
APPLICATION OF LINEAR ROUTING SYSTEMS TO

REGIONAL GROUNDWATER PROBLEMS

NY

Donald Hilton Evans

B.S., University of Colorado

(1966)

Submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Civil Engineering

at +he

Massachusetts Institute of Technology

(September 1972)

Signature redacted
Signature of Author.

Department of Civil Engineering, September, 1972

Signature redacted
[mosis supervisor

Signature redacted
DS aiman, Departmental Gomnities on Graduate Students of the

Department of Civil Engineering

certified by .

Accepted E

Archives
rss INST, TEcy

NOV 16 1972

LIBRARIES



ABSTRACT

APPLICATION OF LINEAR ROUTING SYSTEMS TO

REGIONAL GROUNDWATER PROBLEMS

=X

DONALD HILTON EVANS

Submitted to the Department of Civil Engineering on

August 29, 1972, in partial fulfillment for the degree

of Master of Science in Civil Engineering

Work in groundwater analysis goes back to the last century.

Only in the last decade, however, has there been an increase of interest

in applying a linear systems approach to the problem of routing ground-

water flow. This thesis applies linear systems to the routing of

groundwater within a regional basin.

The research reported here has been devoted to the following:

1.

3

3.

Developing a fast convolution technique through the use

of the Fast Fourier Transforms.

Developing a method for determining the system response

parameters through linearizing the governing equation for

groundwater flow by applying Laplace transforms and using

the Method of Moments.

Developing a groundwater routing model using the above

techniques applied to a regional groundwater basin.

The results from the Harmonic Analysis have been compared

with those generated by the complete solution for open channel flow.

The hydrograph generated with the use of the parameters determined from

the parameter estimation technique are compared to those resulting from

a finite difference scheme.

The techniques developed in the use of Harmonic Analysis and

parameter estimation are incorporated into a model for analyzing a

regional groundwater problem and the results discussed.

Thesis Supervisor:
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Brendan M. Harley

Assistant Professor of Civil Engineering
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Chapter I

INTRODUCTION

I-1 Problem Statement

The theory to groundwater flow representation goes back to

1856 when Henry Darcy first developed an empirical relationship for

steady-state saturated flow. Jules Dupuit and many others have since

expanded Darcy's relationship into one representing unsteady condi-

tions. Through expanding knowledge in subsurface hydro-geology and

soil mechanics, the complexities of the subterranean region have

become enormous. The 'real world' conditions which are non-

homogeneous, non-isotopic and contain cracks, fissures, etc., make

it impossible to represent, in detail, the behaviour of a subsurface

environment.

The complexities of the subsurface terrain also implies that

the response of such a system is non-linear. However, if the neces-

sity of a non-linear solution is accepted, a unique solution for each

soil condition, recharge pattern and the many other facits of the

system is required. Thus, with the linear systems approach of

modeling the groundwater system, we desire to find a simple but

functional procedure for determining the general behaviour pattern

of such a system. This theme will be further discussed in Section I-3.

i



I-2 Background to Groundwater Flow Modeling

Over the past decade, a tremendous effort has been devoted

to the understanding of groundwater flow. The techniques vary widely

but may be categorized into theoretical, analytical, experimental and

numerical. Initial attempts were theoretical, going back to the early

1900s, when the dispersive effects of the groundwater systems were

noticed. Since that time researchers have delved more deeply into the

relationship of the various subsurface parameters to the dispersive

effects caused by the soil characteristics. Breitenbach [1971], in

a paper presented on groundwater simulation, pointed out the various

analytical techniques used to-day. These analysts use Fourier

Series, Laplace Transforms, conformal mapping or graphical approxi-

mations. The data are obtained, generally, by methods of well

withdrawals or parallel drains of a variety of configurations.

Simulation techniques used, range from physical models using

sand or other porous media, viscous fluids, electric means (relating

Ohm's Law to Darcy's Relationship) and membranes, to numerical

methods. It is interesting to note that many modern methods or

theories have developed from other fields of study, for instance, the

well known heat flow (Carslaw and Jaeger (1959)) relation to dis-

persion, as well as Ohm's Law in electrical theory to mass flux

(Darcy's Law). The background and theory involved in these areas

are discussed by Reddell and Sunada [1971].

 oe



A Frenchman by the name of D'Andrimont introduced concepts

which lead to simulation of small groundwater basins by Toth [1962]

and Freeze and Witherspoon [1966]. With the advent of the digital

computer came a rapid increase of basin studies, for example, those

done by Bittinger, et al. [1967] and Tyson and Weber [1964] as well as

many others.

As the vastness of groundwater storage reservoirs unveils,

researchers are beginning to widen the scope of subterranean flows to

a regional basin. Nelson and Cearlock [1967] discuss the various

methods applied to large heterogeneous systems. Schneider [1966] and

Megnien [1964] also have done work in analysing regional flow patterns

»f groundwater.

I-3 Introduction to Linear Systems

As many researchers turned to numerical methods in an attempt

to by-pass the complexities of the analytical solutions for computing

the reactivity of a groundwater system, so have many turned to the

linear systems approach. Originally, linear systems were developed

for overland flow and were accepted in groundwater because, to quote

Kraijenhoff Van De Leur [1966], "... the unit hydrograph methods are

in complete accord with the nature of the simplifying assumptions that

have been accepted in order to find analytical solutions for the

aquations describing the flow of groundwater

4



The linear systems approach to routing groundwater in the

subterranean region is a subset to work done by Sherman [1932], who

advanced the unit hydrograph theory which later was used in routing of

surface flows. It was an attempt by hydrologists to estimate the

overall effect of an 'ideal' system and compare the result to an actual

system. The hope was that a close approximation to that system would

be obtained. The basic assumption underlying linear system theory is

that the series of simple inputs may be used in conjunction with a

characterizing function of the system to simulate the effects of a

complex inflow pattern. Obviously, then, the characterizing function

must implicitly contain all the variable process characteristics neces-

sary for such a representation—an ideological condition to be sure.

Should such a simplifying technique be used at all? A good justifica-

tion for using linear systems is provided by Rodriguez [1972] when he

says that a linear system "... may provide less information where

information is not wanted and better information where it is wanted,

all at less cost in time and effort."

The work that has evolved from linear systems in groundwater

flow can be found in Chapter II.

I-4 Scope of Work

The work carried out in this thesis will be:

10



a) to develop the use of Harmonic Analysis within

the linear systems approach for a fast computa-

tional scheme of convolution,

b) To use this method to develop a general model that

can be used under regional consideration,

c) to apply the model to a regional area.

I-5 Brief Summarv of Results

A convolution technique is discussed in Chapter III which

atilizes a Fast Fourier Transform program developed at M.I.T.. This

procedure was found to be highly efficient in terms of time and

accuracy. In Chapter IV, a groundwater routing model is presented which

is capable of utilizing any configuration of system response which

might be encountered in a groundwater zone. This model utilizes the

convolution technique in an effective procedure for analyzing such a

groundwater system. In application of this model it was found to be

better practice to isolate the different flow processes discussed in

Chapter IV since the substantial damping effect of the groundwater

aquifer produced time steps incompatible for aggregating those pro-

cesses into one outflow hydrograph. Use of the fast Fourier transform

technique for predicting the response to an input provides a highly

efficient procedure for analysing both the transient and the periodic

situations. This is found especially useful in studying the behavior

of slowly responding aquifer systems to periodic inputs.

ahs wl:



Chapter II

DEVELOPMENTS TO LINEAR SYSTEMS ANALYSIS

II-1 Hydrograph Theory

In 1929 Folse presented the ideas of base-flow separation,

reduction of rainfall due to the variance of infiltration rates and

the derivation of physical constants for representing hydrologic

systems. Sherman, in 1932, used these ideas to develop the well known

hydrograph theory. The basic assumptions for use with the unit

hydrograph which is the result of surface runoff or effective rainfall,

21

a) Effective rainfall is uniformly distributed within

its duration.

b) The effective rainfall is distributed uniformly

over the entire drainage basin.

c) The time duration is constant for ¢ ~ect runoff

hydrograph due to an effective rainfall of unit

duration.

4d) Those direct runoff hydrographs that have the same

time duration have ordinates which are directly

proportional to the total amount of direct runoff

represented by each hydrograph. Note that this

19



implies use of the principles of linearity,

superposition and proportionability.

a) The runoff hydrograph from a given rainfall period

reflects all the physical characteristics of the

given drainage basin.

The two significant features in linear systems application

that are invoked by the above assumptions are those of time invariance

and of superposition. Time invariance, i.e., stationarity with time,

implies that the basin response will not vary with time - in other

words, the resulting hydrographs of an effective runoff of the same

duration will be the same. Superposition refers to the property that

a hydrograph resulting from a given pattern of rainfall excess can

equivalently be generated by superimposing the hydrographs from sepa-

rate amounts of rainfall excess that occur during each period of the

same duration. Thus, in order to use the principle of superposition

only those systems that consist of linear elements may be considered.

The most effective way of characterizing the behaviour of such systems

is to allow the effective input to become a delta input (or unit

impulse). The resulting output is known as the instantaneous unit

hydrograph, designated by h(0,t) or I.U.H. The properties are:

h(O,t) = 0 t &lt;0

h(0O,t) &gt; 0 t &gt; ©

ree,«1

12



| h(0,t)dt = 1.0 = volume of runoff.

II-2 Linear Systems

A system, as defined by Eagleson, in 1967, is any set of

inter-related components, material or conceptual, that are identified

by their state variables. When the components are isolated from the

'real' system and provide the state variables, the result is an

'idealized' system since it excludes some of the parameters or charac-

teristics found in the environment. If this were not done, the task

would either be impossible or so complex that it would be economically

infeasible. A schematic of a hvdrologic system might be as shown in

Figure II-1l.

The Instantaneous Unit Hydrograph, I.U.H., is the basis for

the linear systems theory since it represents the response of a system

to a unit impulse (delta function), and completely characterizes the

system. The output resulting from the application of a known input can

be uniquely determined by convolution of the input with the I.U.H.

The characteristic function of a linear system,e.g. the I.U.H.,

can be of two types, one being time invariant and the other being time

variant. If the svstem is time invariant, then the system may be

represented by a differential equation with constant coefficients as

- 14
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in Equation II-2.

L(t) = A
n

n n-1

EEE py Sm nnn nha an
dat"

I=

where I(t) = Time varying input

q(t) = Time varying output

This equation implies that the response to a sum of inputs is the same

as if the inputs were individually computed and the responses summed.

The difference between a time invariant system and a time variant

system is that the coefficients for a time variant system are time

dependent. The behaviour of a typical L.T.I. (Linear Time Invariant)

System is shown in Figure II-2. This figure also represents the use

of the convolution integral (or Duhamel's Integral) for a causal

system, viz

where

q(t) =

I(T) =

I(T) h{t-T) dt

lo
Inflow Rate

[©
 Pe 3

h(t) = System's impulse response function

II-3 Some Typical Linear Systems

Previous sections have discussed the use of a characteristic

function which when convoluted with simple inputs will produce an

output hydrograph representative of the system. This characteristic

 —- 16-—-



function may consist of one, two or three parameter models that are

used to represent the system responses to an input function. The

following sections describe the basic models that are presently used

in representing a linear system response.

II-3.1 Linear Reservoir Model

In a groundwater system, one would normally expect hetero-

geneous soil conditions, as well as extremely small (in relation to

those found in surface hydrology) transmissivities or diffusivities.

Therefore, one might assume that the translational effects of sub-

surface flow might be neglected and treat the system as a storage

reservoir. The reservoir is what is known as a one parameter model

where the one parameter, XK, is used to represent the total hydraulic

characteristics of open channels for surface flow routing or the soil

characteristics for groundwater flow. The conceptual storage reser-

voir is shown in Figure II-3. The linear storage is related to the

outflow by:

where

Ss = K q(t)*

x = 1 for linear systems

TT

&lt; 1 for sublinear systems

&gt; 1 for supralinear systems

The continuity equation for the storage reservoir is given

by Equation II-5, where  XxX = 1,

=?
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where

or

ds

I(t) = g(t) + It

I(t) = q(t) + K Poi II-5

S(t) = represents the reservoir storage

K = time constant or lag between the input centroid and

the output centroid

g(t) = rate of discharge

Equation II-5 can be rewritten as:

a g(t) , gt) _ I(t)
it K K

TT='

This is a first order linear equation and the total solution

may be determined from the homogeneous and particular solutions.

The complete solution to equation II-6 is given by

J
.

-£/K t/Kre Kae+ci 4
1 7

assuming a constant input, the complete solution becomes:

J C, «—
~t /K

1 I.-8

Introducing the boundary conditions which are:

J = 0, T 0 i.JT

results in

~Thevorly»  -~ +

C1 2+ 1=0

C, -1

II-10

II-11

Ke)



The complete solution to a constant inflow to a storage

reservoir then becomes

D T 1
se
i

LI--2

IT-3.1.1 Application to Time Varying Inflow

If we apply a constant input of rate I to such a linear

reservoir, the resulting outflow rate is as shown in Figure II-4, or

as given by

where

3

t

t

| 2  (t-T)=e K art
KX

 ~N

i

 iL
’

% ode
-

-,K

£ T, the input time period of I.

i. 13

If equal time periods are assumed with block inputs, I» then

the outflow r-tes, J y at the end of periods 1,

J 1
ay
pty I; {l-e

=i /K a

qz = I; (l-e “1/K +I; e -1/K

2. ,n, would be:

x

I

L

--

 =1/K
{l-e

dk
-2 /K

3 A
 adi

-1/K

n-1

» 8 se I, e =

i yo 3

20
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II-3.2 Linear Channel Model

Another single parameter model, known as the lag model or the

linear channel, is used for the purpose of translation of a flood wave.

The linear channel requires a constant velocity at any point in the

channel for all discharges such that the relationship between the

inflow and outflow at that point is merely:

Nrera

x

T

=) —-—

Xe 1 T="3

represents the translation in time of the flood wave with

no attenuation of the wave.

Dooge [1959] first presented the linear channel concept and

pointed out that it can also be considered to be as a cascade of an

infinite number of infinitesimal storages. As shown in the above

section, the lag to a single reservoir (single storage) is repre-

sented by K. Then, if we have n reservoirs in series, the lag would

be nK. Thus if n goes to infinity as K goes to 0, while nK remains

. 2 : :

constant, the variance about the mean, nK, goes to zero, implying

that an instantaneous input of unit input will cause an instantaneous

output of the same volume after the mean travel time of nk.

II-3.3 Two Parameter Models

Nhen considering a groundwater system, one must be realistic

2%



in choosing a model for representing that system. Common sense tells

us that a pure translation or the linear reservoir (exponential distri-

bution) which lacks the property of having adequate 'memory' (Hillier

[1967]), will fail to represent the groundwater system. Thus the

tendency has been to incorporate these elementary, single parameter

models into a variety of configurations. This led to the two param-

ater models such as the Lag and Route Model or the Nash Model. The

former is represented by the block diagram in Figure II-5. It has the

following impulse response:

-

=)

} t-T

ta ® ) rIT-=1€
wr

where K

[

—
— delay time of the linear reservoir.

translation time of the linear channel.

Noting the obvious increase in flexibility by applying such

models in series, Nash [1958] developed what has become known as the

Nash Model - (Also developed by Kalinin - Milynkov [1958]). Nash

conceptually applied a series of n reservoirs each of delay time XK,

represented by the block diagram in Figure II-6, in order to repre-

sent the systems I.U.H.. Thus the total lag to the system can be

shown to be nK, since in a series configuration the outflow of one

reservoir is the inflow to the succeeding reservoir. The impulse

response for this model is:

7 =



=

I(t) or

Linear

Channel

K

Linear

Reservoir

— q(t)

Figure II-5

Block Diagram of a Lag and Route Model

Linear Reservoir Series

Ki = Kp = Kg=":°+:=Kp

Figure II-6

Block Diagram of a Nash Model
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_ 1 t n=l 1 -t/K
h (0,t) = K (2) T(n) e

Eo gm7

Notice that the Nash Model is also a modified gamma distribution.

Nash simply used the tools developed earlier by Zoch [1934] in linear

reservoirs, Clark [1945] in linear storage routing and Edson [1951]

in two parameter model development.

ITI-3.4 Three Parameter Models

Many three parameter models merely add the linear channel, a

translational effect, to the two parameter models. In this paper this

is accomplished with the Nash Model as discussed above. However,

Harley [1967] also uses the translation with a Muskingum Model, and

the Diffusion Analogy.

The advantage of the three parameter models is that they are

more capable of simulating a complex system as in the natural highly

damped groundwater system.

II-4 Model Formulation Using Linear Systems

With the basic tools now available to linear systems re-

searchers, an infinite number of configurations become available to

represent the complex systems of the real world. Many of the fol-

lowing models were presented by Kraijenhoff [1966].

pA



In 1955 Lyshede related a series of exponential functions to

the effect of runoff from rainfall and the basin characteristics.

This pointed out the possible use of linear reservoirs in series which

form the cascade effect of the Gamma distribution.

Singh, in 1964, used the time - area hydrograph and routed

it through two linear reservoirs in series to represent the effect of

overland and channel flows. Singh's System is shown in Fiqure II-7.

Diskin, also in 1964, proposed a model using two Nash Models

in parallel, each branch consisting of a different number of equal

reservoirs and both branches having different lag characteristics in

the reservoir series such as shown by Figure II-8. Thus by splitting

the input hydrograph, Diskin was able to develop a system that would

lag the output by:

 oO n, K + (1-0) n, K. To +3

The I.U.H., of this system then would by represented by

il 0.0) —2— (EMT
£, (n= 1) K

o—- c/K, 4

Lao LY
™o-— -

—

(1-0) t n_-1t -t/K

K, (n,- 1) K,

2 -



I(t)

Linear

Reservoir

Linear

Reservoir

p—

/\ K, Ep

Ko &gt;q(t)

(Overland Flow) (Channel Flow)

Figure II-7

Singh's Model in Simulating Overland and Channel Flows

I(t)

“or 7 BY (1-2)1
-

[x]

rw]p a[ Ke 2

R

nN a

a (1)

Figure II-8

Diskin's Parallel Nash Model Configuration
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II-5 Groundwater Systems

The Netherlands has done work in groundwater systems for

many years using the Dupuit - Forchheimer approximations.

As mentioned in Chapter I, there was skepticism in using a

linear system approach until it was realized that the basic assump-

tions for analytical solutions to groundwater flow were equivalent

to those used in the unit hvdrograph theory. Therefore, the

development stages of groundwater flow in linear systems are described

briefly in the following paragraphs.

In 1947, Edelman developed equations for two dimensional

groundwater flow into a unit length of channel and applied the

convolution integral to determine the effect on the groundwater flow-

rate of a constant infiltration rate into the phreatic zone as shown

in Figure II-9, resulting in the equation

where

t 1

EE (n"Z a(n
0 vu HM

 ll
tt) = -

2&amp;3
Vv TT u £?

~r

_

P constant r~~~olation rate

a) transmissivity

1-20Ye

- Nn

LO



y = Initial Saturated Zone Thickness

P = Constant Percolation Rate to Phreatic Zone

qy= Unit Flow at x

Q(t) = Outflow Rate at Channel

p = Active Porosity
3
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Edelman's One-~Sided Groundwater Flow to a Unit Width Channel
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H = active porosity

In studying the effects of the phreatic zone in irrigation

areas, Glover [1954] developed an equation which relates the spacial

and time change of the free water surface to an instantaneous irri-

gation inflow, s, in equation II-21

where

oo
2 »

s - ._ nT

Xt) = = 2 ) Ze n® t/3 sin RA
Mu n=1,3,5 =

y

3 i,
2

uL?
XD

oF
gr.”

2

5

From this relationship, Kraijenhoff [1958] developed the I.U.H., for

flow into parallel drainage channels.

co

8 nl3
n(0,t) = 3 3 y en /3

J p=1.3.5

Tle" 2

Expanding and setting the lags, K, equal to functions of j, results

Tra

8
h(0,t) = =

1 _-t/k 1 8 1 _-t/K
Xa € + 9 m2 Kj e

"4

FY ~ Tey3

1 8 1 _-t/ks
55 72 Ka © ¥

We may see that this equation represents the behaviour of a system of

linear reservoirs in parallel as shown in Figure II-10. The lag for

such a system is given by equation II-24.
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where Ki = 3: Ko = 3/9; K3 = j/25 etc.

De Jager [1965], Wesseling [1969] and Wemelsfelden [1963] used other

modified configurations to represent flows to parallel drains or

river channels.

In an attempt to develop the use of linear systems in ground-

water application, Dooge [1960] used the concepts introduced so far

to derive coefficients in a simplifying technique. By accepting the

work done by Thornthwaite and Penman in estimating infiltration,

evaporation and other soil characteristics that determine the flow of

groundwater in the unsaturated zone, Dooge developed coefficients for

use under a number of conditions, these being:

a) Water table close to the surface where there is

a direct effect on recharge by rainfall and

avapotranspiration.

D) Water table well below the ground surface where

the recharge to the groundwater system is

accomplished only after the upper soil region

4!



reaches field capacity.

c) Composite type where the groundwater table reacts

as a shallow table until the groundwater 'storage'

decreases producing an effect more in line with

a deep water table.

Dooge's procedure is based on a constant recharge over a

given time period. Using constant time periods and the storage

concept generated by the linear reservoir discussion in Section II-3,

he derived three routing coefficients and three coefficients required

under the conditions of negative recharge. These basic equations

where

~ - a

= C_R_ + +
2 [o EA C1 Bi C2 Q  rr o-"T-5

Qn = Outflow due to contributions by the past n recharges

R = Recharge in period n

R _, = Recharge in period n-1

2 1 =
Outflow due to contributions from the past n-1

number of recharges

The coefficients are given by:

“6
 1 -

~-T/K
)
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where

21 = L (aE ) = UE

~

-?
—

moter
ay

T = time period of the recharge.

K the linear reservoir lag coefficient.

