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Abstract
A model which predicts the radiative component of heat transfer in foam insulation
based on foam density and cell size has been improved. The model assumes that thermal
radiation is attenuated by cell walls and by struts, or linear elements formed by three-
way intersections of cell walls. If struts are assumed to attenuate all radiation, the
extinction coefficient is inversely propot tional to the mean cell diameter and proportional
to the square root of the foam density. After finding that cell walls have significant
absorptivity, the model was expanded to include cell walls for two limiting cases: optically
thin and optically thick cell walls. If the foam consists of optically thin cell walls only,
the extinction coefficient is found to be proportional to density but independent of cell
size. The optically thick expression is more complicated but simplifies to the optically
thin expression when certain assumptions are made.

Experiments were devised to measure the Rosseland mean extinction coefficient from
computer analysis of spectrometer data. The foams were also measured for density and
mean cell diameter. Two extinction coefficients were determined for each foam from
measured transmissivities of thin foam slices. The first coefficient was determined from a
best-fit line on a plot of transmissivity vs. slice thickness. The second coefficient was also
determined from a line which fit the data but was also constrained to have a transmissivity
of unity for zero thickness. Each coefficient was then plotted against a parameter defined
by the square root of foam density divided by cell diameter. The theoretical curve for
optically thin cell walls fit the data well for only the best-fit definition.

Polyurethane foams were then mixed in the lab with the ultimate goal of determining
factors which encourage small cell size without increasing foam density. Foam mixing
experiments' were carried out to test the practicality of observing foam cell growth with
a microscope. From these experiments it was determined that foam could be viewed
through a thin sheet of insulated glass. The insulation is necessary to prevent boundary
heat transfer effects from affecting cell size.
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Nomenclature

LATIN

a absorption coefficient strut length, integration variable
A area
C constant, projected area per unit length
d cell diameter
e radiative emissive power
f, fraction of solid polymer in struts
F blackbody fraction
FTIR Fourier transform infrared spectrometer
i radiative intensity
I source function
k thermal conductivity, summation counter
K extinction coefficient
e mean chord length
L length, thickness
n number of intersections
P number of intersection points, pressure
q heat flux
r radius
S surface area
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SEM scanning electron microscope
t thickness
u variable of integration
V volume
W work
x horizontal distance
y length of line through a sphere

GREEK

a absorptivity
y surface tension
6 void fraction
A difference
77 wavenumber

o angle

A wavelength

p density
a Stefan-Boltzmann constant
a, scattering coefficient
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SUBSCRIPTS/SUPERSCRIPTS

b blackbody
eff effective
f foam
g gas component
L per unit length
LHS left-hand side
m mean
max maximum
p peak
r, rad radiative component
R Rosseland mean
RHS right-hand side
v per unit volume
w for one cell wall
A wavelength-specific

0 boundary condition
1,2 beginning and ending, or denoting constants in Planck's law
II parallel

1 perpendicular
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Chapter 1

Introduction

Closed-cell polyurethane foam is currently the best form of insulation available com-

mercially. Its relative ease of mass production makes it suitable for the manufacture of

major appliances and in the building industry. A typical polyurethane foam insulation

manufactured in panels for buildings has an R-value between 6 and 7 per inch thickness.

This means that an inch thick slab of such foam would insulate as well as 5.6 inches of

a typical softwood [1]. The exceptional insulating quality of the foam is due to the use

of a low-conductivity gas, known as a blowing agent, trapped in a closed-cell matrix of a

low-conductivity polymer.

The gas used in most foam insulations is some sort of chlorofluorocarbon (CFC),

most likely CFC-11. Until recently CFC's have been recommended and used widely in

the foam industry because of their low conductivity and chemical stability. This stability

has become an environmental concern, however, since CFC's released into the atmo-

sphere will not break down until they reach the upper atmosphere. The decomposition

generally takes place in the ozone layer, where released chlorine tends to break down

ozone molecules. The gas is released from the foam by diffusion through the cell walls.

Concern over the environmental impact of CFC's has led to worldwide restrictions of its

use in the foam industry as well as in other industries. The problem now facing foam

manufacturers is how to produce foams with similar thermal qualities in the absence of
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CFC's, which have the lowest conductivities of any possible blowing agent.

The purpose of the following report is to provide the basis for one solution to this

problem: the reduction of the average cell size in the foam to decrease radiation heat

transfer. Though often overlooked, thermal radiation heat transfer is important in foams,

since it typically comprises 25 to 30 percent of the total heat transfer [2]. Because of

the importance of radiation, research was begun at MIT to study radiative behavior in

foam insulation. The intent is to use this study to suggest and test methods of reducing

radiative heat transfer without significantly increasing conduction. The project described

here is a continuation of that research.

The project is divided into two distinct phases. The first has been completed, and

involves a study of the effects of cell size on radiative properties of polyurethane foam.

This is a continuation of research done at MIT on radiation heat transfer by Mark Schuetz,

Mark Sinofsky, and Mark Torpey, who experimentally obtained for various polymeric

foams a property known as the extinction coefficient. This property measures how much

radiation is transmitted through a sample of the material as a function of the thickness of

the sample. In the current project this coefficient will also be experimentally determined

for several foams, and will be plotted as a function of cell diameter and foam density. The

relationship obtained will then be compared with a formula derived by Glicksman and

Torpey [3], and modifications will be made to the formula to account for any significant

effec' s that were previously neglected.

The second phase is currently in progress and will be continued in future research.

In this phase, polyurethane foam will be observed on a microscopic scale as it is being

formed. This involves the mixing of foam component chemicals obtained from the in-

dustry, and the filming of cell nucleation and growth as the foam is formed. The foam

will be filmed with the aid of an inverted biological microscope specially rigged for this

purpose. A brief study of polymer chemistry and classical bubble nucleation theory will

also be required. The objective is to learn what factors are important in governing the

final ell size and how to control this process through physical or chemical means.
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1.1 Background

Heat transfer in foams is composed of three separate mechanisms: conduction through

the solid polymer, conduction through the gas, and radiation. In the past, models with

simplified cell geometry have been proposed to account for the different mechanisms,

but many of these have neglected radiation and have thus proved inaccurate. The heat

transfer was generally underestimated by these models. Others such as Skochdopole

[4] and Doherty et al. [5] included radiation but assumed cell walls were opaque, so

the radiation contribution in their models is still quite small. Schuetz [6] tested this

assumption by measuring the transmissivity of two polyurethane membranes: one from

the surface of a foam "bun" which was allowed to rise freely without constraint, and one

from a chemically altered foam which pZduced large cells (about 5 mm mean diameter).

The membranes had thicknesses of 1.5 and 36 m, respectively. As can be seen from the

transmission spectra in Figure 1.1, the free rise bun film had an average transmissivity

of about 80 percent. Since the cell wall thickness for a typical polyurethane foam is less

than 1 pm, cell walls must be taken as highly transparent. Radiation was thus recognized

as a significant mode of heat transfer, and was found to account for most of the earlier

underestimations of the total heat transfer.

In estimating radiation heat transfer in foams others, such as Wlliams and Aldao [7],

recognized that the cell walls are highly transparent, but neglected the effect of struts.

Struts are the intersections of three cell walls which form a framework of linear elements

with approximately triangular cross-sections. A actual strut cross-section, along with

a photograph of foam cells at lower magnification, is shown in Figure 1.2. Since the

dimension of the strut side is much greater than the thickness of a cell wall (typically

60 times greater), the struts are expected to absorb most of the radiation. Glicksman

and Torpey [3] derived a formula for the extinction coefficient which assumes transparent

cell walls and blackbody struts. The relation obtained is presented in Chapter 2 and

states that the extinction coefficient is directly proportional to the square root of the

foam density and inversely proportional to the mean cell diameter.
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Figure 1-2: SENI photograph of foam cells (top, 55X) and strut cross-section (bottom.

750x).
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The extinction coefficent can then be incorporated into a model to predict heat trans-

fer from all three mechanisms. The model which is currently used is presented by Schuetz

and Glicksman [2] and begins with a basic expression of Fourier's Law for heat flux:

dT
q =-kcU dZ (1.1)

The keI is an effective conductivity accounting for all modes of heat transfer, which can

be broken down into components for each mode:

ke = k + 3 (1 - 6)ko + 3K6 (1.2)

where kg and k are the gas and solid conductivities, and 6 is the void fraction, or the

volume percentage of gas in the foam. The parameter f, represents the fraction of solid

polymer in the struts, typically between 0.75 and 0.9. The solid contribution (second)

term was derived assuming either cubical cells or isotropic foam with randomly-oriented

struts, and the effects of conduction through cell walls and conduction through struts

were combined. The final term is known as the "radiative conductivity" and contains

the extinction coefficient K in its denominator. The radiative heat flux is thus a strong

function of the mean foam temperature T, and is directly proportional to the mean cell

diameter, since the expression derived by Glicksman and Torpey is

I =C f (1.3)
d

where C is a constant. The radiative conductivity is then

k,.d = (1.4)

By using this expression as the last term in Eqn. (1.2), it can be seen that reducing the

cell size will reduce the radiative heat transfer without affecting solid conduction, as long

as f, and are kept constant.

1.2 Concurrent Foam Projects

This research is part of a broader scope of work being done at MIT on improving the

thermal performance of foam insulation. The research involves factors affecting all three
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modes of heat transfer. One such project analyzes foam aging, or the diffusion of the

low-conductivity gas out of the foam and its replacement with air, which decreases ther-

mal performance. Another project seeks to reduce solid conduction by inserting vacuum

panels as a conduction barrier. Finally, in addition to the present study, radiation reduc-

tion is also being attempted through the addition of small flakes of submicron thickness

to the foam chemicals. These flakes would be opaque to thermal radiation, while having

conductivities close to or less than the solid polymer.

19



Chapter 2

Radiation Theory and Model

The following chapter will present a model which predicts radiative heat transfer in foam

insulation from material properties and cell geometry. Fundamental concepts of absorb-

ing media relevant to the model will first be reviewed. These concepts are presented

assuming a homogenous isotropic medium; when the foam model is presented this as-

sumption will be modified to account for voids in the foam. All radiative properties will

be given as wavelength-specific to eliminate the assumption of a gray medium, or one in

which properties are independent of wavelength. For more information or a more detailed

analysis, the reader is referred to Siegel and Howell [8].

2.1 Background Theory-Absorbing Media

The most important radiative property in the model is the extinction coefficient (Ki),

which is defined by examining a thin slice of an absorbing medium of thickness dx and

observing the change in intensity of radiation passing through the slice:

di, = -KIixdx (2.1)

Assuming that the medium does not emit its own radiation, the solution to the differential

equation is

= i() Ce-KL (2.2)
zio
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where r is the transmissivity of a finite thickness L of the medium, and io is the intensity

of the incoming radiation, normal to the plane of the slice. The constant in front of the

exponential is often taken as unity so that zero thickness would produce a transmissivity

of one. This is not always the case, however, as will be seen in Chapter 3.

The extinction coefficient represents how well the medium attenuates radiation, and

is actually the reciprocal of the mean free path of a photon. It can be expressed as the

sum of two coefficients which denote two methods of attenuation:

KA = a + aA (2.3)

where aA is the coefficient due to absorption and aO, is due to multidirectional scattering.

The dimensionless quantity KL in the exponential of Eqn. (2.2) is called the optical

thickness of the medium. As seen in (2.2), the higher the optical thickness, the less

radiation is transmitted. If KL > 1, an object is said to be optically thick, in which

case a significant amount of radiation is absorbed and re-emitted as well as transmitted.

If the presence of emission and scattering are taken into account, Eqn. (2.1) becomes

di,
+ KAIi(x) = IAAx(x,w) (2.4)

where Ix is called the source function and includes the effects of emission and scattering,

which is a function of direction (solid angle w) as well as position. In the most general

case this is a complex integro-differential equation, but can be solved by making sim-

plifications. One of these is a diffusion approximation, which holds for optically thick

media and assumes radiative equilibrium with isotropic scattering. Siegel and Howell

provide a complete derivation to obtain a simplified expression for the heat flux with this

approximation. One form of this expression is

q= 43I de (2.5)3KR dx

If eb, the blackbody emissive power, is expressed as aT 4 , the expression becomes

16o'T3 dT
q = 3KR dx (2.6)
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where the coefficient of dT/dx is the radiative conductivity kr,d discussed in Chapter 1.

This equation is one form of the Rosseland diffusion equation, where KR (the wavelength

subscript will be dropped) is the Rosseland mean extinction coefficient and is given by

1 = fA(l/KA,)(eAb/Oeb)dA (2.7)
KR fAA(OeAb/eb)dA

which is the general form for evaluation over a given wavelength interval. The Oexab/eb

can be evaluated by differentiating the Planck blackbody emissive power distribution

after setting T = (eb/a)1/4:

aeb _ C1 C2 al/ 4 exp[(C2/J\)(l/eb)'/]

deb -2 6 e//4 (exp[(C 2/A)(a/eb)/ 4 ] - 1)2

where C, and C2 are the constants specified in Planck's Law. After rewriting the equation

in terms of temperature, we obtain:

9Oeab 7r CC2 exp(C2T/A) (29
aeb 2 aT5 A 6 [exp(C2T/A) - 1]2

Since the expression is quite complex, it cannot be integrated analytically when substi-

tuted into Eqn. (2.7). Computer techniques are required to obtain a numerical solution;

such a technique was used to calculate KR from experimental data, and will be described

in Chapter 3.

2.2 Foam Radiation Model

From Eqn. (2-6) it can be seen that the extinction coefficient is the only material property

necessary to determine the radiative heat flux. This property must now be derived as a

function of foam cell geometry. The goal is to relate K to cell size, and thus verify that

reducing cell size, while keeping other properties constant, will significantly reduce the

radiative heat transfer. The effects of struts and cell walls on attenuating radiation will

be treated separately and then added, since an uncoupled relationship is assumed.
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2.2.1 Assumptions

The following inodel makes many simplifying assumptions about cell geometry and ra-

diative behavior. Foam cells are taken to be uniform, constant in geometry, and isotropic

(not elongated). The fraction of polymer in struts (f.) is also assumed to be the same in

all foams. It should be noted that a cell is assumed to be a pentagonal dodecahedron in

this analysis, while the technique for calculating mean cell diameter in Chapter 3 assumes

spherical cells.

