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ABSTRACT

APPLICATION OF LINEAR ROUTING SYSTEMS TO
REGIONAL GROUNDWATER PROBLEMS
by
DONALD HILTON EVANS

Submitted to the Department of Civil Engineering on
August 29, 1972, in partial fulfillment for the degree
of Master of Science in Civil Engineering

Work in groundwater analysis goes back to the last century.
Only in the last decade, however, has there been an increase of interest
in applying a linear systems approach to the problem of routing ground-
water flow. This thesis applies linear systems to the routing of
groundwater within a regional basin.

The research reported here has been devoted to the following:

1. Developing a fast convolution technique through the use
of the Fast Fourier Transforms.

2. Developing a method for determining the system response
parameters through linearizing the governing equation for
groundwater flow by applying Laplace transforms and using
the Method of Moments.

3. Developing a groundwater routing model using the above
techniques applied to a regional groundwater basin.

The results from the Harmonic Analysis have been compared
with those generated by the complete solution for open channel flow.
The hydrograph generated with the use of the parameters determined from
the parameter estimation technique are compared to those resulting from
a finite difference scheme.

The technigues developed in the use of Harmonic Analysis and

parameter estimation are incorporated into a model for analyzing a
regional groundwater problem and the results discussed.

Thesis Supervisor: Brendan M. Harley

Title: Assistant Professor of Civil Engineering
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Chapter I

INTRODUCTION

I-1 Problem Statement

The theory to groundwater flow representation goes back to
1856 when Henry Darcy first developed an empirical relationship for
steady-state saturated flow. Jules Dupuit and many others have since
expanded Darcy's relationship into one representing unsteady condi-
tions. Through expanding knowledge in subsurface hydro-geology and
soil mechanics, the complexities of the subterranean region have
become enormous. The 'real world' conditions which are non-
homogeneous, non-isotopic and contain cracks, fissures, etc., make
it impossible to represent, in detail, the behaviour of a subsurface

environment.

The complexities of the subsurface terrain also implies that
the response of such a system is non-linear. However, if the neces-
sity of a non-linear solution is accepted, a unique solution for each

‘soil condition, recharge pattern and the many other facits of the
system is required. Thus, with the linear systems approach of
modeling the groundwater system, we desire to find a simple but
functional procedure for determining the general behaviour pattern

of such a system. This theme will be further discussed in Section I-3.



I-2 Background to Groundwater Flow Modeling

Over the past decade, a tremendous effort has been devoted
to the understanding of groundwater flow. The techniques vary widely
but may be categorized into theoretical, analytical, experimental and
numerical. Initial attempts were theoretical, going back to the early
1900s, when the dispersive effects of the groundwater systems were
noticed. Since that time researchers have delved more deeply into the
relationship of the various subsurface parameters to the dispersive
effects caused by the soil characteristics. Breitenbach [1971], in
a paper presented on groundwater simulation, pointed out the various
analytical techniques used to-day. These analysts ﬁse Fourier
Series, Laplace Transforms, conformal mapping or graphical approxi-
mations. The data are obtained, generally, by methods of well

withdrawals or parallel drains of a variety of configurations.

Simulation techniques used, range from physical models using
sand or other porous media, viscous fluids, electric means (relating
Ohm's Law to Darcy's Relationship) and membranes, to numerical
methods. It is interesting to note that many modern methods or
theories have developed from other fields of study, for instance, the

well known heat flow (Carslaw and Jaeger (1959)) relation to dis-

persion, as well as Ohm's Law in electrical theory to mass flux
(Darcy's Law). The background and theory involwved in these areas

are discussed by Reddell and Sunada [1971].

-8 -



A Frenchman by the name of D'Andrimont introduced concepts
which lead to simulation of small groundwater basins by Toth [1962]

and Freeze and Witherspoon [1966]. With the advent of the digital

computer came a rapid increase of basin studies, for example, those

done by Bittinger, et al. [1967] and Tyson and Weber [1964] as well as

many others.

As the vastness of groundwater storage reservoirs unveils,
researchers are beginning to widen the scope of subterranean flows to

a regional basin. Nelson and Cearlock [1967] discuss the various

methods applied to large heterogeneous systems. Schneider [1966] and
Megnien [1964] also have done work in analysing regional flow patterns

of groundwater.

I-3 Introduction to Linear Systems

As many researchers turned to numerical methods in an attempt
to by-pass the complexities of the analytical solutions for computing
the reactivity of a groundwater system, so have many turned to the
linear systems approach. Originally, linear systems were developed
for overland flow and were accepted in groundwater because, to quote

Kraijenhoff Van De Leur [1966], "... the unit hydrograph methods are

in complete accord with the nature of the simplifying assumptions that
have been accepted in order to find analytical solutions for the

equations describing the flow of groundwater."



The linear systems approach to routing groundwater in the
subterranean region is a subset to work done by Sherman [1932], who
advanced the unit hydrograph theory which later was used in routing of
surface flows. It was an attempt by hydrologists to estimate the
overall effect of an 'ideal' system and compare the result to an actual
system. The hope was that a close approximation to that system would
be obtained. The basic assumption underlying linear system theory is
that the series of simple inputs may be used in conjunction with a
characterizing function of the system to simulate the effects of a
complex inflow pattern. Obviously, then, the characterizing function
must implicitly contain all the variable process characteristics neces-
sary for such a representation - an ideological condition to be sure.
Should such a simplifying technique be used at all? A good justifica-
tion for using linear systems is provided by Rodriguez [1972] when he
‘says that a linear system "... may provide less information where
information is not wanted and better information where it is wanted,

all at less cost in time and effort."

The work that has evolved from linear systems in groundwater

flow can be found in Chapter II.

I-4 Scope of Work

The work carried out in this thesis will be:

- 10 -



a) to develop the use of Harmonic Analysis within
the linear systems approach for a fast computa-
tional scheme of convolution,

b) To use this method to develop a general model that
can be used under regional consideration,

c) to apply the model to a regional area.

I-5 Brief Summary of Results

A convolution technique is discussed in Chapter III which
utilizes a Fast Fourier Transform program developed at M.I.T.. This
procedure was found to be highly efficient in terms of time and
accuracy. In Chapter IV, a groundwater routing model is presented which
is capable of ﬁtilizing any configuration of system response which
might be encountered in a groundwater zone. This model utilizes the
convolution technique in an effective procedure for analyzing such a
groundwater system. In application of this model it was found to be
better practice to isolate the different flow processes discussed in
Chapter IV since the substantial damping effect of the groundwater
aquifer produced time steps incompatible for aggregating those pro-
cesses into one outflow hydrograph. Use of the fast Fourier transform
technique for predicting the response to an input provides a highly
efficient procedure for analysing both the transient and the periodic
situations. This is found especially useful in studying the behavior
of slowly responding aquifer systems to periodic inputs.

- 11 -



Chapter II

DEVELOPMENTS TO LINEAR SYSTEMS ANALYSIS

II-1 Hydrograph Theory

In 1929 Folse presented the ideas of base-flow separation,

reduction of rainfall due to the variance of infiltration rates and

the derivation of physical constants for representing hydrologic

systems. Sherman, in 1932, used these ideas to develop the well known

hydrograph theory.

hydrograph which is

are:

a)

b)

c)

d)

The basic assumptions for use with the unit

the result of surface runoff or effective rainfall,

Effective rainfall is uniformly distributed within
its duration.

The effective rainfall is distributed uniformly
over the entire drainage basin.

The time duration is constant for a direct runoff
hydrograph due to an effective rainfall of unit
duration.

Those direct runoff hydrographs that have the same
time duration have ordinates which are directly
proportional to the total amount of direct runoff

represented by each hydrograph. Note that this

- 12 -



implies use of the principles of linearity,
superposition and proportionability.

e) The runoff hydrograph from a given rainfall pericd
reflects all the physical characteristics of the

given drainage basin.

The two significant features in linear systems application
that are invoked by the above assumptions are those of time invariance
and of superposition. Time invariance, i.e., stationarity with time,
implies that the basin response will not vary with time - in other
words, the resulting hydrographs of an effective runoff of the same
durafion will be the same. Superposition refers to the property that
a hydrograph resulting from a given pattern of rainfall excess can
equivalently be generated by superimposing the hydrographs from sepa-
rate amounts of rainfall excess that occur during each period of the
same duration. Thus, in order to use the principle of superposition
only those systems that consist of linear elements may be considered.
The most effective way of characterizing the behaviour of such systems
isﬁto allow the effective input to become a delta input (or unit

- impulse). The resulting output is known as the instantaneous unit

hydrograph, designated by h(0,t) or I.U.H. The properties are:

h(0,t) =0 t<o0
h(0,t) - 0 t > >

IT-1

- 13 -~



(]
[ h(0,t)dt = 1.0 = volume of runoff.
o

II-2 Linear Systems

A system, as defined by Eagleson, in 1967, is any set of
inter-related components, material or conceptual, that are identified
by their state variables. When the components are isclated from the
'real' system and provide the state variables, the result is an
'idealized' system since it excludes some of the parameters or charac-
teristics found in the environment. If this were not done, the task
would either be impossible or so complex that it would be economically
infeasible. A schematic of a hydrologic system might be as shown in

Figure II-1l.

The Instantaneous Unit Hydrograph, I.U.H., is the basis for
the linear systems theory since it represents the response of a system
to a unit impulse (delta function), and completely characterizes the
system. The output resulting from the application of a known input can

be uniquely determined by convolution of the input with the I.U.H.

The characteristic function of a linear system,e.g. the I.U.H.,
can be of two types, one being time invariant and the other being time
variant. If the system is time invariant, then the system may be

represented by a differential equation with constant coefficients as

- 14 -
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in Equation II-2.

n

n n-1
A Q_.L(tl + A S"J(_t) o= - - e A q (t)
n n- n-1 o

I(t)
at® L ae

II-2

where I(t) Time varying input

g(t) = Time varying output

This equation implies that the response to a sum of inputs is the same
as if the inputs were individually computed and the responses summed.
The difference between a time invariant system and a time variant
system is that the coefficients for a time variant system are time
dependent. The behaviour of a tgpical L.T.I. (Linear Time Invariant)
System is shown in Figure II-2. This figure also represents the use
of the convolution integral (or Duhamel's Integral) for a causal

system, viz

t
q(t) I I(T) h{t-T) dt II-3
o]

Inflow Rate

Il

where I(T)

h(t)

System's impulse response function

II-3 Some Typical Linear Systems

Previous sections have discussed the use of a characteristic
function which when convoluted with simple inputs will produce an

output hydrograph representative of the system. This characteristic

- 16 =~



function may consist of one, two or three parameter models that are
used to represent the system responses to an input function. The
following sections describe the basic models that are presently used

in representing a linear system response.

II-3.1 Linear Reservoir Model

In a groundwater system, one would normally expect hetero-
geneous soil conditions, as well as extremely small (in relation to
those found in surface hydrolegy) transmissivities or diffusivities.
Therefore, one might assume that the translational effects of sub-
surface flow might be neglected and treat the system as a storage
reservoir. The reservoir is what is known as a one parameter model
where the one parameter, K, is used to represent the total hydraulic
characteristics of open channels for surface flow routing or the soil
characteristics for groundwater flow. The conceptual storage reser-

voir is shown in Figure II-3. The linear storage is related to the

outflow by:
s =K qt)* II-4
where x = 1 for linear systems

< 1 for sublinear systems

> 1 for supralinear systems

The continuity equation for the storage reservoir is given

by Equation II-5, where x = 1.

- 17 =
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I(t) = g(t) + a8

dt
or Teey = ety & &8 dét) 1I-5
where S(t) = represents the reservoir storage
K = time constant or lag between the input centroid and

the output centroid

g(t) = rate of discharge
Equation II-5 can be rewritten as:

dq(t) , g(t) _ I(t)

dt K K 13-

This is a first order linear equation and the total solution

may be determined from the homogeneous and particular solutions.

The complete solution to equation II-6 is given by
i
= 8 25 [ J Ie E/K e + 2] 11=7

assuming a constant input, the complete solution becomes:

R
o &/

qg=0C + I II-8

Introducing the boundary conditions which are:

g=0,t=0 11-9

results in

c; e + 1 TE-16

1
o

thus C; = -I IT-11

- 19 -



The complete solution to a constant inflow to a storage

reservoir then becomes

9 = 1 (1-e ¥, - 11-12

II-3.1.1 Application to Time Varying Inflow

If we apply a constant input of rate I to such a linear
reservoir, the resulting outflow rate is as shown in Figure II-4, or

as given by

TII-13

|

I (l-e -

where t

1A

T, the input time period of I.

If equal time periods are assumed with block inputs, In' then

the outflow rates, qn, at the end of periods 1, 2,.....n, would be:

=1
q1 = I (l-e % )
g2 = Iz Q-e V¥ §qy a™VE
II-14
= ==L K -1/K
qn = .In (1-e ) + In-l e +
- - (Rl
I e /T ease I3 € ( K )

n-2

- 20 -
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Input to a Linear Reservoir
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II1-3.2 Linear Channel Model

Another single parameter model, known as the lag model or the
linear channel, is used for the purpose of translation of a flood wave.
The linear channel requires a constant velocity at any point in the
channel for all discharges such that the relationship between the

inflow and outflow at that point is merely:
Q (t) = I (t-T) 1I-15

where T represents the translation in time of the flood wave with

no attenuation of the wave.

Dooge [1959] first presented the linear channel concept and
pointed out that it can also be considered to be as a cascade of an
infinite number of infinitesimal storages. As shown in the above
section, the lag to a single reservoir (single storage) is repre-
sented by K. Then, if we have n reservoirs in series, the lag would
be nK. Thus if n goes to infinity as K goes to 0, while nK remains
constant, the variance about the mean, nK?,goes to zero, implying
that an instantaneous input of unit input will cause an instantaneous

output of the same volume after the mean travel time of nK.

II-3.3 Two Parameter Models

When considering a groundwater system, one must be realistic

- 22 =



in choosing a model for rebresenting that system. Common sense tells
us that a pure translation or the linear reservoir (exponential distri-
bution) which lacks the property of having adequate 'memory' (Hillier
[1967]), will fail to represent thé groundwater system. Thus the
tendency has been to incorporate these elementary, single parameter
models into a variety of configurations. This led to the two param-
eter models such as the Lag and Route Model or the Nash Model. The
former is represented by the block diagram in Figure II-5. It has the

following impulse response:

q(t)=-:-('-e-€1() 11-16
where K = delay time of the linear reservoir.
T = translation time of the linear channel.

Noting the obvious increase in flexibility by applying such
models in series, Nash [1958] developed what has become known as the

Nash Model - (Also developed by Kalinin - Milynkov [1958]). Nash

conceptually applied a series of n reservoirs each of delay time K,
represented by the block diagram in Figure II-6, in order to repre-
sent the systems I.U.H.. Thus the total lag to the system can be
shown to be nK, since in a series configuration the outflow of one
reservoir is the inflow to the succeeding reservoir. The impulse

response for this model is:

- 23 -



I(t) —— & |——> K — q(t)

Linear Linear
Channel Reservoir

Figure II-5

Block Diagram of a Lag and Route Model
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Figure II-6

Block Diagram of a Nash Model
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-1 -t/K
tyon 1 e t/

X m I11-17

Notice that the Nash Model is also a modified gamma distribution.
Nash simply used the tools developed earlier by Zoch [12934] in linear
reservoirs, Clark [1945] in linear storage routing and Edson [1951]

in two parameter model development.

II-3.4 Three Parameter Models

Many three parameter models merely add the linear channel, a
translational effect, to the two parameter models. In this paper this
is accomplished with the Nash Model as discussed above. However,
Harley [1967] also uses the translation with a Muskingum Model, and
the Diffusion Analogy.

The advantage of the three parameter models is that they are
more capable of simulating a complex system as in the natural highly

damped groundwater system.

II-4 Model Formulation Using Linear Systems

With the basic tools now available to linear systems re-
searchers, an infinite number of configurations become available to
represent the complex systems of the real world. Many of the fol-

lowing models were presented by Kraijenhoff [1966].

- 25 -



In 1955 Lyshede related a series of exponential functions to
the effect of runoff from rainfall and the basin characteristics.
This pointed out the possible use of linear reservoirs in series which

form the cascade effect of the Gamma distribution.

Singh, in 1964, used the time - area hydrograph and routed
it through two linear reservoirs in series to represent the effect of

overland and channel flows. Singh's System is shown in Figure II-7.

Diskin, also in 1964, proposed a model using two Nash Models
in parallel, each branch consisting of a different number of equal
reservoirs and both branches having different lag characteristics in
the reservoir series such as shown by Figure II-8. Thus by splitting
the input hydrograph, Diskin was able to develop a system that would
lag the output by:

+ (1-¢) n

o n, K K; IT-18

1 2

The I.U.H., of this system then would by represented by

[ E‘ n

-1 -t/K1
Kl(nl- 1) K ®

h (0,t) = +

II-19

(1-0.) L on= -1.:/1(2
Kz(nz_ 1) K
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Figure II-7

Singh's Model in Simulating Overland and Channel Flows
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Figure 11-8

Diskin's Parallel Nash Model Configuration
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II-5 Groundwater Systems

The Netherlands has done work in groundwater systems for

many years using the Dupuit -~ Forchheimer approximations.

As mentioned in Chapter I, there was skepticism in using a
linear system approach until it was realized that the basic assump-
tions for analytical solutions to groundwater flow were equivalent
to those used in the unit hydrograph theory. Therefore, the
development stages of groundwater flow in linear systems are described

briefly in the following paragraphs.

In 1947, Edelman developed equations for two diﬁensional
groundwater flow into a unit length of channel and applied the
convolution integral to determine the effect on the groundwater flow-
rate of a constant infiltration rate into the phreatic zone as shown

in Figure II-9, resulting in the equation

t
1
P -
Q(t)=—J = ST wu od o
o v
11-20
1
Iy Yy u
where P = constant percolation rate
KD = transmissivity
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y = Initial Saturated Zone Thickness

P = Constant Percolation Rate to Phreatic Zone
qy= Unit Flow at x

Q(t) = Outflow Rate at Channel

J = Active Porosity

Channel

Bedrock

Figgre II-9

Edelman's One-Sided Groundwater Flow to a Unit Width Channel

q(t)

- ———

e
] 7
D ¢

“h(O0,1)

Figure II-10

Reservoir Representation of Kraijenhoff's Flow to Drainage Canals
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H = active porosity

In studying the effects of the phreatic zone in irrigation
areas, Glover [1954] developed an equation which relates the spacial
and time change of the free water surface to an instantaneous irri-

gation inflow, s, in equation II-21

[+4]
2 .
- . 'n'
vix,t) = ﬁ' % Z % e 1 t/3 sin BEE
n=1,3,5
I1-21
) ¥ qr?
where 4 =gy K5

From this relationship, Kraijenhoff [1958] developed the I.U.H., for
flow into parallel drainage channels.
0

—2 -
h(0,t) =Fa-; L3 e /3 II-22
n=1,3,5

Expanding and setting the lags, K, equal to functions of j, results

in

+
™ K3 9 M2 K

II-23
1 8 1 -t/K3

— o — +--.

25 w2 K3

We may see that this equation represents the behaviour of a system of
linear reservoirs in parallel as shown in Figure II-10. The lag for
such a system is given by equation II-24,
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1 8
v o e + ...
LAG K 5 T2 Ko

== (1+ = + = ... "
w2 J (1 %t 5 ) II-24
_8 m™ . _ 1
T 96 I 1z I

]

where K j; Ko = j/9; K3z = j/25 etc.

De Jager [1965], Wesseling [1969] and Wemelsfelden [1963] used other

modified configurations to represent flows to parallel drains or

river channels.

In an attempt to develop the use of linear systems in ground-
water application, Dooge [1960] used the concepts introduced so far
to derive coefficients in a simplifying technique. By accepting the
work done by Thornthwaite and Penman in estimating infiltration,
evaporation and other soil characteristics that determine the flow of
groundwater in the unsaturated zone, Dooge developed coefficients for
use under a number of conditions, these being:

a) Water table close to the surface where there is
a direct effect on recharge by rainfall and
evapotranspiration.

b) Water table well below the ground surface where
the recharge to the groundwater system is

accomplished only after the upper soil region

- 31 -



reaches field capacity.

c) Composite type where the groundwater table reacts
as a shallow table until the groundwater 'storage'
decreases producing an effect more in line with

a deep water table.