IL  -— 6

The negative recharge computation is based on a storage

calculation at the end of period n,

 * ]
r

L

Q, C, R) T/K - II-27

ge wp

ad

If for any period this goes to zero, he calculates two additional

~oefficients:

where

&gt;
n

Cj =

Cu

Cs R_ + Cy Qn

I —
T T/KoT/K_4

T/KJT/K
ara

- or
pr 23

Thus if one knows the parameters required by linear reservoir theory,

simplified coefficients may be calculated for routing through a ground-

water system.
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Though the computation scheme would become more complex,

one could conceptually consider using a time varying period that could

be accepted as being more realistic, i.e., to maintain a constant

input, which is acceptable under certain restrictions, and vary the

time over which the inflow is constant.

II-6 Parameter Estimation

Definitions, derivations and configurations have been

offered in the previous sections but the most important and perhaps

the most significant aspect to linear systems theory is that of

parameter estimation. It should be obvious that a simulation proce-

dure requires a highly selective method of correlating the I.U.H.

parameters as dependent variables with the basin characteristics as

the independent variables. Methods available for parameter esti-

mation include:

a) Fourier Coefficients.

b) Laguerre Coefficients.

c) Method of least squares.

d) Method of maximum likelihood.

e) Method of moments.

f) Wiener - Hopf equations

O'Donnell [1960] presented an approach to develop the I.U.H.,

by means of Harmonic Analysis, which produced Fourier Coefficients.
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He used the fact that the Fourier expansion can be used if the input/

output hydrographs are assumed periodic. These expansions may be

represented by

Inflow Expansion:

n

 3)

[e- To)

I.U.H.
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oo 00
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——— wr T——————) a Cos (n = ) y b sin (n = )
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Expansion:
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Outflow Expansion:
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y ACos (r 7) + y B_ sin (r T
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By applying the convolution integral and considering the att

harmonic, he was able to derive the kernel coefficients with respect

to the input/output coefficients, thus giving:
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Thus, if a long enough record is available and accurate, then a

simple means for determining the instantaneous unit hydrograph is

available.

Dooge [1965] proposed another scheme for the analysis of

heavily damped linear systems using Laguerre functions, similar to

the method proposed by O'Donnell [1960] in using coefficients derived

by means of harmonic analysis. The equations derived by means of

the Laguerre functions are:

Input

[ (t)

function

Lo a £, (t)
T= “3

Response function

n (t) y o£ (t)
n n

n=0

—— - ,

« 3

output function

2 (t) = ) A f(t)
n n

n=o

I1 :5
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The linkage function coefficient are given by

A

-

0 P=.

A % 8p-x ~ 1 % @p-1-k
we“Ted”ow

Eagleson [1965] presents the Methods of Least Squares and

the Weiner - Hopf Equation as procedures for determining the instanta-

neous unit hydrographs, while Hillier and Lieberman [1967] present

the method of Maximum Likelihood and others in determining parameter

estimators.

The Method of Moments for estimating parameters was first

applied to hydrologic systems by Nash [1959]. The accuracy of this

procedure is dependant on the number of samples taken of the system

and that these samples are truly representative of the basin charac-

teristics. Maddaus [1969] offers what he considered to be disadvan-

tages to the use of this method, and are as follows.

a) Non-linearity is filtered out of the lower moments

but the non-linearity tends to concentrate in the

higher moments.

b) Inconsistency may occur between the parameters

and the assumed model resulting in negative

parameters.

c) They tend to be biased at the extremities, thereby

causing the greatest error at the peak.
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Since the Method of Moments is an effective parameter tech-

nique in hydrologic systems, where our concern is with the lower

moments, then any non-linearities of the natural system must reside in

the upper moments. When applying this procedure to unit hydrograph

theory where only positive causal systems are considered, any

inconsistency producing a negative parameter would, indeed, reduce the

effectiveness of this procedure. The effect of c¢) will be shown in

Chapter IV where the peak is shown to have the greatest error when

utilizing the Method of Moments. Since the lower moments do provide

the more significant results in modeling hydrologic systems, it has

become an accepted fact that the first three or four moments only, be

used in parameter estimation. Nash [1959] recommends the use of

dimensionless parameters in allowing an independence between the

parameters and the I.U.H. This is accomplished by dividing all

moments exclusive of the first by the first moment. To present an

example of the Method of Moments, the Nash Model will be considered.

The I.U.H. of a Nash Model may be represented by:

where

[ 4

Il

0,2) ge (ex)! I'tn)
o t/K TT 7

number of equal linear reservoirs in series

the time constant or lag of a single reservoir.
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Then the first moment about the origin, or lag of the system

is given by:

LJ

J h (0,t) t dt
~

n K

fe
| n 1 -t/K

J. (e/K) gm eT a (e/R)

I=3&amp;

4 4

where M; = first moment about the origin.

The second moment about the mean (or centroid) known as the

variance, is determined by the equation:

where M2

then

’
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where M; = first moment about the mean
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M, = second moment about the mean

1

M, = second moment about the origin

By the same procedure, the third moment (Skewness) and the

fourth moment (Kurtosis) may be derived to be:

Ma = 2 n K3

IT-40

Mu 6 n XK"

A similar procedure may be used for the moments of the Linear

Reservoir and Lag and Route Models. These are represented by Equa-

tion II-41 and II-42.

Linear Reservoir Moments

My K

Mp = K2

1.-41

Mg = 2 K

Me = 6 K°

Lag and Route Moments

M, 1 * 3

Mo

TT=-4"

40~-



Mg = 2 x3

My, = 6 Kk"

Appendix B.3 develops moments in greater detail.

Another parameter that sometimes proves important is the

time to peak, which is found by taking the first derivative of the

I.U.H., and equating to zero,since in hydrology the work is with

causal systems. Thus:

The time to peak is that at which

£
x 2(0.t) Te. )

-

Then for the various models discussed in Section II-3:

Nash Model T

Single Reservoir T_ = 0

{n-1 } K

I1-44

Lag and Route Model T

II-7 Theoretical Development to the Regional

Groundwater Routing Model

The basic equations for unsteady one dimensional flow will

be considered assuming the following conditions apply:

3 ) Unconfined flow

11



b) Incompressable fluid flow

c) Darcy's Law applies

d) Sloping bedrock

The continuity equation is given by:

aRave

3q
3x + Sc

3h Yh
ot Ax

q inflow

TI=4~

re

Ax = area of inflow

Sc =

n =

storage coefficient

piezometric head

However, the response to a Dirac delta function of inflow is

desired such that the continuity equation will be:

J 3h
= + Sc af

—
— 0 c

fi=
 4

"
" 2 odCh mf

The groundwater flow will be represented by a modified form of the Darcy

aquation, incorporating the advective vel

Sul ah- kK n2B
 Pp m dx

Ll Ay

~city, as in Equation II-47.
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There J = groundwater flow (L3/r)

a advective velocity due to the sloping

bedrock {L/T)

1 piezometric head (L)

By = permeability (L/T)

h = mean depth of the saturated water zone

The advective velocity may be more adequately shown to be

2 from Darcy's Law

SY3

S510pe

where the minus sign indicates the direction of flow. Then equation

II-47 can be rewritten as

dq. ah _y opx ox Dm
xTTA-

&gt;4

and the continuity equation II-46 will then become

5
3h 32h dh

Ix Ro h, 0x2 + Be ot
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By using Laplace Transforms, Harley [1967] shows that the resulting

system response to the Dirac delta function input (of a similar

relationship) will be:

Nn (x,t) = E ® audigier

2/1kK tH FP [ wa| 4 K, t
- I-5.

thus equation II-51 results in:

a

v Sc

tt) = ——g
. xX

2 /TXB £ cexp | - d2ESex)Sex)”
% 4K t

p

‘3

~“I=53

Appendix B.2 proves a similar result for a horizontal bedrock condi-

tion.

The cumulants for the above response function are shown in

Appendix B.2 to be derived simply from the Laplace Transform.

Harley [1967] shows the first four cumulants to be given by Equa-

tions II-54

Ch x/C

2Kx

a AA
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Cg =

Cy =

12K%x
 Pr
C2

120K?x
PSt

Equations II-55 are the four cumulants derived from the

governing equation of groundwater flow.

A  fT =n/a

Z2 = 2 2K, ho Sc x/al
T_5€

Z3 = 12 ¥ 2 h sc? x/a°

Zy = 120 Sh h sc* x/a’

In Chapter IV, the first three cumulants will be used to

determine the lag of a single reservoir, the number of single

reservoirs as well as the lag, T, required to simulate the system

response based on the input parameters used to compute the cumulants

shown above.
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Chapter III

FOURIER TRANSFORMS IN LINEAR HYDROLOGIC SYSTEMS

ITI-1 Introduction to Fourier Analysis

whre

A linear system is charac*+-vized by the following equation:

p
on

CC
ou

2) | £ (tT) h (t-T) dT TT Te

£, (t) = an input function

I tt) = the system response function, characterized as the

response to a unit impulse

E_it) = response of the system to the input
-Ny
=)

Applying a Fourier transformation to equation III-1 yields

w) =
3

po

es I2m | £, (8) -
-=O0

di

ral=2

=
27

©0

e “jut dt
amOO

- £,(T) h (£-T) d T

Letting s=t-T and changing the order of integration, the

above equation reduces to

AQ ia



III-3
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which can be further stated as

vhere

 ue
[y 0) = H (Ww) Lat (w) Ii.TY am 4

F, (Ww) = the Fourier transform of input function

1 {W) the Fourier transform of the system response.

(multiplied by 27)

F(w) = the Fourier transform of the output.

Therefore a convolution integral can be reduced to a simple

multiplication of Fourier transforms.

Traditionally in hydrology the whole series of linear models,

such as the linear Reservoir, Muskingum, Nash and linear solutions to

the momentum and continuity equations, have been utilized by obtaining

expressions for the system response function and performing the lengthy

and time consuming numerical (or sometimes analytical) convolution in

a computer.
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The purpose of this chapter is to combine the knowledge of

the analytical Fourier transforms of these linear systems with the

availability of numerical computer techniques to obtain Fourier

transforms in order to utilize equation II-4 to find the outflow from

a system resulting from a known inflow.

By reducing the complicated convolution procedures to a

simple multiplication and by utilizing an efficient numerical trans-

form scheme the time required to obtain the output function should be

reduced significantly.

In this chapter two available computer programs to carry out

Fourier transformations are investigated. One is based on traditional

finite numerical integration of the Fourier transform equations; the

other is based on the theory of Fast Fourier Transforms. The accuracy,

speed and ease of use of each of these programs are evaluated and

compar 2d

III-2 Fourier Transform Technique

Two numerical, computational techniques are considered in

this paper. One is based on the Cooley - Tukey Fast Fourier

Transform Theory which was available at M.I.T. as Subroutine

FOURT, (Appendix A-2). The other is based on finite numerical integra-

tion of the Fourier Transform equation and will be noted by Sub-

routine FOURTRAN (see reference Eagleson and Goodspeed (1970)).
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The discrete form of the finite transform used in Subroutine

FOURTRAN is:

'nerec

A)

_L NF

= Jo 1 f(t) exp (-jw LAt) At
I “Ta=§

NF
—

— number of points in time at which f(t) is given

£7) = input function at interval At

At = time interval

1) anqular frequency

This equation is evaluated at different equally spaced Aw's

up to some cutoff frequency, w_ which must be less or equal to T/At.

If the given w_ value exceeds T/At it is automatically adjusted to

this value. In order to return to the time domain (by taking the

inverse transform) the procedure is as follows:

a) change sign of the exponential

bh) integrate over the angular frequencies (Aw)

c) evaluate at different times (t)

ITI-2.1 Characteristics of Subroutine FOURTRAN =--

Numerical Integration Technique

The following are characteristics of Subroutine FOURTRAN:

1G



a) Two options are available to the user for the

output, a complex spectrum or the normalized

amplitude and phase of the spectrum.

5) The program does not require the input function

to be periodic.

=) The input function is assumed to start at a value

of zero,to be sampled at equal intervals,and to be

d)

zero after the sampled period.

For simplicity, the forward and inverse transform

equation are made similar by multiplying by

1/v/ 2m, thus allowing a simple transition from the

forward transform to the inverse transform.

3 Since the complex spectrum of a time series is

symmetrical about the origin and if FOURTRAN is

used to find the inverse transform, only one

portion of the symmetrical transform is input and

thus the resulting time domain series must be

doubled in order to keep the proper scale.

III-2.1.1 Test and Results for Subroutine FOURTRAN

The tests performed on Subroutine FOURTRAN consisted of

entering and exiting the program with one function in order to

determine the effectiveness of the program in returning the iden-

tical function. The function chosen was that of the linear

50 =



reservoir as presented in Chapter II.

The forward and inverse Fourier transforms from Subroutine

FOURTRAN are dependent on the following parameters:

At

0
0

sampling time intnYvAal

maximum angular frequency, Nyquist frequency

Aw = angular frequency interval.

Table III-1 is a tabulation of the significant parameters in

the forward transform (frequency domain). In considering Table III-1

and comparing the analytical and computational transforms, these

indicated:

3] Accuracy increases as the integration steps de-

creased, i.e., At in the forward transform and

Aw in the inverse transform.

b) Figure III-1 shows the aliasing effect in the

forward transform when compared to the analytical

transform, i.e., as the transforms approach the

higher frequencies, the complex spectrum obtained,

using the program, diverges from the theoretical

transform.

2) As the integrating variable, At, decreases the

time of execution increases significantly. An
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Table III-1

FOURIER TRANSFORM (FORWARD) RESULTS -- SUBROUTINE FOURTRAN

[Input Function: 1/K e = (£/%)

Sample AT No. of K Yo Freq. Aw A Freq. Execution Time

Period Time Step Points (Time) (Rad/Time) (Cy/Time) (Rad/Time) (Cy/Time) (Sec)

J

36,9

36.0

36.0

36.0

36.0

36.0

36.0

36.0

42.0

A‘ - J

54 jo
-

0.2

0.1

0.1

0.1

0.05

0.1

0.1

0.1

0.1

55

55

58

1

74

55

11

29

ab

74d

5.0 5.727

5.0 5.727

5.7275.0

5.0

5.0

5.0

5.0

5.0

5.727

5.727

5.727

5.727

5.0 5.727

5.0 5.727

9115 .0873

»9115 , 0873

9115 ,0873

9118 | .9

1.0345 , 0873

9115 .0873

9115 0.50

0.25,9115

,9115% ,0873

1.0345 ,0873

.0139

.0139

»0139

1910

.0139

0139

. 0796

.0398

.0139

.0139

6.84

12.84

1.81

14.49

24.53

2.7

4.73

14.58

16.72
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attempt was made to decrease the aliasing effect

by increasing the Nyquist frequency, ws as this

decreased the integrating step, At, however

the execution time again increased. Increasing

Aw, on the other hand, provides an inverse re-

lationship with the execution time. The problem

is that in order to provide good results in the

inverse transform an adequate number of points

in the frequency domain must be provided. This

implies use of a smaller Aw and therefore higher

execution times ir the inverse and forward trans-

form calculations.

The results obtained when finding the inverse of a complex

spectrum using FOURTRAN are shown in Figure III-2. As the figure shows,

the numerical integration method of finding the Fourier transform fails

to reproduce its original input,.i.e., if a forward transform is

performed on an input and then the corresponding inverse on that trans-

form, FOURTRAN fails to reproduce the original function. This is due

to the finite integration technique. The problem that we are faced

with is when a system response is to be represented by a series system

of models as discussed in Chapter II. In this case, the output of one

model response is the input into the next, thus requiring a multiple

use of a convolution technique. Thus, if Subroutine FOURTRAN was

recalled a number of times, the integration error would compound itself.
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III-2.2 Characteristics of Subroutine FOURT --—-

Fast Fourier Transform Technique

ITT-2.2.1 Data Requirements

This subprogram assumes periodicity, i.e., the input values

represent one cycle of a periodic function. The input values must be

at even time (frequency) intervals for a forward (inverse) transform

and may be real or complex. However, when returning from the frequency

domain the data must always be complex. If the number of data points

is a power of two this subprogram will run at its maximum efficiency.

The only data the program requires are the input values, the number of

input values and information indicating if the inverse or forward

transforms is desired.

III-2.2.2 Subroutine FOURT --- Forward Transform

The Nyquist frequency, w_, is determined analytically as

m/At, thus defining the frequency interval, Aw, at which the transform

will be evaluated. A property of the FOURT returned forward transform

is the symmetry of the transform about the Nyquist frequency, with that

frequency as the midpoint (plus one if the function has an even number

of points) of the transform. Since FOURT evaluates over a frequency

range of 2m (N-1)/NAt, at frequency intervals of 27/NAt, the Nyquist

frequency will be located at point N/2 due to FOURT's symmetric repre-

sentation in the frequency domain. The number of output points in

r
dr



Subroutine FOURT is identical to those input.

II1-2,2.3 Subroutine FOURT ==~- Inverse Transform
 —_—eR,ToonverseTransform

The output of the inverse transform is a regular time series

and has the same time intervals as the original input since it is

based on the same number of input points. The resulting time domain

function must be divided by the number of points used in the calcula-

tion in order to obtain the correct results- a property of FOURT. In

finding the inverse transform the user must ensure that the complex

spectrum is input in the symmetrical conjugate form described above.

I1I-2.2.4 Implications of the Input-output Requirements

As mentioned above, the number of points returned after

transforming with the subprogram FOURT is the same as input initially.

Since the program assumes a periodic function this implies that in

using the program to convolute, by multiplication of input and response

transforms, the same number of points must be in each of the transforms.

It is important to note that FOURT does not consider the

1/2m factor usually found in Fourier transforms so caution must be used

in interpreting FOURT's results.

II1I-2.2.5 Tests and Results
 feed SSUS dnd ~esults

in finding the inverse Fourier transform of a FOURT obtained

”



complex spectrum, the program was able to reproduce the original time

domain function identically, thus indicating a good computational

scheme. When the theoretical Fourier transform was input in the fre-

quency domain and the inverse was taken the results were very close to

the true function, Figure III-3. However, the aliasing effect still

axists as shown in Figure III-4.

IYI-3 Selection of an Efficient Fourier Transformation Technique

Subroutine FOURT, the Fast Fourier Transformation technique

is chosen over Subroutine FOURTRAN for the following reasons:

a) it is considerably faster

b) the accuracy is maintained in the inverse trans-

form when using the theoretical forward transform.

c) the exact reproduction of the function in the time

domain is obtained when the forward and inverse

transforms are computed in succession.

I1I-4 Convoluting with Fourier Transforms

Implementing the algorithm to convolute by multiplying Fourier

transforms presents some immediate problems.

First, the selection of the Fast Fourier transform program,

FOURT requires that the functions being transformed be defined as

 ~- 58-
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periodic functions. Selecting this period so that the resulting

output would not be affected by the assumed repeating portions of the

input and response functions, was one important task.

Secondly, the response functions of all linear models approach

zero at infinity. Since a finite function was required in order to be

able to define a time period for the input, response and output functions

all of which must be input as the same time period, it was necessary to

develop a criteria for adequate definition of a cut off time for the

response function.

Finally, the Fourier transform of a function may include

infinitely many terms requiring that the frequency range of the trans-

forms also go to infinity. It is necessary, then, to develop a method

to find the Nyquist frequency, w_ which will limit the frequency band-

width to the frequencies of interest. By fixing the Nyquist frequency,

the time increment, At, that the input function must be sampled at in

order to detect frequencies up to Ww , is defined.

III-4.1 Defining the Nyquist Frequency, “o

The requirement for defining the Nyquist frequency, w_, is

to ascertain the 'energy' required if the response function is suf-

ficient to produce accurate results. To determine the 'energy'

retained by the response function, the 'power' spectrum of the re-

sponse function and NOT the input function is used for this purpose.
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The logic here is that the frequencies of the obtained output are

limited by the dominating frequencies of the system response function.

Hydrologic systems, generally, pass a significant amount of the input

energy within the lower frequencies. As this is also the case of the

linear models used to represent the system response, most of the

energy within the system may be retained without the consideration of

very high frequencies.

The procedure of fixing w is illustrated using the well

known linear reservoir model whose response function is given by

wl -s
go Ta

«x

vd
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3

tt)
ry

5
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its

the delay time constant

HA eT. 3

The normalized amplitude spectrum of this function is

given by:

| H_ (WK) | = (1 + (WK) 2) 2 laian=7

The power density spectrum is defined as the square of the amplitude,

”~ wee
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Since a unit impulse input function is being considered, its ampli-

tude density spectrum is given by:

t’ (WK) =
vm
271

I -

Then the energy density spectrum of the output is the resultant

multiplication of the input and response power spectrums, or:

rJF ) = | H wa |? | Py (WK) | 2

L | HK) |
4

Il. -10

1 ( —tem )
2 1+ (WK)2

The energy of the output that must be preserved is chosen to be 98% of

the total energy. Then, the Nyquist frequency, wo must be found which

will assure that an energy loss greater than 2% does not occur. The

total energy of this system is, given by:
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WF 4
nt | © (WK) 4d (WK)

1 | d (WK)
m o 1+ (WK)2

1:I-11

~ og

(3



Thus, in order to keep 98% of the energy, we need to integrate over

the area of interest, as in Equation III-12 ,such that

rs NK

rN

T

d(wk) = 0.49

J 1+)?

I1Z-12

be

T {tan*

But for n=1, Equation II’

¥*

- on
— hm J

(WK) = n 7] =

-12 becomes

WK)
= 1.409

0.49

II.-13

hus

ol = tan (4.68)

= tan (268°)
I1.-14

28.656

Thus, 98% of the output energy of a linear reservoir model will be

passed if the Nyquist frequency, ws is determined by the expression

ITI-15, which is in terms of the model parameters K.

aN
~y

= 28.“ Zo/K III-15

I1II-4.2 Effects of Complex Responses on the

Nyquist Frequency

Theoretically this procedure should be applied to each



model in order to obtain their respective expressions for w_.

Unfortunately the power spectrums of other model response functions

get fairly complicated, especially as the number of parameters

increase. Due to this difficulty, it was decided to use the Nyquist

frequency determined for the linear reservoir as a basis for all

linear systems used. Making such an assumption should assure that

the selection of W, is on the conservative side. Of all the linear

models the linear reservoir can pass the highest frequency components.