The analysis also makes two asumptions about radiative behavior, the first of which

is the neglect of scattering. This is based on on experiments which show that most

of the attenuated radiation is absorbed rather than scattered, and that the scattered

radiation is only moderately forward oriented [6]. The foam can then be treated as

isotropically scattering, which will produce an error of 10 to i percent in radiative heat

flux calculations [2]. The second assumption is that the struts can be treated as black

bodies, which was verified by measurements of the transmissivity of a thin polyurethane

film, along with the reflectivity of a thicker sample [9]. These measurements were used

to obtain the spectrum of the real and imaginary portion of the index of refraction,

which were then used in the Mie equations. The solution to the Mie equations was then

integrated over wavelength to obtain a Rosseland mean extinction coefficient, which was

compared to the coefficient obtained assuming a black body. When the analysis was

carried out for cylinders with the same diameter as strut dimensions, the two extinction

coefficients agreed within ten percent. This produced an efficiency factor near unity, so

the black body strut assumption was validated.

2.2.2 Extinction Coefficient-Struts

The extinction coefficient was predicted by Glicksman and Torpey on the assumption

that struts are primarily responsible for absorption in foams, since struts are taken as

black bodies and cell walls have a high transmissivity. Cell walls were thus neglected

in their analysis, which will be summarized here. For a more detailed description, the
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reader is referred to Torpey [10].

The analysis begins by representing the foam as a matrix of randomly oriented struts

in the form of pentagonal dodecahedra. From Hottel and Sarofim [11], the basic relation

for the extinction coefficient for randomly spaced linear elements is

K = CLVQ (2.10)

where C is the projected area of a strut per unit length and L, is the length of strut per

unit foam volume. After assuming that the efficiency factor Q is unity, it now remains

to obtain relations for C and L, in terms of more basic foam charistics. For a triangular

strut, the average area projected normal to the strut axis per unit length is

C = .955a (2.11)

where a is the length of one side of an equilateral triangle. The parameter Lt can

be expressed in terms of the mean cell diameter d by assuming a cell geometry. The

pentagonal dodecahedron was found the most representative of a foam cell [17], in which

case the relation is
8.62

LV,= 8-62 (2.12)
d2

where d is the diameter of a sphere occupying a volume equivalent to that of the do-

decahedron. The strut side length a can then be expressed by relating the strut volume

per unit foam volume to the overall foam density. This requires knowledge of the strut

cross-sectional area, which Torpey found to be equal to approximately two-thirds the

area of an equilateral triangle formed by strut vertices, due to concave sides (see Figure

1.1). The density relationship is then

0.29a2L,p = fpf (2.13)

where f, is the fraction of solid material in the struts, and pf, p, are the foam and solid

polymer densities, respectively. The previous three equations can be manipulated from

values substituted in to (2.10) to obtain

K' = 5.23 f /P (2.14)
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The notation K' indicates that this is still an intermediate value, since it assumes all

struts are perpendicular to the heat flow direction. Eqn. (2-14) can be multiplied by

a factor, obtained through integral analysis, which accounts for random orientation of

struts. After inserting this factor, along with assuming values of 0.8 for f and 1.242

g/cm 3 for polymer density, the final relation becomes

Katruts = 3.29 (2.15)
d

All values are expressed in the CGS system, giving K in cm-'. The parameter f /d

will be used in subsequent plots of experimental data.

2.2.3 Extinction Coefficient-Cell Walls

Though the cell wall has a small absorptivity, it was decided that it was significant enough

to derive a model for the extinction coefficient for cell walls. An uncoupled relationship

is assumed, so the extinction coefficient for struts would be added to that for cell walls to

obtain the final value. The value for cell walls was calculated for two limiting cases: one

assuming an optically thin (Kt < 1) cell wall and one assuming optically thick (Kt > 1).

Optically Thin Cell Walls

The derivation of the extinction coefficient for highly transparent cell walls is quite sim-

ple, because radiation absorbed and re-emitted by cell walls is small compared to the

transmitted radiation from an outside source. If reflectivity is neglected, Eqn. (2.2) can

be approximated by assuming IKt < 1, where If is the extinction coefficient for a

single wall:

= e- Kw t ; 1- Iwt (2.16)

where the constant in (2.2) is taken as one. The foam can then be represented as a matrix

of these cell walls of identical thickness, oriented in random directions and forming the

faces of isotropic, uniform cells. If the extinction coefficient for the cell wall is known,

then the ratio of the overall value of K to that for one cell wall is simply the mass ratio
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of a volume of foam with cell walls only to an equivalent volume of solid polymer, or, in

terms of densities:

walls (1 - f)f K (2.17)
Ps

The value (1 -. f,) is the fraction of solid polymer in the cell walls and accounts for

the neglecting of struts in this model. An important result of this equation is that the

extinction coefficient for optically thin cell walls is independent of cell size. A value for

KwaI,, by first noting that many rigid polyurethane foam insulations have densities in the

area of 32 kg/m 3 . Also, from the data of Schuetz, it was calculated that the extinction

coefficient for a typical cell wall is 1633 cm-'. After substituting these values and the

previous values of f, and p,, we obtain K = 8.4cm- 1. Adding this to Ktr,,ts evaluated

at the above foam density, we obtain the final extinction coefficient as a function of cell

diameter (d in cm, K in cm-I:
.589

K- d + 8 .4 (2.18)

The diffusion approximation can be used with this value of K even though cell walls

are assumed optically thin. This is because in a typical slab of foam board, thermal

radiation must travel through at least 50 cell walls, which means that the medium has

an optical thickness of at least 5. Thus the Rosseland diffusion equation is appropriate

for foam slabs with a thickness of one inch or more.

High absorptivity walls

The opposite limiting case will now be presented: where each cell wall can be treated

as optically thick, but not necessarily near opaque. In this case a cell wall will not be

significantly affected by walls more than a few cell diameters away. While this is generally

not the case with foam insulations, it will provide additional insight into the radiative

behavior of foams. Upon making certain approximations, the solution presented here

should approach the optically thin solution.

The analysis begins with a formula from stereology, or the determination of three-

dimensional geometry from one- or two-dimensional data. The relation was first derived
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of a volume of foam with cell walls only to an equivalent volume of solid polymer, or, in

terms of densities:

KI walls - fpKw (2.17)

The value (1 -. f,) is the fraction of solid polymer in the cell walls and accounts for

the neglecting of struts in this model. An important result of this equation is that the

extinction coefficient for optically thin cell walls is independent of cell size. A value for

Kwat, by first noting that many rigid polyurethane foam insulations have densities in the

area of 32 kg/rm3. Also, from the data of Schuetz, it was calculated that the extinction

coefficient for a typical cell wall is 1633 cm -1. After substituting these values and the

previous values of f, and p,, we obtain K = 8.4cm -1. Adding this to Kot,tto evaluated

at the above foam density, we obtain the final extinction coefficient as a function of cell

diameter (d in cm, K in cm-l:
.589

K = + 8.4 (2.18)
d

The diffusion approximation can be used with this value of K even though cell walls

are assumed optically thin. This is because in a typical slab of foam board, thermal

radiation must travel through at least 50 cell walls, which means that the medium has

an optic I thickness of at least 5. Thus the Rosseland diffusion equation is appropriate

for foam slabs with a thickness of one inch or more.

High absorptivity walls

The opposite limiting case will now be presented: where each cell wall can be treated

as optically thick, but not necessarily near opaque. In this case a cell wall will not be

significantly affected by walls more than a few cell diameters away. While this is generally

not the case with foam insulations, it will provide additional insight into the radiative

behavior of foams. Upon making certain approximations, the solution presented here

should approach the optically thin solution.

The analysis begins with a formula from stereology, or the determination of three-

dimensional geometry from one- or two-dimensional data. The relation was first derived
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by Saltykov [12] in 1945 and is presented by Underwood [13]:

= s (2.19)

where S, is the surface to volume ratio of the cell geometry, and L is the is the average

intersected length (between cell walls) of a random line passing through the foam. A

simple diagram of cell wall interactions using the parameter L is shown in Figure 2.1,

where a and r are the absorptivity and transmissivity for the single wall. The cell wall

being analyzed is perpendicular to the overall direction of heat flow. An energy balance

will be used to calculate the net radiative flux in the positive x-direction. Both qLHS

and qRHS represent the radiation emitted from other cell walls in the vicinity of the

wall in question, and ebO is the blackbody emissive power at the local temperature. The

quantities can be taKen as monochromatic or for a gray medium. Neglecting reflected

radiation, the energy balance is

qr = aebO + rqLHS - qRHS (2.20)

The first term denotes the energy emitted by the cell wall itself, which would be absent

in the optically thin case.

The task now remains to express qRHS and qLHS in terms of blackbody emissive power,

taking into account the direction of the incident radiation. To begin this analysis, the

incoming radiative flux from a given direction can be written as a Taylor series in terms

of blackbody intensity:

dib s +2ib
qRHS = a[ibO + d(L cos ) + 2 cos )2+ . . (2.21)

where the q' notation denotes a directional quantity. This expression only applies to

radiation from the layer of cell walls one cell diameter or less away. To account for cell

walls in farther layers, additional Taylor series must be added to (2.21), with Lcos 0

replaced by 2L cos 0, 3L cos 0, etc. Also, for small cell diameters, the terms after the first

derivative can be assumed insignificant and dropped. After making these additions and

27



q RHS

x

Figure 2-1: Radiative interchange among high-absorptivity cell walls.

28

q



integrating over all solid angles dw, the heat flux is

r dibRos 0) cos Odw +. diMReH = e c(i )o + d 2L cos 0 cos Od + (io + 

or

qRHS = a rk (ib + dbkL cos 0) cos Odw (2.22)

The increasing powers of r come about because radiation must pass through k - 1 cell

walls if the source of radiation is k cells away. The integrals can be evaluated by using

cylindrical coordinates where dw = sin OdO do, setting 0 from 0 to ir/2 and from 0 to

2ir. After evaluating the integrals, (2.22) becomes

qRHS = aebo(l + r + r2 +...) + .crL ( + 2r + 3r2 +...) (2.23)

Since the summation in the first term is 1/(1 - r) = /a, the first term is simply ebo.

The expression for qLHs is similar, but the second term is negative, since the two fluxes

are in opposite directions, and thus the sign of the gradient changes. The expressions for

qRHS and qLHs can be substituted into Eqn. (2.20) to obtain

2 deb2
qr = -- aL-(1 t 3r + 5 + ... ) (2.24)

The series in brackets sums to ( + 1)/(r - 1)2. Substituting this and r = 1 - a, we

obtain

4 deb 1 1(2.25)

Since the medium is optically thick, this equation can be equated to the Rosseland

diffusion equation; the extinction coefficient can be expressed as

1 2a _ S,aICR= L2-a 2-a (2.26)

This equation can be rewritten in terms of cell diameter by first using an expression for

the fraction of material in cell walls presented by Reitz:

Stfw = 1 s (2.27)f~=l-L6l
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The surface to volume ratio S, is taken as 3.46/d if the cells are pentagonal dodecahedra,

and 6, the void fraction, is defined by

6 P - Pf -I Pf (2.28)
P - Pg Pa

if the foam gas density p is small compared to the foam and solid polymer densities.

After substituting 1 - e -Kwt for the absorptivity and 3.46/d for S, Eqn. (2.26) becomes

3.46 1 - eKwt
IKualls - d + .Kt (2.29)1 +e- K ,'t

where t is obtained from Eqn. (2.27).

To check the validity of the previous equation, one can see what happens in the

optically thin limit. If the absorptivity can be approximated by Kwt then Eqn. (2.26)

becomes

Kwals - 2 - Kwt (2.30)

In the optically thin limit, the denominator approaches 2. In addition, the value Svt in

the numerator represents twice the cell wall volume per unit foam volume, recalling that

each wall is shared by two cells. The final form is then

Kwall, = -(1 - f) i,
Pa

giving the same result derived earlier in Eqn. (2.17).
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Chapter 3

Radiation Experiments

As stated earlier, the purpose of the following experiments is to check the validity of the

radiation model and provide a basis for its modification if necessary. The data should

demonstrate a simple relationship between the extinction coefficient and a cell diameter-

density parameter. The experiments will follow the same general procedure as previous

radiation tests at MIT, but some changes will be made to balance feasibility and accuracy.

The radiation experiments conducted separately by Schuetz, Sinofsky, and Torpey at

MIT center around the determination of the extinction coefficient. The general procedure

is as follows. A sample of foam is first sectioned into slices thin enough to have trans-

missivities detectable by a standard infrared spectrometer (for most foams the thickness

is well below .1 in). The slice thicknesses are then measured with a micrometer, veri-

fying that the thicknesses vary over a considerable range. Transmissivity measurements

are then taken with an infrared spectrometer, which displays data of transmissivity vs.

wavenumber. The extinction coefficient is then calculated by some variation of the equa-

tion K = - In r/t, where r is the transmissivity and t is the sample thickness. From this

equation one obtains the extinction coefficient as the slope of a line fitting T vs. t data

for all foam slices on a semilog plot.
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3.1 Description of Foams

In October and November of 1988, the Heat Transfer Laboratory at MIT received a

number of fresh foam samples from numerous manufacturers in the United States and

overseas. These sources consisted of: Dow, Mobay, ICI, Asahi, and Fisher-Paykel. All

foams were rigid low-density polyurethane and polyisocyanurate, and were intended for

use as thermal insulation for buildings or in appliances such as refrigerators. Except for

one foam tested, all samples had densities in the area of 31 kg/m 3 (20%). The exception

was a small-celled sample with a density of 50 kg/m 3 . The mean cell diameters of the

foams were calculated to be in the range of .2 to .6 mm. It was desired to obtain foams

with cell sizes below .2 mm, but, as noted earlier, such foams cannot be practically

produced on an appreciable scale [14].