Dooge's procedure is based on a constant recharge over a
given time period. Using constant time periods and the storage
concept generated by the linear reservoir discussion in Section II-3,
he derived three routing coefficients and three coefficients required

under the conditions of negative recharge. These basic equations

are
Q = C R *+CiR_, +C20Q II-25
where Qn = Outflow due to contributions by the past n recharges
Rh = Recharge in period n
Rn_l = Recharge in period n-1
Qn-l = Outflow due to contributions from the past n-1

number of recharges.
The coefficients are given by:

- e-T/K )
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ey = B (e ™Fy oK I1-26
By = T/

where T = time period of the recharge.
K = the linear reservoir lag coefficient.

The negative recharge computation is based on a storage

calculation at the end of period n, viz

- K (1_."T/K - S o
s = R o (l-e ) + (g - C_ R) X7 1I-27

If for any period this goes to zero, he calculates two additional

coefficients:
S = C3 R +C
n 3 %h 4 Qn
K 1
where Cs = T T/K II-28
-1
1
Co = oK

Thus if one knows the parameters required by linear reservoir theory,
simplified coefficients may be calculated for routing through a ground-

water system.
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Though the computation scheme would become more complex,
one could conceptually consider using a time varying period that could
be accepted as being more realistic, i.e., to maintain a constant
input, which is acceptable under certain restrictions, and vary the

time over which the inflow is constant.

1I-6 Parameter Estimation

Definitions, derivations and éonfigurations have been
offered in the previous sections but the most important and perhaps
the most significant aspect to linear systems theory is that of
parameter estimation. It should be obvious that a simﬁlation proce-
dure requires a highly selective method of correlating the I.U.H.
pérameters as dependent variables with the basin characteristics as
the independent variables. Methods available for parameter esti-
mation include:

a) Fourier Coefficients.

b) Laguerre Coefficients.

c) Method of least squares.

d) Method of maximum likelihood.
e) Method of moments.

f) Wiener - Hopf equations

O'Donnell [1960] presented an approach to develop the I.U.H.,

by means of Harmonic Analysis, which produced Fourier Coefficients.
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He used the fact that the Fourier expansion can be used if the input/
output hydrographs are assumed periodic. These expansions may be

represented by

Inflow Expansion:

[+.+] w
2TT g 2TT
I (1) = ¥ a_ Cos (n = X b sin (n =) I1-29
n=o0 fi=1
I.U.H. Expansion:
] 2 [++]
T (t- .
h(.=1) = Y o cos (mZXEThy & § g sin (m ZLAEL),
m T m T
m=0 m=1
I1-30
Outflow Expansion:
o0 [++] 2
)
ogw = J a cos L + § B sin (r 2h II-31
r T r T
2 =0 r=1
th

By applying the convolution integral and considering the n
harmonic, he was able to derive the kernel coefficients with respect

to the input/output coefficients, thus giving:

A
g o= e 2
o] T a
[}
2 an An * bn Bn
= e > II-
an T anz - bn > fornz 1 I-32
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Thus, if a long enough record is available and accurate, then a
simple means for determining the instantaneous unit hydrograph is

available.

Dooge [1965] proposed another scheme for the analysis of
heavily damped linear systems using Laguerre functions, similar to
the method proposed by O'Donnell [1960] in using coefficients derived
by means of harmonic analysis. The equations derived by means of

the Laguerre functions are:

Input function

I() =] a f (v) 1I-33

h(£) = ) a £ (t) II-34

Output function

Q (v) = } A £ (t) 1I-35
n=o
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The linkage function coefficient are given by

A =

p-1
)
P k=0

ak ap—k - ak ap-l-k II-36

| >0

k=0

Eagleson [1965] presents the Methods of Least Squares and

the Weiner - Hopf Equation as procedures for determining the instanta-

neous unit hydrographs, while Hillier and Lieberman [1967] present
the method of Maximum Likelihood and others in determining parameter

estimators.

The Method of Moments for estimating parameters was first
applied to hydrologic systems by Nash [1959]. The accuracy of this
procedure is dependant on the number of samples taken of the system
and that these samples are truly representative of the basin charac-
teristics. Maddaus [1969] offers what he considered to be disadvan-
tages to the uée of this method, and are as follows.

a) Non-linearity is filtered out of the lower moments
but the non-linearity tends to concentrate in the
higher moments.

b) Inconsistency may occur between the parameters
and the assumed model resulting in negative
parameters.

¢) They tend to be biased at the extremities, thereby

causing the greatest error at the peak.
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Since the Method of Moments is an effective parameter tech-
nigue in hydrologic systems, where our concern is with the lower
moments, then any non-linearities of the natural system must reside in
the upper moments. When applying this procedure to unit hydrograph
theory where only positive causal systems are considered, any
inconsistency producing a negative parameter would, indeed, reduce the
effectiveness of this procedure. The effect of ¢) will be shown in
Chapter IV where the peak is shown to have the greatest error when
utilizing the Method of Moments. Since the lower moments do provide
the more significant results in modeling hydrologic systems, it has
become an accepted fact that the first three or four moments only, be
used in parameter estimation. Nash [1959] recommends the use of
dimensionless parameters in allowing an independence between the
parameters and the I.U.H. This is accomplished by dividing all
moments exclusive of the first by the first moment. To present an
example of the Method of Moments, the Nash Model will be considered.

The I.U.H. of a Nash Model may be represented by:

h (0,t) =%(- (e/x) ! -I-.-&;)— o /K II-37

where n number of equal linear reservoirs in series

=
1l

the time constant or lag of a single reservoir.

- 38 -



Then the first moment about the origin, or lag of the system

is given by:

where Mi

The

variance, is

M2
where M;
then M2
where M,

[+]
f h {(0,t) t dt
o]

-t/K

oo
n J (t/K)an%b e a (£/K)
o

II-38

first moment about the origin.

second moment about the mean (or centroid) known as the

determined by the equation:

[+
J h (0,t) t* at

(o]
K% n (n+1) II-39
K2n? + k*n - x%?n?
nk?

first moment about the mean

-~ 39 -



second moment about the mean

M2

M2

second moment about the origin

By the same procedure, the third moment (Skewness) and the

fourth moment (Kurtosis) may be derived to be:

M3 = 2nK
II-40

My = 6 nKkK

A similar procedure may be used for the moments of the Linear
Reservoir and Lag and Route Models. These are represented by Equa-

tion II-41 and II-42.

Linear Reservoir Moments

M, = K
Ms = KZ
II-41
M3 = 2 K°
My = 6 K
Lag and Route Moments
Ml = T + K
My, = Kz
I1-42
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My = 6 K

Appendix B.3 develops moments in greater detail.

Another parameter that sometimes proves important is the
time to peak, which is found by taking the first derivative of the
I.U.H., and equating to zero,since in hydrology the work is with

causal systems. Thus:

The time to peak is that at which

d
3t h(0,t)

I
o

I1-43

Then for the various models discussed in Section II-3:

Nash Model Tp = (n-1) K
Single Reservoir TP =0 II-44
=T

Lag and Route Model Tp

II-7 Theoretical Development to the Regional

Groundwater Routing Model

The basic equations for unsteady one dimensional flow will

be considered assuming the following conditions apply:

a) Unconfined flow
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b) Incompressable fluid flow
c) Darcy's Law applies

d) Sloping bedrock

The continuity equation is given by:

3 3h 9
% —_— = - == -
3 Sc 3¢ Ax I1-45
where qi = inflow
Ax = area of inflow

Sc = storage coefficient

h = piezometric head

However, the response to a Dirac delta function of inflow is

desired such that the continuity equation will be:

1

39 oh =
52 + Scgo = 0 t>0 II-46

The groundwater flow will be represented by a modified form of the Darcy

equation, incorporating the advective velocity, as in Equation II-47.

g = ah- Kp hm %% I11-47
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where g = groundwater flow (L%/T)

a = advective velocity due to the sloping

bedrock (L/T)

h = piezometric head (L)
KP = permeability (L/T)
hm = mean depth of the saturated water zone

The advective velocity may be more adequately shown to be

=-x S '
a = KP ar from Darcy's Law
II-48
= = K . slope
o P

where the minus sign indicates the direction of flow. Then equation

II-47 can be rewritten as

og _ adh _ ’n "
F& = 55 7K h 5% II-49

oh 9%h dh
— - — —_— = II-
a % Kp hm w2 + Sc 5t o} 50
or
K h 2
p m 3*h _ a 9 dh o
Sc 9x2 Sc ox * ot -3l
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By using Laplace Transforms, Harley [1967] shows that the resulting
system response to the Dirac delta function input (of a similar

relationship) will be:

1 f 2
__-—"sxo _(Ct-x) -
AR B B § 1152
P P
thus equation II-51 results in:
Y Sc 2
K {x.t) = . X, exp | - (at/Sc-x) " .
2/TXK_h 3% 4K t
P m t p
II-53

Appendix B,2 proves a similar result for a horizontal bedrock condi=~

tion.

The cumulants for the above response function are shown in
Appendix B.2 to be derived simply from the Laplace Transform.
Harley [1967] shows the first four cumulants to be given by Equa-

tions II-54

C; = =x/c
2 K x
Cy = "‘f?“

II-54
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Equations II-55 are the four cumulants derived from the

governing equation of groundwater flow.

Z1 X Sc/a

2 3
Z2 2 Kp hm Sc” x/a
II-55

Z3 = 12 K 2 p 2g¢3 x/a5
P m

Zy

120k * n ? sc* x/a7
Pp m

In Chapter IV, the first three cumulants will be used to
dete;mine the lag of a single reservoir, the number of single
reservoirs as well as the lag, T, required to simulate the system
response based on the input parameters used to compute the cumulants

shown above.
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Chapter III

FOURIER TRANSFORMS IN LINEAR HYDROLOGIC SYSTEMS

III-1 Introduction to Fourier Analysis

A linear system is characterized by the following equation:

"

(-}
fo(t) J_m fi(T) h (t-T) & T IIIjl

where fi(t) an input function

h (t) = the system response function, characterized as the
response to a unit impulse
fo(t) = response of the system to the input fi(t)

Applying a Fourier transformation to equation III-1 yields

rw
F (W) = = J £ (£) e Yt gt
(o] 2T o]
-0
III-2
[+
1 -jwt ®
= 5-1; . e dt . fi('r) h (t-T) 4 T

Letting s=t-T and changing the order of integration, the

above equation reduces to :
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II1I-3

o] o0
F(w) =I h(s) e * as ° —i-[ £.(1) e T ar
o . 2wy i
which can be further stated as
Fotm} = H (w) F. (w) I1I-4
where Fi(m) = the Fourier transform of input function
H (W) = the Fourier transform of the system response,
(multiplied by 2T7)
Fo(w) = the Fourier transform of the output.

Therefore a convolution integral can be reduced to a simple

multiplication of Fourier transforms.

Traditionally in hydrology the whole series of linear models,
" such as the linear Reservoir, Muskingum, Nash and linear solutions to
the momentum and continuity equations, have been utilized by obtaining
expressions for the system response function and performing the lengthy
and time consuming numerical (or sometimes analytical) convolution in

a computer.
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The purpose of this chapter is to combine the knowledge of
the analytical Fourier transforms of these linear systems with the
availability of numerical computer technigues to obtain Fourier
transforms in order to utilize equation II-4 to find the outflow from

a system resulting from a known inflow.

By reducing the complicated convolution procedures to a
simple multiplication and by utilizing an efficient numerical trans-
form scheme the time required to obtain the output function should be

reduced significantly.

In this chapter two available computer programs to carry out
Fourier transformations are investigated. One is based on traditional
finite numerical integration of the Fourier transform equations; the
other is based on the theory of Fast Fourier Transforms. The accuracy,
speed and ease of use of each of these programs are evaluated and

compared.

I1JI-2 Fourier Transform Technidque

Two numerical, computational technigques are considered in
this paper. One is based on the Cooley --Tukey Fast Fourier
Transform Theory which was available at M.I.T. as Subroutine
FOURT, (Appendix A-2). The other is based on finite numerical integra-
tion of the Fourier Transform equation and will be noted by Sub-

routine FOURTRAN (see reference Eagleson and Goodspeed (1970)).
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The discrete form of the finite transform used in Subroutine

FOURTRAN is:

F (W) = /% N{F f(t) exp (~jw LAt) At III-5
I=1
where NF = number of points in time at which f(t) is given
£(t) = input function at interval At
At = time interval
w = angular frequency

This equation is evaluated at different equally spaced Aw's
up to some cutoff frequency, wo, which must be less or equal to m/At.
If the given wo value exceeds T/At it is automatically adjusted to
this Qalue. In order to return to the time domain (by taking the
inverse transform) the procedure is as follows:

a) change sign of the exponential
b) integrate over the angular frequencies (Aw)

c) evaluate at different times (t).

II1I-2.1 Characteristics of Subroutine FOURTRAN --=

Numerical Integration Technigue

The following are characteristics of Subroutine FOURTRAN:
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a)

b)

c)

d)

e)

Two options are available to the user for the
output, a complex spectrum or the normalized
amplitude and phase of the spectrum.

The program does not require the input function

to be periodic.

The input function is assumed to start at a value
of zero,to be sampled at equal intervals,and to be
zero after the sampled period.

For simplicity, the forward and inverse transform
equation are made similar by multiplying by.
l/VPEF} thus allowing a simple transition from the
forward transform to the inverse transform.

Since the complex spectrum of a time series is
symmetrical about the origin and if FOURTRAN is
used to find the inverse transform, only one
portion of the symmetrical transform is input and
thus the resulting time domain series must be

doubled in order to keep the proper scale.

III-2.1.1 Test and Results for Subroutine FOURTRAN

The tests performed on Subroutine FOURTRAN consisted of

entering and exiting the program with one function in order to

determine the effectiveness of the program in returning the iden-

tical function. The function chosen was that of the linear
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reservoir as presented in Chapter II.

The forward and inverse Fourier transforms from Subroutine

FOURTRAN are dependent on the following parameters:

At

il

£
It

E

sampling time interval

maximum angular frequency, Nyquist frequency

angular frequency interval.

Table III-1 is a tabulation of the significant parameters in

the forward transform (frequency domain). In considering Table III-1

and comparing the analytical and computational transforms, these

indicated:

a)

b)

c)

Accuracy increases as the integration steps de-
creased, i.e., At in the forward transform and

Aw in the inverse transform.

Figure III-1 shows the aliasing effect in the
forward transform when compared to the analytical
transform, i.e., as the transforms approach the
higher frequencies, the complex spectrum obtained,
using the program, diverges from the theoretical
transform.

As the integrating variable, At, decreases the

time of execution increases significantly. An

w B



Table III-1
FOURIER TRANSFORM (FORWARD) RESULTS -- SUBROUTINE FOURTRAN

[Input Function: 1/K e _(t/K)]

w

_ZS-.

Sample AT No. of K o Freq. Aw A Freq. Execution Time
Period Time Step Points (Time) (Rad/Time) (Cy/Time) (Rad/Time) (Cy/Time) (Sec)
36.0 . 5485 65 5.0 5.727 .9115 .0873 .0139 -
36.0 0.2 65 5.0 5.727 .9115 .0873 .0139 6.84
36.0 0.1 65 5.0 5.727 .9115 .0873 .0139 12.84
36.0 0.1 4 5.0 5.727 .9115 1.2 .1910 1.81
36.0 0.1 74 5.0 6.5 1.0345 .0873 .0139 14.49
36.0 0.05 65 5.0 5727 .9115 .0873 .0139 24.53
36.0 0.1 11 5.0 5.727 .9115 0.50 .0796 2.7
36.0 0.1 22 5.0 5.727 .9115 0.25 .0398 4.73
42.0 0.1 65 5.0 5.727 .9115 .0873 .0139 14.58

42.Q0 0.1 74 5.0 5.727 1.0345 .0873 .0139 16.72
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Figure III-1

Aliasing Effect in the Forward Transform--Subroutine FOURTRAN
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attempt was made to decrease the aliasing effect
by increasing the Nyquist frequency, wo; as this
decreased the integrating step, At, however

the execution time again increased. Increasing
Aw, on the other hand, provides an inverse re-
lationship with the execution time. The problem
is that in order to provide good results in the
inverse transform an adequate number of points
in the freguency domain must be provided. This
implies use of a smaller Aw and therefore higher
execution times in the inverse and forward trans-

form calculations.

The results obtained when finding the inverse of a complex
spectrum using FOURTRAN are shown in Figure III-2. As the figure shows,
the numerical integration method of finding the Fourier transform fails
to reproduce its original input,.i.e., if a forward transform is
performed on an input and then the corresponding iﬁverse on that trans-
form, FOURTRAN fails to reproduce the‘original function. This is due
to the finite integration technique. The problem that we are faced
with is when a system response is to be represented by a series system
of models as discussed in Chapter'II. In this case, the output of one
model response is the input into the next, thus requiring a multiple
use of a convolution technique. Thus, if Subroutine FOURTRAN was

recalled a number of times, the integration error would compound itself.
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Inverse Transform (Time Domain)--Subroutine FOURTRAN



III-2.2 Characteristics of Subroutine FOURT —-—-

Fast Fourier Transform Technigque

I1T1-2.2.1 Data Requirements

This subprogram assumes periodicity, i.e., the input values
represent one cycle of a periodic function. The input values must be
at even time (frequency) intervals for a forward (inverse) transform
and may be real or complex. However, when returning from the frequency
domain the data must always be complex. If the number of data points
is a power of two this subprogram will run at its maximum efficiency.
The only data the program requires are the input values, the number of
input values and information indicating if the inverse or forward

transforms is desired.

III-2.2.2 Subroutine FQURT --- Forward Transform

The Nyquist frequency, wo, is determined analytically as
m/At, thus defining the frequency interval, Aw, at which the transform
will be evaluated. A property of the FOURT returned forward transform
is the smeetry of the transform about the Nyquist frequency, with that
frequency as the midpoint (plus one if the function has an even number
of points) of the transform. Since FOURT evaluates over a freguency
range of 27 (N-1)/NAt, at frequency intervals of 2m/NAt, the Nyquist
frequency will be located at point N/2 due to FOURT's symmetric repre-

sentation in the frequency domain. The number of output points in
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Subroutine FOURT is identical to those input.

ITI-2.2.3 Subroutine FOURT --- Inverse Transform

The output of the inverse transform is a regular time series
and has the same time intervals as the original input since it is
based on the same number of input points. The resulting time domain
function must be divided by the number of points used in the calcula-
tion in order to obtain the correct results- a Property of FOURT. 1In
finding the inverse transform the user must ensure that the complex

spectrum is input in the symmetrical conjugate form described above.

I1I-2.2.4 Implications of the Input-output Requirements

As mentioned above, the number of points returned after
transforming with the subprogram FOURT is the same as input initially.
Since the program assumes a periodic function this implies that in
using the program to convolute, by multiplication of input and response

transforms, the same number of points must be in each of the transforms.

It is important to note that FOURT does not consider the
1/2m factor usually found in Fourier transforms so caution must be used

in interpreting FOURT's results.

III-2.2.5 Tests and Results

In finding the inverse Fourier transform of a FOURT obtained
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complex spectrum, the program was able to reproduce the original time
domain function identically, thus indicating a good computational
scheme. When the theoretical Fourier transform was input in the fre-
quency domain and the inverse was taken the results were very close to
the true function, Figure III-3. However, the aliasing effect still

exists as shown in Figure III-4.

I1I-3 Selection of an Efficient Fourier Transformation Technique

Subroutine FOURT, the Fast Fourier Transformation technique

is chosen over Subroutine FOURTRAN for the following reasons:

a) it is considerably faster

b) the accuracy is maintained in the inverse trans-
form when using the theoretical forward transform.

c) the exact reproduction of the function in the time
domain is obtained when the forward and inverse

transforms are computed in succession.

