

involving far more complex rheological laws, joint elements and

numerical algorithms) should not be developed, but in view of the present

weakness of some of the elements in the chain of calculations (initial

conditions, cyclic data...), it may be useful to develop simpler tools

which lead, at the present time, to only slightly less accurate answers.

Having selected this orientation, this work has attempted to :

1 improve and develop the limited soil mechanics background

of methods of analysis traditionally biased towards structural

considerations by revising the method of construction of

the "t-z" curves and by establishing a consistent soil data

base,

2 propose an engineering tool based on a rational iteration

scheme and a detailed theoretical knowledge of the model

cyclic behavior. The resulting program, which allows for
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a great flexibility of use and requires only a marginal

cost of implementation, permits the user to follow the

pile behavior during the whole evolution of the cyclic

loading,

3 include, and respect, experimental evidence. All the

elements mentioned by Kraft et al. 1561 have been considered

in some way or another : the loading rate, the number of

load cycles, the magnitude of the cyclic road, the loading

history, and the magnitude of the sustained load. The

failure mechanism by accumulation of average strains, the

relative stability of the cyclic stiffness, the importance

of the first few cycles of loading and the transfer of

force towards the tip of the pile which have been observed

by Puech 1861 and McAnoy et al. 1701, among others, are

all accounted for,

4 define the assumptions the methodology is based upon in

order to clearly state its limitations.

At each stage of the thesis results have been gathered in a form

which permits direct applications to other fields of geotechnical engineering ;

such is essentially the case of the study of Iwan Models, both from a

theoretical and from a numerical standpoint, the introduction of shakedown

analysis and, more importantly perhaps, the soil degradation data bank.

Direct use of the concept of 3-D strain contour diagrams and of the

specific charts provided in the body of this work can permit a rapid

preliminary estimation of soil behavior under cyclic loading whenever
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average shear stresses present a particular interest. Examples of possible

fields of application of these data are given in Figure 6.2.1.

The overall conclusions of the research are believed to be summarized

in the next three points.

1 The concept of "t-z" curve can be conveniently expanded to the

consideration of cyclic loading by the use of Iwan models. The

resulting pile model is particularly adapted to analyses uncoupling

mechanical and cyclic degradation responses, and offers the advantage

of insuring automatic recording of the strain history.

2 Average shear stresses have a significant effect on the cyclic

behavior of clay. The crude differentiation between one-way and

two-way cycling should be replaced by the systematic consideration

of two components of stresses such as T and T . Efforts to
ave c

characterize the cyclic behavior of a clay by using only one

parameter of the stress loading may be quite misleading.

3 There is no counter-indication to the use of the present state-

of-the-art for the design of piles for TLP foundations in

Normally Consolidated Clay.

Let us now consider some recommendations for future research.

Of paramount importance is the calibration of the methodology against actual

pile test results, and in thisdomain the future release of the presently

proprietory data accumulated throughout the world will represent an important

breakthrough. However the methodology can be significantly improved before
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these data become available. The author firmly believes that the gathering

of soil degradation data constitutes potentially the most valuable source

of development. Laboratory tests of the type run in this thesis with the

cyclic DSS of Geonor can lead to a tremendous improvement of our knowledge

of many aspects of the cyclic behavior of soils which are relevent to our

problem. One of the key objective should be to relax the condition of

maintaining T equal to cons especially in the case of variable cyclicave cons'

loading. Thus the use of Andersen's procedure with a fit on yave is still

far from being justified, and many more variable cyclic tests must be

performed before a definitive assessment of its validity is made.

In fact the pursuit of this major avenue of research should lead to

the development of stress-controlled tests where the amplitude of the

stresses applied are varied continuously during the loading. The idea is

to bridge the gap existing between "constant stress" and "constant strain"

testing.

Other very important questions meriting investigation relate to the

validation of basic elasto-plastic laws under irregular loading. The

effects of preloading, and especially those of consolidating a specimen

under a given shear stress,are far from being properly quantified.

Finally the author wishes to point out the very important question

of drainage,not only during the storm loading itself, but also in the repeat-

ed calm periods between storms. The use of the DSS equipment in its present

stage of development may however prove to be unsatisfactory in this

perspective and new techniques providing a more reliable measurement of

excess pore pressures in the specimen must be envisionned.
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As is so often the case in soil mechanics the number of parameters

to be considered is overwhelming. While it would be useful to gather cyclic

data for various soil types, different OCR's, different stress systems, etc...

such an enterprise is totally unrealistic at the present time. It would be

much more reasonable to start a systematic study of a reference clay such

as for example reconsolidated Boston Blue Clay that would exhibit a more

consistent structure than undisturbed Drammen Clay.
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APPENDICES

Note :

Each appendix is numbered according to

the chapter it refers to. Appendix 3.A

is the first appendix corresponding to

Chapter 3.
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APPENDIX 3

SHAKEDOWN ANALYSIS

3.A INTRODUCTION

The purpose of the present appendix is to introduce shakedown analysis

and to demonstrate its potential in the field of geotechnical engineering.

It is our intention to evaluate the logical consequences of the choice

of an elastic-plastic model for a given soil and to estimate its behavior

when subjected to a specific loading range.

A straightforward way of studying this model is to follow its evolution

over its complete loading history. The disadvantages of such a procedure are

evident : it requires a lot of computation, therefore time and money, if it

is even physically possible. The result obtained is a perfect description

of the model behavior under the prescribed load history (with the exception

of possible computational errors). This approach has been consistantly used

due to the availability of powerful computers.

Other approaches are possible. Among them are analyses "at-the-limit"

and bounding techniques. These approaches are schematiquely compared in

Figure 3.A.1.

Both the analyses at-the-limit and the bounding techniques require

only a partial knowledge of the loading (such as the loading range).
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Classical shakedown analysis can be classified among the analyses at-the-

limit. We shall be concerned by the existence of the limit and not by the

time necessary to reach it. Clearly shakedown analysis will provide a limited

description of the system behavior. However the analysis is quite simple.

Only the loading range is required.

The historical development of shakedown analysis has been extensively

described in the book of Gokhfeld and Cherniavsky 1321, and by Maier 1621, Martin

1651 and Sawczuk 1931. The precursors in this domain of applied mechanics

were Gruening (1926) 1341, Fritshe (1931) 1301, and Bleich (1932) li21 but the

fundamental theorems were derived by Melan (1936) 1721 and Koiter (1956)

551. The key paper which contributed to the development of shakedown analysis

as we know it today is due to Koiter (1960) 154 1. Since its publication many

different extensions of the basic results have been obtained (thermal effects,
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dynamics, hardening, geometric effects, etc...) and shakedown analysis has

now been applied in geotechnical engineering (Haldar et al. 361, Swane and

Poulos 1971). The literature on shakedown analysis is voluminous and we

shall not even attempt to present it here. Complete bibliographic lists

were given by Maier 621, Gokhfeld and Cherniavsky 1321 and Sawczuk 1931

among others (this latter paper is certainly one of the most accessible and

is recommended as an introduction on the subject).

We shall now formally introduce shakedown analysis. Some background

theoretical information and assumptions will first be reviewed. Then the

terminology will be explained before the general theorems are presented.
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3.B SHAKEDOWN ANALYSIS

3.B.1 Background

3.B.1.A Basic assumptions and definitions

We shall assume that the deformations remain small. As a consequence

the strain tensor will be define

;j = { Uij + u i 2 Eq. 3.B.1

with ui = displacement in direction i.

Changes of geometry due to the deformation are also neglected in

setting up the equation of equilibrium. As a direct consequence the conditions

of equilibrium can be expressed by the virtual work equation* :

..ij ..i j dv = f Xi u. dv + S P u. ds Eq. 3.B.2
holding forny stress distribution a in equilibrium with the external 

holding for any stress distribution i.. in equilibrium with the external
zJ

loads Xi and Pi, and for any displacement field ui with its corresponding

strain distribution ...

* We restrict ourselves to zero imposed displacements on Su, the complementary
of Sp

p
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Figure 3.B.1

It is also assumed that the loads are applied slowly (pseudo-static

loading) and that the actual strain Sij may be written as :

C.. = .. + .." Eq. 3.B.3
13 13 13

(elastic (plastic
strain) strain)

with Eij' = A ,
ij ijkl

classical
tensor of elastic
coefficients assumed

constant

akl (Hooke's law)

actual stress tensor
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The elastic domain DE is limited by the yield surface Sy. The equation of

Sy is 0 () = O, where 0 is called the yield function- The domain DE is

defined by 0 () < 0.

By definition, when Uj E DE i is called safe" and

aij SY noted ij (s)

when a.. £ Sy a..ij is called "allowable" and

cij EC DE noted aij (a).

(s) "=And therefore, when a.. = a. , £.. = O
13 13 13

and Cij £ Sy implies : ij # O (ij is then governed

by the flow rule).

Furthermore, a stress distribution aij* will be called statically

admissible (S.A.) if it satisfies the equations of equilibrium in the interior

of the body and the stress boundary conditions on Sp .

A strain distribution ij.* will be called kinematically admissible

(K.A.) if it may be derived by(3.B.1)from a displacement field u. satisfying

0
the boundary condition u = u. on S

Finally, Drucker's postulate is also assumed valid. Therefore

with aij S (a.. - a.. (S)) .o, > 0 , Cr.. (s) Eq. 3.B.4.a
13 Y 13 13 13 13

( -C.. ()) .,, >, 0 , V a.. (a) Eq. 3.B.4.b
ij ij 13 13

with a..ij S : ij ij O.

Sy is convex.

3.B.1.B Uniqueness of stresses

The state of stress in the body is unique if the complete loading

history of the body is specified from its original state. Several different
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stress distributions can usually satisfy a given set of final loads and

prescribed surface displacements ; however uniqueness is insured if in

addition the plastic strain distribution E.." in the body is specified.

Let a.. (e) denote the (artificial) stress distribution (corresponding
1j

to the given body forces X. in the interior, surface tractions Pi. on S and

surface displacements uio on S ) which would be obtained if the body were

perfectly elastic. This elastic stress distribution is of course unique.

The actual stresses may now always be written in the form :

(e)_- (e) + Eq. 3B.5
:cj cij Pij Eq. 3.B.5

which defines the residual stresses pij.

These residual stresses are the permanent stress remaining in the

body after complete unloading (X = 0, Pi = 0) if this unloading would

occur without further plastic deformation.

There can exist no more than one residual stress distribution Pij

corresponding to a given plastic strain distribution j.." and zero

displacements on S . The converse is not true.
u

3.B.1.C. Note on stress and strain decompositions

Let us recap the definitions of the stress and strain with the

following diagram (due to Mroz).

Remark : We have implicitly assumed no temperature effects, and

in fact no time effect in the sense that the time scale could be change

without changing the stresses and strains (however maintaining the pseudo-

static condition -e.g. no dynamic effects or no strain rate effects on

moduli and strength-). Prager speaks of inviscid plastic behavior "which
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Figure 3.B.2 Decomposition of stress and strain

implies that the speed with which a program of straining is carried out does

not affect the intensities of the accompanying stresses".
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:0
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3.B.2 Terminology

Figure 3.B.3 offers a overview of elastic-plastic structure analysis.

The branch of interest is the variable loading which includes cyclic loading

as a special case. (As already mentionned we shall only need to consider

the loading range and therefore the distinction is unimportant).

Classical shakedown analysis is rectricted to elastic-plastic systems

with constant material properties, e.g. these properties are independent of

time (number of cycles). Shakedown analysis leaves aside the transient

stage to focus on the steady-state condition (final stage). The term steady-

state is in fact only adapted to cyclic loading, and in the case of a non-

cyclic loading the transition between transient and final stages may indeed

be delicate to establish. As a matter of fact depending on the loading

history several repetitions of transient-then-shakedown-stages may occur,

and would only be observable in a step-by-step analysis. Shakedown analysis

considers only the ultimate final stage. The transient stage happens to be

extremely important in practice since the plastic deformations accumulated

during this period may be large enough to endanger the serviceability of

the structure. Several methods have been proposed to establish bounds on

these deformations. Global measures of plastic strain energy exist but

criteria governing the magnitude of local deformations are far more complex

to establish.

In parallel to this area of interest we find the estimation of transient

stage duration. Very little work has been done in this domain on a theoretical
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basis. Shakedown analysis differentiates between the stabilization of

plastic deformations and their accumulation.

The amounts of plastic deformation that occur in consecutive "cycles"

of loading may decrease as the terms of a convergent infinite series, or

plastic deformation may stop altogether after the first "cycle" or the first

few "cycles" of loading. In either case, the structure is said to shakedown :

it will respond to further "cycling" in a purely elastic manner provided that

the loads remain within the prescribed range. If shakedown* does not occur

the plastic deformations are said to be unstable ; we have inadaptation.

There are then two possibilities : either no increment of plastic strain

occurs in a "cycle" of loading, and we have alternate plasticity, or we

have further accumulation of plastic strain increments and incremental

collapse.

In the case of alternate plasticity plastic strains in the zone at

yield develop repeatedly in opposite directions and eventually result in

a low cycle fatigue. Plastic deformations remain bounded, but the plastic

strain work does not. Note that in the zone that is not at yield the

structure may have locally shaken down or may have remained elastic.

In the case of incremental collapsealthough no overall collapse can

be produced at any load combination it may happen that the plastic zones

formed in sequence would constitute a mechanism had they all occured simulta-

neously. Such a mode of inadaptation includes ratchetting where a same

element is repeatedly yielding in the same direction.

* Written shakedown or shake down. Introduced by Prager in 1948.
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Note that a structure subjected to incremental collapse may be

locally in alternate plasticity, or shakedown or elasticity. This

hierarchy in the global terminology is summarized in the following

Table 2.1.

/LOCAL/

Elast. Shake. Alt. Plast. Incr. Coll.

Elasticity X

Shakedown (X) X

/GLOBAL/

Alt. plasticity (X) (X) X

Incr. collapse (X) (X) (X) X

X = necessary

(X) = possible

Table 2.1 Local vs global properties

A major concern to us is the ignorance in classical shakedown analysis

of the cyclic sensitivity of materal properties. This problem is especially

important in the case of alternate plasticity, The consideration of this

effect within the framework of the analysis of elastic-plastic structures

under variable loading constitutes the essence of the present thesis.