Some foams could not be tested because they contained many large voids several cell

diameters across. The presence of these voids would seriously affect the accuracy of the

transmissivities obtained by the spectrometer, since the infrared beam generated in the

spectrometer may easily be smaller than a large vdA in a foam slice. Some other samples

could be tested despite the presence of large voids. The voids occur mainly in a thin layer

near the facings at the suface of the foam board sample, and are the result of thermal

stresses during manufacture. In all foams, care was taken to cut slices from regions away

from the foam boundaries.

3.2 Cutting Foam Slices

To begin the experiments, cylindrical plugs were cut from each acceptible foam with a hole

saw fixed on a drill press. These plugs would eventually be cut into slices for spectrometer

analysis, but initially they were weighed and had length and diameter measurements

taken to determine density. A Mettler balance was used, which was accurate to .1 mg. It

was necessary to find a scale with at least 1 mg accuracy, since the foam plugs weighed

were often less than 1 gram.
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The plugs were then taken to an Isomet low-speed saw to prepare slices for the

spectrometer. A sketch showing the basic features of the Isomet is shown in Figure 3.1a.

The blade used for cutting is circular is a thin disk of 5 in. diameter, and is set to rotate

at about 160 rpm for cutting foam. The edge of the blade is diamond-tipped for cutting

hard objects and has a squared tip (rather than pointed). The squared tip provides

greater precision when an even cut is required. A metal arm which holds the sample

on one end pivots down towards the edge of the blade, and can accomodate weights to

provide additional force of the sample on the blade. A gage attached to the arm moves

it horizontally, moving the sample towards or away from the blade to produce a certain

cut length. The primary application of the Isomet low-speed saw is for cutting metals, so

normally the blade must be running through a reservoir of lubricant to prevent excessive

heat generation. In cutting foam samples, such lubrication is not required and in fact

would be harmful, since the lubricant remains on the foam slices and will invariably affect

radiative properties.

Ten slices were typically cut for a given foam, with thicknesses ranging from .018 in

to .065 in. All slices were cut in planes perpendicular to the heat flow direction that

the manufacturer intended. To cut foam slices on the Isomet, a simple chuck had to be

constructed to hold the foam plug on the arm, shown in Figure 3.lb. The chuck was

constructed of plexiglass and consists of an open-ended cylindrical container with a hole

in the bottom. A bolt passes through this hole and a hole in the arm and is fastened.

To ensure a firm fit on the chuck, the plugs were cut slightly undersized in diameter and

one end of each plug was wrapped with electrical tape. The fit must be tight enough to

ensure that the plug will not give way when it first touches the blade, as the force of the

blade will tend to tilt the sample and cause an uneven cut. The saw gage was adjusted

after each cut for a new thickness, usually .003 in or .004 in thicker than the last. To

account for the width of the blade, .012 in had to be subtracted from each apparent gage

thickness to obtain the actual thickness. It should be noted, however, that even after this

adjustment, the final gage measurement of the actual thickness was found to be highly
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Figure 3-1: Sketch of (a) Isomet saw, (b) chuck with foam plug.
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inaccurate when the slices were measured by other means, as will be seen later.

Despite the inaccuracy of the gage, the Isomet saw gives the advantage of an even cut

for thicknesses as low as .02 in. The variation of thickness with location was less than

.002 in for 90 percent of the slices measured. The main problem encountered with slices

cut with the Isomet is that despite the general evenness of the surface, there are more

small-scale effects that may cause problems in later tests. The tearing and compression

of surface cells may be significant, especially when torn cell walls collect on the blade as

flakes and redeposit on the foam slices. In Chapter 4 the possible effects on transmissivity

will be discussed.

3.3 Collecting Transmission Data

After cutting, the foam slices were taken to Fourier Transform Infrared Spectrometer

(FTIR) for transmissive analysis. The FTIR used was a Nicolet IR44, and included a

personal computer attachment with software capable of displaying and manipulating the

transmission data in a number of ways. The spectrometer basically consists of a high-

temperature source emitting infrared radiation, which is collected by mirrors into a thin

beam. This beam passes through the sample, and a finite solid angle of radiation leaving

the sample is then collected by another series of mirrors. The chamber containing the

sample is sealed and purged of water and carbon dioxide. After the beam leaves the

sample, a prism breaks the beam into spectral elements so the detector can measure

the intensity of transmitted radiation as a function of wavenumber, or the reciprocal of

wavelength.

To obtain transmissivity data, the spectrometer must take a ratio of the intensity

of the beam passing through a sample in dry air to the intensity of a beam passing

through dry air only. The intensity spectrum of the beam through dry air is called

the "background" and is recorded first. To obtain a background, one must first set the

number of times the intensity will be recorded to obtain an average ("scans") and the size

35



of the wavenumber interval that will be assigned an intensity ("resolution"). After these

parameters are set, the command is given to begin scanning to produce the background.

The background should appear similar to Figure 3.2a when displayed, provided that at

least ten minutes have passed between closing the chamber to outside air and recording

the background. If less time were allowed for the chamber to purge, the background

will show wavenumber bands where the presence of water and carbon dioxide reduce the

intensity, resulting in the less smooth curve of Figure 3.2b. Once a proper background

spectrum is achieved and stored in memory, the chamber is opened and the the first

foam slice is placed in the path of the beam. The chamber is given time to purge, and

the command is then given to run a "sample". In this case the spectrometer measures

intensity as before, but when the sample spectrum is displayed, the vertical axis of the

plot displays transmissivity rather than intensity. The intensities for this and subsequent

samples are compared to the same original background, so only one background need

be taken regardless of the number of samples analyzed. A typical sample spectrum for

polyurethane foam is shown in Figure 3.3. The wavenumber range displayed can be

adjusted to any interval within 400 to 4800 cm- 1 (25 to 2.1 Am wavelength).

The data for the transmissivity-wavenumber plot is stored in binary form, but can be

converted to a more usable numerical form. A certain command saves a sample spectrum

as ASCII characters, which can be stored in a data file and read as numbers by a computer

program in a high-level language. The ASCII file is described in detail in Appendix A and

consists of a series of numbers and words describing the plot characteristics, followed by

the transmissivities for successive wavenumber intervals. If a single mean transmissivity

is desired over a certain wavenumber band, the "integrate" command can be used. This

command is used with starting and ending wavenumbers as arguments, and returns

the value of the area above the spectrum shown in Figure 3.3 to a horizontal line at

a transmissivity of one. The units of the area are obtained by multiplying the units

of wavenumber by the transmissivity on a zero-to-one scale. Thus, if the spectrum in

Figure 3.3 were a horizontal line at 25 percent transmissivity, the value returned by
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Figure 3-2: Comparison of (a) acceptable and (b) unacceptable FTIR backgrounds.
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Figure 3-3: Sample FTIR spectrum for .033 in thick polyurethane foam slice. Density:
.0300 g/cm 3 . Cell diameter: .31 mm.
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the integrate" command for the 400-2000 cm - ' wavenumber range would be (2000 -

400)(1 -. 25) = 1200. This value is labeled by the spectrometer as the peak area". The

average transmissivity can then be calculated from

T= 1__ Ap (.1)

where Ap is the peak area, and /l, q2 are the beginning and ending wavenumber, respec-

tively.

3.4 Sample Thickness Measurement

A Starrett paper micrometer was used to check the thicknesses which were read from

the gage on the Isomet saw. A paper micrometer has basically the same features as

a regular micrometer caliper, but the paper micrometer has a larger measuring surface

area, and one of the measuring surfaces is allowed to swivel (see Figure 3.4). These

features minimize local compression of the foam, and thus minimize any underestimation

of the foam thickness. The gage was slowly turned until the slightest resistance was felt,

and the thickness was read off to the nearest thousandth of an inch, the smallest division

on the gage.

Table 3.1 compares the slice thicknesses as recorded by the saw gage with those

measured with the paper micrometer for a particular foam sample (all tables will appear

at the end of each chapter). In some cases the two measurements differ by as much as

20 percent. In most cases the paper micrometer thickness was lower than the saw gage

thickness. The discrepancy is probably due to a distortion that takes place when the

foam slices are being cut. The Isomet saw is not intended to cut materials as delicate as

plastic foam, so it is possible that the foam is stretched slightly as the blade comes in

contact with the plug. Because of this possibility, the paper micrometer measurements

were used for later calculations.
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Figure 3-4: Sketch of paper micrometer.
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3.5 Cell Diameter Measurement

3.5.1 The Scanning Electron Microscope

The final procedure to be performed on the foam slices was the determination of a

mean cell diameter for each foam. This required a microscope that provides at least

a 50X magnification, a low depth of field to view cells only on a surface layer, and a

high contrast. Most conventional optical microscopes were found to be inadequate, so

eventually an Amray AMR1000 scanning electron microscope (SEM) was used. Although

the SEM was initially used well below its magnification limits (at least 100,000X), the

picture quality proved to be ideal for cell size analysis. Figure 3.5 shows a comparison

between an SEM photograph and a photograph from an optical microscope, showing the

clarity provided by the SEM. The advantage in picture quality stems from the method

that the specimen was prepared and viewed in the SEM.

Three slices were chosen from each foam for viewing. One square with 1 cm sides was

cut from each slice and was attached to the surface of a small metal stub with two-sided

tape. The foam specimens were then taken to a sputtering machine to be coated with a

thin layer of gold, which allows them to be viewed in the SEM. The gold-coated foam is

then placed in the SEM specimen chamber, and the chamber is brought to a vacuum. A

beam of electrons is focused by a series of electromagnetic lenses on the sample and scans

a small area. The gold coating causes the electrons to reflect off the specimen surface,

where they are attracted onto a collector. Because the gold coats only the exposed

surface of a sample, the electron beam can only see" at most the top two layers of cells.

By contrast, an optical microscope uses reflected or transmitted light which may pass

through many layers of uncoated cells, making the distinction between the laters unclear

and producing an overall brighter picture with less contrast.

Because of the advantages of the SEM, it was used extensively in determining the

geometric characteristics of the foams. In addition to the slices, each foam was viewed in

two planes parallel to the intended heat flow direction to determine the amount of cell
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Figure 3-5: Comparison of optical microscope (top) anld SEM (bottom) photographs of
the same foam, both at 30X magnification.
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elongation in three dimensions. Photographs were also taken at much higher magnifica-

tions (750X to 10,OOOX) to observe cell wall and strut cross sections. Figure 3.6 shows

typical cell wall and strut photographs. For each foam photographs were taken of two

cell wall cross-sections to check uniformity of wall thickness, and also to determine the

fraction of polymer in struts (f,) for each foam, which could be compared to the value

of 0.8 assumed for f, in the radiation model.

3.5.2 Cell Diameter Analysis

It was necessary to find a statistical method of calculating cell size from an analysis of

SEM photographs such as in Figure 3.5a. As late as 1970, there was no adequate visual

method developed to determine a mean cell diameter. Cell sizes were determined either

indirectly using complex volume displacement methods or by drawing lines on microscope

photographs and representing the cell size as the average distance on the lines between

cell walls. The latter method had already been found inappropriate by Schael [15], who

used a volume displacement technique instead.

The flaw in using the average distance between cell walls (mean chord length) as

the mean cell diameter is that the method works only if the line passes through the

center of every cell it intersects, and that the center of every cell intersected lies in the

plane of the photograph. In a real foam this cannot occur, since the cells are in random

positions and may be intersected far from their centers. This phenomenon is illustrated

in Figure 3.6. In this way the the mean chord length will always be considerably smaller

than the actual cell diameter. Michalski and Hubeny [16] assumed spherical cells and

integrated chord lengths over the diameter of a circle, and derived that the cell diameter

is 1.27 times the average length of a random line drawn through the cell. Though an

improvement, this result is still incomplete since it only accounts for two dimensions; it

still incorrectly assumes that the center of every cell lies in the plane of the photograph.

ASTM Standard D3576 attempts to correct this by using the same integral analysis,

but applying it twice to account for three-dimensional cells. The mean cell diameter is
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Figure 3-6: SENM photographs of cell wall (top. 5000X) and strut (bottom. 750X) cross-
sections.
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now derived as 1.62 (1.27xl.27) times the mean chord length. This technique was used

initially for these experiments and also in previous foam analyses at MIT. Reitz (17 used

techniques developed by Underwood [13] to obtain expressions for the mean cell diameter

for cells approximated as: cubes, pentagonal dodecahedra, truncated octahedra, and

rhombic octahedra. Except for cubes, his assumptions of non-spherical shapes produced

constants of proportionality (to multiply by mean chord length) higher than the 1.62

reported above.

Both the Reitz and the ASTM formulas were used until a new relation was obtained

through two different derivations, both of which assume uniform spherical cells. Like the

other two methods, the mean cell diameter is proportional to the mean chord length, but

the constant of proportionality is 1.5 (7.5 percent less than that of the ASTM method).

Because of their simplicity, the two derivations will be shown here.

Whereas the ASTM method squares the result of an integration over a circle, the first

derivation uses one integration over a sphere, using the model in Figure 3.7. The length

of a line drawn through a sphere is weighted with respect to the area of a differential ring

of area 27ra da on a disk of area 7rr2 through the center of the sphere. The expression for

the average value of y is

=rr2 y 2rada = ;j2 Vri. 2 2ada (3.2)

The integral can be solved by substituting u = v/r 2 i 2, obtaining

=1 / ~2 2
y _5 /] At du= 2r (3.3)

If r = d/2 and = e/2 where e is the mean chord length, then

d = 1.5e (3.4)

The second derivation is based on concepts of stereology, using Eqn. (2.19):

s= 2/e
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Figure 3-7: Model for integration over a sphere in cell diameter analysis.
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where Sv is a surface to volume ratio. Using spherical geometry to determine S,,

2 =S d2

2v ' ,>' (3.5)

The surface area is halved because each surface of a cell is shared with another cell.

