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ABSTRACT

AN ELECTROCHEMICAL INVESTIGATION OF MASS

TRANSFER AND SHEAR STRESS IN PULSATILE

LAMINAR FLOW: IMPLICATIONS FOR ATHEROGENESIS

by

STEVEN S. EMMER

Submitted to the Department of Chemical Engineering on
August 13, 1973, in partial fulfillment of the requirements
for the degree of MASTER OF SCIENCE at the Massachusetts Institute
of Technology.

A theoretical and experimental program was undertaken to examine
the applicability of diffusion controlled electrodes to the measure-
ment of the fluctuating shear stress on the wall of a tube under
conditions of pulsatile laminar flow. The objective of this
investigation was to experimentally obtain the same description of
the time-varying wall shear stress as given by analytical expressions
available for the tubuler geometry. Agreement between the two
descriptions was a prerequistte for further shear stress studies in
models of the human arterial system for which no analytical comparisons
are available.

The experimental technique involves monitoring a diffusion
controlled electrochemical reaction that takes place on the surfaces
of nickel electrodes mounted flush with the wall of a pipe. The use
of small area electrodes together with the large Schmidt number of
the fluid assures the validity of mathematical assumptions which
allow one to relate shear stress at the wall to the measured mass
transfer coefficient.

Theoretical models are presented which characterize the effects
of the amplitude and frequency of pulsation upon the measurable mass
transfer coefficient, and which relate this quantity to the instantaneous
wall shear stress. The resulting expressions are valid over all
frequencies and for all oscillatory pressure ratios which do not cause
boundary layer reversal.
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Experimental results are in excellent agreement with the theoretical
model relating the frequency and amplitude of the fluctuating pressure
gradient to the interphase mass transfer coefficient, partiularly
for values of the dimensionless frequency parameter, Qi, (RJ nO),
exceeding 16. This conformity with theory provided the basis for
deriving a transfer function between the experimental mass transfer
coefficient and the wall shear rate. This transfer function eliminates
the need to measure the pressure gradient and is universal in that it
can be applied to arbitrary geometries with arbitrary flow fields.

Thesis Supervisors: Kenneth A Smith
Professor of Chemical Engineering

Clark K Colton
Associate Professor of Chemical Engineering
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SUMMARY

The focal nature of atherosclerosis suggests that atherogenesis

is associated with interactions between the bloodstream and the

intimal endothelium via either the shear stress or the fluid-phase

resistence to mass transfer. A number of hypotheses have been

preferred to account for the effects of shear stress and mass

transfer upon the atherosclerotic process, but it has not been

possible to evaluate these theories in a meaningful way because of

the lack of quantitative data regarding the magnitude of these

influences. Even the question of whether a given region is one of

high or low shear rate has not been adequately resolved.

The.objectives of this work were to test the applicability of

diffusion controlled electrodes and associated mathematical analyses

to determining the magnitude of the instantaneous shear stress on

the wall of a tubular conduit under conditions of pulsatile laminar

flow, and to investigate the feasibility of applying these techniques

to more complex geometries. The oscillations were superimposed on

the steady flow by applying a periodically varying pressure driving

force.

Measurement of the shearing stress was accomplished by following

a diffusion-controlled electrochemical reaction that takes place on the

surface of nickel electrodes mounted flush with the wall of the pipe.

A voltage potential difference applied across the test electrode and

a downstream anode causes the following reactions to occur between
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the electrolytic fluid and the electrode surfaces:

Test Cathode: Fe(CN)63 + e- + Fe(CN)64

Anode: Fe(CN)64 + Fe(CN)63 + e

The kinetics of these reactions are fast, thus ensuring that the

rate of the cathodic reaction is limited by the rate of transfer of

the ferricyanide ion from the bulk of the fluid to the electrode

surface. The rate of the reaction is directly proportional to

the measured electrode current, thereby permitting calculation of

the mass transfer coefficient. The use of small area circular

electrodes together with the large Schmidt number (1500) of the

fluid assured the validity of mathematical assumptions which allow

one to relate shear stress at the wall to the measured mass transfer

coefficient. The shear thus determined was compared to the known

exact expression for the wall shear rate in a cylindrical tube.

Hence, a rigorous test of the accuracy of the measurement of wall

shear from mass transfer data was obtained.

The results demonstrated that the electrochemical technique

ean be applied to geometrical models of arterial branches where the

description of the flow field is too complex to provide an analytical

expression for the pulsatile wall shear stress.

The theoretical analysis required the solutions to both the

Navier Stokes momentum equation and the conservation of mass equation
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for a time-varying flow field. To provide an expression for the

instantaneous velocity within the fully developed flow regions of the

pipe, including the electrode test section, the exact solution to

the Navier Stokes equation for this system,

au _p. + v au
at ax r (r a ) (S-1)

u(r = R) = 0

(au) =
r=O

was given as

2 N fXp J (i3 12 n 1 
,(r,t) = 2U (1- r) -8iU E - 03/2 ew } (S-2)

0 R2 0 n nlJo~i3/2 jn) J 3S-2)

where Uo is the mean velocity; Xp is the ratio of the amplitude of

the oscillatory pressure gradient to the steady flow value; and Q

is the dimensionless frequency parameter, R . Only the real part

of the expression for velocity has physical significance.

Since the Schmidt number for the fluid is large, the concentration

boundary layer is very much thinner than the momentum boundary layer;

the velocity in the concentration boundary layer above the electrode

surface can then be expressed as

u(y,t) Y(auyy=O (S-3)
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which, when coupled with equation (S-2) becomes

u(y,t) = - 4+ X(n) Ynewt (S-4)

where

.8il/2 Jl(i3/ 2)
Yn 8 · . 1~ (S-5)

With u, equation (S-4), inserted into the conservation of

mass equation,

ac + u B C a 2C
a ax a 2 (S-6)

C(x,y = o,t) = CW 0

C(x,y = ,t) = CB

C(x = o,y,t) = CB

the solution for the time-varying concentration field is obtained

as a first-order series expansion about the steady flow condition,

with Xp as the perturbation parameter. The result characterizes the

response of the measurable mass transfer coefficient to the amplitude

and frequency of pulsation and is given as,
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Xm 2M1 1
Xm = M1 (1 1 4G14/31/ (S-7)
Xpp= 3 ' ( + 2a 4Gz4/3)1/2

where XAm is the ratio of the amplitude of the fluctuating mass

transfer coefficient to the time-averaged value; Mo and M1 are the

moduli of Jo and J1 respectively; is a constant of integration; Gz

is the Graetz number; a = Sc1/2; and Sc is the Schmidt number.

The ratio Am (=Amp), can be related to the analogous expression

for the wall shear rate, p (=Asp), by correcting equation (S-7) for

the frequency response of the concentration boundary layer to

changes in the shear rate. The correction takes the form

Sp AMp (S-8)

where A, the correction factor, is a function of the Graetz number,

Schmidt number, and Q.

Experimental results for Ap were in excellent agreement with the

theoretical model, equation (S-7), for values of fl greater than 16.

Slight departures from the predictions of (S-7) occurred in the

dimensionless frequency range (6<Q<16). A possible explanation for

these deviations is that equation (S-7) is restricted to low and high

values of Q, and is not applicable in the intermediate dimensionless

frequency region.

Corrections for the frequency response of the concentration

boundary layer were made with the use of a numerical solution for A
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available in the literature. Resulting values for the wall shear

rate (Asp) failed to agree with the known exact solution for

pulsatile wall shear. An alternate correction which yielded agreement

of Asp with theory was therefore derived which acquired the form,

Asp =3(1 + 24Gz 4/3 )1/2 A (S-9)
sp MP

This expression is no longer restricted to the tubular geometry since

by rearrangement there results

Am A =X=24 4/3 1/2 (S-10)rLSP -3 = 3(l + a Gz )
Amp Xm

Thus it is necessary only to measure the mass transfer ratio,

Am, to determine the desired result, As' The need to determine the

oscillatory pressure gradient has been eliminated, and the diffusion

controlled electrode becomes a very effective devise for measuring

the wall shear stress in arbitrary geometries with arbitrary

laminar flow fields.
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I. INTRODUCTION

One hundred years of countless investigations aimed at illumi-

nating the causative mechanism of atherosclerosis have produced a

plethora of mechanistic theories, some partially substantiated, others

purely conjectural, and most tentatively acceptable as bearing on the

truth of atherogenesis. Unfortunately there is as yet insufficient

evidence to support the acceptance of one or more unifying theories

to the exclusion of all others.

A considerable amount of influence has been exerted upon athero-

sclerotic research by the filtration hypothesis of atherogenesis which

attributes the formation of atherosclerotic lesions to the deposition

of cholesterol within the arterial wall. This accumulation arises

from the precipitation of lipoid material contained within a nutrient

stream of plasma filtering through the arterial wall. The passage of

fluid supplies part of the artery with nutrition to meet the metabolic

requirements of several layers of cells, and forms a closed loop between

the blood on the lumen side and the lymphatic system exterior to the

vessel wall. One observation unaccountable by this theory is the

preferential localization of atherosclerotic lesions. (Texon et al 1960,

Sandler and Bourne 1963, Mitchell and Schwartz 1965, Wesolowski 1965,

Fox 1966, Caro 1971). Additionally, it is questionable whether the

magnitude of the filtration flux is sufficient to convey more lipoid

material than the arterial cells can safely accomodate (Bratzler 1972).

There are other factors whose importance must be emphasized and these

have generated alternate theories whose premises fall under the
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consideration of hemodynamic stress (Texon 1963, Sako 1962, Fry 1968

and 1969, Gutstein 1970, Duncan 1965); encrustation of micro-thrombi

and platelets (Duguid 1960, Fox 1966, Murphy 1962, Mustard 1964), and

alterations in local metabolism (Getz 1969, Lazzarini-Robertson 1962,

1968).

This thesis is motivated by the viewpoint that the initiation of

atherosclerosis is intimately associated with the natural function of

the cardiovascular system - namely that the time varying shear stress,

produced by the pulsating flow of blood past sections of the arterial

wall located in regions of geometrical irregularity (such as the

entrances of branching vessels and bifurcations where the atheroscle-

rotic process is seen to dominate), can reach magnitudes sufficiently

high enough to induce a microtrauma in the cellular lining of the vessel.

Subsequent events at the point of insult to the integrity of this mono-

layer of endothelial cells lead toward and contribute to the develop-

ment of an atheromatous plaque. These processes are discussed in detail

in Section II.

The immediate intention of this work is to utilize existing flow

study techniques, combined with appropriate mathematical analyses, to

determine the instantaneous shear stress imparted to the wall of a rigid

cylindrical conduit transporting laminar pulsatile flow of a Newtonian

fluid. The oscillations are superimposed on the steady flow by applying

a periodically varying pressure driving force.

The investigation consists of generating a known periodic laminar

velocity field composed of several sinusoidal harmonics. Profiles of



-21-

the changing velocity are obtained from measurements of the periodic

exciting force, the oscillating pressure gradient. The fluid contains

a dissolved electrolyte which reacts at the surface of a nickel electrode

implanted in the tube and smoothed flush with the wall. Mass transfer

rates are measured from the resultant current and shear stress is then

determined by the superposition of contributions from each harmonic.

The shear thus determined is compared to the known exact expression for

the wall shear rate in a cylindrical tube. Hence, an excellent test

of the accuracy of mass transfer measurements of wall shear is obtained.

Ultimately the use of these techniques will be applied to geo-

metrical models of arterial branches, particularly a Y bifurcation

where the description of the flow field is too complex to serve as a

guide in evaluating unknown mass transfer and shear stress phenomena

occurring along the wall of the branching conduit. In such regions,

experimental data containing information about these events will have

to be totally and confidently relied upon for their informational

content. Thus it is the additional purpose of this investigation to

insure the validity of the analytical techniques in order to permit

the extension of shear stress determination into regions not describable

by closed form tractable mathematical expressions.

The electrochemical technique, used in this investigation to deter-

mine instantaneous pulsatile wall shear stress, was developed by Reiss

(1962), refined by Mitchell (1965), and used by them to measure turbulent

velocity and mass transfer intensities at the wall of a pipe. It

involves the use of a tiny circular nickel wire electrode imbedded into
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the wall of the tubular conduit and smoothed flush with the inside

surface of the pipe. This method of measurement consists in the

diffusion controlled electrochemical reduction of ferricyanide ions

to ferrocyanide ions. The rate of this reaction is limited (and there-

fore controlled) by the rate of diffusional mass transfer from the

fluid bulk, through a concentration boundary layer initiated at the

leading edge of the nickel wire, to the electrode surface. It is

measured by a flow of current through an external circuit. For each

ferricyanide ion reduced at this circular electrode a ferrocyanide ion

is oxidized to a ferricyanide ion at a large downstream anode which

forms the other half of the electrolytic cell. Conveniently, no plating

of material occurs and the equimolar concentrations of reacting species

are conserved. The fluid vehicle containing these ions is 2M sodium

hydroxide which acts both as an electrolytic buffer, reducing the migra-

tion of ferricyanide ions within the electric field of the electrode

to negligible proportions, and as a low resistance electrolyte connecting

the test cathode to the anode.

The distinct utility of using this pair of ions is that as a result

of the redox reaction, the current generated at the cathode is directly

proportional to the mass flux of ferricyanide ion to its surface. This

proportionality factor, the mass transfer coefficient, is in turn a

function of the velocity gradient, and therefore the current is an indirect

measure of the wall shear stress. Two added advantages of determining

flow characteristics with this in vitro technique, over that of a hot

wire anemometer for example, are that the flow conditions are not
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disturbed by the presence of the measuring device, and the properties

of the fluid are not affected by the process.

The concentration boundary layer is the region of the flow field

within which the concentration of the reacting ion changes from its

value at the electrode surface to the value of the bulk concentration.

The thickness of this layer is commonly given as

V(CB- CW)

c J

with J representing the amount of mass transferred to the electrode.

The value of 6 c is zero at the leading edge of the reacting section

(x=O) and increases to some final finite thickness at the trailing edge

of the electrode. Attendant to this enlargement is a decrease in the

concentration gradient within the concentration boundary layer, with

an associated decrease in the rate of mass transfer to the nickel surface.

The flux of ferricyanide to the reacting surface procedes along

the concentration profile established within the developing concentration

boundary layer. This profile is intimately associated with the velocity

distribution since the two are coupled via the equation describing the

conservation of mass. For the particular combination of species used

in this investigation the Schmidt Number

Sc =

for the diffusing ion is very large (- 1500). The thickness of the

concentration boundary layer over the small electrode is therefore much
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smaller than that of the fully developed momentum boundary layer, which

validates a very powerful simplifying assumption for the form of the

velocity profile in this thin mass transfer resistance layer adjacent

to the wall. The conservation of mass equation can be linearized by

introducing into this differential equation a linear relation for the

velocity profile in this region, equal to the velocity gradient (or

shear rate) at the wall times the radial distance from the wall. With

an appropriate solution to the resulting simplified equation the shear

rate can be related to the mass transfer coefficient which is directly

obtainable.

Three mathematical models are presented, each representing a

transfer function between fluctuating parameters as the following

diagram depicts:

(1)

Uchida, Womersley

ressure Velocity Mass Transfer Coefficient Wall Shear Rate

-Experimental 
Data

Wall Velocity Gradient Data l

Fagela-Alabastro, McFeeley Fortuna & Hanratty

(2) '(3)

(1) The exact analytical solution to the Navier Stokes equations for a

time varying pressure gradient superimposed upon a steady flow was

derived by Uchida (1956), (and equivalently by Womersley (1957) for the
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oscillatory component only), and is used here as an Incontrovertible

theoretical model for the amplitude and periodic variation of the wall

shear rate as a function of the amplitude and frequency of the

pulsating pressure gradient.

(2) Since the wall shear is calculated from mass transfer data, a

mathematical model s presented which characterizes the mass transfer

coefficient in terms of the pulsating flow field parameters.

The solution given in the form of Womersley (1957) to the

oscillatory motion of the fluid velocity, linearly separate from the

steady flow, is used to determine the velocity gradient at the wall

which inserted into the equation for the concentration distribution

serves to couple the known velocity field with the unknown concentra-

tion field. The resulting solution, based upon the known wall shear rate

(previously inserted), relates the amplitudes of pulsation to the

responding amplitudes of mass transfer. Model (2), then, is a transfer

function between pressure oscillation (known) and the magnitude of the

fluctuating mass transfer coefficient (which can be measured). This

solution was first obtained by Fagela-Alabastro (1967, 1969) through a

perturbation technique around the steady flow solution, but the analysis

of McFeeley (1972), a slight modification of the approach, is borrowed

for use here because of its more convenient form.

(3) Fortuna and Hanratty (1971) solved numerically the conservation

of mass equation to yield the frequency dependent relations between the

amplitude and phase of the measured mass transfer and that of the entity

desired in this work - the shear rate at the wall. Their results were
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applied to turbulence; this investigation is the first extension to

pulsatile laminar flow. The formulation of the model for this transfer

function is written in general terms and treats the shear rate as an

unknown function for which it then solves; the model can therefore be

applied to geometries other than the cylindrical conduit. This thesis

tests its applicability and validity by applying the transfer function

to a tube for which the solution is known a priori via model (1).

The results of model (1), described in Appendix 4, represents

the goal of the experimental method. Because of the difficulty in

measuring directly the shear rate at the wall for non-steady flow and

arbitrary geometries, the objective here is to establish the technique

(and test the method for a tubular geometry) of combining the experi-

mental data with model (3), the theoretically derived transfer function

which operates upon the experimentally measured fluctuating mass

transfer coefficient to yield the desired fluctuating wall shear rate

(considered as an unknown entity). The results show that the experi-

mental route (model (3)) obtains the same description (within 5%) of

the laminar periodic motion of the wall shear rate as is predicted

directly from the pressure pulse by the theoretical model (1).

The results of the mass transfer studies of this work are

presented in terms of a ratio of the mass transfer coefficient to the

pulsating pressure amplitude, and are reported as a function of the

dimensionless frequency parameter, . The work of McFeeley provides

data in this convenient form with which the results of this thesis are

compared.
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The shear rate determinations, derived from the mass transfer

results via the analytical methodology of Fortuna and Hanratty are

plotted in analogous fashion and are compared to the exact analytical

solution of Uchida.
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II. A CAUSAL RELATIONSHIP BETWEEN SHEAR STRESS AND ATHEROSCLEROSIS

The local accumulation of lipids (mostly cholesterol and its

esters, phospholipids, and triglycerides) within the tunica intima and

tunica media of the vascular wall is often described as the first phase

of the pathogenesis of atherosclerosis. This accumulation leads to cell

damage and frequently to the stimulation of intima cell proliferation

resulting in intimal thickening.

It has been suggested (Adams 1963) that the accumulation and

thickening causes ischemia of the tunica media and interferes with the

lipid transport mechanism across the cell membrane, thus preventing

the extracellular lipid from being utilized and perpetuating the process

of accumulation. In response to the abundance of lipid, the cells

become disrupted or necrosis ensues resulting in an inflammatory and

reparative reaction that leads to the formation of a fibrous placque.

Calcification and local intramural hemorrage may follow.

This placque may grow outwards into the arterial lumen leading

ultimately to complete occlusion of the lumen, or it may set the stage

for the formation of an occlusive thrombus by impeding blood flow and

distorting the endothelial surface. As the placque or thrombus grows

outward, the blood velocity in the lumen must increase in order to

conserve mass flow, and the accompanying increased shear will tend to

dislodge the growth from the arterial wall, carrying it downstream where

the embolism may lodge in a vital pathway causing death or loss of

function of an important body system or limb. A fatal heart attack is
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often the result.

One of the distinctive features of early atherosclerosis is its

characteristic topography. Lesions occur at certain sites of predilec-

tion with remarkable regularity. These sites are at vessel orifices,

and their associated entrance regions, at bifurcations, and on regions

of the large arteries possessing curvature. (Fox 1966, Texon et al.

1960, Mitchell and Schwartz 1965, Sandler and Bourne 1963, Wesolowski

1965, Caro 1970). Atheromatous lesions are commonly found at the

mouths of junctions of arteries in the aortic arch - the carotid, innom-

inate and subclavian vessels, and especially at the orifices of the

visceral branches of the aorta - the superior mesenteric, coeliac, renal,

and intercostal arteries. The carotid sinus is also commonly stricken.

In the case of iliac bifurcation, the initial disease occurs at the

outside wall and extends down the lateral side of the iliac vessels;

the inner wall is relatively spared. These investigators have all

observed well-developed atheromatous placques in the aortic arch. It

is interesting to note that the lesions on the inner wall of curvature

are far more pronounced than those of the outer wall. Caro (1970) in

particular has found concentric lesions in the straight sections of the

coronary arteries whereas the curving portions of these and the splenic

artery contain eccentric lesions. Indeed, a correlation exists between

the incidence of placque formation and the angle of bending in the

coronary system (Tjotta 1963). The abdominal aorta too is a frequent

site of atheromatous placques; particularly in areas around branch

vessel points; in fact, lesions here are usually more abundant than in
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the aortic arch.

Such consistent observations of the focal nature of the disease

demands attention from a fluid mechanical viewpoint since it is these

very regions of atherosclerotic predilection which witness changes in

the nature of the interfacial contact between the pulsing blood and the

surface of the arterial wall. These changes are in part characterized

by a local elevation of the wall shearing force imparted by alterations

in the structure of the flow.

The interfacial boundary between the blood and the arterial wall

is formed by a single continuous layer of endothelial cells firmly

attached to each other by adhesion of their cell membranes. Thus, all

substances which enter the arterial tissue from the lumen must pass

through this endothelial matrix. Acting in the capacity of a protective

barrier preventing direct endothelial sublayer-blood contact and excessive

deposition of cholesterol in arterial tissue, it is the first structure

to be influenced by hemodynamic forces. Much evidence has been presented

to support the view that hemodynamic trauma is an important factor in

atherogenesis.

For instance, Fry (1968, 1969a, 1969b) has observed that experi-

mentally increased hemodynamic stress can cause endothelial injury and

cellular death in the aorta of dogs. By introducing a specially designed

non-traumatic plug into the aorta of a dog, a rapid convergence of blood

flow through a channel machined into the device was obtained. This

accelerating flow imparted a spatially varying shearing force against the

endothelial lining of a longitudinal segment of the arterial wall.
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Increased shear stress levels were accompanied by cellular swelling

and architectural changes in the blood wall interface, cytoplasmic

deformation, and with higher magnitudes of shear, progressive disinte-

gration. Very high shearing force levels (380 dynes/cm2) were

accompanied by the fragmentation of the underlying fibrillar structure.

This value was referred to as the endothelial critical yield stress.

It was found additionally that there was an increase in the protein

permeability of the intima at stress levels below fragmentation and

that this change in permeability, as manifested by enhanced Evans Blue

uptake, increased with increasing shear. The shear induced enhancement

of permeability was prevalent even when superficial histological changes

could not be discerned.

Other observers have reported an increased evidence of intimal

thickening and atherosclerosis in man (Texon 1957, 1960, Sandler and

Bourne 1963, Mitchell and Schwartz 1965) and dietarily induced athero-

sclerotic lesions in animals (Lazzarini-Robertson 1968) in regions

commonly associated with localized critical hemodynamic stress. Together

with the discovery of injured endothelium and media in branch entrances

of rabbits (Bjorkerud and Bondjers 1972) as revealed by dramatically

* The limitation of an approximate theory to predict the shear stress in
vivo due to the complexity of the flow field through the channel intro-
duced an uncertain error in the estimation of critical stress. Further
investigations were undertaken by Carew (1971) who performed controlled
shear stress and permeability experiments on aortic tissue in vitro to
determine the effects of several uncontrolled variables in the in vivo
situation. His results for the critical stress, obtained for the non-
physiological temperature o 180 C, were that cells exposed to shear
stresses above 590 dynes/cm underwent progressive deterioration and
suffered morphological transformations.
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altered tissue morphology and tremendously increased dye staining

characteristics, these findings point to the fundamental importance

of the mechanical interactions at the vascular interface in the normal

function of the endothelium as an interfacial barrier between blood

and the vessel wall, and the probable degeneration of this function

during the initiation of the disease process. The observations highly

suggest that cell injury due to locally augmented hemodynamic shearing

stress, and the tissue reaction to such injury, are extremely important

factors in the development of atherosclerotic lesions.

The artery responds to imparted stress loads very rapidly,

increasing tremendously the amount of connective tissue within one hour

of stress inducement. This dynamic proliferative response implies that

the arterial wall is a structure continuously under load, normally

capable of meeting the need to provide constant repair. Arterial

metabolism, then, can respond continuously to changes in the physical

forces experienced by the wall.

Such a condition requires that a supply of nutrients be readily

available and presumably this is accomplished by the filtration

(Anitschkow 1933) or diffusion (Bratzler 1972) of minute amounts of

glucose and lipid in the form of fatty acids and cholesterol through

the endothelial membrane to the underlying intima.