Figure III-5 demonstrates how the linear reservoir

normalized amplitude spectrum has higher frequency components than

Nash Models of order greater than 1 (which is the linear reservoir).

III-4.3 Selection of Response Function Duration

The time period for the system response was chosen

arbitrarily to be that time which would allow 99% of the response

to have occurred.

Again this was done by setting up an integral equation. As

an example the linear reservoir formulation was used. The total area

under the linear reservoir response curve is unity,so to find the

time which should be used, the integrated system response for a linear

reservoir was equated to .99, thus representing an area of 99%.
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Again, due to the difficulty of integrating some of the more

complicated response functions, it was decided to use the linear

reservoir criteria with other linear models.

If this procedure were followed for the more complex system

response models, it would be found that the integration increases in

complexity. To alleviate this problem, the 'lag' of the complex

system responses was used in place of the lag for the linear reservoir

response in Equation III-18. Although a large part of the area under

the linear reservoir response curve is concentrated at the origin,

this procedure provides a conservative but efficient solution for the

response time period. The results of this procedure when applying a

Nash Model response is found in Appendix B-1.

III-4.4 Selection of the Output Period

As mentioned in Section III-2.2 the selection of FOURT for

calculating the Fourier transformations required choosing a time period

representative of the output hydrograph. The response and input

Functions are then obliged to have the same period, so zeros must be
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added in order to extend these functions to the required time period.

The algorithm utilized to do this is the following:

The duration of the output, T » according to convolution

theory, is the sum of the input duration, T.,, and response duration T.
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T. = the duration of the response to the system as given

in Section III-4.2

Let N,
4

T = the time of input duration.
l

be the number of points in the input given at intervals At. .
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Let N be the total number of points in the output which must be at the

same interval, At, as the input, then
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Therefore the number of zeros to be added to the input function is

given by:

Number of zeros =
T
r ,A -— ohowni TT am 22

The time period required for the input, response and output

functions must be defined by the period T + T,. Since the system

responses will not be utilized in the time domain but only in the

forward transform, this procedure will transpose the time period into

the number of input values as required by FOURT. For a further dis-

cussion, refer to Section III-2.2

IIT-4.5 An Example - The Theoretical Solution

Having solved the implementation problems, an example was

tried. In order to have a basis for comparison, the theoretical

solution of the example is obtained initially.

The example utilized was the response of a linear reser-

voir to a square wave input of amplitude I, and duration T

The output function for this example can be found by

convolution. The convolution integral for this example is:

t
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This can be divided into two regions:

£ t) &gt;

KX
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The same result can be reached by finding the Fourier trans-

form of the input and the response functions and multiplying them

together. The Fourier transform of the input is given by:
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The Fourier transform of the response function is defined

as

1
1

=
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e ~t/X e Tjwt dt
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The Fourier transform of the output function is obtained by

multiplying these two results, i.e.

GW) = fe Ww)  H ww)

+I:Z-28
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II1I-4.6 Obtained Results

A computer program was written to test the example discus-

sed in Section III-4.5. The program used as input, the desired forcing

 -— ry
ff .
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function and the parameter, K, describing the linear reservoir model

used. The program obtained the desired Nyquist frequency, w_, the

corresponding time intervals at which the input must be given, At=m/w_.

and interpolated the input to the desired time interval if not given

at that At. The program also evaluated the theoretical Fourier

transform of the response function, found the transform of the input

by using FOURT, multiplied them together, found the inverse of the

resulting transform using FOURT to obtain the output function and

finally plotted the resulting data together with the theoretical

result. A copy of the program is included in Appendix A-1l.

The program was tested with a square wave input having a

maximum value of 3.0 and duration of 2 time units. The linear reser-

voir model used a parameter K equal to 1.5. The plot of the resulting

output function and its theoretical value can be seen in Figure III-6.

As shown, the results are extremely accurate. The program with all the

plotting, interpolating etc., took 2.67 seconds to execute on the

I.B.M. 360-67 computer system.

It is interesting to note that even though FOURT forward

transforms showed marked aliasing effect (Figure III-4) and also failed

to reproduce, exactly, the correct function when finding the inverse

of a transform that was not its own (Figure III-3), that when the

inverse of the forward transform is taken, after convolution, resulted

in such an accurate solution. This is due to the fact that the
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response is most sensitive to the low frequencies. In the areas of

low frequencies the aliasing effect and the error in finding an in-

verse of a non FOURT transform are minimal.

ITI-5 Application to Surface Routing

Harley [1967], in part, utilized two parameter simulation

models to represent flood routing in open channels. This he ac-

complished through simplifying assumptions of the various complex-

ities in the system. These complexities he listed as being in the

field of physics, geometry and inflows. The complex physics was

satisfied by taking the complete equations for open channel hydraulics;

the complex geometry was handled by assuming a uniformly wide

rectangular chezy channel; and lastly, linearization provided the

means of simplification of complex inflows. This means that the re-

sponse of the channel may be characterized by the response to a delta

function.

In order to relate the complete linear equation to the

parameters of the simplified two and three parameter models, Harley com-

pared the cumulants or moments, these being the Lag, M.., the variance,

M, the skewness, M, and the Kurtosis, M,. The parameters estimated

by this method are expressed in terms of the hydraulic parameters of

the original channel while in its reference steady - state condition.

The lag, M.. was equated to the first moment about the origin and the
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variance, M,, was equated to the second moment about the center, these

being derived from field data.

In the derivation of these parameters, Harley used the

cumulants in the dimensionless form known as the shape factors. These

3~=

3.
~~

-

= 2

s, c,/C
~~

Fe - 29
_ 3

5s, = C,/C,

Ss, = C,/C,", etc.

This in effect, removes the time scale effect from the second and fol-

lowing cumulants, making them dimensionless.

The two linear models that will be used to represent the

system response of Harley's complete linear channel equation will be

the two parameter models, Lag and Route Model and Nash Model.

The properties of the moments with respect to the distri-

bution are:

M = Area

0

M,' = Lag (or mean), with respect to the origin.

M, = Variance, i.e. measure of dispersion of the distri-

bution about the mean.

M, Skewness, i.e. measure of the shift of the peak from

the midpoint of the time axis of the distribution.
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 NM = Kurtosis, i.e. measure of the peakness of the distri-

bution.

Harley notes that the cumulants except the first, are invariant under

a change of origin and are expressed in the relation:
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He goes on to show that the cumulants for the complete solution of the

linear channel equation are:
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vh~re Vo = mean velocity in the steady state

F = Froude number

vy, = depth of water in the steady state

So = slope of the channel bottom.

These then can be related to the cumulants of the systems that are

selected to simulate the channel routing of the flood wave. The

cumulants for the two parameter models, the Lag and Route and the Nash,

are presented in Section II-6.

The parameters and conditions that Harley used in the Chan-

nel Routing are as follows

low conditions: Reference Discharge =

Reference Velocity =

Reference Celerity

Reference Depth

D (S_%/y)

150.0 cfs.

4.14126 ft/sec.

6.21189 ft/sec.

36.22086 ft.

5.52167



Channel Parameters: Length

Slope
 —
=

Friction coefficient =

Froude NO.

200 miles.

1.0 ft/mile.

50.0 (Chezy).

0.12129.

This configuration yields the following cumulation and shape factors

Sy = 47.22126 hrs

S, = 0.120292

Ss = 0.0438913

S, = 0.0265171

Inflow Parameters:

Type Thomas Wave

[q (0,t) = BER (1 - cos(2m t/f)]

where £ = wave frequency of recurrence

qd max = Maximum flow over t

ei tb4

Time to peak = 48 hrs.

Peak discharge = 200 cfs.

Base discharge = 50 cfs.

By relating the shape factors to the cumulants, the parameters of the

linear simulation models can be related to the hydraulic characteristics.

For instance, in the case of the Nash Model we have:
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K = 5.68034

Cus
—

n = 8.31309

The same procedure can be used to obtain the parameters for

the Lag and Route Model yielding

K = 16.37782

T 30.84344.

Obviously, one must be careful of placing physical signifi-

cance to these parameters. For instance, in the case of the Nash

parameter, n, which represents the number of linear reservoirs, this

requires a fractional reservoir thus pointing out the discrepancy

between the physical significance and the parameter.

The program used to calculate the output hydrograph by means

of the harmonic analysis may be found in Appendix A-1l. Designed for use

on the IBM 370-155 computer system the program uses less than 120K of

core. If the program was compiled (machine Language), and required a

plotted output, the results would be obtained in 2.64 secs. for the Lag

and Route Model and 3.9 secs. for the Nash Model.

The results are plotted in Figure III-7 and III-8. Com-

paring the results obtained by Harley of the linear solution together

with those obtained using the FFT approach, Figure III-7, indicates

the results of the Lag and Route Model to be as good as or better

than Harley's solution, resulting in an RMS error of 0.00638 or better.
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Figure III-8, indicates the results of the Nash Model also resulting

in RMS error as good as or better than 0.00089 for Harley's solution.
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Chapter IV

APPLICATION TO A REGIONAL RIVER BASIN

IV-1 Discussion of the Selected Regional

River Basin

The river basin selected for study in this chapter is the

Rio Colorado River Basin in Argentina where water is supplied almost

entirely by the melting snows of the Andes Mountain Range. The

tributaries that drain the catchment area within the Andes are: the

Rio Grande, the Barrancas, the Arroyo Butaco and the Arroyito

Chachaico - Buta Ranquil. The Rio Colorado then, carries these

waters from the Andes (about 72° west longitude) to the Atlantic Ocean

(about 62° west longitude) flowing through the great Patagonian Plain

which consists primarily of sedimentary material, Figure IV-1l. Very

little precipitation occurs in the central region located in La Pampa

province. The mountainous region receives the greatest precipitation,

mostly as snow. The third region is the Eastern Coastal Region in the

province of Buenos Aires which has considerable vegetation due to the

moderate precipitation and temperate climate.

Iv-1.1 Geology and Soil Description within

the River Basin

The geology in the head regions of the Rio Colorado is a

rie
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conglomerate of three primary formations, these being tertiary,

cretaceous and jurassic. The tertiary consists of upper continental

deposits, basalts, undifferentiated eruptive rocks, acid and

mesosilicic intrusive facies, lower continental deposits and marine

deposits. The cretaceous era consists of marine deposits, continental

deposits and marine &amp; continental deposits, while the jurassic era

consists of marine &amp; continental deposits and marine deposits. Below

the headwaters of the Rio Colorado the basin dates almost entirely to

the quaternary era consisting of glacial and fluvioglacial continental

deposits, marine deposits, basalts and other undifferentiated volcanic

rocks. There are outcrops of the tertiary, cretaceous and precambrian

aras, also.

The three regions, mountainous, central and eastern may be

used in segregating the soil types. The mountainous area is predomi-

nately fine sandy soil and due to the lack of organic material, pro-

vides a rapid infiltrating system. The more complex central region

may be divided into three major categories the first being a mantle

of sand as found in the mountainous region, then narrow beds of non-

consolidated river pebbles or gravels and lastly, two horizons with

the upper one consisting of a sandy silt material low in organic

material and therefore being adequately drained, and the lower

comprised of loam and clay or a silty loam which tends to retain the

salts lost from the upper horizon through leaching. The lower horizon

sometimes appears on the surface due to the erosion of the upper. A
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third material which is found in the eastern region of the La Pampa

district is a hard pan material called 'Tosca' which restricts both

infiltration and root passage. The eastern region which has soils

that are suitable for cultivation, has two soil horizons as well, the

upper being a sandy or sandy loam, while the lower is sandy with fine

silts held together by a calcareous cement. With the high rate of

irrigation and moderate infiltration rate in this area, the water

table has risen, thereby increasing the salinity in the upper horizons.

Hard pan material has also been found in this region.

IV-1.2 Hydrologic and Agricultural Discussion

The Rio Colorado begins at an elevation of 4,800 m at the

source of the Rio Grande, and flows to the Atlantic Ocean over a

distance of 750 Kilometers. In the upper reaches, the river averages

a slope of 2 ~ 0.4 m/km but decreases to an average of 0.4 m/km in

the lower reaches. Due to the sediment transport capacity of the

river and the small slope in the eastern region, a delta was formed.

The average flow at Buta Ranquil is 143 m/sec. but has a recorded

minimum flow of 44.0 m3 /sec. and a maximum flow of 678 m/sec..

The subsurface conditions have not been thoroughly studied

within this river basin. The trend in the Buenos Aires region tends

to show that basalt fractures allow the water to enter into a deeper

zone. In the western portion of the La Pampa province a shallow
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bedrock situation produces a high water table that is found to have

an elevation of about 2 meters below the surface. This bedrock

strata 1s lower in the eastern sector of the province, thus lowering

the water table.

Agriculturally, the region is sparse but there are plans

to develop irrigation sites along the river. Generally, the produc-

tion consists of 70% alfalfa, 19% vegetables and the rest fruit or

other minor crops. The general procedure for irrigation of an

agricultural cultivated area is to provide enough water so as to meet

the consumptive use requirment for the crops as well as the leaching

requirment for the soil. In the Rio Colorado Basin the growing

season spans an eight month period therefore there is a four month

period when there are no water requirements. This procedure presents

a cyclical water demand very similar to 1/2 of a sine wave. For the

purpose of this work it is assumed that the leaching demand is met

with the water reaching the phreatic zone in the same distribution

pattern

IV~-2 Conceptual Discussion of a Regional

Groundwater Routing Model

With the background having been discussed in the above

sections, the logic behind a regional groundwater model may be dis-

cussed. There are three areas of interest in the groundwater area:
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a) A quick responding system which exists in the upper

root zone where a condition of interflow may occur.

0) A rapidly responding system representative of the

shallow zone in the soil structure, resulting from

a drainage system in an irrigation site or as a

natural phenomena.

~) A slowly responding system that exists in the deep

reaches of the soil structure (deep water zone),

which may represent the flow of groundwater in an

aquifer laterally to a river or parallel to the

river interacting with the river at some distance

further down stream. The conceptual logic here may

be seen in Figure IV-2, which is a profile of the

eastern portion of the basin. Here a loss to the

river resulting from a zone of higher permeability,

over which the river flows, will, possibly, provide

additional groundwater flow in a direction parallel

to or diverging from the river due to the geological

structure of the soil. Or a groundwater flow may

result in an old river bed after that river was

diverted for other purposes or possibly as a result

of a change in the bedrock strata. Figure IV-1, indi-

cates a tributary that no longer provides flow to

the Rio Colorado due to a diversion in an upstream

province.
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A conceptual schematic of a groundwater routing model for

an irrigation site is shown in Figure IV-3, which also indicates some

typical linear model for each process.

IV-3 Model Development

The model which will be developed in this section is similar

to one suggested by Diskin [1964], where he distributed his input into

two parallel Nash chain series thus providing a more flexible system

response. The block diagram used in this model is shown in Figure IV-4.

IV-3.1 General Linear Groundwater Routing Model

It was found in Chapter III that the use of the Fast Fourier

Transform in Harmonic Analysis for convoluting an input with the system

response to a delta function was not only fast but also very accurate

in representing an output hydrograph. The parameters used for the

system response in Chapter III were derived through the use of moments

and the general governing eguations for oven channel flow.

In a groundwater regime, there are many complex processes

that can never be completely understood either by reason of mathemat-

ical theory or by the many unknowns in the subsurface zones such as

cracks, fissures, non-homogeneous and non-isotopic conditions. Thus

a method was needed that would be fast and represent, to the best

available means, the response of such a subsystem. Considerable work
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has been done in understanding flow through porous media either

theoretically or using an empirical systems approach. The Dupuit

approximation and Darcy's Law have both been used in finite difference

schemes to determine what might be expected in groundwater movement.

Dooge [1960], used a linear system approach to develop coefficients

that could be used to represent flow into and out of a river system.

This was discussed in Section II-6, Parameter Estimation. As this

uses the requirement of constant recharge over the time period, it is

felt that this is too restrictive. Therefore, in an attempt to avoid

the constant coefficient concept as presented by Dooge and O'Donnell

(discussed in Section II-6), a procedure similar to that used bv

Harley [1967] for open channel flow will be considered here for ground-

water flow.

To represent the various processes that might take place,

as in a shallow water table with flow to drainage ditches as well as

a deeper system that would provide for flow to a river, lake or ocean,

we must be able to use various system responses to the same delta

function. Conceptually, this might require the three known system

responses, the Nash, Lag and Route and Linear Reservoir Models, to act

in series, in parallel or in a complex configuration of both. With an

increasing complexity of the system response, in order to prevent a

decrease in efficiency of the program mentioned in Chapter III, a

procedure will be used to conserve the time of computation. As an
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example which will be considered later, a Nash Model is used in series

with a Lag and Route Model. We would expect the time required for com-

putation to be 4.6 seconds plus 3.9 seconds or a total of 8.5 seconds,

thus reaching an infeasible point in cost control due to a large

requirement for computer time.

Consider the prospect of manipulating the inputs and system

responses in the frequency domain for the entire record of interest

before using the Fast Fourier Transform, F.F.T., program to re-enter

the time domain.

It was shown in Chapter III that the frequency response to

a Dirac delta function for a linear reservoir is simply

2D)
1+35WK

whe re £ linear reservoir time constant

1) angular velocity

Jtim
Vv -|

+ f= 1

Since the Fourier Transform can be obtained by the relation:

00

1 A
_ 1 -jwton | e f(t) dt

~

lw) Iv-2

then the frequency response for the Lag and Route Model is simply
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H (W) = exp (-jwT) / (1 + jwK) Iv-3

By the same procedure the Fourier transform for the Nash Model is:

Ww) (1 wie? =0/2
exp {(=jn tan ‘WKY ) IvV-4

Since the Nash Model is a series of n linear reservoirs, let us put

this transform into a more suitable form. The frequency transform

for a Nash Model may be represented as:

i 5)
ht - WK

-— ls

1 \/f -— 5

or more illustratively by:

wy =
1 1 1 1

Hor THor THex) reer T5ex) -5

This is equally applicable to unequal linear reservoirs which would

be represented by:

1
1 1 1

hay = SFE Tex,’ teers Tro I. JI

The important point shown above is that if we have a series

of individual components that represent the system all we need to do is

simply multiply the Fourier Transforms together to get the transform
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of the whole system.

If we have a situation where the system response is to be

represented by parallel responses instead of in series, as shown in

Figure IV-5 we know from Chapter III, that the Fourier Transform for

the outputs,Q, can be determined in the frequency domain by multi-

plying the input transform, I(w), with the response transform, H(w),

re

2) t‘w) = Hi(w) « I; (Ww)

IV=-8

Q (Ww) = Hy(w) I; (Ww)

The inverse Fourier Transforms are given by:

3
fo&lt;) am? i 0, (W) e

jut
dw

V=C

d, (t) = 0, w) e Ut ay

but as shown by Figure IV-5

eZ 4 LJ
—  cq (t) + q, (t)

RLS
s OO

(Q, + 0.) e jut

- J

 —- Qf -
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therefore:

J ‘w) = Q(w) + Q,(w) v="1

Thus by merely adding the Fourier Transforms of the Output, Q, the

total output hydrograph in the frequency domain can be obtained.

Therefore, with only one operation it is possible to return the total

output hydrograph to the time domain.

Keeping these concepts in mind and returning to the pro-

gram discussed in Chapter III, a relatively simple and efficient model

may be generated to determine an output hydrograph to a groundwater

routing model.

The input to such a model may be whatever one desires to

represent the inflow to a groundwater system, using possibly a dif-

ferent input for each leg of a parallel system or one input segregated,

by weights, for each leg of the system.

There is a restriction however to the use of the F.F.T.

program (see Appendix A-2), that is, as discussed in Chapter III, the

number of points that enter the transform program is the same number

as the points that are returned from the program. Therefore, it is

desirable to use the total time period initially. Then by simply

adding zeros to the shorter 'legs', the time period for each parallel

segment, can be brought up to the necessary time period. There are
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two important considerations to be looked at here, the time period to

use and the Nyquist frequency, Wr that must be used. As indicated

in Chapter III, these are both dependent on the system 'lag’

The system lag must be considered by the three possible

conditions, whether it be a series system, a parallel system or a

combination system. The lag as shown in the last chapter is re-

presented by the first moment about the origin, or for the three cases

a=] .

i R rvoi = K
Linear Rese r LR

Lag and Route

NaSh

T +

wr

la Sg

\. V=-"2

Thus if all three models were to be in series, the system

lag, K_ would be represented by:

oe nk | + (T + &lt;.r + K_.
LP

T

a
Pm

«o

LS

However, if the system consists of parallel members then the greatest

system lag K_ would be used to give the largest time period, or

be — Max Es
 Ss

ac —

!
oe

v owpy 2
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In Chapter III, a method was developed that determined the

minimum response time period for which 98% of the area under the

distribution (or response) curve was assured. This method was based

on the linear reservoir or the exponential distribution. Since we are

now considering the Nash Model, the procedure for determining the time

period must be altered. The significant point in such a determination

was the integration of the response function. For the exponential

distribution this was a simple task. However, the Nash Model being a

form of the gamma distribution, proved to be more complex - not so

much from the theoretical standpoint as the fact that computationally,

the time would increase. A small program was generated to test the

significance of such a computational scheme for use within the program.

The test program and the results may be found in Appendix B-l. It was

found that conservative results would be obtained for the time period

of the system response if the lag (first moment) of the Nash Model, nk,

was used in lieu of K as used in the computational technique for the

Linear Reservoir case. Therefore it was unnecessary to change the pro-

cedure for determining the time period of the response of the system.

Additionally, this required the determination of the greatest 'lag' in

a series response system. By using the greatest 'lag' of a series

system we were assured that the response time period would meet the re-

quirements of the entire model and yet not prove to be extravangant

on the time necessary to execute the model.
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The second requirement is that the folding frequency, or

Nyquist frequency, is great enough to retain most of the energy of the

system in the frequency domain. As discussed in Chapter III, by using

the Nyquist frequency for a linear reservoir, i.e. n = 1, most fre-

quency requirements would be met for any of the three types of models.

This was shown to be true by Figure III-5. Also by acknowledging the

fact that as the number of reservoirs in series increase there is an

increased damping mechanism which reduces the effect of the higher

frequencies then a conservative estimate would be obtained if the

Nyquist frequency were evaluated in the same manner as in the Linear

Reservoir Model.