Cancelling and solving for d, we obtain

d= 1.5(

The technique used to implement this equation is illustrated in Figure 3.8. In this

case a photograph with elongated cells will be used to demonstrate the adjustment made

to the mean chord length for anisotropic geometry. A rectangular grid was constructed

on a transparency so that seven vertical and seven horizontal lines could be superimposed

over the photograph. For each line the number of intersections with a cell wall to obtain

PL = 1/i. An average value of PL was then calculated for the horizontal lines and for

the vertical lines. To account for elongated cells, a weighted average PL was calculated

according to a formula derived by Underwood:

PL = 0.7 8 5(PL)L + 0.215(PL)11 (3.6)

where (PL)j is the value for the short dimension and (PL)II is the value for the long

dimension. The mean cell diameter is then calculated by d = 1.5/L.

3.6 Computer Analysis of Spectrometer Data

The next step in the procedure was to obtain extinction coefficients from spectrometer

data. The main problem was how to account for a nongray medium when using the

transmission spectrum to calculate K. Three different techniques were used in previous

projects in the Heat Transfer Laboratory, all of whom graphically analyzed the transmis-

sion spectra printed out from a spectrometer. Schuetz broke each spectrum into bands of

approximately constant transmissivity and calculated a Rosseland mean extinction coef-

ficient using a technique from Ozisik [18]. Sinofsky [19] also broke spectrum into bands,
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but instead calculated a Planck mean coefficient by using a band approximation:

- 1 = IK(Fi+1 - Fi) (3.7)

where F is the blackbody fraction from AT = 0 to the given value. Torpey used no

integral formula, since he assumed the transmissiv;ty to be constant with wavelength,

and read an average transmissivity from the spectrum.

It was first decided to take advantage of the integration command on the FTIR

software to quickly find the extinction coefficient. The average transmissivity can be

obtained from Eqn. (3.1) for each foam slice, and the ten data points for - In ? vs. sample

thickness (t) can be plotted. Two different values of K can be calculated, depending on

the definition of the extinction coefficient. An illustration of the two definitions is shown

in Figure 3.8, which shows typical data points for a polyurethane foam. The data show

a linear relationship, as do the data for all of the foams. If the extinction coefficient is

defined by = exp(-Kt), then a sample thickness of zero must produce a transmissivity

of unity, or n r = 0. A line must be determined which fits the data as closely as possible

but which is also forced through the origin. If the extinction coefficient is defined by

= Cexp(-Kt) where 0 < C < 1, then a line can fit the data without passing through

the origin, since a graph of - n vs. t will have an intercept of -In C. Since each

definition had its own advantages and disadvantages, both were employed until it could

be determined which was correct.

To obtain the most precise value, it was decided that the Rosseland mean extinction

coefficient (KR) should be used. Since the transmission data could be stored in the

FTIR in numerical form, a computer program was written which numerically integrates

the data to obtain KR. The program calculates KR from Eqn. (2.7):

f,, ( e bs/ es )d
KR = ( 9)(eAb/eb)dA (3.8)fS& (i/KIf )(Oe\b/e9eb)dA

Since the FTIR transmission data are recorded with respect to wavenumber (reciprocal

wavelength), the numerator integral becomes, from Eqn. (2-9),

49ebdA = ir C1 C2774 exp(C2 r7T)
eA 'aeb = 2 T5 [exp(C 27T) 1] 2d / (39)
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A FORTRAN program was written to evaluate the above integral numerically by in-

putting the FTIR data files for all ten slices of a given foam, listed in its entirety in

Appendix A. The limits of integration were chosen as 400-2000 cm' (25 to 5 im wave-

length) and room temperature (5280 R) was chosen for T. These choices are compatible,

since 82 percent of blackbody radiation intensity at room temperature is emitted in the

chosen wavenumber range. The wavenumber interval was broken up into 270 smaller

intervals for the integration.

The ASCII files represented in Figure 3.3 had to be modified for input to the com-

puter program. After recording the "FIRST PT", LAST PT", and U# POINTS" to

calculate the wavenumber interval length, all of the initial information prior to the list of

transmissivities was erased. A number representing the sample thickness in inches was

added to the top of the file, resulting in the listing shown in Figure 3.9.

To calculate a wavenumber-specific extinction coefficient (Kx), the program inputs the

sample thickness and the transmissivity at a given wavenumber for each of the ten foam

slice files into a subroutine. The subroutine actually calculates two different values of KA

which represent the two definitions discussed earlier, the force-fit and best-fit coefficients.

The program outputs these values for each wavenumber interval along with a correlation

coefficient to determine how well the force-fit and best-fit methods fit the data. Once

both sets of Kx's have been integrated over the wavenumber range to obtain two values

of KR, the program prints the two KR's along with the average correlation coefficients

for each. A sample output is shown in Appendix A after the program listing. It can be

seen from this output that any assumption of the foam as a gray medium is inaccurate,

since the extinction coefficient varies considerably with wavenumber.
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SAMPLE THICKNESS

/ -1

.081
.084
.081

.083

.078

.079

.086

.080

.082

761 ROWS OF TRANSMISSIVITIES

.033

.036
.033
.034

.034

.034

Starting wavenumber: 4800 cm-1

Ending wavenumber: 400 cm- 1

Figure 3-10:
wavenumber

Input file for FORTRAN program.
interval of .965 cm'l.

Each transmissivity represents a
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.035
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.035
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Paper
Saw gage micrometer

thickness, in thickness, in
.060 .053
.056 .052
.054 .056
.052 .053
.048 .045
.045 .043
.042 .041
.039 .039
.036 .036
.033 .028

Table 3.1: Comparison of saw gage and paper micrometer for measuring foam slice
thicknesses.
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Chapter 4

Results

4,1 Extinction Coefficient Data

The data for K vs. V/p/d must be separated into two groups: force-fit calculation of

K, shown in Figure 4.1, and best-fit calculation, shown in Figure 4.2. The lower

line represented in both plots is the theory which assumes transparent cell walls and

blackbody struts, and the upper line is the revised theory, which includes the effect of

optically thin cell walls. Recall that the final equation for the extinction coefficient is

K = SIrUto + wallo = 3.29- -+ 263p (4.1)

when the foam density is included as a variable. If all foam densities are assumed to be

.032 g/cm 3 , the effect of cell walls is to move the lower line vertically 8.4 cm - l (Kau).

As stated earlier, all foams except the far right data point in Figures 4.1 and 4.2 have

densities within 20 percent of this value.

Obviously, the theoretical line fits the best-fit data more accurately than the force-fit

data, despite the fact that the force-fit data seem to correlate better with a straight

line. The complete set of data with both sets of extinction coefficients is shown in Table

4.1. The table shows the average correlation coefficients r which indicate the quality

with which the force-fit and best-fit methods relate the - In T vs. t data for each foam.
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Figure 4-1: Extinction coefficient data from force-fit slopes. Theoretical line assumes a
foam density of .032 9/cm 3 . All data points have densities within twenty percent of this
value except for the point at the far right, which has a density of .050 g/cm3 .
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Figure 4-2: Extinction coefficient data from best-fit slopes. Density assumptions are the
same as in Figure 4.1, and the far right point is again the exception.
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Obviously, the best-fit values of r should be higher than the force-fit values, and in this

case the best fit method showed a considerably better correlation. Reasons for this will

be examined in the next section.

To further validate the theory, Eqn. (2.18) was applied to the data of Cunningham

and Sparrow [20], who measured radiative conductivity vs. cell size for polyurethane

foams of constant density. The radiative conductivity was obtained by measuring the

overall foam conductivity, and then subtracting calculated values of solid and gas con-

ductivity. This technique introduced a high amount of scatter in the data, since there

are numerous uncertainties involved in calculating the solid and gas conductivities. The

data were plotted and compared with a theoretical line for transparent cell walls. To

express radiative conductivity in terms of cell diameter, either Eqn. (2.15) or (2.18) is

inserted into the expression for krad. If cell walls are assumed transparent, the relation is

16orT 3

krd = 3(0.751/d) (4.2)

where a is expressed in W/(m 2 K 4), T in degrees K, and d in m. Eqn. (4.2) states that

krad Ox d, so the equation is linear. If the effect of cell walls is added, the relation becomes

16aT 3

d = 3 (075 + 8.4)

or k,ad Oc d/(0.751 + 8.4d), which means that the radiative conductivity reaches a certain

asymptotic value as the cells become larger. The two curves are drawn over the data of

Cunningham and Sparrow in Figure 4.3. The slight bending of the data points indicate

that he cell walls have a significant effect on radiative heat transfer.

4.2 Force-Fit vs. Best-Fit Methods

The initial method of calculating K proved valuable in illustrating certain phenomena.

The average transmissivity from the spectrometer software could be plotted as - In r vs.

sample thickness to demonstrate the accuracy of fit of the line whose slope should be the
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Figure 4-3: Data of Cunningham and Sparrow [20] with theoretical curves for transparent
and optically thin cell walls, for a constant foam density of .032 g/cm3 .
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extinction coefficient. The primary question that these plots raise is whether a line forced

through the origin or a best-fit line should be used to obtain the extinction coefficient.

Logically, the equation for transmissivity should be r = eKt; at thickness t - 0 there

is no medium and thus r should equal one. In this case a plot of - In r vs. t would be

required to pass through the origin. From many of the plots generated, however, this

does not seem to be the case. Many of the foams analyzed produce plots similar to Figure

4.4. The solid line fits the points well, but does not intercept the vertical axis near the

origin. The intercept is - In r = 1.424, which corresponds to a transmissivity of 0.24 for

zero thickness. If a line was drawn which best fit the data while being forced through the

origin (the dotted line in Figure 4.4), it is readily seen that many points will be a great

distance away from the line. The correlation coefficient would thus be considerably lower

than that for a best-fit line. Another problem with using a force-fit slope can be seen

from Figure 4.4. If more data points were added to the right of the given ones, the slope

of the force-fit line would have to decrease to move the line closer to the new data. The

extinction coefficient would then be dependent on the thickness range of slices analyzed,

which is not compatible with the definition of K.

Though the best-fit slopes relate the data better, the method still does not explain

certain phenomena. An example is the comparison of plots for two different foams, shown

in Figure 4.5. By the best-fit method, the two foams have extinction coefficients very

close to each other. However, the line fitting the lower set of data nearly passes through

the origin, while the line in the upper set of data has a high intercept, corresponding

to a transmissivity for zero thickness. Despite the similar values of K, the second foam

should attenuate radiation much better than the first, since the value of V//d for the

second foam is almost twice that of the first. It would seem that from this example that

the force-fit extinction coefficient would be the better indicator of radiative behavior.

There is one possible physical explanation for the nonzero intercepts, which deals

with the manner in which the foam slices were cut. The Isomet saw provides an even cut

of constant thickness, but tears parts of surface cells in the process. This phenomenon is
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Figure 4-4: Illustration of nonzero intercept on plot of - In r vs. t. The foam represented
is number la from Appendix B.
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roam 2b
BEST-FIT K: 27.3 cm1I

rORCETI-T K 48.3 cm 1
A

PREDICTED (EON. 4.1): 33.0 cm'-

Foam 2a
-FST-rZ? K: 25.6 cm'~

FORCE-FIT K: 25.3 cm
PREDICTED K (EQN. 4.1): 19.2 cm-1

n nn
0.00 0.01
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Figure 4-5: Comparison of transmissivity plots for two foams. Upper set of data points:
~/-d = 7.21 g/ 2 /cMns/ 2. Lower data: V/p/d = 3.76 g 2/cm512. Foam numbers listed are

from Appendix B.
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illustrated in Figure 4.6, which compares a foam sample cut with an Isomet saw to that

cut with a razor blade. As a result, an artificial layer of torn cell walls and struts can

be deposited on the surface of each side of the foam slices. By "artificial" it is meant

that these layers.do not represent the rest of the foam in radiative properties. As foam

slices cut on the Isomet get thinner, the thickness of these layers do not change, and thus

a certain fraction of radiation is always absorbed when a test is run in a spectrometer.

The transmissivity of the slice approaches that of the outer layers as the slice thickness

approaches zero, creating a nonzero positive intercept on a graph on a graph of -In 

vs. t.

This explanation is questionable, however, because it does not explain how the foams

from Figure 4.5 could have similar extinction coefficients; by the above explanation, the

intercepts should be similar but the values of K should be different. It also does not

explain how some of the intercepts should be so high on the vertical axis. The upper

data of Figure 4.5 suggest that two outer layers on each of the foam slices analyzed has

a transmissivity of 0.17; that it could be that low is highly unlikely.

4.3 Comparison of Cell Wall Photographs

Measurements were taken of cell wall thickness for each photograph described in Chapter

3. These measurements were used for comparison with the results of Reitz, who found

that a typical cell wall is 0.5 #m thick. The measurements were also used to calculate

the fraction of solid polymer in struts from Eqn. (2-27):

sot
1-6

The calculation of fo for each foam could not be carried out with only two cell wall

photographs, however, since great disparity often appeared between the two thicknesses.

Table 4.2 lists cell wall measurements taken for eight foams, and a comparison between

two cell wall photographs for the same foam is shown in Figure 4.8. A difference of this

magnitude was quite unexpected, since it was assumed to this point that cell walls were
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Figure 4-6: SEM photographs of foam samples cut with the Isomet saw (top, 54X) and
a razor blade (bottom, 70X).
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Figure 4-7: Comparison of cell wall cross-sections for the same foam of .0268 g/cm 3

density and .4 mm cell diameter. Top magnification: 10,OOOX. Bottom magnification:
9,000X.
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of uniform thickness. Apparently the effects of local stress variations in foam formation

are more significant than originally thought. The thickness of a cell wall may be highly

dependent on the area of the wall, and uneven distribution of certain chemicals in the

uncured foam mixture may locally affect the surface tension, which would also affect wall

thickness.

To obtain an accurate average wall thickness, at least five high-magnification pho-

tographs would have to be taken for each foam. This is a problem, since obtaining clear

cell wall photographs is a time-consuming process which requires constant zooming in and

out of high magnification to find a cut cell wall with a proper "head-on" orientation for

viewing. In addition, the adjustment of focus and image contrast at high magnification

was a delicate process. As a result it was decided to average all of the values in Table 4.2

to obtain one cell wall thickness for use in Eqn. (4.4). This was done to avoid calculating

f, for each foam from only two wall thicknesses. Since density and cell diameter are also

required for this equation, the values from Table 4.1 were also averaged to obtain a single

density and cell size. The average wall thickness was 0.38 um, which produced a value

of 0.826 for f for a cell diameter of .36 mm and a density of .031 g/cn 3 . This value is

reasonably close (three percent) to the value of 0.8 assumed in the foam radiation model.