Shakedown analysis is obviously one of the important components of this

puzzle.
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3.B.3 Theorems

These theorems are based (quoting from S. Flugge 1291) "on the

consideration that if a system of self-equilibrating elastic residual

stresses in the redundant structure can be found such that the sum of these

stresses and the maximum positive or negative stresses produced by the

loads in the assumedly perfectly elastic structure at every point for all

possible load combinations does nowhere exceed the yield stress, the

structure will "shakedown" to such a distribution of residual stresses

that all subsequent load applications of the same (or lower) intensity

will produce a purely elastic response".

To further clarify the context let us already mention the fact that

the theorems to be presented can be considered as extensions of the classical

limit theorems of plasticity. As such we shall have a static theorem :

Melan's theorem, and a kinematic theorem : Koiter's.

3.B.3.1 Melan's theorem

3.B.3.1.A. Classical form :

Several versions of Melan's theorem are available. We shall use

Martin's formulation 65|.

If, and only if, any time - independent distribution of residual stress

Pij can be found such that

0 f E (t) + Pi < 0 Eq. 3.B.6

the structure will shakedown.
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There is the proof by Koiter 1541 of this theorem. (For a perfectly

rigourous proof the reader is referred to Desbordes and Nayroles 1251).

Proof :

A. It is of course evident that if shakedown occurs a residual stress

Pij does exist that satisfies Eq. 3.B.6. In other words shakedown

is clearly impossible if no distribution of residual stresses

exists on which the stresses due to an elastic response to the

external loads may always be superimposed without violation of

the yield condition. This gives the necessary condition of the

theorem.

B. The sufficient condition will be proved by introducing the

essentially positive elastic strain energy A corresponding to the

residual stresses pij - Pij, where pij denotes the actual momentaneous

residual stress, and ij is the time-independent residual stress

satisfying Melan's criterion :

A=fv ½ Pij - Pij Aikl Pkl Pkl dv.

We have :

a.ij.(t) = ai (t) + pij (t) by definition of (t)'3 13 .J ij

and

(t) = E. '(t) (t) =+ A " ( E t) 
ij t=ijkl kl ijkl kl(t) + ij (t)

hence

Aijkl Pkl(t) = ij(t ) Aijl kkl(t) i- (t)
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Consider the time derivative of A written A,

A ij - ikl dv

Therefore :

A = Pij - ij 

I--- -Ie

r* -AiElkl 
Eij -Aijkl kl

- £ij dv.

This is a kinematically

admissible velocity field.

This is a statically

admissible stress field,

in equilibrium with zero body and surface forces (on Sp).

The virtual work equation gives :

-Aijl kl dv =0,
ij kl kl

and as a result A can be written as :

A= - p -p i; j dv.

This is nothing but Drucker's expression after the following

substitutions :

Pij = aij

and Pij
(S)

l0

ij

- . .
IJ

E (from Eq. 3.B.6).

Then by subtraction :

a -a. (S)
i3Pij - Pij = i j

I a

r -1
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From Drucker's first inequality (Eq. 3.B.4.a) we have

A [ i - (S) .." dv < 0.

(Note importance of minus sign in front of integral).

We therefore have A > 0 and A < 0

that proves that lim A exists and that lim A = 0.

t + O t 

Let us interpret this last result :

assuming that these limits are attained for t > t, with t finite,

(t1 infinite presents no physical interest). We then have :

t > t1 rI ij(t) - ii ij (t) dt = 0. Eq. 3.B.7

If Pij (t) P Vt, we know from Eq. 3.B.6 that " = 0 everywhere.

If Pij (t) # Pij, we must have ij"(t) = O everywhere for t > t

to insures the validity of Eq. 3.B.7. Which proves the theorem.

3.B.3.1.B. The integral form :

Melan's theorem can also be worded in a different way ; using Sawczuk's

|931 formulation :

A structure will shakedown to the prescribed loading range,

if, and only if, there exists a time-independent residual

stress distribution ij and a safety factor m > 1 such that :

0 m (a(t) + Pi) . Eq. 3.B.8
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The proof of this form of the theorem will not be given here,

but it is worth noting that a (somewhat crude) bound on the total plastic

work can be obtained. For a system having an initial stress distribution

Pijo, thetotal plastic work, TPW, produced between t = 0 and t = T is

given by :

T t - m-
TPW = t oij(t) ij(t') dv dt < 2(m-1) v Pij Pijo jijkl kl klo

Eq. 3.B.9

3.B.3.2 Koiter's theorem

Koiter first recognized that Melan's theorem could be interpreted as

an extension of the static theorem of plastic limit analysis. It was then

logical to look for a similar extension of the kinematic theorem.

3.B.3.2.A. Admissible plastic strain rate cycle :

Koiter's analysis is structured around the concept of an admissible

plastic strain rate cycle, ijo "(t). By definition ijo(t) is such that :

T
tA£E. = - ."(t) dt Eq. 3.B.10

J o o0 JO

where A.. " is a kinematically admissible strain distribution. T is indicative
lJO

of the "cycle" of loading.

3.B.3.2.B. Formulation of theorem (Koiter 1541) :

"The body will not shakedown ; i.e. it will fail ultimately by cyclic

plastic deformations, if any admissible plastic strain rate cycle ijo (t)

and any external loads Xi(t), Pi(t) within the prescribed limits can be found

for which :
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ft f X. u dv + Pu. ds dt > f / F .. " 3 dv Eq. 3.B.ll0 v 1 10 Sp 1 o 0 fv F 0 dv Eq. 3.B.11

where F { ..ij is the plastic energy dissipation function in the strain

rate cycle "i.. (t)".
1J o

F ." 3 = .. " Eq. 3..12

"On the other hand, the structure will shakedown if a number k > 1 can be

found with the property that for all admissible plastic strain rate cycle

ijo"(t) and all external loads Xi(t), Pi(t) within the prescribed limits

k f X. uo dv + S Pi u ds dt f F (ijo dv dt.
o V 1 10 0 V ij o

Eq. 3.B.13

The upper bound of such numbers k is then obviously the factor of safety

with respect to shakedown".
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3.C EXAMPLES OF APPLICATION OF SHAKEDOWN ANALYSIS

3.C.1 Presentation of the examples

The objective of this section is to present simple applications of

shakedown analysis to problems of interest to the geotechnical engineer.

We shall consider the rocking behavior of a rigid rectangular foundation

placed on a bed of Winkler springs representing underlying clay. The weight

of the structure is constant and equal to N. The external moment M, varying

between - M* and M*, is also applied to the foundation. Our goal is to

characterize the behavior of this foundation for any couple (N, M*) Figure

3.C.l.a).

Two cases will be treated. The first one corresponds to Winkler

springs having the same strength in tension and in compression. It could

be associated to a piled foundation placed under the mat (Figure 3.C.lb). The

second case allows for separation of the foundation and the underlying soil

(Figure 3.C.l.c). In both cases the Winkler springs have uniform properties

over the entire foundation. They are P-bodieswith a modulus K and a strength

a0. The movements are assumed small and the forces are applied in a quasi-
o

static way.

These examples are directly inspired by the work reported by Taylor et

al. 1991 and will show how an elementary manipulation of stress distribution

diagrams and the use of Melan's theorem can allow us to completely describe

the foundation behavior.
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3.C.2 No separation : the "pile foundation" case :

3.C.2.1 Normalizing factors

We shall normalize both N and M1* by their maximum values N and
max

M which are obtained as follows.
max

N corresponds to no moment applied to the foundation and to a
max

uniform distribution of = , and therefore N = 2HB .
O max o

Ma corresponds to no vertical load applied to the foundation and
max

a stress diagram as shown in Figure 3.C.2.

-T.

o

0
I m max I = 2 H I 5 H2 B 1 

O'

Figure 3.C.2

The normalized vertical load n and normalized moment m are then defined as :

n N and m = M
max max

3.C.2.2 Elastic range

The elastic range is obtained using the principle of superposition.

We have on the extreme fiber a maximum stress of :

N 3 Mk+ _-
2 -2B

M
N

, I

- . � r I

-- T
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and therefore the equation limiting the elastic range is :

1= n + m
2

(see Figure 3.C.12)

3.C.2.3 Shakedown

From Melan's theorem the foundation will shakedown under the prescribed

loading if we can find a time-independent residual stress distribution p such

that :

- < E ) + < -cb Ko at~ e K a , at all time. Eq. 3.C.1

To define the shakedown range let us first assume that N = 0 and then

for each value of M* find the maximum value of N which we can add and still

have shakedown.

Let us first observe that we cannot have aE (t) > a , or otherwise

Eq. 3.C.1 would lead to :

a ( ) a (t>) e ( " o
and

=== f <0

-O Co<- a() + m

This is evidently valid for C (k)

so that C () 

Consider therefore two cases :

E
a. C = cr

M*

which is impossible

E

= aM* Ct)

if shakedown is to occur.
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The elastic stress distribution is shown in Figure 3.C.3 for M = M* and

M = - M*.

-

0o

or M + M*

a

Figure 3.C.3

We can show that the maximum value of N compatible with shakedown correspond

to the shaded area of Figure 3.C.3 by simply recognizing that it can be seen

as the sum of an elastic stress distribution due to N and of an acceptable

residual stress distribution (Figure 3.C.4).

o 

+ 1

a.

Co
I , , o-8 ^ / b I as~~2

a,

-4-
I.

acceptable residual

stress distribution

Figure 3.C.4

I _ |I ~ L I

distri but I ott or M M

~~r bt'~v
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We are therefore in the condition of application of Melan's theorem.

Adding N does not modify the moment which is such that

CE -3 m

and N is limited by

or,

- and thus :

o N H 

< n Io<~< '__
g

The procedure which has just been employed will be called the "technique

of the shaded area".

b. dC < o

Let us apply this technique once again. The elastic-stress distributions

for M = + M* and - M* are shown in Figure 3.C.5.

.I god .. _l distribution for M = - M*

-/ - distribution for M = + M*

a,

A

acceptable residual

stress distribution
.+ _ w o r

Figure 3.C.5

2

3

3- -3 mT

0

To



Maximum N = ( C - 3 m c ) 2 + m HB

ZH CO ( I m )

or
3n= 1 - m
4

valid for 12 <n< 1f

The complete shakedown domain is now defined (see recap in Figure 3.C.12).

3.C.2.4 Ultimate capacity

The failure condition under M and N is characterized by a stress diagram

of the type shown in Figure 3.C.6.

- 0

0

I

i --

I
I , -

Figure 3.C.6

N = ZB (H- x H) - H B (- x)

or n = I- 

and M = 2 H I- x H B 

or m = 2.:r(I -- )

315
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By eliminating x we obtain the failure curve : m = 1 - n2

(see Figure 3.C.12).

The problem now becomes to study the behavior of the foundation

for a load combination (m, n) located in between the shakedown domain

and the failure curve.

3.C.2.5 Alternate plasticity

Let us first establish the transition curve between shakedown and

alternate plasticity. This limit is characterized by

E _
C- - = 0

a 6; - = - 50

which, by subtraction yields :

- a- = 2m , and, in our case,

3 NAO + 3 ro = 2 or m = , equation of the boundary between
2.Z . 3'-

shakedown and alternate plasticity (Figure 3.C.IZ).

2
Alternate plasticity can only occur for m > 3 , and it will occur at

the edges of the foundation. Where there is no alternate plasticity there is

shakedown or elasticity.

Again starting with N = 0, we have a stress distribution of the

type shown in Figure 3.C.7 for M = + M*.

elastic zone

- TO

o

tzone

zone :icity Figure 3.C.7
,., @
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The center part of the foundation remains elastic. We can now consider

the shaded area as the maximum value of N which can be added while insuring

the shakedown of the center of foundation. This value of N is

N = ~ H or n = valid for O < < i

M is given by : M = Co BH 2 ( I - A ) i = I .
3 3

Eliminating we find the boundary of the alternate plasticity domain :

corresponding to the equation : m = 1- n2 (see Figure 3.C.12).

It is easy to show that this same equation corresponds to the stress diagram

of Figure 3.C.8, corresponding to the yielding of the center spring

-/ _ <me -,- rn
a

+ a;

I A I~ _..-.--- OLL .LLCL J.LJULa.LL . LL itr - - s'

= at center spring
f

for each passage at M* or - M*.

Figure 3.C.8

3.C.2.6 Incremental collapse

By incremental collapse we mean any condition that is neither

elasticity, shakedown, nor alternate plasticity. In this particular example

we have ratchetting since the center spring yields each time the moment M

covers the range [ - M*, + M* ].

Ratchetting leads to a memory loss. A partial stress distribution

under - M* is given in Figure 3.C.9.
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?

plastic zone

Figure 3.C.9

In the plastic zone the displacements are given by :

u = 1 + u' where u' = /k = cte.

Since the rigid block imposes a linear distribution of the displacement u,

it is clear that the distribution of the plastic displacement u" is linear

in this zone and that the distribution of residual stresses will itself

be linear. Therefore the stress distribution placed at the right of the

plastic zone in Figure 3.C.9 can only be linear or constant (plastic), and

will correspond to one of the cases of Figures 3.C.10 a and b.

Ct.

-C

0

- Co

0o

i /
a'

+ ao

b.

a,

Figure 3.C.10

±0 

L I

\~~~~~~~~. 

I

---------
l

i 

Lliil~~~~~~~~~~~~~~
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The limiting diagram is given by Figure 3.C.11

0

+ Co

Figure 3.C.11

The corresponding limiting curve is obtained by elimination of z from the

following relations :

n = (1 - x)

4 2m 2 -
3

4
or m (1 - n)

3

1
(n + )

2
see Figure 3.C.12.

We have now completely defined the nature of the behavior of this foundation

according to the couple (m, n).

--~~jL~
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3/4

2/3

;j 
i 11/2
E

1/3

1/4

0

; WITHOUT

PLASTICITY

N Inor ..
No V

! I I I , I I

C'~0 4 3 2 1,5 4/3 1 F v

Figure 3.C.12 Rocking behavior of rigid foundation without separation.
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3.C.3 Separation : the superficial foundation case

3.C.3.1 General remarks on separation

It is assumed that the soil underneath the rigid foundation does not

transmit tension loads. As a result as soon as the stress under the foundation

drops to zero separation occurs.