When an insult or injury occurs to the vessel wall this delicate

equilibrium situation changes. Subsequent to the trauma there is an

excessive influx of plasma-borne material. A reparative response is

elicited and intimal cells begin to proliferate in order to accomodate
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(ingest) the overload of nutrient. If successful repair occurs, and

this may take some time, the process can stop and no atheromatous lesion

will appear. But if the tissue response is ineffective and successful

repair is not readily accomplished, (such as in the case of a continuous

trauma), then the proliferative activity may compromise the filtration

of nutrients to the underlying layers (by increasing resistence to

permeation), causing localized anoxia with concomitant inability to

handle the influx of lipid.

An increased accumulation of lipoprotein may interfere with the

lipid transport mechanism across the cell membrane, preventing the

extracellular lipid from being utilized and perpetuating the process

of accumulation, or it may increase the metabolic requirements of the

cell and hence aggravate the hypoxia leading to further increase in

endothelial permeability. Thus, the hypoxia might result in the self-

perpetuating growth of the atherosclerotic placque. The reparative

reaction serves to propagate the formation of an early lesion. The

progression of an atheroma can thus be considered as an unsuccessful

repair response to an injury of the arterial wall.

To imitate the effect of fluid mechanical injury to the endothe-

lial layer, Bjorkerud (1969) devised a microsurgical instrument to

induce defined mechanical injuries to the aorta of rabbits. He showed

that a superficial small injury induces progressive intimal thickening

and that a larger superficial injury induces changes morphologically

similar to those in early human atherosclerosis (Bjorkerud 1969) - a

proliferation of smooth cells which are the predominant nutrient of
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atheromatic lesions (Getz 1969). Gutstein et al (1962) found that a

microtrauma in the abdominal aorta of a rabbit produced in time exten-

sive fibroelastic placques. They commented that blood constituents

gained access to the intima as a result of the extension of the opening

on the endothelial surface due to elastic forces and hemodynamic

stresses. (Endothelium with small traumatic discontinuities develop

greater stresses than intact membranes; an initial loss of integrity

would be expected to enlarge if the repair response is unsuccessful).

Other observers have also detected vastly increased deposition of

blood-borne lipoprotein particles in regions of mechanically induced

trauma. (Constanides 1968, 1969; Packham 1967; Fry 1969a). Since the

flux of macromolecular species from the blood to the arterial wall is

intimately linked to the nature of the shearing force on the endothe-

lial surface, in regions where shear damage might occur there is

sufficient driving force to deliver an unaccustomed overload to the

arterial cells newly exposed to the constituents of the blood stream.

The progressive effects of shear and surgically induced injury

to the endothelium are congruent with the pathological processes

associated with the development of atherosclerosis; the pathological

histology of the region immediately surrounding the point of mechanical

injury in all of these experiments is indistinguishable from a naturally

occurring atheromatous lesion. Combining these consistent observations

with the normal hemodynamically induced mechanical events at the

endothelium-blood interface, together with the focal nature of the
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disease, it is reasonable to assign a disease initiating role to the

wall shear stress which, at some moment in its periodic fluctuation in

the regions of atherosclerotic predilection, might reach magnitudes

adequate to induce a superficial microtrauma in the endothelial matrix.

One pulsation may well be ineffective, but cyclic repetition over a

long period of time could progressively weaken the resistance of the

endothelium to withstand an instantaneously elevated shear force. Sub-

sequent events including lipoprotein influx, blood elements deposition

and tissue repair response would then lead to intimal thickening,

anoxia, necrosis, and the establishment of an atheromatous lesion.

There is further evidence to support the shear stress mechanism

of disease causation, even in the absence of instantaneous shear levels

sufficient to cause micro-injury. Associated with the above observa-

tions and the aforementioned process of enhanced convective transport

in regions of high shear is the effect of shear stress and discontinu-

ities in the aortic endothelium on endothelial permeability to the

passage of lipoproteins and cholesterol.

Unfortunately, most investigations on endothelial permeability

have been restricted to capillaries. The characteristic high perme-

ability of these vessels to blood plasma and macromolecules has been

attributed to discontinuities in the endothelial lining (French 1966),

but no evidence has been presented for the existence of these disconti-

nuities in the normal intact aortic endothelium. The passage of

macromolecules across the aortic wall is restricted (Duncan 1965) and

the existence of a barrier against the influx and deposition of
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cholesterol and lipoproteins in arterial tissue has been postulated to

account for the restricted movement of blood components (Zilversmit

1968). The observations of Zilversmit (1964, 1966) are consistent

with the suggestion that it is the breakdown of this barrier (or the

loss of endothelial integrity) which allows the passage of plasma

constituents and the accumulation (deposition) of cholesterol within

the arterial wall. There is evidence that stretching (Baumgartner

1963; Fry 1969b) or deforming (Fry 1968) the endothelial membrane

decreases its integrity, causing changes in permeability, rendering the

cell more susceptible to the influx of matter being convected from the

blood to the blood-wall interface. Fry (1969a) and Carew (1971) found

that cellular permeability increased at stress exposures below those

associated with detectable histological change.

These investigations support the concept that plasma protein

filtration is restricted by the intact arterial endothelium and that

endothelial integrity is of primary importance for the regulation of

permeability through the arterial wall. The significance of endothe-

lial permeability is further attested by the findings that the deposi-

tion of blood-borne particles is almost exclusively confined to tissue

with decreased endothelial integrity (Bondjers 1972).

Thus the wall shear stress, at all levels of exposure, acts to

reduce the integrity of the endothelium by increasing its permeability

to the passage of macromolecules. At critical magnitudes (for dog

aorta - 380 dynes/cm2 ) the shearing force can impart a discontinuity

or microtrauma to the cellular membrance, an insult which, if repair
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is ineffective, can lead to further invasion by macromolecules and

progressive deterioration.

In an attempt to determine the levels of shear within the circu-

latory system the magnitudes of shear stress within the thoracic aorta

of dogs was measured by Ling et al (1968) with the use of a specially

adapted heated film anemometer system. Preliminary measurements

indicated that peak wall shear stresses reach values approximately one-

third (160 dynes/cm2 ) of the endothelial critical yield stress reported

by Fry (1968). Subsequent measurements were made by Ling and Atabek

(1972). Using a model system designed to simulate the systemic circula-

tion of a medium sized dog they obtained for the peak wall shear stress

levels in the descending aorta a value of approximately 60 dynes/cm2,

half the value previously reported.

Regions of the arterial tree experience local shear stress forces

elevated above the values in the descending aorta. Accordingly, it is

reasonable to presume that the endothelial layer in these areas

(entrances of branching vessels and bifurcations) will be subjected to

shearing forces more closely approaching the critical yield stress.

With the attendant effects of altered protein permeability through the

endothelium and its associated proliferating response, it is no surprise

that the zones experiencing elevated shear forces are identical to the

regions of the circulation that witness a predilection for atheroscle-

rosis.
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III. PHYSICS OF PULSATILE FLOW: EFFECTS UPON ELECTRODE RESPONSE

A non-steady, but periodic exciting force is exerted upon the

fluid by varying the height of a pressure head driving the steady incom-

pressible flow. The fluid motion that results is incompressible

pulsatile laminar flow whose streamline character has been verified

by (Linford 1965, Krasuk 1963, and Hershey 1967). The unsteady nature

produces velocity profiles, differing markedly from the accustomed

parabolic shape for steady laminar flow, which are governed by the

relationship of two parameters, the non-dimensional frequency , and

the dimensionless amplitude of pulsation, Xp, which is a ratio of the

amplitude of the oscillatory pressure gradient to that which drives

the steady flow.

The frequency parameter, , defined as R un, is an oscillatory

Reynold's Number since it is a ratio of inertial to viscous forces. It

is also a measure of the ratio of the radius of the tube to the distance

the velocity gradient diffuses from the wall in one period of oscillation.

Since conditions are constantly changing this vorticity may not have

sufficient time to diffuse to the center of the tube before being con-

vected away and the cycle repeated. Thus for oscillatory motion without

a steady flow, at high frequency, when is large ( > 10), the fluid

near the center moves in a plug like manner without velocity gradients.*

* Inertial resistance of the fluid in this region causes the flow in
the core of the tube to translate out of phase with respect to the
driving force. This phase lag approaches 90g as the frequency of
oscillation increases.
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If a steady stream is added, the velocity profile in a region beyond

the flow development length will once again acquire a parabolic profile

near the center of the conduit. Once past the development zone the non-

linear terms in the equations of motion describing parallel laminar

flow vanish. The resulting linear expression implies that the steady

and oscillatory motions are decoupled and behave independently of one

another. Thus the effect of the oscillatory piston-like center moving

with zero net velocity disappears. For motion at low frequency ( < 1),

the velocity profile is that of steady flow with a parabolic velocity

profile corresponding to the instantaneous value of the exciting pressure

gradient. The fluid motion is now in phase with the time varying

pressure gradient. This is the quasi-steady state.

The fluid motion within the momentum boundary layer, especially

very close to the wall, behaves quite differently. In contradistinction

to the center region of the pipe, where inertial effects are dominating,

the boundary layer is a zone where velocities are small and frictional

forces prevail. Fluid particles here are more sensitive and responsive

to the fluctuation in the pressure gradient, characterized in amplitude

by Xp and in frequency by . The motion in this layer can be described

as being oscillatory in nature, with the thickness of the boundary layer

decreasing as increases. The small kinetic energy of the fluid near

the wall allows for an acceleration in phase with the periodicity of the

pressure gradient. Thus a change in this gradient, transmitted with an

infinite celerity because of the fluid incompressibility, will first

affect the boundary layer and therefore change the shear stress at the
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wall before the mean velocity (averaged over the cross section of the

pipe) is altered. If the pressure fluctuation is of sufficient magni-

tude, the motion of fluid in the boundary layer can, if the period of

oscillation is long enough, completely halt and even reverse in direction.

These phenomena must be well characterized in order to understand

the state of conditions at and near the surface of the test cathode.

This electrode exhibits an effect similar to that associated with the

heat capacity of a hot wire anemometer in that the concentration boundary

layer over the electrode surface causes a response which is not in phase

with the velocity fluctuations or transient shear stress. The mass

boundary layer acts as a capacitor imparting a delayed electrode response

to the accelerations and decelerations occurring above its surface.

The resulting current as a measure of these changing gradients is damped

in amplitude as well. This is not to imply that the electro-chemical

technique is therefore defective, but rather that changes in mass trans-

fer arising from variations in the pressure gradient are effected, not

by a direct response to this force, but through an intermediate - the

velocity gradient whose fluctuations are imparted to the concentration

gradient in a manner described by the solution to the conservation of

mass equation.
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IV. DESCRIPTION OF THE ELECTROCHEMICAL METHOD OF DETERMINING

TRANSIENT MASS TRANSFER COEFFICIENTS

The circular diffusion-controlled electrode mounted flush with

the inside wall of the test section is one part of an electrochemical

cell consisting of an electrolyte and a downstream anode. The electro-

lyte consisted of equi-molar concentrations of potassium ferricyanide

and potassium ferrocyanide at approximately 0.01 M, contained in a

solution of 2M sodium hydroxide.

This combination has been used earlier to study the unsteady nature

of the viscous sublayer in turbulent pipe flow (Reiss 1962, Reiss and

Hanratty 1963), to measure the effect of turbulent fluctuations on the

local rate of mass transfer to the wall (Van Shaw 1964), for studying

the effects of electrode geometry on the measurement of turbulent

property intensities (Mitchell 1965), and to determine the frequency

response of the boundary layer on wall mass transfer elements (Fortuna

1971, Fortuna and Hanratty 1971). McFeeley (1972) has used the technique

to investigate the amplitude of the sinusoidal variation of the mass

transfer coefficient and gives a review of additional previous applica-

tions of the method. This investigation comprises an extension of his

work.

The ferricyanide ions and ferrocyanide ions react at the electrode

surfaces according to the following half cell reactions:

Cathode (test electrode): Fe(CN)63 + e + Fe(CN)-4

Anode (downstream electrode): Fe(CN)64 - Fe(CN)63 + e-
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An advantage of this pair of redox reactions is that only an

electron is transferred and no plating occurs on the electrode surfaces.

Since for every ion reduced, one is oxidized, the concentrations of all

species remain constant in the bulk of the fluid which is recycled,

thus maintaining a closed loop system.

A potential difference (measured between the test electrode and

a proximal reference anode) is applied across the electrodes and the

reaction begins as evidenced by a flow of current in an external current

monitoring circuit. Because of the equimolarity of the electron

transfer, the current produced is directly proportional to the number

of moles reacting.

The magnitude of the current is controlled by the rate at which

ferricyanide ions react at the cathode because the surface area of this

test electrode is less than one ten-thousandth of the reacting area of

the downstream anode. The rate of reduction is in turn controlled by

two factors: the kinetics of the reaction itself and the rate of

transfer of the ferricyanide ion from the bulk of the solution to the

nickel surface. This transport is the result of migration due to the

effects of the electric field produced by the cathode, and by a convec-

tive diffusion mechanism. Reiss (1962) has shown that the use of the

large excess of sodium hydroxide reduces the effect of electric field

migration to insignificance. Thus the rate of appearance of the ferri-

cyanide ion at the electrode surface is solely limited by the rate of

its diffusion from the bulk, through the developing concentration

boundary layer, to the reacting surface.
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The electrochemical technique described here attains its useful-

ness from the high rate of electron transfer on the electrode. The

surface concentration is virtually identical to zero. Reiss (1962)

considered this reaction and concluded that even if the cathode were

suddenly flooded with unreacted electrolyte the surface concentration

would be restored to zero within 10- 4 seconds. Ferricyanide reduction

on the electrode surface then, is effectively instantaneous.

As the electrode potential difference is increased above zero the

kinetics of the reaction also increase and the flow of current is

augmented in a linear fashion (See Figure 2) demonstrating that the

reaction rate is proportional to the potential difference.

As the voltage is increased still further the current reaches a

plateau, leveling at a constant value insensitive to a continued

increase in the potential difference. In this region all ions reaching

the cathode surface are reduced instantly. The surface concentration

of ferricyanide ion remains constant at zero. Since there is no change

in the measured current as the voltage is increased one can conclude

that in this plateau zone the rate of reaction is limited by the diffu-

sion of ions to the electrode surface.

The rate of mass transfer to the cathode is related to the

measured current by

eeF



-45-

I -I I I I I

Re =1100

Re =1100
ll

Re = 500

Re =1100

Re = 500

}

d =.0792
cm

}d

};

=.0625
cm

d =.0485
cm

t I I l!- I I I I I I

0.2 0.3 0.4 Q05 0.6 0.7 0.8 0.9 1.0 1.1 1.2

-AE (VOLTS)

Figure 2. Current-Voltage Curves for Three Electrode Sizes

12

11

10

9

8

(O0 7

6

U0
V')

i%

5

II

4

3

2

1

01
C 0.1

-

ed-

R = 500

I-

-

)



-46-

where N = mass flux of ferricyanide

Ae = electrode surface area

ne = No. electrons transferred = 1

F = Faraday's constant

I = current measured in external circuit

Interphase mass transfer is more conveniently expressed in terms

of a mass transfer coefficient. Then

N = K(CB - CW) (2)

where CB = bulk concentration of ion

CW = concentration at electrode surface = O

Combining (1) and (2),

I

K AeF(CB C) (3)

Since CW = 0 in the plateau region,

K = I (4)

Thus the mass transfer coefficient is an entity directly obtainable

by the electrochemical technique.

Since the flow under consideration in these experiments is non-

steady, the mass transfer rate and therefore the measured current will

vary in time. The current can be defined to consist of a time average

component and a fluctuating component,

I = I + I (5)
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I' is a periodic function of time. The mass transfer coefficient can

be expressed in a similar form,

K = K + K = (6)
e CB

At the interface between the fluid and the electrode surface the

mass flux is equal to the product of the diffusivity and the concentra-

tion gradient at the wall averaged over the electrode surface.

N = <-(ac) > (7)
ay W

where the brackets <> signify a spatial average over the surface of the

electrode. The time averaged and fluctuating mass transfer coefficients

are therefore given by

a K = <ay) 0 (8)

p <ac) > (9)K=-
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V. HYDRODYNAMICS OF PULSATILE FLOW - VELOCITY DISTRIBUTION

The non-steady, fully developed laminar flow of incompressible

fluid through a rigid walled cylindrical pipe is considered. The

liquid is Newtonian with a constant density and viscosity, and is

homogeneous in composition. The physical situation is axisymmetric.

Since the flow is fully developed there are no radial velocities, nor

is there azimuthal motion (no circumferential velocity). All external

body forces are negligible.

The equation of continuity

au + av v+ = (10)
ax ar r

reduces to

au o. (11)

The equations of motion for this system then simplify to

au 1 . a +v a (r au (12)
at- p ax r ar (12)

u(r = R) = 0

(au) = 0

ar rorho

The non-linear terms are all equal to zero.

It can be shown that

Up = o (13)ar
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which states that the pressure is constant across a section of pipe

and is only a function of axial distance and time.

Pulsations can be regarded as being composed of a steady component

and several oscillatory components of various frequencies, each some

integral multiple of the fundamental frequency. The periodic function

which represents the superimposition of a disturbance of arbitrary form

upon a steady pressure gradient can be represented as the Fourier series

a s + (a cos nt + bn sin nt) (14)

where an and bn are real coefficients, or alternately in phase amplitude

form as

p ax s [ + N Xp(n) cos (nut - n ) j (15)

where

x( a) 2(a + b 2 =n °sa (16)

ax 

is the amplitude of the oscillatory pressure ratio for any particular

frequency and

bn
On = tan 1 n (17)
n an

is the phase angle of the nth harmonic with respect to the fundamental

frequency.
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For the sake of simplicity in calculation it is more convenient

to write (14) in the form (see Appendix 1)

1 a P- p F1+ Pp( einwt7 (18)
p DX I+ Xp(n) e

The disturbance is seen to be comprised of n sinusoidal harmonics

each of frequency nw and amplitude PsXp(n). It is understood that only

the real part of (18) has any physical significance.

It should be pointed out here that there are limitations placed

upon the amplitude of the pressure perturbation Xp in order to assure

the validity of the linearized perturbation solution to the conservation

of mass equation (which follows in the next section), but these restric-

tions are more lenient than the constraints for p imposed upon the

system by other considerations such as the incipience of boundary layer

reversal. Details about the magnitude of allowable values for Xp are

in Appendix 2.

The periodic driving force will produce a periodic response in

the fluid at the same frequency or integral multiples of the disturbance.

This is because the rigidity of the conduit walls provide a linear system.

It is reasonable to assume then, that the velocity will acquire the form

N

u(r,t) = us + E un(r) e (19)
n=l

where un (r) is a complex coefficient whose description is sought. Sub-

stituting (18) and (19) into the single equation of motion (12) and
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collecting like terms, separate equations are obtained for the steady

state velocity u and the fluctuating terms un.

v d du
dr (r r-) + Ps 0 (20)r dr

us(r = R) = 0

du

r=o

v d dun
inwun = PXp(n) + dr (r (21)

Un(r = R) = O

du

r=o

The solution to (20) is the familiar relation for Poiseuille flow

2 2 2

Us(r) = 2) (1 -) (22)

where U is the area averaged mean velocity in the pipe.

For any Ap(n) the solution to (21) for the nth harmonic fluctuation

of the velocity un is obtained as described in Appendix 1. The results

are given here.

The expression for un is in the form of Bessel functions,
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- 8iUXp(n) 1
n Si2~ L

(23)

where the J0 terms are zero order Bessel functions, and Q is the

dimensionless frequency parameter defined as

= R w ; w fundamental frequency

It is effectively an oscillatory Reynold's number, a ratio of inertial

to viscous forces.

For each p(n) there is but one response, u. All other harmonics

are seen to vanish. The differences in amplitude between the individual

frequency components are expressed in the single factor Q.

Equation (19), the exact solution for the velocity profile, then

becomes

2 N pXrn)

u(r,t) = 2Uo(1 -) -8iUo ( 2 I -
R n S

e i nwt (24)

Equation (24) is the distribution of velocities as a function of time

and radial position and has been verified experimentally by MUeller

(1954), Atabek and Chang (1964), Linford and Ryan (1965), Florio and

Mueller (1968), and Denison et al (1971). The velocity is written in

complex form but only the real part has any physically meaningful

significance. It is important to note that the fluctuating components

do not contribute to the mean flow.

The foregoing expression for the velocity profile is equivalent

to that derived by Womersley (1957). The transient analysis of shear
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stress, however, required a more convenient form of the solution, one

that was more suitable for computer computation. A description of the

procedure is included in Appendix 4.

If the Bessel functions are separated into their real and imaginary

components,

Jo(i 3 / 2 ) = ber () + i bei (Q) (25)

where ber (x) and bei (x) are Kelvin functions which refer to the real

and imaginary parts respectively. These functions are well known for

all values of the frequency parameter used in this investigation

(Abromowitz 1965).

Uchida (1956) has employed this notation in his analysis of flow

disturbed by a known time varying pressure gradient of arbitrary form.

His solution is in the form

u(r,t) U+ u (26)
0 o n=l 0

where u = un e intn n

and U = 2( - ) (27)

0 R

The expression for the fluctuating component of the velocity

field is given by Uchida as

=an n= a cos (nwt) + 8(1-A) sin (nwt)
U0 2

(28)

+ bn 8 sin (nwt) - 8 ( - A ) cos (nt)
n 2 o
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where

ber(Q)'ber(QR) + bei(Q)'bei(Q ~r) bei(Q)'ber(nQ ) - ber ()-bei(Q r-)

A = P ^ - ; B 2 - 2 2
ber2 () + bei2 (Q) ber 2 (s) + bei 2(Q)

which, for a pressure gradient in the form of (15), becomes

nC) 8 B 8(1-A 
Upon) = A cops (n)wt I) + [2 sin (nwt-En) (29)

where On = tan' an

Equation (29) is the basis for the theoretical determination of the

time varying wall shear rate. (See Appendix 4)..
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VI. DEVELOPMENT OF THE THEORETICAL MODEL FOR MASS TRANSFER

The route to the experimental determination of the instantaneous

shear stress is through the direct measurement of the fluctuating mass

transfer coefficient. This quantity is directly obtainable whereas the

frictional force is not, being related to it through the conservation

of mass equation. It is therefore desirable to have a mathematical

model which will both predict the effects of pulsatile parameters upon

the transient behavior of the mass transfer process and characterize

the response of the diffusion controlled electrode to changes in the

flow near the wall of the tube where the velocity profile is virtually

linear. The theory that constructs this mathematical model was

initially developed by Fagela-Alabastro (1967, 1969) and more recently

refined by McFeeley (1972) who conducted an extensive investigation

into the response of the diffusion controlled nickel electrode to pulsed

laminar flow. His results were reported as the dependence on various

flow parameters of the ratio of the amplitude of the first harmonic

fluctuating component of the mass transfer coefficient to the steady

flow value. The results of this work echo this format. It was necessary

to repeat these mass transfer studies to determine whether the results

could be extended to the analysis of shear stress. The theory presented

here follows closely the constructions outlined by McFeeley. The reader

should bear in mind that the mass transfer analysis presumes a knowledge

of the velocity profile at the wall in order to couple the conservation

of mass equation to the momentum equation, whereas the subsequent
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mathematical model, that which relates the shear rate to the measured

mass transfer coefficient treats this quantity as an unknown variable.

This seeming paradox is resolved when one realizes that the purpose of

this investigation was to reconstruct indirectly, through experimentally

derived, well characterized quantities, the wall velocity gradient whose

exact value was known a priori via the hydrodynamic theory of axisym-

metric cylinderical flow presented in the last section. An accurate

conformity between experiment and the theory of Uchida was an essential

prerequisite for similar studies in geometrical flow models where no

analytical fluid mechanical model can be applied.

Concentration Distribution

The analysis is restricted to the region above the electrode

surface where the concentration boundary layer, commencing at the leading

edge of the cathode, is developing in thickness. Since the Schmidt

Number () for this system is very large ( 1500), the concentration

boundary layer is very much thinner than the momentum boundary layer.

It therefore lies immediately adjacent to the wall.

In this region it is valid to consider the velocity profile to be

a linear function of the distance from the wall with a slope equal to

the actual slope at the wall. The velocity in the boundary layer is

then expressed as

u(y,t) = y(a (30)
y=o

upon the introduction of the transformation y = R - r.
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With this relation the differentiation of equation (24) becomes

linearized and is substituted into the conservation of mass equation.

The velocity in the boundary layer is given by

u(y,t) = 4 +nl ;kp(n) nen (31)

where Y n - i3

Neglecting curvature, the conservation of mass equation for the

concentration boundary layer is expressed as

a + u + v a = a (D aC) + a ( aC (32)
at ax ay ax ax ay Ty

which simplifies to (see Appendix 3)

a C + u aC (33)
(33)at ax ay2

C(x,y = o,t) = CW = 0

C(x,y = f,t) = CB

C(x = o,y,t) = CB

The last boundary condition requires that neither boundary layer

separation nor reversal occur at the wall. The constraints upon the

flow parameters which must be respected to maintain the validity of

this boundary condition and ensure that flow reversal at the wall does
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not take place are described in detail in Appendix 2. McFeeley in his

investigation (1972), unnecessarily kept Xp(n) small at values not

exceeding 0.2. The results of Appendix 2 demonstrate that the magni-

tude of Xp(n) can exceed unity under certain conditions without

reversing the motion of the boundary layer.