Three parameters that are used in the Groundwater Routing

Model need to be discussed. These are the translational lag, T, the

effects of baseflow on a hydrograph, and the spacial parameter, WDTH.

For the special configuration, as indicated by Figure IV-4, implemented

into this model, the Lagged Nash Model was used thus requiring the use

of a translational lag. As discussed in Section II-3, the transla-

tional lag will pass all frequencies. Therefore, no effect is pro-

duced on the outflow hydrograph except a shift in time. The model

accounts for these lags by shifting the time array by the lag and

adjusting the points to each system accordingly. However, it is the

input hydrographs which are shifted by this time lag while in the time

domain. If this were not done in the time domain, it would not be
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possible to sum two parallel legs that had different translational

lags while in the frequency mode. As mentioned above no error is

introduced by this procedure. The second parameter indicates a base-

flow in the system. Normally this baseflow would be removed from the

input hydrograph and added to the outflow. However, if the parameter

estimation technique discussed in Section II-7 is used, this procedure

requires the use of sloping bedrock and, in turn, has an advective

velocity term incorporated. Therefore, only in the case where the

parameters are input individually, may the baseflow parameter be

utilized. The spacial parameter, WDTH, is used to transform the unit

flow into total flow for the area considered. Therefore it represents

the area over which the input exists.

The program listing for the Groundwater Routing Model may be

found in Appendix A-3. A restriction in the model requires that all

'series' systems be computed by type of response model, i.e., all Nash

response models will be computed before the next response model is

considered in that series.

[V=3.1.1 Discussion of the Shallow Zone System

Implemented into the Model

There is a theoretical problem encountered in the drainage

process. The parameters used for the routing of groundwater laterally

to the river as well as parallel to the river were determined by a
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procedure derived from a Dirac delta function. An irrigation area

requires that water be applied over a large surface with respect to the

travel distance to the drainage canals, thus extending the assumption

beyond its practical limit. Therefore a finite difference scheme was

selected to assist in deriving the parameters required by the Linear

Routing Model.

IV-3.1.1.1 Drainage Spacing

The Bureau of Reclamation (R.D. Glover [1967]), developed an

empirical relationship for relating the soil characteristics with the

drainage canal spacing. Equation IV-15, represents this relationship,

which was used in analyzing the irrigation sites in the Rio Colorado

basin to determine the drainage canal spacing, L.

whe re

1
DEPTH] %[or K Y, ]

PERC),
oT

—_  Jd Je 5

K

p

Max = Max lens height allowed above draincge ditch

DEPTH = Depth to botton of drainage ditch from ground

surface

Maximum percolated water over period of interestPERC,

By using this relationship and the available soil characteristics

within the Rio Colorado basin, a mean drainage spacing of 50 meters

was calculated and used with the finite difference scheme to generate

103



an outflow hydrograph. This hydrograph was based on an input repre-

sentative of the mean leaching requirements in the basin and a

permeability of 47 meters/month.

IV-3.1.1.2 Finite Difference Scheme

The finite difference scheme uses Darcy's Law in conjunction

with the continuity of flow equation. The resulting finite difference

equation is given by Equation IV-16.

here

ytot

t
At a, At Q.

-y t = J 1] y tit + J
; Sc. A, 1 Sc. A,
1X, I | |

353
Specific permeability (L2/T)

1. ob“Poe Vf y

’

(Flow area x Permeability)/L

Sec = Storage Coefficient, cell j (L/L)

Q, = Flow input into cell j (L/T)

H, = G.W. Elevation initially, cell i (L)

5, Z G.W. Elevation initially, cell j (L)

HT = Final G.W. Elevation (L)

I = Index of cell adjacent to cell j
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The flow across a boundary cell may similarly be determined to be:

JF {= \
4 j))- HT (3(i€3,3)

7 . (HT

lags
ie]

where QF (j) = Flow into boundary cell j

AT Number of cells adjacent to boundary

Figure IV-6, shows the physical int ror tation of the parameters

1-1"i

listed above.

A program was written to solve the simultaneous differential

equations that are set up in matrix notation with the use of equation

IV-16. The procedure used by the program in solving the simultaneous

equations is similar to the Gauss-Jordan method of elimination. The

time of execution is extremely fast for solving a matrix with a small

numbers of nodes, however, this time increases exponentially with an

increase in the number of nodes. Elinger [1972] uses this method to

study the entire irrigation process, inclusive of a salinity analysis.

Iv-3.1.1.3 Parameter Estimation with the Use of the

Finite Difference Scheme

The configuration has two boundary cells providing the limits

for three nodes used to represent the 50 meters drainage spacing. It

was found that a steady state flow condition would be established

10
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after running the model for three years, or three irrigation cycles.

A typical hydrograph was extracted from this steady state condition

which was used, along with the Method of Moments, for estimating the

parameters required by the Linear Groundwater Routing Model. Fig-

ures IV-7, 8, and 9, show the relationship between the parameters of

the Nash and Lagged Nash models for the number of single reservoirs,

n, the lag to a single reservoir, K, and the translational lag, T,

used in the Lagged Nash model, respectively. These parameters may be

estimated from the figures and serve as input to the Linear Routing

Model, if the conditions are such that the permeability is about

47 m/month, the drainage canals are about 3 meters deep and spaced

about 50 meters. In this derivation it was assumed that the bedrock

slope produced little or no effect to the results.

IV-4 Linear Groundwater Routing

Model Discussion

Since the parameter estimation procedure was developed with the

assumption that a delta function serve as the forcing function, con-

sideration must be given to the actual input to the system. If the

input area is small with respect to the distance of flow to the river,

then the errors of assumption in the derivation are acceptable.

However, if the area of application is large, e.g., a large irrigation

site or rainfall distributed over a wide area, with respect to the

lateral distance from the river, then significant errors are intro-

1N7
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duced and a re-derivation under more applicable assumptions is desir-

able. For this report, it is assumed that the assumptions are indeed

Me -—-

So far the discussion has concerned only positive outflows

from the aquifer to the river. Unless a condition exists that would

never allow the reverse to take place, a rare situation, the more

common circunstances would require a negative outflow due to a rising

river stage or evapotranspiration. When an irrigation site is con-

sidered, normally drainage ditches are used to allow most of the

leached water to return to the river via surface flows. The drainage

ditches in turn restrict the height reached by the water table. Also,

Philips [1957] shows that for bare dry soil (light clay) the evapo-

ration loss to the water table, in terms of free water, will be about

1 centimeter per year when the water table is at a depth of 1.5 to 2.0

meters. Therefore the most important consideration to make, when

analysing water losses to the water table would be the effects of

evapotranspiration which might set up a negative recharge condition.

This would depend on the type of crop with its depth of influence and

consumptive use requirements. In the case of the Rio Colorado in

Argentina the normal plant growth and thus the evapotranspiration is

relatively small except in the irrigation sites. By considering the

consumptive use of the crops within each site and the irrigation water

applied, the leaching water may be determined which is, essentially,

the water that will percolate to the Troundwater system.
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The other condition mentioned is a rise in the river stage

that will increase the 'bank storage'. The negative outflow caused by

such a situation could be determined by checking the river stage at

each time step. If the stage is above the water table, then change

the sign of the system response and the depth of the saturated flow,

thus allowing flow to enter the groundwater zone. Obviously, engine-

ering judgement plays a major factor in making a change such as this.

IV-4.1 Model Results

The model was used to analyse a situation when a single irri-

gation area lies in relatively close proximity to a stream reach. The

tests are divided into two segments:

a) the prediction of the input to the drainage ditches

resulting from applied irrigation water and

b) the prediction of the discharge to the river as a result

of this same irrigation water.

In the simulation of the drainage to the ditches a standard

drainage ditch spacing of 50 meters was assumed, while for the com-

putation of the seepage from the total area to the river a number of

situations were examined. These ranged from a 200 square meter site

at distances of 100 to 500 meters from the river to a 1500 meters

square area located 6750 meters from the river

The standard input for most runs is what will be called the
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three year irrigation cycle. This cycle represents the leached irri-

gation water which is assumed to reach the groundwater table and

therefore represent the forcing function to the groundwater system.

This was discussed, to some degree, in Section IV-3.1.1. A one year

input cycle represented by a depth of water applied to an area is shown

in Table IV-1l.

The drainage system, represented by the block diagram in Fig-

ure IV-10, was first tested with this three year irrigation cycle.

The parameters were determined by the procedure discussed in Section

IV-3.1.1, and are based on the Lagged Nash system response model.

These parameters, as shown below:

n 0.7841

K = 3.7690 months a 13

T = 0.5483 months

indicate that a fraction of one linear reservoir with a mean, or lag,

of 3.769 months together with a translational lag of 0.5483 months would

represent the drainage system under study. The input with the resulting

outflow hydrograph for this system is shown in Figure IV-11.

For comparison, the outflow hydrograph from the Linear Ground-

water Routing Model, LGRM, is related to the comparable hydrograph

generated by the finite difference scheme. Figure IV-12 presents the

typical cycle for the finite difference scheme and the LGRM.
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Table IV-1

ONE YEAR OF THE IRRIGATION INPUT CYCLE

Month

l (September)

Water Input (m) Over Area

0.1595

0.1806

0.2446

0.2711

0.2854

0.2569

0.2107

0.1804

0.0
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Figure IV-10

Block Diagram of the Drainage System
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Notice the discrepancy at the peakconfirming the discussion in Section

II-6 which states that the greatest error results at the extremities

when the parameters are generated by the Method of Moments. This

could possibly be reduced if the fourth moment, the Kurtosis, was used

in conjunction with a four parameter model. The typical cycles are

derived from a series of cycles which are approximately at a steady

state condition by removing the effects of the adjacent cycles. Fig-

ure IV-13 compares these same hydrograph but represents the third and

final cycle of the output hydrograph. The effect of the adjacent cycle

is apparent at the origin.

As discussed in Chapter III, the model is based on an ape-

riodic input. However, all the inputs used in the model are represented

by a three cycle series. In addition, irrigation sites will receive

water in a repeated pattern for perpetuity, unless changes are made to

the irrigation policy. Because of these two reasons, it might prove

beneficial to return to the concept of a periodic signal. The ape-

riodic signal was maintained by adding zeros (the length of the

response signal) to the input signal. This procedure prevents the

system from being effected by adjacent signals. Return to a periodic

signal should simply require the removal of those zeros. Figure IV-14

indicates the result of doing so when the same input is applied to an

area with the same parameters that are representative of the drainage

system. Notice that each cycle is identical to the next. By com-

paring Figures IV-14 with IV-13, we can see that, over the length of
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the input period the hydrographs are identical; an interesting as well

as useful result. The importance of this capability is readily ap-

preciated especially when steady state or periodic responses to slowly

responding systems are of interest.

The flexibility incorporated into the model for the system

response is significant in representing a more realistic situation.

In this case, as reflected in Figure IV-15, one chain of Nash elements

would represent an interflow process while a parallel chain represents

the same drainage process as presented in the above paragraphs. For

this example 60% of the inflow is assumed to go to interflow while the

remaining 40% percolates to a deeper zone. This was taken to be a

reasonable assumption based on the soil and hydraulic conditions of the

area. The outflow hydrograph resulting from the two inputs and

system responses is shown in Figure IV-16. The system parameters shown

below are selected to indicate the effect of an actual situation. The

drainage parameters provide the same system lag as in previous para-

graphs but with the translational lag effect reduced to zero. The

interflow process parameters were chosen to vield a more rapidly re-~

sponding system. These parameters are:

Drainage Process

n = 0.8

K = 4.73929

-

IN 0 )

- 121
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Interflow Process

n = 1.0

K =

T =

1.5

0.0

The effect of this combination of flows (Figure IV-17) becomes ap-

parent when this outflow hydrograph is plotted concurrently with the

drainage system hydrograph shown in Figure IV-1l. Since the interflow

process dominates the combined system the result is as expected, i.e.,

the peak is increased and occurs earlier than that indicated in the

drainage process (Figure IV-II). If the lag of the combined processes

was calculated it would result in a system lag of 2.08 months. Since

the lag of the drainage process above is 3.50 months, a difference of

about 1.4 months is expected. A lag of this magnitude is clearly

illustrated in Figure IV-17.

Figures IV-18 and 19 show the results of two other system

configurations. Figure IV-18 represents the outflow hydrograph when a

block input is convoluted with a system response of Nash and Lag and

Route Models in series. As previously mentioned (Section IV-3.1) the

execution time required to convolute an input with a Nash model in

series with a Lag and Route model might be expected to be 8.5 seconds.

The result of this model with that exact system response was executed

in 3.42 seconds, inclusive of the output requirements and the plotting

routine which is a substantial savings. Figure IV-19 represents a
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parallel system using a Nash model and a Linear Reservoir model for

the response characteristics with the parameters indicated.

The same three year irrigation cycle was further used as an

input to this system, representing discharge from the site back to the

river. This system is a very slowly responding one and its behavior

contrasts sharply with the rapid response systems described above.

Figures IV-20 and 21 will serve to illustrate the results. The input

variables again represent a sampling of data obtained from the Rio

Colorado river basin. The system represents the lateral flow to the

river from a 1500 meters square irrigation area located about 6750

meters from the river. Figure IV-20 is the resulting hydrograph for

a groundwater aquifer which has a bedrock slope of .01l m/m. This

slope plays a significant part in determining the parameters (refer to

SectionIV-3.1) as indicated by comparison with Figure IV-21 which is

the outflow hydrograph to an aquifer with a bedrock slope of .001 m/m.

One important fact must be noted here - that of the magnitude of the

time step. In both cases the time step greatly exceeds that of the

input time period which means that the result indicates merely a

transient response of a pulsed input. Notice that the outflow hydro-

graph in the lesser sloped system closely resembles the linear reser-

voir response. This verifies the comments of Dooge [1960] who states

that the translational effect is so small in a groundwater system that

in effect, the system may be represented by a storage reservoir. With

such a large time step it is not possible to determine the periodic
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signal response.

The effectiveness of the 'medium' slowly responding system

system cannot be demonstrated when such great travel distances are

considered. Therefore, shorter distances will be used in order to

present the significance of the theoretical techniques in use. As

mentioned earlier, the slope is a significant parameter in representing

the system response. Figure IV-21 shows the system outflow approaching

a Linear Reservoir response when the slope was .001 m/m for a distance

of 6750 meters. However, when this travel distance is reduced to

100 meters the outflow hydrograph responds very rapidly. The number

of points is small which prevents an exact analysis of this hydrograph.

This technique does provide a decreasingly accurate result as the slope

approaches zero. A slope of .05 m/m was selected to test the system;

the slope though relatively small, is sufficient to demonstrate the

effects of travel distance. Figures IV-22, 23 and 24 exhibit the

damping effect of travel distance in the system on a cyclical input.

In the case of the two parameters, the number of reservoirs, n, in-

crease linearly from 0.370 to 1.852, while the translational lag, T,

varies from 3.54 months to 17.73 months. The damping effect may be

understood more clearly by considering the system lag, nK. Notice in

Figure IV-22 that this lag amounts to 7.09 months, which is much less

than one input cycle. As expected the response indicates three clear

cycles which rapidly approach a steady state condition. Figure IV-25,

shows the effects of a periodic signal indicating that the aperiodic
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signal of Figure IV-22 does indeed reach a steady state. In Figure

IV-23 the system lag increases to 21.3 months which means that each

input cycle will produce considerable effect on the following year.

Thus, the figure indicates a much greater transient effect on the

system for the same input period. Finally we see that a system lag of

35.5 months in Figure IV-24 almost exceeds the input time period. In

turn the damping effect of the system on the input has all but reduced

the cyclical input to that of a simple transient. Figure IV-26 indi-

cates that if the same input were extended to perpetuity the system would

hardly be effected by the input configuration - an interesting result.

From Figure IV-20 we can see that as the system lag exceeds the input

time period, the transient result is relatively uneffected by the

shape of the input signal.

The third basic system of flow parallel to the river (See

Section IV-3.1) is not presented here since its behavior is expected

to be similar to that of the flow to the river but with longer dis-

tances and lesser bedrock slopes. Therefore it was not felt neces-

sary to include it within this discussion.

The program was run on an I.B.M. 370/155 computer system. The

core storage requirement for the program is about 120K.

We have seen that the Groundwater Routing Model is capable of

providing results to a periodic or an aperiodic signal using highly

efficient techniques. Such a flexible, efficient model as this could
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provide the Engineer or Manager with a low cost model capable of re-

presenting a wide variation of groundwater problems.
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Chapter V

CONCLUDING REMARKS

v-1 Summary

Chapter II summarized the developments within the field of

linear systems as well as the work carried out in groundwater flow

modeling

Chapter III developed an efficient technique of convolution

and compared the results to those obtained by a linearized solution of

the complete equation for open channel flow.

Chapter IV discussed a river basin in Argentina which was

used as an example of application of a groundwater routing model to an

actual basin. A model was developed using a parameter estimation

technique of the system response based on the governing equation for

groundwater flow. The results of this model were discussed.

V-2 Conclusions

The groundwater routing model discussed in Chapter IV has a

fast computational scheme which can be utilized to analyze a ground-

water system. It is a highly flexible technique, capable of any system

response desirable with little variation in computer time. As the model
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represents an approximation to a groundwater system it is, at best,

to be used as a tool to understanding the sensitivity of the system

being considered.

As in any technique being developed, the procedure for the

routing of groundwater has a number of benefits as well as disadvan-

tages to other methods being used to accomplish the same ends. The

benefits for such a system are:

a) the convolution technique is highly efficient

b) the cost of implementation is small

c) any response configuration may be utilized to

represent the desired groundwater aquifer

system

d) the input may be of any design, whether it be a

periodic or aperiodic signal

e) in considering the longer time periods necessary

when analysing slowly responding systems, such as

very long aquifers, the procedure automatically

adjusts the time increment to the minimum level of

interest to the system which also yields benefits

in terms of inexpensive analysis of that ground-

water system.

The problem areas include:

a) a technique is required to determine the weight
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distribution on the input to each process being

considered

b) ‘parallel’ flows which represent two processes,

such as a drainage system and a deep water zone,

have a wide variance in their computed time steps.

For this reason, if it is desired to combine these

flows, a separate procedure is required to do so

c) the parameter estimation technique for the drainage

system of the routing model requires the establish-

ment of parameters based on (1) a nomograph given

similar conditions to previously analyzed situ-

ations; (2) using known data and the Method of

Moments; or (3) the use of a finite difference

scheme, with the Method of Moments, to develop

the desired parameters. The accuracy of such esti-

mations has not been determined

ad) the parameter estimation technique for a deep water

zone process requires the input to be over a small

area with respect to the travel distance. Addition-

ally it is based on an advective velocity which is

dependent of the slope of the bedrock resulting in

problems to this procedure as the slope approaches

Ze dhe °
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V-3 Future Work

T'o be brief, the work required in developing linear ground-

water models in the future might include the following:

a) Incorporate the lateral flow to the river with a

linear stream routing scheme, as in the M.I.T.

catchment model, in order to determine the total

groundwater outflow hydrograph at some point

downstream.

b) Develop a technique for distributing the flow to

the various processes represented by the system

responses. This could include a linear reser-

voir or a similar response model to represent the

infiltration process.

~) Improve the parameter estimation process and

determine the sensitivities of the parameters when

data is available for doing SO.
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REFERENCES

Bittinger, M.W., Duke, H.R., and Longenbaugh, R.A., "Mathematical

Simulations for Better Aquifer Management", International

Association of Seientifie Hydrology, No. 72, 1967, 509-519.

Breitenbach, "Groundwater Systems", in Simulation of Water Resources

Systems, Nebraska Water K---urces Institute,C.E. Department,

University of Nebraska. 1071.

Carslaw, H.S., and Jaeger, J.C., Conduction of Heat in Solids, Oxford

University Press, London, 1959.

Chow, Ven Te. Handbook of Applied Hydrology, McGraw-Hill, New York,

YALE

Clark, C.0., "Storage and the Unit Hydrograph', ASCE trans, Vol. 100,

1945, 1416-1446.

Diskin, M.H., A Basic Study of the Linearity of the Rainfall-Runoff

Process in Watersheds, Ph.D. Thesis, University of Illinois,

Urbana, Illinois, 1964.

Dooge, J.C.I., "A General Theory of the Unit Hydrograph", J.Geophysi-

cal Research, Vol. 64, No. 2, 1959, 241-256.

14°



Dooge, J.C.I., "The Routing of Groundwater Recharge Through Typical

Elements of Linear Storage", International Association of

Seientifie Hydrology, No. 52, 1960, 286-300.

Dooge, J.C.I., "Analysis of Linear Systems by Means of Laguerre

Functions", Journal S.I.A.M. (Control), SER A, Vol. 2, No. 3,

1965, 396-409

Eagleson, P.S., Mejia, R., and March, F., The Computation of Optimum

Realizable Unit Hydrographs from Rainfall and Runoff Data,

M.I.T., Hydrodynamics Laboratory Report, No. 84, 1965.

Eagleson, P.S., and Goodspeed, M.J., "A Preliminary Study of Experi-

mental Catchments in the Alice Springs Area”, Unpublished

Paper, 1967.

Edelman, J.H., Over de Berekening van Grondwaterstrominger, Doctor's

Thesis, Delft, 1947.

Edson, C.G., "Parameters for Relating Unit Hydrograph to Watershed

Characteristics", Trans. AM. Geophys. Union, Vol. 32, No. 4,

1951, 591-596.

Elinger, M.M., and Schaake, J.C., Jr., "Physical and Economic Simulation

of an Irrigation System", Paper Presented at the Fifty-Third

Annual Meeting, A.G.U., Washington, D.C., April, 1972.

 —- 144-



Freeze, R.A., and Witherspoon, P.A., "Theoretical Analysis of Regional

Groundwater Flow: 1, Analytical and Numerical Solutions to

the Mathematical Model", Water Resource Res., Vol. 2, No. 4,

| ob.

Glover, R.E., Groundwater Movement , Engineering Monograph, No. 31,

Bureau of Reclamation, U.S. Government Printing Office, 1967.