In such a case we may have the temptation to assimilate the separation

operation to a zero strength in tension for the Winkler elasto-plastic springs.

This should not however be done. It is essential to see that when = 0 no

plastic strains occur in tension.

As the soil is reloaded, i.e. the contact is re-established, the

plastic strains are those existing at separation. In this respect the

separation is equivalent to an "infinite" yield strength in tension.

The past observation results in the impossibility to obtain a state of

alternate plasticity.

3.C.3.2 Normalizing factors

The same normalizing factors used in the case of no separation will

be used for comparison purposes.

3.C.3.3 Ultimate capacity

At ultimate capacity the stress distribution is of the form of

Figure 3.C.13.

I [ I HHe=21
-F H 1 0g=N H9 C 5

T\ cH-·

Figure 3.C.13



m = 2 n (1 - n) (see Figure 3.C)

3.C.3.4 Elastic range

We shall differentiate between the true elastic range and the pseudo-

elastic range which will be associated with separation.

I - True elastic range (no separation)

oz

a) O =o

: generic stress diagram

N = 28 ' 

M= a H H_

(o

0 3Z

r

= n i <$3

This limit corresponds to the onset of separation (Figure 3.C.19).

b) 0-, = Co N = 2 H 0C+YO 5

M = -) HB I
z 3

+ 3 I-r +nt
a-

Hence,
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0

a'

Figure 3.C.14

~i )~~~-n , -

I
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This limit corresponds to the onset of yield (Figure 3.C.19)

II - Pseudo elastic range (separation)

N H 2-x-)Bo 

= 2 I-2 )

I i ,

0o

o

M = NH L' CI+ )= Z ( - ) ( + X)
3 &..

Figure 3.C.15

For a given n (which has to be less than by construction) this equation

gives the maximum value of m which will still maintain elasticity (in the

sense of pseudo-elasticity, i.e. with separation).

17 = 2 jC 3 -I- r q1 ' 
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3.C.3.5 - Shakedown

In a similar manner we shall treat true shakedown and pseudo-

shakedown (associated with separation) separately.

I - True shakedown

Since we do not want separation we must have n > ½.

In the zone of true shakedown we can find a residual stress

distributions p such that :

oE + 

Ef AA> O where aE is the elastic stress.

Therefore
E c

GT - r i C

-t extyeme iber:

+ m < 1/3

Let us now consider the stress distribution due to the moment,

and especially its envelop as M varies

For a given m :

o0
2.

r\ 'ic
0~~~~ ~~~ , M inC(M~-tt r

I M 
I a -~ ~ ~ ne0 -I E i. m~~~~~~~'ax Z 

> K

C a rt- i I
,: I ' 3 

rigure .U.io1
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The maximum value of n corresponding to this m and leading

to true shakedown is given by the shaded area, (technique of

the shaded area).

For a given m the shaded area = Z HB 0 - H 3 rm O-

therefore the limit i

sn 2 B = o ZH ( - 3 m)

.s given by n = - m

4
or m = - [ - n

The true shakedown zone is defined by :

n > 2

m < 1/3

m 4/3 E1 - n] (See Figure 3.C.19).

II - Pseudo-shakedown

Pseudo-shakedown is the zone where we would have had alternative

plasticity.

It is sufficient to show that no incremental collapse occurs in

this zone.

3.C.3.6 - Incremental collapse

As in the case of no separation we shall have incremental collapse

when the center spring yields. The same argumentation holds

concerning the loss of memory from one cycle to another and the

linearity of the stress distribution in the elastic range.

The limiting lines for ratchetting are given by :



K .o

a.

Figure 3.C.17

a) Separation

N = N BS + _ H 5 o

N= Z H o ( 

n= (I

M = H e 
z

+ )

% = (-1)

Hc H 
?_ 3-

m= (1t3' 

eliminating t

transition between

ratchetting with

separation and

pseudo-shakedown

tw = L ( 4 Z -I) )

kt -2 t 2'fL = I + z CZ-r- I ) 
Z 3

z +

b) No separation

r = 6·u-n = 3 + 
nl 4-

0
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m = 4 ( I - )
3

Transition between ratchetting

without separation and

shakedown

4
m = 4 ( 1

3
3 <n< 1

-n )

it is the

limit of the

shakedown

analysis.

(Figure 3.C.19)

c) Let us now consider the boundary between the two types of

ratchetting

1 I

m = A (I- )
Z ~

N = 2 Co - % H o 5
2N

N = ZHcrO B [,-, I )

4

Figure 3.C.18

2m= (1-n) (4n-1 )
3

See Figure 3.C.19.

The complete loading range is now defined.

n L

'O 7

G-

v

"r
,

I cE, tA
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N In,.. =_
I No IV

4 3
1

2
I i

1.5 4/3 Fv

Figure 3.C.19 Rocking behavior of rigid foundation with
separation.
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APPENDIX 4

COMPLEMENTARY EXPERIMENTAL RESULTS

4.A GENERAL DATA

Table 4.A.1 : Typical Plastic Drammen Clay Properties*

Average properties

natural water content

liquid limit

plastic limit

plasticity index

clay content (< 2 a)

specific gravity

Mineralogy

K-feldspar

Na-feldspar

quartz

hydromica

hornblende

chloride

* After Andersen, 1975 2 

w = 52 %

WL= 55 %

= 28 %

Ip = 27 %

45 - 55 %

GS = 2.76

ISu DSS/' vc]NC

25 - 30 %

5%

20 %

40 %

5%

5 %

= .215
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Figure 4.A.1 Additional strength parameters from the Danviksgt. site. (After NGI).
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Figure 4.A.2 Soil profile from 'Museumrsparken in Drarnmen, Nor.ay
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4.B PREPARATION AND INDEX PROPERTIES

The clay was extruded from two tubes, 200 mm in diameter and 1 m long,

from boring 39 made on May 6, 1981 at 50301 Danviksgt. in Drammen, Norway.

These two tubes correspond to the depth ranges 6.2 - 7.2 m and 7.3 - 8.3 m.

They were stored in NGI humid room at a temperature of 80°C. The first tube

had been opened previously to our testing, while the second one was intact.

One 10 cm high cake was extruded from each tube on Friday, April 2, 1982.

Each cake was immediately sliced on four parts and placed in liquid paraffin

at 80C. The procedure is presented in Figures 4.B.1 and 4.B.2 where the rel-

ative positioning of the specimens and the locations of shell fragments and

organic matters are also indicated. The slicing of the cake quarters was

made whenever needed.

The aspect of the two cakes was quite different, the first one (39-1)

presenting a rim of yellowish color (oxidation) and deep vertical marks on

its side. Chips of clay were obviously unstable and some silty parts were

also visible. The second cake (39-2) was apparently perfect.

The actual preparation of a typical specimen took around 10 minutes.

The membranes used were too thick and as a result some clay was systematically

removed on the outer periphery of the specimen during the placement of the

membrane. The routine measurement of the initial height was also found to

be somewhat unreliable and a direct check was made which yielded a very

systematic height of 16.0 mm.
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Figure 4.B.1
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Clay index properties were obtained for each specimen. During

triming the larger chunks were kept for Atterberg limit estimations while

the closest clay was quickly stored for natural water content measurement.

Most of the relevant results were reported in Table 4.3.1. A comparison

of the two different cakes can be made on the basis of Figure 4.B.3 and the

Casagrande's chart of Figure 4.B.4. The two cakes correspond to somewhat

different clays. This finding is confirmed by the fall cone measurements

of Table 4.B.1 and the correlation diagram of Figure 4.B.5. Sample 39.2

yields a far better correlation with respect to natural water content ;

however the "strengths" do not appear too different.

CP w wL

O 10

I st

m rnple
39- 

I from 

Sam - e
3q- 

Iom

20

0O

Fig0ur 4.2.2

30 50 60

0

0

0

00®®D®D®
@

0o-

0,-4

figu rc 4.2.Z

Figure 4.B.3 Water contents and Atterberg limits.
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4.C CONSOLIDATION, SHEAR AND CREEP

4.C.1 Consolidation

The consolidation stage followed closely the NGI procedure.

The key results are presented in the form of increments of displacements,

heights and strains in Table 4.C.1 and in the It-log ] diagram of

Figure 4.C.1 where the mean (and standard deviation) points are reported

for each cake. Again it can be seen that while each cake yields very

consistent results some discrepancy exists between the two cakes.

The measurements at each step loading are taken at 6,15 and 30 seconds,

1 and 30 minutes. Figure 4.C.1 corresponds to the 30 minutes reading. This

procedure is oriented towards the estimation of the "false" deformation by

a Taylor log(t) fit*. The total corrected deformation is then used to

estimate the correction for vertical deformation of the membrane.

A weight to be applied

X A X Cm

on level arm hanger 10

a is obtained from Figure 4.C.2 by entering the corrected deformation
m

A is the surface of the specimen (50 cm 2)

C is a parameter of the membrane, here 1.3

* False deformation : initial deformation as obtained from Taylor's fit -
deformation before application of load.
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The resulting load increase was only 2 %. This correction was not applied

to tests Q, and '

Contact with the specimen was insured by placing a load of 150 g on

the arm hangar during 10 mn. The apparatus had been previously checked for

levelness and sensitivity of the vertical displacement reading.

4.C.2 Drained shear and creep

Figure 4.C.3 presents in a -y diagram the points corresponding to

the end of drained shear and the end of creep (19 hours difference). Vertical

deformation measurements were reported in Table 4.C.1.

The horizontal (shear) displacements do not show evidence of a

significant difference between cakes 39.1 and 39.2

A horizontal correction of the same type as in section 4.C.1 is also

applied to all the shear deformations. Figure 4.C.4 gives the correction

factor on the shear load as a function of the shear strain.
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4.D CYCLIC LOADING

Tables 4.D.1 through 4.D.12 give the shear stresses, deformations

and pore pressures at selected cycles. Both stresses and deformations have

been corrected for horizontal membrane deformation.
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4.E COMPARISON OF TESTS O AND Q

It has been decided to discard test © for two reasons :
Specimens O and Q were obtained from two different cakes.

Specimen O appeared very homogeneous whereas specimen e

showed a significant heterogeneity in the form of a large circular

trace (5 mm in diameter) of black organic (?) matter. Traces of

shells were also clearly apparent in this specimen and in the

adjacent clay during preparation.

Specimen was located only 5 cm above the bottom of tube

39.1 (see Figure 4.B.1).

The behavior of test O does not appear to be consistent with

the neighboring tests while test is. This can be showm by

considering Figures 4.E.1 and 4.E.2 where the tests ®, ,

0 and Q, i.e. all the test corresponding to

-c= 40 %, are presented in the form of the curves of yd
Tstrength
and Yave versus time. Tests O, (, (, and ® corresponding

to ave 60 % can also be considered. Figure 4.E.3 shows
strength

some discrepancy in the evolution of c in test . Figure 4.E.4

shows the corresponding graph of yave for information, but does not

permit drawing of any conclusions.
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Figure 4.E.2
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APPENDIX 5

LISTINGS OF COMPUTER PROGRAMS AND DATA FILE

5.A SUBROUTINE CYCDEG
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SUBROUTINE CYCDEG(TAV,TCY,GAVO,DN,GAV,GCY,IWRITE)

C

C GIVEN A PAIR TAU-AVE (TAV), TAU-CYC (TCY), THIS SUBROUTINE WILL:

C 1. FIND THE NUMBER OF CYCLES (NO) AT WHICH THE AVERAGE

C DEFORMATION (GAVO) WILL BE OBTAINED,
C 2. ADD THE INCREMENT OF CYCLES (DN) TO GET THE NEW NUMBER OF CYCLES
C NU (NO+DN) AND FIND THE CORRESPONDING DEFORMATIONS, AVERAGE
C (GAV) AND CYCLIC (GCY).

C

REAL NUM(7),NINT(5),NO,NU,NUMB
COMMON TOACC(7),TOCREP(5),TIC(8),TIV(6),TOAV(7,5,6)
COMMON GIV(5),GIC(4),NUM,TOCY(7,4,6)
DIMENSION T(4),TAVINT(5,7),TCYNT(4,7),GCYN(7)

IF(IWRITE.EQ.1) WRITE(6,800) TAV,TCY,GAVO,GCY,DN
800 FORMAT(/5X,'TAV=',F6.2,2X,'TCY=',F6.2,2X,'GAVO=',F6.3,'(%)',2X,

1 'GCYO=',F6.3,'(%)',2X,'DN=',F5.0,'(CYCLES)')

DO 50 I=1,5

NINT(I)=-1.
DO 50 J=1,7

50 TAVINT(I,J)=-1.

ITACHI=7

IF(TCY.LT.TOACC(7)) GO TO 102

C LOCATE TCY VIS A VIS TOACC(I)
C TOACC(ITACHI)>TCY>TOACC(ITACLO)

DO 100 I11=2,7

I=I1
IF(TCY.GE.TOACC(I)) GO TO 101

100 CONTINUE
101 ITACLO=I

ITACHI=I-1

C LOCATE TCY VIS A VIS TIC(I)
C TIC(ITICHI)>TCY>TIC(ITICLO)

C********************************

102 DO 103 I1=2,8

I=I1
IF(TCY.GE.TIC(I)) GO TO 104

103 CONTINUE
104 ITICLO=I

ITICHI=I-1
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ALO=(TCY-TIC(ITICHI))/(TIC(ITICLO)-TIC(ITICHI))
AHI=(TIC(ITICLO)-TCY)/(TIC(ITICLO)-TIC(ITICHI))

C LOCATE GAVO VIS A VIS GIV(I)

C GIV(IGHI)>GAVO>GIV(IGLO)

DO 700 II=1,4

I=5-II
IF(GAVO.GE.GIV(I)) GO TO 701

700 CONTINUE
C *-*********C

C GAVO < 2.5 %
C ***********C

IGHI=1
IGLO=1

GO TO 702

C

C GAVO > 2.5 %

701 IGHI=I+1
IGLO=I

702 CONTINUE

C OBTAIN X-SECTIONS OF 3D GAV SURFACES FOR TCY

C TAVINT(K,N) & NINT(K)