III-4 Convoluting with Fourier Transforms

Implementing the algorithm to convelute by multiplying Fourier

transforms presents some immediate problems.

First, the selection of the Fast Fourier transform program,

FOURT requires that the functions being transformed be defined as
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Inverse Transform (Time Domain)--Subroutine FOURT
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Forward Transform Indicating Aliasing Effect--Subroutine FOURT
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periodic functions. Selecting this period so that the resulting
output would not be affected by the assumed repeating portions of the

input and response functions, was one important task.

Secondly, the response functions of all linear models approach
zero at infinity. Since a finite function was required in order to be
able to define a time period for the input, response and output functions
all of which must be input as the same time period, it was necessary to
develop a criteria for adequate definition of a cut off time for the

response function.

Finally, the Fourier transform of a function may include
infinitely many terms requiring that the frequency range of the trans-
forms also go to infinity. It is necessary, then, to develop a method
to find the Nyquist frequency, wo, which will limit the frequency band-
width to the frequencies of interest. By fixing the Nyquist frequency,
the.time increment, At, that the input function must be sampled at in

order to detect frequencies up to mo, is defined.

II1I-4.1 Defining the Nyquist Frequency, wo

The requirement for defining the Nyquist frequency, wo' is
to ascertain the 'energy' required if the response function is suf-
ficient to produce accurate results. To determine the 'energy'
retained by the response function, the 'power' spectrum of the re-

sponse function and NOT the input function is used for this purpose.

- 61 -



The logic here is that the frequencies of the cbtained output are
limited by the dominating frequencies of the system response function.
Hydrologic systems, generally, pass a significant amount of the input
energy within the lower frequencies. As this is also the case of the
linear models used to represent the system response, most of the
energy within the system may be retained without the consideration of

very high frequencies.

The procedure of fixing wo is illustrated using the well

known linear reservoir model whose response function is given by

ho(r) = L ¢t III-6
K
where t = time
K = the delay time constant

The normalized amplitude spectrum of this function is

given by:
H (WK) = @+ WK?) L1T~7

The power density spectrum is defined as the square of the amplitude,

or:

|

H  (WK) 2 III-8

1+ (wK)
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Since a unit impulse input function is being considered, its ampli-

tude density spectrum is given by:

P6 (wK) = ‘51? ITI-9

Then the energy density spectrum of the output is the resultant

multiplication of the input and response power spectrums, or:

¢_ (6K)

L]

[HO (WK) |2-f95 (WK)

_1_| ]a -
o Ho (wK) III-10

1 1

or ¢ 1+ (WK) 2

it

The energy of the output that must be preserved is chosen to be 98% of
the total energy. Then, the Nyquist frequency, wo, must be found which
will assure that an energy loss greater than 2% does not occur. The

total energy of this system is, given by:

[+ o]
E = 2 I ¢° (WK) d (wK)
(o]
1 ] aw) _—
T, 1+(UK)
= 0.5

- 63 -



Thus, in order to keep 98% of the energy, we need to integrate over

the area of interest, as in Equation III-12 ,such that

wkK
E = 1 I 4 (wK) 5 = 0.49
il 1+ (wK)
o
III-12
= -11; [tan™! @K) - n 7] = 0.49
But for n=1, Equation III-12 becomes
tanﬁl{wK)
et = 1,48 III-13
thus
WK = tan (4.68)
= tan (268°) III-14
= 28.636

Thus, 98% of the output energy of a linear reservoir model will be
passed if the Nyquist frequency, wo, is determined by the expression
III-15, which is in terms of the model parameters K.

w = 2B.636/K III-15

III-4.2 Effects of Complex Responses on the

Nyquist Fregquency

Theoretically this procedure should be applied to each
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model in order to obtain their respective expressions for wo.
Unfortunately the power spectrums of other model response functions
get fairly complicated, especially as the number of parameters
increase. Due to this difficulty, it was decided to use the Nyquist
frequency determined for the linear reservoir aé a basis for all
linear systems used. Making such an assumption should assure that
the selection of wo is on the conservative side. Of all the linear

models the linear reservoir can pass the highest frequency components.

Figure III-5 demonstrates how the linear reservoir
normalized amplitude spectrum has higher frequency components than

Nash Models of order greater than 1 (which is the linear reservoir).

III-4.3 Selection of Response Function Duration

The time period for the system response was chosen
arbitrarily to be that time which would allow 99% of the response

to have occurred.

Again this was done by setting up an integral equation. As
an example the linear reservoir formulation was used. The total area
under the linear reservoir response curve is unity,so to find the
time which should be used, the integrated system response for a linea;

reservoir was equated to .99, thus representing an area of 99%.

t
J L g BE w oy IT1I-16
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Figure III-5

Normalized Amplitude Spectrum Relationships for Nash Model
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which is

1-e X _ o9 ITI-17
s0 Tr = =K.1ln (.01)
11I-18
= 4,605 K

Again, due to the difficulty of integrating some of the more
complicated response functions, it was decided to use the linear

reservoir criteria with other linear models.

If this procedure were followed for the more complex system
response models, it would be found that the integration increases in
complexity. io alleviate this problem, the 'lag' of the complex
system responses was used in place of the lag for the linear reservoir
response in Equation ITI-18. BAlthough a large part of the area under
the linear reservoir response curve is concentrated at the origin,
this procedure provides a conservative but efficient solution for the
response time period. The results of this procedure when applying a

Nash Model response is found in Appendix B-1.

ITI-4.4 Selection of the Output Period

As mentioned in Section III-2.2 the selection of FOURT for
calculating the Fourier transformations required choosing a time period
representative of the output hydrograph. The response and input

functions are then obliged to have the same period, so zeros must be
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added in order to extend these functions to the required time period.

The algorithm utilized to do this is the following:
The duration of the output, To' according to convolution

theory, is the sum of the input duration, Ti' and response duration Tr

= +
8o To Ti Tr III-19

where T = the duration of the response to the system as given
in Section III-4.2

T, = the time of input duration.
Let Ni be the number of points in the input given at intervals Ati'

N, = Ti/At, + 1 I11-20
1 1

Let N be the total number of points in the output which must be at the

same interval, Ati' as the input, then

TO
N = KET + 1
L
= Ti/Ati + Tr/Ati + 1 III-21
N,
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Therefore the number of zeros to be added to the input function is

given by:
T
Number of zeros = r/Ati I11-22

The time period required for the input, response and output
functions must be defined by the period Tr + Ti. Since the system
responses will not be utilized in the time domain but only in the
forward transform, this procedure will transpose the time period into
the number of input values as required by FOURT. For a further dis-

cussion, refer to Section III-2.2.

I1I-4.5 An Example - The Theoretical Solution

Having solved the implementation problems, an example was
tried. In order to have a basis for comparison, the theoretical

solution of the example is obtained initially.

The example utilized was the response of a linear reser-

voir to a square wave input of amplitude Io and duration Ti'

The output function for this example can be found by

convolution. The convolution integral for this example is:

&

t
£ (t) = 1/K ! I, e - Yk’ ar IIT-23
(o]

- 69 -



This can be divided into two regions:

[ t-T
£ {8 = = J 1 e %) at For t < T,
(o] K & o] 1
III-24
-t
= [1_(1-e %)
and
Ts
1 = (E:IQ
f (ty = = I e K ' dr For t > T,
o K 5 o i
I1I-25
T,
i/K
=1 e t/Kk [e 1]

The same result can be reached by finding the Fourier trans-
form of the input and the response functions and multiplying them

together. The Fourier transform of the input is given by:

i

1
P = e [ I e Ut 4
1 & Q

ITI-26



= I (1-a ¥
[e]

2T (jw)

The Fourier transform of the response function is defined

as:

rm

_ o (L 1 -t/k _ -jet

H (W) = 27 (ZW) J X e e dt
(o]
III-27
- 1
1+jWK

The Fourier transform of the output function is obtained by

multiplying these two results, i.e.

Fo(w) = Fi(w) * H (W)
III-28
_ 1 _ -JwT,
= I [jm -wZK] (L~e i)

III-4.6 Obtained Results

A computer program was written to test the example discus-

sed in Section III-4.5. The program used as input, the desired forcing
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function and the parameter, K, describing the linear reservoir model
used. The program obtained the desired Nyquist frequency, wo, the
corresponding time intervals at which the input must be given, At=ﬂ/w°,
and interpolated the input to the desired time interval if not given
at that At. The program also evaluated the theoretical Fourier
transform of the response function, found the transform of the input
by using FOURT, multiplied them together, found the inverse of the
resulting transform using FOURT to obtain the output function and
finally plotted the resulting data together with the theoretical

result. A copy of the program is included in Appendix A-~1l.

The program was tested with a square wave input haviﬁg a
maximum value of 3.0 and duration of 2 time units. The linear reser-
voir model used a parameter K equal to 1.5. The plot of the resulting
output function and its theoretical value can be seen in Figure III-6.
As shown, the results are extremely accurate. The program with all the
plotting, interpolating etc., toock 2.67 seconds to execute on the

I.B.M. 360-67 computer system.

It is interesting to note that even though FOURT forward
transforms showed marked aliasing effect (Figure III-4) and also failed
to reproduce, exactly, the correct function when finding the inverse
of a transform that was not its own (Figure III-3), that when the
inverse of the forward transform is taken, after convolution,.resulted

in such an accurate solution. This is due to the fact that the
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response is most sensitive to the low frequencies. In the areas of
low frequencies the aliasing effect and the error in finding an in-

verse of a non FOURT transform are minimal.

III-5 Application to Surface Routing

Harley [1967], in part, utilized two parameter simulation
models to represent flood routing in open channels. This he ac-
complished through simplifying assumptions of the various complex-
ities in the system. These complexities he listed as being in the
field of physics, geometry and inflows. The complex physics was
satisfied by taking the complete equations for open channel hydraulics;
the complex geometry was handled by assuming a uniformly wide
rectangular chezy channel; and lastly, linearization provided the
means of simplification of complex inflows. This means that the re-
sponse of the channel may be characterized by the response to a delta

function.

In order to relate the complete linear equation to the
parameters of the simplified two and three parameter models, Harley com-

pared the cumulants or moments, these being the Lag, M., the variance,

1

M_, the skewness, M3 and the Kurtosis, M The parameters estimated

2 4°
by this method are expressed in terms of the hydraulic parameters of
the original channel while in its reference steady - state condition.

The lag, Ml' was equated to the first moment about the origin and the
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variance, M2, was equated to the second moment about the center, these

being derived from field data.

In the derivation of these parameters, Harley used the

cumulants in the dimensionless form known as the shape factors. These

are:
S1 = C1
- 2
5, c,/C,
III-29
_ 3
S3 = CB/CI
4
S, = C,/C, , etc.

This in effect, removes the time scale effect from the second and fol-

lowing cumulants, making them dimensionless.

The two linear models that will be used to represent the
system response of Harley's complete linear channel equation will be

the two parameter models, Lag and Route Model and Nash Model.

The properties of the moments with respect to the distri-

bution are:

M = Area
[}
Ml' = Lag (or mean), with respect to the origin.
M, = Variance, i.e. measure of dispersion of the distri-

bution about the mean.
M, = Skewness, i.e. measure of the shift of the peak from

the midpoint of the time axis of the distribution.
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Mh = Kurtosis, i.e. measure of the peakness of the distri-

bution.

Harley notes that the cumulants except the first, are invariant under

a change of origin and are expressed in the relation:

Exp (C,t + ¢, t2 +....cnﬁ +oeanl)
2 n
=l+Mre+M) £ 4o Mt £] ITI-30
2 n
00
1 .
=00
and may be related to the moment by:
1
B, ™= Wy
c, = M
2 2
III-31
c, = M,
_ a2
c, = M-3M,

He goes on to show that the cumulants for the complete solution of the

linear channel equation are:

2 x
& =35y =

- 76 -



2 F? y0 X .2
¢, = 30-P G T3
[} o
III-32
2 2 Y
4 F F 0,2 X 3
= — - — +_ A\
g = FUS D R GE)
_ 40 11 2 1 _4 Yo‘a X 4
€ = § U~ Q25 F+TFI 53 G557
o o
where Vo = nmean velocity in the steady state
F = Froude number
yo = depth of water in the steady state
S0 = slope of the channel bottom.

These then can be related to the cumulants of the systems that are
' selected to simulate the channel routing of the flood wave. The
cumulants for the two parameter models, the Lag and Route and the Nash,

are presented in Section II-6.

The parameters and conditions that Harley used in the Chan-
nel Routing are as follows

Flow conditions: Reference Discharge = 150.0 cfs.

I

Reference Velocity 4.14126 ft/sec.

6.21189 ft/sec.

Reference Celerity

Il

Reference Depth 36.22086 ft.

D (sox/y) 5.52167
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Channel Parameters: Length = 200  miles.

1.0 ft/mile.

Slope

50.0 {(Chezy).

Friction coefficient

Froude No. 0.12129.

This configuration yields the following cumulation and shape factors

Sy = 47.22126 hrs

S, = 0.120292

S3 = 0.0438913

s, = 0.0265171
Inflow Parameters:

Type = Thomas Wave

max

[qa (0,t) = 2 (1 - cos(2m t/f)]

where £ = wave frequency of recurrence

g max = Maximum flow over t
with

Time to peak = 48 hrs.

Peak discharge = 200 cfs.

Base discharge = 50 cfs.

By relating the shape factors to the cumulants, the parameters of the
linear simulation models can be related to the hydraulic characteristics.

For instance, in the case of the Nash Model we have:

- 78 -



5.68034

~
I

Thus n 8.31309

The same procedure can be used to obtain the parameters for
the Lag and Route Model yielding

K l6.37782

[

30.84344.

il

T

Obviously, one must be careful of placing physical signifi-
cance to these parameters. For instance, in the case of the Nash
parameter, n, which represents the number of linear reservoirs, this
requires a fractional reservoir thus pointing out the discrepancy

between the physical significance and the parameter.

The program used to calculate the output hydrograph by means
of the harmonic analysis may be found in Appendix A-1. Designed for use
on the IBM 370-155 computer system the program uses less than 120K of
core. If the program was compiled (machine Language), and required a
plotted output, the results would be obtained in 2.64 secs. for the Lag

and Route Model and 3.9 secs. for the Nash Model.

The results are plotted in Figure III-7 and III-8. Com-
paring the results obtained by Harley of the linear solution together
with those obtained using the FFT approach, Figure III-7, indicates
the results of the Lag and Route Model to be as good as or better

than Harley's solution, resulting in an RMS error of 0.00638 or better.
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Figure III-8, indicates the results of the Nash Model also resulting

in RMS erxror as good as or better than 0.00089 for Harley's solution.
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Chapter IV

APPLICATION TO A REGIONAL RIVER BASIN

IV-1 Discussion of the Selected Regional

River Basin

The river basin selected for study in this chapter is the
Rio Colorado River Basin in Argentina where water is supplied almost
entirely by the melting snows of the Andes Mountain Range. The
tributaries that drain the catchment area within the Andes are: the
Rio Grande, the Barrancas, the Arroyo Butaco and the Arroyito
Chachaico - Buta Rangquil. The Rio Colorado then, carries these
waters from the Andes (about 72° west longitude) to the Atlantic Ocean
(about 62° west longitude) flowing through the great Patagonian Plain
which consists primarily of sedimentary material, Figure IV-1l, Very
little precipitation occurs in the central region located in La Pampa
province. The mountainous region receives the greatest precipitation,
mostly as snow. The third region is the Eastern Coastal Region in the
province of Buenos Aires which has considerable vegetation due to the

moderate precipitation and temperate climate.

IV-1.1 Geology and Soil Description within

the River Basin

The geology in the head regions of the Rio Colorado is a
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conglomerate of three primary formations, these being tertiary,
cretaceous and jurassic. The tertiary consists of upper continental
deposits, basalts, undifferentiated eruptive rocks, acid and
mesosilicic intrusive facies, lower continental deposits and marine
deposits. The cretaceous era consists of marine deposits, continental
deposits and marine & continental deposits, while the jurassic era
consists of marine & continental deposits and marine deposits. Below
the headwaters of the Rio Colorado the basin dates almost entirely to
the quaternary era consisting of glacial and fluvioglacial continental
deposits, marine deposits, basalts and other undifferentiated volcanic
rocks. There are outcrops of the tertiary, cretaceous and precambrian

eras, also.

The three regions, mountainous, central and eastern may be
.used in segregating the soil types. The mountainous area is predomi-
nately fine sandy soil and due to the lack of organic material, pro-
vides a rapid infiltrating system. The more complex central region
may be divided into three major categories the first being a mantle
of sand as found in the mountainous region, then narrow beds of non-
consolidated river pebbles or gravels and lastly, two horizons with
the upper one consisting of a sandy silt material low in organic
material and therefore being adequately drained, and the lower
comprised of loam and clay or a silty loam which tends to retain the
salts lost from the upper horizon through leaching. The lower horizon

sometimes appears on the surface due to the erosion of the upper. A
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third material which is found in the eastern region of the La Pampa
district is a hard pan material called 'Tosca' which restricts both
infiltration and root passage. The eastern region which has scils
that are suitable for cultivation, has two soil horizons as well, the
upper being a sandy or sandy loam, while the lower is sandy with fine
silts held together by a calcareous cement. With the high rate of
irrigation and moderate infiltration rate in this area, the water
table has risen, thereby increasing the salinity in the upper horizons.

Hard pan material has also been found in this region.

IV-1.2 Hydrologic and Agricultural Discussion

The Rio Colorado begins at an elevation of 4,800 m at the
source of the Rio Grande, and flows to the Atlantic Ocean over a
distance of 750 Kilometers. In the upper reaches, the river averages
a slope of 2 - 0.4 m/km but decreases to an average of 0.4 m/km in
the lower reaches. Due to the sediment transport capacity of the
river and the small slope in the eastern region, a delta was formed.
The average flow at Buta Ranquil is 143 ms/sec. but has a recorded

minimum flow of 44,0 msfsec. and a maximum flow of 678 mafsec..

The subsurface conditions have not been thoroughly studied
within this river basin. The trend in the Buenos Aires region tends
to show that basalt fractures allow the water to enter into a deeper

zone. In the western portion of the La Pampa province a shallow
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bedrock situation produces a high water table that is found to have
an elevation of about 2 meters below the surface. This bedrock
strata is lower in the eastern sector of the province, thus lowering

the water table.

Agriculturally, the region is sparse but there are plans
to develop irrigation sites along the river. Generally, the produc-
tion consists of 70% alfalfa, 19% vegetables and the rest fruit or
other minor crops. The general procedure for irrigation of an
agricultural cultivated area is to provide enough water so as to meet
the consumptive use requirment for the crops as well as the leaching
requirment for the soil. In the Rio Colorado Basin the growing
season spans an eight month period therefore there is a four month
period when there are no water requirements. This procedure presents
‘a cyclical water demand very similar to 1/2 of a sine wave. For the
purpose of this work it is assumed that the leaching demand is met
with the water reaching the phreatic zone in the same distribution

pattern.

IV-2 Conceptual Discussion of a Regional

Groundwater Routing Model

With the background having been discussed in the above
sections, the logic behind a regional groundwater model may be dis-

cussed. There are three areas of interest in the groundwater area:
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a)

b)

c)

A quick responding system which exists in the upper
root zone where a condition of interflow may occur.
A rapidly responding system representative of the
shallow zone in the soil structure, resulting from
a drainage system in an irrigation site or as a
natural phenomena.

A slowly responding system that exists in the deep
reaches of the soil structure (deep water zone),
which may represent the flow of groundwater in an
aquifer laterally to a river or parallel to the
river interacting with the river at some distance
further down stream. The conceptual logic here may
be seen in Figure IV-2, which is a profile of the
eastern portion of the basin. Here a loss to the
river resulting from a zone of higher permeability,
over which the river flows, will, possibly, provide
additional groundwater flow in a direction parallel
to or diverging from the river due to the geological
structure of the soil. Or a groundwater flow may
result in an old river bed after that river was
diverted for other purposes or possibly as a result
of a change in the bedrock strata. Figure IV-1, indi-
cates a tributary that no longer provides flow to
the Rio Colorado due to a diversion in an upstream

province.
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A conceptual schematic of a groundwater routing model for
an irrigation site is shown in Figure IV-3, which also indicates some

typical linear model for each process.