The solution to (33) is obtained by a perturbation around the

steady state solution with Xp as the perturbation parameter. (Fagela-

Alabastro 1967, McFeeley 1972). A different form of the equation is

obtained by making the substitution

C - CW C
C- C C (34)

CB C W CB 

With the introduction of this dimensionless variable equation (33)

becomes

+ = (35)
y2

O(x,y = o,t) = 0

+(x,y = o,t) = 1

¢(x = o,y,t) = 1

Using Xp(n) as a perturbation parameter a solution is constructed

for each harmonic Xp(n). The linearity of the system precludes harmonic-

harmonic interaction; therefore a solution for n sinusoidal waves is

constructed by the superposition of solutions for each value of n. The

first harmonic only of the pressure ratio will be considered here to

simplify notation.
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The expression for the solution is

O(x,y,t) = o(x,y) + p l(xy,t) + A22(xyyt) + "' XN(xYxt) (36)

where +o is the steady state solution, 1l the first order term, etc.

The validity of this form of a solution is imbedded in the necessity

that for large values of n

p n p nln-lA Pn(xyt) << Xp + n l(x,y,t)

Equation (31) and (36) are substituted into equation (35) producing

(N+l) differential equations in like terms of Xp.

Fagela-Alabastro has solved the resulting equations for N = 2.

Only the first order term will be considered here. Two differential

equations remain to be solved:

+(x,y,t) = o(x,y) + ;pl(x,y,t) + Rn (37)

If Rn is sufficiently small the truncation is valid. It will be shown

that the results of this investigation support this stand.

The equation for the steady state term, equivalent to the time

average for a solution in the form of (37) is

4Uoy a o a 2
R. .= 20 (38)R x ay2

+o(X,y = o) = 0

o(X'y = ) = 1

0o(X = o,y) = 1
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and for the first order periodic term:

1 4U~y 9+1 U~y iwt 92 1+ _ al + Uy yei t
- = (39)

at + ax R ax + y2

Ol(x,y = o,t) = 0

l(x,'Y = f,t) = 0

+l(X = o,y,t) = 0

Steady Flow Solution

The solution to the steady state equation (38) is obtained through

the implementation of a similarity transformation. The procedure is

detailed in Appendix 3 and the results are given here. With the intro-

duction of the transformed variable

4 1/3 (40)

equation (38) is reduced to an ordinary differential equation

fo + 35fo = 0 (41)

whose solution is

3/ X i ~ exp(- 3)dC (42)

originally obtained by Leveque (1928).

The restraint upon this solution is related to the assumption of

a linear velocity profile within the concentration layer which requires
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that the Graetz Number

Gz (L/D) (43)

be less than 10-2 . This introduces L, the equivalent rectangular

length for a circular electrode, shown by Reiss (1962) to equal 82%

of the electrode diameter. The validity of (42) is assured by the

use of small electrodes and a liquid with its high Schmidt Number.

The solution for q0 can be related to the mass transfer coefficient

since

Ks = D ay (44)

which leads to (see Appendix 3)

12/3 U1/3
K = D " 12)(45)

This is the local mass transfer coefficient which, when integrated over

the electrode length, yields the spatial average mass transfer coeffi-

cient, the quantity obtainable from the measured current flowing through

the cathode.

L

Ksdx

<Ks> = o (46)
L

idx

0

The result of the integration can be written in terms of the Graetz

Number as
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3 /3 -1/3

5 ·2. r(3 ) (47)

Equation (47) is the steady state solution with which the electrode

system was tested.

Since the harmonics of the pressure gradient driving the flow

are sinusoidal, the first order term for the concentration profile can

be expressed as

+l(x,y,t) = (x,y)eiwt (48)

Equation (48) is substituted into (39) to yield the differential

equation for f+

a 2f UoY af 2 UoY a(o
P - 4 0 A - j- f - a (49)

ay2 ax 2 R

where

=-- Sc1 / 2 (50)

A solution is obtained for both low and high frequencies by first non-

dimensionalizing (49) by introducing

= Dx a3 3 / 2 (51)

U R

as per McFeeley (1972) which gives

a 2f 2 af af a2

+ n an b 4 a+ E/ f 4 2 (52)

an234 an

where
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U .~ 1/3
-F / 1_- 1/3

n = Y (4)

Low Frequency Solution
df

The axial direction derivative, -, is neglected as being small

and a solution is assumed in the form of the perturbation

f ) fo () + .2/3 f(n) + 4/3 f(n) + ' (53)

with only the first two terms of the series contributing significantly.

The remaining terms are neglected. McFeeley has solved (52) for the

term f and f by substituting (53) into (52), collecting like terms

of , and solving the resultant pair of differential equations. He

obtains the result for low frequency

12r () ( 6ff~L1 21" (= Yn exp(- 4 n3 ) + 2/3 (a + 6-

where a is an arbitrary constant of integration to be determined.

It can be shown that the Nusselt number for the fundamental

fluctuating component is related to f in the following way:

NuF = 2RXP yIY-=o 2R 17 a n=o

where

2 = (56)
UoR

and KF -XpKf is the amplitude of the first harmonic fluctuation. The

derivative of equation (54) is
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anf3l Jr=0

= (12) y 1 2/ 3a}

12r () + (57)

With this substitution into (55), along with equation (52) and (56),

the definitions of n and , the expression for the amplitude of the

fluctuating Nusselt Number is, 21/3
1/3 [U R/ C .2 / 2/3

Nu = L 2I o 1 aia VL
F 6r ) \x p 2 U,R2) 

58)

\u I J

Referring to equation (55) the amplitude

transfer coefficient then becomes

(12)1/3 (U 0 ) 3

3~~~,

of the local fluctuating mass

(59)1 + a )a 

( u J

As was done for the steady state mass transfer coefficient, the spatial

average of KF is found to be

1/3 U 1/3 2
<> 2 0 - 23 I+ a i

Ra F I RPL p 2 2 e/

Recalling equation (43) and the expressions for Re and Sc, (60)

simplified by noting that

VL_ = 4Gz

U oR
2

(60)

is

(61)

', 3 I+.-
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Thus

<KF> = ROL DAp )1 + i21/3aa2Gz2/3 (62)

The mass transfer coefficient can be written directly from a

differentiation of the perturbation solution, equation (37), as the

sum of a steady component and a fluctuating component,

<K> = <Ks> + Xp <Kf> et (63)

or for n harmonics

N

<K> = <Ks> + n1 Xp(n) <Kf(n)> (64)

The amplitude of each harmonic for the mass transfer coefficient

naturally depends upon the amplitude of the pressure gradient causing

that fluctuation. The magnitude of the deviation from the steady

value s given as Xp(n)Kf(n) It should be noted that these fluctua-

tions, being only of the first order, have a time average of zero and

therefore do not contribute to the time averaged transfer which becomes

identical to the steady flow value. The data support this assertion.

The functionality of Kf on n is through the a2 term of equation

(62), thus

a2 = 2 Sc = R2 nw (65)

The results of McFeeley (1972) show that the low frequency range

of validity of (62) is for values of a < 100 ( < 2).
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Expressionsfor <Ks> and <Kf>, equations (47) and (62) replace

these terms in (64) and the low frequency solution becomes

<K> = 3 D ( YRDL [1 + nI YnXp(n)( + i21/3aa2Gz2/3)einwt 

(66)

This is more conveniently written in the form of equation (18) as

<K> = <KXs> + l m(n )e (67)

where Xm(n) is the mass transfer ratio for the nth pressure gradient

harmonic and with reference to equation (63) is defined as

<Kf> <KF>

Xm <K > p <K >

for each first order harmonic. This expression is a ratio of the

amplitude of the fluctuating component (for each n) of the mass

transfer coefficient to the steady value.

Comparing equations (66), (67), and (68) the mass transfer ratio

then becomes

(n) = (n) {1 + i21 /3 a 2 Gz2 /3 } (69)

which can be reduced by considering the series expansion of Yn(Q) for

small values of Q. Recall that

-1/2 J (i3/2)Y .-8i (31)n (Q 3/2
0



-67-

From Alabastro (1967) the series expansions of the Bessel functions

( l)jQ4(j+1 )
24(+1) (2j) r(2j+2)

o0

+i .
j=O

(-1)j 4 (j+ 3 ) 1
24(j+3) (2j+1) (2j+3)

i cC ( -1)J4(j+2 )
j=o 24(j+2 ((2j+l) ) 2

are substituted

few terms which

into the expression for yn. Retaining only the first

are significant,

(71)

Further simplification results by making use of the binomial expansion

1 i 4 = 1 - (-i - S + - i ) + .. (72)
1 + -- -

and inserting this into (71). For small values of Q, Xn can then be

expressed as

(73)

This expression replacing yn in equation (69) reduces the

equation for the low frequency mass transfer ratio to a form of the

derivation obtained by Reiss (1962) for low frequency fluctuations. By

comparing the two results McFeeley (1972) evaluated the constant (a)

J1(i3/2~) = i3/2 [c

oo

J=O
(70)

24 ((2j)!)2

i2 IQ4
1 + -79- - 24 

Yn iQ.2 Q4

1l + -- T-- TT 2 

Y, ia~2 44 
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and assigned the value

1/3 
a= -0.25285 (3-) r (74)

The mass transfer ratio is then

Xm(n) = 'p(n) T {1 - iT 2Gz2/ 3} (75)

with 0.50571 r () 31/3

T 5 - 2 - = 0.97695 (76)

If a mass transfer pressure ratio is defined as

R = m(n) <Kf(> n - i Gz (77)
Rmp Xp(n) <Ks> = -{1 Gz2 3

then the magnitude of this quantity is a mass transfer to pressure

amplitude ratio and

Amp = M{Rmp} = M 1 - iT2 Gz2/3 (78)

where Ap is the amplitude ratio used to fit the low frequency mass

transfer data and M refers to the modulus. Since

-8i1 /2 J(Qi 3 / 2 )_Y 8 = n (31)¥n 3/2

then

8 M(Q)M{yn}: Q M= ( ) (79)
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where the Mj(Q) are moduli of Bessel functions of order (j). These

are tabulated by McLachlan (1941). Equation (78) then becomes

2M1() 
2 4 G4/31/2 (80)

mp 3FMo( ) 1 + Gz

This is the equation used to model the low frequency mass transfer data.

The behavior of the low frequency solution, equation (77), as

the frequency approaches zero, or equivalently as goes to zero, is

of interest.

Equation (54), the expression for the Nusselt or Sherwood Number

is

Nu= 2R B [l 2 RKF 2 f a (54)
NuF 2Rhp ay y=o 7I xP an n=o

Substituting for from (56) and rearranging yields

D2/3 1/3 (81)

KF R1/3 1 /3 p an n=o(81)

From equations (51, (57), and (73), as approaches zero,

af 1/3
an l- o = (82)

Then

D2 /3 u 1 /3

F = R1/3x1/ 3 3r ()(83)
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D23and <K 3 /3 j Xp (84)

which is the spatial average over the electrode surface. The equiva-

lent expression for <Ks> from equations (45) and (46) is

<Ks>= 3 p( 1 2)/3 ( ) 1/3 (85)

Since <KF> = Xp<Kf> (86)

dividing (84) by (85) yields, with reference to equation (68)

<Kf> Xm 1

<Ks> Xp 3 (87)

This is the low frequency asymptote of Amp.

The slope with which the asymptotic value is reached can be

obtained directly by differentiating the low frequency solution

Rmp = 1 (1 - iTa2 Gz2 /3 (77)

to obtain

aR . I
mp (2 3Gz2/ + T 2 2/3) (88)

acx 6 12 z

which has the low frequency limit

lim -- ! = (89)B-mp
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Therefore Amp approaches the low frequency asymptote of with zero

slope. This is noted on Figure (3) which displays the behavior of Amp

as a function of frequency. Very low frequency data were difficult to

obtain because the motor could not deliver a constant angular frequency

at the very low rotational speeds needed to generate values of near

zero.

High Frequency Solution

The solution to the differential equation for f, equation (52),

for large values of the frequency parameter, has been obtained by

Fagela-Alabastro (1967) and Fortuna (1971) by neglecting the term

af
.qb the x-direction derivative, as suggested by Lighthill (1954)

when the boundary layer problem of flow oscillations superimposed on

a steady flow was first considered. When these solutions are placed

in the desired form, e.g., Amp = Am/Ap , the result for the spatial

average over the electrode surface becomes undefined at the leading

edge. This dilemma is overcome by noting that the solution for low

frequency, equation (77) is actually a truncation of the expansion

Rmp = *2f (1 - ia Gz2/ 3 + i2T2a4 Gz4/3 + )(90)

a geometric progression equivalent to

mp * 1 + ra2 GZ2 / 3

3 ~~~~~~~~(91)

for all values of the product ra Gz2 /3. This solution also
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satisfies (52), and in the form of (90) reduces to the low frequency

solution, equation (77), for small values of a.

The high frequency mass transfer to pressure amplitude ratio

then becomes

A M{R I 1 1 (92)
mp M{Rmp 3 (1 + 2a 4 Gz4/3) 1 / 2

McFeeley found that the high frequency solution in the form of (91) did

not predict his data precisely, but with a correction that imparts a

stronger dependence on the L/D ratio, a solution in the form

RMp 1 + iza2 Gz1 (L)l/2) (93)

where z is an experimentally determined constant, correlated results in

the high frequency range for all electrode lengths and Reynolds Numbers.

To place this solution into the form of (92) the variable x2 is

defined as

x2= 2 Gz1/3 (L (94)

such that the modulus of the right hand side of (93) is

(95)I + 1 ) = M

%IL + iz a2 Gz1/ 3 (~)i//t |
x L u 

The modulus then becomes
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1 1
M + iZ (1 + 2X 4 1/2 (96)

2 (l + z 2)

If the denominator is then expanded into the approximate series

2 4 1/2 2
(1 + z2x42) Z1 + 22 + 3x2 (97)

and substituted into (96), the modulus of equation (93) then becomes

M X Amp 3QMo ( z + z2x2 + z3x2 (98)

where the values of zl, z2, and z3 were found to be (McFeeley 1972)

1 = 1.147

z2 4.625 x 10-4

z3 = 7.456 x 10-5

One empirical reason for the discrepancy between the theoretical

solution for high frequency, equation (92), and McFeeley's experimentally

corrected form, equation (96), is that the increased dependence on the

frequency parameter and the L/D ratio may reflect a correction for

Bf
neglecting - in equation (52).

Equation (92) was used as a mathematical model to compare the high

frequency mass transfer amplitude data obtained from the electrode,

where high frequency is considered to be in the range

o > 100

or > 2.
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VII. RELATION OF MASS TRANSFER MEASUREMENTS TO THE

INSTANTANEOUS SHEAR STRESS

The concentration boundary layer over the electrode surface is

extremely thin relative to the radius of the pipe, thus permitting the

mass balance for the ferricyanide ion to be written as

aC + u aC + aC
at ax ay [ ;2C + 2

C(x, o, t) = O

C(x, y = A, t) = CB

C(o, y, t) = CB

where C is the concentration of ionic species. Throughout the vicinity

of the cathode the flow is fully developed and the velocity is changing

in a uniformly periodic manner. The transverse velocity in this region

vanishes,.while the axial velocity and concentration assume the form of

steady and fluctuating components.

u = U+ C = C + c (100)

The bar represents a time average, defined for any quantity Q as

T

Q = QdT
0

T - period of pulsation

which is indistinguishable from the steady flow value for the linearized

(101)

(99)
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treatment considered here. Thus U is identical to Uo, but the barred

quantity is used to correspond to the physical consideration of time

averaged flow.

As discussed earlier, the velocity profile within the concentra-

tion boundary layer is linear and related to S, the shear rate at the

wall, represented by

S = S + sFeiWt (102)

for each harmonic. The functionality of the time average and

fluctuating velocities within the concentration boundary layer then

becomes
becomes U = Sy u = s y (103)

where

s = sFe (104)

The significance of the axial diffusion term of (99) has been

investigated by Ling (1963) who has shown that it is negligible

compared to the axial convective transport when

NL = L > 5000 (105)

This restraint arises from the singular behavior at the trailing edge

of the electrode surface, the effect of which is lost by the analytical

solution to the steady flow form of equation (99). The axial diffusion

term will be neglected in the mathematical model presented here, but

results from the mass transfer analysis show that the condition (105)

may not have been maintained at all times.
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Making use of equations (100) and (103), the above assumption,

and neglecting second order fluctuating terms, the conservation of mass

equation (99) is transformed into two differential equations, one for

the time average relation and the other for each of the fluctuating

harmonic components. There results

Sya D 2 (106)

C (o, y)= CB

C (x, ) = CB

C (x, o) = 0

and

aCF aCF a a2CF

at + SY ax + SFY a= (107)

CF(X, , t) = 0

CF(O, y, t) = 0

cF(x, o, t) = 0 ( < x < L)

where cF is the amplitude of the fluctuating component designated by

c =cFeiUt (108)

The solution to (106), equivalent to the solution for the steady state

equation (38), is detailed in Appendix 3. The desired result, the

magnitude of the shear rate as a function of the measured mass transfer

coefficient is
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_ J () ( 109)S -2(3)[ D
where <K> is the time averaged mass transfer coefficient spatially

averaged over the electrode surface. It is presumed not to differ

from <Ks>, the steady flow average, because such deviations would

manifest second order effects considered in these analyses to be

negligible. The experimental data show that these deviations are

generally not greater than 0.5% of <Ks>.

Solution to the Fluctuating Concentration Field

The solution to (107) is extremely complex for the general time

dependent case because no initial condition for time is available. By

neglecting the second order terms of fluctuations, equation (99) was

transformed into the linear equation (107). The concentration profile

thus acts as a linear element responding to changes in the flow field

induced by the oscillating shear stress.

The objective is to find a transfer function which relates the

amplitude of the shear rate at the pipe wall to the magnitude of the

mass transfer coefficient measured at the electrode surface flush with

the wall. As will be shown, this transfer function takes the form of

the spectral density function, a measure of the total power of the

resultant current contributed by each frequency within its spectrum.

The pulsatile motion of the flow field, comprised of integral frequencies,

can then be analyzed by treating each frequency separately and individ-

ually.
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Since the rigidity of the tubular walls ensure a linear system,

precluding harmonic-harmonic interactions, the shear rate will respond

linearly to the periodically undulating pressure gradient, acquiring

the form specified by equation (104), for each (n)

S(n) = SF(n)e (110)

The concentration profile will in turn respond to the velocity gradient

in a linear fashion. Thus for each frequency is defined as

CB n "C(n)e (111)

Substitution of (110) and (111) into (107) yields the equation for 

for n = 1,

ic + y ax + SFY ax = l v (112)

If the time varying component of the mass transfer coefficient

is written as

K = KFeiWt (113)

the amplitude, KF, of the fluctuating mass transfer coefficient is

related to c in the following way, with reference to equation (55)

KF = - ac (114)
V V ayy= ay y=o
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High Frequency Analysis

Fortuna and Hanratty (1971), employing methods originally suggested

by Lighthill (1954) that at high frequencies the term Sy a- from (112)

can be neglected, solved this differential equation for the fluctuating

component and obtained the result for (sy) for turbulent flow, whose
y=o

equivalent form for laminar flow in terms of Xs, the ratio of the

fluctuating shear rate to the steady shear rate, is

ac A s(115)

ay Y=o x[4/3 3/ 2 ( 

where

2v1/3 SC1 / 3

(9)'/ r(3)

The mass transfer coefficient measured by the electrochemical method

is a spatial average over the electrode surface. Therefore the term <KF>

must be considered which is evaluated as

ac d(116)
<KF> = L ay y=o (116)

Since the integral is not defined at x = 0, the leading edge of the

electrode surface, the relationship (114) cannot be established by this

method. Therefore recourse was taken to the numerical solution of (107)

obtained for all frequencies by Fortuna (1971) who showed that it reduced

to the asymptotic solution (115) at high frequencies. Discussion of this

solution follows the analysis for the low frequency range.
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Low Frequency Solution

Following the formulation of Mitchell (1965), the amplitude coeffi-

cient of the oscillating component of concentration is expanded in a power

series for low values of w,

= Co + WC1 + 2 + (117)

By substituting (117) into (112) and combining like terms in w, the following

equation is obtained for c,, the amplitude of the quasi-steady oscillation,

aco s a co
Sy ax+ sFY x = ~ (118)

ay

The solution to (118), the quasi-steady solution for the concentra-

tion field is given by Mitchell (1965) as

co=sF 5 (119)
aS

which leads to the quasi-steady relationship between KF and sFj

<KF s

o 1 F (120)

< K> S

where KFo is the quasi-steady undulating component of the mass transfer

coefficient now described for the quasi-steady state as

K =K+ K K+ KF eiWt (121)
0o
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At very low frequencies the adjustment of the concentration field to the

changing velocity gradient will take place in phase with the velocity

gradient. Equation (120) can then be written as

<K'> - 1 s' (122)

<K > S

The experimental conditions for which the quasi-steady solution is

valid can be determined by considering the reduced form of (99)

(123)
at + = ay2 (123)

Equation (122) is valid if and only if

DC a2C
at << D a 2 (124)

ay

The condition (124) can be tested by applying an order of magnitude

analysis to each term. The differentials are considered as finite

differences, and with the period of oscillation representing the charac-

teristic time, one obtains

AC << D (125)

where 6c is the thickness of the concentration boundary layer. It is then

required that the following condition hold,

<< - (126)

TIC
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The following values for the diffusion coefficient of ferricyanide ion in

the experimental fluid have been reported

5.17xlO-6 cm2/sec (Reiss 1962)

4.32x10- 6 cm2/sec (McFeeley 1972)

For the magnitude of the concentration boundary layer thickness the following

expression from Knudsen and Katz (1958) is used which relates the local

Sherwood Number to the distance from the leading edge of the transfer element

1/3 2R K1/3
Nu (R)K = 1.077 (ReSc)1 / 3 (2R1/3) (127)

Since 6 c is defined as

C D (128)
C K

the thickness of the mass transfer resistance layer for an electrode

diameter of 0.05 cm and a Reynolds Number of 200 is calculated to be

5.89x10l3 cm. Using the average of the two values above for V, (126)

becomes

X << 0.11 rad/sec

The motor employed in this investigation to pulse the flow was incapable

of producing such low rotational speeds. The quasi-steady solution was

therefore not applicable to the flow conditions since this state was unob-

tainable.

A solution to (112) was obtained, however, in the same form as (120),

by introducing a correction factor to this quasi-steady solution. The
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correction factor, a function of frequency and electrode length, was

determined numerically by Fortuna and Hanratty (1971) and covers the full

range of parameters used in this investigation. The complete response

function in the form of (120) becomes valid at all frequencies by incor-

porating the factor A which is a ratio of the absolute value of the

mass transfer rate to the quasi-steady rate, thus

I<KF> I o s I JY=o
A : <y L ° (129)

0 o5~ ~y 0 dx

The corrected solution is described in the form of spectral density

The corrected solution is described in the form of spectral density

functions (the transfer function which relates shear rate to the mass

transfer coefficient) from which the instantaneous rate of shear can be

determined.

Determination of the Instantaneous Shear Rate

The solution relating the instantaneous shear rate to the instan-

taneous mass transfer coefficient, its experimentally measured response,

is in the form of a correction to the quasi-steady solution (122). For

very low frequencies, at any point on the electrode surface

K S
K .ls (130)
3-S

The mean squared value of K is given by
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K'2 1 s'

K2 9 2 (131)

Since the fluctuating concentration field is related to the fluctuating

velocity gradient at the wall through a linear equation (107), the

spectral density for s , Ws(n), can be related to the spectral density

for K, WK(n), (see Appendix 5) at each frequency by the equation

(Fortuna and Hanratty 1971),

(n)

^2
where A , a function of frequency and electrode diameter, is the correction

factor previously specified which assures the validity of (132) for all

frequencies. As w approaches zero A2 equals unity and equation (132)

reduces to the quasi-steady solution (130).