DO 200 K=1,5

IF(ITICHI.EQ.1) GO TO 106

IF(ITICHI.EQ.7) GO TO 110

C .2 < TCY < .7

IHI=ITICHI-1
ILO=ITICLO-1
DO 105 N1=1,7
N=N1

IF(TOAV(N,K,ILO).EQ.-1.OR.TCY.GT.TOACC(N)) GO TO 114

IF(TOAV(N,K,IHI).NE.-1.) GO TO 80

TAVINT(K,N)=TOAV(N,K,ILO)*(TOACC(N)-TCY)/(TOACC(N)-TIC(ITICLO))
GO TO 105

80 TAVINT(K,N)=ALO*TOAV(N,K,ILO)+AHI*TOAV(N,K,IHI)
105 CONTINUE

M=7

GO TO 115

C .7 < TCY

106 N=ITACLO

DO 107 I=1,ITACHI

107 TAVINT(K,I)=(TCY-TOACC(I))/(TIC(2)-TOACC(I))*TOAV(I .K.1)
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GO TO 114

C

C .2 >TCY

C

110 DO 113 N1=1,7
N=N1
IF(TOAV(N,K,6).EQ.-1. ) GO TO 114

113 TAVINT(K,N)=ALO*TOCREP(K)+AHI*TOAV(N,K,6)
M=7

GO TO 115

C M IS THE LAST INDEX OF N FOR WHICH WE HAVE A VALUE OF TAVINT

114 M=N-1
115 IF(TAV.GT.TAVINT(K,1)) GO TO 195

IF(TAV.LT.TAVINT(K,7)) GO TO 190
IF(TAV.LT.TAVINT(K,M)) GO TO 120

C INTERSECTION TAVINT & TAV EXISTS

DO 117 I1=2,M

I=I1
IF(TAV.GE.TAVINT(K,I)) GO TO 118

117 CONTINUE
118 BLO=(TAV-TAVINT(K,I))/(TAVINT(K,I-1)-TAVINT(K,I))

BHI=(TAVINT(K,I-1)-TAV)/(TAVINT(K,I-1)-TAVINT(K,I))
NINT(K )BLO*NUM( I-1 )+BHI*NUM( I)
GO TO 200

C INTERPOLATE WITH TOACC NETWORK

120 CLO=(TCY-TOACC(ITACHI))/(TOACC(ITACLO)-TOACC(ITACHI))
CHI=(TOACC(ITACLO)-TCY)/(TOACC(ITACLO)-TOACC(ITACHI))
NUMB=CLO*NUM(ITACLO)+NUM(ITACHI)*CHI
DLO=(TAVINT(K,M)-TAV)/TAVINT(K,M)
DHI=TAV/TAVINT(K,M)
NINT(K)=NUMB*DLO+NUM(M)*DHI
GO TO 200

C

C NINT(K) > 5000

C

190 NINT(K)=10000.
IF(NINT(IGLO).EQ.lOOOO.AND.IGLO.NE.IGHI) GO TO 9025
GO TO 200

C

C TAV > TAVINT(K,1)
C

195 NINT(K)=1.
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200 CONTINUE

C THE NINT(K) ARE AVAILABLE, NOW WE WANT NO CORRESPONDING TO GAVO

C GET GAV1: AVERAGE DEFORMATION AT 1ST CYCLE

IF(TAV.GE.TAVINT(5,1)) GO TO 900

DO 205 K=1,4
K1=5-K
IF(TAV.GE.TAVINT(Kl,1)) GO TO 206

205 CONTINUE
C

C TAV<TAVINT(1,1)

GAV1=GIV(1)*TAV/TAVINT(1,1)
IF(GAV1.GT.GAVO) GAV1=GAVO
GO TO 207

C TAVINT(Kl+1,1)>TAV>TAVINT(Kl,1)

206 T=TAVINT(Kl+1,1)-TAVINT(Kl,1)
GAV1=(TAV-TAVINT(Kl,l,1))/Tl*GIV(Kl+l)
GAV1=GAVl+(TAVINT(K1+1,1)-TAV)/Tl*GIV(K1)

207 CONTINUE

C GET GAV7: AVERAGE DEFORMATION AT 5000 CYCLES

GAV7=15.
IF(NINT(5).NE.10000.) GO TO 350

DO 220 KK=1,4
K=5-KK
IF(TAV.GT.TAVINT(K,7)) GO TO 221

220 CONTINUE
C

C TAVINT(1,7)>TAV

GAV7=TAV/TAVINT(1,7)*GIV(1)
GO TO 350

C ****************************
C TAVINT(K+1,7)>TAV>TAVINT(K,7)

C ****************************

221 GAV7=(TAV-TAVINT(K,7))/(TAVINT(K+1,7)-TAVINT(K,7)*GIV(K+1)
GAV7=GAV7+(TAVINT(K+1,7)-TAV)/(TAVINT(K+1,7)-TAVINT(K,7))*GIV(K)

IF(GAVO.GT.GAV7) GO TO 219

350 IF(GAVO.GT.GAV7) GO TO 218

C

IF(GAVO.LE.GAV1) GO TO 217

C GAVO>GAV1
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IF(IGHI.EQ.1) GO TO 210

IF(NINT(IGHI).EQ.10000.) GO TO 211

IF(GAV1.GE.GIV(IGLO)) GO TO 216

C GIV(IGHI)>GAVO>GIV(IGLO)

C ***********************
NO=(GAVO-GIV(IGLO))/(GIV(IGHI)-GIV(IGLO))*NINT(IGHI)
NO=NO+(GIV(IGHI)-GAVO)/(GIV(IGHI)-GIV(IGLO))*NINT(IGLO)
GO TO 230

GIV(1)>GAVO>GAV1
*****************

210 IF(NINT(1).EQ.10000.)
NO=(GAVO-GAV1 )/(GIV( 1
GO TO 230

GO TO 215
)-GAV1 )*NINT(1)+(GIV( 1 )-GAVO)/(GIV(1 )-GAV1)

GAV7>GAVO>GAV1

215 NO=(GAVO- GAV/(GAV7-GA)*55000.+(GAV7GAVO)/-G (GAV7-GAV1)
GO TO 230

************
GAV1>GIV (IGLO)
*************

216 NO=(GAVO-GAV1)/(GIV(IGHI)-GAV1)*NINT(IGHI)
NO=NO+(GIV(IGHI)-GAVO)/(GIV(IGHI)-GAV1)
GO TO 230

*********

GAV1>GAVO
*********

217 NO=1.
GO TO 230

211 NO=(GAVO-GIV(IGLO
NO=NO+(GAV7-GAVO)
GO TO 230

218 NO=NINT(5)
GO TO 230

219 NO=10000.

1))/(GAV7-GIV(IGLO))*5000.
/(GAV7-GIV(IGLO))*NINT( IGLO)

230 NU=NO+DN

IF(NU.GE.5000.AND.NINT(5).EQ.10000.) GO TO 398
IF(NU.GT.NINT(5)) GO TO 404

C FIND NEW GAV CORRESPONDING TO NU CYCLES

DO 235 I=1,5
I1=I

IF(NINT(I1).GT.1.) GO
235 CONTINUE
236 IF(NU.LT.NINT(I1)) GO

DO 240 KK=1,5
K=6-KK
IF(NINT(K).EQ.10000.)

TO 236

TO 397

GO TO 240
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IF(NU.GE.NINT(K)) GO TO 241
240 CONTINUE
241 IF(NINT(K+1).EQ.10000.) GO TO 250

IF(NINT(K).EQ.NINT(K+I)) GO TO 777

GAV=(NU-NINT(K))/(NINT(K+1)-NINT(K))*GIV(K+l)
GAV=GAV+(NINT(K+1 )-NU)/(NINT(K+1)-NINT(K))*GIV(K)
GO TO 399

250 GAV=(NU-NINT(K))/(5000.-NINT(K))*GAV7
GAV=GAV+(5000.-NU)/(5000.-NINT(K))*GIV(K)
GO TO 399

C

397 IF(NINT(I1).EQ.10000.) GO TO 252

GAV=(NU-1.)/(NINT(I1)-l.)*GIV(Il)
GO TO 399

252 GAV=(NU-1 .)/4999 .*GAV7+(5000.-NU)/4999.*GAV1
GO TO 399

C

398 GAV=GAVO
IF(GAV7.GT.GAVO) GAV=GAV7
NU=10000.
GO TO 399

777 GAV=GIV(K)
GO TO 399

404 GAV=15.
NU=NINT(5)

C GET GCY
C************

399 DO 400 11=1,5

I=6-II
IF(TAV.GE.TIV(I)) GO TO 401

400 CONTINUE

C

C TIV(IHI)>TAV>TIV(ILO)
C

401 IHI=I+1
ILO=I

C

ALO=(TAV-TIV(IHI))/(TIV(ILO)-TIV(IHI))
AHI=(TIV(ILO)-TAV)/(TIV(ILO)-TIV(IHI))

IF(NU.GT.5000.) GO TO 411

C

DO 402 II=1,6
I=7-II

IF(NU.GT.NUM(I)) GO TO 403
402 CONTINUE

C

C NUM(NHI)>NU>NUM(NLO)
C

403 NHI=I+1
Kit n-T
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405 DO 410 N=NLO,NHI
DO 410 L=1,4
TCYNT(L,N)=ALO*TOCY(N,L,ILO)+AHI*TOCY(N,L,IHI)

410 CONTINUE
GO TO 412

411 DO 413 L=1,4
413 TCYNT(L,7)=TOCY(7,L,ILO)*ALO+AHI*TOCY(7,L,IHI)

C GET GCYN(N) IF IWRITE = 1

412 IF(IWRITE.EQ.O) GO TO 419
DO 415 N=1,7
IF(TCY.GE.TCYNT(4,N)) GO TO 416

DO 417 L=1,3
LL=4-L
IF(TCY.GE.TCYNT(LL,N)) GO TO 418

417 CONTINUE
GCYN(N)=GIC( 1 )*TCY/TCYNT(1 ,N)

GO TO 415

418 TI=TCYNT(LL+1,N)-TCYNT(LL,N)
GCYN(N)=GIC(LL)*(TCYNT(LL+1 ,N)-TCY)/T1
GCYN(N)=GCYN(N)+GIC(LL+1)*(TCY-TCYNT(LL,N) )/T
GO TO 415

416 GCYN(N)=3.
415 CONTINUE

419 IF(NU.GT.5000.) GO TO 422

DO 420 L=1,4
T(L)=(NU-NUM(NLO))
T(L)=T(L)T(L+NUM(NHI)NU/(NUM(NHI)--NUM(NLO))*TCYNT(L,NLO)

420 CONTINUE
GO TO 425

422 DO 423 I=1,4
423 T(I)=TCYNT(I,7)

C

425 IF(TCY.GT.T(4)) GO TO 9100
DO 430 II=1,3
I-4-II
IF(TCY.GE.T(I)) GO TO 431

430 CONTINUE
GCY=TCY/T(1)*GIC( 1)

GO TO 999

431 GCY=(TCY-T(I))/(T(I+1)-T(I))*GIC(I+l)
GCY=GCY+(T(I+1)-TCY)/(T(I+1)-T(I))*GIC(I)
GO TO 999

9025 NO=10000.
NU=10000.

9020 GAV=GAVO
GO TO 999

9100 GCY=3.

999 IF(IWRITE.EQ.O) RETURN
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WRITE(6,801) (NINT(I),I=1,5)
801 FORMAT(/5X,'#CYCLES: 1',6X,5(F5.0,3X),'5000')

WRITE(6,806) GAV1,(GIV(I),I=1,5),GAV7
806 FORMAT(7X,'GAV : ',F6.3,6(2X,F6.3)/)

WRITE(6,804)
804 FORMAT(5X,'#CYCLES: 1',7X,'50',6X,'100',5X,'200',5X,'500',

1 5X,'1000',4X,'5000')

WRITE(6,805) (GCYN(I),I=1,7)
805 FORMAT(7X,'GCY : ',F5.3,6(3X,F5.3)/)

WRITE(6,802) NO,NU,GAV,GCY
802 FORMAT(5X,'NO=',F6.0,'(CYCLES) NU=',F6.0,'(CYCLES) GAV=',

1 F6.3,'(%) GCY=' ,F6.3,' (%)')
RETURN

900 GAV=15.
GCY=3.
IF(IWRITE.EQ.1) WRITE(6,807)

807 FORMAT(/5X,'TAV>TAVINT(5,1), GAV=15 % GCY=3%')
RETURN
END
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5.B PROGRAM TLPILE
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C

C

C

C

*** PROGRAM TLPIL3
*

*

*

C ****************

C

C VERSION NOVEMBER 30, 1982

C ************************
C

C

C

C

C

C

(UPDATED VERSION OF TLPILE)

§ ALAIN M. GOULOIS COPYRIGHT

UNITS USED IN THE CODE ARE METERS & KILONEWTONS, BUT INPUTS
AND OUTPUTS UNITS CAN BE DIFFERENT.