Harley, B.M., Linear Routing in Uniform Open Channel, M.Eng. Science

Thesis, National University of Ireland, Dept. of Civil Engine-

ering, 1967.

Hildebrand, F.B., Advanced Calculus for Applications, Prentice-Hall,

Inc., Englewood Cliffs, New Jersey, 1962.

Hillier, F.S., and Lieberman, G.J., Introduction to Operations Research,

Holden-Day, Inc., San Francisco, 1967

Italconsult (Rome), Sofrelec (Paris), Rio Colorado-Development of Water

Resources, Rome, 1961.

Jaeger, A.W., De, Hoge Afvoeren van Enige Nederlandse Stroomgebieden,

Doctor's Thesis, Centrum Voor Landbouwpublicaties en Land-

bouwdocumentatie Wageningen, 167, 1965.

Jenkins, G.M., and Watts, D.G., Spectral Analysis and its Application,

Holden-Day, Inc., San Francisco, 1968.

- 148



Kalinin, G.P., and Milyukov, P.I., "Approximate Calculations of the

Unsteady Flow of Water Masses", Trudy Ts. I.P. Issue 66,

127°yo

Kraijenhoff Van De Leur, D.A., "Runoff Models with Linear Elements",

in Recent Trends in Hydrograph Synthesis, Committee for

Hydrological Research T.N.O., Central Organization for Applied

Scientific Research in the Netherlands T.N.O., Proceeding of

Technical Meeting 21, 1966, 31-64.

Lee, Y.W., Statistical Theory of Communication, John Wiley and Sons, Inc.,

New York, 1960

Luthin, J.N., Drainage Engineering, John Wiley and Sons, Inc...

New York, 1966

Lyshece, J.M., "Hydrologic Studies of Danish Water Courses", Folia

Geographica Danica, Tome VI, 1955

Maddaus, W.O., and Eagleson, P.S., A Distributed Linear Representation

of Surface Runoff, M.I1I.T., Hydrodynamics Laboratory Report,

No. 115, 1969

Megnien, Claude, "Observations Hydrogeologiques Sur Le Sud=-Est Du

Bassin De Paris, Memoires Bureau de Recherches Geologiques

et Mineres, No. 25, 287 pp, 1964.

146



Nash, J.E., The Form of the Instantaneous Unit Hydrograph, C.R. et

Rapports, Assn. International Hydrol., 1.U.G.G., Toronto,

1957, Gentbrugge, 3, 1958, 114-121.

Nash, J.E., "Systematic Determination of Unit Hydrograph Parameters",

J. Geophysical Res., Vol. 64, No. 1, 1959, 111-115.

Nelson, R.W., and Cearlock, D.B., Proceedings of the National

Symposium on Groundwater Hydrology, Sponsored by American

Water Resources Association, Hotel Mark Hopkins, San

Francisco, 1967.

O'Donnell, T., "Instantaneous Unit Hydrograph Derivation by Harmonic

Analysis", International Association of Scientific Hydrology,

No. 51, 1960

Philip, J.R., "Evaporation, Moisture and Heat Fields in the Soil",

J. Meteorol., Vol. 14, No. 4, 1957.

Remson, I., Hornberger, G.M., and Molz, F.J., Numerical Methods in

Subsurface Hydrology, Wiley-Interscience, New York, 1971.

Reddell, D. L., and Sunado, D.K., Numerical Simulation of Dispersion

in Groundwater Aquifer, Hydrology Paper No. 41, Colorado

State University, Fort Collins, Colorado, June 1971.

Rodriguez, I., Class Notes: Hydrologic Analysis and Synthesis, 1.712,

M.I.T., Spring 1972.

ifr/



Selby, S.M., Editor-in-Chief, Standard Mathematical Tables, Eighteenth

Edition, Chemical Rubber co... 1970.

Schneider, Robert, "An Interpretation of the Geothermal Field Associated

with the Carbonate-Rock Aquifer System of Florida", Geol.

Soe. America, Paper Presented at the Annual Meeting in

San Francisco, 1966.

Shapiro, G., and Rodgers, M., Editors, Symposium on the Prospects for

Simulation and Simulations of Dynamic Systems, Baltimore,Y Y

1966, Sparton Books, New York, 1967.

Sherman, L.K., "Streamflow from Rainfall by the Unit-Graph Method",

Eng. News Record, Vol. 108, 1932.

Singh, K.P., "Non-Linear Instantaneous Unit-Hydrograph Theory", A.S5.C.E.,

Jour. Hydr. Div., Vol. 90, No. HY2, 1964, 313-347.

Smith, M.G., Laplace Transform Theory, D. Van Nostrand Co. LTD., London,

1 4

Toth, J., "A Theory of Groundwater Motion in Small Drainage Basins in

Central Alberta, Canada", J. Geophys. Res., Vol. 67, 1962,

4375-4385.

Tyson, N.H., Jr., and Weber, E.M., "Groundwater Management for the

Nation's Future-Computer Simulation of Groundwater Basins",

1248



Proceedings, American Society of Civil Engineers, Hy. Div.,

Vol. 90, No. 3973, July 1964, 59-77.

Wesseling, J., "Vergelijkingen Voor De Niet-Stationaire Beweging",

Nota Voor De Werkgroep Afvloceiingsfactoren, 1959,

Wemelsfelder, P.J., "The Persistency of River Discharges and Ground-

water Storage" IASH Publication, No. 63, Commission of

Surface Waters, 1963, 90-106.

Zoch, R.T., "On the Relation Between Rainfall and Stream Flow", Monthly

Weather Review, Vol. 62, 1934, Vol. 64, 1936, Vol. 65, 1937.

149 -



LIST OF FIGURES

Figul.

II-1

II-2

II-3

II-4

13~5

11-6

IT~7

11-8

II-9

II-10

ITI-1

ITI-2

III-3

ritle

Schematic of a Hydrologic System

Linear System Approach in Deriving an Outflow

Hydrograph

Conceptial Storage Reservoir

Outflow Hydrograph Resulting from a Constant

Input to a Linear Reservoir

Block Diagram of a Lag and Route Model

Block Diagram of a Nash Model

Singh's Model in Simulating Overland and Chan-

nel Flows

Diskin's Parallel Nash Model Configuration

Edelman's One Sided Groundwater Flow to a Unit

Width Channel

Reservoir Representation of Kraijenhoff's Flow

to Drainage Canals

Aliasing Effect in the Forward Transform--

Subroutine FOURTRAN

Inverse Transform (Time Domain)--Subroutine

LOURTRAN

Inverse Transform (Time Domain) --Subroutine

COURT

Page

SF
i ’

,

-

yy 3

21

4

24

27]

27

29

29

;

"3

5¢C

150 -



rage

ITi~4

III-5

III-6

I1.~-7

III-8

IV 1—

IV 2ES

iv oJ

IV-4

IV=-5

IV-6

v-7

Iv-8

Iv-90

L-Fo.iJ
a

Forward Transform Indicating Aliasing Effect--

Subroutine FOURT af

Normalized Amplitude Spectrum Relationships
for Nash Model £5

Outflow Hydrograph of a Constant Inflow Convolut-

ed with a Nash Model Response 73

Outflow Hydrograph of a Lag and Route System

Response-FFT Technique
x zd

ub

Outflow Hydrograph of a Nash System Response-

FFT Technique £7

Rio Colorado River Basin, Argentina RZ

Profile of the Eastern Sector of the Rio Colo-

rado River ~~t &amp;

Conceptual Groundwater Routing Model 21

Block Diagram of a Regional Groundwater Routing

Model 19

Parallel Systems 37

Physical Schematic of the Finite Difference

Scheme T "A

Nomograph for Parameter K-Lagged Nash and

Nash Models 108

Nomograph for Parameter n-Lagged Nash and

Nash Models 7-4%
i

Nomograph for Parameter T-Lagged Nash Model 1.0

Block Diagram of the Drainage System 118

15871



Page

1 11-

Iv-12

IV-13

IvV-14

Iv-15

IV-16

IV-17

Iv-18

IV-19

IvV-20

Iv-21

Iv-22

IV-23

IV-24

IvV-25

IV-26

Outflow Hydrograph to Drainage Using Nash

System Response ras

Typical Cycle of the Linear Routing Model and

Finite Difference Scheme 117

Final Cycle of a Three Year Input to the

Linear Routing Model and Finite Difference Scheme 119

Response of the Drainage System to a Periodic

Input 120

Block Diagram of a Parallel Nash System Response

Representing an Interflow and Drainage Process 122

Outflow Hydrograph of the Interflow and Drainage

Processes 123

Comparison of the Drainage System Outflow Hydro-

graph to the Interflow/Drainage Outflow Hydrograph 125

Results of a System Response Represented by Nash

and Lag and Route Models in Series 126

Results of a System Response Represented by Nash

and Linear Reservoir Models in Parallel 127

Response at the River of an Input to the Irriga-

tion Site-Bedrock Slope = .0l m/m 129

Response at the River of an Input to the Irriga-

tion Site-Bedrock Slope = .001 m/m 130

Outflow Hydrograph of a Three Cycle Irrigation

Input at 100 meters 132

Outflow Hydrograph of a Three Cycle Irrigation

Input at 300 meters 133

Outflow Hydrograph of a Three Cycle Irrigation

Input at 500 meters 134

Response of a Periodic Signal at 100 meters 135

Response of a Periodic Signal at 500 meters 1,7
eu

152 =~



Page

 = 1

3~2

C-1

Time Period Approximation

System Response of a Delta Function

Flow Chart of Convolution Program

183

186

4

- 153



LIST OF SYMBOLS

Symbols Descrip*ionn

advective velocity due to sloping bedrock (L/T)

3

4
-

J

nN

constant coefficients of inflow cosine term or Laguerre

functions in time period i

specific permeability from node i to node i (1.2 /T)

coefficient for differential equation [Appendix B]

constant coefficients of outflow cosine term or Laguerre

functions in time period i

ny,
i

3

FE,
1

constant coefficients of inflow sine term in time period i

coefficient for differential equation [Appendix B]

constant coefficients for outflow sine term in time period i

coefficient for differential equation [Appendix B]

wave celerity in open channel flow (L/T)

~N

a

“

&gt;

constant cc-

fh cumulant

“Zicient of integration

~ 154



differential operator

DEPTH

£1)

£ Ik)

f Xx)

distance from ground surface to invert of drainage sys-

tem (L)

total ‘energy’ of the system

input function

Laguerre function

output function

Froude number

—y

J— ©)

F. (Ww)

“oq
Io}

Ww)

L

1

4
- J

th moment of the input [Appendix B]

discrete forward transform of input function

Fourier transform of input function

Fourier transform of output function

tr moment of output [Appendix B]

piezometric head (L)

mean heicht of saturated water zone (L)

impulse response

1855



hi. *)

h(t-T)

Tq

y

J

 ,

d° )

3){

+ '
#

i)

instantaneous unit hydrograph

I.U.H. lagged by time

h .
rt moment of response function

initial groundwater elavation in cell i (L)

initial groundwater elevation in cell j (L)

Final groundwater elevation (1)

Laplace transform of piezometric head [Appendix B]

response function

normalired amplitude Cc:rum

constant inflow or input rate

inflow or recharge for period i

index to cell adjacent to cell ;
J

Te

(ttI

CoS

 rTi

Ls £=1)

input amplitude of constant input

time varving input

inflow rate at time T

inflow distribution lagged by T

1586 ~



(Ww) input function (frequency mode)

parameter used in empirical equations [Chapter II]

J

Py time constant of a linear reservoir (T)

reservoir lag coefficient for system i (T)

’

re

C
"2

g

lag coefficient of a Lag and Route Model (T)

lag coefficient of a Linear Reservoir Model

lag coefficient of a Nash Model ‘T)

(T)

3

permeability (L/T)

total 'lag' to a series system (T)

&lt;

1»

maximum system lag for use in a parallel system (T)

transmissivity L3/1)

drainage spacing (L.)

travel distance of flow in aquifer (L)

vi

th .

I moment about the centroid

isS7



M!?
i

1

id

ad

wy

th moment about the origin

constant

time period

number of equal linear reservoirs in series

number of equal linear reservoirs in series i

number of cells adjacent to boundary node

a¢

v-

a J

ug

number of points in output hydrograph from subroutine FOURT

number of points within time period of discrete Fourier

transform

number of input points to subroutine FOURT

constant percolation rate

TT -

C
‘w)

PERC,

impulse amplitude function

maximum percolated water over period of interest (LY)

outi.ow

HP
a

1;

groundwater flow resulting from the diffusion analogy

inflow due to advective velocity

- 158 -



q(t)

~

a. =)

-

D

time varying output

outflow for period i

outflow resulting from a constant inflow

flow input into cell j (L/T)
7

2 1

2F (5)

&gt;

J
1

 ter&lt;)

-

1.

rr =)

7. {t)
"-

Z (0)

“a

volume outflow during period n

flow into boundary cell ]

Laplace transform of outflow function

outflow at time t

outflow for period i

output function (frequency mode)

volume recharge to aquifer during period i (L3)

Laplace operator

time transformation variable (T)

instantaneous irrigation inflow

reservoir storage

5
Ty

reservoir storage for period n

150



S(t) reservoir storage at time t

shape factors with index i

R]

-

«

3
0)

_

Lr

=

&amp;
\

n

T

-

=

storage coefficient (L/L)

slope of channel bottom (L/L)

time I’

time period for input function (T)

time period for output function (T)

time to peak (T)

time period for system response (T)

new time period [Appendix B] (T)

mean longitudinal velocity

of open channel flow (L/T)

in the steady state condition

travel length of flow (L)

superscript to outflow rate

7
n area of function outside time period [Appendix B]

160 -



yf{x,t)

Tw
~

[&amp;)

{
“rp.

-so

&gt;

¥

-~
boa

2
-

5
f«

J

a

z

ol

free surface height at x and time t (L)

depth of water in the steady state of open channel flow (L)

maximum lens height allowed above drainage ditch (L)

tL cumulant to Groundwater Routing Model

weight distribution parameter

constant coefficients for kernel cosine term or Laguerre

function in time period i

constant c~efficients for kernel sine term in time period i

gamma function of n

increment operator

active porosity

translational lag of a linear channel (T)

energy density spectrum of the output~~

-d

w

£9

angular frequency (rad/T)

Nyquist, or folding, frequency (rad/T)

x zi J
5



LIST OF TABLES

I‘able

I-"-1

™WVW=1

ritle

Fourier Transform (Forward) Results---

Subroutine FOURTRAN

One Year of the Irrigation Input Cycle

Page

Ly Ss

= 14

- 162-



APPENDIX A

Computer Programs

A-1 MODEL GENERATED FOR HARMONIC ANALYSIS

163 =



-

Ay

"TSE BRRRAEEEFEEREEEEEREREEEREEREFEpaATTTTtxk+t"499d+Nr ter ARR klk

PROGRAM FUR CJINVOLUTING AN INPUT FUNCTICN

Wild FAST FUURIER TRANSFJURM

APRIL 17, 1912 R. BRAS AND D. EVANS

(eek EREY TXREEE RR EERERRAEAEEREAERSR RRR RAR AR GER RARE ek kkk Se ep

CUMPLEX KINPUZ(3001},0UTPUT (300),FT(300),XINSTO{300),TINP(300),J1
REAL*8 UATE, TIMEX

REAL®*0 TITLE: VIV2EsTIVIE J TITLEoTITSE,TITOE,TITTE,TITBE,TITL2,TIT22

co TITI2,TITa2,TiT52eT1IT62,TIT13,TIT23,TIT33,TIT43,TITS3,TITLE(LO,LO
 de ThTLayTIT293TIT34,TITG@TITSeTITE4,TITT4,TIT84,TIT94

DATA TITLE/ LOU? v/

REAL Ky NRE sKRES)LAG

JIMENSIUN TInPU2(300)

 WORK (300) 9 2J1104300),154(10)

JIMENSIUN TINPU3(3)) ¢XINPU3(300)¢XINPUSL(30J),XIN(30),YINSTOL300)

SUMMUN Z1UPUT/IREADIRITE, ITERM,IPLCT

SUMMUN/ZLUS/OATETIMEX
VATA TUTLeEgTATRE VITIE )TIT4EoTITSE,TITHE,TITTE,TITBE/"Yet

“a VINEAR Yo 'SULUTEICN®,* Cy *OMPLETE *,°* Ty!
2 of

DATA TiTicoyTiT22+TITI2,TIT42,TITS2,TIT62/°TIMEOOM,*AIN-INPU®4T

LHYDRJ a! 4 * RAPH Vy yt -OUTPUY/

DATA TiTL34TiT23oTIT33,TIT43,TITS3/ANALYTIC',y'AL SOLUT', *ION-OUTP

19 UT HYURJ® ,*LRAPH */

VATA TITLae TATA TIT34,TIT44)TITS4, TITO4sTITT4,TIT84,TIT94/ INPUT
SAFgtREQDUMA®5"IN)—AN",'ALYTICAL®,*SOLUTIO®,*N-REAL®,"

I= CL LUNPUTED®,'N— IMAGY/

Plz3.ield9s

IRITEe=0

iREAU=S

.TERM=0

[PLUT=0

[=0

JO &amp; M=l,10

1SHI{M)=V

REAU PARAMETERS

REAUCIREAUY 3)DATE, TIMEX

FURMAT (cA 8)

READ(IREAD)L3)NDoNRES

FURMAT LLI34FL10.0)
REAUCLIKEAD)L4)KoKRESyLAG40FL
FORMAT (FLU.O)

FIND Ww Nekdeu TO KEEP 98 U/0 RESPONSE ENERGY

INDT 228. 036/KRES

 ft INPMA=Y6
FIND NUMBER UF ZEROS TJ AUU TO FUNCTIONS AND FIGURE

JUT TMAX FJR RESPONSE FUNC TICN TO KEEP 99 0/0 OF AREA

INTERPULATE AT RIGHT TiMcR INTERVALS IF NECESSARY

ah

i8

Cc

1650

509

502

"3

1100

TRESMA=—KRES*ALOG(.01)
DELT=PL/ WNIT

4=1

WTIME==DCLT

LALL. INPUT FUNCTION

WTiKMc=alTlREvOELT

ARG=(P lew TIMEI/ (TINPMA/2)
KINPUCIEM)=125-T5.%COS(ARG)

CINPUZIM)=XINPU2(M)—-BFL

TINPUZIM)anTIME
MaM+]

IF(NTIMELT.TINPMA) GO TJ 1050

NINPUZEM-]

LENLTH UF JUTPUT=TIME INPUT+TIME RESP

50 NUMBER JF PTS IN OUTPUT IS (TINPU2(INIPU2)+TRESMA)/DELT)

IR NENINPUL*TRESMA/DELT)
THE NUMJER JF ZEROS Tu dc ADDELC IS THEN TRESMA/DEL

NZERUS=TREIMAZ/UVELT

N=NINPULE NERDY

D0 ¢7 M=49NLERIS

KINPUZ(ININPU2*N)=0.

TINPUZUNINPUZHM)=TINPU(NINPUZ)+(M*CELT)
WRITE(IRITE $203)

DO 299 L=lyi

[FEL sLENENPJ2) XINSTO(L)I=XINPU2(L)+BFL

TFL eT oNENPUZ) XINSTUOLL I=XINPU2(L)

WRITE CARI TE2SUCIXINSTOLL) ,TINPU2IL)
FURMAT(® *5iUXe2(EL3.695X1)910X,EL3.6)

FORMAT(®INPUT FUNCTION TJ BE CCNVOLUTED'4//,T1)y"FUNCVALUE®*,TS),
'TiME*)

OBTAIN FURwARD TRANSFOrRM JF INPUT USING FOURT

CALL FUURTIEXINPU24Ny19-1,WORK)

=VALUATE ANALYTICAL TRANSFURM UF RESPONSE FUNCTION

I= (2%PL)/INSDELT)

D0 FIRST HALF JF TRANSFURM, AT LAST PT SET IMAG. PART=n

NL=(N/Lit1]
UM=0

JMlsu.