The spectral density function can be related to the amplitude of

oscillation as shown in Appendix 5 by equations (A5-5) and (A5-6). This

relationship, which removes the time averaged dependence of (132) then

results in

= ( ) q ) 2 (133)

or taking the square roots,

SF = -3S (134)
V A
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which averaged over the electrode surface becomes

3S <KF>
sF ^K> (135)

<SF A

Equation (135) is valid at each frequency, with the appropriate

value of A inserted, and defines the relationship between the amplitude

of the fluctuating mass transfer coefficient at any instantaneous point

in its period to the magnitude of the shear rate at an equivalent time

in its period. Since the undulations in the velocity gradient comprise

the driving force for alterations in the concentration field, the change

in the shear rate must precede the establishment of a new concentration

profile. Thus there is a phase lag (the magnitude of which is dependent

upon the frequency) between the shearing force and the measured mass

transfer coefficient which is its response. The linearity of the system

insures that the complete cycle of oscillations in these two entities

will occur in the same period of time, but the peak in the amplitude of

the shear stress at the electrode surface will anticipate the maximum in

the periodic flow of current generated there. This phase difference can

be accounted for by writing (135) in its time varying form for each

harmonic, n

SF cos [(nwt On ) 6n] ) KF cos (nt - On) (136)

where 0nK is the phase of the nth harmonic of the fluctuating mass transfer
coefficient, obtained by a Fourier analysis of therecorded signal, and K

coefficient, obtained by a Fourier analysis of the recorded signal, and n
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designates the phase lag between the time varying velocity gradient and

the resultant mass transfer coefficient. Values for 6 n and the correc-

tion factor A were obtained at all frequencies considered in this investi-

gation by Fortuna (1971). They appear on Figures 4 and 5. A simpler

form for the graphical representation of the correction factor, A, was

obtained by McMichael (1973) who, by reducing equation (112) to a zero

parameter differential equation (through a transformation of the coordinate

system), was able to collapse the family of curves appearing on Figure 5

to the single curve of Figure 6. Figure 6 was the basis for deter-

mining corrections to the pseudo-steady solution.

Equation (136) was used to construct the experimental curves repre-

senting both the instantaneous shear and the ratio of the amplitude of

the fluctuating component of the shear rate to the time averaged value.

These results were compared to the theoretic values determined from the

theory of Uchida (1956) as outlined in Appendix 4.



-88-

o,1 /. 0 16.0

Dimensionless Frequency, wD Scl/3
8U

Figure 4. Phase Lag of Concentration Gradient (.,
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with Velocity Gradient, S.

(From Fortuna and Hanratty, 1971)
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VIII EXPERIMENTAL EQUIPMENT

Mass transfer measurements were made for steady flow (to test the

consistency and precision of the experimental technique against the

established theoretical predictions of Leveque) and for pulsatile flow

using three different sized circular electrodes imbedded in the wall of

a horizontal tube. Laminar flow fields through the test section were

produced by gravity feed from a constant head maintained by an overflow

and recycling flow system. The flow rate was controlled by a downstream

needle valve which permitted a maximum steady flow Reynold's Number

of 1200.

Ferricyanide reduction at the cathode was accomplished by applying

a potential from a constant voltage power supply between the test elec-

trode and a downstream anode possessing a much larger surface area. The

effective potential drop between the cathode and solution bulk was deter-

mined with the use of a proximal reference electrode. Mass transfer

measurements were obtained from the current generated by the electro-

chemical reaction at the electrode surface. For steady flow this current

was represented on a digital voltmeter as a potential drop across a

precision resistor. The fluctuating current produced by the pulsatile

flow was recorded as a voltage on an FM tape recorder, digitized, and

separated into harmonic components by a Fourier analysis. Each frequency

was then treated individually for its contribution to the wall shear rate.
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Flow System

The flow system, containing an electrolyte, 2 Molar in sodium

hydroxide, was constructed of non-corrosive PVC pipe and polyethylene

tubing, and is shown schematically in Figure 7.

Storage capacity for the recycling constant head flow loop was

provided by a polyethylene tank measuring 18" x 12" x 24" deep

containing twenty-five gallons (94.64 liters) of electrolyte. A single

outlet at the bottom of this vessel went directly to a pump (Chemtrol

PVC centrifugal pump, 3475 RPM, 3/4 HP) which circulated the fluid to

the constant head tank (dimensions: 12" x 12" x 12") situated eight

feet above the straight pipe and test section. An adjustable portion

of the pump outlet was returned to the storage tank via a by-pass line

so that at the low flow rates employed (900 cc/min maximum) the surface

of the constant head would experience no wave motion caused by excessive

feed from the pump. The twenty-five gallon storage tank contained a

total of four inlets: one for the by-pass return, one for the overhead

tank overflow, another for the return from the test section, and the

last, a tygon tube introducing nitrogen gas.

In order to prevent the reduction of oxygen dissolved in the elec-

trolyte, which takes place at the same potentials as the reduction of

ferricyanide, the electrolyte was saturated with nitrogen and the flow

system was maintained in an inert nitrogen atmosphere, provided to both

the storage vessel and overhead tank.

The combination of pump by-pass and constant head tank overflow



-93-

E

3

dJoLi)

C,,

O U-
~~O.0 _

+J 3
U a)

"I : >p>,/) r ' u
C'-)

D -0 *.C-4-'~~~~~4EiZ uE (l0._ L ,
U --

> u ~~~~~~~~~~~~n LQ)~~~~~~11,,

UO
I o C r

L L EJc

a-n u

C"z



-94-

was sufficient to insure a constant gravity-fed average flow of elec-

trolyte, steady to within a maximum deviation of 0.2% (over four hours

of running time) at the largest flow rates employed.

From the overhead tank the fluid flowed to a series of flow distri-

buting valves. Opening the first admitted the electrolyte to a section

of the system from where the flow could be shunted to both the pressure

pulsing apparatus (when needed for non-steady flow) and the straight

pipe test loop. The valve controlling flow to the test loop was preceded

by a 900 elbow in which a tap was bored for venting air out of the system

before each run.

Entering the straight pipe section (1/2" Sch 40 PVC) the fluid

passed through a hydrodynamic entry length of 335 cm or 205 pipe diameters.

(The inner diameter of this section was measured with calipers and found

to be 1.5799 cm). Since this horizontal length of pipe preceding the

test section was the same for both steady and pulsatile flow, it was

necessary that it be long enough to insure that a fully developed velocity

profile entered the electrode test section. Establishment distance for

the laminar flow field oscillates around the steady flow value of 0.0575

Re.D (Knudsen and Katz 1958) where Re is the Reynold's Number and D the

pipe diameter, and is the longest when the velocity in the pipe is at its

maximum. Florio and Mueller (1968) demonstrated that a developing

pulsating flow can be considered as a superposition of a developing mean

flow and a fully developed oscillating flow. Atabek and Chang considered

theoretically the entrance length requirements for pulsatile flow (1961)
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and utilized hot film anemometers to test the validity of their analysis

(1964), but Denison et al (1970) have shown with the use of a direc-

tionally sensitive laser velocimeter that the theory of Atabek and Chang

underpredicts the oscillatory flow development length, and for the flow

parameters utilized in this work, the oscillating flow field is fully

developed after an entry length of 0.1 Re'D (Reynold's Number based on

time averaged flow rate) which for these experiments had a maximum

value of 160 cm. A developing length of 335 cm was therefore more than

sufficient for the establishment of all velocity profiles.

The test section was 42 cm long. It was followed by another

straight section of pipe 120 cm in length, added to the flow loop to

reduce end effects in the test section. This segment was attached

through a 900 elbow to a T which provided a means of draining the test

loop while joining the test and end sections to the downstream anode.

The anode was fashioned in the following manner: nickel plates

measuring 3" x 6" were sandwiched between two finely meshed nickel

screens of the same dimensions and folded into an accordian-like shape.

Five such folded sandwiches were tied together with nickel wire to form

a cylindrical bundle, and ten of these bundles, bound so as to form an

electrical unity, were inserted into a 2" I.D. Lucite tube. In this

way over fifteen square feet of reactive electrode surface were available

in a small volume to complete the electrolytic circuit, thereby insuring

that the diffusional flux of ferricyanide ion to the much smaller test

cathode would control the rate of the redox reaction. The anode section

was elevated at a forty-five degree angle facilitating the removal of
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gas entrapped within the flow system. Air bubbles were carried into

the reservoir tank by the exiting electrolyte.

The temperature of the circulating fluid was not regulated.

Temperature equilibrium between the flowing electrolyte and the sur-

roundings was established after a warm-up period, but was subject to

slow vascillations. Since the duration of any single run was shorter

than the time between temperature variations, the electrolyte tempera-

ture was constant for any one experiment and was recorded as a variable

parameter. Temperature was monitored by a mercury thermometer inserted

through a specially fabricated plug into the pipe upstream of the anode.

Physical properties of the electrolyte (viscosity, density, diffusion

coefficient) were therefore determined as a function of temperature.

Pressure Pulsing System

Oscillatory pressure gradients were obtained by pulsing the air

pressure over a closed vertical column of electrolyte located adjacent

to the gravity feed tank and connected to it through a tee and shunting

ball valve as shown on Figure 7. The periodic variation of the

height of this column was produced by the motion of a 12 in2 Bellofram

bellows, driven by a Bodine NSH 55 RH motor (48:1 gear ratio). Attached

to the rotor of this motor was a brass cam cut into the shape of the

curve R = r + a sin O. (R is the distance from the cam edge to the

* The maximum rate of temperature variation was 0.1 C per 20 minutes so
that for typical experimental runs of 5 minutes or less the temperature
was effectively constant.
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center of rotation; r = 3", a = 1/2"). As the cam rotated it produced

linear sinusoidal motion in a cam follower. A horizontal steel lever

arm, pivoting on a movable fulcrum, imparted the sinusoidal movement of

the cam follower to the bellows. Adjusting the position of the fulcrum

varied the amplitude of pulsation. In an attempt to reduce distortions

in the pulse arising from small irregular movements in the linkage and

bellows, a polyethylene bottle was connected in line between the

bellows exhaust and the top of the pulsed column. It was thought that

the air volume in the bottle, relatively larger than the volume of the

tubing connection, would dampen out small deviations from a sinusoidal

pulse. However, vibrations and distortions of unknown origin pre-

cluded the generation of any pure sine waves, but the resulting analysis

difficulty was overcome by harmonic reduction through a Fourier analysis

of the recorded pressure gradient.

Oscillatory pressure gradient measurements were made through .040"

taps bored two feet (60.96 cm) apart; one located just upstream of the

test electrodes and the other downstream of the test section. The

inside of the pipe was smoothed after introducing these pressure taps.

They were connected to a Celesco pressure transducer whose output was

coupled with a compatable Celesco pressure demodulator and recorded on

FM tape. Sensitivity of the transducer was 0.1 psi maximum range corre-

sponding to an output of 10 volts.

Test Section

The test section consisted of eighteen circular electrodes (three
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different sizes, six of each size) imbedded in the wall of (and elec-

trically isolated from) three nickel tubes which could themselves be

converted to relatively very large wall electrodes. See diagram of

Figure 8.

Three two-inch lengths of nickel pipe were chosen so that their

inner diameters were equivalent to the inner diameter (1.5799 cm) of

the hydrodynamic development section. Into each of these, six holes

were drilled circumferentially to contain two each of three different

electrode sizes. As measured with micrometers, the diameters of these

nickel wire electrodes were:

Electrode Size Diameter (cm)

A .0485

B .0625

C .0792

The first three-fourths of the distance through the wall was bored to

a diameter considerably larger than the electrode to be placed there.

This part of the hole was to contain a reservoir of epoxy to hold the

nickel wire in place after being introduced into a hole which was then

drilled one thousandth of an inch wider than the electrode diameter

through the remaining wall.

Each of the test electrodes was dipped into electrically insulating

epoxy and inserted into the slightly oversized hole so that they pro-

truded into the interior of the pipe. When the epoxy coating dried the

gap between the electrode and the drilled space was completely filled.
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The larger hole was then filled with epoxy which when dry provided an

extremely firm support for the thin wires.

Lucite wafers, .015 inches thick, were placed between the adjoined

ends of the three nickel pipe sections to shield them electrically from

one another. The inner diameter of the wafers conformed exactly to

that of the nickel pipe lengths. Axial uniformity was assured by gluing

around the wafer junctions short sections of Lucite tubing machined so

as to match their inner diameters with the outer diameters of the nickel

tubing. Each of the nickel pipe lengths were made electrically conduc-

tive by attaching a wire with electrically conductive epoxy to the

outer surface. Two 5" Lucite entry and exit sections were afixed to

the upstream and downstream ends of the nickel electrodes unit. Lucite

compression rings were placed around these connections also.

The entire test section was partially wrapped in a larger sized

PVC pipe appropriately drilled to accomodate the protruding electrode

wires. Epoxy cement was then poured in between the partially enclosing

pipe sections. When hardened it formed a single test section containing

eighteen electrically insulated point electrodes and three sectional

wall electrodes,

The entire inner wall of the test section was smoothed to a mirror-

like finish by the Precision Honing Company. This process increased the

inner diameter by .020" to 1.631 cm. As a result there was a radial

step of .010" between the hydrodynamic entry length and the test section,

but the 5" inlet to the upstream test electrodes was sufficient to re-

store a fully developed velocity profile within the test unit.
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Frequent removal of the test section from the flow system for

cleaning of the electrode surfaces was essential. Crest toothpaste

was used as a mild abrasive for this purpose. Accordingly, the test

section was connected in line with Lucite flanges.

Electronics

Measurements of the steady laminar flow mass transfer coefficient

were simply obtained with the use of the circuitry of Figure 9. A

D.C. constant voltage power supply maintained a steady potential between

the cathode and downstream anode. The micro-ampere current generated

at the surface of the test electrode passed through a Dana precision

resistor (+ 0.01%) and was monitored as a constant voltage displayed on

a Dana model 4430 digital voltmeter.

For pulsatile flow the circuit of Figure 10 was utilized both to

maintain a constant voltage across the electrolytic cell, independent

of the current drawn (to insure a diffusion controlled reaction), and

to amplify and monitor the time varying current generated at the test

cathode. The input to the electrical assembly (and to the electrode

circuit) was a -0.55 voltage potential from a constant D.C. voltage

power supply. An operational amplifier network maintained this voltage

potential at a constant level. Passing through a series of pre-

calibrated potentiometers, the variable current drawn at the electrode

surface was recorded as a time-varying voltage on a Precision Instrument

model 6200 FM tape recorder. The signal was subsequently digitized and

analyzed for its Fourier components.
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IX. EXPERIMENTAL PROCEDURE

Calibration

The pressure transducer was calibrated in situ over the range

O to 10.0 volts; all laminar flow pressure drops corresponded to an out-

put less than 1 volt. Reynold's numbers were controlled by a needle

valve and accurately determined with a graduate and micro-timer combina-

tion. Since calibration took place in the turbulent regime, the

Blasius friction factor relationship was used to determine the pressure

drop, and the pressure demodulator was adjusted accordingly (10 volts

corresponded to 0.1 psi, linear in the range 0-10 volts). One calibra-

tion proved to be stable for several weeks.

The recording mechanism of the Precision Instrument FM tape

recorder was calibrated by the method suggested by the manufacturer.

Overload, accompanied by signal distortion, occurred when the input

exceeded 3 volts RMS. Accordingly, amplification of any signal was

controlled so as not to surpass this level.

Start Up

The electrolyte was made up of reagent grade chemicals and dis-

tilled water. Complexities accompanying the determination of ferri-

cyanide and ferrocyanide ion concentrations by titration were cause to

abandon that means of analysis. Instead, equal molar amounts of

potassium ferrocyanide (water of hydration removed in a vacuum oven)

and potassium ferricyanide were accurately weighed and dissolved in

distilled water in a large drum calibrated for twenty-five gallons
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(+ 0.5%). Sodium hydroxide pellets, also carefully weighed, were added

to the solution. After dissolution, addition of distilled water diluted

the concentration of species, based on a total volume of 25 gallons, to

0.010 M for the ferricyanide and ferrocyanide ions and 2.0 M for the

sodium hydroxide. When the electrolyte had cooled to room temperature

it was charged to the reservoir tank, maintained in a nitrogen atmosphere,

and used in the flow system for three weeks during which time no chemical

degredation took place (Reiss 1962). After three weeks the electrolyte

was replaced.

The electrolyte was circulated through the flow system for two

hours before any experiment was begun to allow for electrolyte-room tem-

perature equilibration to be established. Preliminary observations

noted cathodic poisoning after the test electrodes had been monitored

intermittently over a period of several hours. This was manifested as

a continuous decrease in the drawn current under otherwise constant

experimental conditions. However, no observable degredation occurred

to electrodes in contact with the flowing electrolyte when not switched

in to the external circuit during the several hours of observation.

Attenuation of the current was eliminated by carefully cleaning the test

section with toothpaste at the beginning of each day's runs. This agent

acted as a water-soluble, sulfur-free mild abrasive, and it removed any

residue which had presumably accumulated on the electrode surfaces.

Other investigators (Reiss 1962, McFeeley 1972) have reported that

reversing the polarity of the voltage applied between the cathode and

an auxiliary electrode improved the response of the test electrode. This
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treatment proved to be ineffective in this laboratory; however, daily

cleaning achieved the same improved results.

Methods of Taking Data

All electronic equipment was turned on one hour prior to use.

Current-voltage curves were measured for different electrode sizes and

Reynold's numbers to establish the regions of applied voltage which

produced diffusion limiting currents. Output of the D.C. constant voltage

power supply was boosted incrementally and measured on the digital volt-

meter. The resulting current was then displayed on the same voltmeter.

Results from these tests showed that an applied voltage of - 0.55 volts

insured a diffusion limited reaction under all flow conditions for the

three electrode sizes. See Figure 2,

Measurements of steady flow mass transfer coefficients were per-

formed only after the temperature of the flowing electrolyte had been

noted. Flow rates were adjusted with a downstream needle valve and

accurately determined with a graduate and micro-timer combination.

Reynold's numbers varied from 100 to 1100. The use of a switching box

facilitated connecting each of the eighteen electrodes, one at a time,

into the current monitoring external circuit. A voltage potential as

measured between the test cathode and proximal electrode was adjusted

to a level of - 0.55 volts. Reaction rates at each of the cathodes were

successively monitored by routing the drawn current through a precision

resistor and displaying the resulting voltage drop on the same voltmeter.

Ten to fifteen seconds were required for the measured current to reach
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a constant value. In this manner, for any single flow rate, only six

minutes were required to test the response of all electrodes.

At the beginning of each pulsatile flow experiment the constant

stream response of the single test electrode to be monitored was noted

for later comparison with the time averaged result. Using a motor speed

control device the angular velocity of the rotating cam was arbitrarily

set to a constant level, as was the amplitude of pulsation. The values

of these parameters, thus established, were later determined from an

analysis of the recorded motion of the rotating cam. Once the pulsating

flow had come to a steady periodic state data acquisition was begun.

The constant voltage-current monitoring box permitted the recording

of only one electrode's response for any single run. The time-varying

current was monitored by an operational amplifier circuit and was then

recorded directly on to one of the three data acquisition tracks of the

FM tape recorder. The monitoring circuit served to convert micro-ampere

currents to voltages on the order of unity. These recorded signals were

later digitized by an EAI 680 analog computer, stored on disk and

subjected to a Fourier analysis on an interfaced Interdata 70 digital

computer.

To reduce errors which may have been introduced by non-periodic

irregularities in tape motion, or unexpected fluctuations in the pulsating

flow parameters, approximately 100 cycles of pulsation were recorded and

digitized. A Fourier analysis was performed on the average of the results

from the 100 cycles.
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To insure that the analog to digital conversion program was

initiated at the same point in each cycle, a triggering signal, recorded

on a separate track of the tape, was played back through the computer

simultaneously. This signal, synchronized with the cam's motion, was

obtained with the use of a micro switch. A ball bearing connected to

the switch was constantly in contact with the circumference of the cam.

Once during each cycle the bearing, tracing a linearly sinusoidal pattern,

would be displaced enough to close a circuit connecting the switch to the

tape recorder. Designed to produce a rapid triggering signal, the circuit

capacitors generated a voltage which rose to an amplitude of four volts

in one millisecond. By utilizing this same spike to initiate and terminate

the digitizing program (whose sampling rate was known), the fundamental

frequency of pulsation could accurately be determined.

Recordings of the pressure pulse, obtained directly from the output

of the demodulator, were digitized and Fourier analyzed in an identical

manner. Frequencies and amplitudes of oscillation of both the mass

transfer coefficient and the forcing pressure gradient were then directly

comparable.

Electrolyte Physical Properties Analysis

After being charged to the reservoir tank, one liter of the electro-

lytic solution was removed for the measurement of temperature dependent

densities and viscosities from which the kinematic viscosities, diffusion

coefficients, and Schmidt numbers were determined.
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Four volumetric flasks of twenty-five milliliter capacity, their

volumes calibrated over a temperature range of 270C to 330 C, were used

to measure solution densities at 280C, 300C, and 330 C in a constant

temperature bath. Densities at all other temperatures were linearly

interpolated from the appropriate measured values. The same was done

for viscosities.

Viscosities were determined in an Ostwald-Fenske viscometer which

was calibrated with distilled water. Efflux time was approximately

100 seconds. The diffusion coefficient was then obtained as a function

of both viscosity and temperature from the results of Eisenberg et al

(1956),

p = (2.50x 10 cm2 - poise) T

sec - K

where

T is the temperature (K)

p is the viscosity (poise)
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X. RESULTS AND DISCUSSION

Steady Flow - Wall Electrodes

The test section was constructed with circular electrodes

embedded in the wall of larger cylindrical electrodes for the

purpose of evaluating mass transfer characteristics within a

developing concentration boundary layer, especially for pulsatile

flow where the effects of frequency and amplitude cause complex

interactions between the concentration boundary layer initiated at

the leading edge of the wall mass transfer section and that associated

with the much smaller point electrode.

With a voltage potential applied between the wall electrode and

the downstream anode, the current drawn (over 100 microamps) was

large enough to cause a significant ohmic potential drop through the

electrolytic fluid. As a result, only a very small voltage drop

could be obtained across the concentration boundary layer (as

measured by the reference electrode) and a diffusion controlled

plateau region extending to -0.55 volts could not be attained. By

augmenting the applied voltage potential between the test electrode

and anode beyond thirty volts a diffusion plateau could slowly be

approached. However, as the drawn current increased so did the

ohmic potential drop through the fluid in the pipe with the result

that the voltage at the leading edge of the cylindrical electrode

differed from the level at the trailing edge. This change in voltage
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along the length of the test electrode precluded the establishment

of a diffusion controlled plateau over its entire surface.

Inability to maintain a continuous diffusion controlled regime

prevented the utilization of the wall electrodes; experiments

with these were therefore abandoned.

Steady Flow - Circular Electrodes

Steady laminar flow measurements of interphase mass transfer

were made to establish the validity of the electrochemical technique,

and also to determine the behavorial consistency of the individual

electrodes. To accomplish these purposes, measurements of the

current produced at the electrode surface were compared to the

theoretical predictions of Leveque.

A form of his solution for a steady laminar flow field (for

a cylindrical conduit) has previously been written as

<K = 2 * I -* Gz 1 3 (47)s 2 r R

r (3)

The mass transfer coefficient has also been related to the current

by equation (4), rewritten here as

I

es % (4)

to emphasize the spatially averaged mass transfer coefficient.

Combining these two equations, with Ae = ! - and Gz = ecd/4 ReSc '



-112-

T1 (3)1/3 CBF 2/ 3 D-2/3d5/3Re 1/ 3 13 (137)
ts 4 (.820)1/3 r 

Equation (137) represents the theoretical prediction of the

steady state current produced by the diffusion controlled electrochemical

reaction. Inserting values of CB = 0.010 moles/liter, F = 96,500

coulombs/equivalent weight, and D = 1.631 cm., this was simplified,

in terms of the experimental parameter Q (flow rate n cc/min), to

Is (microamps) = 2.200 x 106 d5/ 3 2 /3 Q1 / 3 (138)

The current therefore reduces to an explicit functional dependence

upon only the electrode diameter, diffusion coefficient,and volumetric

flow rate. It is a weak function of small changes in temperature,

increasing only 0.01 microamps for each 0.1°C rise in temperature

over the range 27°C - 33°C.

To verify this relationship for the experimental system and

electrode test section,data were taken for Reynolds Numbers in the

range 160 to 1073 for each of the eighteen circular electrodes. The

measured diameters of these test electrodes were

Electrode
Number Diameter (cm.)

A1-A6 0.0485

B1-B6 0.0625

Cl-C6 0.0792
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Measurements were taken over a period of several days to determine

the effect, if any, of the age of the electrolytic fluid upon the

electrode response. Currents read directly from the voltmeter were

compared to theory with the use of equation (138).

Results from nine electrodes (three of each size) for a two

day old electrolyte and a range of Reynolds Number from 330 to 1073

are shown on Figure 11. An unexpected observation is that the

departure from theory is not independent of Reynolds Number but

rather, for the range depicted, can be well represented by a line

with negative slope. Each of the nine electrodes exhibits very

similar behavior, differing from each other only in their vertical

displacements from conformity with the predictions of equation (138).

(Results from the other nine electrodes are not included in the

figure since they are similar to those reported here and reveal no

further information.)

The oblique orientation of these lines implies that the

equivalent rectangular length for circular electrodes, given by

Reiss (1962) as 0.820 d, is a function of Reynolds Number, at least

in the laminar regime. For the range of Reynolds Numbers under

A
consideration the deviation from Leveque for any single electrode

varies about 5% between end points; therefore an equivalent rectangular

length, because of its cubic root dependence (equation 137), would

necessarily have to vary by as much as 15%. For the precise determination

of the absolute values of mass transfer coefficients and wall shear,
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this functionality would have to be well quantified. However, the

necessary analysis was not performed in this thesis for reasons to

be stated later.