C

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

STFPIL(11),U1(11,6),UR(11,6)
R(31),RCONS(31),T(31,4),T1(31,4),FORCE(31)
S(31,4),FTRONG(lO),FTRONl(lO),STRONG,ROO
SK(11,6),C,SKM,CORCON(10),FLM,FELAS
DELAS,DF(11,6),FL(11,6),FG(11,6),FRATIO
CIGN,X,BMIN,AA,BB,FG1(11,6),SK1(11,6)
FTRON2(10)

C

DIMENSION THICK(1O),XAREA(5),WF(10),WP(10O),TITLE(40)
DIMENSION HGTLAY(10),SHTHRO(10),DENSOL(10),GSIG(10 ),RMRO(10)
DIMENSION NPTOGA(10),SIG(10),TOSIG(6),GA1(6),STFSOL(10)
DIMENSION FDSS(11,6),DDSS(11,6),W(11)
DIMENSION SOFT(10) ,TMAX(10) ,ALPHA( 10 ) ,BETA(10 )
DIMENSION GA(10,2),TO(10,2),GACONS(10)
DIMENSION GAVGE(11,2),GACYC(11,2),TOVGE(11,2 )
DIMENSION SOFCON(10),DMAX(10),Q(6),GAVEC(10)
DIMENSION TOCYC(11,2),IPL(11,6),FOPILE(10 )
DIMENSION FOSOL(10),FODSS(10),UELAS(11,6),TIMEFC(1O),TOCONS(10)
DIMENSION GOR(11)
DIMENSION GOR1(11),DOR(11),GG(10) ,PDEF( 5,10)
DIMENSION ARRAY1(2,150),ARRAY2(15,10),ARRAY3(15,10)
DIMENSION ARRAY4(3,50)
DIMENSION XSCL1(4),XSCL2(4),XSCL3(4),XSCL4(4)

C

REAL NUM(7),NCYC,LENGTH,NC,LCYC
C

COMMON TOACC(7),TOCREP(5),TIC(8),TIV(6)
COMMON GIV(5),GIC(4),NUM,TOCY(7,4,6)

C

CHARACTER*40 XLAB1,XLAB2,XLAB3,YLABL,YLAB2,YLAB3,XLAB4
C

C

PI=3.14159
WPILE=O.
WFILL=O.
PLIMIT=O.
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C

C TITLE

C

READ(5,8610)(TITLE(I),I=1,40)
8610 FORMAT(20A4)

WRITE(6,8615)(TITLE(I),I=1,40)
8615 FORMAT(1X,20A4/1X,20A4/1X,80(1H*)///)
C

C LABELS OF PLOTS

C

READ(5,8802)XLAB1
READ(5,8802)YLAB1
READ(5,8802)XLAB2
READ(5,8802)YLAB2
READ(5,8802)XLAB3
READ(5,8802)YLAB3
READ(5,8802)XLAB4

8802 FORMAT(A40)
READ(5,8898) (XSCL1(I),I=1,4)
READ(5,8898) (XSCL2(I),I=1,4)
READ(5,8898) (XSCL3(I),I=1,4)
READ(5,8898) (XSCL4(I),I=1,4)

8898 FORMAT(4F10.2)
C

C SOIL PILE DESCRIPTION STARTS **************************

C

READ(5,4010) DIAM,DNSITY,DTYFIL,FRELTH,E,ITEST,IWRITE
READ(5,5000) LIMIN,LIMIIN

5000 FORMAT(I5,I5)
LENGTH=FRELTH
RO=DIAM/200.

C

IF(ITEST.EQ.1) IWRITE=1
C

READ(5,4050) NLAYER,NLOAD1,NLOAD2,ACC,LCYC,ALPFAC
IF(NLOAD1.GT.1O.OR.NLOAD2.GT.10) GO TO 775

NSEG=NLAYER
NNODES=NSEG+1
NPOINT=NNODES+NLAYER*2

C

C********
C LOADING

C

READ(5,8620)(PDEF(1,I),I=1,NLOAD1)
8620 FORMAT(F10.4)

WRITE(6,8630)
WRITE(6,8635)(PDEF(1,I),I=1,NLOAD1)

8635 FORMAT(5X,F10.4)
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8630 FORMAT(2X,'STATIC LOADING IN MN'/)
IF(NLOAD2.EQ.O) GO TO 7

DO 5 I=1,NLOAD2
READ(5,8625)(PDEF(J,I),J=2,5)

5 CONTINUE

8625 FORMAT(2F10.4,F1O.O,F5.0)
C

WRITE(6,8640)
8640 FORMAT(//2X,'CYCLIC LOADING IN MN,MN & CYCLES'/)

DO 6 I=1,NLOAD2

WRITE(6,8645) PDEF(2,I),PDEF(3,I),PDEF(4,I)
6 CONTINUE

8645 FORMAT(5X,2(F10.4,5X),F10.0 )

C

C BASIC DSS ELEMENTS

C

7 SI=O.

DO 20 I=1,NLAYER
READ(5,4080)HGTLAY(I),SHTHRO(I),DENSOL(I),GSIG(I),RMRO(I),NPTOGA(I

1)

READ(5,4081)TIMEFC(I),SOFT(I) ,ALPHA(I),BETA(I),SOFCON(I)
READ(5,4082)THICK(I)
LENGTH=LENGTH+HGTLAY(I)
SI=SI+HGTLAY(I)*(DENSOL(I )-1.)*9.81/2.
SIG(I)=SI
SI=SI+HGTLAY( I )*(DENSOL (I)-1.)*9.81/2.
BUF=SIG(I)*HGTLAY( I )*DIAM*PI/100.
N=NPTOGA(I)

C

DO 10 J=1,N

READ(5,4030) TOSIG(J),GA1(J)
FDSS(I+1,J )=TOSIG(J)*BUF*LCYC*ALPFAC
DDSS(I+1,J)=GA1 (J)*.01*RO*ALOG(SHTHRO( I )+1.)

10 CONTINUE
C

STFSOL(I)=2.*PI*HGTLAY(I)*GSIG(I)*SIG( I )/ALOG(RMRO( I )/(SHTHRO( I )+1

1.))
TMAX(I)=TOSIG(N)*SIG(I)*LCYC*ALPFAC
DMAX(I)=DDSS(I+1,N)+FDSS(I+1,N)/STFSOL(I)

Rl=RO-THICK( I)/100.
XAREA(I)=PI*(RO*RO-Rl*R1)

WF(I)=(DTYFIL-1.)*PI*Rl*Rl*HGTLAY(I)*9.81
WP(I)=DNSITY*XAREA(I)*HGTLAY(I)*9.81
WFILL=WFILL+WF(I)
WPILE=WPILE+WP(I)

C

20 CONTINUE
C

C DECOMPOSITION IN Prandtl BODIES
C********************************
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DO 60 I=l,NLAYER
N=NPTOGA(I)
IF(N.EQ.1) GO TO 50

Q(1)=FDSS(I+1,1)/DDSS(I+1,1)
C

DO 30 J=2,N

Q(J)=(FDSS(I+1,J)-FDSS(I+1,J-1 ) )/(DDSS(I+1,J)-DDSS(I+1,J-1))
30 SK(I+i,J-1)=Q(J-l)-Q(J)

C

SK(I+1,N)=Q(N)
C

DO 40 J=1,N
40 FL(I+1,J)=DDSS(I+1,J)*SK(I+1,J)

C

GO TO 60

C

50 SK(I+1,1)=FDSS(I+1,1)
FL(I+l,1)=FDSS(I+1,1)

C

60 CONTINUE
C

NSPR=O

DO 70 I=1,NLAYER
N=NPTOGA(I)
NSPR=NSPR+N

70 PLIMIT=PLIMIT+FDSS(I+1,N)
C

C STIFFNESSES OF PILE SEGMENTS
C*****************************
C

DO 80 I=2,NSEG

A1=E*XAREA(I-1)/(HGTLAY(I-1)/2.)
A2=E*XAREA(I)/(HGTLAY (I)/2.)
STFPIL(I) =A*A2/( A+A2)

80 CONTINUE
C

Al=l.
XA=O.
IF(FRELTH.EQ.O.) GO TO 90

READ(5,4083) XA
EA=RO-XA/100.
XA=PI*( RO*RO-EA*EA)
A1=E*XA/FRELTH

90 A2=E*XAREA(1)/(HGTLAY(1)/2. )
STFPIL(1)=Al*A2/( Al+A2)
IF(FRELTH.EQ.O.) STFPIL(1)=A2

C

C WEIGHT DISTRIBUTION

C

WPILE=WPILE+XA*DNSITY*FRELTH*9.81
WPH20=WPILE*(DNSITY-1.)/DNSITY
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WTH20=WFILL+WPH20
C

W(1)=-FRELTH*WPH20/ LENGTH

C

DO 100 I=2,NNODES

100 W( I)=-HGTLAY (I-1)*( WTH20+W( 1))/(LENGTH-FRELTH)
C

PTENS=PLIMIT+WTH20
PCOMP=-PL IMIT+WTH20

C

C WRITE PILE SOIL CHARACTERISTICS

C

EA=E/1000.
WRITE(6,8000)LENGTH,FRELTH,DIAM,DNSITY,DTYFIL,EA
WRITE(6,8300)XA,LCYC,ALPFAC
WRITE(6,8001)NLAYER,NNODES,NPOINT,NLOAD1,NLOAD2,ITEST,IWRITE
DO 115 I=1,NLAYER
WRITE (6,8500) I
RATIO=DMAX ( I ) / ( 2 .*RO ) *100.
EA=DMAX( I )*100.
WRITE(6,8004)I,HGTLAY(I),I,SHTHRO(I) ,I,TMAX(I),I,EA,RATIO
WRITE(6,8005)I,DENSOL(I) ,I,GSIG(I) ,I,RMRO( I) ,I,NPTOGA(I)
WRITE(6,8006) I ,TIMEFC( I ),I,SOFT( I ),I,ALPHA( I ) ,I,BETA( I)
WRITE(6,8007)I,SIG(I) ,I,SOFCON(I) ,I,STFSOL( I) ,I,W(I)
WRITE(6,8010)I,THICK(I),I,XAREA( I )
N=NPTOGA(I)
J=I+1
DO 110 K=1,N

EA=DDSS(J ,K)*100.
WRITE(6 ,8008)J ,K,FDSS(J ,K) ,J ,K,EA,J ,K,FL(J ,K) ,J ,K,SK(J ,K)

110 CONTINUE

EA=STFPIL( I)/1000.
WRITE(6,8009) I,EA

115 CONTINUE
WRITE(6,8040) NNODES,W(NNODES)
A1=PL IMIT/1000.
A2=WTH20/1000.
A3=WPH20/1000.
A4=WPILE/1000.
A5=WFILL/1000.
WRITE(6,8011)A1,A2,A3,A4,A5
Al=PTENS/1000.
A2=PCOMP/1000.
WRITE(6,8012)A1 ,A2
IF(ITEST.EQ.1)STOP

DO 120 I=2,NNODES

N=NPTOGA(I-1)
DO 120 K=1,N
SK(I,K)=SK(I,K)/SOFCON(I-1)

120 CONTINUE
WRITE(6,8505)

C
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C SOIL DEGRADATION DATA

C

READ(5,810)(TIC(I),I=1,8)
READ(5,820)(TIV(I),I=1,6)
READ(5,830)(GIV(I),I=1,5)
READ(5,840)(GIC(I),I=1,4)
READ(5,850)(NUM(I),I=1,7)
READ(5,825)(TOACC(I),I=1,7)
READ(5,830)(TOCREP( I),I=1,5)

DO 130 I=1,7
DO 130 J=1,5

READ(5,870)(TOAV( I,J,K),K=1,6)
130 CONTINUE

C

DO 140 I=1,7

DO 140 J=1,4

READ(5,871)(TOCY(I,J,K),K=1,6)
140 CONTINUE

C

C INITIALIZATIONS

C

ARRAY1(1,1)=O.
ARRAYi(2,1)=O.
ARRAY3(15,1)=-HGTLAY(1)/2.
ARRAY2(15,1)=(FRELTH-HGTLAY(1)/2.)/2.
DO 145 I=2,NLAYER
ARRAY3(15,I)=ARRAY3(15,I-1 )-(HGTLAY(1HGTLAYI-)+HGTLAY( I))/2.
ARRAY2(15,I )=(ARRAY3(15,I-1)+ARRAY3(15,I))/2.

145 CONTINUE
LLL=O
ROO=O.
STRONG=1000.*STFPIL(2)
DO 150 I=1,NPOINT

150 RCONS(I)=O.
DO 170 I=1,NLAYER
N=NPTOGA(I)
DO 160 K=1,N

160 FG(I+1,K)=O.
GOR(I+1)=O.
GOR1(I+1)=O.
FTRON2(I)=O.
FTRONG(I)=O.
GACONS(I)=O.
TOCONS(I)=O.

170 CONTINUE
ILOAD=1
JP=1
IN=O

IIN=O
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PLAST=O.
POLD=O.
ICONS=O
TNCYC=1.
TN=O.
KLM=1
MN=1

C

PNEW=PDEF(1,1)
WRITE(6,8032) PNEW
PNEW=PNEW*1000.
GO TO 190

C

C PILE ***************************************************

C

C TEST FOR RETURN TO ELASTIC RANGE

C

180 IF(PNEW.GT.PLAST.AND.POLD.GT.PLAST) GO TO 220

IF(PNEW.LT.PLAST.AND.POLD.LT.PLAST) GO TO 220

GO TO 260

C

C DIRECT STIFFNESS METHOD

C

190 STFPIL(NNODES)=O.
T1(1,1)=STFPIL(1)
T1(1,2)=-STFPIL(1)

C

DO 210 I=2,NNODES
I1=3*(I-2)+2
I2=I1+1

I3=I1+2
T1(Il,1)=STFPIL(I-1)
T1(I1,4)=-STFPIL(I)
T1( I2,1)=STFSOL(I-1)
Tl(13,1 )=STRONG+STFSOL ( I-1)
Tl(I2,2)=-STFSOL(I-1)
Tl(I1,2)=0.
N=NPTOGA( I-1 )

C

DO 200 K=1,N

Tl(Il,l)=Tl(I1,1)+SK(I,K)
T1(I2,1)=T1(I2,1)+SK(I,K)

200 T(I1,2)=T1(I1,2)-SK(I,K)
C

210 CONTINUE
C

C BACK TO ELASTIC ZONE
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C

220 JJ=O

DO 230 I=2,NNODES

DO 230 K=1,6

230 IPL(I,K)=O
DO 240 I=1,NPOINT
DO 240 J=1,4

240 T(I,J)=T1(I,J)
C

DO 250 I=2,NNODES

I1=3*(I-2)+2
I2=11+1
I3=I1+2
FORCE(I1)=W( I)

FORCE( I2)=O.
FORCE( I3)=FTRONG( I-1 )

C

C RESIDUAL FORCES

C

DO 250 K=1,N

FORCE(I1)=FORCEI1)+URI ,K)*SK( I ,K)
FORCE(I2)=FORCE12 )-UR( I,K)*SK( I,K)

C

250 CONTINUE

C

C SOLVE FOR DISPLACEMENTS BY Gauss ELIMINATION (WILSON SUBROUTINE)

C

260 FORCE(1)=PNEW+W(1)
C

270 IF(IWRITE.EQ.O.OR.IWRITE.EQ.1) GO TO 281

WRITE(6,8800) FORCE(1)

8800 FORMAT(1OX,'FORCE( 1)=',F12.2,'(KN)')

DO 280 I=2,NNODES
I1=3*(I-2)+2
I2=I1+l
13=I1+2
WRITE(6,8801)I1,FORCE(I1),I2,FORCE(I2),I3,FORCE(13)

280 CONTINUE
8801 FORMAT(2(10X,'FORCE(',I2,')',F12.2,'(KN)'),

1 1OX,'FORCE(',I2,' )=',E10.3,' (KN)')

C

281 DO 282 I=1,NPOINT

282 R(I)=FORCE(I)
C

DO 285 I=1,NPOINT

DO 285 J=1,4
285 S(I,J):T(I,J)

C
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C FORWARD REDUCTION

C

DO 310 N=1,NPOINT

DO 300 L=2,4
IF(S(N,L).EQ.O.) GO TO 300
I=N+L-1
C=S(N,L)/S(N,1)
J=O
DO 290 K=L,4
J=J+1

290 S(I,J)=S(I,J)
S(N,L)=C

300 CONTINUE
310 CONTINUE

DO 340 N=1,NPOINT

DO 330 L=2,4
IF(S(N,L).EQ.O.) GO TO 330
I=N+L-1
R(I)=R(I)-S(N,L)*R(N)

330 CONTINUE
340 R(N)=R(N)/S(N,1)

C

C******************
C BACK-SUBSTITUTION

C

DO 360 M=2,NPOINT

N=NPOINT+1-M
DO 350 L=2,4
IF(S(N,L).EQ.O.) GO TO 350
K=N+L-1
R(N)=R(N)-S(N,L)*R(K)

350 CONTINUE
360 CONTINUE

C

C DETECT NEXT Prandtl SPRING TO YIELD

C

X=O.
KMIN=O
IMIN=O
BMIN=1.