4.4 Error Analysis

It was expected that there would be considerable uncertainty in the foam data in spite

of the precautions taken. To produce a set of error bars on the plots of Figures 4.1

and 4.2, the uncertainty was analyzed for four separate quantities: sample thickness,

transmissivity, cell diameter, and foam density.

4.4.1 Transmission Data

The error in the extinction coefficient was broken up into errors in transmissivity and

sample thickness. The error in transmissivity was subsequently broken up into error due
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to the spectrometer and error due to the variation of transmissivity with position on the

foam slice. A simple experiment was devised to determine the relative importance of each

effect. To begin, a foam slice was placed in the spectrometer and a sample was run. Four

additional samples were run five minutes apart on the same foam slice without moving

it. Four more samples were then run, each time slightly moving the sample in its holder.

The transmissivities were obtained for each trial using the integrate" command. Two

standard deviations were calculated: one for the transmissivity data when the sample

was moved for each trial, and one when the sample was kept still. The results are shown

in Table 4.3, and indicate that the error from moving the sample is at least one hundred

times that when the sample is left in place. The error in the spectrometer due to changing

beam conditions was therefore neglected.

4.4.2 Foam Slice Thickness

The paper micrometer is an adequate instrument for measuring foam slices, but there is

still a significant error which must be recognized. This error is due to the possibility of

compressing the foam, and as a result the micrometer will tend to read values smaller than

the actual thickness. To estimate the uncertainty, thin strips were cut from random foam

slices and photographed in cross-section with an optical microscope. Typical photographs

are shown in Figure 4.9. A paper clip of known thickness was also photographed to

calibrate the magnification. The slice thicknesses were measured from the pictures, and

the slices were then remeasured using the paper micrometer. The comparison of the two

sets of measurements is shown in Table 4.4. As expected, the negative error was greater

than the positive, and no deviation was greater than eleven percent.

4.4.3 Cell Diameter Calculations

Unlike the previous two measurements, the error in the cell diameter measurements could

not be determined by experiment. It was instead estimated by assuming that the primary

source of error was in counting the number of intersections of a test line with a cell wall. It
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Figure 4-8: Optical microscope photograph of foam slice cross-section for comparison
with micrometer thickness measurements.

67



was decided that the maximum counting error would be one intersection in both positive

and negative directions. The difficulty in counting arises arises because the positions of

cell walls are vague in many photographs. It may be difficult to tell whether a cell wall

is in the top layer of cells, and a line passing very close to a three-way junction of walls

as in Figure 4.10 may be counted as one or two intersections, depending on the clarity

Figure 4-9: Test line passing close to a strut.

of the photograph. If the mean cell diameter is given by

d = 1.5 = 1.5-,
n

(4.4)

where L is the length of the test line and n is the number of intersections, then error

analysis produces
Ad = An (45)
d n

The value of n was chosen from an SEM photograph of a foam with cell diameters in

the middle range (approximately .35 mm), and was taken to be 9.6. With An = 1, the

error was calculated to be about ten percent. This may seem high, but it is a conserva-
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tive estimate, and in addition represents one of the most accurate visual techniques for

measuring cell size.

4.4.4 Density

When calculating the density error, it was determined that the percent error in mass

is much smaller than the percent error in the length measurement. This is due to the

accuracy of the balance used to weigh the plugs. The length and diameter of the cylinders

were measured with a ruler graded in mm; the measurements were estimated to the

nearest .1 mm. Though a caliper was available, its use proved no more convenient or

accurate. The error in both diameter and axial length was estimated to be .5 mm, which

produced a density error of four percent when 37.2 mm was used as the standard length

dimension.

The results of the error analysis are summarized in Table 4.5, and the plot of K

vs. V/'/d with error bars is shown in Figure 4.11. The larger negative error in the

extinction coefficient is due to the skewed error in slice thickness. Of importance is which

measurements have the dominant error in each parameter. In the extinction coefficient,

the slice thickness error dominates the transmissivity error; in the parameter VA/d, the

cell diameter error dominates the density error.

4.4.5 Further Considerations

The error analysis described above includes only measurement errors, so the error bars

of Figure 4.11 do not include the effects of approximations made in the foam radiation

model. Two quantities, f, and the foam density, were assumed constant in the upper line

of Figure 4.2. The densities are known to vary as much as 20 percent from the mean,

and f, was calculated from widely varying cell wall thicknesses. Another consideration

is the disregarding of the scattering coefficient, which makes up a small part of the

extinction coefficient. The spectrometer measures transmitted radiation, but not all of

the scattered radiation, since only a small solid angle of outgoing radiation is collected.
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Figure 4-10: Best-fit extinction coefficient data with error bars.
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Schuetz has shown that if the collection angle of a spectrometer is five degrees, the foam

extinction coefficient is overestimated by approximately 11 percent. This error may not

be significant, however, because scattering was neglected in the foam radiation model as

well as in the spectrometer measurements. In addition to these factors, cell elongation

may also have a significant effect on the radiation theory.

d, mm p,g/cm 3 g1z/2 Ib, cfln rb K m 1 ii
.55 .0269 2.98 17.0 .9466 21.0 .9140
.47 .0294 3.65 22.5 .9919 26.0 .9755
.43 .0261 3.76 25.6 .9592 25.0 .9568
.40 .0268 4.09 25.7 .9777 32.6 .9351
.39 .0264 4.17 25.2 .9841 28.8 .9715
.38 .0262 4.26 21.9 .9897 30.7 .8824
.36 .0293 4.75 30.5 .9778 35.0 .9664
.31 .0300 5.59 26.4 .9844 33.1 .9392
.34 .0363 5.60 27.9 .9899 33.8 .9623
.29 .0300 5.97 30.7 .9757 47.6 .7534
.26 .0531 7.21 27.3 .9299 48.3 .3377
.21 .0289 8.10 38.0 .9934 55.8 .8387
.22 .0497 10.13 51.8 .9789 65.2 .9386

Table 4.1: Extinction coefficient, density, and cell diameter data for polyurethane foams.
The "b" subscript is for best-fit slopes, and the f" subscript is for force-fit slopes.

Cell wall
thicknesses,

Foam # microns
la .21, .30
lb .40, .66
ld .20, .35
2a .20, .40
2b .20, .69
3a .24, .28
3b .27, 1.0
4 .27, .48

Table 4.2: Measured cell wall thicknesses for eight foams (two measurements for each
foam). See Appendix B for more information on foam numbers listed.
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Slice left Slice moved
in place around

Foam # (% error) (% error)
1 .04 4.2
2 .05 10.6

Table 4.3: Uncertainty in spectrometer measurement of transmissivity. Repeated spectra
taken for a single foam slice.

Micrometer Microscope Percent
Slice # measurement, in measurement, in Deviation Deviation

1 .014 .016 -.002 -12.5
2 .034 .038 -.004 -10.5
3 .069 .071 -.002 -2.8
4 .041 .038 +.003 7.9
5 .043 .043 0 0
6 .039 .042 -. 003 7.1
7 .035 .037 -. 002 5.4

Table 4.4: Error in paper micrometer measurements.

_ _ K /d
First r: ±7.3% p: ±4%

component
Second t: +2.6%

component -7.7% ±11%
Combined +3.3%

error -8% t±11%

Table 4.5: Final results of error analysis.
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Chapter 5

Foam Production

Now that the data has supported the theoretical relationship between the extinction co-

efficient and cell size, the problem now remains to create foams with small cells. This

must be done without reducing f, or the void fraction, or else by Eqn. (1.2) conduction

through the solid will increase. The foam industry cannot presently produce foam insu-

lations with mean cell diameters less than 0.2 mm without decreasing the void fraction

substantially (as is done in microcellular foams) [14]. Photographs of some foam cross-

sections may appear to have smaller cell sizes, but the cells are probably elongated in

planes perpendicular to the photograph, making the mean cell size larger. If the foam

industry is to compensate for the absence of low conductivity gases, it must consider

producing foams with smaller, thin-walled cells.

The ulimate goal of this research is to determine what can be done to produce foam

insulations with smaller cells so that the foam industry can use the information ob-

tained. It is desired to test methods such as increasing pressure and adding chemicals to

the foam mix. The initial goals, however, begin with the learning of foam mixing in the

laboratory, and the macroscopic observation of the foaming process. Once foam mixing

becomes more familiar, the research then focuses on whether the process can be viewed

with a microscope, and how the microscope must be set up. The setup would undoubt-

edly involve photographic equipment (possibly a video camera) to record stages of cell

73



nucleation and growth. Such experiments have not been performed to any significant

extent in the foam industry. This is because foam manufacturers rely mainly on the final

cured form of the foam to determine how to produce smaller cells, rather than on the

process itself. It.shoul be noted that most commercial lab tests involve some analysis

of the foaming process. It is common for a lab technician to mix certain foam chemicals

and record the time after mixing for a foam to reach a certain appearance or texture.

This test does not focus directly on controlling cell size, however. A visual test using a

microscope may make it possible to explain how changes made to a foam mix affect cell

size, and what stages in the foam formation are crucial in governing the final cell size.

This chapter will describe experiments performed on foam mixtures in various con-

tainers. The purpose of the experiments is to determine whether foam viewed through

a glass surface will be representative of what takes place farther inside the foam. The

concern here is that the effects of wetting or heat loss at a container boundary may retard

cell growth, or may encourage the formation of a thick skin" at the container boundaries

similar to what forms at a free boundary. To prepare the reader for considering these

possibilities, background information on foam production will first be presented. Fun-

damentals of polyurethane foam chemistry will first be discussed, briefly describing the

various components present in a typical foam mix. The discussion will then turn to the

mechanics of foam formation, including an introduction to classical nucleation and bubble

growth theory. General methods of reducing cell size will be presented, along with po-

tential problems with each method. Finally, The chapter will describe how polyurethane

foam insulation is commercially produced.

5.1 Background

5.1.1 Foam Chemistry

Polyurethane foam is generally the reaction of a polyol with a polyisocyanate. The polyol

is an alcohol with two or more hydroxyl (OH) groups attached to each molecule, and the
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polyisocyanate molecule will have two or more isocyanate (NCO) groups attached. Upon

reaction the hydroxyl and isocyanate radicals break up, and the molecules combine in

chains of two or more units called urethanes. Another important reaction occurs if water

is present in the reaction: water reacts with the polyisocyanate to form urea and carbon

dioxide. Though many different secondary reactions take place, the two mentioned are

of primary importance. The polyurethane that forms may be either in long chains with

little branching, as in flexible foams, or highly cross-linked, as in rigid insulating foams.

An illustration of the difference in structure is shown in Figure 5.1.

Figure 5-1: Comparison of elongated (left) and cross-linked (right) polymer molecules,
showing locations of urethane linkages (heavy portions of lines).

The reactions described above form the basis for the solid polymer, but other compo-

nents are necessary in a foam mix. The most essential of these is the blowing agent, or the

component that eventually creates a gaseous phase and creates voids in the foam. The

blowing agent can be dissolved in one of the polymer reactants. Since the polyurethane

reaction is exothermic, the blowing agent vaporizes while the reaction is taking place,

and comes out of solution in the form of bubbles. The most important examples of this
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type of blowing agent are the CFC's mentioned in Chapter 1. In another type of blowing

agent, the gas is formed as the product of a reaction occuring during polymerization.

The primary example of this is the water-isocyanate reaction described above, releasing

carbon dioxide into the bubbles. Water and CFC-11 are the primary blowing agents

used in the foam industry, and are typically added to the polyol if the foam chemicals

are supplied as a two-component system. Other chemicals are also typically added to the

polyol which either affect cell structure or some other physical property. One example

of an additive that can affect cell structure is the catalyst, usually another organic or

organo-metallic compound. Another example is the surfactant, typically a silicon-based

compound, which relieves surface tension when cell walls are thinning out. Components

such as fire retardants and pigments are also often added to change other foam properties.

5.1.2 Foam Dynamics and Cell Size Control

Once the polymerization reaction has begun, gas bubbles begin to form in the liquid

polymer around nucleation sites. Classical nucleation theory can be used to approximate

the system initially as a gas dissolved in a fluid. This theory only serves as a rough

approximation, and does not apply to later stages of foam formation where the polymer

viscosity and surface tension become sufficiently high as the foam cures. Nevertheless, it

serves as a valuable tool for understanding the basic dynamics of cell growth.

Hobbs [21] derived the work necessary to create a spherical bubble in a pure liquid:

W=PAV- AA= P (4r3) - (4r2) (5.1)

where the first term is due to volume expansion, and the second term is the free energy

from the creation of a new surface (y is the surface tension). Differentiation with respect

to radius r produces the radius at which the work is maximized:

27r= -- (5.2)P
Substituting this into Eqn. (5.1) yields

W,,- (5.3)3P2
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From this equation we can see that smaller bubbles have higher gas pressures. This

means that if two bubbles of unequal size are separated by a sufficiently thin wall of

liquid, gas will diffuse from the smaller bubble to the larger one. As a result, bubble size

will increase with time and the number of bubbles will decrease.

To produce fine-celled foam, the process described above must be counteracted by

bubble stabilization. Saunders and Hansen [22] suggest various means of reducing cell

size, some of which are described in the remainder of this section. One suggestion is

the increasing of nucleation sites, which increases the number of bubbles and thus makes

the average bubble size smaller. Small solid particles or existing bubbles are usually

necessary in the unreacted foam mix to provide outlets for gas diffusion. This is because

spontaneous nucleation in a pure liquid requires high pressures for a small initial radius

from Eqn. (5.2), and such pressures are highly unlikely. Self-nucleation may occur, how-

ever, if the surface tension is sufficiently low in the initial stages of polymerization; this

lowers the required nucleation pressure for a given bubble size. A lower surface tension

also decreases the pressure difference between bubbles of unequal size, providing an ad-

ditional stability advantage. The surface tension may be lowered by the addition of a

surfactant such as silicone oil, or by sufficiently catalyzing the reaction such that the

surface tension and viscosity are still low when polymerization takes place.