Focusing attention on the vertical arrangement of electrode

responses, the likely explanation for these relatively larger

departures from theory (compared to the Reynolds Number effect) is

that the area assigned to each electrode is in error. Measured currents

which were lower than predicted would be accounted for if the contact

area between the electrode surface and the electrolyte was less than

expected for a circular interface, or additionally, if the reacting

surface was asymmetric, producing an unaccountable non-uniform

concentration boundary layer. To test these possibilities several

auxilliary electrodes were cast into epoxy, machined flush to the

surface, and buffed to an extremely smooth finish. It could easily

be observed that no electrode presented a circular area, but rather,

each one exposed a different altered shape. Accordingly, on the

basis of the results of Figure 11, each electrode could be assigned

an effective diameter, one that would establish conformity between

the current predicted by equation (138), based on a new effective

area, and the measured response. Such a new diameter, specified at

a particular Reynolds Number, would cause the family of lines of

Figure 11 to collapse upon one another with deviations from theory

not exceeding + 3% (from the equivalent rectangular length effect).

With this in mind, electrodes A2, A6, B2, and C4 were used to
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determine steady flow shear rates since results from these electrodes

daily fell within 6% of theory without an area adjustment, whereas

there was day-to-day flutter in the percentage deviations from LvSque

for other electrodes as evidenced by Figure 12 where electrodes A4

and B4, for example, have shifted 3%.

Figure 12 is a repetition of the experiments depicted in Figure

11, but for a week-old electrolytic solution, and with an extended

range of Reynolds Numbers. The most obvious change is the curvature

imparted to the lines of Figure 11 with the inclusion of lower

Reynolds Numbers. This phenomenon cannot be attributed to the age

of the electrolyte because similar repetitive experiments over both

shorter and larger intervals obtained the same non-linear effect.

Again the family of curves can be collapsed to nearby a single curve

with the introduction of an experimentally determined effective

diameter to compensate for non-circular reacting surfaces.

The effect of the age of the electrolyte upon the electrode

responses proved to be of no significance for a period of at least

two weeks. As evidenced by Figures 11 and 12 there is uniform

deviation between daily runs for a single electrode, but these

changes differ between electrodes and show no day-to-day consistent

behavior.

The conclusions to be drawn from Figures 11 and 12 are that each

electrode, upon replacing its measured diameter with an effective

diameter (which may change daily), chosen to eliminate significant
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departures from theory, can serve as a bona-fide mass transfer

measurement device whose accuracy can be further improved by

incorporating a Reynolds Number dependent correction factor to

transform the electrode diameter to an equivalent rectangular

length.

As stated earlier, electrodes A2, A6, B2, and C4 were used

to test the applicability of the electrochemical technique to the

determination of wall shear stress on the basis of the proximity of

their daily responses to the predictions of equation (138). Making

no attempt to improve upon their genuine accuracy, no correction

factors other than the constant 0.820 for the equivalent rectangular

length were employed in determining the final results.

A transformation of the curves for these four electrodes from

Figures 11 and 12 were redrawn on the universal plot, Figure 13,

which is a graph of the mass transfer Nusselt Number vs. the Graetz

Number where

<K s> D I D

<Nu> -= D - (139)

The solid line, representing equation (47) converted to the dimensionless

form, equation (139), is described by

<Nu> =3(3)1/3 Gz-1/ 3 (140)

r (1)
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All data obtained with these electrodes has been included in

the graph; the maximum deviation for these electrodes with uncorrected

diameters is 5.6%. A table of computed values is included in Appendix

6.

The necessity to correct for non-circular reaction areas and

Reynolds Number becomes evident when considering Figure 14 where

the experimentally determined wall shear rate is compared to the

velocity gradient obtained from the parabolic velocity profile as

s = 8 U (141)

D

Experimental values for S were computed by combining equation (A3-35)

which relates the wall shear rate to the measured mass transfer

coefficient by

= 1 3 ( 2) (A3-35)

with equation (138) to obtain the desired result

s [r( - ) 3 <Nu>3 0.820d ] (142)T r: St t\ 3 D3

As can be seen by the cubic relationship between the Nusselt number

and the wall shear rate in the above expression, the small errors

observed in the experimental mass transfer coefficient are multiplied
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by a factor of three such that a reasonably good agreement with

Leveque (Figure 13) can depart considerably further from theory

(by as much as 18% in Figure 14 - see table in Appendix 6).

Consequently an accurate determination of the absolute value for

the wall shear stress requires excellent mass transfer data, or

alternately, well quantified correction factors both for non-circular

electrode surface areas and for the Reynolds Number dependence of the

equivalent rectangular length. It is appropriate to point out here

that these correction factors were unnecessary for the treatment

of pulsatile flow data, since the results for the case of non-steady

flow are reported as a ratio of the amplitudes of oscillation of the

fluctuating quantity to the time averaged value, thus nullifying the

factors which would cause each of these values to depart from theory.
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Pulsatile Flow

All signals generated by the experimental equipment under

non-steady flow conditions were recorded directly on to a pre-

calibrated FM tape. Consequently, all data were initially obtained

in the form of periodic, time-varying voltages. The method of tape

recording, aside from being essential because of the nature of the

signals (no on-line computer hookup was available), actually served

to simplify the analysis because of the direct proportionality

between the mass transfer coefficient and the measured current,

which, passing through the operational amplifier circuit, was

recorded as a voltage. The relationship between the instantaneous

mass transfer coefficient and the current, equation (6)

K + K' : ( + I') (6)

AeFCB

is the basis for noting that the desired ratio of the fluctuating

component of the mass transfer coefficient to the time-averaged value,

Am, is equivalent to

KF IF

= (n) (n)(143)

m(n) K I

Thus it was necessary only to divide the amplitude of the fluctuating

voltage for the nth integral multiple of the fundamental frequency

to the DC level (time-average) to obtain Am for that particular harmonic.
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Similarly, since the pulsating pressure gradient was recorded as a

fluctuating voltage linearly related to dP in the laminar regime,

the oscillatory pressure ratio, Ap, was also directly obtained from

a Fourier analysis of the digitized recording.

Nine electrodes, three of each size, were used for mass transfer

measurements at several different fundamental frequencies covering a

range of the dimensionless frequency parameter, , from 6.215 to 7.107.

The pressure pulsing system, incapable of producing a sine wave at

these frequencies (despite many attempts to make it do so), actually

generated an oscillatory pressure gradient composed of at least ten

harmonics of significance.

This can be observed in the tables of Appendix 8 where the complete

results of experimental runs numbered #8, #9, and #10 are listed. The

first entry under the heading of dimensionless frequency is the value

of produced by the rotating cam. Successive values were obtained

as n = nQl where 2l is the fundamental. Note that values for the

pressure ratio, Xp, are predominantly in the range 0.2 to 3, considerably

larger than those employed by McFeeley (1972), but smaller than the

constraints of flow reversal (see Appendix 2) or allowable values for

the perturbation parameter, also Ap, discussed in the theoretical

section and reported as a function of Q by Fagela-Alabastro and Hellums

(1969).

Three electrodes were chosen for the purpose of presenting the

tabled results of Appendix 8 in graphical form; A2 and B2 because of
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their demonstrated conformity with theory in the steady flow

experiments, and C2, arbitrarily chosen to represent those electrodes

which deviated from the predictions of Leveque for steady flow but

which can nevertheless justifiably be utilized for the measurement

of non-steady mass transfer coefficients, reported in the form of

Am' since the factors (presumed to be constant) which would cause

both KF and K (or alternately, Ks ) to depart from steady-flow or

quasi-steady theory are eliminated by the division process. Alternate

choices to C2 could have been made, but with no significant differences

of any kind, as careful inspection and comparison of electrode data

will reveal.

The values of Amps drawn from Tables A8-1, A8-2, and A8-3

(electrode A2), are potted against the theoretical model for high

frequency, equation (92), computed with parameter values as depicted

on the graph, Figure 15. (Values for M and Ml were obtained from

McLachlin, 1961). Results for electrodes B2 (Tables A8-9 to A8-11)

and C2 (Tables A8-17 to A8-19) are similarly presented on Figuresl6

and 17 respectively. Agreement with theory is excellent for values

of Q beyond 16, whereas Amp values within the intermediate range

of frequency parameters (6<0<16) are considerably more scattered and

are not well represented by equation (92). McFeeley (1972) also

found that his data (4<<8) did not conform well with the high

frequency model in this region. As reference to Figure 3 will

illustrate, the low frequency model for Amp, equation (80), is

equivalent to the high frequency solutions equation (92), up to a Q
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value of 2. This is equivalent to stating that the perturbation

term, ra2Gz2 / 3 in equation (90) is small such that second order terms

are negligible. In fact this parameter is less than 0.01 for <2

for the physical parameters used in this investigation, but beyond

a value of 2 for the frequency parameter, its magnitude increases

sharply, terminating the applicability of (80) as can be seen

readily by comparing equation (77) to equation (90) for large

values of this parameter. Since the high frequency solution is

in fact also written as equation (90), (it satisfied the differential

equation (52) in this form), the final expression for the high

frequency model for Amp, equation (92), is applicable at all values

of l. A region of invalidity can therefore not be ascribed to the

solid curves of Figures 15, 16, and 17, although some fault in its

derivation may eventually be found which will point to a region of

invalidity in the range (6<2<16) where an intermediate frequency

solution may be required*. The function which correlated McFeeley's

data, equation (98) fails to improve agreement with the experimental

* McFeeley states that the high frequency solution, equation (92),
can be derived independently of the low frequency solution by expressing
the series expansion for f (n, ), equation (53), with 1/(1 + 2/3,
1/(1 + Tz 4 /), etc. as the perturbation parameter. This is effectively
an expansion in 1/(1 + 2) which for high frequencies supports the
consideration of only the first order term. Similarly for low fre-
quencies (<2) consideration of only the first order term of equation (53)
is sufficient. But for intermediate frequencies higher order terms are
of comparable magnitude and should be accounted for. Thus, if the above
contention of McFeeley is true, there is a intermediate frequency region
where neither the low frequency nor the high frequency models are accurate.
This appears to be the case on Figures 15, 16, and 17.
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results reported here. Curves described by equation (98) fall below

those of equation (92) and therefore depart even further from the

experimental Amp values.

Regarding the large scatter in the data in the frequency range

8<Q<10, there was a relatively large error in the results from the

second harmonic from several electrodes because of the low signal

level for that particular harmonic compared to the inherent level

of noise introduced by both the digitizing analog computer and the

method of averaging when performing a Fourier analysis on a digitized

signal. This point is illustrated in Table 1 which is the result of

the Fourier analysis of the pressure signal for run #9, electrode A2

(=electrode 9A2). The 'O' harmonic represents the time-averaged

voltage; only every fourth harmonic corresponds to an integral

harmonic of the real signal since the digitized values from four

complete periods of oscillation were treated as a single curve for

averaging purposes. (Technical difficulties prevented the averaging

of more than four periods). Harmonic '4' therefore corresponds to

the fundamental of the recorded signal, harmonic '8' is the second

harmonic, etc. It is harmonic 8 of Table 1 that contributes an

amplitude of the same magnitude as background and signal averaging

noise (harmonics 7, 9, and 10). The accuracy of Xp for the second

harmonic is therefore of questionable accuracy; an unusually low

value is the result, as can be noted in Table A8-2 and even more so

on Figure 15. The analogous Fourier analysis for the mass transfer
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PRESSURE DIFFERENTIAL DATA ANALYSIS
NUMPFR OF POINTS PER CYCL F IN TE FOLIQIER ANALYSIS 99
NUMBER OF CYCLES N FAL TIMF PER CYCLE IN TE FOURIER ANALYSTS. 4

HARMONIC AMPLITUDE PHASE(EG)
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3 ?.90~ -604
4 0 0 476 42 a
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9 .2~14 m19e4

7,71Q 2 22·9
11 *Z .. 1 1m7l
1? 7134 66'9

14 2Zm.i7 26?

39,,6 .??-8P17 1.*7. 7^. 7· ALE 1
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36 0 ? Of t 4 M
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38 7.71O 7 70he
39 7.93tP9 P01

TABLE 1.

FOURIER ANALYSIS OF PRESSURE DIFFERENTIAL FOR ELECTRODE 9A2.
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MASS TRANSFER COFFICTENT DATA ANALYSIS
NUMBER OF POINTS PEP CYCLF IN THE FOURIER ANALYSIS 99
NUMBER O CYCLES IN REAL TIMF PFR CYCLE IN THE FOU(RIER ANALYSTS= 4

HARMONIC AMPLITJnF PHASF(EG)

e r10.3583
1 ?¶0019 74.9
P .u0007 S7P*(
? 0~ 1 -66*9
4 7¼* ?77 -13^1
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6 - 205 47 
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3 . 90 1 *
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36 0 . jp 51pR

37 e7*75 - 6*R

39 90 1 -6 *4

40 .06 067 -7 '5*

TABLE 2.

FOURIER ANALYSIS OF MASS TRANSFER COEFFICIENT FOR ELECTRODE 9A2.
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PRESSURE DIFFERENTIAL DATA ANALYSIS
NUMBER OF POINTS PER CYCL.E IN THF FOURIER ANALYSIS 99
NUMRER OF CYCLES IN REAL TIME P CYCLE IN THE FOURIER ANALYSIS 4

HARMONIC AMPLITUDE PHASE(EG)
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1?0? Z 7p (A q

11 Z L711 7?

4 .77?? 3? ̂ _
, o ' 'Till 6 -1 ,,F-

7 7O -1¾4

p, 77Z7 17 ,7
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TABLE 3.

FOURIER ANALYSIS OF PRESSURE DIFFERENTIAL FOR ELECTRODE 9B4.
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PRESSURE DIFFFRFNTIAL DATA ANALYSIS
NUMPFE OF POINTS PFP YCLF TN TE FOURIER ANALYSIS 99
NUMBER OF CYCLES IN PEAL TIME PFR CYCLE IN THE FOURIER ANALYSIS 4

HARMONIC AMPL ITtTEF PHASE(DEG)
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TABLE 4.

FOURIER ANALYSIS OF PRESSURE DIFFERENTIAL FOR ELECTRODE 9C2.



-135-
MASS TRANSFER COEFFTCTENT DATA ANALYSIS
NIJMRFR OF POINTS PFR CYCLF N THE FlIRIER ANALYSS= 99
NUMSER OF CYCLES IN FAL TIMF PR CYCLE IN T FOURIER ANALYSIS= 4

HARMONIC AMPL T T.DF PHASE (rEG)

~0 O ~.577~
1 ?.033 . 3.4

3 0,oA1. -P7.7
4 l0 4C4 _XIP9

A Z?.GA3 70 0
7 o.v 77 79. 6
8 0~579 P 4 40 -

9 . P 7 1 47,2

14

1 7 77? - i*.
.'. 9 M. 7 ~. ~,; 27 F: , 7
PC ?'-~>'1 ? -~79 -7 ?."7'

'1 Z -7 . 7. 7
, '.7. 7 ¢ 7 .". -3 -? 7

'7 9,~Z~c 'l,5

34 7d7,..s -', . , , . .,^.
; 1 Ip o7 P `I'

4 4..;,,. 77 ? 5 .2; -1 e" 1 1 ' I

39 0-.¢ T1 -q.7

FOURIER ANALYSIS OF MASS TRANSFER COEFFICIENT FOR ELECTRODE 9C2.
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coefficient appears on Table 2. Here the second harmonic (harmonic '8')

is considerably lower than the first or the third, but appreciably

above the noise level. Nevertheless, the ratio which determines Amp

is of course adversely affected by a spurious pressure result.

Another example of a low amplitude pressure signal is in Table 3

(electrode 9B4). To compare these low magnitude signals to those

which produce more consistent results, Tables 4 and 5 which list the

pressure gradient and mass transfer analyses for electrode 9C2

have been included. Together these tables illustrate how the cause

for a relatively large deviation among rather consistent and well-

behaved data points can be pinpointed. A very low pressure signal

for the second and sometimes the fifth harmonic, along with an

occasional low mass transfer signal, accounted for almost all of

the experimental scatter observable in Figures 15, 16, and 17.

The relationship between the measure mass transfer coefficient,

characterized as Amp (), and the instantaneous wall shear rate,

described as the analogous ratio -, is expressed by equation

(A4-15) as

_s 3
A - X- - AM (A4-15)Asp X= A Amp

where A is a correction factor for the frequency response of the

concentration boundary layer to changes in the velocity gradient for

conditions removed from the pseudo-steady state (Fortuna and Hanratty,
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1971). As shown on Figure 6,A decreases as both frequency and

electrode size increase (for a constant Schmidt Number). The position

along the horizontal axis (denoted as XAXIS in Appendix 8) was cal-

culated for each harmonic and electrode size, and the resulting

value of A was inserted into equation (A4-15) to yield the graph

of Figure 18 which represents the conversion of Amp from Figures 15,

16, and 17 to Asp. For comparative purposes, the results from

electrode 8C4 have been added to Figure 18. (Recall that electrode

C4 previously manifested very good agreement with the steady flow

predictions of Lvtque). The solid line represents the unassailable

theoretical predictions of Uchida (1956) for Asp as a function only

of the frequency parameter, equation (A4-12),

A remarkable observation from Figure 18 is that the data fall

uniformly, with frequency, well below their expected positions along

the curve, although a merging effect is evident at the lower end of

the frequency range represented. The scatter arising from the

analysis of low signal levels as discussed earlier is apparent and

should be overlooked in view of the consistency of behavior for all

electrode sizes especially in the upper frequency range. Clearly,

attention must be focused on the correction factor, A, since these

graphed points represent the rather well modeled Amp data of the

previous figures. The large differences between the experimental

results and theoretical predictions for Asp in the intermediate and

higher frequency region, suggest that A, described by the curve,
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Figure 6, a transformation of the numerical results of Fortuna (1971),

Figure 5, insufficiently compensates for the effects of frequency

upon the response of the concentration boundary layer to shifts in

the velocity gradient.* If so, it would be necessary to employ a

steeper rising curve than Figure 6, (one that would impart larger

corrections for the frequency response of the concentration boundary

layer), for the experimental determination of pulsatile shear stress.

On Figure 19 is such a curve, a plot of the values of A that would

be required to establish conformity between the experimental values

of Asp and those described by equation (A4-12). The basis for

determining the experimental values of A was a curve drawn through

the data of Figure 18.

These experiments are the first attempt to test the validity

and applicability of the numerically derived correction factor

for the non-pseudo-steady state frequency response of the concentration

boundary layer. Only for the laminar regime can this be accomplished

since it is for only laminar pulsatile flow that a theoretical model

for comparison of Asp results (equation A4-12) is available. Although

* As to whether the size of the electrode is reflected correctly
in A, this is difficult to determine because of the overwhelming
influence of the frequency parameter upon the term GzSc3/2 03; the
clustering of results from different electrodes suggest that the
functional dependence of A on the Graetz Number is appropriate or
at least less significant than its dependence upon Q.
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the results depicted in Figure 18 cast some doubt on the validity

of the values for A calculated by Fortuna, it would be premature

to conclude that Fortuna's results, described by Figure 6, are

in error; the experimental conditions under which Asp values

were determined may have exceeded the range of applicability of

the frequency response correction factor. The differential equation

(99),

ac + ac ac 2ac a2 (99)
at ax a + pT - 2 + 2 (9)

ax ay

from which A was eventually derived, was simplified to the form

acF acF aC a2cF

at + ax + SFY ax (107)
ay

by neglecting second order terms, such as u'c', as being small

compared to both u' and c'. Indeed, for very low oscillatory pressure

ratios, the undulating component of the fluid velocity would also be

minute (equation 24), but as can be seen from the tables of Appendix 8,

values for Xp rarely fell below 0.1 and lay predominantly in the range

0.20 to 3, so that the amplitude of fluctuating velocity (within-the

concentration boundary layer) was comparable to the time averaged

flow above the electrode surface. This would certainly augment the

term u'c' beyond the level of insignificance and would require its

inclusion within the theoretical framework for the analysis of a

pulsatile concentration boundary layer. Accordingly, it is impossible
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to refute the validity of the correction factors previously reported

(they may well be correct for very small oscillatory pressure ratios),

but at the same time it is very difficult to assess the quantitative

effect of significant second order terms without a more complete

analysis of the concentration boundary layer frequency response problem.

It seems likely, judging from the results reported here, that the

inclusion of second order effects in such an analysis would have a

marked effect on A, shifting the lower curve of Figure 19 upwards and

to the left so that its position would fall on or near the experimental

curve (dashed line).

However, for experimental Amp values that are well represented

by equation (92), such as those of Figures 15, 16, and 17, an alternate

correction factor can be derived, one that transforms Amp to Ap,

thus providing a means of obtaining pulsatile shear stress data.

Recalling equation (79)

M { 8m ( ) (79)n iv,) Mo Q2

it can easily be shown, with reference to equations (25), (A2-8),

(A4-6), and (A4-12), that

M {Yn} D + E 2 = 4 4 Asp4)n ~~~~~~ t sp~ ~ ~~(14

Then equation (92) can be rewritten as
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Asp
A (145)
mp 3(1 + T2a4Gz4/3 )1/2 (145)

Rearranging (145) yields an alternate experimental route to Asp,

Asp =3(1 + T 2a4Gz4/ 3 )1/ 2 A (146)

where the term (1 + T2a4Gz4/3)1/ 2 is an effective correction factor,

1
of the form A, for the frequency response of the concentration

boundary layer. This term reduces to the same form as that given

by Mitchell (1965) for the analytical representation of A at low

values of GzSc3/22 3. The analytical form of (146) is applicable

at all frequencies; the results of this thesis demonstrate excellent

agreement with Uchida at high values (>10) of GzSc3/2 Q3.

Equation (146) is not restrictive to a cylindrical tube if the

velocity gradient for the tube, implicit in M {yn} and Ap (equation

144) is removed by rearranging (146) to yield the general expression

for converting non-steady electrochemical mass transfer data to shear

stress results,

As = 2 4/3)1/2
Amp 3(1 + a Gz

or equivalently,

SF = 3(1 + T2a4G4/3/2 KF (148)F~~~~~~~~~~~~~~~~
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It is clear then (from Figures 15, 16, and 17) that at higher

frequencies, agreement with Uchida is excellent, and that for complex

geometries it is necessary only to measure the mass transfer ratio

and the steady flow shear rate to determine the ampliture of the

fluctuating wall shear stress. Thus the need to measure the pressure

gradient has been eliminated, and the diffusion controlled electrode

has been shown to be a very effective shear stress measuring device.
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XI. CONCLUSIONS AND RECOMMENDATIONS

Steady laminar flow measurements of interphase mass transfer

were made to establish the validity of the electrochemical

technique for measuring wall shear stress, and also to determine

the behavorial consistency of the individual electrodes.

It was found that experimental departures from the theoretical

predictions of Leveque (for a steady laminar flow field in a cylindrical

conduit) could be accounted for by two factors:

1) The equivalent rectangular length for circular electrodes

(L = .820d) is not a constant within the laminar regime - electrode

responses showed a consistent dependence upon the Reynolds number,

reflecting a 15% variation about the value of .820 in the range

200<Re<llO0. Failure to account for this Reynolds number effect on

the equivalent rectangular length can contribute errors of 5% in the

measurement of mass transfer coefficients, and errors of 15% to the

determination of steady flow wall shear.

2) The assumption that the electrode surfaces were circular

and therefore symmetric was erroneous. Surface areas were found

to be distorted from the circular shape, producing non-uniform

concentration boundary layers with the effect that less current was

drawn than expected. From the results of the steady flow experiments

it was concluded that each electrode can serve as a bona-fide mass

transfer measurement device. This requires that data analysis be
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based on a 'corrected' diameter (rather than the electrodes measured

diameter) chosen to eliminate significant departures from expected

behavior. Accuracy can be further improved by incorporating a

Reynold number-dependent correction factor to transform the electrode

diameter to an equivalent rectangular length.

These correction factors were unnecessary for the analysis of

pulsatile flow data, since the results for the case of non-steady

flow were reported as a ratio of the amplitude of oscillation of

the fluctuating quantity to the time-averaged value, thus nullifying

the factors which would cause each of these to depart from theory.

It was found that the high frequency solution characterizing

the effects of the amplitude and frequency of pulsation upon

the fluctuating mass transfer coefficient, was an accurate model

for the high frequency mass transfer data.

It was necessary to account for the frequency response of the con-

centration boundary layer when determining the fluctuating wall shear

rate from the measured fluctuating mass transfer coefficient. This

required the use of a correction factor for the non-pseudo-steady-

state.

The numerical solution of Fortuna and Hanratty (1971) for this

correction factor failed to produce agreement between the experimental

results for the fluctuating wall shear rate and the exact analytical

expression of Uchida (1956) for pulsatile wall shear. The use of

oscillatory pressure ratios in the range 0.2 to 3 may have exceeded the

restrictions of Fortuna and Hanratty's analysis, in which case the
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experimental data reflect large contributions from the second order

fluctuating terms such as u'c'. These must be considered in further

analyses of the concentration boundary layer frequency response problem.