C

DO 380 I=2,NNODES

I1=3*(I-2)+2
I2=I1+1
13=I1+2
N=NPTOGA( I-1)

DO 370 K=1,N

CIGN=1.
IF(IPL(I,K).EQ.1.OR.IPL(I,K).EQ.-1) GO TO 370
DELAS=R(I1)-R(I2)-UR( I,K)
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FELAS=DELAS*SK(I,K)
DF(I,K)=FELAS-FG(I,K)
IF(DF(I,K).LT.O.)CIGN=-CORCON(I-1)
IF(DF(I,K).EQ.O.) GO TO 370
FRATIO=(FL(I,K)*CIGN-FG(I ,K))/DF( I ,K)

IF(FRATIO.GE.BMIN) GO TO 370
BMIN=FRATIO
IMIN=I

KMIN=K
C

C POSSIBILITY OF STRAIN-SOFTENING

C

X=-FL(I,K)*CIGN*SOFT( I-1)

370 CONTINUE
380 CONTINUE

C

C CORRECT FOR STIFFNESS AND FORCE OF YIELDING SPRING

C

I=IMIN-1
IF(IWRITE.EQ.1) WRITE(6,8033) KMIN,I
IF(IMIN.EQ.O) GO TO 383

JJ=JJ+1
IF(JJ.EQ.NSPR) GO TO 760

I1=3*(IMIN-2)+2
I2=I1+1
FORCE(Il)=FORCE(I1)+X-UR(IMIN,KMIN)*SK(IMIN,KMIN)
FORCE(I2)=FORCE(I2)-X+UR( IMIN,KMIN)*SK( IMIN,KMIN)
T(Il,1)=T(Il,,1)-SK(IMIN,KMIN)
T(I2,1)=T(I2,1)-SK(IMIN,KMIN)
T(I1,2)=T(I1,2)+SK(IMIN,KMIN)
IPL(IMIN,KMIN)=1
IF(CIGN.NE.1.)IPL( IMIN,KMIN)=-1
FG(IMIN,KMIN)=-X

383 Al=O.
DO 385 I=2,NNODES

N=NPTOGA(I-1)
DO 385 K=1,N

IF(IPL(I,K).EQ.1.OR.IPL(I,K).EQ.-1) GO TO 384
FG(I,K)=FG( I ,K)+DF( I ,K)*BMIN

384 Al=Al+FG(I,K)
385 CONTINUE

IF(IMIN.EQ.O) GO TO 389

ROO=ROO+(R(1 )-ROO)*BMIN
IF(ICONS.EQ.1.AND.ITEST.NE.3) GO TO 270
IF(ICONS.EQ.1.AND.ITEST.EQ.3) GO TO 386
JJJ=Jj+JP
IF(JJJ.GT.150) JJJ=150
A1=Al+WTH20
ARRAYl(1,JJJ)=A1/1000.
ARRAY1(2,JJJ)=ROO*100.
IF(IWRITE.EQ.O) GO TO 270
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WRITE(6,8989)Al,ARRAY1(2 ,JJ)
8989 FORMAT(10OX,'F AT TOP=',F10.5,'(MN)',5X,'& D AT TOP=',F6.3,

1 '(CM) WHEN YIELDING OCCURS')
GO TO 270

386 JJJ=JLM+JJ
JPP=JJJ
IF(JJJ.GT.150) JJJ=150
A1=AI+PCONS
ARRAYl(l ,JJJ )=A1/1000.
ARRAY1 (2,JJJ)= (ROO+RCONS (1) )*100.
GO TO 270

C

C******************
C RESULTS FROM PILE
C******************
C

389 CONTINUE
ROO=R(1)
IF(ICONS.EQ.1) GO TO 392

WRITE(6,8888) JJ
8888 FORMAT(5X,I2,' P-BODIES HAVE JUST YIELDED'/)

JP=JP+JJ+1
IF(JP.GT.150)JP=150
ARRAY1 (1 ,JP )=PNEW/1000.

ARRAY1(2 ,JP)=R(1)*100.
GO TO 390

392 IF(ITEST.EQ.3) JLM=JJJ
JPP=JLM+MN
IF(ITEST.EQ.3) JPP=JJJ+1
IF(ITEST.EQ.3) JLM=JPP
IF(JPP.GT.150) JPP=150
ARRAY (,JPP)= (PNEW+PCONS)/1000.
ARRAY1(2,JPP)=(R(1)+RCONS(1))*100.

390 FOPILE(1)=FORCE(1)
C

DO 391 I=2,NSEG

I1=3*(I-2)+2
FOPILE(I)=STFPIL(I)*(R(I1)-R(I1+3))

391 CONTINUE
C

DO 420 I=2,NNODES

11=3*(I-2)+2
I2=Il+l
I3=I1+2
FOSOL(I-1)=STFSOL(I-1)*(R(I2)-R(I3))
N=NPTOGA(I-1)
DO 410 K=1,N

AA=R(I1)-R(I2)
IF(IPL(I,K).EQ.O) GO TO 407

BB=FL(I,K)/SK(I,K)
IF(IPL(I ,K).EQ.-1) BB=-BB

C

C DISPLACEMENTS , FORCES , STRESSES & STRAINS
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C

UR(I,K)=AA-BB
C

407 FG(I,K)=SK(I,K)*(R(I1)-R(I2)-UR(I,K))
UELAS(I,K)=AA-UR(I,K)

C

410 CONTINUE
TO(I-1,MN)=FOSOL(I-1)/(HGTLAY(II- 1)*2.*RO*PI)

GA(I-1,MN)=(R(Il)-R(I2)+R(I3))*100./(RO*ALOG(SHTHRO(I-1)+.))
420 CONTINUE

IF(IWRITE.EQ.O) GO TO 4670
C

DO 4660 I=2,NNODES
J=I-1
N=NPTOGA(I-1)
FODSS(I-1)=O.

C

11=3*(I-2)
I2=I1+1
I3=I1+2
DO 4650 K=1,N

C

FODSS( I-1)=FODSS( I-)+SK( I ,K)*UELAS( I ,K)
Al=UR(I,K)*100.
A2=UELAS(I,K)*100.
IF(K.NE.1.AND.UR(I,K).EQ.O.) GO TO 4650
WRITE(6,8514)I ,K,A1,I,K,A2

4650 CONTINUE
C

WRITE(6,8515)J,J,FODSS(J),J ,FOPILE(J)

A1=TO(J,MN)/TMAX(J)*100.
WRITE(6,8516)J ,GA(J ,MN) ,J,TO(J ,MN) ,A1

4660 CONTINUE
C

C*************
C END OF PILE ********************************************************

C*************
C

4670 IF(ICONS.EQ.O.AND.ILOAD.NE.NLOAD1) GO TO 610
IF(ICONS.EQ.O.AND.ITEST.NE.3) GO TO 610
IF(KLM.GT.50) KLM=50
ARRAY4 ( 3 ,KLM) =TNCYC
ARRAY4(MN,KLM)=(R(1)+RCONS (1 ) )100.
IF(MM.EQ.1) KLM=KLM+1

C

C GET ABSOLUTE RESULTS
C*********************
C

IF(MN.EQ.2) GO TO 422

WRITE(6,8041)
GO TO 424

422 WRITE(6,8042)
424 CONTINUE
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C

00 430 I=1,NPOINT

Al=R(I)*100.
A2=(R(I)+RCONS(I))*100.
WRITE(6,8531)I,A1,I,A2

430 CONTINUE
C

FOPILE(1)=STFPIL(1)*(R(1)+RCONS(l)-R(2)-RCONS(2))
FOSOL ( 1)=STFSOL (1)*(R(3 ) +RCONS(3 ) -R (4 ) -RCONS(4))
FODSS(1)=FOSOL(l)
DO 440 I=2,NLAYER
I1=3*(I-1)+2
I2=l+l
I3=I1+2
FOPILE(I)=STFPIL(I)*(R(Il-3)-R{I1)+RCONS(Il-3)-RCONS(l))
FOSOL(I)=STFSOL(I)*(R(I2)+RCONS(I2)-R(I3)-RCONS(I3))

440 FODSS(I)=FOSOL(I)
C

WRITE(6,8049)
C

DO 460 I=2,NNODES
J=I-1
N=NPTOGA(I-1)

C

WRITE(6,8515)J,J,FODSS(J) ,J ,FOPILE(J)
A1=(TO(J,MN)+TOCONS(J ) )/TMAX(J)*100.
A2=GA(J,MN)+GACONS(J)
A3=TO(J,MN)+TOCONS(J)
WRITE(6,8561)J,A2,J,A3,Al

460 CONTINUE
C

LMN=LLL+MN
IF(LMN.GE.14) LMN=14
DO 462 I=1,NLAYER
ARRAY3(LMN,I)=TO( I,MN)+TOCONS(I)
ARRAY2(LMN, I )=FOPILE( I)/1000.

462 CONTINUE
C

IF(ICONS.EQ.O.AND.ILOAD.EQ.NLOAD1) GO TO 610
IF(ITEST.EQ.3) GO TO 601
IF(NCYC.EQ.O.) GO TO 770

C

IF(MN.EQ.2) GO TO 470

C

C RETURN TO PILE WITH PNEW=PMIN-PCONS

C

MN=2
POLD=PLAST
PLAST=PNEW
PNEW=PMIN-PCONS
Al=PNEW/1000.
A2=PLAST/1000.
A3=POLD/1000.
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WRITE(6,8812)A1,A2,A3,MN
GO TO 180

C

C CONSIDER CYCLIC DEGRADATION OF THE SOIL

C

470 MN=1
IF(IN.EQ.O.AND.PDEF(5,ILOAD).NE.O.) LLL=LLL+2

471 Al=PMAX/1000.
A2=PMIN/1000.
IF(MM.EQ.2) GO TO 472
WRITE(6,8545)
WRITE(6,8540)A1,A2,NC
GO TO 474

472 WRITE(6,8546)
WRITE(6,8542)A1,A2,NC,IN

474 CONTINUE
DO 480 I=1,NLAYER

GAVGE(I,MM)=(GA(I,1)+GA(I,2))/2.+GACONS(I)
GACYC(I,MM)=ABS( (GA(, 1)-GA( 1,2) )/2.)

TOVGE(I,MM)=(TO(I,1)+TO(I,2))/2.+TOCONS(I)
TOCYC(I,MM)=ABS((TO(I,1)-TO(I,2))/2.)
TCY=TOCYC( I ,MM)/TMAX( I )*100.
TAV=TOVGE( I ,MM)/TMAX(I)*100.
TT=(TOVGE(I,2)-TOVGE(I,1))/TMAX(I)*100.

C

WRITE(6,8500)I
WRITE(6,8501)I,MM,GAVGE(I,MM)
WRITE(6,8502)I,MM,GACYC(I,MM)
IF(MM.EQ.1) WRITE(6,8503)I,MM,TOVGE(I,MM),TAV
IF(MM.EQ.2) WRITE(6,8803)I,MM,TOVGE(I,MM),TAV,TT
WRITE(6,8504)I,MM,TOCYC( I ,MM),TCY

C

480 CONTINUE
C

IF(MM.EQ.2) WRITE(6,8546)
IF(MM.EQ.1) WRITE(6,8545)

C

C STORE PLASTIC DISPL. AND PRANDTL STIFFNESSES FOR 1ST CYCLE

C

IF(IN.NE.O) GO TO 500
IF(IWRITE.EQ.1) WRITE(6,8543)
DO 490 I=2,NNODES
N=NPTOGA(I-1)
DO 490 K=1,N

U1(I,K)=UR(I,K)
SK1(I,K)=SK(I,K)
FG1(I,K)=FG(I,K)
GOR1(I)=GOR(I)
FTRON1( I-1)=FTRONG(I-1)

490 CONTINUE
C
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IF(IWRITE.EQ.1)WRITE(6,8505)
500 IF(JCYC.EQ.O) GO TO 540

C

C IS THE CHANGE OF AVERAGE SHEAR STRESS ACCEPTABLE?

C

IF(DN.LT.2.) GO TO 515
DO 510 I=1,NLAYER
IF(TOVGE(I,2).LT.O.) GO TO 550

TT=(TOVGE(I,2)-TOVGE(I,1))/TMAX(I)*100.
TT=ABS(TT)
IF(TT.GT.ACC) GO TO 560

510 CONTINUE
C

515 IF(IWRITE.EQ.1)WRITE(6,8037)
DO 1700 I=1,NLAYER

1700 FTRON2(I)=FTRONG(I)
TN=TN+DN
KLM=KLM+1
JLM=JLM+2

C

C ARE ALL THE CYCLES OF THIS PACKAGE COMPLETED?