IV-3 Model Development

The model which will be developed in this section is similar
to one suggested by Diskin [1964], where he distributed his input into
two parallel Nash chain series thus providing a more flexible system

response. The block diagram used in this model is shown in Figure IV-4.

IV-3.1 General Linear Groundwater Routing Model

It was found in Chapter III that the use of the Fast Fourier
Transform in Harmonic Analysis for convoluting an input with the system
response to a delta function was not only fast but also very accurate
in representing an output hydrograph. The parameters used for the
system response in Chapter III were derived through the use of moments

and the general governing equations for open channel flow.

In a groundwater regime, there are many complex processes
that can never be completely understood either by reason of mathemat-
ical theory or by the many unknowns in the subsurface zones such as
cracks, fissures, non-homogeneous and non-isotopic conditions. Thus
a method was needed that would be fast and represent, to the best

available means, the response of such a subsystem. Considerable work
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R, Re Rs
Q, (1) Qp(t)
I(t) Inflow to Groundwater System
R, Slow Response System for Flow Parallel to
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Q,(t) Outflow at Some Point Downstream
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Drainage, Laterally at the River

Figure Iv-4

Block Diagram of a Regional Groundwater Routing Model
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has been done in understanding flow through porous media either
theoretically or using an empirical systems approach. The Dupuit
approximation and Darcy's Law have both been used in finite difference
schemes to determine what might be expected in groundwater movement.
Dooge [1960], used a linear system approach to develop coefficients
that could be used to represent flow into and out of a river system.
This was discussed in Section II-6, Parameter Estimation. As this
uses the requirement of constant recharge over the time period, it is
felt that this is too restrictive. Therefore, in an attempt to avoid
the constant coefficient concept as presented by Dooge and O'Donnell
(discussed in Section II-6), a procedure similar to that used by
Harley [1967] for open channel flow will be considered here for ground-

water flow.

To represent the various processes that might take place,
as in a shallow water table with flow to drainage ditches as well as
a deeper system that would provide for flow to a river, lake or ocean,
we must be able to use various system responses to the same delta
function. Conceptually, this might require the three known system
responses, the Nash, Lag and Route and Linear Reservoir Models, to act
in series, in parallel or in a complex configuration of both. With an
increasing complexity of the system response, in order to prevent a
decrease in efficiency of the program mentioned in Chapter III, a

procedure will be used to conserve the time of computation. As an
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example which will be considered later, a Nash Model is used in series
with a Lag and Route Model. We would expect the time required for com-

putation to be 4.6 seconds plus 3.9 seconds or a total of 8.5 secends,
thus reaching an infeasible point in cost control due to a large

requirement for computer time.

Consider the prospect of manipulating the inputs and system
responses in the frequency domain for the entire record of interest
before using the Fast Fourier Transform, F.F.T., program to re-enter

the time domain.

It was shown in Chapter III that the frequency response to

a Dirac delta function for a linear reservoir is simply

1

H (W) = THuK -1
where K = linear reservoir time constant
w = angular velocity
3 = -1
Since the Fourier Transform can be obtained by the relation:
[o0]
1 -jwt
F (w)y = 2_TT e f(t) dt Iv=-2
o

then the frequency response for the Lag and Route Model is simply
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H (W) = exp (-jwt) / (1 + jwkK) v-3

By the same procedure the Fourier transform for the Nash Model is:

H(w) = (1 + szz)-n/2 exp (=jn tanml (WK)) Iv-4

Since the Nash Model is a series of n linear reservoirs, let us put
this transform into a more suitable form. The frequency transform

for a Nash Model may be represented as:

1 n
l+jmK) 1é=3

H (w) = (

or more illustratively by:

_ 1 1 1 . 1 _
Edwy = (1+jw1<) (1+jw1<) (1+ij’ e (1+jw1<) V-6
1 2 3 n

This is equally applicable to unequal linear reservoirs which would

be represented by:

H (W) = (——) (———) ..... (lij
J n

1+jwK;’ ' 1+jWK, ) Lie?

The important point shown above is that if we have a series
of individual components that represent the system all we need to do is

simply multiply the Fourier Transforms together to get the transform
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of the whole system.

If we have a situation where the system response is to be
represented by parallel responses instead of in series, as shown in
Figure IV-5 we know from Chapter III, that the Fourier Transform for
the outputs,Q, can be determined in the frequency domain by multi-
plying the input transform, I(w), with the response transform, H(w),

or:

O1(w) = Hi(w) * I;(w)
Iv-8
Q(w) = Ha(w) « Iz(w)
The inverse Fourier Transforms are given by:
Qo
q, (t) = J 0 ) e IV ay
o
Iv-9
q, () = I 0, @) e Ut ay
o
but as shown by Figure IV-5
Q (&) = q,(t) + qz(t)
= IV-10
= J Q + 9, e ¥t au

o
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q; (1) Outflow Rate from System i
Q(t) Total Qutflow
Figure IV-5

Parallel Systems
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therefore:

0 W = 9 W +Q,w Iv-11

Thus by merely adding the Fourier Transforms of the Output, Q, the
total output hydrograph in the fregquency domain can be obtained.
Therefore, with only one operation it is possible to return the total

output hydrograph to the time domain.

Keeping these concepts in mind and returning to the pro-
gram discussed in Chapter III, a relatively simple and efficient model
may be generated to determine an output hydrograph to a groundwater

routing model.

The input to such a model may be whatever one desires to
represent the inflow to a groundwater system, using possibly a dif-
ferent input for each leg of a parallel system or one input segregated,

by weights, for each leg of the system.

There is a restriction however to the use of the F.F.T.
program (see Appendix A-2), that is, as discussed in Chapter III, the
number of points that enter the transform program is the same number
as the points that are returned from the program. Therefore, it is
desirable to use the total time period initially. Then by simply
adding zeros to the shorter 'legs', the time period for each parallel

segment, can be brought up to the necessary time period. There are
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two important considerations to be looked at here, the time period to
use and the Nyquist frequency, wo' that must be used. As indicated

in Chapter III, these are both dependent on the system 'lag'.

The system lag must be considered by the three possible
conditions, whether it be a series system, a parallel system or a
combination system. The lag as shown in the last chapter is re-

presented by the first moment about the origin, or for the three cases

are:
Linear Reservoir = KLR
Lag and Route = T + KL Iv-12
Nash =
és nKN

Thus if all three models were to be in series, the system

lag, Xs would be represented by:

KS = nKN + (T + KL) + KLR Iv-13

However, if the system consists of parallel members then the greatest

system lag Ks would be used to give the largest time period, or

K = Max (Ks) Iv-14
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In Chapter III, a method was developed that determined the
minimum response time period for which 98% of the area under the
distribution (or response) curve was assured. This method was based
on the linear reservoir or the exponential distribution. Since we are
now considering the Nash Model, the procedure for determining the time
period must be altered. The significant point in such a determination
was the integration of the response function. For the exponential
distribution this was a simple task. However, the Nash Model being a
form of the gamma distribution, proved to be more complex - not so
much from the theoretical standpoint as the fact that computationally,
the time would increase. A small program was generated to test the
significance of such a computational scheme for use within the program.
The test program and the results may be found in Appendix B-1. It was
found that conservative results would be cbtained for the time period
of the system response if the lag (first moment) of the Nash Model, nkK,
was used in lieu of K as used in the computatiocnal technique for the
Linear Reservoir case. Therefpre it was unnecessary to change the pro-
cedure for determining the time period of the response of the system. |
Additionally, this required the determination of the greatest 'lag' in
a gseries response system, By using the greatest 'lag' of a series
system we were assured that the response time period would meet the re-
quirements of the entire model and vet not prove to be extravangant

on the time necessary to execute the model.
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The second requirement is that the folding frequency, or
Nygquist frequency, is great enough to retain most of the energy of the
system in the frequency domain. As discussed in Chapter III, by using
the Nyquist frequency for a linear reservoir, i.e. n = 1, most fre-
quency requirements would be met for any of the three types of models.
This was shown to be true by Figure III-5. Also by acknowledging the
fact that as the number of reservoirs in series increase there is an
increased damping mechanism which reduces the effect of the higher
frequencies then a conservative estimate would be obtained if the
Nyquist frequency were evaluated in the same manner as in the Linear

Reservoir Model.

Three parameters that are used in the Groundwater Routing
Model need to be discussed. These are the translational lag, T, the
effects of baseflow on a hydrograph, and the spacial parameter, WDTH.
For the special configuration, as indicated by Figure IV-4, implemented
into this model, the Lagged Nash Model was used thus requiring the use
of a translational lag. As discussed in Section II-3, the transla-
tional lag will pass all frequencies. Therefore, no effect is pro-
duced on the outflow hydrograph except a shift in time. The model
accounts for these lags by shifting the time array by the lag and
adjusting the points to each system accordingly. However, it is the
input hydrographs which are shifted by this time lag while in the time

domain. If this were not done in the time domain, it would not be
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possible to sum two parallel legs that had different translational
lags while in the frequency mode. As mentioned above no error is
introduced by this procedure. The second parameter indicates a base-
flow in the system. Normally this baseflow would be removed from the
input hydrograph and added to the outflow. However, if the parameter
estimation technique discussed in Section II-7 is used, this procedure
requires the use of sloping bedrock and, in turn, has an advective
velocity term incorporated. Therefore, only in the case where the
parameters are input individually, may the baseflow parameter be
utilized. The spacial parameter, WDTH, is used to transform the unit
flow into total flow for the area considered. Therefore it represents

the area over which the input exists.

The program listing for the Groundwater Routing Model may be
found in Appendix A-3. A restriction in the model requires that all
'series' systems be computed by type of response model, i.e., all Nash
response models will be computed before the next response model is

considered in that series.

IV-3.1.1 Discussion of the Shallow Zone System

Implemented into the Model

There is a theoretical problem encountered in the drainage
process. The parameters used for the routing of groundwater laterally

to the river as well as parallel to the river were determined by a
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procedure derived from a Dirac delta function. An irrigation area
requires that water be applied over a large surface with respect to the
travel distance to the drainage canals, thus extending the assumption
beyond its practical limit. Therefore a finite difference scheme was
selected to assist in deriving the parameters required by the Linear

Routing Model.

Iv-3.1l.1l.1 Drainage Spacing

The Bureau of Reclamation (R.D. Glover [1967]), developed an
empirical relationship for relating the soil characteristics with the
drainage canal spacing. Equation IV-15, represents this relationship,
which was used in analyzing the irrigation sites in the Rio Colorado

basin to determine the drainage canal spacing, L.

2T K ¥ DEPTH] %
P

Max
L = Iv-15
P
ERCMax
where KP = Permeability
YMax = Max lens height allowed above drainsge ditch
DEPTH = Depth to botton of drainage ditch from ground
surface
PERCMax = Maximum percolated water over period of interest

By using this relationship and the available soil characteristics
within the Rio Colorado basin, a mean drainage spacing of 50 meters

was calculated and used with the finite difference scheme to generate
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an outflow hydrograph.

This hydrograph was based on an input repre-

sentative of the mean leaching requirements in the basin and a

permeability of 47 meters/month.

Iv-3.1.1.2 Finite Difference Scheme

The finite difference scheme uses Darcy's Law in conjunction

with the continuity of flow equation. The resulting finite difference

equation is given by Equation IV-16.

+
H.t At _

J
where a

ij

Sc.
J

i

Il

11t

t
At a, . At Q.
O 5 R L I IV-16
. Sc, A, i Sc. A,
1st by | J 3

Specific permeability (L2/1)

(Flow area x Permeability) /L
Storage Ceoefficient, cell j (L/L)
Flow input into cell j (L/T)

G.W. Elevation initially, cell i (L)
G.W. Elevation initially, cell j (L)
Final G.W. Elevation (L)

Index of cell adjacent to cell j
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The flow across a boundary cell may similarly be determined to be:

QF (3) a,. (HT(iej,j) - HT(3)) Iv-17

1]

I
~1

i€j

where QF (3)

I

Flow into boundary cell j

N

|

Number of cells adjacent to boundary

Figure IV-6, shows the physical interpretation of the parameters

listed above.

A program was written to solve the simultaneous differential
equations that are set up in matrix notation with the use of equation
IV-16. The procedure used by the program in solving the simultaneous
equations is similar to the Gauss-Jordan method of elimination. The
time of execution is extremely fast for solving a matrix with a small
numbers of nodes, however, this time increases exponentially with an
increase in the number of nodes. Elinger [1972] uses this method to

study the entire irrigation process, inclusive of a salinity analysis.

IV-3.1.1.3 Parameter Estimation with the Use of the

Finite Difference Scheme

The configuration has two boundary cells providing the limits
for three nodes used to represent the 50 meters drainage spacing. It
was found that a steady state flow condition would be established
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Figure IV-6

Physical Schematic of the Finite Difference Scheme
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after running the model for three years, or three irrigation cycles.
A typical hydrograph was extracted from this steady state condition
which was used, along with the Method of Moments, for estimating the
parameters required by the Linear Groundwater Routing Model. Fig-
ures IV-7, 8, and 9, show the relationship between the parameters of
the Nash and Lagged Nash models for the number of single reservoirs,
n, the lag to a single reservoir, K, and the translational lag, T,
used in the Lagged Nash model, respectively. These parameters may be
estimated from the figures and serve as input to the Linear Routing
Model, if the conditions are such that the permeability is about

47 m/month, the drainage canals are about 3 meters deep and spaced
about 50 meters. In this derivation it was assumed that the bedrock

slope produced little or no effect to the results.

IV-4 Linear Groundwater Routing

Model Discussion

Since the parameter estimation procedure was developed with the
assumption that a delta function serve as the forcing function, con-
sideration must be given to the actual input to the system. If the
input area is small with respect to the distance of flow to the river,
then the errors of assumption in the derivation are acceptable.
However, if the area of application is large, e.g., a large irrigation
site or rainfall distributed over a wide area, with respect to the

lateral distance from the river, then significant errors are intro-
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duced and a re-derivation under more applicable assumptions is desir-
able. For this report, it is assumed that the assumptions are indeed

met.

So far the discussion has concerned only positive outflows
from the aquifer to the river. Unless a condition exists that would
never allow the reverse to take place, a rare situation, the more
common circunstances would require a negative outflow due to a rising
river stage or evapotranspiration. When an irrigation site is con-
sidered, normally drainage ditches are used to allow most of the
leached water to return to the river via surface flows. The drainage
ditches in turn restrict the height reached by the water table. Also,
Philips [1957] shows that for bare dry soil (light clay) the evapo-
ration loss to the water table, in terms of free water, will be about
1 centimeter per year when the water table is at a depth of 1.5 to 2.0
meters. Therefore the most important consideration to make, when
analysing water losses to the water table would be the effects of
evapotranspiration which might set up a negative recharge condition.
This would depend on the type of crop with its depth of influence and
consumptive use requirements. In the case of the Rio Colorado in
Argentina the normal plant growth and thus the evapotranspiration is
relatively small except in the irrigation sites. By considering the
consumptive use of the crops within each site and the irrigation water
applied, the leaching water may be determined which is, essentially,

the water that will percolate to the groundwater system.
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The other condition mentioned is a rise in the river stage
that will increase the 'bank storage'. The negative outflow caused by
such a situation could be determined by checking the river stage at
each time step. If the stage is above the water table, then change
the sign of the system response and the depth of the saturated flow,
thus allowing flow to enter the groundwater zone. Obviously, engine-

ering judgement plays a major factor in making a change such as this.

Iv-4.1 Model Results

The model was used to analyse a situation when a single irri-
gation area lies in relatively close proximity to a stream reach. The
tests are divided into two segments:

a) * the prediction of the input to the drainage ditches

resulting from applied irrigation water and

b) the prediction of the discharge to the river as a result

of this same irrigation water.

In the simulation of the drainage to the ditches a standard
~drainage ditch spacing of 50 meters was assumed, while for the com-
putation of the seepage from the total area to the river a number of
situations were examined. These ranged from a 200 square meter site
at distances of 100 to 500 meters from the river to a 1500 meters

square area located 6750 meters from the river.

The standard input for most runs is what will be called the
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three year irrigation cycle. This cycle represents the leached irri-
gation water which is assumed to reach the groundwater table and
therefore represent the forcing function to the groundwater system.
This was discussed, to some degree, in Section IV-3.1.1. A one year
input cycle represented by a depth of water applied to an area is shown

in Table IV-1.

The drainage system, represented by the block diagram in Fig-
ure IV-10, was first tested with this three year irrigation cycle.
The parameters were determined by the procedure discussed in Section
IV-3.1.1, and are based on the Lagged Nash system response model.

These parameters, as shown below:

n = 0.7841
K = 3.7690 months Iv-18
T = 0.5483 months

indicate that a fraction of one linear reservoir with a mean, or lag,
of 3.769 months together with a translational lag of 0.5483 months would
represent the drainage system under study. The input with the resulting

outflow hydrograph for this system is shown in Figure IV-11.

For comparison, the outflow hydrograph from the Linear Ground-
water Routing Model, LGRM, is related to the comparable hydrograph
generated by the finite difference scheme. Figure IV-12 presents the

typical cycle for the finite difference scheme and the LGRM.
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Table IV-1

ONE YEAR OF THE IRRIGATION INPUT CYCLE

Month Water Input (m) Over Area
1 (September) 0.1595
2 0.1806
3 0.2446
4 0.2711
5 0.2854
6 0.2569
7 0.2107
8 0.1804
9 0.0

10 0.0
1 - 0.0
12 0.0
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Figure IV-10

Block Diagram of the Drainage System
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Outflow Hydrograph to Drainage Using Nash System Response
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Notice the discrepancy at the peakconfirming the discussion in Section
II-6 which states that the greatest error results at the extremities
when the parameters are generated by the Method of Moments. This
could possibly be reduced if the fourth moment, the Kurtosis, was used
in conjunction with a four parameter model. The typical cycles are
derived from a series of cycles which are approximately at a steady
state condition by removing the effects of the adjacent cycles. Fig-
ure IV-13 compares these same hydrograph but represents the third and
final cycle of the output hydrograph. The effect of the adjacent cycle

is apparent at the origin.

As discussed in Chapter III, the model is based on an ape-
riodic input. However, all the inputs used in the model are represented
by a three cycle series. In addition, irrigation sites will receive
water in a repeated pattern for perpetuity, unless changes are made to
the irrigation policy. Because of these two reasons, it might prove
beneficial to return to the concept of a periodic signal. The ape-
riodic signal was maintained by adding zeros (the length of the
response signal) to the input signal. This procedure prevents the
system from being effected by adjacent signals. Return to a periodic
signal should simply require the removal of those zeros. Figure IV-14
indicates the result of doing so when the same input is applied to an
area with the same parameters that are representative of the drainage
system. Notice that each cycle is identical to the next. By com-

paring Figures IV-14 with IV-13, we can see that, over the length of

- 118 -



(m3/mo.)

Q ()

100

Input: 3 year Irrigation Cycle
Permeability: 20 m/mo.
n=0.784I17
K= 3.76874 mo.
7=0.5483 mo.

- 0--- Model Outflow Hydrograph
e— Finite Difference Scheme Hydrograph

2001 .
/"3‘
£ \
\
\

by

‘\

\\
‘e
\X.
‘Bho
2 | N - %,-3"‘—-.:“3

10 20

Time (months)

Figure 1IV-13

Final Cycle of a Three Year Input to the

Linear Routing Model and Finite Difference Scheme

- 119 -



(m3/mo.)

Q(f)

200

160

120

80

40

System |- Drainage Process
Periodic Signal
Parameters:
n=0.7841,K=3.769, 7=0.5483
Time of Execution = 2.4 seconds

.

i .
[0] 20 30
Time (months)
Figure IV-14

Response of the Drainage System to a Periodic Input

- 120 -



the input period the hydrographs are identical; an interesting as well
as useful result. The importance of this capability is readily ap-
preciated especially when steady state or periodic responses to slowly

responding systems are of interest.