JI=LMPLA(Jeode)
DO 6 J=1eNL

ANALYTILAL RESPONSE TRANDFURMS FOR LINEAR RESERVOIR, LAG ANU RCUTE

MODEL, ANU NASH MODEL RESPECTIVELY

GU Tu (h40JsalIdS5s1l113)end

FTlUI=lle/CMPLXLL.sOM))
e0 Tu 505



reed

 Nn
n

11uo

lily

505

1d3

\ J

ul

Cc

8

16

Zu

L5J

ldo

“d

sl

FT(JI=CLAPL-JLxCML*LAG)/ (L+(JL*0M)})
0 TU subd

FT )=t at dMeel ) *u(—NRES/ 2) *CEXP (—JLSNRES*ATAN(OM})

NCR=MUD IN, 2)
iF(NLKeoToucANDeJ.EQeiNL) GO TO 4
ik{JeNEaiNL) wU TO 4

FTl=ReALLFTLdD)
FTEJ)=LMPLXL{FTL40.)
[FlJdebuwel) wu TO 7

JMl=UMl+Uun

IM=JM LEA

SECUND HALF uF TRANSFCRM=COUNJUGATE IDENTITY OF 1ST HALF

iF LLKauTud 60 TO 104

,0 TJ lve

i2=ni

“=Nl+L

aU Tu lull

v=ENL]

V2=Nl-1

JU 8 JSLgi

rTLd)=rTing)

rT2=REALLFT(JI)

FT3=AiMAL(FTE4))

FTL3)=CMPLALFT24—FT3)

MULTIPLY TRANSFORM FUNCT [UNS

NZ=Ng=-1

UU 25 L=1,.N

JUTPUTELI=KINPU2(L)*FT(L)

CUNTiNUE
eKITe tli TE9dev)
FURMAT(45T2u,yOUTPUTFUNCTICN,INVERSECFTRANSFORMMULTIPLICATIO
NY ZY)

INVERSE [RANOFURM OF OuTPul HYDROGRAPH

CALL FUURTLUJTPUTyNylelyLswORK)
40 15d d= ’

WUTPUT(I=JuTPuTlJ)}/N
JUTPuT LJ) =0ulPuTlJ)#BFL
RITELInI Teoh 22 )OUTPUT LIS oT INPU2(J)

CURMAT LY 'pT4uye2{3XeEL3a0)9LOXeEL13.6)

(EAU IN TEST nYDROGRAPH AND TIME ARRAY TO COMPARE TO COMPUTED HYDROGRAPH

JO 4l L=i43u

&lt;EAV (Ica 9c) I INPUT)

FURMAT (Flue vu)
SONTlLnue
10 43 1=1y3v

 EAU (IREAV,#4)XINPU3LT)
-URMAT (FL Je J}

23

"0

aby

sid

2

3

ry]

R{;

- }

.

r
-

~

CONTI NUE

00 45 I=L,3v

REAULLREADy40)X INPUSLIT)
FORMAT(FLIWI)
CONT INC

INP=30

NRITELIRITE ,50)
FURMAT (Ly *INFERPOLATEYD Rc SULTS FRCM CUMPLETE SNLUTICN(TIME,FUNC

1074)

DQ 51 i=1l,lne

RINGL)=XINPUS(L)

CONTINUE

INTERPULATE TEST HYDROuRAPH TO BE CCMPATABLE wITH COMPUTED HYDROGRAPH

TIME STEPS

DUO 52 I=1,N

DEL=TINPUL(I)

CALL INTRPLUINPosTINPU3ALNDELYINTF,2)
ARITECLRLTE223)DELYINTP
FORMAT(®9 luke 2(EL3.6554))
CINSTILE)=inTP
CUNT NUE

BO BU J=LeN

KINPUILJII=YINSTO(J)

00 5¢ [=lginP

ANCL )=XENPUSLLL)
CONTINUE

ARLITELLIRITE35)
FURMAT (*1%, * INTERPOLATED RESULTS FOR HARLEY SULUTION(TIME FUNC) //

N

DO 506 I=1,N

oeL=TiNPJ2(1)
CALL INTRPLULNPY¢TINPUISKINDELYINTF,21
WRITElIRETE23)DEL,YINIP
YINSTuti)=Yinte
SUNTLINUE

DU di J=Lin

RINPUSEJI=YINSTOLS)

PLUT TCR

TITLECA L)=TITL2

TITLE(L2)=TIT22

TITLECL3)3TITa2

TIFLECLo)=T1T42
FITiklceld=I1T52

TiTLeleodd=TiTo2
TITLE(Zy3)=TITS2

TITLE (2se)=TiT42

TIThc(3940=TITLE

TITLELS,c)=TITLE
IITLct3:43=TITSE
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Jay

v950

VITLE(S y4)=TiT4E

TITLE494id=TITLE
CITLEL942)=TITaE
JITLe(443)=TiToE
CITLE(444)=T1T4E

{InPUe= HARLEY SOLUTION... XINPU3= COMPLETE SOLUTION
WW vis J=l,N

Wiad) =XINPU3L JY)
JOl3,d)=X1NPUL(J)
wU(2y J)=REALIUJSTPUT(J))
WUlled)sREALIXINSTO(J))
 WRiTcllRITE 1949)
 ORMAT (*L)

JALL SPLOXULDoTINPU2 3 QU p09 No day TITLE, ISH)
TURMAT LY ¢,5(2X,15))
CALL EAT

 )

=

JN
Tn



A-2 FAST FOURIER TRANSFORM PROGRAM
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N
98)

THE CJULEY-TUKLY FAST FUJURIER TRANSFORM IN USASI BASIC FORTRAN

TRANSFUKMEdLedLreae)=SUM(CATA(TILy120eca)®eWlex((IL~1)*(J1-1))
*W2ER(([2-1)0%(J2-1))*.0e),

SURTL-LI/NNCLIJys ETCe THcKRE IS NO LIMIT ON THE DIMENSIONALITY
‘NUMBER UF SUBSCRIPTS) UF THE DATA ARRAY. IF AN INVERSE

AHERE 11 ANU JL RUN FRUM i TC NM{1) AND W1=EXP(ISIGN*2%pP[*

RANSFURM (L5IGN=+1) [5 PeRFORMED UPON AN ARRAY OF TRANSFORMED

1IS1uN=-1) VATA, THE ORIGINAL CATA WILL REAPPEAR,

MULTIPLIED BY wN({1)®NN(2)*... THE ARRAY OF INPUT DATA MAY BE

REAL UR LUMPLEXs AT THt PRUGRAMMERS OPTION, WITH A SAVING OF

JP Tu FURTY PER CENT IN RUNNING TIME FCR REAL OVER COMPLEX.

LFOK FASTEST TRANSFORM UF REAL CATA, NN{1) SHOULD BE EVEN.}

‘HE TKANSFJIM VALUES ARE ALWAYS COMFLEX, AND ARE RETURNED IN THE

JRIGINAL ARKAY OF DATA, RcPLACING THE INPUT DATA. THE LENGTH

JF EACH DIMENSION OF THe DATA ARRAY MAY BE ANY INTEGER. THE

RUGRAM RUNS FASTER CN CUMPOSITE INTEGERS THAN ON PRIMES, AND IS

PARTICULARLY FAST ON NUMBERS RICH IN FACTORS OF TWO.

(IMING IS IN FACT GIVEN 3Y THE FOLLCWING FORMULA. LET NTOT BE THE

"TOTAL NUMBER UF PCINTS (REAL OR CCMFLEX) IN THE DATA ARRAY, THAT

Sy NTUT=NN(L)®NN(2)*..,, UECCMPOSE NTCT INTO ITS PRIME FACTORS,

SUCH A&gt; o*¥Ke * 3%%K3 * S=xK5 * ,.. LET SUM2 BE THE SUM OF ALL

JHE FALTUR&gt; UF TWO IN wTUT, THAY IS, SUM2 = 2%K2, LET SUMF BE

-HE &gt;JM UF ALL OTHER FACTORS OF NTCT, THAT IS, SUMF = 3%K3+45%KSe¢..

JHE TiMt TAKEN BY A MULTIOIMENSICNAL TRANSFORM ON THESE NTOT DATA

i&gt; 1 = Tu « NTUT*[T1+T2%5UM2+4T3%SUMF), CON THE CDC 3300 (FLOATING

PUINT ALU TIME = SIX MICRUSECCNDS)y T = 3000 + NTOT*{600+40%SUM2+

LTo%50MF) MILKUSECONDS UN CCMPLEX DATA.

(MPLEMENTATIUN OF THE UcFINITION BY SUMMATION WILL RUN IN A TIME

PRUPURTIJUNAL Tu NTOT®(NNC(L)#NNI2)+...). FOR HIGHLY CCMPOSITE NTOT

THE SAVING UFFERED BY THIS PRCGRAM CAN BE DRAMATIC. A ONE-DIMEN-

SIONAL ARRAY 4000 IN LENGTH WILL BE TRANSFORMED IN 4000% (600+

FURLet Heche)+1T5%(54245))=14.5SECONDSVERSUSABOUT4000%*
*JJu*lT&gt; = loud SECECND&gt; FOR THE STRAIGHTFORWARD TECHNIQUE.

IRE CALLING &gt;EWUENCE Is--

“ALL FUURTUUATA JNNyNDIM,L5iGNyIFCRM WORK)

UATA I&gt; THE AKKAY USED 1J HOLE THE REAL AND IMAGINARY PARTS

JF IHe VATA UN INPUT Anu THE TRANSFCRM VALUES ON OUTPUT. IT

[5 A YULTIUVIMENSIONAL FLUATING POINT ARRAY, WITH THE REAL AND

[MAGINARY PARIS OF A DATUM STORED IMMEDIATELY ADJACENT IN STORAGE

1Suln AS FUKTKAN IV PLACES THEM). THE EXTENT OF EACH DIMENSION

IS GIVEN &amp;N THE INTEGER ARRAY NN, OF LENGTH NDIM. ISIGN IS ~1

Tu INVICATE A FCRWARD TRANSFCRM (EXFCNENTIAL SIGN IS =) AND +1

FUR AV INVERSE TRANSFORM (SIGN IS +). IFORM [S +1 IF THE DATA AND

JHE TRANSFUKM VALUES ARE CJUMPLEX. IT IS O IF THE DATA ARE REAL

3UT THE TRANSFURM VALUES ARE COMPLEX. IF IT IS 0, THE IMAGINARY

PARF&gt; ut THE DATA SHOULVU ot SET TC ZERC. . AS EXPLAINED ABOVE, THE

FRANSFUKM VALUES ARE ALWAYS CCMPLEX AND ARE STORED IN ARRAY DATA.

WORK 15&gt; AN ARRAY USED FUR WORKING STORAGE. IT IS NOT NECESSARY

iF ALL THE DIMENSIONS UF THE CATA ARE POWERS OF TWO. IN THIS CASE

:T May BE KEPLACEC BY 0 IN THE CALLING SEQUENCE. THUS, USE OF C

PUAERS UF Twy CAN FREE A LUCD DEAL CF STORAGE. [IF ANY DIMENSION

IS NOT A POWER OF TWO, IHlS ARRAY MLST BE SUPPLIED. IT IS

FLUATING PulnT, ONE DIMENSICNAL CF LENGTH EQUAL TO TWICE THE

LARGEST ARRAY UIMENSION (leEey NN(I} ) THAT IS NOT A POWER JF

Twde THEREFUREy IN CNE UIMENSICN FCR A NCN POWER OF TWO,

AURK ULCUPLES AS MANY 3TURAGE LOCATIONS AS DATA, IF SUPPLIED,

WORK MUST NUT bE THE SAME ARRAY AS [ATA. ALL SUBSCRIPTS OF ALL

ARRAYS Bouin AT ONE.

THE FAST FUURLIER ALGORITHM PLACES ThO RESTRICTIONS PCN THE

NATJRE uF THE UATA BEYUNJU THE LSUAL RESTRICTION THAT

THE VATA FIRM UNE CYCLE J A PERIODIC FUNCTION. THEY ARE-~-

le THE NUMBEr UF INPUT UATA ANC THE NUMBER OF TRANSFCRM VALUES

MUST Bt THt SAME.

2e CUNDIUERING THE DATA Tu BRE IN THE TIME DOMAIN,

THEY MUST Bk tqUI-SPACtW AT [INTERVALS CF OT. FURTHERy THE TRANS-

“ORM vALUE&gt;y CUNSIDERED J BE IN FREQUENCY SPACE, WILL BF EQUI-

SPALEU FRUM J 10 2*PI*(aNnNEL)-1)/(NNLT)*OT) AT INTERVALS OF

C¥PL/UINNLI)®UT) FOR EACH UIMEASICN CF LENGTH NN(I). CF COURSE,

JT Neeu NUT ob THE SAME ruk EVERY OIMENSION.

THERE ARE vu ERROR MES&gt;aucS CR ERROR HALTS IN THIS PRCGRAM, THE

PRIGKAM RETURNS IMMEDIAFcLY IF NDIM OR ANY NN{I) I5 LESS THAN ONE,

EXAMPLE Lo THREE~DIMENSICNAL FCRWAFRC FCURIER TRANSFCRM OF A

LUMPLEX ARRAY UIMENSIONcO 32 BY 25 BY 13 IN FURTRAN IV,

JIMENSLIUN UATA(32,25,1309muUuRKIST)INA(3)
LUMPLEX DATA

JATA NN/3ce25413/

WW 4 I=1y3c

10 1 J=le25

JO | K=leis

JATA(LsydeKICUMPLEXVALUC
TALL FUUKT(UATAGYNNe3,-L,LsWw0ORK)

XAMPLE Ze UNE-DIMENSIJNAL FCRWARD TRANSFORM OF A REAL ARKAY OF

LENuIH o4 In FURTRAN li.

DIMENSTUN DATAL 2,¢4)

DO «¢ [=L,0%

JATA(LyLl)=REALPART
DATA(Zy[)=V.

TALL FUURTIUWATAsE4yLe=1yuyu)

PRULKAM oY NUKMAN BRENNER FRCM THE PASIC PRUGRAM BY CHARLES

RAUcK {BuTlr JF MIT LINCULN LABORATORY). MAY 1967. THE IDEA

FOR THE OIluiT REVERSAL wA&gt; SUGGESTEC BY RALPH ALTER (ALSO MIT LL).

THIS IS THe FAMTEST ANU Mu&gt;T VERSATILE VERSIUN OF THE FFT KNOWN

JU THe AUTHUR. A PROGRAM CALLED FOUR2 IS AVAILABLE THAT ALSO

PERFURMD THE FAST FOURjcR TRANSFORM ANC IS WRITTEN IN USASI RASIC

FURTHAN LT I&gt; ABQUT unc THIRC AS LCNG AND RESTRICTS THE

DIMENDIUNS UF THE INPUT AxKAY (WHICH MUST BE COMPLEX) TO BE POWERS

JF TWO. ANUTHCR PROGRAM, CALLEC FCURLl, IS ONE TENTH AS LONG AND

RUNS Tau THIRUS AS FAST UN A CNE-DIMENSICNAL COMPLEX ARRAY WHOSE

LENOTH [5 A PuwER OF Twd.



0

Ea

{2

REFCRENLE==

AST FUURIER TKANSFORM&gt; Fuk FUN AND PROFIT, We GENTLEMAN AND

&gt;e &gt;ANUcCy LYoo FALL JOINT CCMPUTER CONFERENCE.

THE wURK REPUKTED IN THis UOCUMENT WAS PERFORMED AT LINCOLN LAB-

JRATURY, A LCNTER FOR RESEARCH CPERATED BY MASSACHUSETTS INSTITUTE

JF TilHmNULJuY, WITH THE LuPPORT OF THE U.S. AIR FORCE UNDER

JONTRACT AF L9(628)-5167.

“HE FAST FJURIcR TRANSFURM IN USASE BASIC FORTRAN

SUBRUUT INE FUURTICATAsNNeNDIM,ISIGNyIFCRMWORK)
DIMENSIUN DATALL) 9NNUL), IFACT(32),WCORKI(1)

‘WUPI=0.283185327

ATHLF=. lull ol812

FINDIM=-L1)92Uslol
Tai=¢

JU &amp; 1ulA=sLenULM

FANNLLUIM) 920492002

NTOT=nTUT=NN(TUIM)

MAIN LJuUP FUR EACH DIMeNSLUN

NPl=2

JU 940 [UiM=fynNDIM

N=inNEEUIM)
VP2=NP L®N

LFiiN=L)9cusIdded

iS N A Piwtk UF TWO AND [IF NOT, WHAT ARE ITS FACTORS

=N

WTWU=NPiL
F=1

Div=¢

QUUT=4/10LV
KEM=M-1u lv*iwuOT

FllquuT=10iVI)a0ell,sll

FULIREMIZ200 12420
iTlu=N TWIT WI

FALTLIR)=TULY

F=lE+]

$= [quot

oU TU 4

[DIv=3

(NUNZ=IF

.QUUT=M/LulyY

REM=M-LDIV*]IquOT

JFOIQUUT-1uIVIo0,31,31
FULIREMIQU 32040
FACTUIF)=10LY

Fs iFe)

a 0

30

33

50

r

“

B

&gt;J

M=[WUdT
bu Tu 39

[Dlv=IUived

0 Tu JV

INJINZ2=]F

[FliREM)IoUeDLyo00

NTWUSNT WU+NT WU

30 Tu TY

(FACT(LF)=M

NONSP=NPLINTwd

SEPARATE FUUR LASES--

Le LUMPLCX TRANSFCRM

 eo KEAL TRANSFORM FUR THE 2NCy 3RO, ETC. DIMENSION. METHCD--

TRANSFURM HALF THE DATA, SUPPLYING THE OTHER HALF RY COCN-

JUwATE &gt;YMMETRY,
ReAL TRANSFORM Fur HE 1ST CIMENSICN, N UDD, METHND=-—

StT THt IMAGINARY PARTS TC ZERO.

KcAL TRANSFORM FUR THE IST DIMENSION, nN EVEN, METHOD--

IRANSFUKM A COMPLEX ARRAY QF LENCTF N/2 WHOSE REAL PARTS

Akt THE £ VEN NUMdcrcU REAL VALUES AND WHOSE IMAGINARY PARTS

AKe Tre JDD NUMBERcu REAL VALLES. SEPARATE AND SUPPLY

THE StCuinD HALF BY CUNJUGATE SYMMETRY.

EMIN =

[LRN = NPL

EF (LFURM +LE. O «Anu. IDIM LT. 4) GC TO 7.

iLASE = 1

2 TU LJ)

WF LlULIM oLte 1) GO TJ 72

ILASE = Z

JLkiNu = NPu * (1 + NPREV / 2)

ww TU LI)

WF (NTwu eulie NPL) wu Ju 73

JILASE = 3

J Ta ivy

ICASE = 4

IFMIN = ¢

NTwu = NTU / 2

N= N/ 2

NPL = NPe / 2

NTUT = NTJUT / 2

I =

JU 84 4 = Ly NTUT

r= 1 + &lt;

JAT ALJ) = CATALL)

CJNT INUE

SHUFFLE UATA BY BIT REVeA&gt;AL, SINCE N=2%*K, AS THE SHUFFLING



G
190

ol

 i

le

L390

l4y

ial

bay

2uJ

21)

2¢Jd

240

294

255

Zou

wAN DL UUNt oY SIMPLE INFck CHANGE, AC WORKING ARRAY IS NEEDED

IF{NUNCP=4)AUuls 101,200
NP2HF=NP2/2

J=1

JO 120 I&lt;c=asNPLWNPL

LF(d=i2)icloilddald)
(LMAK=1 2¢NP L~2

JO Ler LLh=1dys1LMAXK,2

WW oid&gt; [3=1aynNTCT4NP2

i3=J+la-12

I EMPR=VATA{13)

TEMPL=UATALLS®L)

JATA(L3)=UATALU])

JATALLs*L)=VATALJ3¢])

JATALJI)=TeMPA

JATA(JIvL)=TeMP|
1=NPLHF

FlJ=MILoVelou,14]
J=d=M

=M/&lt;c

FIM=NPL) ADU L409 140

=JdeM

su TU suv

SHUFFLE VATA BY DIGIT ReVeRSAL FOR GENERAL N

NWURK=2¥gy
00 ¢TV Lhl=4eniPl2
DO 279 [3=11L,nNTOT,NP2

J=ls

JO 20 1=lynNdunK,2

FULLUADE=3)24092204210
10RRLED=VATALY)
 1IORKL I+ LI =VATALJ+])
0 Tu 24u

 ORK EL) =UATALY)

IORK{L*Li) =v.
FP2=iP¢

JF=LFMlN

 FPA IFPR/AFALTLIF)
I=J*lFPrL

 FlI=13-1rP2)L206Ce 2554255
=Jd=LFrve

FPe=lEPL

=lre}

CULE PL-NPL)Z2OU 260,250
LunTlivde

1 MAKEL3+NPc-NP|
.=}

JO 210 12=13,12MAXNPL

JATALLZ2)=wIRK(1)
DATALLZ2#L)=wUKRK(I+])

273
T

NU

305

 lu

dd

$30

d40

350

360

370

F1.1V)

39J

40u

4iQ

20

*3u

40

#50

460

+71

l=j¢2

MAIN LuuP FUR FACTORS uF THC.

A=EXPLISION®2%P [%SQRT{-LI*M/{ 4*MMAX )), CHECK FCR W=ISIGN*SURT(-1)
AND KEPEAT Fur W=W*{1+131oN*SQRT(-1))/SQRT(2).

INT wu=NPLllouwu 16004305
NPLTm=nPLenPL

{PAR=NTWI/NPL
IFLIPAR-¢)35U023C,4220
I PAR=LPAR/4

bl TU 310

LO 34u Ii=1,110&lt;NGy2

DO 2%J Rie=LLeNICT (NPLTH
KQ=K1¢NPs

[EMPR=DAT AIKZ)

TEMP LI=UATACKZL)

DATA(KCI=UATA(K L)~TEMPR

JATALKZ2 +L )sUATA(KLI+1)=-TcHPl
VATA(KLIzUATA(RL)$+TEMPR
JATALKL*L)=VATALKL*L )+TEA4PL
MMA X=inP L

IFIMMAXR=NTauscd37C46004000
LMAA=MAAJ(PLTwoMMAX/2)
PIVER¥ [7] LENPLsLAAXyNPLTw
=i

IFEMMAA—NPL9c)142),38)
THETA==TauJPI*FLOAT(L)/FLJuT(4*MMAX)
1F(151uN)2uue39Cy390
THE TA=—ThHeTA

Wk=LUSETHLETA)}
Wi=5IN(THETA)

NER=wR*ax-nl*nl
Ne [=Zo¥uR*ul

AIR=WIR*g K-21 *W]

N3l=wik*nl+uli®NR
DU 530 1i=1411KNGs2

AMIN=lL+1l PAKREM
IF {MMAX=NPL)4304430,44V
AMIN=11

KDIF=}PAREIMNAX
KSTEP=4*KUILF

IFIRSTEP-NTUd46,460,205)
U0 54v RL=KMINgNTOTKSTEP

{2K ie] F

R3=K¢*KUILF

Ké4=RI+KUIF

IF (MMAX-=NPLI®Tu 470,48
VIR=UATALKL)+VATAIKZ)
JII=UATA(KL*1)+CATA(K2¢1)

V2R=UATA(KI)+DATAKS)
U2I=UATA(KI*L)+CATA(KSG+L)

U3BR=VATAIKL)-DATAIK2)



oll

“1/

fo 41]

»ygry

bIVIV]

p=
~
3 Jlvu

y74

 HS 44

&gt;4J

“59

SOL)

 vv {

Usl=valAtlrRiei)-DATALIK2+1)

LF(LISioNIG@TLeal2,472
JarR=VATA(KI+1)-CATA(KA4+1)

Ual =0ATAI(KRe)-UATA(KI)

ol fu &gt;21lv

vak=UATA(Ra+1)-DATA(K3+1L)

U4el=vATA(K3}-UATA(KS)

wu lu 21lu

|ER=aR¥UATAIKe )~W2I*DATA(K2+]1)
Jel=wenFUATA(R+L)+H2I*JATA(K2)
[3R=mKk*UATA(KI)-WI*DATA(KO+1)
[3l=wrR*UATA(RI+]1)ew]*CATA(K3)
T4R=wIK*VATAIR4)-WII*DATA(KSE+])

f4l=wiRxVAlA(Re+])+WIL*UATA(KS)
JIR=UATALKLI+TER

Jll=uATalKLeL)+T21

Jen=TIR+T4
Uclz=lot+Tal

JIR=UATALKL)-TCYR

sal =UATALKL#L)-T21

ITFULSLIUN)«90sHuCye500
Jarn=1151-T4i

Ual=l4Kk-Tor

Lu Tu 51V

Jak=Tel-Tsl

ual=Tok-Ta4x

JATA(KLI=ULREUCR

JATAlKL+LI=uLtU2]

UATAIRZ)=U3Rtu4R

JATA{Rc+LI=UusltUG]

VDATA(RI}=ULR-UCR

JATA(Ks+b)=ull-U21

JATAIRG)=Usn-JaR

JATalK4e+L)=Uusi-Ual

Lwlr=K&gt;icP

Nl w=4®(KMLin—1L)+I11

vu Tu 424

CuUnTlnJe

W=M+LMAX

LF(M—MMAR) 29092409570

IF(lolun)220s200,560
TEMP K=wR

NR=(wxenwld=THLF
wl=(wi-TeMPRIERTHLF

su fu 4lv

TEMPR=WR

wR={AK=al )*RTHLF

el=(TcMmPr+nl}XKTHLF
oU Tu 4ilv

TURTInNuC

1PAR=3-1VAK
MMAK=MMAA+MIMAA

GU lu so4

L

Ll

ouV

oul

oly

611

Ale

G13

5lée

a240

ocd

bau

b4uy

MAIN LUudP Fux FACTORS WUT cQUAL TC Tw(.