An alternate correction factor in analytical form was derived from

the high frequency model for mass transfer. This correction term is

effectively a transfer function between the experimental mass transfer

coefficient and the fluctuating wall shear rate. It yields excellent

agreement with Uchida for low and high frequencies and can be adjusted

for the intermediate frequency range. In its general form the

transfer function eliminates the need to measure the time-varying

pressure gradient and is applicable to arbitrary geometries with

arbitrary laminar flow fields.

It is strongly suggested that the technique of utilizing

diffusion-controlled electrodes for the determination of pulsatile

wall shear stress be applied to more complex models representative

of the human arterial system. The available analysis for evaluating

pulsatile shear stress phenomena in geometries such as a bifurcation

can provide quantitative and meaningful information regarding the

causal relationship between wall shear stress and atherogenesis.
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APPENDIX 1

SOLUTION FOR THE OSCILLATING VELOCITY PROFILE
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Appendix 1

Solution for the Oscillating Velocity Profile

The equation of motion whose solution is sought is given by

au 1 . + a (r ) (A-l)
at - ax r ar ar

where the pressure gradient is defined as

P ax PsI 1+ p(n) cos (nwt - On)] (A1-2)

and 0
n is the phase difference between a frequency component n and the

fundamental frequency. Since the flow is contained by rigid walls, the

response of the fluid to this exciting force will be periodic at the

same frequency as the disturbance. The linearity of the system together

with the linear form of the equation of motion (Al-l), (no convective

acceleration terms are present), permits a solution to be constructed by

a superposition of all frequencies of oscillation. The N harmonic

components are treated individually thereby permitting the arbitrary

establishment of the origin of the period for each frequency. Each On

is therefore made to vanish and for the sake of simplicity in calculation

(A1-2) can be written in the form

ax = Ps N p(n) e nwt (Al-2b)
P ax pn

L n~ 1
i

n ,
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where only the real part has any physical significance.

The composite pulse can be reconstructed by summing the real

parts of (Al-2b) and reinserting each n to account for the phase

differences among the component frequencies.

Responding linearly to the pressure gradient, each harmonic of

the time varying velocity will acquire the form

un(r, t) = un(r)ei nwt (A1-3)

where u n(r) is a complex coefficient. With (Al-2b) and (Al-3) sub-

stituted into (Al-l), the following equation results:

inwu = PS + d (r (A1-4)r dr (r)

Let

r

Then

iu = Psn 1 d du (A-5)

iUn wn 2 r d (n--)

where

2 2 no

Multiplying by Q2 and carrying out the indicated differentiation,

- 2iu) + 1 dun Un (Al-6)
n Unrdj

with s p(n 2 s p(n ( )nw v (A-7)

This equation is closely related to Bessel's equation whose equation of

the general form
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x2 d2 y

dx2
+ X d + (c 2 x2 _ q2 )y = 0

dx (A1-8)

has the solution (for q = O, or any integer) in terms of Bessel

functions:

y = Fq(Dx); Fq(X) = C1Jq(X) + C2Yq(X)

Equation (A1-6) can be put in this form with the substitution

Wn Un -
B

which yields

d2w
n +

dndr n dn + ( - O)wn = 0

Hence q = 0, D2 = iQ2 D = i 3 /2 , and

Wn= ClJ(i3/2Qn) + C2Yo(i3/2Qn)

At n = O, un and hence wn must be finite.

be zero. Then

Since Yo(O) -+ , 2 must

Wn = Un - B2 =
iQ2

At n = 1, with no slip at the wall,un = O. Thus

a_= ClJ(i3/2ln)

(Al-13)

(Al-14)

and

(Al-9)

(Al-10)

(Al-ll)

(Al-12)

C i 3/2 Qn)
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1

J (i3 /2 qn)
0

iu2B 
n U2

J (O3/2D

Jo(i3/2 ) 

or, substituting for :

un-- i A R2 l O ( 3/2Qn)- s p(n)R2
1 3 Jo(i3/2nQ)
L 02, -j(

From relations governing Poiseuille flow it can be shown that

Uo : (dxs
S

Combined with

p = 1 .
s P (E)

5

equation (Al-17) becomes

- 8iXp(n)Uo i 00
3 /2 Qn)J (i3/2n)]

Un - 2 11 - 3o2
L. Oo i/2sl

This is the desired solution which is the same as equation (23).

Then

(Al-15)

(Al-16)

(Al-17)

(Al-18)

(Al-19)

(Al -20)

1 
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APPENDIX 2

CRITICAL VALUES OF PULSATILE FLOW PARAMETERS
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Appendix 2

Critical Values of Pulsatile Flow Parameters

The analysis of the fluctuating current generated at the electrode

requires that the velocity gradient at the surface retain a positive

value throughout the period of pulsation. The mathematical model

stemming from the conservation of mass equation maintains that the mass

transfer coefficient is directly linked to the shear rate, being driven

and altered by it. However, if the shear rate should vanish instanta-

neously at some point of time in its cyclic oscillation, the flow of

current would not cease, as is implied by the model (and equations 109

and 136), but would continue for ferricyanide ions could still diffuse

through the momentarily quiescent fluid. The shear rate dependence of

the mass transfer process is then destroyed at which time not only the

validity but the meaning of the measured signal becomes questionable.

It is therefore desirable to quantify the relationship between

the pulsatile parameters, Xp and , which represents an upward barrier

or physical constraint upon the flow conditions, where the velocity

gradient at the wall vanishes, and beyond which the hydrodynamic

boundary layer reverses its direction.

Consider a single frequency of oscillation so that the time

varying pressure gradient, expressed by equation (15) becomes

1. a= P[1 + p cos (t - )] (A2-1)p ax s p



-155-

The fluctuating velocity, described in its general harmonic form by

equation (29), is then written as

u- = Xp { cos (t - 0) + 2 sin (t- o) (A2-2)

where

ber()'ber(,2 f) + bei()'bei( ) +r bei()ber ber(Q)'bei(Q2 B
A 2 2 B= 2 beber (Q) + bei2 ber () + be2 ()

(A2-3)

Equation (A'2-2) is added to the familiar Poiseuille solution for the

steady flow to obtain the instantaneous velocity at any point in the

conduit (beyond the flow development region), then

u_ _2 -2 1 ( C t-) + 2p 8 _+ sin (wt-o)1 (A2-4)

The conditions at which the velocity gradient at the wall vanishes are

determined from the requirement that

du = 0 at r = R (A2-5)
dr

Differentiating equation (A2-4) and evaluating the result at the wall

yields,

p 2[LD sin (t-O) - E cos (t-o)] (A2-6)

where using the notation
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ber () = d(ber Q) bei'() d(bei (A2-7)

E and D are

E br()beir(n) ) - bei() -bei ber'() D = ber()'ber' (Q) + bei(Q)bei ()
ber () + bei2() ber () + bei2 ()

(A2-8)

The minimum value of Xp for which flow reversal is at its critical

point is given as

M{p} 2(D2 (A2-9)

The critical values for p are plotted against on the accompanying

graph. Beyond a value of unity for , the relationship is nearly linear

with a slope of 0.5. It is clear that in the physiological range of the

frequency parameter for various regions of the aorta (3 < < 14), the

value of the pressure amplitude ratio can safely exceed unity without

causing the shear rate at the wall to vanish.

The relationship (A2-9) defines the critical limits for Xp and 

dictated by the range of validity of the experimental technique. The

graph then, represents an absolute limit for the values of these

parameters, but does not provide or imply the limits beyond which the

fluctuating quantities become large enough in magnitude to acquire

significance and belie the linearization process by which the differential

equation describing the conservation of mass within the concentration

boundary layer (equation 99) was simplified. These analytically
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restrictive limits are lower than those imposed by (A2-9) and are

manifested by a significant deviation in the time average of a measured

fluctuating quantity from its steady flow value. They were determined

from the experimental data.
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APPENDIX 3

DERIVATION OF THE RELATIONSHIP BETWEEN THE MASS TRANSFER

COEFFICIENT AND THE WALL SHEAR RATE
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Appendix 3

Derivation of the Relationship Between the Mass

Transfer Coefficient and the Wall Shear Rate

Coordinate System

CB

U

C

'B

CV

Profiles in and Near the Mass Transfer Section

Steady Flow Solution

Consider a steady fully developed flow confronting the leading

edge of the electrode surface. There are no transient perturbations

and radial velocities have vanished. The conservation of mass within

the developing concentration boundary layer is then written for this

cylindrical system as

YX
X
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u = [ a2c + 1 acl

ar2 r r

where p is the diffusion coefficient, a constant for the flow

considered here. Since the Schmidt number, , is much greater than
D)

unity,

«C << H

and within the concentration boundary layer distances radial from the

wall will be very small such that with

y = R - r,

the following is true: y << R

Therefore

r=R -y
and (A3-2)

or

With (A3-2) substituted into the right hand side of (A3-1) there is

obtained

ac 2C
2 x - - 2BX y2

1

R -y
(A3-3)

A comparison of the orders of magnitude of the terms on the

right hand side of (A3-3) simplifies this equation to

ac _ a2C
u TX = _ (A3-4)

x y2

with boundary conditions

(A3-1)
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C(x < o, y) = CB

C(x > o, y = o) = CW

C(x > o, y = ) = CB

which demonstrates that curvature can be neglected.

Since the dramatic changes in concentration are confined to a

very thin layer adjacent to the wall, the velocity can be considered

to relate linearly to the distance from the wall with a slope equal to

the gradient at the wall.

u = Sy (A3-5)

where

S = () - wall shear rate
y=o

Introducing the dimensionless variable

C - C W

= CB C

along with (A3-5) into (A3-4) yields

Sy a = P

O(x = o, y)

Q(x > o, y =

O(x > 0, y =

The solution is obtained as follows:

(A3-6)

(A3-7)27
ay

=1

o) = 0

00) = 1

O = f(c) where C = Y/6cLet (A3-8)
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The concentration boundary layer thickness can be found by dimensional

analysis,

S6d x2 - AO (A3-9)S6c x Z
c

or

1/3
6c S (S-) (A3-10)

If we let

1/3

6c =(-S) (A3-11)

then

S 1/3
= Y(Sx)/ 3 (A3-12)

and

a = a= a [_ (A3-13)
Dx ar Bx 5C

The second order differential

a20 = a20 (a)2 (A3-14)
ay2 = 2 2y

along with (A3-13) is substituted into (A3-7) and the result is

simplified algebraically to obtain

2 + 32 as = (A3-15)
ac 

O(x = o, ¢ +) m 1

o(x > o, = o) = 0
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Let p = dC then (A3-15) becomes

dp + 32p = 0
dc

whose solution is easily found to be

p = d C1 EXP(- 3)

then

9 C E ( 3
0 = C fEXP(- C)3 dC

0

C1 is found from the boundary condition 0 = 1 when 

00

1 = C1 f EXP(- 3 ) dC C1 =
1

o
EXP(- 3)dc

EXP(- 3 )d
C - C f

CB - CW
(A3-20)

EXP(- 3 )dc
0

This can be simplified to gamma function form by noting that

r(a)= I
0

Let z = 3 ,

za -1 EXP(- z)dz

then C= z1 / 3

d = 1 z-2/3 dz

(A3-16)

(A3-17)

(A3-18)

= 0O, thus

so that

(A3-19)

(A3-21)

and
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Thus

5 EXP(- 3 )dc = 
0 0

z 1 1/ 3 -1 EXP(- z)dz = r ()T 3 3~~~~~~~~(.

- I EXP(- 3 )dc

CB -CW r (
(A3-23)

where

= 1/3
C= Y (9x)

If N is designated to be the flux of ferricyanide ion per unit

electrode surface area per unit time then

aC
N = - ()

Y y=o
= - (CB -W) ae

(,Jy)Y= = K(CB - CW) (A3-24)

where Ks is defined as the steady state mass transfer coefficient.

Then

I K = (y)
y=o

(A3-25)

The right hand side of (A3-25) is determined as follows:

a = a .

ay ar
ay= 0. x 1/3
ay aB 9Vx

(A3-26)

From (A3-17)

a - EXP(- 3)

r3 3)
(A3-27)

Hence

(A3-22)
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and since = 0 when y = 0

1/3

= 9(x) :
1 S- 1/31/31- (9p_): 1 (5)3r(3)

Combining (A3-28) with (A3-25) the steady state mass transfer coefficient

is found to be

31/3
Ks -

i)~i
and

(A3-29)

(A3-30)

is

(A3-31)

2 1/3

SD

x

(2)

For steady flow in a tube the velocity gradient at the wall

4U0
S:= R

where U is the average velocity. With this value of the shear rate

introduced into (A3-29) the expression for the steady state mass

transfer coefficient becomes

1/3 (2) u 3
NK~s= D 1 Vx U~(A3-32)

r (½) Yx

which is the same as equation (45).

y=oy=o
(A3-28)
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To determine the wall shear rate from the measured electrode

response the spatial average of Ks must be considered. Integrating

equation (A3-29) over the electrode surface yields,

<Ks> Klx L (A3-33)

Then

3 31/3S (A3-34)3
<K>= 3 (A3-34)

and

a

(A3-35)
V

where L = 0.82 d.

S 
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APPENDIX 4

EXACT SOLUTION FOR THE TRANSIENT AND INSTANTANEOUS SHEAR RATE
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Appendix 4

Exact Solution for the Transient and Instantaneous Shear Rate

The transient behavior of the wall shear stress can be determined

by performing the differentiation, aF' of equation (28). By superposing

the steady value of the shear stress, obtained from the friction factor

for laminar flow as

= 1 pU 2 1 U 2 16 (A4-1)
TS = f O 2 o Re

the result, originally obtained by Uchida (1956) is

1 2 F N16 N 2 n

T 2 U Re 1 + an cos nt + sin n t
n=l

+ 1 bn { sin nwt - cos nwt (A4-2)

where D and E are defined in equation (A2-8) and the an and bn terms

are obtained from equation (14). For a periodic pressure gradient

expressed as

ax Ps 1 X(n) cos (nt - n) (A4-3)
- D x p(n)O

equation (A4-2) becomes

+ (n) os (nt n) + sin (nt - n (A4-4)T = S 1+ I Xp(n) --cos (nwt - O) +-sin (nwt- n (A4-4)
n=)

or, combining the cosine and sine terms,
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T S T s [ I p(n) T ( n T) (A4-5)

where

aT = +

and (A4-6)

-1 D
6
T -tan D

For each n (A4-5) can be written as

T = T(1 + Xp(n) T cos (nwt - - 6T)) (A4-7)

The shear rate can be expressed in the same form by dividing (A4-7)

by the viscosity , hence for any frequency

Sn = (1 + Xp(n) T cos (nwt -
0 n - 6T)) (A4-8)

or equivalently,

Sn = S + F(n) cos (t - n - 6T) (A4-9)

where

F(n)=S - p(n) aT (A4-10)

The oscillatory shear rate amplitude ratio is obtained after dividing

(A4-10) by the time average (equivalent to the steady flow value) of

the shear rate. Thus for each frequency

s (A )
-- As = paT (A4-11)
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which when rearranged yields the final result

A = aT (A4-12)
sp a

Since aT is a function of frequency, the value of Asp will also depend

on the frequency of the harmonic under consideration. It is plotted

on the accompanying graph (Figure A4-1).

Equations (A4-8) and (A4-12) were used respectively as a

theoretical comparison for the transient shear rate as determined

experimentally from equation (136) and for the oscillatory amplitude

ratio obtained from equation (135). Rearranging (135) there is obtained

SF 3 KF
S 3 KF (A4-13)

S A K

or

XA m (A4-14)

Dividing (A4-14) by Xp,

S 3
XP= A SP A p (A4-15)
XP Sp A mp

Amp is determined from the experimental data and Asp is then calculated.

The results from (A4-15) were compared to the theory (A4-12).
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APPENDIX 5

DESCRIPTION OF FLUCTUATING QUANTITIES
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Appendix 5

Description of Fluctuating Quantities

The deviation of the instantaneous mass transfer coefficient

from its time averaged value, K, has been designated as K' (equation

113). This is the first harmonic fluctuation whose time average is

zero. The quantity resulting from squaring the magnitude of this

fluctuation and averaging the result over the period of pulsation

will be finite, however. The root mean square (RMS) of this

fluctuating power is defined as

1/2

-..2 I T 2 (A5-1)
RMS= = T f K'2 dt (A5-1)

0

where T is the period of oscillation.

The relative intensity of a property of the undulating field

is the ratio of the RMS value to the time average value, thus for

the pulsatile velocity profile the intensity is given by

u (A5-2)

U

The quantity which acts as the transfer function connecting mass

transfer to the wall velocity gradient is the spectral density function

which, for the mass transfer coefficient, is defined as

K = (RMS) 2 = WK(n)dn (A5-3)
0
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This describes the distribution of the power of the fluctuating signal

among the various frequencies. Since each harmonic of the flow is

an integral multiple of the fundamental frequency, (A5-3) can properly

be written as

2 N
K'2 = I K(n)dn = WK(n)dn (A5-4)

o n=l

Furthermore, for a sine wave of a single frequency,

K'2 = WK(n) = (RMS)2 (A5-5)

This spectral density function for each frequency of pulsation is

related to the amplitude of the nth harmonic of the fluctuating mass

transfer coefficient in the following way,

2

n) = (RMS)(n) = 2 (A5-6)



-176-

APPENDIX 6

ELECTROLYTE PHYSICAL PROPERTIES DATA
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Table A6-1.

ELECTROLYTE PHYSICAL PROPERTY DATA

Component

Sodium Hydroxide

Potassium Ferricyanide

Potassium Ferrocyanide

(centi poise)

1.1924

1.1699

1.1466

1.1178

1.0882

1.0666

1.0433

Concentration

2.000 M

0.010 M

0.010 

p(g/cc)

1.0783*

1.0790

1.0797*

1.0804

1.0307*

1.0811*

1.0814

Vxl 06 (cm 2/sec)

6.2898

6.4322

6.5847

6.7767

6.9840

7.1489

7.3325

Represents values linearly interpolated from measured quantities.
Properties at all other temperatures not listed here were similarly
interpolated.

T °C

27.0

28.0

29.0

30.0

31.0

32.0

33.0

Schmidt*

1758.40

1685.27

1612.83

1526.73

1441.78

1380.06

1315.74
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APPENDIX 7

SAMPLES OF RESULTS FROM STEADY FLOW EXPERIMENTS
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APPENDIX 8

TABLES OF EXPERIMENTAL RESULTS FOR PULSATILE FLOW

* XAXIS = GzSc3 /2 Q3



.-Z3 _ ._ : -
W m C! 4 . ' 4 U N

, . Cr' C'. t !f 4- ,0'

< C 'C C T $ 4 4 ' (! E:
a 4 6', ,2 1 1 L;

Q4~ 0 L O . , LOS OC: G0

a, 4o (r,, (b ,CI IC ~M t I S. N 4 ( - C; CIr . t ' t - r-. . - r

C. E; ; S. F ; r ; ; C'C 4 (4) L) '. U) C C ; ('C ()

COU ', i') C (oV IC ( .
aC 00 M, ( al ' ' 4L (

Cl) L oS a -r IS: 9C

} _ . iI 6 O0 ED , -R 6C ,; E; ,-;

a ar a' a a a a a a a

WIU C; G 0' C; C N : ' U U;

Ct 0 I~ 4 - ,4) ~ . (. .ml . .
uK rs o W S & r -t .t

cc] x t a 9 r

C C

S - in r( v) 1' a: s' 9,

(\ (V C C' ( ) - 6' 64 C X S a. . . . . . . 4

_ W t - 1
H UD a-t C N : 0 Z I i I. 'C NO

V)(- C; C L C i - 5C 4 si

00 CD 

Z. N- O' rO O t 4 N
C' Cw) C N· C U C; 3 , C 'C

LL >U)- t 6 E M) I

z.-~; U a (V ,t a-; (V ( 'C 4 -.a a a a * a . . .

C) LA! Z, C; V; LC ; if" IS:- C. C;, LLL 

t 
Z I L ", CY. 4' (4 'C i" . 4M10 W. oo r , ,. . - - L MI
_c ~ ( -: Z) . M ( C-; CL: IC IZ LO

LO a. 00 ·*-40:

.I.



Z a ~ 4F tdD M Oc ID o o I )
wL IZ -t O - I r

' S UO · * *wt Z (' N n ' n C

a. ( i u N 4 i t /i 00 4

a.

0 (U 0 (U, 6t x4 La 4 G 

I (U CU '- o4 Ft w- w4 w-4
U 0 6 0 0 I 0 0 0

Lt S r5 5 W) ) o

4 0 G 0 c ' CU_! e t) M *

l CU rs -4 5 DC M 5)

CMl < I *a:. 0 0 61 0 0 0 0

Cn 5u - 5) 4 I- 5) 5 5 51-IS O a .. t r cC

C .f T * (7 * . .M . . 6
I-- ) 5) in '-1 S N , C') c-X el i, i 0 Is N I · m i

J M

° . ' a- N - n x r, I

L : L 0 S 0 C 0 6 0 

r (U 4 < N ' .: 4, · ·

p - . . ' ' .3 4 6 > i a 4

---
LU C C Lrs 6 Z 3 ' 0 6) L - U ) 0 '-CL in '- 5) 6 6 4' N '

iZl Z ., @', (. IX; o , DO LIPcJ LIZ , WI In C' , - X LU LO LO T' l ) IC) -4 U) cc 0' G M. N Nt LO &

4- ' * . 0. .O Lf.

c) Z
LL LLI-i > * * * * * ?-is s S s & <2 < < < 

> w L a 
W >



CL C Er 0( C 0 N M 0 IQ 00 ( N4
u C * 0 S S .M UO 4 ft 09 0e t t O4 S 0 ft 0

rt' n ( O I U1 r -c 
Er W * S * t I I B I I
.

Cl o0 O 00 Cu- 0 N - 10 5 D

WU - * * - · -- U , , -

Uf F[ e · · 6 f tf U 6;

)( '.0 ln C M S M' N LO U)

4 0 S ft 5 ft 0M f 0 X1

Lu X C w- U U N; M '-4 (XiI---

rv' n - · r0 0 00 N 

o a 

· -W , 4- : t-. t1 -~ I' a. -'C' L-~ . ' -, Cu N 4- a -' M
: E . I 0' s" . Is t'O fIS IS S C S

LiL

0 0' M ' a I L7 ill O: M I- *, * **

OC I'; =;I rK· 1o G· -rs ri · ·- ii U Zt * utr 6 C4 ta 1 4 6 X U" H Hi L 4 : C M 

*V)^'

LU (f)- ..) O1- oU C, is Od 5d OM ( O v.z F is G I r

Li
*J 1-1. co D0 MC 00 CC CO cc 00 , DO
__. OW Z 1 .' \ C, '; I0 '0 \. IC ' 0 
:

0/ W) 4- 4 '4 r, - ' 4r

. 4 4 · 4 4 4 4 4 4 4 4

Cf-r s. s- s- s- CG D s ' CU W ) * * *f * . .

Z N N N N t N N NW Cu (U NC Cu 0CW-4Z G. U) U) U) U) U) LIT U U1a))o
w-JI'

ZZ N N (U 4- 5 4 N 4 ' U'

) t t S a t a f 0 ft 0

Z, W N S Cu 4' U N i ( .

.s4



I-

_, N a I C tS C1
L i0 S B LI I L

aI

* [t f ;r r" u, re [ ~., ,I C!W t ! !- * r_ ̂  r
U

L 4 P DC 0> '? 4 M 4 i
W i u C. or N, IL M4 X' C .- LO .'
a 9 CC U) LN 4? Cr, ·

0 1- ' t'C - l' , 4 - 4+
uX (C O I- 04U S S S *s s & s

C,,E

=U) N1 ' C1 s N t 0 4
' R (Va N, 'C, 4 f': " l

X 4 (C 4 t DC i I C e X S s C ( n 'C O C 4

L!

fOO 1 4 U - ( C ' I 0 1 0£1 0>r ( O i C') 4 - a 5 5::3 £0 OF.- ~,--, ,.f.; ~,' ~: t, .a 6 6

Co a

E3 ° . 4 U . ' n 1 N (7 ( 3

fC " : -a0 I . . -0 LI n N X

o 5 .f25C.5 (5 ' .C

LJ L -i () 0> ,, C C4 . u', L: ( ,:

I:) D ·' · ·5t . · ·5. 5 . ·

L.~ rY ' F s rS; {S b ; s sLU D< < a a * a a a a *

it- 5 :E 5. 5 5 R 5 .' I. 5.

3 0LU FW CC CC OC 0; 04 CC QC OC .C OC 03

t z a_ a' a O-L O - U'O., it it ai Ja

I ')cr a-- a-' aC a a 4 a; - a-i ai a-i

.0 5uZ )i O t U ) i ULU>

OW - ( o - 4- n
} t'r N 4 :t DC 4 In - 'A

ZW a0 m 5 C ( 'C N 

C:

Q 4 4 4 4 4 4 4 4 4
- 4 . 4 4 4 4 4 4 a 4
U rc It CC CC C C DC DC oC ac:

Lu



z IS CU t J C 4 oO 

a C' 4- U C' U) ) @O 10

- LL U 1 3 ! I I I !