The flexibility incorporated into the model for the system
response is significant in representing a more realistic situation.
In this case, as reflected in Figure IV-15, one chain of Nash elements
would represent an interflow process while a parallel chain represents
the same drainage process as presented in the above paragraphs. For
this example 60% of the inflow is assumed to go to interflow while the
remaining 40% percolates to a deeper zone. This was taken to be a
reasonable assumption based on the soil and hydraulic conditions of the
area. The outflow hydrograph resulting from the two inputs and
system responses is shown in Figure IV~16. The system parameters shown
below are selected to indicate the effect of an actual situation. The
drainage parameters provide the same system lag as in previous para-
graphs but with the translational lag effect reduced to zero. The
interflow process parameters were chosen to yield a more rapidly re~

sponding system. These parameters are:

Drainage Process

n = 0.8
K = 4.73929
T = 0.0

= 12% =



I(1)

0.6 I (t) 04 I(t)

(Interflow) Nash Nash | (Drainage)

Q (1)

Figure IV-15

Block Diagram of a Parallel Nash System Response Representing

and Interflow and Drainage Process
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Interflow Process

n = 1.0
K = 1.5
T = 0.0

The effect of this combination of flows (Figure IV-17) becomes ap-
parent when this outflow hydrograph is plotted concurrently with the
drainage system hydrograph shown in Figure IV-11. Since the interflow
process dominates the combined system the result is as expected, i.e.,
the peak is increased and occurs earlier than that indicated in the
drainage process (Figure IV-II). If the lag of the combined processes
was calculated it would result in a system lag of 2.08 months. Since
the lag of the drainage process above is 3.50 months, a difference of
about 1.4 months is expected. A lag of this magnitude is clearly

illustrated in Figure IV-17.

Figures IV-18 and 19 show the results of two other system
configurations. Figure IV-18 represents the outflow hydrograph when a
block input is convoluted with a system response of Nash and Lag and
Route Models in series. As previously mentioned (Section IV-3.1) the
execution time required to convolute an input with a Nash model in
series with a Lag and Route model might be expected to be 8.5 seconds.
The result of this model with that exact system response was executed
in 3.42 seconds, inclusive of the output requirements and the plotting

routine which is a substantial savings. Figure IV-19 represents a
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parallel system using a Nash model and a Linear Reservoir model for

the response characteristics with the parameters indicated.

The same three year irrigation cycle was further used as an
input to this system, representing discharge from the site back to the
river. This system is a very slowly responding one and its behavior
contrasts sharply with the rapid response systems described above.
Figures IV-20 and 21 will serve to illustrate the results. The input
variables again represent a sampling of data obtained from the Rio
Colorado river basin. The system represents the lateral flow to the
river from a 1500 meters square irrigation area located about 6750
meters from the river. Figure IV-20 is the resulting hydrograph for
a groundwater aguifer which has a bedrock slope of .01 m/m. This
slope plays a significant part in determining the parameters (refer to
SectionIV-3.1l) as indicated by comparison with Figure IV-21 which is
the outflow hydrograph to an aquifer with a bedrock slope of .001 m/m.
One important fact must be noted here - that of the magnitude of the
time step. In both cases the time step greatly exceeds that of the
input time period which means that the result indicates merely a
transient response of a pulsed input. Notice that the outflow hydro-
graph in the lesser sloped system closely resembles the linear reser-
voir response. This verifies the comments of ggggg_[l960] who states
that the translational effect is so small in a groundwater system that
in effect, the system may be represented by a storage reservoir. With

such a large time step it is not possible to determine the periodic
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signal response.

The effectiveness of the 'medium' slowly responding system
system cannot be demonstrated when such great travel distances are
considered. Therefore, shorter distances will be used in order to
present the significance of the theoretical techniques in use. As
mentioned earlier, the slope is a significant parameter in representing
the system response. Figure IV-2l1 shows the system outflow approaching
a Linear Reservoir response when the slope was .00l m/m for a distance
of 6750 meters. However, when this travel distance is reduced to
100 meters the outflow hydrograph responds very rapidly. The number
of points is small which prevents an exact analysis of this hydrograph.
This technique does provide a decreasingly accurate result as the slope
approaches zero. A slope of .05 m/m was selected to test the system;
the slope though relatively small, is sufficient to demonstrate the
effects of travel distance. Figures IV-22, 23 and 24 exhibit the
damping effect of travel distance in the system on a cyclical input.

In the case of the two parameters, the number of reservoirs, n, in-
crease linearly from 0.370 to 1.852, while the translational lag, T,
varies from 3.54 months to 17.73 months. The damping effect may be
understood more clearly by considering the system lag, nK. Notice in
Figure IV-22 that this lag amounts to 7.09 months, which is much less
than one input cycle. As expected the response indicates three clear
cycles which rapidly approach a steady state condition. Figure IV-25,
shows the effects of a periodic signal indicating that the aperiodic
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Outflow Hydrograph of a Three Cycle Irrigation Input at 100 meters
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signal of Figure IV-22 does indeed reach a steady state. In Figure
IV-23 the system lag increases to 21.3 months which means that each
input cycle will produce considerable effect on the following year.
Thus, the figure indicates a much greater transient effect on the
system for the same input period. Finally we see that a system lag of
-35.5 months in Figure IV-24 almost exceeds the input time period. In
turn the damping effect of the system on the input has all but reduced
the cyclical input to that of a simple transient. Figure IV-26 indi-
cates that if the same input were extended to perpetuity the system would
hardly be effected by the input configuration - an interesting result.
From Figure IV-20 we can see that as the system lag exceeds the input
time pericd, the transient result is relatively uneffected by the

shape of the input signal.

The third basic system of flow parallel to the river (See
Section IV-3.1) is not presented here since its behavior is expected
to be similar to that of the flow to the river but with longer dis-
tances and lesser bedrock slopes. Therefore it was not felt neces-

sary to include it within this discussion.

The program was run on an I.B.M. 370/155 computer system. The

core storage requirement for the program is about 120K.

We have seen that the Groundwater Routing Model is capable of
providing results to a periodic or an aperiodic signal using highly

efficient techniques. Such a flexible, efficient model as this could

- 136 -



0.24

0.20

0.6

0.12

0.08

Q(t) (x10°m¥mo.)

0.04

Input: Periodic Irrigation Cycle
Area/Weight = 200 m?2
Slope = 0.05 m/m
Distance to River = 500 m

Parameters:
n = 1.852
K =19.150 months
Z =|7.730 months
at=3.89 months

A 1
10 20 30 40
Time (months)

Figure IV-26

Response of a Periodic Signal at 500 meters

- 137 -



provide the Engineer or Manager with a low cost model capable of re-

presenting a wide variation of groundwater problems.
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Chapter V

CONCLUDING REMARKS

V-1 Summary

Chapter II summarized the developments within the field of
linear systems as well as the work carried out in groundwater flow

modeling.

Chapter III developed an efficient technique of convolution
and compared the results to those obtained by a linearized solution of

the complete equation for open channel flow.

Chapter IV discussed.a river basin in Argentina which was
used as an example of application of a groundwater routing model to an
actual basin. A model was developed using a parameter estimation
technique of the system response based on the governing equation for

groundwater flow. The results of this model were discussed.

V-2 Conclusions

The groundwater routing model discussed in Chapter IV has a
fast computational scheme which can be utilized to analyze a ground-
water system. It is a highly flexible technique, capable of any system

response desirable with little variation in computer time. As the model
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represents an approximation to a groundwater system it is, at best,
to be used as a tool to understanding the sensitivity of the system

being considered.

As in any technique being developed, the procedure for the
routing of groundwater has a number of benefits as well as disadvan=-
tages to other methods being used to accomplish the same ends. The
benefits for such a system are:

a) the convolution technique is highly efficient

b) the cost of implementation is small

c) any response configuration may be utilized to
represent the desired groundwater aquifef
system

d) the input may be of any design, whether it be a
periodic or aperiodic signal

e) in considering the longer time periods necessary
when analysing slowly responding systems, such as
very long aquifers, the procedure automatically
adjusts the time increment to the minimum level of
interest to the system which also yields benefits
in terms of inexpensive analysis of that ground-

water system.

The problem areas include:

a) a technique is required to determine the weight
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b)

c)

d)

distribution on the input to each process being
considered

'parallel' flows which represent two processes,
such as a drainage system and a deep water zone,
have a wide variance in their computed time steps.
For this reason, if it is desired to combine these
flows, a separate procedure is required to do so
the parameter estimation technique for the drainage
system of the routing meodel requires the establish-~
ment of parameters based on (1) a nomograph given
similar conditions to previously analyzed situ-
ations; (2) using known data and the Method of
Moments; or (3) the use of a finite difference
scheme, with the Method of Moments, to develop

the desired parameters. The accuracy of such esti-
mations has not been determined

the parameter estimation technique for a deep water
zone process requires the input to be over a small
area with respect to the travel distance. Addition-
ally it is based on an advective velocity which is
dependent of the slope of the bedrock resulting in
problems to this procedure as the slope approaches

Zero.
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V-3 Future Work

To be brief, the work required in developing linear ground-

water models in the future might include the following:

a)

b)

c)

Incorporate the lateral flow to the river with a
linear stream routing scheme, as in the M.I.T.
catchment model, in order to determine the total
groundwater outflow hydrograph at some point
downstream.

Develop a technique for distributing the flow to
the various processes represented by the system
responses. This could include a linear reser-
voir or a similar response model to represent the
infiltration process.

Improve the parameter estimation process and
determine the sensitivities of the parameters when

data is available for doing so.
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APPENDIX A

Computer Programs

A-1 MODEL GENERATED FOR HARMONIC ANALYSIS
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IFlLeoT «NENPUZ) XINSTO(LI=XINPUZIL)

539 MRITECLRLTEsSIZ IXINSTUIL) »TINPUZIL)

502 FURMAT (' *yiUXe2(EL13.643X)4+ 10X, EL3.6)

oo

S0 NUMPER JF PTS IN QUIPJUl IS (TINPU2(INIPUZ)+TRESMAN/DELT)

503 FORMATL® ENPUT FUNCTIOn T) BE CCNVOLUTED®4//4T1)s*FUNC VALUE',T5),

L'TiME" )

UBTAIN FURmARU TRANSFOKM JF INPUT USING FOURT

CALL FUURTEXINPUZ4NyLy=LsusWORK)

EVALUATE ANALYI [CAL THaNSFURM UF RESPONSE FUNCTION

Dw={2#P1)/ (N®*DELT)

(2 =W o N o B =8 o ¥ o1

Nl=(N/LI+ L
UM=u.

UML=u.
JI=CMPLAL Y. pda)
DO & J=ina

c

[+ ANALYTILAL AESPONSE TRAN>FURMS FOR LINEAR RESERVOIR,
[ MODEL, ANU NASH MODEL ReSPECTIVELY
c
1

GU Tu (A00Jesdd5s L) enNd
100 FTlJI=dla/LMPLALL OM))
GU Tu 50%

V0 FIRT HALF J4F TRANSFUrM, AT LAST PT SET IMAG. PART=0

LAG ANU RCUTE
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FRVE

11l
595

+
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JRVE]

134

lul

(- Kool o

35

v

[l o ol

13J
15

4¢
41

“%

FTUJI=CLAPL=JL*CML*LAG)/ (L+ (J12CM})
LU Tu sub
FTLg)=(aeInmel ) on(—NRES/ 2) #CEXP(—J1*NRES*ATAN(OM))
NCK=MUDIN,Z )

IFiNCRawT sy <ANDaJLEQ.NL} GO TO &
IF(JeNEaNL) wu TO &

FTLl=KeALLFTLdD)

FTEJ)=LMPLALFTL0.)

iFldebwsil) wu TO 7

UM L=UMLl+Uum

JM=JMLER

SECUND HALF UF TRANSFGRM=CUMJUGATE TDENTITY OF 1ST HALF
IF thkauTaul O TO 104

wl T3 Lue

NZ=nild

L=Nl+iL

GU Tu Lyl

LN+l

NZ=Nl-1

Du B J=Len

FTLd=rTing)

FIZ=REALLFTIJI)

tT3=AlMALLFTEd) )
FILJI=CMPLALFTZ,—FT3)

MULTIPLY TRANSFORM FUNCT ILNS

NZ=Ng=41

Ud 33 L=i.N

uwulTPUT (L) =k inPuZ(LI*FTL)

CuNi i NuE

wklTeliniTesleu)

FURMAT ("2" 3 T2u, *OUTPUT FUNCTICN,INVERSE OF TRANSFORM MULTIPLICATIO
INY 74D

INVERSE [RANSFURM OF DUTPUT HYDROGRAPH

CALL FUURTUUJTPUT yNy Lele LawORK)

WO 13Jd Jd=Len

GUTPUT (ad=aulPuTld) /N

UUTPuT Ld)=JulPuTL U ) #BFL

WRITEd i Teol22 J0OUTPUT(JE T INPL2(J)
FURMATL® "3 T4u, 2{3X,EL3.0) 9 10XsEL3.6)

AREAU In TEST HYDROGRAPH AND TIME ARRAY TO COMPARE TO COMPUTED HYDROGRAPH

0O 4L L=Ledv

kEAU ([HcAUs92) | INPU3LL)
FURMAT{FLU.w)

CONTInUE

00 43 I=lsov
REAULLIREAJ #4) AINPU3LT)
FURMAT(FLJeJ}

43

sb
45

54

[N s N o NV ]
e

53
52
au

54
55

acoe
-

CONTI NUE

00 45 l=l43u
REAULIREAU 40 )X INPUSLT)
FORMATLFLIDI

CONT INUC

INP=30

WRITELIRLTE 500

FURMAT {*4 "y * INFERPOLATED KcSULTS FRCM CUMPLETE SOLUTICN(TIME,FUNC
1174}

DU 51 I=1slnp
AINCL ) =XInNPUS(L)
CONTLNUE

INTERPULATE TEST HYDROuHAPH TO BE CCMPATARLE WITH COMPUTED HYDROGRAPH
TEME STEPS

DU 52 E=lyN

DEL=TENPUZCL )

CALL LNTRPLULLINP s TINPU3sALN DEL,YINTF,2)
WRITE(IRLTE23)DELyYINTP

FORMATL® %4 hufy 20EL3.643540)

YINSTJULL) =vialy

CUNTINUE

U0 80 J=LeN

XINPUSLII=YINSTOLJI)

DG 549 [=lelng

Al d=XInPUsld }

CONTENUC

WRITELIRITEe25)

FURMAT {*1 %, *INTERPOLATEU RESULTS FOR HARLEY SULUTIONITIME,FUNC)I'/Z/
1)

D0 b6 [=1«N

DEL=TINPJZLL)

CALL INTHPLULNY yTINPUIZALNDELy YINTF, 2}
WRITE(IRITE+23)DEL YINTP
YInsTutld=yLalpP

CUNTLNUE

DO B4 J=ln

ALNPURl D} =YInaTOL)

PLUTTCH

TIFLECR L)=TETL2
TITLelbecinTiT22
TITLE(L9335T1Ta2
TITLE G Lo4)=T1T42
TiTekidel )=l iT02
TiThelcodi=TiTo2
TITLelgsai=TiTI2
TiTiEldob)=TiTh2
TiTee(3pl)=TITLIE
TiITLkd3sci=TATLE
TiTLcldeai=TITIE
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915
94y

%50

TITLE S y9d=TLT4E
TITLe( 4L d=TITLE

TITLelee2)=TLT0E

TITLed4y3)=TiToE

TITLEL4s4)=TIT4E

XlnPus= HARLEY SULUTION...XTNPU3= CCMPLETE SOLUTION
U0 Yl J=len

NUl4yd b= INPUBLJ)

NOG3ad)=XTNPUL J)

WUy Jd=REALIUJTPUT(J))

SUCLyJ) =ReALIXLNSTOCI )

WRIiTc(IRITE,949)

FORMAT ('L

CALL GPLOII&J.I[NPUZ-JUv*uNl)--TITLE'ISHJ
FURMAT L' %, 502X,15))

LALL EalT

N
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cPpPCCcOCOCCOO N COC OO OO C DO CC O C O OO OO C OO C OO0

THE CJULEY-TURLY FAST FUJKEIER TRANSFORM IN USASIT BASIC FORTRAN
TRANSFUKMIJLodZraaal = SUMICATA(T Ly (20 caad®cWi®x®{(I1-1)%(J1-1))
W2 ([2-10%(J2=1) D*auad,y
SWRTU=LI/NNLLI s ETCa  TrlerE IS NO LIMIT ON THE DIMENSIONALITY
(NJMGBER UF >uBSCRIPTS) UF THE DATA ARRAY. IF AN INVERSE
WHERE L1 ANU JL RUN FRUM L TC NA(L) AND WI=EXP (ISIGN®2%p]*
THANSFURM (L5IuN=+1) IS5 PEAFORMED UPON AN ARRAY OF TRANSFORMED
CI5buN==L) UATA, THE OREulNAL CATA wWILL REAPPEAR,
MULTIPLIEU B8Y wN{L)®NN(Z2)*... THE ARRAY OF INPUT DATA MAY RE
REAL JR LUMPLEX, AT THt PRUGRAMMERS OPTION, WITH A SAVING OF
UP Tu FURTY PER CENT IN RUNNING TIME FCR REAL OVER COMPLEX.
{FUK FASTEST TRANSFORM UF REAL CATA, NN(l) SHOULD BE EVEN.)
THE THANSFIiM VALUES ARE ALWAYS COMFLEX, AND ARE RETURNED IN THE
UKIGINAL ARKAY OF DATA, RcPLACING THE INPUT DATA. TFE LENGTH
UF EACH UIMENSION OF THe DATA ARRAY MAY BE ANY I[NTEGER. THE
PRULRAM Kun> FASTER CN CUMPOSITE INTEGERS THAN ON PRIMES, AND 1§
PARTILULAKLY FAST ON NUMJEKRS RICH I[N FACTORS OF TwWO.
TIMInb i> IN FACT GIVEN dY THE FOLLCWING FORMULA. LET NTOT BE THE
TOTAL nNuMBER UF PCINTS (RcAL OR CCMFLEX) IN THE DATA ARRAY, THAT
L5, NTUT=SNNLLI®NN(2)%... UECCMPOSE NTCT [NTO ITS PRIME FACTORS,
SULH 4> o*%Ke * 3##K3 = >xxK5 * ... LET SUM2 BE THE SUM OF ALL
THE FALTURS UF TWO IN ~TOT, THAT IS, SUMZ2 = 2%K2., LET SUMF BE
THE >JM UF ALL OTHER FACTOKS OF NTCT, THAT 1S, SUMF = 3%K3+5%KS5+,.
THE TiMt TANEN BY A MULTIOIMENSICNAL TRANSFORM ON THESE NTQGT DATA
E> T = Tu ¢ NTUT*(T1+#T2%5UM24T3%SUMF). CON THE CODC 3300 (FLOATING
PUlNT AVU TIME = SIX MICRUSECCNDS)s T = 3000 + NTOT*{600440%SUM2+
L73%5UMF) MILKUSECONDS Jv CCMPLEX DATA.

IMPLEMENTATLUN OF THE UeFINITION BY SUMMATION WILL RUN IN A TIME
PRUPURT LUNAL Tu NTOT*(NN(LI#NNI2)+.2a). FOR HIGHLY CCMPOSITE NTOT
THE »Avinud UFFERED BY THIS PRCGRAM CAN BE DRAMATIC. A ONE-DIMEN-
SLUNAL AAKAY 4000 IN LENGTH WILL BE TRANSFORMED IN 4000% {600+
WUR(PLHbc w2 )+ LT5%1540%3)) = | 4.5 SECONDS VERSUS ABOUT 4000%
“J)u*lT> = fduJd SECOND> FIOR THE STRAIGHTFORWARD TECHNIQUE.