As mentioned above, controlling bubble stability is another consideration in addition

to increasing nucleation sites. Care must be taken that the bubbles do not grow too

large before foam cure, and that cell walls do not become so thin that they eventually

rupture. Saunders and Hansen discuss several points on controlling the thinning of cell

walls. One important point is temperature control. An increase in temperature will tend

to decrease viscosity as well as surface tension, and promote flow of polymer away from

the cell wall due to capillary action. Preventing local areas of high temperature will thus

minimize the amount of cell wall rupture. A silicone surfactant will also tend to keep

surface tension low and viscosiy high, thus stabilizing the cell. Another factor to consider

is that attempting to create low-density foams with fine cells may make struts thin as
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well as cell walls, which may lead to complete foam collapse. On the opposite end, an

overzealous attempt to stabilize bubbles may lead to foams that are too dense, which

would increase solid conduction. Tests must thus be run to determine optimum foaming

conditions which, will balance the effects described above.

5.1.3 Foam Board Production

A typical method of production for polyurethane foam insulation in board form is shown

in Figure 5.2. The process is known as continuous lamination and consists of foam mixed

on a sheet of facing material such as paper or metal foil and moved on a conveyor belt.

The top surface is covered with another sheet of facing and constrained to produce even

surfaces. The constraint also prevents excessive cell elongation from a unidirectional rise.

The foam components are reacted by static (or impingement) mixing, in which two thin

high-velocity jets are aimed at each other in a mixing chamber of small volume. The

mixture deposited on the facing is heated as it enters the constraining belt to reduce heat

loss on the outside of the foam near the facings. The continuous board that results is

cut into desired lengths as it leaves the conveyor [1].

5.2 Foam Mixing Experiments

The method for small-scale foam production in the laboratory requires mechanical mix-

ing rather than static mixing. The two foam components are poured in the proper weight

ratios into a single container and mixed using a rotor at speeds of at least 1,000 RPM.

Although this method does not produced foams of the same uniformity and cell qual-

ity as static mixing, it is sufficient for laboratory purposes and is the method used in

the following experiments. The experiments will determine the feasibility of observing

foam under a microscope, and if such observation is practical, methods of setting up a

microscope will be suggested.
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Figure 5-2: Industrial apparatus for manufacturing foam board [1].
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5.2.1 Preliminary

Foam chemicals were received from ICI Polyurethanes and equipment was purchased

for mixing. The first of the two foam components received was a form of methylene

diisocyanate (MDI), a reactant commonly used for polyurethanes. The other component

was a combination of high molecular weight polyols, catalysts, and a blowing agent, in

this case CFC-11. Both components had densities of around 1 g/cm3 . The mixer used

was a Cole-Parmer Stir-Pak general purpose stirrer. This was a simple propeller-type low

torque mixer which could provide up to 10,000 RPM in air. This mixer was adequate,

since the foam mixture had a sufficiently low viscosity. The chemicals were to be mixed at

a specific weight ratio, so a scale was used to measure the component amounts. Since no

quantitative experiments would be performed, accuracy in measuring chemical amounts

was not particularly important at this point, so a dietary scale was used, accurate to 1

gram.

Trial foams were initially mixed in one-pint ice-cream containers to determine the

rate of volume expansion, which will be useful in future observation experiments. Under

normal conditions the foam expanded from 25 to 30 times its original volume. This means

that small amounts of each component are required to produce volumes of foam sufficient

for most experiments. The amount of foam chemicals used also had a lower limit, as the

propeller could not properly mix liquids that were too shallow in the container. It was

decided that 45 g of total reactants (or about 45 ml) was an acceptable amount. The

reactants were mixed for 3-5 seconds and within a few seconds after mixing the foam took

on a creamy appearance due to the formation of small bubbles (in industrial tests the

time after mixing that the appearance changes is known as the cream time). Immediately

afterward the foam expanded rapidly in the next 30 seconds, and reached its final volume

about 90 seconds after mixing. Within five minutes the foam reached its final state of

rigidity.

The first foams produced showed two notable characteristics. The first is the "skin"

that formed at the top of the free-rising surface. The skin is actually a top layer of
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thickened cell walls and is generally attributed to rapid heat loss at the foam surface,

which contracts cells and consolidates material. It is evident from the SEM photographs

of Figure 5.3 that the thickness of this top layer is several times that of a typical cell

wall. The second phenomenon observed occurs when the foam rises above the lip of the

container while it is still fluid. The foam above the lip expands outward, which puts

a radial stress on the foam as it is curing. This effect, aided by further expansion of

the blowing agent, may create large voids in the foam like those shown in Figure 5.4.

To control these voids it may be necessary to use smaller amounts of foam mix, or at

least pour some of the mix into a similar container immediately after mixing. Another

solution is to pour the foam in a wider, more shallow container, which was done in he

next experiments.

5.2.2 Boundary Experiments

Once several trial batches of foam were produced, attention could be focused on obtaining

a microscope for viewing the foaming process. Before this was done, however, it was

necessary to determine whether such viewing would provide sound conclusions. The

primary concern is that the foam would have to be viewed through a transparent surface,

and that effects such as surface wetting and boundary heat loss would affect the cell

size or structure at that surface. Surface friction and wetting effects were neglected on

the assumption that such effects are also present between cells and are similar. The

heat transfer characteristics, however, are not the same at the interior as they are at the

surface, so thermal boundary experiments were of the greatest importance. The probable

effect of heat loss at the viewing surface and the free rise surface is that rapid boundary

heat loss would produce lower temperatures at these surfaces. The blowing agent would

vaporize more slowly, resulting in smaller cells and thicker cell walls.

To test the presence of this effect, a number of foams were blown under different

thermal conditions, and density and cell diameter measurements were taken for some of

them. The first test performed was foam mixed and poured into a shallow thin-walled
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Figure 5-3: SEM cross-sectional photographs of free-rise surface skin (both photos
1200X). Skin thickness for both photos is approximately 3 m.
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Figure 5-4: Void formation in lab-blown foam-3.
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cardboard box, with half of the box surface insulated with commercial foam board.

The experiment is sketched in Figure 5.5. Plugs were taken from the insulated end,

uninsulated end, and center of the box near the bottom insulated surface, and density

measurements were taken. Small cross-sections were also observed under an optical

microscope for each location. The results were inconclusive; the center plug had the

lowest density (.0189 g/cm 3 ), and the densities of the insulated and uninsulated ends

(.0198 and .0205 g/cm 3 , respectively) had error ranges that overlapped. Microscopic

inspection of the cell structure also revealed little variation. Since the cardboard surface

completely adhered to the foam, it was impossible to view the cells immediately adjacent

to the boundary, so containers with smooth transparent surfaces were used in subsequent

tests.

A second test was run by pouring the foam mix into a transparent polyethylene

box of dimensions 5"x7" and 1" depth; a sketch of this experiment is shown in Figure

5.6. There were no special thermal conditions placed on the box; the purpose of this

test was to measure the density and cell diameter variations with vertical distance from

the bottom surface. The foam rise height was approximately 2.6 in. Five small cubes

were cut from the foam at half-inch intervals from the bottom surface; these cubes were

weighed and measured for dimensions. Slices were then cut from each cube in planes

parallel to the foam rise (vertical) for viewing in the SEM. Two slices were also cut in

planes perpendicular to the foam rise (horizontal), or the plane which would be seen

when viewing the foaming process with a microscope. One slice was taken within .5 mm

of the bottom surface, and the other was taken 1 in (25.4 mm) above the bottom. SEM

photographs of the two slices are shown in Figure 5.7. The pictures look identical, and

cell diameter analysis shows an identical cell size of .43 mm. Table 5.1 shows the density

variation with distance, along with the variation of cell size and degree of elongation, or

the ratio of the major cell axis to the minor axis. The densities and elongations roughly

follow the predicted pattern that the foam should be most dense and least elongated near

the boundaries. The elongated cell diameters calculated by Eqn. (3.5), however, do not
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Figure 5-5: Sketch of foam blown in cardboard box, with locations'of plugs.
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SAMPLES FOR DENSITY
MEASUREMENTS

Figure 5-6: Sketch of foam blown in plastic box, with location of samples cut for density
measurements.
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Bottom surface

1" from bottom

Figure 5-7: SEMI photographs of foam cells from foam blown in plastic box. In planes
perpendicular to rise direction, magnification 30X.
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follow the predicted trend, and seem to be affected more by local variations than by heat

loss.

Concern also arose over the polyethylene box experiments because of the possibility

of reaction between the foam polymer and the box polymer at elevated reaction temper-

atures. This did not seem likely at first, because the foam separated readily from the box

after curing and formed a smooth transparent surface where it made contact with the

box. Nevertheless, it was decided to view the foam in a glass container as a safeguard.

The first containers used were Pyrex culture dishes of 5.5 in diameter and .75 in depth.

Experiments were devised to alter the thermal conditions of one of these dishes before the

foam mix was poured in. The first dish was to be insulated and heated to near maximum

reaction temperature, which was found from a thermocouple measurement to be 296°

F. Another dish was to be left uninsulated and at room temperature. Four small plugs

were taken from each foam at approximately .7 in intervals from the bottom surface, and

weighed for density. Cell diameter measurements were then taken at the bottom surface

and 1 in from the bottom, with photographs in planes parallel and perpendicular to the

rise direction for each location.

A listing of the density measurements for the Pyrex dish experiments is given in

Table 5.2, and the complete set of cell diameter measurements is given in Table 5.3.

A comparison of photographs taken at the bottom surface and perpendicular to the rise

direction for each dish is also shown in Figure 5.8, demonstrating the great difference

in cell sizes. It appears that heating the dish to near reaction temperature adds too

much heat to the foam mix before it completely reacts. This makes the blowing agent

vaporize prematurely and create bubbles much larger than would be found farther inside

the foam. From Table 5.3 it can be seen that while the foam from the heated dish had

boundary cells that were too large, the boundary cells of the unheated dish were slightly

undersized. This suggests that some intermediate boundary temperature is desired, or

that better insulation is needed for the boundary temperature to match the foam interior

temperature.
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Figure 5-8: SEM photos of foam cells at the bottom surface of unheated (top) and heated

(bottom) Pyrex dishes. In planes perpendicular to the rise direction, 40X magnification.
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One possible consideration for insulating the boundary more efficiently is finding a

container with thinner glass. Pyrex has a high heat capacity and the dishes were about .06

in thick, which may be enough for the glass to draw excess heat from the foam mix while

it is reacting. To solve this problem, the container drawn in Figure 5.9 was devised, which

consists of two ice-cream containers stacked on top of each other and glued together. The

bottom is cut out of the top container so that the foam will be allowed to rise higher

without reaching the top and expanding radially, causing the voids described earlier. At

the bottom of the container is a half-inch thickness of pre-formed foam insulation with a

hole of approximately one half inch diameter in the center. The purpose of the hole is to

simulate viewing the bottom of the container with an inverted microscope, so that the

objective peers up through the hole. Covering some of the insulation, including the hole,

is a .006-inch thick sheet of cover glass, attached to the insulation with rubber cement.

After the foam is poured into the container and allowed to cure, the rubber cement can

be easily peeled away from the glass, allowing the foam to be viewed by removing the

bottom insulation.

The foam cells were viewed in the two usual planes and at four different locations.

Along the bottom surface viewing samples were taken directly over the hole and about

.75 in away from the hole. For each of these locations samples were also taken one half

inch above the glass. For the photographs at the bottom surface and perpendicular to the

rise direction, optical microscope photographs were taken as well as SEM photographs.

The results of the cell diameter analysis are shown in Table 5.4. The cells show greater

elongation than the foams from the Pyrex dishes because of the greater vertical expansion

of the foam. Comparisons of cell photographs in different positions are illustrated in

Figures 5.10 and 5.11. The data did not seem to follow a particular trend, except

that in the perpendicular plane photographs, the cell sizes were somewhat smaller at the

bottom surface than farther into the foam. This was particularly evident with samples

from over the hole. This result was not supported by earlier experiments, however, and

was considered insignificant for the purposes of this research.
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Figure 5-9: Sketch of thin-glass viewing experiment.
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Figure .5-10: Comparison between cell sizes at glass surface (top) and 1/2" up froll

surface (bottom), thin-glass viewing experiment, away from hole. Magnifications are

60X (top) and 50X (bottom). Planes shown are perpendicular to the rise direction.
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Figure .5-11: Comparison between cell sizes at glass surface (top) and 1/2" up from
surface (bottom), thin-glass viewing experiment, over hole. Magnifications are 34X (top)
and 40X (bottom). Planes shown are parallel to the rise direction.
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The general conclusion drawn from this experiment was that boundary heat loss ef-

fects create some disparity in cell size. This disparity can be minimized by making the

container boundary as thin as possible and insulating it. While the thin-glass experi-

ment showed that the boundary cell sizes were somewhat smaller at the glass surface

than farther inside the foam, the difference in cell size was less than in the Pyrex dish

experiments. The skin that forms at the free-rise surface is probably not due to heat loss,

since such a skin did not appear along the bottom of the foam blown in the unheated

Pyrex dish. It is probably more due to lack of movement of the polymer at the free-rise

surface, as compared to the container boundaries, where fluid friction may tend to thin

out the polymer. If the foam is viewed with a microscope apparatus and a container

similar to the one in Figure 5.7, one can expect to see cell growth resonably close to what

takes place at the interior of the foam.

5.2.3 Suggested Viewing Apparatus

Figure 5.12 shows a setup for microscopic viewing of foam based on the experimental

results. A biological inverted microscope is suggested so that a stationary surface can be

observed. A small amount of foam mix will be poured into a cardboard cylinder with a

thin sheet of glass at its base. The glass will be adhered to a slice of preformed foam, no

more than 0.5 in thick. The thickness of the insulation is limited by the working distance

of the objective, which may have to extend above the hole in the stage in order to focus

on the glass. The biological inverted microscope uses transmitted light for illumination,

which would be adequate if the foam rise height were one inch or less. Such a rise height

is difficult to obtain because of the foam's great volume expansion, so it may be more

practical to use reflected light. The main problem with this is that biological inverted

microscopes are not generally equipped to supply light from the objective; this feature

can only be found in metallurgical microscopes which are more costly and precise than is

required. It is possible, however, to fit a fiber-optic ring light source around the objective.