CU - '

Q (u '! 4a C~ '~ 6 ~ '~ C~' C c'C: N 0" C cr. 4 C1 4 0E 6i UsI C ) N 4 : '4 ) E

U . *- r* . . . . .

t C 4 m 4 L U)i
u) Cu C u s 6 5 5 6 5

Z

-O
t- 6 6 'A C 6 - ' C '4

U I- m ) 00 CU N

F- r a 6 t 5 6) 5 5 5 MI 5)D

U) '4 U) U) N u 00 '4 C' C) U
is , o L IZ n I C,

X ) 4 I 6 N U.) 4 1
M: m a 0 * 6 * S * . . S

I Xu ¢ 5 5 U)LLI

LCJ°LJ Io ur .- s 3 S n In

F 0 0 t N 4- ,, 0 N ' 4.

W D ) Cu '4 ~ " '4 U) ' Ir? L"

< .J
/ I 0 : If : a, a ) - 6 .. .6. . .6 , .oU WZ 6t : 65 5 6 5) 6 6 6) 6)
c1 a /o

_tUU) Z 
c

3 £> s;::i §s C1 ' 

- a 3 a . a a a a.

v, ID Uif If) U) L?) U) ) U U) U) U
UZ i C ) ir ' ) U LA U) U)

Ca~~~,- - r · .--:

r)IC ) I t IF: UL.i U) tLI? U IC i

3co °' 5 5, .u . . .,c: Z.? £ - 4- 4 4 4 4 4 4 4 4

ZZ m C A U) cC 4 CC 4 C:
O W 1 0 4- CC tS N ' N C;'-. 4 s . C C' r) C- )i;
Z ,l '0 ' :0 0" 4 II,0. N s C' 0"

LiC-

t- 4 J 4 4 4 : 4 4 4 4
U '. C' : C n O ;0. C) C' C'
-

LU



Wa U) a S ' So cc 0- n£ r- r '0

ML °I U) 00 '0 0 ' '- 00 0aaLY mo U) ( 0 4 -0 -0 i'- 

4 00 4 to mr 00 ID 0 10 0Q

.) a a aI , o

.4 S 00 0): 0 0 0 0 0 a

L o * to a * * ,

z

ML: ' 

X Ch s IS CV) N - 5
LLI xa 1 u ; (T) 0',

L0 XZ. S ' ' U) N 
D - 4 ' 04

0ca1 - f 00 00 CV) '0 .V . 00 -. N . U
L ! 10 N 6 0 a a a· a 

d U) 0 IS F 1 X b· F 4 

o 5' . . . .' 5. . .: . . t I

LL u1., 04 -. 0 cc, 00 in 4 4 D DC

o F s
LLJ

OW ') - - ' '0 0 ' ' ' '0

: z ^ * ..
Cd') 4) O U 4 4, T 4; 4, 4 4 4 4

.i 4- 4 4 4 4 4 4 4 4
L. - 'i D M . _ i rl N Mt cl l : MI

Er"* U**z : ro ' al r ' a a ' a -
L WI M V a - t 4.

Z 1. UI U IZ U) ) ? U) in i

U)

.J U

- ) o a a a a a a a a a

C

&: 4 4 4 4 4 4 4 4 4 ,4



' r -- ' : 

na zL \Lb 9 -j· t! 2 er ® 

i±Li i I L t I I t 1 

< L I CN -C 4 4 NC a .
C L 2O F- LOC : O. C - : ) .
-X s sI' . N ) O- 1. t ,: 

i C I - , C iF 6 IC .

4 U, N C· '0 6 a' (U a' 0)
U Fr: 0 U) IC - M

u t,' . Z0 ' S S 0- 0.' , 0' ' U

0 a' 0 - 0 I.-

LIU 0' U- .O0 OC C N0 O C O0 C.C U3 N .-. 'C U 0" C' J 4 4F- 'C (')t 1 C '' 4 '- ' '*000 :t 4 i 4' N "l) 0 - U) ' N

U MX O - ( ) t' If & 0

i-LLJ LU-°, i- (. 0' 4 - J 4 4 \ t

Fill C 0 ' N 4 W . . . . . .. !"'-JX X a i r a,' a a a -'J

L.LO M. if c DO OL rs o o, O( rU OG;
_ L
F- -N-, 1 0 N, 0 CCi 4- .
.: I L C i < t a t t , 7Ot. Nr r . . . (. . . .

- C a' 0' 4 ' 4 00

cL 0 *' 

H U 0' 'S N 1 4 J N C' ('U

° S -' U) GS. 0' 6 ' 6 0' I s, S
LU U)Zb 0; ' 'S; 0' ' L' 0 0 i;) 

=3 Uc t is 'S iis 0 ' 0 .

Li..i i-a oO oo oc 0 cc o c co U c C

U) I
LL C CY E ? E; 6 E

'1 Z 4 4 4 4 4 4 4 4 4
w I- (, a 00 e0- 0' 0' E,; 0r 0' 0

' a<

z 0' 4- 0" 'C Gl C U( N C (I
C> N3 _N 4r CC Ci 4 U) JC 1

-, sti i B B B i f J U i

Wa -i-. -- 4 4 t B-I t
L Pt ' C': CLT CC , 02 (K 0Q~~~~-

IC~



\91
z, . i C) 4 00 (, U) 0M- 4"

M O . . a 
-r n · i . U n

cr ) LO N P N N DC
OWllW I I I I * *

4 00 t M U C c, 0 L) U I L 00
0D 0 cU M0 m " 4 N (U Oc

D , O tIs 6 

0 0 N Lu) N u U) 

U)c U 0 N C ) .C.

I- C0V) I0 *i * .0WU= - 0 00 00 N 'Ii · ) 4 4 '

Ci- Y Lin., Lf} .. " I, is (
'. ) X ' U ¢,J : 0) N 0

'. ' ' 0 '

IC) rL (T, 

C) S S S SL

L u

C)

, o 1U) (, I, 00 I .I C1, U) CV-*~ 0 a crn U,% (U c. U> al T. a, 4f (rX ' 4 C ') N 4- U U' U)
23: ~. 13< . .CD * . . .

L.I
,,_I C S t 5A I: -O0 O- O 6 IS O0

o ·W r '-' I f 6 4 C ' S (U SC#. if° ia . 6=i ir Te C!P tU 'C pI - n '

c..L ' >- ;::t-9 S- ~ . I I, 'L It 0 l-~ 5.< < 5. 5 **

Z .a:-, C E0 S LI Z fr9 ; , Ewi 00 00 0r 0 UOC 0 00 0 0 0 00
W CI h 0 '0 '0 ' ' ' ' ' '0 '

I - C

) cm i t * a a a a a * a.

ZZ N N (U 4 5 * N 4 _- Nr

'a t v- -T ~i . f (U tt (U

L '. ' 4 t ' 4 4 '.4

'lU



Z q Ch B\ ~ Ot ~ LO a 
z N a * t s 4 

r a in 4 c· ' ( - (· C )

u f) M (4 '2 M 1 toS (4 4- w-i 4' C) -t)tO tLD s @ EWWI I I I I t I I

4 ) 4- N o') (4 C ul a f (
. (' - GI · M ¢ , F

t 0 * * * * @ * 

cr-tr
LL 6 6 a 6 b 6 (4 ) 0~ '' '- '0 N to :~ --w 6 0t &m r fU (TM

MI 

C.._

1 W O~ s t\N 0' B 0 * B ' 0 0 ] 

) - ) I 0.0 Is% 4- (

c U )( '0 N 0 6 N 00 as '.1 '45 O
( ° a a a a a a a

LU

_, Li . 4M ( (4 0. "; -( .

oO G - ·

Lii20 C N a, ( ( / ' 

L- M a-4 s Ist N M tS) to aI I s
I d: *) * . * C '-I

O f,

LL

W>-

C ' 0' o . . o C.Z- J

o W0 04 -h 0-BM. 0'Iv0, CI . . . C. C. . C. .e I.C:

_2 ' n: t ( L . , : ' OD f rLU

J 01 M! (X . 4 0 I' ' 0 i' 0 0'
D aO cC . . .

w LI Z II: £o to U) to to 6; to i tS:

3 a

,

4U

i LL

L

Li



z
Wa
aa
a 

0 I

tC-4 (I
I I

, Ia; ua MI -U' D O4 
r'

L

(I * * SI 0 0 S-

e I I I I a I

4 ('4 D0 -- T 'C
C CM 0' CN a -4
'-a N a cu 4- (

I CU c ' ?
U 0 

Z) E C C C L

ls -4 a- (I 0':
M 4- 'D S I
M -4 F -4 C.

_7 : ~ ~ ~~~~~~t ts~l

1* * t* 

U) If, v I I 

- U : - 0; .' I

.O ~ G. M't Lo C M,L '-44 , ,t.- .U a Ot~ 0 i . Ir, ~ -+ . ,0 00 !, , 4 N &. (' CU '__ to t

---.~ O'. t.0 C~ c (lrIC ( 

LO4 U,. Do ,� C IC N 0 IC N -4 6 0 t , , 1 0 , ,

' .t i I 's o: L : ,

OZ N - a. IX! U' .. 5 6 ~. U) (U & '; . (' .. %4o U) Cc - 7 OJ a S f 4-
C IF CU ) (U C C 'C a (U LIs
5- f i N4 5 5 5 D, 5- -i

o - " 0 -30 0 . 0 0'

a S 5 L 5 5- 5- 5 5 5- 5

a ' o, a a O -- a- U a a.

1F a * * . . .* .* *

. i.' U) 7Jj If; L) U) i : 2)d U) U-) 1: ,. U-' if I ' f
-4 -4 -4 0 9 ! 9 4 CL if . '! U) I ff' L if LI U if

Z UfI Uf Ifr U) UIS U) U'f U) U) 

Z C CU C U) CC 4 UG 4 CC '-

W O`· O- i c - aC ' if 0) -' C C4 L

1 * * * * * * a * a 

Lu '( c' (U trt II Il C ' 5
a -4 G' i, a- I: f- CU

u - a c a' a- a -a a n
Lui

-J

1'13

z
1-4

-
uaa
C
Ur

C"

o
C
0:I.-
u

C
LL

=)

r-

C)

Lu04F-
C)LU

-.J

I-

h-a

Wa
a

U) M
Z

'Cr :

t--

-

U
U)

C

L"

U)
U)

I

0
U)

L..
1--

/'



19
z s )4 , G - L U) N Cm
wZ 4 , I r
UC I a * * * .

m U) 4 ' 4 PC 14 IDm (U
L UO

W- I I I I I I
a_

d4 00 - M I) cr 0 ' r OJ 
C 0 (U 0 N rC') ( 4 n N

I (U '4 '4 E; '4 't S '4 t
U a 6a a a a a a (

< Is Is,

Z 4 4- 00 0 C0 0 0 0 .'V O4 ta_ p '4- N, M) r') ) NU) MI Is - ' 

L a , , a , 

' -'

M C 1 b ' 5 5 W WS s

LJ o

J OL > E, E; F\,! ts 1 1 · M I
I~-- L .1 ^ U. ( 0 -I t : I.5 Is L C

L~ t E s- ~ .~ ~ ~ ~ ~..'. C 6, Is i':

_ L D U) ; ( OU ( Y e W
U f - rb cl

I-

< : 0 0 C, 0 X: ') IC U) '4 O=) t S . (U N Ni N; 4- 4 -1 .+ 4 -' 4 .-t
¢ CO S Ch S S 

a ah aI a (% o, a,

i.) U - --i_J 5 3 5 5 5 'O (U S 0 U
·-- O a a 1 a Ma a a

U) a a * . a a a a
IO N N N : N N C N1 N N

,U ,-L.,t H H n .

o
L,~ t : C.~ _ { ~ ,4 ' . , , ; - -.L Ik4 V C ') N S ( 



a-
Zr) ,.0 ON IX- 'C) 0C N i 4 VrZ 005; a 0 4 a a a a

f: '. 6c C 4 CV 6 '.- CV * CV

Bc cc C c U '0 4 4 U)a U oo O · o 6 KWW I I I I I I 

4 U ( ) V N CV ) l! 6 N o -t C N ' 6 CC Cr) d U) Cr

U) 'H 6 4 u ( 6: 
LI a a * a a a * a a

C C- N C Cn U) C N 0 '

6 6 6 6 6 · 6 ·· 6

C

-IJ- 6I 4t 0 t 

· 0~,, e m ·r · · ·

-- -, . is S I- l r..O

U) - 6 C) 00 6 N 6 ) N

* 6 6C n 6 c£nJ 6 N 6

0Fx 4 0 o ro (o C 0) 'n ) .

Ldj W Z If>. U7. V- U') N Er ') (If IU) LO U)LU * 0 N O ) ' a- a- '. 6 6
(D 11 6 6 6 ! 6 6 6 6 6 6

CJ a w a a a a

* a- U
.>- N ) 6 6 N a

Z C3 O Q IR O ~J -t 
tU - 6P L' LO OC 6 U? _P U-

C-0 f 5 t m '- - 09 iC 6 '0 
W' N. 6 (U C') '0 i C

a: a a * a a a 

- a:

C' 4 6' -q NCi * , (\ T ':S Ei 

LU )U :- m . O C 6: 6' a-

-JtL

) -4 &- a3 a- i a-'I vt a- i- a-.

.JC- N N. ie .i N' N: N.
c 3 U) a a . . a . . .

z 1 U . n; rs b au.

w - t- N t N _: i N _f it ' -

Ct

F a:: tIC , O] i C: ol . IX

U,



z M t ( 4 OC 'L IC, CI
W . in 4 OC. -t In ( 6 &u 0' 0 , : 00 , ,-

ai a O1;) 0 4- N r 4 C *Ir) tlD
a. 4- 3 I 0 l) U)t ' 
Itai W I 
a

-4 C: � ')3 C%4 N 4- a' M C, 00 O.0

D _t r- ta c L(i t

-- 6 Nr 4 0- 0o I'r6 10O ('4 10 '0 ('4 c c m U)

0. M 0) LO m m L'a (CU ( 3 C' f 0- 6 6 ' 6 

z
C

6 4u Na '- C 4 ]C 0" 

6; 6 6. 6 64 6 6

x x or; t rcI: I. 4C.

!.] , EI
CD M I M) (x if 64 'I N c L Ci U -4 * o q aI s o

1.-- -- J L U r- oo uLSZ) C (S. 04 - 0- 6 's C) , Il 
I - - 0n W 0 0 0 0, 0 0 5

cZx : C -) ·- 

:: U tC 04 X t (',

w *:t Ul 0- 1k -: C* D air a:: . . .. : . _ . . .. '-
° 1L Z , I. t6 6 , 6. 6 6. 6 6 6 , 

U)-

(0,,- N 
I)L G ' Z C 4 'Z ' 1' rD i3l_ Ct >} / -i C Er 4- 3 Z 

,,, P r- LS 1-I _!LU 000)'l-' N CS; C'i & 6 6 CS ,;,co a< * * 0 * 0 * * *

3CY E -` o' . : ' -t . ' -5
J x

T~ Jl I: 6 · 6 6 f; £· D

I- OW i0) U" LO 0" LO Lf" 0 0' 'cL U Z iZ U) f U) i 1 in in : in in I 1 C

)-Z o-f 4 s-i C1i .4 s-
4

sr s-A -
*U wz. IZ o' 'O C, I& Ln in if:

h' ZZ*U3 s-i 6 0l 4 U , Lf ,- 00

LU

0G 0' Cr . Ey. C, CT 0' 0', C,
LL

LU



z r-,, C
' r - N 0 r5 () U n N

WLL S I S I I I e

a-

4 4- i C ·00 4 e ' 4 -t 00 4 N
' 00 U) Cr C ' t oo 00 C

-I (U '- '; 'f '-i C t e

X a a M a f - 0 , f
- .· u Is . 9 ls

oC 0 I0 LU) (1 00 00 - C4
4 .U 4 1 N U { O 00 f -4

Q. 00 M () ID t M V (u (U

IIz
C

- - s t 

LS U U U) MI ' ' 0 ( 0 4M

E r * . . . . . . . . .

n N 4 U 4 N 4 / 0

4 4 Vco D0 U) t 0

LL a I- 6C 6 IS. 19 1 S~ 9

Z OUt, w

Er, Mi nJ a p e -,

Z Z . f4 0, F; 0) U) 0 -4 (U aDC) 0 IC,.U r) 0 4
fC 1 Qt, f t t f f f

O. CL. Sa S S P 5 E- CU S U) .C

LL-

W 'A N N ) U) C ( qr. C 4

<l s 2 C 4 4 U) 5 ' 4

LU U)( li _ 5 .-4 r t -4 .

z -

0

-JDW 'U (U (U CU (V (U (V ( F tICO'c C' C( w CO C[ CD cc ,0

Z 0 ft ft ft a ft ft 4 ft ft

ZWL d 55 : C e 4 IC N 00 5

-J



z 9 N N 4 fS 0l (x 4 1

u a a 0a 0 a a a s:
cr: ·

z 4 a' a a 4- 5 a 4

wWt l I t I I I I I U
a .

9Q - a cu a' 4f Cu 4 a ' I U)

a' , N 4 a' C- ' S 
E: CU CU r'-4 '-I P-4 '-"c i-i v. M(C 4

a S a' 00 so M U a a'

uC CU U) -4 5 5 M 5
-r 4 a 4 

a r , . . . GI 4 . . GI C
, r- a f · · · · · M,

C

r *:fL tS 4 -p if 1 N C 4' '

C)
F- L L (11 Is a' If N I 0' CU 4 n

w1 D-t - 0.1 CUt a' N S a _' Cu N lf' 4

0 £L -a M 6 6. 6. - 6

) <{. M· · s Is L · · e ·

::D L.t -) W (Xi S S tS I, S S a
U] z F X s ' ' u 0 4 Cu C C

:t <.a < , * * . . . , a a
o a & s is tS s; s, a

LJ

I--- ,: ....
*m CT3 1' Ci 0>C G' M M- ( oh a c 

J) 4- C 4 ' 0' If ' 4 ' w* '0c) a a '

_r 1&~ C s s 

-j

Lii 

z.X

ILL5 a a a a a a' a' z H s a a a a i a a a

.JfUZ O ff) LIf L' U

clr i a (11

CC a a a.aa C

Lii WZ If) ID If if D CI UU) cc, CD (I

HLI



Z Ia l l -0- O ' 