THE CALLING SEwUENCE Is—-
CALL FUURTIUATA yNNyNDIMs Lo LGN IFCRMyWORK)

UATA I> THE AKKAY USED IJ HOLC THE REAL AND IMAGINARY PARTS

Uf FHe VATA un INPUT AnNu [THE TRANSFCRM VALUES ON OQUTPUT. IT

IS5 A& SULTIUIMENSIONAL FLUATING POINT ARRAY, WITH THE REAL AND
IMAGINARY PAKIS OF A DATUM STORED IMMEDIATELY ADJACENT IN STORAGE
(SdLr AS FURTKAN IV PLACE> THEM). THE EXTENT OF EACH DIMENSION

IS wlVEn LN THE INTEGER ARRAY NNy, OF LENGTH NOIM. [ISIGN IS ~1

Tu INVICATE A FCRWARD TRANSFCRM (EXFCNENTIAL SIGN IS —) AND ¢l

FUR Ay INVEASE TRANSFORM (>IGN IS +#). [IFORM IS «1 IF THE DATA AND
Tk ThANSFUKM vALUES ARE CJMPLEX. IT IS O IF THE DATA ARE REAL
BUT THE THANSFURM VALUES ARE COMPLEX. [IF IT IS O, THE IMAGINARY
PARF> ub THE UATA SHOULU ot SET TC ZERC. AS EXPLAINED ABOVE, THE
TRANSFUKM VALULS ARE ALWAYS CCMPLEX AND ARE STORED IN ARRAY DATA.
WURK 1> AN ARRAY USED FUR WORKING STORAGE. IT 1S NOT NECESSARY

ILF ALL it ULMENSIONS UF THE CATA ARE POWERS OF TwWO. IN THIS CASE
ET MaY oe KePLACEC BY J IN THE CALL ING SEQUENCE. THUS, USE OF

sl sl ol ol ol ol o N el ol ol ol =l ol sl sl ol ol sl sl sl a N ol ol AR ol ol all o N ek s R e N ol ol aF o R o R aE ol o R R i R o N e N o N o N a ¥ ol ¥ 21 o}

-

LY

PUAEKS UF Twd CAN FREE A LLCD DEAL CF STORAGE. [IF ANY DIMENSION
15 NOT A PIWER OF TWO, FAdlS ARRAY MLST BE SUPPLIED. IT IS
FLUATING PulnT, ONE DIMENSICNAL CF LENGTH EQUAL TO TWICE THE
LAKGEST ARRAY UIMENSION (I.Eay NNULL) ) THAT IS NOT A POWER JF
Twde THEREFURE, IN CNe UIMENSICN FCR A NCN POMER OF TWO,

WURK ULLUPLE> AS MANY 3TUMAGE LOCATIONS AS DATA. IF SUPPLIED,
WOKK MusT NUT bE THE SAME ARRAY AS [ATA. ALL SUBSCRIPTS OF ALL
ARRAYS deouliv AT ONE.

THE FAST FUJURLIER BLGORITHAM PLACES TwhO RESTRICTIONS UPCN THE
NATJRre uF THE wATA BEYUNJD THE LSUAL RESTRICTION THaAT

THt UATA FlAM UNE CYCLc JF A PERIODIC FUMNCTION. THEY APE-—

ls Tdkt nNUMBEx UF INPUT UAT A ANC THE NUMBER OF TRANSFCRM VALUES
MUST Bt Trc >AME.

2e CUNSIUERING THE DATA Fu BE IN THE TIME DIMAIN,

THEY MusT Bk EqUI-SPACEJ AT INTERVALS CF CT. FURTHER, THE TRANS=
FORM VALUE>y CUNSIDERED [J BE IN FREQUENCY SPACE, WILL BF EQUI-
SPALEU FRUM U 10 2#PI* (NNl 1 }=1)/INNTL)*0T) AT INTEKVALS OF
Z¥PL/INNLE)®UT) FOR EACH ulMEANSICN CF LENGTH NN(I). CF COURSE,
OT netu YJUT ot THE SAME rFuk EVERY DIMENSTON.

THERE AKE ¥u EwROR MESsawes CR ERROR HALTS IN THIS PRCGRAM. THE
PRIGHAM REFJRNS [MMEDIATcLY IF NDIM OR ANY NN(CD) 15 LESS THAN 0ONE.
EXAMPLE Lo THHEE-DIMEN>ILNAL FCRWAPRC FCURIER TRANSFCRM OF A
CUMPLEX ArdAY UIMENSIONcJ 32 BY 25 BY 13 IN FURTRAN IV.
UIMENSLUN UATAL 324254130 snuRKISC)NNI3)

LUMPLEX ULATA

DATA wN/3¢gy220L13/

DU & i=ly3¢

U0 L J=ly¢5

DO L K=l41a

UATALLsds K} =L UMPLEX VALUC

CALL FUUKT(UATASNNy3,=1,1sW0ORK}

EXAMPLE 2o JUNC=DIMENSIJNAL FCRWARD TRANSFJRM OF A REAL ARKAY OF
LENulH o% IN FURTRAN li.

UIMENSTUN DATAL2,€4)

DO ¢ [=L,us

DATAlLyL)=AEAL PART

UATA(Zsl =0,

CALL FUURTIUVATAsE4slo=lydsu)

PRJUKAM oY NURMAN BRENNER FRCFM THE PASIC PRUGRAM BY CHARLES

RAvch (Bulr uF MIT LINULN LABORATORY). MAY 1967. ThE IDEA

FUR THe UlulT R EVERSAL wAo> SUGGESTEC BY RALPH ALTER (ALSO MIT LL).
THI> IS Tre FASTEST ANU MusT VERSATILE VERSION OF THE FFT KNOWN

TU THE AUTHUR. A PROGKAA LALLED FOURZ IS AVAILABLE THAT aLsn
PERFURM> THE FAST FOURicd TRANSFORM ANC 1S WRITTEN I[N USASI BASIC
FURTHAN. LT 1> ABOUT unc THIRC AS LCNG AND RESTRICTS THE
UlMenalunNs JF THE INPUI AxKAY (WHICH MUST BE COMPLEX) TO BE POWERS
UF Twl. ANUTHcR PROGRAM, CALLEC FCURL, IS ONE TENTH AS LONG AND
RUN> Tau THIAUS AS FAST UN A CNE-DIMENSICNAL COMPLEX ARRAY WHNSE
LEVuTH is A PUwER OF TWu.
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REFERENLE==
EAST FUURIEKR TRANSFORMs FUk FUN AND PROFIT, We GENTLEMAN ANO
G« 3ANJCs LYoo FALL JOINT CCWMPUTER CCNFERENCE.

THE wUKKR REePURTED IN Tris UOCUMENT WAS PERFORMED AT LINCOLN LAB-
JRATJURYy A LeNTER FOR Rc>EARCH CPERATED BY MASSACHUSETTS INSTITUTE
OF TLuHNULJwY¥y WITH THE >UPPORT OF THE U.S. AIR FORCE UNDER
LONTRALT AF LY(628)-5167.

THE FAST FJuRIcR TRANSFURM IN USASI BASIC FORTRAN

SUBRUUTINE FUURTICATA pdgNO TM 4 ISIGN o [FCRM,WORK)
DIMEN>EUN LUATALL) sNNLLI, IFACT(32),WCORKIL)
TWUPl=0.2083185327

RTHLF=. Jully o7BL2

FF(NDIM=L)32uninl

NTdl=¢

DU ¢ 1UIA=LenULM

TFAnnL LUL MY 3920492002

NIOT=nTuT=ant TuIM)

MALN LJUP FUR £ACH DIMciNaluN

NPl=¢

ud 91U LUiM=LsNDIM
N=nd LU LMD

NPZ=NP L*N
IFtN=L)9cuydads b

IS N A PJmew uF TWO ANJ LF NOT, WHAT ARE ITS FACTORS

M=N

NTWUSNP L

iF=1

Iuiv=¢
lQuuT=4/L0LV
ILREM=H-Lu lv*ieu0T
[F{lwuuT=10ivia0s1Ls11
IFELREMIZ2Ue L2920
NTHUs N W+ T
IFALT MR =1ULY
LE=1F+1

M=Lguol

wu Tu 4u

101 v=3

INUNZ=LF
LQUUI=M/1Luly
LREM=M-1U1V2lguOT
IFLIQUUT-1ulvieU, 31,31
IF(IREMIGU, 32040
IFACLTLIF)=10LY
1F=1F+l

40
50
51

1Y)

oo

[a¥alatslalalal ol s a Kol o}

oo

7l

72

13

8y

M=lQddT

Gy Tu 3J
Iulv=lulves

GU Tu 3u
INJINZ=EF
IFLEREMIOUe Ly 0
NTWUSNT WU+NT WU
Gu Tu T
IFACT(LF)=M
NONZP=NPLINT WY

SEPARATE FUUR LASES=-
Lo LUMPLCX [RANSFCRM
2. WEAL TRANSFORM FUR THE 2NC, 3RDy E£7C. DIMENSION. METHED--
TKANSFUKM HALF THL UATA, SUPPLYING THE OTHER HALF RY CRN-
JuUsATe >TMMETRY.

3. ReAL TRANSFORM Fud (HE 1ST UIMENSICN, N UDD.  METROD--
StT THE LMAGINARY PARTS TC ZEFC.
4. KCAL THAMSFUORM FUK THE 1ST DIMENSICNy o £VEN. METROD--

TRANSFUKM A COMPLcA ARRBY OF LENGTH N/2 wHOSF RFAL PARTS
ARt THE £VEN NUMdchcU REAL VALUES AND WHOSE IMAGINARY PARTS
AKE THe JDD NUMBCRtu REAL VALLES. SEPARATE AND SUPPLY

Tric >eLunD HALF 8Y LUNJUGATE SYMMETRY.

LFAIn = L

LikNe = NPL

LF (LFUAM oLEs O +ANu. 1DIM (LT, 4) GC TO TL
luAse = 0

oy TJ 14d

LF LIULM obkibe 1) GO TJ T2
lease = &

Iiking = NPy * (L # aPRev /7 2)
wd Tu LI

IF (NTwu eufe NPL) wd Tu 73
IeAdE = 3
vU J duy

ILAde = &
IFMIN = &

nNTwd = oTwd / 2
nN= N/ 2

NP2 = NPe / 2
NTUl = NTUT / 2

1L =-1
YU BJ 4 = Ly NTUT

1L =1+* e

wATALJ) = CATALD)
LuNTlvue

SHUFFLE UATA 8Y BILT REVei>ALs SINCE N=2%*K. A5 THE SHUFFLING
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leh
139
L4y
L4l

-1

2ud

219

Led
240

54

255

26U

LAN BL UUN: oY SIMPLE ENFcrCHANGE, NC WORKING ARRAY 15 NEEDED

LFINUNCP=L) Luly 10 Ly 200
NP2HF=NPL/ 2

J=1

UG 520 k<=4 sNPLWNPL
LECJ-k2hielol3dald)
LIMAK=L 2¥NP L~2

U0 Led Bl=1Z2y1L1MAX,2
DU ié> 13=LaynNTCT NP2
J3=Jdela-1 2
TEMPR=UATALLS3)
TEMPA=UATALLS®L)
DATA(L13)=0ATALY3)
VATALLa*L)I=0ATALJ3+L)
UATALJI)=TEMPA
DATA(J3*L)=TcHP |
M=NPLHF
LF{J—M) ia0e kaUs L&)
J=Jd-M

M=M/ L
1FIM=PL) Lou,y LUy 140
J=J+M

wu Tu v

SHJFFLE UATA oY DIGIT ReVeRSAL FOR GENERAL N

ARUIRK=2% iy

VI 27U Lh=4eniPhe2

U0 270 [3=L1,nNTOT4NP2
J=ls

00 2oy i=lyndunK,2
EFILLASE-3)20us 2204210
WORRLEI=UATALY]
wORRLI*LI=VATALJ+])

w0l Tu 24w
WURK(L ) =uATALY)
WOKK(Ivi)=u.

IFP2=nPe

IF=1FmMin
IFPA=LFPL/LFALTLIF)
J=JriFrL
IF(4=13-LrP2) L0601 255,230
J=J=1Fre

IFPe=1FPL

IF=lFr]

IFLLEPZ-NPL) 20042604250
cunTlivde
LZMAK= L 3+ NP<-NP 1

I=1

U0 270 E4=13,14MAX,NPL
DATALLZ2)=wirKi L)
DATALLIZ#L)=wWuURKITI+])

[aR ol aX oW o1 V]

3
205

3l
Erss

EETH

340
350
460
370

ELIY

ELN
40u

49

420

43V
440
450

460

4Ta

I=l+¢2

MAIN LuuP FUR FACTORS JF TuWC.
WEEXPLISTON®2%P [ *SQRT{-LI*M/( 4*MMAX } ). CHECK FCR W=ISIGN*SQRT(-1)
AND HEPEAT Fur W=W*{L+#131.N*SQRT(-L))/SQRT(2}.

ITHINTwu=nPLliouw 600,305
NPLTw=nPLENPL
LPAR=NTwWJ/NP L

IFUIPAR=2) 35002304220
[PAR=1PAR/S

LU Tu 3l

DO 340 IL=ly124NGs2

DO 2%J RL=LLsNICT NPLTH
K2=KLle#NPL

TEMPR=UATAIKZ2)
TEMPL=vaATAIRZHL)
DATALKEI=ULATA(R L)=TEMPR
OATAIRZ*L ) =UATALKL#+1)-TeAP]
VATAIKLISUATA{R L) +TEMPK
DATA(KL#L)=uATALKL+L ) +IEAPL
MMA X= P L
IFIMMAR—NTau/ ) 3T1C,600s0u0
LMAA=MAAY (WP LTm s MMAX/2)
LU 370 L=WP L LAAXINPLTA
M=l
LEQHMMAK-NPLd92) 4420, 38)
THETA=-TWuP i®*FLOATIL)/FLJAT (4*MMAX)
LF{15huNl4du, 390y 390

THE TA=—THeTA
wh=LuUSITHETA)
Wil=5INLTHETA)
W2H=WR*ux—nl* w1
W2l=l ¥Rk *ul
RIR=mZRPan=-n2]l*KW!]
W3l=wikFaltull =Nk

DU 530 1L=1410iKNGs2
KMIN=]L+iPAKEN
IF{MAAX-NPL) 43w 430,440
RMIN=[]

KDIF=jPAR®=INAR
KSTEP=4%cULF
TFIRSTEP-NT au)46C e 460,229
UD 54v KL=KMiNyNTOT,KSTEP
K2=K1+KUIF

K3=Re+RUIF

K4=K3i#+KUIF

LF (MMAX-NPLI*Tu 470,48y
ULR=uATAIKL)+DATA(KZ)
ULL=uATALKL*LI+CATA(K2¢1)
UZR=UATAIK3)+UATA[K4)
U21=uATA(R3+L)I+CATAIKG+L)
U3R=DATAIKL)-DATAIK2)



Udl=valAlRLeL)-DATA{K2¢+1)
IF(LSLoNI Gl Leal 24472
471 U4rk=UATAI Ko+ L) -CATA(K4+ 1)

MAIN LUJP rUr FACTIRS wJUT cQUAL TC TwW(l.
WEEAPLLSLoN*Z¥PT*RSURT (~L)*(J1+4J2-[3-1)/1FP2)

- TLT -

Ual=UATAILR+)I-UvATA{K]I)

ooeo

U lu 2lu ouu LRIUNZP =L} duue TCO, 601

aie Uar=UATAlR4+L)-DATA(K3+L) oul 1FPL=Nlwu
U4l=vATlAIRI}-UATA(KS) LE=lnang
wu lu 21y oly 1FPL=IFALTLEF)* IFPL

450 TZR=wR*UATA(K)-W2I*DATALK2+]) THETA==IwuPL/FLOATLIFACK(LFD)
Tel=mersUAl AR+ L) +H2I*UATALK2) IFthslon)oldsnilybll
TiR=wr*UATA(RI ) =WI*DATA(KD+ 1) 6ll IHLl A=—THcl A
T3l=whR=uATA(n3+1)¢W]l *CAT A(R3) ble WOTHPR=LUSITHETA)
Tar=win*uATAIR4}-WIT*DATAIRG+]) ASTPI=3IN{IHETA)
Tal=wiRxoalalne+1)+W3IxuaTa LK4) Ul b5y Ji=LelFPLyNPL
ULR=UATALRLI+TLR THEIM=~T auP I*FLJAT(J1=i) /FLCATIIFRP2)
ULl=vATALKL*LI+T2] [IF{isioNsolwsua3tls
Uen=Tak+T 41 wl3 Tht i M==1dcln
Ucl=TaL+Tai ole aMink=cusilneTm)
UdR=UATAEKL)-TcR WMilvi=2bNLIHETM)
usl =UATALKL#L)=T21 lLiMasa=d it Likno—2
IFLISLuN) 90, 5uCy 500 JU p2J di=ulelaMAK,S

au Uban=lsl-Tai UJu o5u L3=L1l,nNICT NP2
U4l=l4Kk=Tok i=l
L Tu 21V K= WML NK

2uu Uak=Tai=-T sl al=nMinl
u4l=Tak-Tax JZMas=l3+irP2-1FP1

slv VATalra)=vintucR UU vy J2=l3rJdcMAXy IFPL
JATaiRa*lI=ubivu2l TwinR=nrk+ar
UATALRZ)=UIRTULR daMhX=Jirwle~irP2
vATalrnetriizualtUal DU wau J3=JddsJaMAXy IFPe
VATA(RII=ULr=ULR JMLiv=da=ddti S
DATA(KR3*LI=uill-U2] JeJMInr it Pe=-LFPLl
DATAIRG)=Usn-J4aR ak=zualald)

2¢4 LATalRe+L)=ual-U4l Sl=uATAlJd+l)
Kulr=Kaic P ULUSK=Ja
KMl ou=a*(KMLwv=1L)+11 ULusi=u.
wL Tu %34 J=d=lrPil

- E1V] CUNTLnJc ol >1MPrR=anK
M=M+LMAX 5TMPL=51
LE(M=—AMAR ) 240240570 skeTWJdwREdK-JLUSR+CATALY)

4y IFllalun) 22Uy 500,560 sl=iwdnd®sl-gLuSi+DATALJ*L )

554 TEMPR=nn ULJar=51MPR
wh=(wxtwl ) =1 THLF ULusl=>1mrl
wl={wi=TeMPx)*nTHLF J=d=LFPL
Gu fu 4lu LElu=JMIN)oLLs02L,462)

20U TEMPR=WK ocd WURKEL ) =wn*on-wI*ST-0LusR+LATALJ)
wR={wr—al ) *RTHLF wURNIL# L) =wi*aktwREST—JL U L +CATA(J+1)
wiz=tTcuPr+wil ) ¥ THLF CETY) i=i+2
wU Tu 4Ly witMP=wr®Ews Pl

279 CunNTlinuc WR=MKENS [ PR=wi*hSTPI
LPAR=3-IP AR b4V Wl=nl *naTPL+alL MP

MMAA=MMAA+MMAA
GU lu 30V

1=i
UG 634 Je=l39JcMAXLIFPL



- CLT -

whu

cee

TJu
Tul

Tud

Tua

Tiu

T¢v

125
i3
131
135
T4u

7145

FELEYENPE L FL W )

DU wdu JasucpJaMAX, [FP2
UATALJd3) =wurtni )
UATALJ3*L)=wurKk(I+1)
l=l+g

[k=lre)

1FPi=1ree
LE{IrPL=nPeclolu ey TCLy TIU

LUMPLLEc A mcAL TRANSFURA LN TRE LST DIMENSEON,
JUuAle >YMMETHLES.