Both types of illumination will be tested in future experiments.
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Figure 5-12: Proposed microscope setup for viewing foam.
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To record the process, a video camera will be fitted on the microscope, along with

a black-and-white monitor and videocassette recorder. Using quick multiple exposures

of 35 mm still film was also considered. The camera would have to take at least one

exposure per second, since the cell growth processes of interest take place in the first ten

seconds of mixing. With this amount of time, the video camera must take a number of

frames per second sufficient for review in slow motion. It is desired to view the foam at

as early a stage as possible so the number of nucleation sites can be counted,
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Distance from Mean cell Density,
bottom, in Diameter, mm Elongation g/cm 3

0 .57 1.12 .0227
.5 .48 1.32 .0200

1.0 .46 1.18 .0190
1.5 .53 1.15 .0183
2.0 .52 1.01 .0204

Table 5.1: Data for foam blown in plastic box.

Table 5.2: Density mesurements for Pyrex dish foams, in g/cm 3 . The missing density
was discarded because of excessive voids in the foam plug.

Table 5.3: Cell diameter data for foams blown in heated and unheated Pyrex dishes.
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Distance from bottom, in
.3 1.0 1.7 2.4

Unheated
dish .0229 .0213 .0208 .0211

Dish at
280°0 F .0216 .0206 - .0210

Parallel to rise
Major Minor Perpendicular

axis, mm axis, mm Elongation to rise, mm
Unheated dish,
bottom surface .53 .39 1.36 .24
Unheated dish,
1" from bottom .56 .44 1.27 .36
Dish at 280° F,
bottom surface .64 .58 1.10 .69
Dish at 280°F,

1" from bottom .63 .50 1.26 .41



Parallel to rise
Major Minor Perpendicular

axis, mm axis, mm Elongation to rise, mm
Over hole,

bottom surface .70 .39 1.79 .24
Over hole,

1/2" up from glass .70 .36 1.94 .32
Away from hole,
Bottom surface .54 .43 1.26 .26

Away from hole,
1/2" up from glass .63 .33 1.91 .30

Table 5.4: Cell diameter data for foams blown in the container of Figure 5.9.
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Chapter 6

Conclusions

1. The model for the radiative portion of the effective conductivity of foam insulation

has been improved. This was done by including the effect of cell walls as well as

struts in the derivation of the extinction coefficient.

2. At low optical thickness, the high absorptivity cell wall model for the extinction

coefficient simplifies to the original optically thin equation. This suggests that the

high absorptivity model may also hold for intermediate optical thicknesses.

3. The Isomet saw was an adequate instrument for cutting foam samples for the

spectrometer, but the tearing of cell walls may have an effect on the transmissivity

measurements.

4. An improved but simple formula has been derived to determine the mean cell

diameter from SEM photographs of foam cross-sections. This formula assumes

spherical uniform ceils.

5. From the spectrometer and computer data, it can be seen that the foam cannot be

assumed a gray medium; the transmissivity, and thus the extinction coefficient, are

not constant with wavelength.

6. The improved formula for the extinction coefficient fit the experimental data rea-
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sonably well when used with best-fit values of K. When applied to radiative con-

c'ductivity, the formula also fit data from another source.

7. Though the data from the best-fit extinction coefficient was compatible with the

derived formula, it is still uncertain whether K should be defined by a force-fit or

a best-fit slope from - In r vs. t data.

8. Cell wall thickness may vary considerably within a given foam.

9. Foams with smaller cells will have smaller effective conductivities as long as the

void fraction or fraction of solid polymer in struts is not also decreased.

10. Increasing the number of nucleation sites is of primary importance in producing

fine-cell foam.

11. The cell walls in a fine-cell foam should be thin, but care must be taken that cell

walls do not thin out to the point of rupture during foaming. Methods of controlling

this include adding a surfactant and preventing local areas of high temperature.

12. A microscope can be used to view cell nucleation and growth during foaming. Cells

viewed through an insulatcd thin glass surface are representative of cells farther

inside the foam if the surface is adequately insulated.

100



Appendix A

Computer Code with Input and

Output

The following program computes the Rosseland mean extinction coefficient for spectrom-

eter data. The input to the program is a modified form of the ASCII file recorded by

the spectrometer for each foam slice. The original form of the file is shown in Figure

A.1, and the input file (modified form) is shown in Figure A.2. In the input file, the

first number is the thickness of the foam slice, and the transmissivities for successive

wavenumber intervals are listed from left to right in successive rows. The length of each

wavenumber interval can be calculated from

FIRSTPT - LASTPT
#POINTS- 1

where "FIRST PT" and "LAST PT" are the starting and ending wavenumber, respec-

tively, and are read from the original file, as is "# POINTS". Since the program can

only read the first transmissivity in each row, the interval used by the program in the

numerical integration is actually six times the value obtained above.

The output for the program is shown in Figure A.3. The best-fit and force-fit ex-

tinction coefficients are displayed for successive wavenumber intervals, along with their

respective correlation coefficients. The final Rosseland mean values are then displayed,
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along with the average correlations. The extinction coefficients for each interval was

found to correspond with the transmissivity spectrum of Figure 3.3. In general, the

extinction coefficient increases as the transmissivity decreases.
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INSTRUMENT = R44
FILETYPE = UNSPECIFIED
FIRST PT = 4800.47
LAST PT - 399.32
# POINTS = 4564
4 SCANS = 256
DATE = 03/24/1989
TIME = 11:41:34
SAMPLE NAME 
SAMPLE FORM =
CHEMIST NAME =
ZEROFILL = 1
APODIZATION = HAPP GEN:
DATA =
.081 .082 .081
.085 .085 .084
.081 .080 .0R1

ZEL

.083

.078

.079

.086

.080

.082

.082

.080

.081

761 ROWS OF TRANSMISSIVITIES

.035

.033
.034
.035

.033

.036
.033
.034

.034

.034
.033
.036

Figure A-i: Original ASCII transmissivity file from Nicolet IR44.
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SAMPLE THICKNESS

/

.035
.081
.085
.081

.035
.033

.082

.085
.080

.034
.035

.081
.084
.081

.033

.036

.083

.078
.079

.033
.034

.086

.080
.082

.034
.034

.082

.080
.081

.033

.036

Figure A-2: Transmissivity file modified for input intc FORTRAN program.
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K(forced) Corr. K(beut it) Corr. WAVENUMLIER, cm1

74.59 0.9108 55.54 0.9827 2000
74.57 0.9107 55.54 0.9825
74.52 0.9107 55.48 0.9828
74.51 0.9112 55.53 0.9827
74.49 0.9108 55.47 0.9828
74,42 0.9103 55.39 0.9826
74.41 0.9113 55.47 0.9825
74.39 0.9117 55.48 0.9828
74,37 0.9128 55.53 0.9832
74.35 0.9123 55.51 0.9827
74.31 0.9128 55.51 0.9830
74.28 0.9130 55.50 0.9831
74.30 0.9144 55.65 0.9830
74.30 0.9164 55.81 0.9835
74.34 0.9184 56.02 0.9836
74.37 0.9193 56.12 0.9838
74.31 0.9]82 55.99 0.9835
74.23 0.91 5 55.95 0.9837 1900
74.04 0.9151 55.52 0.9831
73.83 0.9154 55.35 0.9835
73.65 0.9136 55.08 0.9832
73.49 0.9134 54.93 0.9832
73.28 0.9122 54.67 0.9832
73.14 0.9113 54.50 0.9829
73.01 0.9110 54.38 0.9827
72.91 0.9113 54.36 0.9826
72.79 0.9124 54.33 0.9831
72.70 0.9140 54.39 0.9832
72.60 0.9140 54.33 0.9831
72.50 0.9162 54.41 0.9837
72.39 0.9172 54.41 0.9839
72.31 0.9170 54.36 0.9836
72.23 0.9185 54.43 0.9837
72.16 0.9202 54.53 0.9840
72.07 0.9210 54.53 0.9841 1800
72.03 0.9233 54.72 0.9842
71.88 0.9236 54.64 0.9843
71.71 0.9244 54.58 0.9845
71.79 0.9278 54.96 0.9849
71.67 0.9295 55.08 0.9846
71.15 0.9316 54.90 0.9847
70.87 0.9350 55.09 0.9847 Units of K: in 1
71.18 0.9393 55.85 0.9848
73.27 0.9465 58.40 0.9856
78 77 0.9563 64.18 0.9874
87.25 0.9628 72.32 0.9884
95.36 0.9665 79.91 0.9889

100.69 0.9685 84.84 0.9895
104.53 0.9713 88.64 0.9905
108.30 0.9715 92.16 0.9898
109.46 0.9725 93.26 0.9906
106.75 0.9683 90.01 0.9890 1700
101.90 0.9645 84.96 0.9883
96.92 0.9623 80.10 0.9888
92.45 0.9570 75.40 0.9878
88.89 0.9519 71.62 0.9869
86.22 0.9499 69.00 0.9875
84.15 0.9442 66.65 0.9859
82.66 0.9412 64.99 0.9859
81.50 0.9393 63.84 0.9856
80.54 0.9385 63.00 0.9854
79.78 0.9376 62.24 0.9857
79.21 0.9362 61.63 0.9854
78.77 0.9370 61.38 0.9856

Figure A-3: Sample program output for polyurethane foam of density .0300 g/cm 3 and
cell diameter .31 mm. Wavenumber values are not part of the actual output.
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78 .62
78.59
79 .74
80. 84
81.31
83.32
83.92
81.60
79 31
77 77
76.15
75.33
75.21
76.37
79.25
83.45
87 .65
90.49
92.19
92 .52
93 .98
92.76
88.36
85 18
83.36
81.88
80 .37
79.58
79.23
79.19
79.86
80.57
81.45
83.20
86.10
89.76
92 .80
99.76

101.22
96.05
90.94
87.42
85.01
83 .90
83.18
81.78
81.16
80.48
79.27
78.71
78.63
78 .85
79.02
80 .60
83 .37
85 .03
86.34
87 .60
89.39
90 .96
91 .85
92 .18
91.48
90.21
88.95
88.29

0.9376
0.9394
0.9429
0.9453
0.9464
0.9490
0.9491
0.9443
0.9395
0.9377
0 .9343
0.9347
0.9390
0.9440
0.9510
0 .9551
0.9581
0.9600
0.9618
0.9617
0.9607
0.9605
0.9526
0.9503
0.9471
0 .9441
0 .9422
0.9438
0.9437
0.9428
0.9458
0.9479
0.9501
0.9531
0.9571
0.9587
0.9625
0.9668
0.9653
0.9590
0.9537
0.9504
0.9478
0.9457
0.9458
0.9422
0.9404
0.9389
0.9385
0.9389
0.9406
0.9411
0.9433
0.9476
0.9515
0.9531
0.9548
0.9568
0.9579
0.9577
0.9589
0.9590
0.9543
0.9545
0.9535
0.9550

61 33
61 .53
62 .92
64.05
64 .60
66.59
67 .05
64.49
62 .07
60 .67
59.07
58 .51
58 .95
60.47
63 71
67 .80
71 74
74.43
76.11
76 .38
77.46
76.26
71.28
68 .32
66.41
64 .81
63.34
62 .92
62 .62
.62 .59
63.49
64 .36
65.41
67 .30
70.31
73 .67
,6.94
83 .58
84 .3 
78 .67
73.54
70.11
67.75
66.63
66.06
64.41
63.70
62.97
61.96
61.59
61.80
62.09
'62 .49
64.38
67.14
68.75
70.06
71.49
7.3.18
74.42
75.22
75.46
74.19
73.16
71.99
71.72

0.9857
0.9860
0.9861
0.9868
0 .9868
0.9871
0. 9873
0.9868
0.9862
0.9858
0 .9851
0.9848
0 .9850
0.9857
0. 9868
0. 9871
0.9876
0.9880
0. 9886
0. 9885
0.9880
0.9886
0.9872
0.9870
0.9864
0.9859
0.9859
0.9862
0.9862
0.9853
0.9859
0.9862
0.9863
0.9866
0.9874
0.9874
0.9881
0.9892
0.9892
0.9883
0.9874
0.9871
0.9870
0.9862
0.9864
0.9862
0.9859
0.9857
0.9858
0.9857
0. 9854
0.9852
c .9855
0.9859
0.9867
0.9868
0.9873
0.9874
0.9873
0.9874
0.9883
0.9885
0.9870
0.9872
0.9869
0.9871

1600

1500

1400

1300
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8 .11
88 .59
89.40
91.44
94 18
94 80
92 82
.90.79
88.69
86.21
84 .58
83.81
82.71
81 38
80.70
80 64
82 .00
83 94
85.60
86.93
87.78
88 64
89.55
89.33
88 68
89.20
89.89
90 58
98 82
98 51
99 42
98 24
93 42
89.27
86.76
86.09
85.08
83 30
82 66
84 02
83 47
81 35
80 63
80.22
79.64
78.94
78.52
78.37
78.30
78.41
78.45
78.66
79.21
79.76
80.03
79.86
79.30
78.79
78.18
77 91
77 96
77 85
77 74
77 72
78 07
78.76

0.9537
0.9553
0.9556
0 9574
0.9610
0.9581
0 9552
0.9518
0.9495
0.9452
0.9439
0.9444
0 9399
0 9388
0.9379
0.911
0.9458
0.9481
0 9502
0.9516
0 .9511
0 .9519
0 9528
0 9539
0.9544
O 9624
0.9711
0 9768
0.9885
0 9872
0. 9a33
v ., . 4 O,
0.9657
0 9559
0. 9944
0.9476
0.9437
0 9421
0.9422
0.9433
0 9395
0 9332
0.9330
0.9311
0.9302
0.9290
0.9290
0.9275
0 9275
0.9276
0.9302
0.9307
0.9354
0.9416
0.9428
0.9409
0.9339
0.9281
0.9273
0 9277
0 9280
0.9262
0.9283
0.9266
0.9277
0.9347