C

IF(NC.EQ.NCYC) GO TO 600
DN=NCYC-NC
TNCYC=TN+DN
NC=NCYC
DO 520 I=1,NLAYER

TOVGE(I,1)=TOVGE(I,2)
TOCYC(I,1)=TOCYC(I1,2)
GACYC(I,1)=GACYC(I,2)

520 GAVGE(I,1)=GAVGE(I,2)
C

C STORE PLASTIC DISPL. AND Prandtl STIFFNESSES FOR INTERMEDIATE CYCLE

C

DO 530 I=2,NNODES

N=NPTOGA(I-1)
DO 530 K=1,N

U1(I,K)=UR(I,K)
SK1(I,K)=SK(I,K)
FG1(I,K)=FG(I,K)
GOR1(I)=GOR(I)
FTRON1 (I-1 )=FTRONG( I-1)

530 CONTINUE
C

WRITE(6,8999 )NCYC ,DN

8999 FORMAT(5X,'NEW ITERATION TO COMPLEMENT NCYC=',F6.0,
1', NOW DN=',F6.0,'CYCLES. ENTER CYCDEG'/)

IN=1
GO TO 580

387



Page 16
388

540 MM=2
TNCYC=TN+DN
JCYC=1
GO TO 570

C

550 IF(IWRITE.EQ.1) WRITE(6,8508)I,TOVGE(I,2)
C

C REDUCE NUMBER OF CYCLES TO HALF AND START AGAIN

C

560 DN=DN/2.
TNCYC=TN+DN
NC=NC-DN
IF(IWRITE.EQ.1)WRITE(6,8509)I,TT,DN,NCYC

C

C IN AND IIN ARE INDEXES LIMITING THE NUMBER OF ITERATIONS

C

570 IN=IN+1

IF(IN.EQ.LIMIN) GO TO 740

580 IIN=IIN+1
IF(IIN.EQ.LIMIIN) GO TO 750
IF(IWRITE.EQ.1) WRITE(6,8510)IN,IIN
IF(IWRITE.EQ.1) WRITE(6,8547)

C

C ENTER DO LOOP IN WHICH THE CYCLIC DEGRADATION IS CONSIDERED FOR
C EACH SOIL LAYER.

C

IA=O

C

DO 590 I=1,NLAYER

IF(IWRITE.EQ.1) WRITE(6,8500) I

GAVO=GAVGE(I,1)
TCY=TOCYC(I,1)/TMAX(I)
TAV=TOVGE(I,1)/TMAX(I)
GCY=GACYC(I,1)
GG(I)=(GAVO-GACONS(I) )*RO*(ALOG(SHTHRO( I )+.))/100.
IF(GG(I).LT.O.) GG(I)=O.
IF(TAV.LE.O.) GO TO 595

CALL CYCDEG(TAV,TCY,GAVO,DN,GAV,GCY,IWRITE)
C

GO TO 598

595 GAV=GAVO
598 CONTINUE

GAVEC(I)=GAV
AB=GCY/GACYC(I,1)
IF(AB.LT.1.)AB=l.
GOR(I+1)=GAV-(GAVO-GACONS(I)-GOR( +1) )*AB-GACONS( I)

IF(GOR(I+1).LT.O.) GOR(I+I)=O.
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DOR(I+1)=GOR(I+1 )*RO*(ALOG(SHTHRO( I )+. ) )/100.

IF(GAV .GE.15. ) IA=IA+1

N=NPTOGA( I )
C

Ai=DOR(I+1)*100.
A3=GG(I)*100.

IF(IWRITE.EQ.1) WRITE(6,9000)A3,AB,GOR(I+1 ) ,GOR1(I+1 ) ,A1
9000 FORMAT(5X,'GG=',F10.6,2X,'AB=',F10.6,2X,'GOR=',

1F10.6,2X,'GOR1=' ,F1O.6,2X,'DOR=' ,F10.6/)
C

DO 590 K=1,N

SK(I+1,K)=SK(1+1 ,K)/AB
UR(I+1,K)=U(I+1 ,K)*AB

590 CONTINUE
IF(IWRITE.EQ.1) WRITE(6,8505)

A1=DOR(NNODES)
IF(Al.LT.O.)Al=O.
A2=A1*STRONG
DO 596 I=2,NNODES

DOR(I)=DOR(I)-A1
IF(DOR(I).LT.O.) DOR(I)=O.

596 FTRONG(I-1)=A2
DO 597 I=2,NNODES

I1=3*(I-2)+2
BUF=GG( I-1 )+GACONS( I--1)/SO

IF(DOR(I).GT.BUF) DOR(I)=B
FTRONG( I-I )=FTRONG( I-1 )+DO

FCON(I-1)*RO*ALOG(SHTHRO(I-1)+.1.)/100.
UF

R(I)*STRONG

I2=I1l

A3=(DOR(I)+A1)*100.
IF(IWRITE.EQ.1) WRITE(6,9001)I2,A3,FTRONG(I2)

9001 FORMAT(5X,'LAYER #',I2,5X,'DISPL. FIXED REF.=',
1F10.6,'(CM)' ,5X,'FTRONG=' ,E1.3,'(KN)')

597 CONTINUE
C

J3=1
DO 5090 I=2,NLAYER
I2=NLAYER+1-I
FADD=PCONS/STFPIL( I2+1 )*STRONG
IF(GAVEC(I2).GE.15.) GO TO 5190
IF(FTRONG(I2).GE.FTRONG(I2+1) .AND.J3.EQ.1) GO TO 5090
IF(FTRONG(I2).LT.FTRONG(I2+1).AND.J3.EQ.1) GO TO 5096
IF(FTRONG(I2).LE.FTRONG(J3+1)) GO TO 5094
J1=I2+1
DO 5095 K=J1,J3
FTRONG(K)=-FLOAT(K-I2)*( FTRONG( I2)-FTRONG(J3+1))

5095 FTRONG(K)=FTRONG(K)+FTRONG(I2)
J3=1
GO TO 5090

5096 J3=I2
5094 IF(I.NE.NLAYER) GO TO 5090

DO 5098 K=1,J

C

C

C

C
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5098 FTRONG(K)=FTRONG(J3+1)
5090 CONTINUE

GO TO 5192

5190 DO 5191 L=1,I2
L1=I2+1-L

5191 FTRONG(L1)=FTRONG(Ll+l)

5192 DO 5193 I=1,NLAYER
IF(FTRONG(I).LT.FTRON2(I)) FTRONG(I)=FTRON2(I)

5193 GOR(I)=(FTRONG(I)/STRONG)/(RO*(ALOG(SHTHRO(I-1)+l.))/100.)

IF(IWRITE.EQ.O) GO TO 5100
WRITE(6,8505)
DO 5101 I=1,NLAYER

5101 WRITE(6,5099) I,FTRONG(I)
WRITE(6,8505)

5100 CONTINUE
5099 FORMAT(5X,'FTRONG(',I2,')=' ,E10O.3,'(KN)')

IF(IA.EQ.NLAYER) GO TO 765

C

IF(IWRITE.EQ.1) WRITE(6,8505)
C

POLD=PMAX-PCONS
PNEW=POLD
PLAST=PMIN-PCONS
A1=PNEW/1000.
A2=PLAST/1000.
A3=POLD/1000.
WRITE(6,8812)A1,A2,A3,MN

8812 FORMAT(5('*'),'ENTER PILE MODEL WITH PNEW=' ,F9.4,'(MN)'
1,5X,'PLAST=',F9.4,'(MN)' ,5X,
2'POLD=',F9.4,'(MN)' ,5X,'MN=' ,I2/)

C

GO TO 190

C

C END OF LOADING - STOP
r**********************

C

C

601 LLL=LLL+1
JLM=JLM+1

600 IF(ILOAD.EQ.NLOAD2) GO TO 770

ILOAD=ILOAD+1
IF(ILOAD.NE.1.AND.PDEF(5,ILOAD).NE.O.)
IIN=O
IN=O
JCYC=O
POLD=PLAST
PLAST=PNEW
MM=1
WRITE(6,8038)

LLL=LLL+2

PMAX=PDEF(2,ILOAD)
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PMIN=PDEF(3,ILOAD)
NCYC=PDEF(4,ILOAD)
IF(NCYC.EQ.O.) LLL=LLL+2
WRITE(6,8035)PMAX,PMIN,NCYC
PMAX=PMAX*1000.
PMIN=PMIN*1000.
DN=NCYC
NC=NCYC
TNCYC=TN+DN

C

PMA=PMAX-PCONS
PMI =PMIN-PCONS
IF(PMA.EQ.POLD.AND.PMI.EQ.PLAST) GO TO 606

C

C GO TO PILE WITH PNEW=PMAX-PCONS
C********************************
C

PNEW=PMAX-PCONS
Al=PNEW/1000.
A2=PLAST/1000.
A3=POLD/1000.
WRITE(6,8812)A1,A2,A3,MN
IF(ILOAD.EQ.1) GO TO 190

GO TO 180
C

606 PNEW=PMI
PLAST=PMA
POLD=PMI
MN=1
GO TO 471

C

C STATIC LOADING BEFORE CONSOLIDATION

C

610 CONTINUE
Al=PNEW/1000.
A2=PLAST/1000.
A3=POLD/1000.
WRITE(6,8512)A1,A2,A3,MN
DO 615 I=1,NPOINT
A1=R(I)*100.

615 WRITE(6,8513)I,A1
C

IF(ILOAD.EQ.NLOAD1) GO TO 680
POLD=PLAST
PLAST=PNEW
ILOAD=ILOAD+1
PNEW=PDEF(1,ILOAD)
PNEW=PNEW*1000.

C

GO TO 180

C
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C CONSOLIDATION

C

680 PCONS=PNEW
LLL=LLL+ 1
JLM=JJJ+1
DO 690 I=1,NPOINT

690 RCONS(I)=R(I)
DO 710 I=1,NLAYER
N=NPTOGA( I )
GACONS(I)=GA(I,1)
TOCONS(I)=TO(I,1)

710 CONTINUE
C

IF(IWRITE.EQ.1) WRITE(6,8517)
Al=O.

C

DO 730 I=1,NLAYER
N=NPTOGA( I)

B=TO(I,1)/TMAX(I)
FLM=(1.+(ALPHA(I)-1.)*B)*TIMEFC(I)
CORCON(I)=2.*TIMEFC( I )/FLM-1.
SKM=FLM/(1.- BETA(I)*B)

C

DO 720 K=1,N

FL(I+1,K)=FL(I+1,K)*FLM
Al=Al+FL(I+1,K)
SK(I+1,K)=SK(I+1,K)*SKM*SOFCON(I)

C

J=I+1
IF(IWRITE.EQ.O) GO TO 721

WRITE(6,8518)J,K,FL(J,K) ,J,K,SK(J,K)

C

721 FG(I+I,K)=O.
720 UR(I+i,K)=O.

W(I+1)=O.
730 CONTINUE

W(1)=O.
ROO=O.

C

A1=(Al+PCONS)/1000.
WRITE(6,8060)A1

C

IF(IWRITE.EQ.O) GO TO 736

WRITE(6,8505)
DO 735 I=1,NLAYER

735 WRITE(6,8550)I,CORCON (I)
736 WRITE(6,8548)

IF(ITEST.EQ.2) STOP
C

PLAST=O.
PNEW=O.
ILOAD=O
ICONS=1
GO TO 600

392
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C

C END OF CONSOLIDATION GO TO CYCLIC LOADING

C

740 WRITE(6,8600)
STOP

750 WRITE(6,8601)
STOP

760 IF(ITEST.EQ.3) GO TO 770
WRITE(6,8521)
STOP

765 WRITE(6,8560)
770 IF(ITEST.EQ.3.0R.NLOAD2.EQ.O) GO TO 772

CALL QPICTR(ARRAY1,2,JPP,QY(1),QX(2),QXLAB(XLAB1),
1 QYLAB(YLAB) ,QLABEL(1014) ,QISCL(-2) ,QXSCL(XSCLl))
GO TO 774

772 CALL QPICTR(ARRAY1,2,JPP,QY(1l),QX(2),QXLAB(XLAB1),
1 QYLAB(YLAB1),QLABEL(1014))

IF(NLOAD2.EQ.O) STOP
774 CALL QPICTR(ARRAY2,15,NSEG,QX(15),

1 QY(1,2,3,4,5,6,7,8,9,10,11,12,13,14),QXLAB(XLAB2),

2 QYLAB(YLAB2),QLABEL(4),QISCL(-2),QXSCL(XSCL2))

CALL QPICTR(ARRAY3,15,NSEG,QX(15),
1 QY(1,2,3,4,5,6,7,8,9,10,11,12,13,14),QXLAB(XLAB3),

2 QYLAB(YLAB3),QLABEL(4),QISCL(-2),QXSCL(XSCL3))

IF(ITEST.EQ.3) STOP
CALL QPICTR(ARRAY4,3,KLM,QX(3),QY(1,2),QXLAB(XLAB4),
1QYLAB(XLAB1),QLABEL(1014),QISCL(-2),QXSCL(XSCL4))
STOP

775 WRITE(6,8700)
8700 FORMAT(//2X,'NLOAD1 OR NLOAD2 > 10 STOP')

C

C

C

C

C

4010 FORMAT(4F10.2,1PE10.2,2I10)
4050 FORMAT(3I10,3F5.2)
4030 FORMAT(2F10.4)
4080 FORMAT(5F10.2,I10)
4081 FORMAT(5F10.2)
4082 FORMAT(FO1.2)
4083 FORMAT(F1O.2)
8000 FORMAT(///2X,'LENGTH=' ,F7.2,'(m)',2X,'FRELTH=',F5.2,'(m)',

°12X,'DIAM=',F7.2,'(cm)',
22X,'DNSITY=' ,F5.2,2X,'DTYFIL=' ,F5.2,2X,'E=',1PE10.2,'(MPa)')