Gu TU (Yuueadus 900¢TAL) 4 ILASE
NHALF=N

NENEN
THETA==TwJdP L/ FLOATIN)
IFLIslun) Tus0T0247)2
THela=s=lrclA
wWiIPR=LUS (T HeTA )
noTPl=ailnNtTncTAl)

wh=nalPk

wli=adlvi

IMln=03

JMIn=c®aHALF= L

GU Tu Ted

FENT IV

VU Tev t=imMinynTQT,NP2
SUMK=4DAl AL LI+UATALJD M/ 2.
SUMI={uATALL+L)+CATALJ*LIN/ 2.
VIFR=(UATALLI-LATALJ} )}/ 2.
DIFi=dUaTALL+ L) -DATA(J+LI) /2.
TEMPR=nr®3uMl+n [*DIFR
TeMPl=ml*5UMi-wR*DIFR
valAlli=3udr+TL MPR
Ualall+ii=ulFL+TEMP]
UATALJI=3UMr~-Tc MPR
UATAlJ*L)==ulF Ll +TEMP[
J=denb e

LMIN=LMLlnt S

JMIN=JMiN=¢
wicMP=wrizubTP1
AR=WASWSTPR—wil*WSTPI
Wi=wl*Wo>TPRtnTLLMP
LRCLMLN=amINI TL D9 T3) 9T
IFULISIONI T34 T2 0,740

vy T3> L=IMInynTCToNP2
VATAll+1)=—vATA{]+1l)
NPL=NPc*NPL
NTJT=ndul+n1uT

JENTUT+]

IMAX=NTUl/ 2+
IMInN=LMAXK-2*NHALF

I1=ImIN

N EVENs

BY CON-

150
735

Tou

Tos

itu

Tou

o ol ol o

BJD

glu
ded
(¥ 1¥]

E4J
d50

- 1.11]

YU

910
924

O Ty 7ao
DATALJI=uATALLY
DATALJ+L)=—0ATA(I+1])
I=l+g

J=J=2
IFLLI=-LMAR ) F202 760,760
DATALJ)=UAT AL LM IN)-CATALIMIN®L)
VATALJ#LI=u.
IFLi-J3iTusldu, 780
vAlAl sl =uATALL)
UATALJ* L) =uaTALTL+]))
1=l-<

J=d=2
IFLL=LMindETo, 075, 7€5
UATalJd)=uvAT Al IMIN)+DATALIMLING]L)
UATALJ* L) =0,

[MAK=4MLN

Gu Tu ds2
UATALL)=ualAl L) +CATAL2)
DATALL)=Va.

U Tu 9Ya

LUMPLele 4 moAL TRANSFuxa FOR The 2ND,
CUNdUoATL SYMMcTRIES.

IFEEARNG=NP L) buSy SGUy FUY
UL sbd L3=LynluTeNP2
[eMAR=ia+nPL=NP L

VU bow Le=idslcPAXINPL
IMAA= | 2+nPi—-2
IMIN=letl LRNG
JMAK=C*LI+NPL=LIMIN

IRl lc=43)8aure0,810
JMAA= JMAAHIPL
ItLiuIM-2)d5)s05C,E30
JEIMAKFNP Y

DU b4y [=iMboig i MAK,2
UATalL)=uAl ALY}
DATAGLeL)=~vATAlJ#]L)
Jd=Jd-z

JEJMAA

Ou dou 1=IMlus IMAX,NPD
VATatl)=0aATal )
UATaLl+L)==uaTAlJe])
J=Jd=nkJd

ENY wb LUul oN EACH Oldc w2 1CN

NPIUSNK L
NPL=NPZ
NPREV=N
wETURN

END

3RO,
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CHITRENER R RN ER SRR R IRE AR IS AR RERR RN ER SRR R FA R S b bk Rk A BB kR EE AER R DR R LER R 21 R S 2

PRNGRAM FOR ROUTING CF GROUND WATER USING A
FAST FOURIER TRANSFORM TECHNIQUE

JUNE 1972, D.H.EVANS
L R e R e ey L R R R R R R LAt it bt it it ht )

c
c
C
C
c
[d
c
C
C THIS PROGRAM IS DESIGMED FOR USE WITH SUBROUTINES RESPF AND SET
C
CHBSEIBARRERRR AR TRRERE R R ARRARRR R AR RS EF RS S ARE BH ISR SRR KR E AN AR KRR A FIR S KRN R
COMPLEX XINPU2{500),FT(500), FCOMI500),J1FSTO(3,500)
REAL®*B DATE, TIMEX
REAL®R TL1,TLZ24TL3,TL&,TLByTLS, TLOsTLT+TITLE(10,10)
QEAL®B TLO, TLLO,TLLLTLLI2,TLL3,TLL4,TLLS
REAL K(10,345)4NRESE1Cy3,5),LAGI10+3,5)
INTEGFR SYS(S5e3),Us2
DIMENSION TINPU2(500) AXIN(50),TIN(50)
1,WORK(500),Q0010,500),1ISH{10)
DIMENSTON XINSTOU(3,50C), 1CONCLIO),XIN(500)
DIMENSION RFLI10),WDTH{3)
CCMMCN/CCMP/XENPUZ s X INSTOLTINPU2
COMMON/TNPT /LAG yNRES Ky SYSy TCON, BFLy AXIN,TINSNINPU2,NPL, NZEROS,
IWTD y MTR s WTNR JWOTH SFT1,SFT2, SFT3,S5FT yNSFT
COMMON/HARC / FT yNoNO S CELT o [Xy Z4P1
CNMMON 7 TOPUT/IREAD, [RITE,ITERM, IPLOT
COMMON/ IDS/DATE, TIMEX
DATA TLL ¢TL24TL3,TLS 3 TL5,TLOTLT,TLB/*OUTPUT H", "YDROGRAP','H FROM
L ', 'FREQUENC",'Y STCRAG','E TL'TINME DCM' " AIN L¥d
DATA TLO/'INPUT MY/
NDATA TLLOTLIL,TLL2,TLL3/"SYSTEM 1, "SYSTEM 2*,*PARALLEL 'y " FLOW
1HY/
IRETE=6A
IRFAD=5
ITFRM=6
1PLOT=6
PI=3,141593
CY 1 §=1,10
1 ISH(1)=0
=1

READ VAR TABLES AND INITIALIZE PARAMETERS

[aRalal

CALL SET
00 2 I=1,4N

2 FCOMIT)=0.0

Coduss, . NN TYPE MODELeeosoIXyWHICH MODEL TYPE IS BEING CALC IN THAT SERIES
D0 50 Z=1,NP1

C

€ LOOP PARALLEL SYSTEMS

c
Ce#ex% SET UP INPUT BASED CM THAT LEG COF THE PARALLEL CONFIGURATION

c
GN TD {445486)41
C*eeexCHANGE THIS TO SULT THE WEIGHTEDN INPUT DISTR IAUTION
4 XMUL=WTD*WDTH(L)
NFT=SFT1/NELT+0.5
G0 TO 7
5 XMUL =W TR &WDTHI 2)
NFT=SFT2/DELT+0.5
6N 107
XMUL=WTD*WDTH( 3)
NET=SFT3/DELT+0.5
DO 10 I=1,NINPU2
IFLZ.EQaIIXINLTI=XINSTN{L,T])

-

BASEFLOW SHOULD BE REMOVED HERE [F NECESSAKY AKD SHIFT THE TIME
SCALE AY THE TRANSLATIONAL LAG, NFT

[aEaKaksl

XINPU2 (T }=XIN(L)®XMUL
XINPUZ (I +NFT }=XINPU2( 1)
TFINFT.GT.0.AND. T LELMFTIXINPUZIT)=0.0
XINSTOCZ o I)=XINCT ) #XMLL
TF(I1CON(L).FC.O0) GO TC 10
WRITE(IREITE 4811 XINPLZ(1),TINPUZIT)

8 FORMAT (' *, 13,5Xs31E12.642X))

10 CONTINUE

CrsssasnanskakssxxTHOSE SECTINONS SURROUNDED @Y :: ARE FCP APFRINIIC FUNCTIONS

Cresszasasss

GD TC 500
501 NZRN=NZERDOS +NSFT

0N 12 M=1,NZRN

IN=NINPU2+M+NET

XINPUZLINI=0.0

XINSTOUZ s IN)=REALIXINFUZLIND)

TINPUZ2 [TN)=TINPU2ININFUZ )+ (M*DELT)
2 CONT INUE
oQ CONTINUE

LRSS R EEE RS

CRTAIN FCRWARD TRANSFCRM OF INPUT USING FOURY

[sEalaNa Rt R

WRITE(TRITE y 13)XMUL s NFT
13 FORMAT (% XMULGNFT? 42X ,EL3.645%,15)
CALL FOURTUXINPUZ 4Ny 1,-1,0,WOPK)
AL1=5Y5(Z.1)
NL2=5YS(1,2)
NL3=5YS5(Z43)
c NXT+ MAINTAINS COUNTEF OF SFRIFS FORWITHCRAWING FLCW WITHIN EACH LEG
NXT=0

c
Ce*xe* BEGIN THE SERIES LOCF

c
14 IF(NL1 .FQ.0) GO TO 15
LONP=NL1
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NO=1
NL1=0
GO TO 18
15 IF{NL2.EQ.0) 60 TD 1¢&
LOOP=NL?
NO=2
NLZ=0
G1 T 18
16 IFINL3.EQ.0) GO TN 17
LJIOP=NL)
NI=3
NL3=0
60 TO 18
17 G0 TO 25
18 NXT=NXAT+1
€0 22 U=1,LNGP
1X=U
IFIICONT4).FQ.0) GO TC 20
WRITECTRITE ¢ 19)2ZyND, IXoNLLoNL2oNL3
FORMAT(* Z,NCyIXsNLL ALZyNL3=",6(2X,14))

£

COMPUTE RESPCNSE FUNCTIONS

N Ao -

o CINT INUE
CALL RESPF

sexk s NTTE THAT FSTOU) IS REINITEALIZED THROUGHOUT THE SERIES
THOUGH NOT MULTIPLYINC RESPONSE BY RESPINSE TO OBTAIN THE SYSTEM
RESPONSE, RASICLY THE SAME BUT MULT. BY THE INPUT TRANSFCRM,AS WELL,
AS THE SERIES DEVFLNPE

MJLTIPLY FUNCTIONS TC OBTAIN DUTPUT TRANSFORM

AYOOONN0

00 21 L=1,N
FSTOAZ 4L )=XINPUZ{L)*FT{L)
XINPUZIL}=FSTO(Z,L)
C*e**4FSTO MAY RE USED TO REMOVE THE SUM OFf vOL OF FACH PARALLEL LEG
21 CONT INYE
c SERTES LCOP-INNER TRANSFORM PART
22 CONTINUE
IF(ICINI4).FC.0) GO TC 24
WRITE(TRITE s 23INLY,NLZ4NLD
23 FORMAT(' LOCPING THRU TYPESTNLL,hL2,NL3"® ,315)
24 CONT INUF
GO TO 14
G GONE THRU ALL CONFIGURATTONS OF SERIFS READY FOR MEXT PARALLEL LEG
25 CIONTINUE
IFLICONI4). EC.0) GO TC 27
WRITE(IRITE,26)
26 FORMAT(! CNMPLETEN LEC OF PARALLEL LOOP')
27 CONTINUE
C PARALLEL LOCP
50 CONTINUE
IF{ICONIS5).EQal) NPL=Z

C
c

TOTALING THF FLOW FOR CONFIGURATION, INSURE NP1 REPRESENTS TOTAL DESIRED

Cxs#®2FROM HERE ON INSURE THAT EACH SYSTEM [S CORRECTLY TRANSFORMED AND CUTPUT

c
2R

anOoweOOOO0n
[=XF: ]

LR

[zEaXalal w o

ann

CN 30 T=1,NP1

DD 29 M=]1,N

FCN1+2,3 MAY BE USEC 10 MAINTAIN AN [NN{VIDUAL ACCCUNT CF £ACH LEG
If USED

COMBINE PARALLEL MEMRBERS

FCOM(M)=FCOMIMP+FSTC LM}
CONT INUE

RETURN TO TIME NOMATA

CALL FOURTIFCOM4Noly141,WCRK}

IFCICONC2).EQ.0) 6O TC 32

WRITE(IRITE,31)

FORMAT(® PT? ,10X,"NASF DUTPUT TOTAL!' J10X,'TIFE")
CONTIN'IE

DO 35 [=1,N

ADD BASEFLOW HERE IF NECESSARY AND DIVINE BY NUMBER OF PCLINTS
INPUT OT FOURT

FCNMUT }=FCOM(I)/N+BFL(2)
IFLICONI2). EC.Q) GO TC 34

PRINT RESULTS

WRITELIRITE,23)1,FCONLI)TINPUZLT)
FORMAT LY "y [2,313X,E12.6))
CONTINUE

CONT INUE

IFIICONE3}.EC.O0} GN TC 100

PLOTTER

TITLEC1+1}=TL1
TITLE(L, 2)=TL2
TITLE{L,3]=TL3
TITLE(1,4)=TL4
TITLEI1,5)=TL5
TITLE(1,61=TL6
TITLE( 2, 1}=TL9
TITLE(2,2)=TL2
TITLE{2,3)=TL3
TITLE(244)=TLT
TITLE(2+5)=TL8
TITLE(2,6]=TLLO
TITLE{3,1}=TL9
TITLE{3,2)=TL2
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36

37
100

TITLE(3,3)=TL3
TITLE(3,4)=TLT
TITLE(3,5)=TL8
TITLE(3,6)=TL11

CO 36 J=1,4N
QO{3,J)=XINSTO(2+4}
QOM2,4J)=XINSTOUL,J)
Q0(1+J)=REAL (FCCM( ) )
IFINELT.GT.1.) SCALE=1.0
IF(DELT.LT.1.) SCALE=f.0
TFIDELT«GT410s) SCALE=0.0
DELT=1.0

WRITELIRITE,27)
FORMAT(*1")

CALL GPLOX{ 10, TINPU2,CO,3,NySCALE,TITLE, [SH)
CALL EXIT

END



- LLT

SURRDUTINE SET SFT1=0.0

v SFT2=0.0
t SURROUTINE USFN T REED ALL PARAMETERS FOR 'MAIN' AND TO COMPUTE SFT3=0.0
C THE CUMULANTS OF THE RESPONSE FUNCTION AND TO SET UP THE CONTROL PARAM. C
¢ C 1F DESIRE TP COMPUTF FARAMETERS BASED ON THEORETICAL SULLTIJA
CIMPLEX FT{500),XINPLZ{500) c SET ICON(S)=1
REAL*8 DATE , TIMEX ¢
REAL K{10;355)NRES{1C:3:5),LAGI1043,5) TFCICONISILECLL) GA TC 11
REAL KIMINy K2ZMINyKIMIN, KIMAX ,KZMAX ) K 3MAX JKIRES (KMAXy KMIN DY 10 [=1,4NPL
REAL KT(3) $1=0.0
INTEGER SYS1543),2 $2=0.0
DIMENSION SLP(2),BFL{10),ICONCLO)4AXINTS0) T INIS0)WDTHI 3) §3=0.0
CIMENSION XYN(SO), TINFU2(500) KT(1)=0.0
CIMENS TON XINSTO(3,5CC) c CONTRAL VARIARLF WHERE 2NO DIMENSIANIL,NT. TF NASK 40JELSe2, NO. OF
COMMCN/C OMP/ XINPU2 , X TASTO, TINPUZ c LAG AND RNUTE MNDFLS AND 3, RESERVOIR MICELS
COMMONFHARC /FTyNyND,CELT,IX, Z4P1 NL1=SYST1,1)
COMMON/ TNPT/LAGNRES s Ky SYS, TCON, BFL y AX IN s TINyNINPU2, NP Ly NZEROS AL2=5Y5{1,2)
IWTD yWTR, WTDR yWOTH, SFT1,SFT24 SFT3,5FT 4NSFT AL3=5Y5{1,3)
COMMEN /T OPUT/IREAN, TRITE, ITERM, I PLOT C INPUT PARAMETFRS: 15T DI¥.= CONFIGa., 2ND DIM.= MIDEL TYPE,35L DiM= NC.
CIMMON/IDS/DATE, TIMEX c IN THAT SERIES

£ IF(NL1.EQ.O] GO T1 &
o D7 3 J=1,NL1
CHekk sk 4CAUT [ONSRESUSE PARALLEL SYSTEMS WHICH ARE COMPATABLE,I.E.

[
ChasxsnshstaensssasessONLY THNSE WITH TIME STEPS ARQUT THE SAME, FOR SPACE [ INPUT PARAMETERS BASEL ON MIDEL TYPE AND CONFIGURATLGN
¢ A
I TCONCL) 4 DATAS(2) 4 RESLLTS5(3) ,PLOTTERF(4),TEST PRINTS READGTREAD, S4INRES UL, 1,01, KUTs1sd)sLAGIT14d)
r {5) SPFCIAL CONFIGURATION IF(ICONI1).ECLO) GO TC 2
€ RETURN WTS.: WTN=TO CRAINAGE, WTR=T7Q RIVER, WYOR= T3 DOWN STREAM WRITE(IRITE; TOINRESL Tolod )oK Uyl ed o LAGCLy Lo ddelad
r -~TINPMA— MAX TIME PERIOD OF INPUT (YEARS [F NEED BE) 2 CINTINUE
Cesxs  [NSURE THAT 'NP1,NO AND IX* CORRESPAND TO DESIRED SYSTEN KLRES=NRES(T41,J)#K{1s1sJ)
C#%esaNP1 N) PARALLEL LEGS 3N AND [X DEFINED BELOW KTUI)=KT (1) +KIRES
& S1=S1+LAGIT,14J)
r READ VAR 1ABLES TF(KIMAX LT KIKESIKLMEX=KLIRFS
4 3 IFIKIMIN.GT.KIRFS) K1FIN=KIRES
READ(TRFAD,SOIDATE, TINFXICONILY JICONE2) o TCONE3), 1CIN(4) o ICONES) 4 IF(NL2.EQ.0) GO TN 7
1,1C0DE DN & J=14NL2
READ(TRFAD,SLITINPMA,AP] NRFS(1424J)=C.0
RFEADCIRFAD,; 52) WTN,WTR,MTOR, {WOTH{T},1=1,3) READ(IREAD, 54)K(Es2, J),LAGIT24J)
READ(IRFAD,53) PERM, (SLP{1),[=1y2),DRyDS,SCOEF SMH [FCICINCGL)LEC.0) GO TC 5
MX=TINPMA®L .S WRITE(TRITE yTLOKI14243d) o LAGUT 20 dbs T4
[0 20 1=1,NX 5 CONT INUE
20 READ(IREAD, S4) AXIN(L}4TINLL) XZRES=K{L424J)
00 1 1=1.,NP1 KTUL1=KT ([14+X2RES
1 READLIREAN; 55)8YSUT 1), SYSOT 4204 SYSC1,3),BFLIT) 52=52+LAG(I24J)
KMIN=29999, TFUK2MAX oLT . X2RESIK2MAX=X2RES
KMAX=1,0 b IF(K2MINLGT . X2ZRFSIK2 M IN=X2RES
KIMIN=9999. 7 IF{NL3.EQ.0) GO TN 21
K2ZMIN=9999, €0 9 J=1,4NL3
KIMIN=9999, NRESIE43,4J)=0.0
KIMAX=1.00

LAGI1,3,4)=0.0

K2MAX=1. 00 READ(TREAD,S54)KIT, 34 J)
K3IMAX=1.00 TF{ICONI1).EC.0) GO TC 8
SFT=0.0 WRITECIRITE 4 720KIT 4290l a14d
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21
22

7?3

24

25

N e a i in)

CONT INUF

KTOT)=KT (IR +KEL,3,4)

SFT2=0.0

TRIKIMAX LT o KUE 34 J) PIMAX=K (T43,J)
FECRAMINGGT oK1 y3,3J) PRIMIN=K(T43,4J)
CHFCKING FNR LONGFST SFRIES STRING
O T 224234241041

SET1=51+52+451)
IF(SFT.LT.SFTL)SFT=SF11

TF(KMAX LT KIMAXIKMAX=K]1MAX
IF(KMINGGTLKIMINIKMT N=KLMIN

CO T2 25

SFT2=51+52+53

IFUSFYLL TWSFT2)5FT=5F12

IE(KMAX LY JK2MAX I KMAX=K2MAX
TF(KMIN GT K IMTNIKME A3 MIN

G? TQ 25

SFTA=51+52+53
IFISFT.LTSFTA)SFT=5F13
TFI(KMAXLLTAKAMAXIKMA X=KIMAX
TF(KMINLGTLK2ZMINIKMIAN=K2ZMIN

CONT INVE

TFIKMINGGTKTIT)) KMIN=KT(T}
TFORMAXLTLKTITY) KMAX=KT(L}

CANT INUFR

G T2 1S

GETERMINING THE PARAMETER JF RFSPUNSE FUNC. BASED CN GOVERNING ECN
AND THE USE CF LAPLACE TRANSFORMS
K=CUN/{ 2%C1IND) sN=ClLIMZ /K *%2; TAU=ClLIML-NK

TF{DR.EQ.0.0) G T 2¢
VS=PFRMESLP( 1)
K(241y1)=3%PCRM*SHHRSCTEF/VSR%D
NRESI24 Ly 1) =2%DP%VS/ (CXPERMESMH)
LAG12,1, 1)=DR&SCNEF/(2%VS)
KMAX=K(2 31y 1 JENRFS (2 41,1)
KMTN=KMA X

1FIDS.FEQ40.0) GO 7™ 2%
VS=PEOMRSLD(?)
K(3,1,1)=3%DERM&SMHe SCOEF/VS*%2
NPES{3;1,10=2%N5%YS/ (G*PERM®ESMH)
LAG(3,14+1)=DS®SCIFF/ [2*VS)
KIMIN=K( 3,1, 1) *NRES(2,141)

IF (KMTNL.GT L KIMINIKMIM=KIMIN

[F (KMAXSLT KIMIN)KMAX=KLMIN

ChexkddxnnxkskPUT [N PARAMETERS FNR DRAINAGE SYSTEM

C
27

IF DRAINAGE SYSTEM 1S NUT REQUIRED HERE PUT IN BLANK CARD
READ(IRFEAN, S4INRESI] 41910 yKU1s1s1)oLAGIL 1,1}
TF(NRES(141,41).6Q.0.0) GO TJ 2R
KIMINSNRES( L4l o1}*K{19141)

IF (KMINGGT JKIMIN)KM A=K 1MIN
TF (KMAX LT .KIMINIKMAX=KIMIN

28 SFT=0.0
SET1=LAGI{1s141)
SFT2=LAG(2,1+1)
SFT3=LAG(3,1,1)
IF{SFTLLT.S5FTL)SFT=SF11
IF{SFYLT.SFT2)5FT=SF12
JIFISFTLLTLSFT3)SFT=5F13

< FIND W NEFDFC TO KEFP 98 N/7 RESPINST FHFELY

15 WNOT =28, 636/ KMIN

( FIND NUMBFR CF 7FRIS 1N ADD T FUNCTILNS ANGO FIGURF

c CUT TMAX €0P PESPONSE FUNCTION Ty KEFP 36 /7 8 AREA
TRESMA=-KMAX*ALNG(.01)
DELT=PI/WNOT

C LENGTH OF DUTPHT=TIME INPUT+T[ME FLSP

[ S NUMRER 0OF PTS IN CLTPUT IS5 (TINPMAY#TRESMA) /LT

C TR ON=(TINPMASTRESMA) /TFLT. THIREFTIRF THFE NIMRew

C CF ZERNS TO ADN=TOLSKA/NFLT

NINPU2=TINPMA/DLLT#] .5
Caasezias: R EREEEEE

NZERCS=TRESMA/DELT#0."