71.38
72 00
72.68
74.73
77.54
77.53
75 29
73.07
70 98
68 34
66 82
66.30
64 . 90
63.72
63.14
63.45
65.19
67.05
68.71
70.04
70. 63
71.45
72 .39
72.34
72.10
74.33
77.27
79.66
96.43
92.77
90.88
86.75
78.40
72 . 81
69.64
68.79
67 .48
65.73
65.23
66.51
65.55
63.11
62 . 52
62 . 01
61 .51
60 . 81
60.52
60.26
60.25
60.36
60.62
60.86
61 . 88
63.10
63. 55
63.14
61 . 80
60.72
60.09
59. 93
69.05
59.79
59.85
59. 73
60 .22
61 .44

0.9867
0 9872
0.9874
0.9874
0 9887
0.9879
0.9878
0.9872
0 .9870
0 9865
0.9866
0.9866
0.9854
0.9853
0 .9847
0 9855
0.9859
0.9863
0 .9867
0.9866
0 .9867
0.9868
0 .9366
0.9871
0.9862
0.9863
0.9870
0.9880
0 9888
0.9894
0.9886
0.9885
0.9877
0.9865
0 9858
0.9857
0.9847
0.9853
0.9854
0 9851
0.9847
0.9838
0.9838
0.9834
0.9828
0.9829
0.9826
0.9823
0.9819
0.9818
0.9826
0.9825
0.9828
0.9836
0.9834
0.9831
0.9823
0.9818
0.9823
0.9823
0.9819
0.9815
0.9825
0.9815
0.9809
0.9828

1200

1100

1000
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900



79 93
84.28
99 .96

113.76
108 .35
95.28
89.07
86.43
85.51
84 .63
83.26
82 .56
82 .64
82.73
83.10
83 .90
85. 51
86.76
86 .91
87.28
86.10
86.22
84 86
84.22
83.28
83.02
83.15
83.93
84.05
83.54
83.43
82.92
83.09
83.08
83.40
83.54
83.76
84.35
84.20
84.44
84.44
84.34
84.51
84.72
84.88
84 .94
85.05
84 .87
85.03
85.23
85.40
85.81
86.46
86.78
87.02
86.95
86. 92
86.99
86.94
87.41
88.29
88.84
89.22
88.57
87.98
87.43

0.9435
0.9680
0.9867
0 .9672
0 .9782
0.9877
0.9783
0.9630
0.9566
0.9529
0.9465
0.9451
0.9433
0.9417
0.9453
0.9469
0.9468
0.9429
0.9467
0.9447
0.9448
0.9415
0.9384
0 .9378
0.9351
0.9327
0.9326
0.9356
0.9295
0.9272
0.9300
0.9235
0.9277
0 .9261
0 .9259
0 .9239
0.9260
0. 9295
0.9288
0. 9298
0.9264
0. 9272
0.9216
0.9258
0.9217
0.9242
0.9270
0.9195
0.9266
0.9264
0.9330
0.9371
0.9373
0.9339
0.9385
0.9375
0.9332
0.9376
0.9334
0.9418
0 .9389
0.9375
0.9271
0. 9282
0.9253
0.9207

63.51
72.04

105.39
132.07
120.75
93.30
79.23
72.64
70.35
68.76
66.68
65.96
65.84
65.76
66.38
67.08
68.38
'68.91
69.45
69.46
68.38
68.15
66.69
66.12
65.08
64.60
64.61
65.52
65.08
64 .51
64.62
63.56
64 .19
64.03
64.05
64 .01
64 .34
65.25
64.96
65.30
64.88
64.68
64. 30
64.81
64.61
64.86
65.23
64.37
65.13
65.27
66.19
67.04
67.83
67.66
68.39
68.27
67.84
68.28
68.07
69.40
70.17
70.16
69.27
68.80
67.75
66.81

0.9837
0.9852
0.9882
0.9786
0,9845
0.9879
0 .9874
0.9846
0.9843
0.9849
0.9837
0 .9832
0 .9825
0.9818
0.9835
0. 9848
0. 9846
0.9834
0.9848
0.9844
0. 9854
0.9839
0. 9832
0.9830
0.9823
0.9818
0.9824
0.9833
0.9809
0.9798
0.9813
0.9798
0.9801
0 .9795
0.9813
0.9803
0.9812
0.9814
0.9819
0. 9818
0.9815
0 .9833
0.9816
0. 9831
0. 9815
0 .9823
0.9830
0.9812
0.9834
0.9832
0. 9841
0.9845
0.9829
0.9821
0.9833
0.9827
0.9810
0.9829
0.9797
0.9823
0.9789
0.9801
0.9771
0.9780
0.9792
0.9783
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86.72 0.9134 65.21 0.9797
86.49 0.9083 64.88 0.9757
86.12 0.9149 65.12 0.9780
85.67 0.9085 64.05 0.9778
85.52 0.9135 64.20 0.9807
85.01 0.9086 63.55 0.9781
85.05 0.9135 64.23 0.9772
84.87 0.9218 64.79 0.9800
84.11 0.9082 62.68 0.9795
83.89 0.9108 62.96 0.9780
83.04 0.8954 60.99 0.9753
83.19 0.8962 61.54 0.9714
82.93 0.9087 61.61 0.9821
82.62 0.9117 62.43 0.9751 400

extinction coefficient - force fit: 84.47
average correlation: 0.9392

extinction coefficient - actual fit: 66.96
average correlation: 0.9844
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Program listing
This program clculates th oss3eland mean extinction coef icient
for foam samples. The inpr3r dat a is obta irod l rom a Nicole. IP14
* infrared spectrorneter, whi::t records transr3ssivities as a furction
of wavenumber.

* VARIABLE LIST

* nsam number of sample slices for a particular foam
* w thickness of each slice
* tr transmissivity of a particular foam slice at a
* particular wavenumber
* n number of wavenumber intervals used in the integration
* eta wavenumber
* deta wavenumber interval length

kfeta wavenumber-specific extinction coefficient, obtained
* by force-fit method (see subroutine)
* kbeta wavenumber-specific extinction coefficient, obtained

by best-fit method
* cl, c2 constants used in the integral
* sb Stefan-Boltzmann constant
* t temperature of sample in degrees Rankine, taken as

room temperature
* krf, krb final Rosseland mean extinction coefficients obtained
* by force-fit and best-fit methods, respectively
* corrf, wavenumber-specific correlation coefficients to check
* corrb the validity of the force-fit and best-fit methods.

program rosseland
real tr(15,2000),trs(15),kbeta,krb,w(15),kfeta,krf
open(6,file-'fl8.out',status-'new')

* The following files are obtained from the R44 softrware. Each file
* represents transmission data for a single foam slice. The first number
* in the file is the slice thickness in inches, and the remaining numbers
* are the transmissivities for successive wavenumber intervals.

open(10,file-'fl8x57.asc',status-'old')
open(ll,file-'fl 8x54.asc',status-'old')
open(12,file-'fl8x51.asc',status-'old')
open(13,file-'fl8x48 asc', status-'old'
open(14,file-'fl8x45.asc',status-'old')
open(15,file-'fl8x42.asc',status-'old')
open(16,file-'fl8x39.asc',status-'old')
open(17,file-'fl8x36.asc',status-'old')
open(18,file-'fl8x33.asc',status-'old')
open(19,file-'fl8x30.asc',status-'old')
data cl,c2,t/. 18892e-8,2.5898,528./
data sb,n,deta/1.712e-9,276,5.7872/
pi-acos (-1.)
nsam-10
write(6,5)

5 format(t4,'K(forced)',tl8,'Corr.',t30,'K(best fit)',t45,'Corr.',/)

* Slice thicknesses are stored in an array

do 10 il-l0,nsam+9
read (il, *) w (il-9)

10 continue

* Transmissivities are stored in a two-dimensional array. The first
* index is the slice number, and the second is the transmissivity for
* each wavenumber interval.
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do 30 iwl1,760
do 20 i-10,nsam9

il-is-9
i2-iw-484

* The spectrometer file contains transmissivities at wavenumbers outside
the desired range. These values are read into a dummy variable (q).

if(iw .le. 484) then
read(is,*)q

else
read(is,*)tr(il,i2)

endif
20 continue
30 continue

* The following loop numerically integrates wavenumber-specific
* extinction coefficients to obtain two Rosseland mean coefficients:
* one for the force-fit slope and one for the actual-fit slope.

do 50 jl-l,n
do 40 j2-1,nsam

trs(J2)-tr(j2,jl)
40 continue

* Obtain the extinction coefficient for each wavenumber interval.

call exc(trs,w,nsam,kfeta,corrf,kbeta,corrb)

eta-2000.-jl*deta
a-(pi'cl*c2*(eta**4)) / (2.*sb* (t**5))
b-exp(c2*eta/t)
sumkb-sumkb+((a*b)/(kbeta* (b-1.)*(b-1.)))*deta
sumkf-sumkf+((a'b)/(kfeta*(b- .*(b-.) ) ) *deta
sum-sum+ ((afb) / ((b-.) * (b-1.))) *deta

* Sum correlation coefficients for force-fit and actual-fit extinction
* coefficients to be averaged later.

sumcorrf-sumcorrf+corrf
sumcorrb-sumcorrb+corrb

write(6,45) kfeta,corrf,kbeta,corrb
45 format(t6,f6.2,t17,f6.4,t33,f6.2,t44,f6.4)
50 continue

* The Rosseland mean extinction coefficient is actually the ratio of
* two integrals (see analysis).
t rfsum/umkf

krf-sum/sumkf
krb-sum/sumkb

write (6, 60) ksf
write(6,70) sumcorrf/n
write (6, 80) krb
write(6,70)sumcorrb/n

60 format(//,t3,'extinction coefficient - force fit: ',f6.2)
70 format(t3,'average correlation: ',f6.4,//)
80 format(t3,'extinction coefficient - actual fit: ',f6.2)

stop
end

* Subroutine exc calculates the extinction coefficient from the slopes
* of lines fitting the -ln(transmissivity) vs. thickness data in two
t ways: one (kf) uses a line that is forced through the origin, and the
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other (kb) uses the converitional least-squares best-fit liiic without
regard to its intercept. The correlation coefficients for these two

* cases (rf, rb) are also calculated.

subroutine exc(tau,x,n,kf,rf,kb,rb)
real kb,tau(15),x (15),kf,icept
sumx2-0.
sumxy-0.
sumx-0.
sumy-0.

sumycb-0.
sumycf-0.

* Obtain sums from data points for force-fit and best-fit slope
* equations
*

do 100 j-l,n
if(tau(j) .le. .0001) tau(j)-.00Q0
y--log (tau (j))
sumx2-sumx2+ (x (j) *x(j))
sumxy-sumxy+ (y*x (j))
sumy-sumy+y
sumx-sumx+x (j)

100 continue

kf-sumxy/sumx2
kb- (n*sumxy-sumx*sumy) / (n*sumx2-sumx*sumx)

* 'icept' is the y-intercept of the best-fit line. It is not needed in
* this program, but is included for completeness.

icept-(sumy*sumx2-sumxysumx) / (n*sumx2-sumx*sumx)
ym-sumy/n

* Obtain sums of deviations to obtain correlation coefficients

do 110 i-l,n
if(tau(i) .le. .0001) tau(i)-.0001
y--log(tau(i))
ycf-k*x(i)
ycb-kf*x(i)+icept
sumym-sumym+(y-ym) * (y-ym)
sunycb-sumycb+(y-ycb) * (y-ycb)
sumycf-sumycf+(y-ycf)*(y-ycf)

110 continue
sigy2-sumym/(n-l)
sigyxb2aumycb/ (n-2)
sigyxf2-sumycf/(n-2)
if(sigyxf2 .ge. sigy2) then

rf-O.
go to 120

endif
rf-(l.-(sigyxf2/sigy2))**0.5

120 rb-(1.-(sigyxb2/sigy2))**0.5
return
end

112



Appendix B

Summarized Extinction Coefficient

Data for Polyurethane Foams

Foam "
Source number d, mm p,g/cm 3 9g/2/cm5/ 2 Ib, cm- 1 rb Kf, cnm- rf

1 la .21 .0289 8.10 38.0 .9934 55.7 .8387
lb .29 .0300 5.97 30.7 .9757 47.6 .7534
lc .47 .0294 3.65 22.5 .9919 26.0 .9755
Id .34 .0363 5.60 27.9 .9899 33.8 .9623
le .31 .0300 5.59 26.4 .9844 33.3 .9392
If .36 .0293 4.75 30.5 .9778 34.4 .9664
lg .38 .0262 4.26 21.9 .9897 30.7 .8824

2 2a .43 .0261 3.76 25.6 .9592 25.3 .9568
2b .26 .0351 7.21 27.3 .9299 48.3 .3377

3 3a .55 .0269 2.98 17.0 .9466 21.0 .9140
3b .40 .0268 4.09 25.7 .9777 32.6 .9351

4 4 .22 .0497 10.13 51.8 .9879 65.2 .9386
5 5 .39 .0264 4.17 25.2 .9841 28.9 .9715

Table B.1: Cell size, density, and extinction coefficient data for polyurethane foams from
five different sources. Also included are the correlation coefficients rb, rf for the best-fit
and force-fit methods, respectively.
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Table B.2: Comparison of
Eqn. (4.1). The difference
percentage.

best-fit extinction coefficient with the value predicted from
is compared to the best-fit (measured) value to obtain the

114

Foam Percent
number Kb, cm -1 I(pred, cm- 1 difference

la 38.0 34.2 -10.0
lb 30.7 27.5 -10.4
Ic 22.5 19.7 -12.4
Id 27.9 28.0 +0.4
le 26.4 26.3 -0.4
If 30.5 23.3 -23.6
ig 21.9 20.9 -4.6
2a 25.6 19.2 -25.0
2b 27.3 33.0 +20.9
3a 17.0 16.9 -0.6
3b 25.7 20.5 -20.2
4 51.8 46.4 -10.4
5 25.2 20.7 -17.9
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