8300 FORMAT(2X,'XA=' ,F7.4,'(m2)',2X,'LCYC=',F5.2,2X,'ALPFAC=',
1F5.2)

8001 FORMAT(/2X,'NLAYER=',12,2X,'NNODES=',I2,2X,'NPOINT=' ,I2,2X,
1'NLOAD1=',I2,2X,'NLOAD2=' ,I2,2X,'ITEST=',I1,2X,'IWRITE=',I1//)

8004 FORMAT(/2X,'HGTLAY(',I2,')=',F5.2,'(m)',2X,'SHTHRO(' ,I2,')=' ,F5.2,
12X,'TMAX(' ,I2,' )=' ,F9.2,'(kPa)' ,2X,'DMAX(' ,I2,' )=' ,F7.4,'(cm)',
22X,'DMAX IN % OF DIAM=' ,F7.4)
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8005 FORMAT(2X,'DENSOL(',I2,')=',F5.2,2X,'GSIG(',I2,')=',F1O.2,2X,
1'RMRO(' ,I2,')=',F5.2,2X,'NPTOGA(' ,I2,')=',I2)

8006 FORMAT(2X,'TIMEFC(',I2,')=',F5.2,2X,'SOFT(',I2,')=',F5.2,2X,
1'ALPHA(' ,I2,')=',F5.2,2X,'BETA(' ,I2,')=',F5.2)

8007 FORMAT(2X,'SIG(' ,I2,')=',F10.2,'(kPa)',2X,'SOFCON(',I2,')=',F5.2,
12X,'STFSOL(' ,12,')-',F12.2,'(kN/m)' ,2X,'W(' ,I2,')=',F9.2,
2'(kN)')

8010 FORMAT(2X,'THICK(' ,2,')=',F5.2,'(cm)',2X,'XAREA(' I2,')=',
1F7.4,'(m2)')

8008 FORMAT(2X,'FDSS(' ,I2,',' I2,')=',F1O.4,'(kN)',2X,'DDSS(',I2,',',
112,')=' ,F5.2,'(cm)' ,2X,'FL(' ,I2,' ,12,')=' ,F1O.2,'(kN)',2X,
2'SK(' ,I2,' ' ,I2,')=',F10.2,'(kN/m)')

8009 FORMAT(2X,'STFPIL(' ,I2,')=',F15.2,'(MN/m)'/)
8040 FORMAT(2X,'W(' ,I2,')=',F9.2,'(kN)'/)
8041 FORMAT(/10X,'DISPLACEMENTS OF NODAL POINTS UNDER PMAX-PCONS'/)
8042 FORMAT(/10X,'DISPLACEMENTS OF NODAL POINTS UNDER PMIN-PCONS'/)
8049 FORMAT(/5X,'ABSOLUTE RESULTS'/)
8011 FORMAT(///2X,'PLIMIT=',F10.5,'(MN)' ,2X,'WTH20=',F1.5,'(MN)',

12X,'WPH20=',F10.5,'(MN)' ,2X,'WPILE=',F10.5,'(MN)' ,2X,
2'WFILL=' ,F10.5,'(MN)')

8012 FORMAT(2X,'PTENS=',F10.5,'(MN)',5X,'PCOMP=',F10.5,'(MN)'//)
8030 FORMAT(2X,'SK(',I2,' ,' ,I2,')=',F10.2,'(kN/m)')
8031 FORMAT(2X,'CORRECT SK WITH SOFCON'/)
810 FORMAT(8F5.1)
820 FORMAT(6F5.2)
830 FORMAT(5F5.2)
840 FORMAT(4F5.2)
850 FORMAT(7F5.0)
825 FORMAT(7F5.2)
870 FORMAT(6F6.3)
871 FORMAT(6F5.3)
6011 FORMAT(F10.2)
8032 FORMAT(80('*')/,2X,'PNEW=',F9.4,'(MPa)',5X,

1'ENTER PILE FOR 1ST TIME'//)
8033 FORMAT(1lOX,'P-BODY #',I2,5X,'HAS JUST YIELDED IN LAYER #',1I2)
8034 FORMAT(/5X,'MN=' ,I2/)
8037 FORMAT(/20('*' ),1H ,2X,'THE CHANGE OF SHEAR STRESS IS OK',

11H ,2X,'GET NEW VALUES OF NC AND DN ,IF NECESSARY'/)
8038 FORMAT(2X,80('*'))
8035 FORMAT(/5('*'),'NEW PACKAGE : PMAX=' ,F10.4,5X,'PMIN='

1F10.4,5X,'NCYC=' ,F10.O/)
8060 FORMAT(/2X,'NEW PLIMIT=',F1O.6,'(MN)')
8600 FORMAT(2X,'IN=10')
8601 FORMAT(2X,'IIN=50')
8521 FORMAT(2X,'ALL SPRINGS YIELDED')
8500 FORMAT(5X,'LAYER #' I2)
8501 FORMAT(20X,'GAVGE(' ,I2, ' ,' ,I2,')=' ,F9.3,'(%)')
8502 FORMAT(20X,'GACYC(',I2',','I2,')=',F9.3,'(%)')
8503 FORMAT(20X,'TOVGE(' ,I2,',' I2,')=',F9.3,'(kPa)',3X,

1 F6.2,'(%) OF TMAX')
8803 FORMAT(20X,'TOVGE(',I2,',',I2,')=',F9.3,'(kPa)',3X,

1 F6.2,'(%) OF TMAX',3X,'CHANGE =',F6.2,'(%)')
8504 FORMAT(20X,'TOCYC(',I2,',',I2,')=',F9.3,'(kPa)',3X,

I F6.2,'(%) OF TMAX')
8505 FORMAT(//)
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8506 FORMAT(2X,'U1(',I2,',',I2,')=',F7.4,'(cm)',5X,'SK1(',I2,',',I2,
1')=' ,F12.2,'(kN/m)')

8507 FORMAT(5X,'LAYER=' ,I2,5X,'REL. CHANGE OF SHEAR STRESS =' ,F6.2,

1 ' (%)')

8508 FORMAT(///5X,'NEGATIVE AV. SHEAR STRESS IN LAYER #',I2,
15X,'TOVGE=',F10.2,///)

8509 FORMAT(///2X,'LAYER #',I2,5X,'TT=',F7.4,5X,'NEW DN=',F7.0,5X,

1'NCYC=' ,F7.0//)
8510 FORMAT(///2X,'IN=',I2,5X,'IIN=',I2)
8511 FORMAT(2X'UR I2,'UR(' I2,' I2,')=' ,F7.4,'(cm)',5X,'SK(', I2,','

112,' )=',F12.2,'(kN/m)')
8512 FORMAT(/5('*'),'RESULTS FROM PILE MODEL,STATIC PRELOADING STAGE'/,

12X,'PNEW=',F9.4,'(MN)',5X,'PLAST=',F9.4,'(MN)',5X,
2'POLD=' ,F9.4,'(MN)' ,5X,'MN=',I2/)

8513 FORMAT(20X,'R(',I2,')=',FlO.6,'(cm)')
8514 FORMAT(15X,'UR(',I2,',',I2,')=',F7.4,'(cm)',5X,'UELAS(',I2,',',I2,

1')=' ,F7.4,'(cm)')
8515 FORMAT(lOX,'LAYER #',I2,5X,'FODSS(',I2,')=',F8.2,'(kN)',

1 5X,'FOPILE(',I2,')=',F10.2,'(kN)')

8516 FORMAT(10X,'GA(' ,I2,',1)=',F6.2,'(%)',5X,'TO(',I2,',1)=',F8.2,

1'(kPa)',SX,'SHEAR STRESS RATIO=',F9.4,'(%)')
8517 FORMAT(/1OX,'CONSOLIDATION (SEE R() ABOVE FOR ORIGIN) '/)
8518 FORMAT(IOX,'FL(' ,12,',',I2,')=',F10.2,'(kN)' ,5X,'SK(',I2,',',I2,

1')=',F12.2,'(kN/m)')
8520 FORMAT(2F10.4,F10.0)
8525 FORMAT(1OX,'FORCE(',I2,')=',F12.2,'(KN)')
8531 FORMAT(1OX,'R(',I2,')=',F10.6,'(cm)',10X,'ABSOLUTE R(',I2,')=',

1F10.6,' (cm)')

8540 FORMAT(1OX,'DEFORMATIONS & SHEARS AT DEFINITE POINT',5X,
1'PMAX=',F9.4,5X,'PMIN=',F9.4,5X,'NC=',F6.0/)

8541 FORMAT(1OX,'UR(',I2,',',I2,')=',F7.4,'(cm)',5X,'ABS.UR(',I2,',',
112,')=',F7.4,'(cm)')

8542 FORMAT(1OX,'DEFORMATIONS & SHEARS AT POTENTIAL POINT',5X,
1'PMAX=',F9.4,'(MN)' ,2X,'PMIN=',F9.4,'(MN)',2X,'NC=',F6.0,2X,
2'IN=' ,1I2/)

8543 FORMAT(///SX,'STORE VALUES OF UR & SK FOR 1ST CYCLE OF NEW PACK.'/
1)

8544 FORMAT(///5X,'STORE VALUES OF UR & SK FOR INTERM. CYCLE OF NEW PA'
1'CK.'/)

8545 FORMAT(/5X,75('1')/)
8546 FORMAT(/5X,75('2')/)
8547 FORMAT(2X,18( '-' )/)

8548 FORMAT(//2X,20('*'),'CONSOLIDATION COMPLETED',20('*'))
8549 FORMAT(1H1)
8550 FORMAT(2X,'CORCON(' ,I2,')=',F7.4)
8560 FORMAT(/2X,'THE PILE IS FAILING, ALL SOIL ELEMENTS'

1'HAVE REACHED A DEFORMATION OF 15% STOP!')
8561 FORMAT(lOX,'ABS.GA(',I2,',1)=',F5.2,'(%)',5X,'ABS.TO(',12,',1)='

1F10.2,'(kPa)',5X,'ABS.SHEAR STRESS RATIO=',F8.4,'(%)')
C

C

C

END
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5.C DATA FILE FOR EXAMPLE /1/
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Input file for the basic example of chapter 5.

BASIC EXAMPLE
****** F.S.= 1.5, kcy= 0.85, wall thick.= 2", diam.= 72", L= 90.69 meters

TOP DISPLACEMENT IN CM
TOP FORCE IN MN
DEPTH IN M
FORCE IN PILE IN MN

DEPTH IN M

SHEAR STRESS ON PILE II
NUMBER OF CYCLES

-0.50
-110 00
-110.00

0.00

183.
10 75

10

6.87

10.79
10.79
10.79
10 79

12.26
12 26

12.26
12 26

3.00
0 00
0.00

700 00

7.

1

2.94
2 94

2.94
2 94

1.47

1.47

1.47

1 47

N KN/M**2

0.00
0 00

-15.00
-O 50

1.7

Plot descriptors

14.00
12.50
35 .00

3 00

5. 2.1E08 0 0

9 10. 1. .5 Global parameters

Static loading

1.

2

50.
500.

1.

2.
5.

50.

1.

1.

1.

Cyclic loading

6.87

9.07
1.1

5.08
0.089
0.138
0.172
0.196
0.211
0.215

.5

10

.1

.25

.5

1.

2.
4.

1.7

52

100.

48
10.

10.
6

Layer parameters

Repeate desription of Layer 9 other times ( since there is
a total of 10 layers )

9.0

1. .7 .6 .5 .4 .3 .2 0.
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0. .2 -4 6 .8 1.

2.5 3. 4. 6. 15.

.15 25 5 3

1. 50. 100. 200. 500.1000.5000.
1.1 .73 68 .63 .57 52 46
.60 .67 .77 .88 .95

.585

.66

75

.84

89

.54

59

.70

75

.79

.52

.58'

.67

.72

.76

.49

55
.64

.71

.74

.45

.50

57

.695

.73

.40

46

.54

.595

.67

30

.35

.40

.45

.50

.59 .595

.665 .668
.76 .765

.85 .86

.91 .93

.58 .59

635 .655

.74 .755

815 .85

.86 .91

57 .585

.63 .652

73 .75

.80 .84

84 .90
.56 .582

625 .65
.70 .745

79 .835
.82 .89

.54 .58

.61 .645

68 .74
.77 .83

.81 .88

.53 .575

.60 .64

.67 .735

.74 .82

.79 .87

.51 .57

.57 .635

.64 .73

.70 .815

75 865

50 .50 .50 .50 .50 .50

.62 .62 -62 62 62 62

.87 .87 .87 .87 .87 .87

1 08 1.08 1.08 1.08 1 08 1 08

.46 .455 .45 .43 .38 .27
.575 57 54 .52 .39 275

.645 .635 .61 .57 .40 .28
.73 .70 .64 .60 .41 .285

.45 .45 .44 .425 .35 .27

.545 .54 525 .46 36 .275
.60 .595 .575 .505 .37 .28

.67 65 .61 .54 .38 .285

Data global parameters

TOAVE network

TOCYC network

.55

.63

,70

.76

.765

.15

.175

.20

.225

.25

-1.
-1.

-1.

-1 .
-1.

-1.

-1
-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

57

.65

72

.79

.805
.35

38

.43

48

.53

29
.33

37

.40

.45

.15

.18

.22

.26

.30

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.
-1.

-1.

58

.655

74

.82

.86

.47

.52

.59

65

.70

43

.49

.56

.60

64
.36

41
.52

57

.59

.27

.325
39

.50

53

.15

.175

.20

225
.25

-1.

-1.

-1
-1.

-1.
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425 .425 .42 .40 .34 .27
525 .52 50 45 .35 .275
.57 .565 .54 .48 .36 .28

.625 60 .57 51 .37 285
.41 .41 .40 .39 .33 .27
.48 475 465 44 .34 .275
.55 .54 .52 .47 .35 .28

.565 .56 .54 .48 .36 285
.39 .385 .375 .35 .32 .27
.46 .45 .43 .39 .33 .275
.49 .48 .46 .42 .34 .28
.52 50 485 .45 35 .285
.37 .37 .36 .33 .31 .27
.41 .41 39 .36 .32 .275

.445 .445 .43 .39 .33 .28
.45 45 44 .41 .34 .285