NSFT=SFT/DELT+0.5

K7 ERDS=0

NSFT=0

WRITE(IRTTE  GOIWHNCT g TRESMA, NELT W NINPIUZ G NIEV TS NSFT

ang FARMAT (Y WNOTTPESMAGCFLToNINPIR2 JNIFR S RSFT 1, M E1 0.4, 1X )30 10,1 X}

1)
N=NTINPU2Z

C
[
c SET UP INPUT AND TIME ARRAYS
C

IFININPUZ2.OF JNX) G TC 65
NN=0
I=1

61 TX=DELT=I
XYN(T1)=0.0

2 NN=NN+1
TFINNGFQLNX ) TIN(NN®] ) =999,.0
XYNCTI=XYNCT J+aAXININND
NA=NN+1
IF(TININA)LGT.TX) G T7 63
[FIMALLF.NX) GO T &2

&3 XINSTU(Z,T)=X¥YNIT}
XINPL2 (1 )=XYNII)
TINPUZ(I)=DELT*(I=1)
I=1+1
NA=NN+1
IF{NALLELNX) GO T &1
ADX=NX-(1-1)
DO 64 L=14NOX
XINPUZ(T-1+L}=D.0

64 TINPU2IT=14#L)=(T-14L }ADELT
GO TO 43



6LT

&5

41

41

)
51

-

54
]
70
71

T2
73
76
75
T
77
10
79
an
21

L7 42 I=14NINPU?

IF (NINPU2LFQLNX) GO TC 41

TI=DELT*({I-1)

TINPUZ (T )=T1

IFLICONELFQ.0) CALL INTRPLANX TINGAYIN,TI,YINTP,1)
TFOICTNELFQal) CALL BLKINTINKyTINJAXINGTI+YINTPy1.0}
TFAYINTP.LT.0.)YINTP=CL0

XINSTUZ 1) =YINTP
TFANINPUZEQNXIRINSTCIZ o Th=AXINCI}
XINPUZLLV=XINSTO(Z, 1)

CONT INUE

IFOICINGLILECL0) G TC 18

WRITE VARIABLFS 1F SC DFSIRFD

WRITE(IRITE, 72) TINPMA NP

WRITE(IRITE ( T4)PERM, (SLPIE) 4 [=1,2)4NP40S,SCOEF ,SMH
07 16 I=14NX

WRITE{TRITE 4 750 L4 NXg AXINCT D, TINLT)

L7 17 T=1,NP1
WATTECIRITE (750 SYS U1 410 oSYSE 1,20 ,5YStI,3)

WRITEQ IR ITE o TT)TRE SMA JOFLT (KMAX, KMI N WNO T 4NT NP2
WRITE(IRITE,T8) NyNZEFDS,NSFT

00 19 I=1,NP1

WRITEQIRITE y 790KIT 41 g 1) g NRESET 41410 4LAGII,1y1),I
WRITE(IRITE ¢BOYWTN 4 WTF WTOR, WOTH (L) yWDTH(2), WETH( 3}
CONTIMNE

RETURN

FORMAT(2A8,611)

FORMAT(LF10.0412)

FORMAT(TF10.C)

FORMAT (3F10.C)

FIRMAT (312, F 10.0)

FORMAT (! NRES,KyLAG)[4J%3(3%X,E13.6)42(2Xs14))
FORMAT(' Ky LAG,T,J',202X,E13.6),2(2X,14))

FORMATUY Kyl ad' 142X EL346),212X414))

FORMAT (" TINPMA NP1V, 103X,E13.6} 42X, [6)

FIRMAT(Y PERM,SLO(1),SLP(2),D%,D5,SCOEF y SMH="* , TI2XEL1Ll.4})
FORMAT (0 %, 0 T=0 16, "AX=1, 16, 'INPUT!, 2X,E13456, *TIMEY, 2K, € 13.6)
FORMAT P SYS(12,(21,02)7 43(&X,15))

FORMAT (! TRESMA,DELT yKMAX, KMIN,WNIT s NINPU2?, S(2X, E13.6) 4 2X415)
FORMAT (F My NZERPS,MSFT0,2X, 14,205X, 14))

FORMAT( ' ¥ NRES,LAG, 1% y3{ElLl.4s2X)y12)

ENRMAT(" WTT yWTR WTDR (WOTH=1=2-3=%,6(F11.442X])
FORMAT (' Jy NUS XN, XYM () *421642F10.0)

END



- 081

el

lalalatel

SURROUTINE RESPF
SUBROUTINE TC CIMPIITE RESPONSE FUNCTINN

COMPLEX J1,FT1500)

REAL KU104345)¢NRESCLICs3+5)4LAGI17,3,5)

INTEGFR 7

COMMIN/INPT/LAGyNRES 4K
COMMTN/HBRC/FT yNyND G CELT o IXs 24P

EVALUATE ANALYTICAL TFRANSFORM NF RESPNNSE FURCTIUN
CW=(2%PT J/INMDFLT)

N0 FIRSY HALF CF TRANSFNRM, AT LAST PT SET I1MAG. PART=0IF QDD
NI=(N/2)+1

C™M=0,

CM1=0.

J1=CMPLX(0D.,y1.1}

F0 20 J=1,NM1

ANALYTICAL RESPONSE TRANSFORMS FGR NASH MIDEL. LAG AND RCUTE MODEL,
ANT LINFAR RESERVIIN FESPECT IVELY

G T7 (3,2,1),N0
FTUJ)I=(1./CMPLX(14+CM))

GO T 10

XLG=LAGE 7 ¢NMi, IX)
FTAJI=CEXPI=J1* " MI*XLC)/(1+(J1%0N))
GO 77 10

XNS=NRES{Z,NC,yIX)

FTAI =0 L4NME22 )k (=X NS/ 2, ) *CEXP{ —J1*XNS*ATAN(CHM) }
NCK=MIDIN,2)

TFINCK.GTL0 ANDLJECLAL) GO TO 15
IFCJ.NELNLY GO TO 15
FT1=REAL(FT(J)}
FT{J)=CMPLX{FT1,0.)

IF(JLEQNL) nr TN 21

CM1=CM14NW

CM=0MLEK (24N, IX)

SECOND HALF rF TRAMSFORM=CONJUGATE IDENTITY OF 1ST HALF
IF (NCK.GT.D) G TN 22

6O T3 23

N2=N1

L=N1+1

Gl 17 24

L=N1+1

A2=N1-1

BN 25 J=L.N

FTUJI=FT(N2)

FT2=REAL(FT{J))

FT3=ATMAGIFT (J))
FT{J)=CMPLXIFT2,-FT3)

N2=N2-1

RETURN

END



APPENDIX B-1

Procedure for Determining the Time Period for the Nash Model

n-1 -t/K
- 1t .~ A -
Nash Model = X (K) ) B-1.1

The integral of the Nash Model, giving the area under the

distribution, is given by:

® n-1 -t/K
- 1t B
Area = I = (K) Tini
o
_ ol T “il iyt (n—x)!(T/K)“"":
KT (n) r=o (n-l-r)!(—l)r+
B-1.2

The steps to optimize the time of convergence for obtaining a per-
centage of the area follows:
a) Start with the T for a single reservoir as an approxi-
mation

i.e. T = - K - ALOG (.01) B-1.3

b) Using T from step a, determine the area under the curve
for Time Period T using equation B-1.2 above.

c) If Z:= (1 - Results of b)) is less than .01, or 1% of
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Results

10

d)

the total area, then use the present Time Period T.
Otherwise determine the ordinate at time T by using equa-

tion B-1.1l. Then assuming a rectangular area as shown in

Figure B-1. Solve for At (the time increment to T).
X
At = ETET B-1.4
Increment T by At and return to b)
Y = T % At
TIME PERICD
K Nash Integration Linear Reservoir Theory
44,07 69.08
61.42 115.13
24,57 46.05
213.97 230.03
69.21 138.16
83.60 184.20
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f(x)

Figure B-1

Time Period Approximation

= 483 =



APPENDIX B-2

Derivation of the System Response to a Delta Function

Assumptions:
a) Two dimensional flow
b) No advective velocity (i.e. horizontal bedrock)

c) One side of response is considered, le.

Governing Equation:

3?h  scoh %4

hp 3x2 T K At T K Ax B-2.1
o P
where hm = mean water saturated zone height
h = water saturation elevation
Sc = storage coefficient
Kp = permeability
qi = flow due to advective velocity
Dynamic Equation: (Darcy's Equation)
oh
= =K h = B-2.2
k! P m dx
Continuity:
9 9h .
3% + Sc 3t 0] B-2.3

- 184 -



A diagram of the system considered is shown in Figure B-2.

Taking the Laplace transform of Equation B-2.l1, we obtain:

2
A %:g (x,s) - Bs H (x,s) + Bh (x,0) = C Q(x,s) B=2.4

§ ()

i

Assuming g (0,t)

then o (0,s)

1l when t = 0, for all 8

]

Q0 (x,s) 0 x>0

the coefficients represent:

A=h
m
B = Sc
/KP
C = 1/K Ax
/KP
assuming

then the characteristic equation for the system response to the delta
function in the frequency docmain is
Ar? - Bs = 0

o Bs/A

thus r

or r + VBs/A

The homogenecus solution to the differential equation B-2.2 is

o VBS/A [x| | g, & TOM/A x| B-2.5

H (x,8) = C,
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Phreatic Zone

% 4 / edaroc
NN \5\)<;)K3(3§ N

Figure B-2

System Response to Delta Function
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But Hildebrand [1962], for finite intervals, shows that

lim h(x,t) = lim s H(x,s) B-2.6
t = o 5 > @

which implies that c,= 0

Thus H(x,s) = C, e =~ VBs/A le B-2x1

2

Applying the boundry condition @ X = 0 to equation B-2.5

H(O,s) = C

Il

2

To check this result:

3%H
A 'é';? (x,8)

- Bs H(x,s) =
therefore
A ZHGX,S)
ax2
Thus H(x,s) =

From Selby [1970] (Page

function is

C Q(0,s) = C B-2.8

A G, exp (- v/Bs |x|)
A

- Bs C, exp (- vVBs |X|) B=2.9
A

Bs H(x,s) = 0

C exp (- vBs/A |x[) B-2.10

497, Eg. 82), the response to the delta
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I
0
w
»
>

&

o

T
w
>
>
>

h(x,t) B-2.11
2 /1 t¥ at
but A = h
m
B = S
c/Kb
c = 1/K bx
/P
1 ,Sc |X|
- hix,t) = =& PR exp (- p'm %] ) B-2.12

2 /1 t% at

See Appendix B-3.2 for the moment derivation of this system response.
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APPENDIX B-3

Method of Moments-Parametric Analysis

B-3.1 Moments Analysis

The method of moments is a curve fitting procedure used in
linear systems. Moments are normally referenced about the mean or

about the origin, but may be referenced about any point.

The nth order moments about the origin are defined by:

=
I

=3
n
[ t F(t) dt B-3.1

-—00

function or distribution

n

where F(t)

Thus, the first moment about the origin would be:

[ee]
Mi J t F(t) dt B=3.2

=00

If the function, F(t) were a probability distribution then

the Zeroth moment (area) would be unity, i.e.

2
I

o0
o
S J t~ F(t) dt B-3.3

-=00
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The nth order moments about the centroid are defined as

a0
o
M = f (t-M])" F(t) dt
n

-00

The interrelationship between the moments at the two refer-
enced points may be given as the binomial theorem. A complete

analysis of moments and cumulants is given by Harley [1967], i.e.

=
I
S~

G om_, - unt

n jmo 131
B-3.4
M= % Gy M, ™
: -i 1
i=o
For example:
2
_— [ ]
Mz = Mz + Hl
B_3.5
= 3
My = My + 3M] M, + M
- ¥ 2
or Mz = Mz Ml
B-3.6
- [ ' - mrd
Ma Ma 31‘!1 Mz M1

The effectiveness of the Methods of Moments in linear systems
stems from the fact that a simple relationship exists between the

input, response and output functions in the lower order moments. If

- 1%0 -



we represent F as the input moments, H as the response moments and G

as the output moments, we would have:

Il
L)
-+
s}

First Moment G

This simple property is true for the first three moments,

beyond that the interactions become more complex.

B-3.2 Derivation of Moments Using Laplace Transforms

The Laplace transform of the flow function is given by

(ee]
Q(x,s) = J e st g(x,t) dt B-3.7
o
0
then §9é54§) = J -te %% qux,t) at B-3.8
S o
[os]
dn (x,s) ( n -st
also -——SL;f—- = J (-t) e g(x,t) dt
ds o
B-3.9

oo
n n -
= (-1 J t e 5% qx,t) at
o

n
thus —-—Q—Ld %5
n

(o]
n n
(-1) t gx,t) dt B-3.10
ds o

= 18, =



Equation B~3.10 can also be stated as

d o(x,s) - =" W B-3.11
dsn s=0 H
th .
where Mn = n  Moment about the centroid

Thus, the derivative of the Laplace transform evaluated at

8 = 0 are the moments.

The cumulants may be determined similarly by taking the deri-
vative of the logarithm of the Laplace transforms and evaluating at

s = 0.

Applying this technique to Equation B-2.10

-2 (109 B (x,9)

s W ds s=0
= - log C + (- VBs |x|) B-3.12
A
= log C

Note that any moments/ cumulants, excluding the first, will
result in the moments being infinite. This result led us to model

the differential equation as discussed in Section II-7.
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APPENDIX C~1

Computer Implementation of the Convolution Technique

by Means of Harmonic Analysis

The program developed to implement the convolution technique
using the harmonic analysis concept requires only one subroutine for
operation. However, the program presently includes a plotter routine
and an interpolation routine to compare the computed hydrograph with
a known test hydrograph. A listing of this program may be found in
Appendix A-1. The plotter and interpolation routines are not discus-
sed here but the user may implement his own programs to satisfy this
requirement if deemed necessary. The subroutine essential for this
program is subroutine FOURT, the FFT program deveioPed at M.I.T..
Subroutine FOURT is fully explained by comment statements in Appendix

A-2 but additional information may be found in Chapter III.

C~1,1 Program Input/Output Procedures

As Figure C-~1 indicates, the program simply generates an
input function, computes the analytical response functions which are
plaéed in the format required by FOURT, manipulates the transforms of
the input and response functions and returns the resulting output
function to the time domain. In this case the parameters to the sys-
tem response models are assumed known and are input to the program.
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INPUT
PARAMETERS
|

GENERATE
INPUT FUNCTION

|

COMPUTE VARIABLES
AND TIME PERIOD OF
OUTPUT

PRINT VARIABLES

AND PARAMETER

TRANSFORM INPUT
(CALL FOURT)

SELECT
RESPONSE
ODE
| 2 3

LINEAR RESERVOIR LAG & ROUTE NASH

MODEL MODEL MODEL
J

CALCULATE RESPONSE
FUNCTION AND PLACE
IN PROPER FORMAT

MULTIPLY
TRANSFORMS

COMPUTE

INVERSE TRANSFORM
(CALL FOURT)

PRINT
RESULT

(caLL exiT )

Figure C-1

Flow Chart of Convolution Program
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C-1.1.1 Input Requirements

Two cards are used to input the necessary parameters for the

input and the system response. These are:

Card 1

Variables Description Format

NO,NRES NO (Col. 1-3) is the model desired to I3,F10.0
represent the system response and may
be the integer values 1, 2, or 3. 1
represents the Linear Reservoir model,
2 the Lag and Route model, and 3 the
Nash model as discussed in Chapter III.

NRES (Col. 4-13) indicates the number
of equal linear reservoirs used in
series by the Nash model. If this sys-
tem response is not required then this
real variable may be ignored.

Card 2

K,KRES,LAG,BFL K (Col. 1-10) a real variable indicating 4F10.0
the first moment or 'lag' to the Linear
Reservoir model.

KRES (Col. 11-20) a real variable indi-
cating the system lag required to deter-
mine the time period of the response
function. For the Linear Reservoir and
the Lag and Route models this is the
same value as K above. For the Nash
model, however, this would represent the
value resulting from NRES « K(nK) or the
lag of the Nash model.

LAG (Col. 21-30) the real variable re-
presenting the translational lag of the
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Lag and Route model. This variable may
be set to zero if this model is not re-
quired.

BFL (Col. 31~40) is the real variable
indicating a baseflow of the input
hydrograph. This variable, too, may be
set to zero or left out if the input
condition warrants it.

C-1.1.1.1 Input Function

The function indicated in the program listing is that of a

Thomas wave, being:

q
f) = ==X [ - cos E5)] c-1
£
where Doy maximum amplitude of the input
£ = time period of the input

a function more suitable to ones needs is easily substituted at this

point in the program.

C-1.1.1.2 Subroutine FOURT

The listing for this program may be found in Appendix A-2.
The calling sequence is discussed by the comment statements in that

listing. The user of the convolution program need not understand the
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variables required by the calling statement of FOURT since all the
requirements are satisfied by the main program, thus FOURT is not

discussed except as found in Chapter III.

C-1.1.2 Output Presentation

The input function that will be transformed into the fre-
quency domain is printed along with the corresponding time for each

point to be used by the FFT program.

The resulting output function is printed with the same correct
time array after the output is transformed into a time series from the

frequency mode.
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