NSCAPLLOLoN®2¥PIRSURT(~L)x(J14J2-13-1)/1FP2)

LFInNUNZP=L) duvs 71004601

IFPLl=nlwu
lF=linvdng

IFPc=IrALT(LF)EIFPL

THETA==1wUPLl/7FLOAT({IFACILiF)
IF{i5Iuon)oilsoilsoll
IHL A=—THcl A

NSTPR=LuUStiTHcTA)

ASTPi=0iNlIHETA)

Ub uby Ji=iyglFPLl,yNPL

THEIM=~TauPI*FLJATLJIL=Ld/PLCAT(IFP2)
[F{i&gt;loNsoltsua3e€ll

The i M==THeTM

wMInk=Cus(incim)

NMIvE=2INLIHETM)

LiIMAA=Ji+LLlRnL-2
JU 082d 1a=ulelaiMAX,Z

DU 02u L3=11,NICT,NP2

i=1

Ak=nWMl NK

al=wMind

JZMAA=L3+LrPe—1FP]
DU oy JZ=1 3sJdcMAX,IFPI

TwdnK=nk+ar
JoMAX=JdcenwPe—~irP2

JU 0au J3=JdoeJdsMAX,IFPY

JMIn=Jda=Jdd+ls

J=JMIntibPe=LFPl

sk=uaTalJy)

SI=uATAlJ+L}

JbLudK=Je

JLuSI=ve

J=d-lrbl

SIMPK=0K

STMPL=&gt;1

sk=Twunk®dk-JLUSR+LATALY)

dil winReSI~-ULUSI+DATA{U+]L)

UL ar=51MPR

JLusl=&gt;31mMPI

J=J=iFPL

[Flu=JMiN)olLs02),62)

NURKLEL )=win®d5n—-wIXST-0LUsR+UATA(J)
WUKREI #1) =WI*SK+WRASTI=ULUd+CATA(J+]1)

i=l+2

nTEMP=wrREw&gt;TPL
AKER ENS IPR wi *hSTPI

Nl=nil*aoTPl+talcMP
i=1

ul 09d Jé=l3eJdcMAXIFPL



~3

“J

2%

Tuy

Jul

Tul

JUs

Tlu

Jd

[EY

131

135

T4y

‘dy

JIMAX=JctinPL~11FP2
DU udu JIa=JcedaMAX, IFPe

UATALJS)=wurnKi(l}
UATA(JO*L)=wurK(+1)
l=l+¢

Ib=1F+}

[FPL=IrPL

1RLIrPL=nNPclolueICL,TI

LUMPLLTc A necAL TRANSFURA4 IN THE 1ST DIMENSION, N EVEN, BY CCON-

JUuuvAle &gt;YMMeET LIES.

Gu TU (Yuusaduys900sToL)+ELASE
NHALEF=nN

NENEN

THETA=-TwJdPLZFLOATIN)
[FLIES lun) Tds070247)2
THElA==1HELA
NSTPK=LUS (THETA)

wSTPLl=0inNITAETA)

ARk=walPrh

vl=ndlvri

IMIn=05

IMIn=c®NHALF-L

50 Tu 1¢o

J=Jdmln

UU T&lt;¢v 1=1MingnTOT¢NP2

SUMK={JATALLI+UATA{J))/2,
SUMI=(UATALI+L)+CATA(J*LII/2.
JIFR=(uATALL)-DATAJ)}M/2.
DIFL=(UATA(LI+1)-DATA(U+12)/2.

TeMPR=nax®uM]+n[2D[FR
fEMPL=ni*SUML-WR*DIFR

JATALLI=SUdReTLMPR
JATALL+L)=VIFI+TEMP]

JATA(JI=3UMR-TcMPR
JATALJ*L)=-UlFL+TEMPI

J=Jd+nPe

IMIN=1MLlneZ

IMIN=IMIn-¢

nlicMP=aKk*nSTPIl

 MIRZA ENT PR-nlewSTPI

nl=wl®xddTPR+aTLMP
FECIMAnN~umINITALDST13)4T4)

IFULISIuNIT349 740,740
JU 755 1=1MInenTCToNP2

JATAa(L+l)=-UATA(]+])

NPL=NPctNPL

NTulT=nlulendul
J=NTUT +1

iMAX=NTUl/é*]

IMIn=1MAX-2*®NHALF

[=IMIN

750

755

Tou

105

i11u

17%

Tou

»

-

-

Buu

845

810

Bed

83u

&amp;4J

350

360

C

C

UU

910

92J

GO Tu 15

DATALJ)=UVATALIL)

DATA(J+L)==0DATA(]l+]1)

I=l+g

J=d=-2

TF(L-IMAXK 120,760,760
DATALJI=VATALLIMIN)-CATALIMIN®])

JATA(J¢L)=V,

IFUI-J)1Tuyi330,7180
JATA{J)=uATACL}
UATALJ+Ll)=uaATALTI+])
I=]-¢

y=d=2

IFCi=1MinbdT5,1075,765

UAT AiJI=vATAfIMIN)+DATALIMIN+])
JATALJ*L) =D.

[MAK=4MAN

ou Tu {42

VATAt L)=unlA(L)+CATA(2)

DATALZ)=U.

ol lu Y4J

LUMPLEl. A KocAL TRANSFuUxa FOR The 2MD,y 33RD,

cUNJUwATL SYMMc TRIES.

IFCLARNG=NP LIBUDS SCV JUV
JU 86s 13=LgnluTyNP2

[¢MAR=jotuPL-nNPL
JU bo Le=l3,1&lt;¢cVMAX,NP]

IMAX=]2¢nNPL-2

IMIN=Lct*l LENO
JMAK=C*¥[3+NPL-L MIN

[F{lc=13)08euypc0,810

JMAA=JMAA+PL
THLLUIM=2)85)905C,830

JSJMAAK+NPY

DU bad [=imMmingilMAK,2
JATAaLL)=uAlA(J)

UATA(LrL)=~uATa(Jel)
J=d-¢

J=JMAA

Ju dou I=IMlngs IMAX,NPD

VATatl)=0ATALJ)

JATA(I+L)=-uaTaldel)

J=J=nNPJ

 ~ NU uF LUuP uN EACH DIdc va 1CN

NPU=NPL
NPL=NP¢

NPREV=N

XETURN

cNU
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PROGRAM FOR ROUTING CF GROUND WATER USING A

FAST FOURIER TRANS FORM TECHNIQUE

JUNE 1972, D.H.EVANS

EEE RARER ERR ER RRR AER AERA REAR R RRA RRR RARE EERE SARE SHEE RE RR REE RSE RR RRR KARR REE KKK

THIS PROGRAM IS DESIGNED FOR USE WITH SUBROUTINES RESPF AND SET

FARK RRR RRR RAKE ERR AR RRR RARE BRAK RR ER REE ERE RE SARE ARBRE ERR ERA EER RR KER Kk RABE RRR EX

COMPLEX XINPU2(500),FT(500),FCOM{500),J1,FSTO(3,500)
REAL*8 DATE, TIMEX

REAL*8 TL1,TL2,TL3,TL4yTLByTLS,TLE,TLT,TITLE(10,10)
IEAL®8 TLO, TLIO yTL11,TL12,TL13,TLL4,TLLS

REAL K(1093,5)sNREST1C93,45)4LAG(1043,5)

INTEGER SYS (S543)yUs2

DIMENSION TINPU2(500) ,AXIN(50),TIN(50)

sWORK(500),Q0(10,500),1SH{10])
DIMENSTON XINSTO(3,50C), ICON(10),XIN(500)

DIMENSION BFL(10),WDTH(3)

TCMMECN/C CMP / XINPUZ  X INSTOLTINPU2

COMMON/INPY /LAG ¢4NRES ok, SYS, TCONy BFL y AXING TINyNINPU2,NP1,y NZEROS,

 WTDy WTR, WTDR yWOTHSFT1,SFT2,SFT3,SFTNSFY

TOMMON/HARC/FT¢NoyNOsCELTIX,Z,P1
INMMON /10PUT/IREAD, IRITE,ITERM, IPLOT

COMMON/IDS/NDATE,TIMEX
TATA TLL oTL2 TL, TL4 TLS TLE ,TLT,TLB/*OUTPUT H®, "YDROGRAP®*,'H FROM

Vy'FREQUENC®,'YSTCRAG','E TL,'TINE DCM, 'AIN vs

DATA TLI/'INPUT HY/

DATA TL1O0,TL11,TL12,TL13/*SYSTEM 1', "SYSTEM 2°*,* PARALLEL 'y' FLOW
JHE

iRITE=6

IREAD=5

ITFRM=6

[PLOT=6

P1=3,141593

31 I=1,10

SH(I)=0

r=1

EAD VARIABLES AND INITIALIZE PARAMETERS

CALL SET

30 2 [=14N ’

2 FCOM(T)=0.0

Teskkk,NN,TYPEMODELeess«IXWHICHMODELTYPEISBEINGCALCINTHATSERIES

DO 50 Z=14NP1

% LOOP PARALLEL SYSTEMS

£ aakk SET UP INPUT BASED CM THAT LEG CF THF PARALLEL CONFIGURATION

GN TO (44596)41

"axe CHANGE THIS TO SUIT THE WEIGHTED INPUT DISTR IAUTION

XMUL=WTD#WDTH(1)

NFT=SFTL1/DELT+0.5

GO TO 7

XML = TR EMDTHI 2)

NFT=SFT2/DELT+0.5

50 70 7

KMUL=WTD2*WDTH{3)
NFT=SFT3/DELT+0.5

30 10 1=1,NINPU2

FLZ EQ LIIXINCI)=XINSTN(1,1)

3ASEFLOW SHOULD BE REMOVED HERE IF NECESSARY AND SHIFT THE TIME

SCALE BY THE TRANSLATIONAL LAGs NFT

KINPUZ2(T)=XIN(T)xXMUL

XINPU2IT¢NFT}=XINPU2(I)
JF{NFT.GTa0AND.TLELMAFTIXINPU2(T)}=0.0
(INSTO(Z 1)=XIN(T)*XMLL

[FIICON(1).EQCa0) GO TC 10

ARITE(IRITELB)XINPLZ(T),TINPURII)
A FORMAT *,13,5X,3(F12.6,2X)}

10 CONTINUE

chase sakRkhkkkax«THOSESECTIONSSURROUNDEDPY::AREFCP APFRINOIC FUNCT IONS

GO TC S500

NZIRN=NZEROS +NSFT
JN 12 M=1,NZR0O

IN=NINPU2+M+NFT

(INPU2(IN)=0.0

(INSTOUZ  IND=REALUXINFU2 (IN)

TINPU2(IN)=TINPU2(NIANFU2)+(MENDELT)
CONT INUE

TONTINUE

CATAIN FCRWARD TRANSF(CRM OF INPUT USING FOURY

HRITECIRITE413)XMUL4NFT
ZORMAT(Y XMULGNFTY42X4E13.645Xs15)
TALL FOURT{ XINPU2,4N,1,-1,0,W0OPK)

AL1=SYS(Z,1)

NL2=SYS( 1,2)
NL3=SYS(Z,3)
NXT, MAINTAINS COUNTER OF SERIES FORWITHCRAWINC FLCW WITHIN EACH LEG

NXT=0

axsk®x BEGIN THE SERIES LOCF

14 IF(NL1.FQ.0) GO TO 15

1L0NP=NL1L



wd

~J
Ut

NO=1

NL1=0

50 TO 18

[FINL2.EQ.0) GO TO 1¢&amp;

LO0P=NL2

NO=2

NL2=0

GN T1 18

[FINL3.EQ.O0) GO TN 17

LJ0P=NL3

\N=3

WL 3=0
G0 TO 18

GO TO 25

NXT=NXT¢1

CO 22 U=1,LNGP

iIX=y

IFLICON{4).FQ.0)GOTC20

WRITECIRITE19)ZoNN,IXeNLLoNL24NL3
FORMAT(®ZyNCoIXoNLY4AL2Z4NL3=",6{2X,14))

COMPUTE RESPCNSE FUNCTIONS

CINTINUE

CALL RESPF

dkskNOTE THAT FSTO() IS REINITIALIZED THROUGHOUT THE SERIES

THOUGH NOT MULTIPLYING RESPONSE BY RESPINSE TO OBTAIN THE SYSTEM

RESPONSE, RASICLY THE SAME BUT MULT. BY THE INPUT TRANSFORM,ASWELL,
AS THE SERIES DEVFLNPS

MJLTIPLY FUNCTIONS TC OBTAIN OUTPUT TRANSFORM

DC 21 L=1,4N

FSTOZ L)=XINPU2(L)*FT(L)
XINPU2(L }=FSTDO(Z,L)}

C*¢x* #FSTO MAY AE USED TO REMOVE THE SUM DF VOL OF EACH PARALLEL LEG
’ CONT INYE

SERIES LCOP~-INNER TRANSFORM PART

CONTINUE

IFCICIN(4).FCa0) GO TC 24

WRITE(TIRITE23)INL]1 yNLZyNL3
FORMAT(*LOCPING THRU TYPESSNL1,NL2,NL3*,315)
CONT INUF

GN TQ 14

GONE THRU ALL CONFIGURATIONS OF SERIFS READY FOR NEXT PARALLEL LEG

CONTINUE

IFUICON(4).EC.0) GO TC 27

WRITE({IRITE,26)
FORMAT(®* CNMPLETEN LEC OF PARALLEL LOOPY)

CONTINUE

PARALLEL LOCP

CONTINUE

IFCICON(S5).EC.1) NPY1=2:

Ri

70

r

C

C TOTALING THE FLOW FOR CONFIGURATION, INSURE NP1 REPRESENTS TOTAL DESIRED

C#xkx*FROM HERE ON INSURE THAT EACH SYSTEM IS CORRECTLY TRANSFORMED AND TUTPUY

28 CO 30 1=1,NP1

DO 29 M=]1,N

FCNl4293 MAY BE USED 17 MAINTAIN AN INDIVIDUAL ACCCUNT CF £ACH LEG

IF USFD

COMBINE PARALLEL MEMBERS

FCOM(M)=FCOM(M)+FSTC(1M)
CONT INUE

RETURN TO TINVE DOMAIN

CALL FOURT{FCOM,Ny1,1,1,WORK])
IFCICON(2).EQ.0) GO TC 32

WRITE(IRITE,31)

FORMAT(*PT! 410X,*NASH OUTPUT TOTAL? ,10X,* TINE?)

CONT INYE
DO 35 I=1,N

ADD BASEFLOW HERE IF NECESSARY AND DIVINE BY NUMBER OF PCINTS

INPUT OT FOURT

FCOMUT }=FCOM(I )/N+BFL(2}
IF(ICON(2).EC.0) GO TC 34

PRINT RESULTS

WRITE(IRITE,23)}I,FCONMUI) (TINPY2LT)
FORMAT(*', 13,3(3X,E12.6)}
CONTINUE

CONT INUF
IFIICON(3).EC.0) GN TC 100

PLOTTER

TTTLE(1,1)=TL1

TITLE ,2)=T(2

TTTLEL143)=TL)

TITLE(L,4)=TL4
FITLE(1,5)=TLS

TITLE(1,6)=TLE

TITLE(2,1}=TLO
TITLE(2,2)=TL2

TITLE(2,3)=TL3

TITLE(294)=TL?

TITLE(2,5)=TL8
TITLE(2,6)=TLIC

TITLE(3,1)=TLO

YITLEL(3,2)=TL2



100

TITLE(3,3)=TL3

"ITLE(3,4)=TLT

TITLE(3,5)=TL8

TITLE(3,6)=TL11

SO 36 J=1,N

J003,J1=XINSTO{2+J}

d0124J)=XINSTO(1,J)

Q0(1,J)=REAL(FCCM(J))

[FI(DELT.GT.1.) SCALE=1.0

IF(DELT.LT.1.) SCALE=t.0

IF{DELT.GT.10.) SCALE=0.0

JELT=1.0

IRITELIRITE,L27)
TORMAT(* 1!)
CALL GPLOX( 10, TINPU24C0y34NySCALE,TITLE,ISH)
CALL EXIT

“ND

J
)
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SUBROUTINE SET

SUBROUTINE USFD TO READ ALL PARAMETERS FOR 'MAIN' AND TO COMPUTE

THE CUMULANTS OF THE RESPONSE FUNCTION AND TO SET UP THE CONTROL PAR AM,

“IMPLEX FT(500),XINPLZ(500)

RFAL*8 DATE, TIMEX

FEAL KL10,3,5),NRES(1C;3,5),LAG(10,3,5)

TEAL KIMINg K2MINGK3MIN,KIMAXyK2MAXyKIMAXyK1RESyKMAX,KMIN
LEAL KT(3)

INTEGER SYS(543),2

JIMENSION SLP(2) BFL {10}, ICONCL1O),AXIN(50),TIN(50),WDTHI3)
SIMENSTON XYN(50), TINFU2(500)
CIMENS ION XINSTO(3,5C(C)

ZOMMCN/C OMP/ XINPU2 4 XTNSTO, TINPU2

COMMON /HARC/ FT 4 NyNO, CELT 4 IXeZ4P1

COMMON/ INPT/ LAG NRES ¢ Ko SYS, TCON, BFL y AX IN TINyNINPU2,NPLy NZERQOS,

MTD ys WTR y WTDR yWDTH,, SFT1,5FT2,SFT3,SFT(NSFT

COMMOIN/TOPUT/IREAD,IRITE,LITERM,IPLOT
TOMMIN/ZINS/DATE,TIMEX

 kk ker kCAUTTON®®®&amp;YSE PARALLEL SYSTEMS WHICH ARE COMPATABLE,I.E.

sexkkdeex0ONLY THOSE WITH TIME STEPS ARQUT THE SAME, FOR SPACE

ICON(L) oy DATAG(2)RESLLTS:(3)PLOTTER;(4)TESTPRINTS
15) SPECIAL CONFIGURATION

AFTURN WTS.: WTN=TO [RAINAGE, WTR=TN RIVER, WTDR= T3 DOWN STREAM

-TINPMA- MAX TIME PERIOD OF INPUT (YEARS IF NEED BE)

*%%% INSURE THAT *NP1,NO AND IX* CORRESPOND TO DESIRED SYSTENM

Exek NP] ND PARALLEL LEGS3IAD AND IX DEFINED BELOW

2FAN VARIABLES

READ(IRFAD, 50) DATE, TINEXL,ICON(Y) ,ICONC2) ,TCONI3),1CONL4),ICONIS)
.+IC3O0E

READ(TREADyS1ITINPMA,AP]

READ(IREADyS52)WIND,WIRWTDR, (WDTH(I)},1=1,3}
READ(IRFEAD,523)PERM,(SLP(1),1=1,2)40R,DS,SCOEF,SMH
AX=TINPMA+]1.5

M0 20 I=14NX

READ(TREAD, S4IAXIN(T} TINCT)

iN 1 I=1,NP1

READ(IRFEAD, SS)SYS(T,1),SYS{T4,2),SYS(1,3),BFLIT)
IMIN=93999,

AMAX=1,0

{1MIN=9999,

(2MIN=9999,

'‘3MIN=9999,

1MAX=1.00

(2MAX=1.00

(3MAX=1.00

SFT=0.0

Cc

C

5FT1=0.0

SF72=0.0

SFT3=0,0

!F DESIRE TO COMPUTE FARAMETERS BASED ON THEORETICAL SGLLTI JN

TET ICON(S)=1

{FLICONCS)LEQ.L) GN TC 11

DN 10 1=1,4NP1

51=0.0

52=040

53=0.0

KT{1)=0.0
CONTROL VARIABLE WHERE 2NG DIMENSINN:IL1NC.TIFNASK 4UDELS.2y NO OF

_AG AND ROUTE MNDFLS AND 3, RESERVOIR MOCELS

NL1=SYS(I,1)

\L2=SYS{ 1,2)
NL3=SYS(T,3)
INPUT PARAMETFRS: 1ST DIMe= CONFIG., 22ND OIMe= MIDEL TYPE,3xL DIV¥= NC.

{N THAT SERIES

iFINL1.EQ.O) GO TN 4

20 3 J=1.NL1

INPUT PARAMETERS BASEL ON MIDEL TYPE AND CONFIGURATION

ACAD (TREAD, S4INRES{T 314d) sKUTslyJ)ylLAGI{T1,J)
I[F(ICONI1).EQ.O) GO TC 2

WRITE(IRITEZ7OINRES(ToloJ)oK{Tolad)olLAGUTy1yd)yl,d
CONT TINUE
KIRES=NRES(1,1,J)*K(1,1,5J)
KT(ID)=KT(I)+KLRES

51=S1+LAGIT, 14d)

(FIKIMAXJLTKLKES)IK]IMAX=KIRFS
JFIKIMINGGT.KIRFS) KIMIN=KIRES

iFINL2.EQ.O0) GO TO 7

IN 6 J=1,4NL2

VRFS(T1424J1=C.0

EADCIREAD,S4IK(1,2,J)3LAGIT42,J)
{FUICONCL)LEC.O) GO TC 5

WRITECIRITEy7LIK(L425d)LAGUT24d)014d
CONTINUE

K2RES=K{142,4J)
&lt;T(1)=KT(I}+X2RES

52=S2+LAG(] 4244)

JFIK2MAX4LTX2RESIK2MAX=X2RES
[FIK2MIN.GTcX2RFSIK2NMIN=X2RES
(FINL3.EQ.O0) GO TN 21

309 J=1,NL3

VRES(I,+3,J)=0.0

_AG(I43,4)=0.0
WFAD(IREAD,S4IK(I,3,J)
IF{ICON(1).EC.O} GO TC 8

WRITECIRITE472)K(T424.0914



~

0

. 1

CONTINUE

KC) =KT (I) +K(1,3,4)

3FT2=0,0

CEUKIMAXJLTKEE,3,00MRIMAX=K{T;3,1)
EAKIMINGGTKITy343J))K3IMIN=K(T,3,J)

THFCKING FAR LONGEST SFRIES STRING

50 7) 122,2342410,1

FFT1=S1+52+S813

FISFT.LTLSFTL)SFT=SF11

FIKMAX LTLKIMAXIKMAX=K]MAX
FIKMINGGT KIMINIKMIN=K]L MIN
0 Tn 25

FT2=S1452+453

TUSFT LL TOSFT2)SFT=SFT12

FIKMAXLLTLK2MAX)IKMAX=K2MAX

FIKMINGGT,KIMINIKMIN=K3IMIN

NO T0325

SFT3=514S52+4S3

FUSFTLTLSFTA)SFT=SF13

CFIKMAX LTA KIMAXIKMA X=KIMAX

FUKMINGGTLK2MIMNIKMIN=K2MIN
CONTINUE

IF(KMINSGGTKTII)) KMIN=KTL(I])

[FIKMAX LTLKTII)) KMAX=KT(I)

CONTINUE

NTC 1S

OFTERMINING THE PARAMETER JF RFSPUNSE FUNC. BASED CN GOVERNING EQN

AND THE USE CF LAPLACE TRANSFORMS

(=CUHMI/{2%CHIN2) sN=CUNMZ/K%%25TAU=CLIM]L-NK

FINR,FQ.0.0) GN T1 2¢

VS=PFRMESLP(1)
 (241931) =3%PCRMESUHRS(TEF/VS%%2
WRES(291 91) =2%DR*VS/ (CXPERME SMH)

AG{2,1,1)=DR®SCNEF/(2%VS)
 MAX=K{2 91s 1 )ENKFS(2,41,1)
MIN=KMAX

[F{DS.EN.0.0) GO T™ 27

IS=PERMxSLP(7?)
((341y1)1=3%PERMESMHE SCOEF/VS*%2
NRES(3,141)=2%NSkVS/(SPERMRSMH)
LAG(3,141)=DS*SCIFF/(2%VS)
(AMIN=K(3,1,1)%NRES{3,1,1)
FOAKMIN GT J KIMINIKMIM=KIMIN

IF {KMAX SLT KIMIN)KMAX=K]IMIN

vk kkk kkskPYT IN PARAMETERS FAR DRAINAGE SYSTEM

IF DRAINAGE SYSTEM IS NUT REQUIRED HERE PUT IN BLANK CARD

RCAD(IREADy S4INRES(1 4141) 4K{1y141)sLAGIL411}
IF{NRFS(141,41).FQ.0.0) GO T2 2%

(QMINSNRES{141,1)%K{1,1,1)
CF OIKMIN GGT JKIMINIKMIA=KIMIN
[F (KMAX LT .KIMIN)KMAX=KIMIN

~e vs

233:

"Oo

3.

SFT=0.0

SFT1=LAG(1,1,1)

SFT2=LAG(2,1,1)

SFT3=LAGE3,1,1)

FUSFTALTY.SFTLISFT=SFT1

FASFTLT.SFY2)SFT=SF12

 FISFT CL TWSFT3)SFT=SF13

FIND Ww NEFDECT TO KEFP Q@8 N/O RESPIINST FNERAY

wNOT=28,636/KMIN

FIND NUMBFR GF 2FRNOS IN AND TN FUNCTIONS ANG FIGURF

CUT TMAX FOP PESPOINSE FUNCTION To KEEP 36 7/7 (°F AREA

[RESMA==KMAX*ALNG(.01)

DELY=PI/WNDT

LENGTH OF OQUYPUT=T IME INPUT TIME pESP

37 NUMARER OF PTS IN CLTPUT IS (TIMPMA)Y#TRESMA)/DELT

TR ON=(TINPMASTRESMA}/TFRLT. THOREFDIRFE THE NMRek

OF ZERNS TO AND=TOLSMA/NFELY

NINPU2=TINPMA/DELT+],¢

NZERCS=TRESMA/DELT+0.*

NSFY=SFT/DELT+0.5

\7ERDCS=0

NSFT=0

ARITE(IRITEySOQIWNTTyTRESHMADELTyNINPII2¢NZEFPTSNSFT

FORMAT! WNOT,TPESMACFLTNINPH2NZFROS,ASFT4,30S1a4X)y3(15,1X)
 1)

NENTNPU2#NZEROSHNSFT

SFY UP INPUT AND TIME ARRAYS

IFININPI2GFNX)GTTC65
\N=0

[=1

IX=DELT*I

AYN(I)=0.0

IN=NN+1

FINNGFQJNX)TININN®L )=%99.0

(PNET) =XYNCL)+AXININN)
A=NN+1

IFETINI(NA).GT.TX) GO 17 63

[FINALLF GNX) GO T2 62

CINSTI(Z,T)=XYN(T}

(INPU2CT)=XYN(T)
TINPU2(CT}=DELT*(1-1)
I=1+1

NA=NN+1

[FINALLELNX) GO T2 61

WX=NX-(1-1)

JD 64 L=14NDX

(INPU2(I-1+L)=D.0

TINPUZIT=14L)=(I=14L)2DELTY
30 TO 43



~

€

q

a

1

7 42 I=1,NINPU?2

FININPU2.FQ.NX) GO TC 41

"1=DELT={I-1)

TINPU2(I)=TI]

F{ICNDELFQ.0) CALL INTRPLUINX,TINGAYIN,TI,YINTP,1)

[FUICODE oFQeld CALL BIKINTINXy TINJAXINGTIZVINTP,1.0)

FAYINTP(LT0.)YINTP=CL0
(INSTOZ,1)=YINTP

IFANINPUZ FQNXIXINSTC(Z,,1)=AXINLI)

KINPU2LTI=XIANST(Z,1)
CONTINUE

"TFOICINGL).SC.0) GN TC 18

WRITE VARTIABLFS TF SC DESIRFD

ARITE(IRITE,72)TINPMANP]
NRITFEOIRITE y74)PERM, (SLPUT),1=1,2)4DP4yDSySCIEF,SMH
37 16 I=1,4NX

RITECIRITE,75)NXAXIN(T),TINCT)
21 17 1=1,NP]

ARTTELIRITE375)SYSUT31)4SYSUI42)4SYSH(I,3)
WRITE(IRITE 3 77T)TRESMA JDELT KMAX, KMINyWNOTGNINPY2

ARITE(IRITE78)NyNZEKCS,NSFT
MN 19 I=1,NP1

WRITECIRITE y 79)KU 141 gy 1) oe NRESTT 4141) 4,LAG(T,1,41),1
KRITE(IRITE BOIWTD y WTR WTDRy WDTH(L) yWDTH(2), WCTH(3)
CONTINUE

RETURN

MRMAT(2A8,611)

‘JRMAT(LF10.0,12)

ORMAT (7F10.C)
IRMAT(3F10.C)

IRMAT(312,F 10.0)
TRMAT (' NRES,KsLAG,I4d"33(3X,E13.6),2(2%y141)})
IRMAT(Y Ky LAG, T,43J'32(3XyF13.6),2(2X414))
JRMAT(* Ky 13d" 1{2X4E13.6)42(2X414)}

TRMAT(t [INPMA NPL ,1(3X,F13.6)¢2X,14)

TRMAT (VY DERM,SLP(1),SLP(2)yDRyDSySCOEFySMH=?,TI2X4F11.4))
IRMAT (Py "I= 16, "AX 16, "INPUT! , 2X E13.5, TIME, 2X,E 13.6)

TRMAT (TY SYS(1Y, (20,02) ,4304X%X,15))
IRMAT(? TRESMAGNELT gKMAX KMINGWNIT4,NINPU2%,5{2XE13.6)42X45)
IRMAT (* My NZERDSy MSFT? 4 2X4 1442(5Xy14))

JRMATHL ¥ KG RNRESWLAG10,3(El11le442X)412)

TRMAT(* WITT yWTR,WTDR yWDTH=1=-2-3=7,6(F11.442X))
PIRMATCYJeNUS XNUy XYNLJ) *42164,2F10.0)
“ND
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SUBROUTINE RESPF

SUBROUTINE TC CIMPUTE RESPONSE FUNCTION

COMPLEX J1,FT(500)

REAL ®{104345)¢yNRES(1Cy3,5)4LAG(17,3,5)
INTEGFR 2

COMMIN/INPT/LAGyNRES4K
TOMMON/HBRC/FTyNyNDGCELTLIX,Z,P1
'VALUATE ANALYTICAL TRANSFORM NF RESPNNSE FUNCTION

IN={2%PT )/(NMDFLT)

10 FIRST HALF CF TRANSFORM, AT LAST PT SEY IMAG, PART=0IF QDD

NI=IN/Z2)+]
M=0,

M1=0.

J1=CMP{ X(0.,1.)

 20 a= ,N)

ANALYTICAL RESPONSE TRANSFORMS FOR NASH MODEL, L

ANN LINFAR RESERVIIR RESPECTIVELY

GD TT (3,2,1),N0

ET(I)=(]1./CMPLX{1.4CM))
50 TQ 10

(LG=LAG(7Nfi,IX)
TTOI)=CEXP(=JLl®MLIEXLC)/ (1+(J1%OM))
0 TT 10

(NS=NRES(Z,NC,yIX)
TEI) = (140M #2 ) xk (=XNS/2  )%CEXP(=J1*XNSXATAN(CM))

WCK=MNDIN,2)
FANCKGTL0 AND. JLECNL) GO TO 15

CFOJGNESNL)Y GO TO 15

T1=REALI(FT(J})

T{J)=CMPLX(FT1,0.)
FUJEQLNL) 6 TN 21

M1=CM1+NW

M=OMLEK(24,NI,IX)
FCOND HALF CF TRAMSFORM=CONJUGATE IDENTITY OF 1ST HALF

F (NCK.GT.0) G2 TO 22

0 T3 23

2=N1

=N1+1

 TN 24

.=N1+1

2=N1-1

N25 J=L,4N

T(J)=FT(N2)

‘T2=REAL(FT(J))
‘T3=AIMAGIFT(J))
TLI)=CMPLX(FT2,=-FT3)
2=N2-1

ETURN

‘ND

\3 AND RCUTE MODEL,



APPENDIX B-1

Procedure for Determining the Time Period for the Nash Model

Nasn
 1 [a ot/K

Model = = 2) Toy — +1

The integral of the Nash Model, giving the area under the

distribution, is given by:

Area 1 &amp;" oE/K
| K 'K I'(n)

= ~T/K n-11 (yf Somnath
(n-1-xr)! (-1) Ft!

we

v

oa

-—

~]1.2

The steps to optimize the time of convergence for obtaining a per-

centage of the area follows:

1) Start with the T for a single reservoir as an approxi-

mation

L.E. T ==KALOG {.C1) 3 1.3

D) Using T from step a, determine the area under the curve

for Time Period T using equation B-1.2 above.

2) If X = (1 - Results of b)) is less than .0l, or 1% of

181



the total area, then use the present Time Period T.

Otherwise determine the ordinate at time T by using equa-

tion B-1l.l. Then assuming a rectangular area as shown in

Figure B-1. Solve for At (the time increment to T).

ay

A]

A+ =

x
£07)

Increment T by At and return to b)

™
i T AE

La. 1

Results

TIME PERIOD

Ty

\,

3

3

3

vy

&lt;

3

-

I~

wat

)

oy

3

5

Nash Integration Linear Reservoir Theory

44.07 09.08

61.42 115.13

24.57 46.05

213.97 230.03

69.21 138.16

83.60 184.20
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Figure B-1

Time Period Approximation
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APPENDIX B-2

Derivation of the System Response to a Delta Function

Assumptions:

a) Two dimensional flow

b) No advective velocity (i.e. horizontal bedrock)

c) One side of response is considered, |x].

Governing Equation:

Lh seth Yi
m ox? K dt Kx Ax

P P

where ho = mean water saturated zone height

h = water saturation elevation

Sc = storage coefficient

-2.1

5 = permeability

1; = flow due to advective velocity

Dynamic Equation: (Darcy's Equation)

 kK hn
om Ox

B-2.2

Continuity:

 qd ,gc 8h= TF Sc ot 0 re = 3

184



A diagram of the system considered is shown in Figure B-2.

Taking the Laplace transform of Equation B-2.l1, we obtain:

Ad

—Z (x,s) - Bs H +) A= 8 h »40) +“, OP ,S8)

Assuming q (0,t) = 6

Q (0,8) = 1 when t = 0, for all Sthen

0 (x,8) = 0  Bn

B-2.4

the coeffici=nts reprecent:

A MEL
1 RB

04)

B = Sc/K
0

Cc = 1/x Ax

assuming

h (x,0) = 0

then the characteristic equation for the system response to the delta

function in the freguency domain is

hus

oY

Ar‘

r-

rr

Rg = i&amp;

 a
a

a

+ VBs/A

The homogeneous solution to the differential equation B-2.2 is

H WX,Ss) = C. ad
ot

/Bs/A [x] | c, @ yBs/A X| B-2.5
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Figure B-2

System Response to Delta Function
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But Hildebrand [1962], for finite intervals, shows that

lim hix,t) = lim s

- g =&gt; oo

which implies that C nN

Thus H(x,s) = C, e
VBs/A |x|

H(x,s)  Cc 2.6

 2.7

Applying the boundry condition @ X = 0 to equation B-2.5

H (0,8) Cc,
~~

Nr D(0,s,  i= 2 . 3

To check this result:

34H
Ix

B —

(x,s) = A =) C, exp (- V3s
=

|x|)

38 H(x,s) = =- Bs C, exp (-
Lammas

¥ Bs |x|) ” 3 . 9

A

therefore

Thus

n
3H

28“9?
Bs H(x ,S) J

H(x,s) “ RX (- VBs/a |x|) B-2.10

From Selby [1970] (Page 497, Eq. 82), the response to the delta

function is

187



but

20

nxt) = SBA Ix] exp (- BALXIX,
2 vr t¥e at

B-2.11

A h
in

B Sc/K
D

C 1/ K Ax

_L_ [Ee |X]
K Ax K h (Se/Khy|x|x
JL pm - pmexp (= e——-F-"" m—) B-2.12

2 JT ot
hix,t) =

See Appendix B-3.2 for the moment derivation of this system response.
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APPENDIX B-3

Method of Moments-Parametric Analysis

B-3.1 Moments Analysis

The method of moments is a curve fitting procedure used in

linear systems. Moments are normally referenced about the mean or

about the origin, but may be referenced about any point.

T1..
-h

order moments about the origin are defined by:

|
t” F(t) dat 1

where F(t) = function or distribution

Thus, the first moment about the origin would be:

|
t F(t) dt B=-3.2

If the function, F(t) were a probability distribution then

the Zeroth moment (area) would be unity, i.e.

i

J

p 3

J tC F(t) dt LLRT

189



The nth order moments about the centroid are defined as

 oo

M
1] _ (t-M")" F(t) dat

The interrelationship between the moments at the two refer-

enced points may be given as the binomial theorem. A complete

analysis of moments and cumulants is given by Harley [1967], i.e.

Jy m' (=i 1 J-1 G4

u 2.4

mM?
n

= Gy Mm, an’5 1 Ji *)

For example:

="

M!
2

pM!3

M, +
Ad

J

= My + 3M] M, +M!°

M, = M! A
2

we —
-— —~

|od

«5

~
oO

M, = M!-3M- M'?
3 1 CM, M

The effectiveness of the Methods of Moments in linear systems

stems from the fact that a simple relationship exists between the

input, response and output functions in the lower order moments. If

- 190-



we represent F as the input moments, H as the response moments and G

as the output moments, we would have:

First Moment G, = wn by

This simple property is true for the first three moments,

beyond that the interactions become more complex.

B~3.2 Derivation of Moments Using Laplace Transforms

“hen

C1€.O

thus

The Laplace transform of the flow function is given by

. ’

x rv
+

er*)
-st

e qg(x,t) dt

» Io §

do (x,s) -st
- te g(x,t) dt

a Q(x,s)
» OO

1

(-t)" &amp; TST g(x,t) dt

| -

9

| a =
ti

¢) g(x,t) dt

n ©

d (x,s) n n

hes) = (-1) t q(x,t) dt
Ss s=0 ~

B-3.7

B-3.8

[Vem 3 ~

-

B=-3.10
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Equation B-3.10 can also be stated as

where

~ Q(x,s) | = (- 1H?
Aq’ s=0

M_

M
3

th
- Moment about the centroid

a-

aT.11

Thus, the derivative of the Laplace transform evaluated at

8 = 0 are the moments.

The cumulants may be determined similarly by taking the deri-

vative of the logarithm of the Laplace transforms and evaluating at

——
4 }

Applying this technique to Equation 8-2.10

M,

mE

d

 += (log H xr) |

ser “J C+ (=
|sul

% 'x|) B-3 eo 12

7

TO Idyy

Note that any moments/ cumulants, excluding the first, will

result in the moments being infinite. This result led us to model

the differential equation as discussed in Section I.=-7

- 109



APPENDIX C-1

Computer Implementation of the Convolution Technique

by Means of Harmonic Analysis

The program developed to implement the convolution technique

using the harmonic analysis concept requires only one subroutine for

operation. However, the program presently includes a plotter routine

and an interpolation routine to compare the computed hydrograph with

a known test hydrograph. A listing of this program may be found in

Appendix A-l. The plotter and interpolation routines are not discus-

sed here but the user may implement his own programs to satisfy this

requirement if deemed necessary. The subroutine essential for this

program is subroutine FOURT, the FFT program developed at M.I.T..

Subroutine FOURT is fully explained by comment statements in Appendix

A-2 but additional information may be found in Chapter III.

C-1.1 Program Input/Output Procedures

As Figure C-l1 indicates, the program simply generates an

input function, computes the analytical response functions which are

placed in the format required by FOURT, manipulates the transforms of

the input and response functions and returns the resulting output

function to the time domain. In this case the parameters to the sys-

tem response models are assumed known and are input to the program.
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INPUT /

PARAMETERS

GENERATE

INPUT FUNCTION

COMPUTE VARIABLES

AND TIME PERIOD OF

OUTPUT

| PRINT VARIABLES

AND PARAMETER

|
TRANSFORM INPUT

(CALL FOURT)

__—SELECT
RESPONSE

MODE

| LINEAR RESERVOIR LAG &amp; ROUTE NASH

] MODEL MODEL MODEL
A ————————— oe

———————————————

| CALCULATE RESPONSE

| FUNCTION AND PLACE

LIN PROPER FORMAT

2 | x

MULTIPLY
TRANSFORMS

COMPUTE J

INVERSE TRANSFORM
(CALL FOURT)

Nu

PRINT

RESULT

CALL EXIT

Figure C-1

flow Chart of Convolution Program
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C-1l.1.1 Input Requirements

Two cards are used to input the necessary parameters for the

input and the system response. These are:

Card 1

Variables

NO,NRES

Description

NO (Col. 1-3) is the model desired to

represent the system response and may

be the integer values 1, 2, or 3. 1

represents the Linear Reservoir model,

2 the Lag and Route model, and 3 the

Nash model as discussed in Chapter III.

Format

I3,F10.0

NRES (Col. 4-13) indicates the number

of equal linear reservoirs used in

series by the Nash model. If this sys-

tem response is not required then this

real variable may be ignored.

Car.
~ *

&amp;

K,KRES,LAG,BFL K (Col. 1-10) a real variable indicating

the first moment or 'lag' to the Linear

Reservoir model.

4r10.0

KRES (Col. 11-20) a real variable indi-

cating the system lag required to deter-

mine the time period of the response

function. For the Linear Reservoir and

the Lag and Route models this is the

same value as K above. For the Nash

model, however, this would represent the

value resulting from NRES . K(nK) or the

lag of the Nash model.

LAG (Col. 21-30) the real variable re-

presenting the translational lag of the
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Lag and Route model. This variable may

be set to zero if this model is not re-

quired.

BFL (Col. 31-40) is the real variable

indicating a baseflow of the input

hydrograph. This variable, too, may be

set to zero or left out if the input

condition warrants it.

C-1.1.1.1 Input Function

The function indicated in the program listing is that of a

Thomas wave, being-

where

F (+2)

Ivax

Imax
7)

[(1L ~ Cos (215) ]

maximum amplitude of the input

time period of the input

Ce

a function more suitable to ones needs is easily substituted at this

point in the program.

C-1.1.1.2 Subroutine FOURT

The listing for this program may be found in Appendix A-2.

The calling sequence is discussed by the comment statements in that

listing. The user of the convolution program need not understand the
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variables required by the calling statement of FOURT since all the

requirements are satisfied by the main program, thus FOURT is not

discussed except as found in Chapter TIX,

C-1.1.2 Output Presentation

The input function that will be transformed into the fre-

quency domain is printed along with the corresponding time for each

point to be used by the FFT program.

The resulting output function is printed with the same correct

time array after the output is transformed into a time series from the

frequency mode.
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