U 0 e
oc M cc m 

LL a ) ) 4 U 4{3: ~ f ' ~" i C
41

~
T tO-or

~~~~~~~~~~~o,,,rY 0 ¢0 .. 1 , , '~ sWW I I I I I Ia
4 4 CI U' 4 ' 4 N ~ 4 0 4 

1C -0 o O J C :-0 C 4" V ' ., - 0" ('' '( 4 . , 
)-1 '0 U' If~ ~~ ~ ~ ~~~ U' ( G is ;S 0'M

U I--3 t' S ', - ',8 0! '

I..U " ' NC , ,0 'C CC 0')f U0 , -. - ,CN
L ̀ · M CT,. DC PI; 

ar N '.... ..
0 U3 '-4 r- 4 4 N 5 5 *.4 X F .. , O' Fr'm x 0,,;W 0~~

(.,. OJ . .C!

c-,na I-C 5 4 5 '0 0> U .Uk- S (Vi If ~ C '0 '0 U' U C

.a 4 F S ' ' F
C)~~

,r- Ij>~-~ ~.C'C' I',C

LI I -i 4, : ('C
XI 00 ' (V I i '4 ~ .i 4 C

.4 'F F ,' 'F ; 'F 'F1T

LU X S V '0 0> (V If C (V IC

Ce

::H U' C, 09 C, 0 if:. ,.%,, N ~ 4 4'
W, 

C4 " '~ ¢ . - ( ,- , -0 l - - - ~ 'S S S 
a 

I.,L . ~ ~ ~ C
<

-j M.- I ,j fJ f4, [. , 4-~ ti
W~~~~~t W ,' U Ot f'M tr (k Oj 0, '~,

= -u fz h::::)JZ -,t 4"r ct .- 4 --- ' 8 -

(f),, .i (V ( .' ' ~ X '

Ce ~ ~ ~ ~ ~ ~ ? 'F [' ':' 'F [ : , 'F ' ':" "-0h a s h ' 5 '. (V 5 
CL~~~L

0 a
U-1 LI i- 10 'S Nfi (V if C U

-; C U' .V V -L 

F- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~-U) '' i'- F'.)2 1 ..J S n>.'¾ '
w ~ a M a

< 4 5 'F 'F 'F 'F 'F ' F : S0I--

-J~~~b>~LzL ~'L,LU

w

H .- a. e- sT 'F~n ;; · ~ A

) 1.1. '4.. 'C ':. '. ..5~: ` aID 'C; 'Cj '0 5; '4) '0a -

:2~~~~~ U i 2J" 4- 4 4 4,.

C

0

I O ~ ~ -' ~~ 'Fd'O ' 'C IL

LL~~~~L I. CC 00 CC ~ ,(Vt R Ri (V U1 (V 4LU LZ Ift IC- 4J 10d 1% )d i a c~a

H3r L i ii·i; _I

U)W ~W 'S2 Rii 4 ICi Nf CCi 'S (V:WCa-F -t ' ( V ('0· 1'C 'C- '4' '0Li '.4 4' -4 -4 -4 'F' -

-J~~~~~~~~~~~a

LI



j.-
CloUO ~~ ~ ~ ~ ~ ~ 2auo 

Z o4 m C' N C 00 t I- 4 N

0 Q) a. Lv r P ) (U )I O t4 U '4 4 N 4 N _ 6 ;Q . . c r I - 4 .. 4

o 1 UU 00 i) 00 1 0 0),

. U) IC 00 C '4 1 '0 O 4 C

$-4 W C 00 0 0 0> ' U) N '
N 00 00 N C 4' U) 4 4 ')

E U tD 00 a a6 a 0 0 0 : a

Ct C ) a 'C . ) -. N . 0 ' )T. 4

-- 0 U3 4 4 N CC .r '0 00 . 0
: : X , -i ( N .~ a '- 0"- 1a 4 - I"0 x. a a a . a . a .
03 Lt. . C') U. 00 ~ - G, IC C, 0 4

Ld 01

- -'- 0% fn r + 4 N Cr F U) C

i 14 00 N ' 4 - M 'Cr

CO)_t a j r. la S a a a.

1-. 6 W N M ~ : o ' c

I --

- ( h 1" h r N h < i N Y z cr . C'. .z . .

° t' , 6; ~ 1~ - t~i b- t -r' , -U) ILLJ U. )Z UI ' -C 1 U): 1 U L i f)0c

U)

Z z .U r. l

00L I 0 N 00 ' 4- O0 10 I= DODZ s' c4 CO U) a C' U) ' N
fl) a, a a a 

LL

0C,

I- U ) U U U U -I U
LU o{ ( .W : {x: DC (K . :

l.i01 >



z t o k 1

00 
M. M 4 u 

WW I I I !

i a-s a t * ; U

uz u 6? an QO a U) ! !I !0- L.) (-- 4 4 IC -1, U)o U) 4 4 ( ) (U )CU
a- 4 ND C N aL U) fO )
cn s H s a s t D s 

0

UI- 0 N 4 .
tLzU S 0)t C) N '0 U) 4' 4U C )
Ur a a 

C 

II-)C X o00 C( (U 4 00 4 r,

U '4 '( (U 

G 0 0 N 5 - U) O 5 .
Cr EL ( (') '0 00 t U . c· C 4 ·
- 00 f) M -4 - C 6 s M

L) S ' 6 r I t. 6I s
L,

i.30 .C c GI oc, 0 f t00 0 0

- tC - 6 Pi E.- ' < 3E Is. M iS
i r S S; S S S S S S 

Cr: M

-C; L( N .' 4. 4 (U - , NLL 

;Li ?0 CP 5 .0 .' N . U . . .
H ( U) 4 4 (U (U (U '0 '0 (U 4- C W & -4- 4 4 4 : -

JZ S Si 5' 5' 5:' 5' 5 5 I 5C

2-i >-D o 0C wZ U') U) 5l ,c' LO I 
LL;a CD

FI 4 4
OC ' - "' . a ·

- Is o4 4 4 4 4 4z:O ' Z , 0 C: '0 ', 'f '0 LO '>
Lf

CO

CULLJ UL US 0' '0 l (U ( 5i L) LU

UlWCc a a a G , a aC) C - -, , .'.LLi

,- U U C C U U U C. U U
L, U '. -0, (" ID' 'O' o- 0 ( 0'

LI



Z 0O ¢r .i IN 'C 'C U
w m in q. r- s ol LZ I'

W c LLO N C o O; G
aoca (Y) * 4 N 4 .C .0 .C 0
WW I I I t 0 I
a_

< ( U 4 4 , 4. o0 4
o co N r I No 0 t c
' Oa It' Or) N I! ,.
I (U 9 9 9 a 0 G 

N U! 4 0'. O ; '0 1a a Su 0 00 0 S 
U) '- 6 5 5 5 5 5 5

C
C 'o 00 rN NC U'

U k- CG 9 o) T 00 0 9 C 
-U t 00t "O ( C IC 4 N

(CW U- N 00X: (U F .. L0

Ctit q O Ck 
U * a OC 

-4 0 9r t 0 s 9 9 f 0 (uJ E 94 4- " 0 LO 0 r 
.1 S 61 0 tS S ; 6 l

;z 3s Q 1 _Iu 0..I 94 N 4 N N 0 U N

- 'C N _ f ( i 6S S S S. Cy Q * . .: :. *
°0CL (,: s s C e s (,; G; 'LI L

U -E. e 0 e · l · a · · · N

C 7 Z b Is ' 9 9 t s S

LO
LL 0.. N , N w 5 N m

LCJ) k 9 I- -. C
U F) 00 R ' CM C -I CC ;V V .C .

C_ N 

*- b; ~2 t " fC! ' ;i ,~\C (:P ' . ',

L tLp J k f l 4 * L O

z S S U 1 LL al T L

O a a m 4 *
d) Zc 'C 'c 'C OC OC '0 C 'C

C 0i 0 Li 0.1 0 L9 0 Lu LAI. U> U7 U) Uf) U) U) U) i) U

01
-J UZZ N s ) S

Z N * * 4 IC. N . .

Li

a. N 00 Na 00 00 0 00! 0; tU
i U U U U U U L1 U U U

LL t 



2z O% 0% ' oJ Cu - u() (D - N
L D N 9 u I UN M I D

UO a * a a a a .

0 It C ( D 4 t L o L 5

'4 5 0 ( 5 n) I C) cc '4 (U

U) C rC S S I * S I * 5

.- S 4 ,, J " ,S ,s' ,, 0 (

z
S - '4 '0 0 4 ' 6_( ' ' ' c ' A cC 0 'WU 4 OF &C N P C Id U) - OJ* M

Ocr O

0

C O CULk F s n £ Oa a a a a a a a

- - N- 00 r- IC 1) cr N , )
tr C . 6, .. . . .M
I4 & C, G G)O

D C C N G r ) '4 , , ' 

Lr- f o 4N ; 4 P 0% a- CU C. 0tF~~~~ C, S a '4N a) N If 00V) u 1 E s a a a a a a a a aC) C S S. S S 6 S l S S S

L1JCO

_j U F - i - ' 4 I' ,,' S 

O ' E Is 4' I 4 4 4 4. 4 
0 ' ' 'H ,, t * a a a a a, a a a.~ C Z t s 6; s i f .6 r 5 .:

._,

co

(3LLI-
ZZ ( Iz m ) if tN - ,) S; t 4

3 L 

X L 

LOF eri

'm



I-
Z CV c4 6 04 _r C ' CV) 

wM tr co 0L t V r0 \ C0; 4

Z : & i 0 u ' N in in

La I I I I I 

C (T m Oh M 4 cr o so on

G Nl 4 V) G. ') G all
61 C 0 r} R . .. '.bi '

U

ts:O 0 J 6i 4- 0 O 

WI s a OG,4 4 ; & i 4 0 0 4 0 ¢

UI O C 4 i M M 00 04 N W v , U ; CO N ~ '0 i 4' 4 -ZCC

U) Iso C, 0 t Is 4- i . COu - CV) IC 04 ... 4 . 04 4 00 

I- 8 0'~ 4- 4 , C' .0 4 Or

v 1, a 5 T, 5 
1;L L 0 , E; i ·0

c: :r
I-- C i 

L- c

44 0 4 4 4 4 4 4 0 4
H U~ O G C C, {H,

-J :DO i M LO , tf L so , tv: uC c- Ce x- 0 C0 ' o a Ro

mi tO

I 0 ¢ " · ' " ' H w V: \ £ \ID 4 4- 4 4 4 4 4 4 4 4u F UZ I-) i IS t i I ISI

OSiJ - ~ Z~ Or; OJ 5& 0 Ec '0 ' '0 ' 0 : 0i ' .

-:

-':Z± 0 ' ' 4 i N 
* (2S Ct $" '* 4 4t 4 4 s t C

.JU UU



W ID t a N . 0 N 4

UO
0r 0 (N C)) (U 4 i sIr) ., + 6 6 9 , ,

LL * . I I t

. .

-N 4 - r r t a 00 t

a N (U 0 i m ' ') ( u

4 6 6 6 6 6 6 6 6

(U (, I a - (t (:
a- n. O0 u- -N , fu a

0 U) ) N 00 U & (U 0) u . ( N 0 N . . . . 4-

*..I IS ) ( IS: (U 9 4- 0: ' r4c 6 6 6 6MtLU 0) 00 IfO Zs):

DO , G '-. '0 ..4 C') (

0 1t N ~ 0 C" U' i. CNW4. 7 U ( U ON '0 0 CC

::: (U , . . . . C 4 . .' 0D La-C si ID tS' (i.U C') 49; 6. ov -i

444 6n 0 6 9· 6u 6M 6 L6

I 

IP-
*rj M L 0i

(U X ·- ( .JLu . N N N N
CD 4r ( (U CU (U

C) Is Is IC I I I I 
LL-

V n,V C ON ( ) , Is IS" I. cklz r a .

s < 4 ID N 00 (U w-oQ Cn s U9 s 49W9 - = (U (UI t1 .) .e a u. a 
! -

3 £L~i A M N

I IC

C1j i3 eL; * .-1 . .
CO Z y 4X.- 0U U 0 U LU

LL, iJ-r t, ~C

a-j 
wt



Z O N ' 4 t 0) 5a ' t
WO 00 LU) 0 t ' ( N N 0

9x f'- N 0 C) U ) - ) ' C0

4 vI '0 M , · If C)

C (u 00 I U) C) N- 0 5 4 C):W I ! f I I'C '4 '4 C'] t C) '4 '0 N )CL N C' OD 4 a) 'C U) 4 C C')

U 

U 0 N ' t 4 ; 1

0-C) S '-4 '4 'C C) 4)I.. 'I4 15c & ; i5 1 
O

U) ' 0 N. N- NX r . ' 

.4
cu a'4a us 

CC

H 0) 0 a) m LO @ 

L Z (M 151 .ii i3 S
LU ~ en 15 N QQ OQ N if CN 4

I, LJ ~ ,.0 0 ; ' 0, c - ;LD 5 9 S 1 1 ' 5 

.JE a -V) 00 (U DO 06 lK M. fe ti t;Ui C C) L is . 0

C*)ZI- S S ; 15 5 15 5 15 15 15 1C20 e S IS, I O (S 15 _ 1 I- -. 1ti Gi USi ' a 15; Q 1S' 5

LL C

(LL . W W6 ZZ N IC If7 C L'4; N 'C 5 i_L LA -r r I . *r r - NoO Cs 6 a a asf a a a a *

sL KI

i '
( : C 00 ci ( I . Al . Of X 'A

LUwI~



I--
Z 's % 4 00 )
wcr Q s 4 CY ) s 0 
uo *

c OG - 00 00 00 
tr CU 4- M0 U) 4 IDC LU 10 N

a-

I) I

m '0 'o 00 N oc U) N '0
M- N N '- 0 n: C - N

CL 00 N 00 '0 '0 0- 4 M, N
a . ' G N ) ID 5) 5 9 ;

a 0 f t 6 f S 

z
C

ul- M al ' - , 0 0I ·,
Wu O 00 , IU) 0M 

a G 04 6 f 

0
u

LU X -a-a U)x 0 a M00 00W Mn

.< -4 - C 

CIIC

I-*N U U) -* ,') , 4) '- CC ' 
Li0 X 6; 0 4 00 N ( I 'C, x C 4 '-4 5) o 5r 5):w 5 V 4 5 5 

WF ~ ~ ~ ~ ~ ~ ~ 6 ft S u 6 0, 5 f f

LL . E E: '6 6

_.,.L - N CU , 4 M 00 4 i M
V) Is CC F 4- CU '0 U) CC 5)

-C a cr S ! I 6

-U 0 O ID 0 ', t 00 4 0 4
L&0 t-I 4- CO N 0 4 0 5 CU

LLn- O n 5u o- 5 5) 5) '- 5)

W C(P~lr 1Y: hl M Ck 

cZ- LO 5 (i > ) LO LO 5) 5) . 51.
4 44 6 6 

N i h; N M m IV u

LL a Z LO 5) If I WA U5) U) L: 5 U-J :

L 

LU
t w MS. GI- 6 O J 0 . ts t 
" Z LI . '4 ' '0 - ' 0 '
CC U) U) * * U U 1 U U)Z L c c lI c cc, 

L.0) 

I-

W UT } 6 EW 6 - 6 6-, s- 4 CU -

LI 5 ) 5 



-208-

APPENDIX 9

COMPUTER PROGRAM FOR ANALYSIS OF DIGITIZED PULSATILE FLOW DATA
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rXTFfNA. .!'P( cltD
PE/ L T (5l)

I ! T F f- F CYCLE

nI 'F h'SIQN r ( -] , :'(.Ol ) ,C 5:) ,[--:I (r" ) P.CT1 ':~ ( ...)

I ,'=5
F-1tsI r .IrrALY .CS A' STFc I (
CGI\/Fp'. TAfPlA."'-T E? 'P'I'TS "'i'' UT '.- -(:'

T'-IS P''r) A'?A' COt':i! 'TS T T T !'. FUR? P-'

C A L C L I T S

) , Ko= . ,.

F ( X ) A +( S (C ( , ) CS ( K TX -Pr I ( ) ) ) , K"1 C * .* 1

.= rTl.vn. ;F-'

PSTO? ( I )=
rS TOF ( I )

t oo FOPM AT (3 X,I?2

P-OI OTS ;D F-OU F. A

'r-!E ATT , C. (: ( +1 ) /C. ( 1)
TH-F P'ATTIC C(I+ )/C(1)

X I )

I] rq ~ r ,," 10AT T ( I1 )
IATA-1 (P :!:'S S :'tfI.l), I

IF ( IATA- ) l10,20
rn FrOM2;'AT I 1 t 14X 'F PSS.YJ

O TO ( 3
,0 'P ITTF( I',F0 )

h6'' FOP?'-AT ( 1Fit , 1 X, ''ASSC TA,,
30 COP, ' T I :,F

1 on Fr0 PR'qAT ( X 9 14 X ' FiUl','F OiF

1 ' I 

'''FrITF(I\,T'i.!l) CYCLE,
V1 OV AT (S5 X,' N'TV '' OF CYC

o AN!ALYSI = I2)

,ALY YS IS C T-AT . E

(LO-.S .K'.. .. L'ATA)
( 'A SS Tr!A'''S[-F:' ' )ATA)

-1i F 'F. ".IF ' rTI C , T ., F -) i>Y - F )

'I FF :r;F:'"T IAL -.'TA , I' LYS )

S, F , .i- F I C !, T ATA A i' LYS I ' )

PO TI 'T'S . P rn' CYCLE IY T i. F')JU II R

LF'. I ' : A L.

NTF-- TF rI"ITIZEr CUT-VE i ' Ar I 
CALL Fin R F ( FI.! ,",1 ' , 3, I F' ? , I l,A TA )
IF(IFR-)?2,, *
'F'RITF( I?'2) ICE'

20rn f:-COMAT C2X ' '-* '':'?z ' T F ,I4)
CALL. X T

1 T 

C (1) i ( ) )
wFITR( I" ,3 O0 )

3no O-,AT 1t- ',,
..'° I TF ( I,' ,4 

4Z 0 f) '©Tc'AT ( 1.FX,
n0 3 I=?'.r

1- = I-1
CC I )=SORT A(
PHI 'I )=ATAO.(
PH [ ( T )-=,JI ( I

" ;A L Y S I 5

''E PE- CYCLE' I:.: T! FOU, I 

IFU"CT I I 'i: f-,

1./X, t/,f".:O( IC' ,5X, '.'i:''L)LITUF ' ,3X, ' '.EF( . ) . ./ 
) T1 (,C ( 1 )
I?,5XF12,AX, 6.1 )

I ) '-'? 4R
- ( ) / (
) *n6 / (

( I )-' * )
I ) )I))
· ': ·141 5 ,,'3)

C

C
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C
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R TE ( I '',40C ) I 1,C () , HI I
3 CON T ! U F

F O 4 .0 I = 1

IF ( IDATA-1) 31,1,35
^! 1 PSTOR ( I )C I+1)/C( 1 }

r0 TO 4 
35 *'STO~()= C(I+I=1)/C1 )
40 CC"NT I NUJF

h T I N ItJ F

W.. ' NW0!C CORR9F CT T HE ?iASS TiRANSFER DATA USIKNi F)ORTUNA 'S

COr. ECT ION FACTOR AND) CO: PA'E THE

NOTE T'AT RI'OR TO THIS PCINT,
IN IN ' Fl '

READ It: T F PHYSICAL DATA
RNA, EF= RJUN TYU"MRFr--ELECTRO[)F N
DFLE- = IAVETFR OF FL.FCTRQI,-E (
TCVP= TPFrRATURE (DEGC)
FO= F'TElUEINCY (ADIANS/SEC)
PF= RF-Y:NL. D ,, " -FD' ,,);. - ,R
Qe,U= VISCOSIT Y (CENT IPOI SE)
RHO= DENSITY (GRAS/CC)

RESULT WJITH! UC- IDA'S THEORY

,Pf'P A ND Y(I ) -i AVE

FOR

CJ B F
C )

t E E", READi

THIS RU. i ...

RNUJ= KINMIATIC VISCOSITY (C,'**2/SEC)
DIFF= DImFUSION COEFFICIENT (C.**2/SEC)
,C.= SCHMIDTT ul.TNUREr
,Z.= RAFTZ N'B.RER

Or.EGA= I F'lENS IONLESS FUIDAiE:,TAL FR,;:OUE\CY

READ ( I 1, 7 ) RNAM\;r, rF L FCT. T1)
7Cn FORMAT (A4 6X,F7.4,3X,F5.1,5X,

.PRITF ( I ,740 )
740 FOAT( 1 H1 )

R ITE ( IW 75 )
7 5 FOPrMA T ( // , T 4.8 9 I ' ASS' / T13'DI

F : F:. 0, R F'

F63, 4X F682 )

iENSIONLES S' T28, 'REY'JL.SIt ,T37, ISCH,
2M IDT ' ,T47,'TRA;N4SF E'T57,'P IRESSUR',T1 'COR-EClI)N' ,T11OIPE' R CE
NT /, T? 'FLCCT TR

4,9 'AT IO *T5°,, 'RA
T 101,' UCH IDA t T1
DTJF:=l r631
R?,NU= RU ( TFP ) / 
nI FF (TE. ..'P+2 73,
SC= RNt)/DIF =

TI'F '

11,'

. T 1 5 ' F 1: O U'( NU !CY ' , T29 , ' NUf' RiS ' T3 ' NU.J E R ' , T 4 
67, ' ,TP,' 74 ' XAXIlS ,T33, FACTOR ' *T93o 'ASPe ,

FRRORI' )

]. i)O.*RHO ( TE'!P ) )
15 ) / R MU ( T FVP ) 2.5[.F-

Z: .P2*rE- LF:C/ ( DTUF.*RE'--SC)
O,'EGA= DTULIF/2.*SQPT(FREQ/RNIU )

P'O 50 J= 1 BUC1.J

I =J*CYCLF
rEAL I =J
DFREOQ= SORT (REAL I ) *-O'.E.-A
XAX I = Z7*SC** ( 1 5 ) *DFR *3
AFACT FORTU(XAXIS)
IF (AFACT) 50,50

45 CONT I NUF
,45

C

C

C.C(7

.-C

Cc

r

C

C



-211-

A"P= ST)OR ( I ) /PSTOR ( 
ASP AP*3*/AFACT
THFORI = UCH I n (DF )
FRR: ( ASP-THF F< ) / T1FiOR*100.
WR ITE( IWSF00) RAMEit'FR.0EQ,RF ,SCV9S TOR( I) PSTOR( I) ,AMP XAXISAFACTT

1 ASP TF--iFOCR ,ERR
5O. FOPMAT(//T4,A49T16 ,FF.3T28 F7.R2T37,F7.2 9T489F6.4 ,Tb7 F6.4,T65,F6

2.4T739F6.3,T3s3oF5.39T92tF6*.4TL01 F6.4,TTl1,F62)
50 CON T I N!JF

lWR I TF ( I,]. 3 )
1P. FORAT ( 1H1 )

CALL EXIT
F ND

SUR ROUT INF FRR F FU N,N,M ,A , B, I FR , I DATA)
DIMENSION A(1),R(1)

C THIS IS A SLIGHT REVISION OF THE I"-SSP SUBROCUTINE FORIF
C CHECK FOR PARAMETER ERRORS

I ER=

20 IF(1A) 30,40940
30 IFr=72

40 IF(M-N) 6 ,69,5 
5, IER]

C COM.'PUTE AD PRESET CONASTANTS

60 AN- N

CEEF=2. 0/( 2 **AN+1 .0)
CONST=3.141593*COFF
S1=S I N (CONST)
C1=COS ( CONST)
C=1 .'

J=1
FU NZ =FLJN ( 0O..- I) ATA T

70 U702=.)
I r=n n
A I 2 * N

r FORM FOURIF? COEFFICIENTS RFCUr!SIVELY
75 XAI *CONST

F= FL,! ( YX 1 I DATA)
UJO =+2 * 0 *C* U 1-lJ2
tJ2 = U 

AIUAI-un

IF(AI) 0,830975
A ( J) =COFF* FUNZ+C*U1-U2
P (J) =COFF*S*U1

IF(J-(+1) ) 9I0,1f,1 00
9O O=C 1 C-S1*S

S=C1*S+S1 *C
C=
J=J+1
0 TO 70

100 A (1. ) =A (1)*.5
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r:: E' T j> ?

FlIJ'-' T' : F:l'! ( X " s I)'TiA )
cI ' .' l IO?-, Y( 100,'h )

I i : ,q

I' ?

-' " ' " '" Y(I )
I~- (?) ATh,l ,?

C 2 cAIf ,'nT=

In F(IC rA T /- 1) I

..r Fl"CAT ( 55X, I
1, TI NIJ

X 1' P T = " P T

! I =3. i141593

IF(IATA-I ) 1

20. ROQO?,:)A T (IXF
0 T 30

12' FA0( I22,30l)
gqO F0r.'.':AT ( 11 X, r:'
130 , .'.! T rTiF

F' ' C.=( 1 )
?F TLJ;N

, r SET -P , A , T f:OS

D I .TS 0 %F'? CYCL. F

1 I 1 2
,Ni ) '

I ., )II T 1T I/. ) (UJVE

CYC I),I=ikPTI

( Y ( I =1 T )

Y I ) = 1 9 ., T 3
1 F.5)

LOCAT X , ' T. TE RU-)L. LAT 

2? X V APK=X- X \9T/ ( 2, -P I )
.=: X A K

Fl,"Y l ' .:+ ( X "APRk-X'- ) ,
FT U "'

L: N. r,)

FrUi CT I©:'.! o-'O(T)
IRHt: D=fE"I,'S T Y I >

r0IA.S IO ., ( )
AX 1) -1 *Q0 7 Q3

A( 3) -1 .0 1t'(2)=.C804
1W5
IF(T-27.0) 1,3,2

I "tIT C ,10) T
1! ," RV\1AT ( I1 TX,

CALL XIT
IF (T-3.3.0)%3,1

3 Ir

riC 6 J= 1,7,
I= I+1

(I / CC

TF- .P <.T: TS I r'i- A^L..L(" A!:L (27- 3 ,9.) , T ' ,F'.3)

XJ = ,J

XT T- ( 2,.+ (X J )
IF (XT) 5,4,5

4' =. ( I )

5 1'.- ((I )-A( I-1) )-(T-32. -XJ)/3. +A( I-1)
r E TU U

C C O' T ,it i

C

( y ( " .+ . ) -Y ( ) 
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CALL F XI T

F.Xl' C T ! n 1? F:0 V fU I t( X A IS)

nI '-1F"!SII (D A(71) (21)
C FL-OrTFU.= -i, TTl,;A t' SA CT)FIRLECT z,..: F-ACT.:-, AfA :CT

AC 1) 1 = rA

A(?)=. .5
A t 3 ) - 1 * 15A ( ? ) 1 q.2

A 6 ) - 1 * 4

A (4 ) i, 
AC 11) =6.4
A( 2)=7,7A( ) '.

A ( 1 5) :4.A( 16 )=1 7.rA(127) =7,.
t ( 13 ) 2 .

A ( f 4 ) = 1 s.

A ( 1 ) =3 31 A(7)=2,- 

,( 1) =3 .0

I C(2)) =0 q671 ( ) = 3 .0 ) Q ( 4 ) =0. 89

i k '11) = .' 7,
n ( ) ?= 2C * 5 

9 ( 1 3 ) =0.* 70

O ( 1 ) = 0) * 4 3

( 15)=0.543
: (1F) ) :" .4'-

r;(!7)=0,4n7

q( 1" ) =0,34
(20)=0 29

:( 21 ) =.30,4
IF ( X I S 2.2,) 2 4 1

1 Fs?T(T=-.,'
T I! N

I F (X,! -1 , 0 3,I a 4
,C2, r TU=: 
l. F T UI I Y,!
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4I· !C) 7 1=1 ,21
IF(XAXIS-A(i) ) 6,5,7

5j FORP I = F I )

/ETU~rN

7 F T U?2 N

CALL FXIT

FL'INCTION R.J(T)
C URl.l=V ISC0)SITY I, CF!TIPOISF

n. I 'FS ION A ( 7)

I !=5
A ( 1 )=1* 1924
A(2)= 1 * 1699
A(3)=1 1466
A ( 4 ) = 11 78 

A(5) = l 0 2
A(6)l= 1 666
A(7) 1 (')433
IF(T-27.0) 1,3,2

PITF( Iv,' 910 ) T
1.20, FO rl,.AT( OX, '**** TFiP O)UTS I!E ALLOWAiLE (27-33 D (G) ) T= ' ,F8 3 )

CALL FX I T
2 IF (T-33.0) 3.3s1
1;3 .O 6 I=l ,7

XI=I
XT=T-(26.f+XI I
IF (XT) 5+4,96

4 TlJ=A ( I )
r- TUr N

PvLU=( (I)-A( -1))*(T-25.-XI) + A(I-1)
r F T U NR

6 C() NT I NUlF
CALL FX I T
F N '

FUCTIO: LUCHID(X)
P (X )=T P I*X

i ( X ) = 1.0 * ( X / ) 1 3 , 7 7 7 7 8 0r ( X / . * ) 6t. 7 -3 2 3 3 4 6* C X X / 8 '.
2 )*-*12 + 2.6419. *(X/8.0 ))**1 f-'.t60.3t496 '(X/.0;)'-.20

q F I ( X ) = 1 X / ) 2 1 3 7 7 7 7 ( X / 8. ) *6 + 7 2 1 7 ( X / O ) i 1 -
1 0 5 6 7 6 5 ( X / . ) ** 1 4 + 5 2 1 ( X / . ) 6 O C 1 1 4 * ( X/ ) " 2 2
RERPP(X)= X* t ( 4 ) (X / ) ' ) * + 1 4 2 2 i X / 8. O .) 6- 6,6 8 1 5 * X/ . O ) *'

2?10+0 6 04 4R({X / ,. 1 4)
EiPr ( X ) = X*( . 5 - 1 C h 666 7(X/.) ;4+l 1 3 7 7 7 *( > / ) ** 

2-72.311 65' ( X/ 8 ~. ()1) *+ 1 2 + . , 4 6.7 7 ( X / . 0 )*;):- '16 )E
A.FP ( X) = ( F X P ( /R ( (2.0 ) )* ((X) (0. 5 ) ) *CS ( X / SQ T ( 2 ) )

R F I X ) = ( F X ( / SRT(2.0) ) ) ( X ) *(-O ) S ( X / S ' T 2 -L L 
Ar.FP (X)=FXP(X/5:'Q-TT(2.0 ) )*( (, p(X)** (-(,eC5 ))I* (- SI;' . (X/S(T (2.C) ) -DEL) '-

31 0/SORT (2 *. ) +X I( ** (- * 5 ) *CS 1X /SQ'T (2 )-i0 ))
A F F I P(X) X P (X / 5 QR T( 2.0 ( ) )*( ( ( X ) ** ( - .5 )*( CS ( X / T ( 2 D ) L
1 /S / RT 2 . ) ) ( -PI )* P X)*(-1,) )*SIX/S T(2 )- E L ) +
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31 *fl/S0Fr? T (2 )( P (X )'* (-5 ) ) *S I i ( X/S _ rT (2.0 )-DEL ) )
qR5( ( CX ) :AE Xf *"2+AFF X ) '.?

'hFL:7?5/7,2°k

TF)P I = 20* rI * 12 

= (A ( X )*AERP ( X ) +A I ( X )*A. P ( X ) ) SG ( X 

13 A=(2.0*C/X)**2
P= ( 2. O*)/X ) **'
UICH I ,= SQR T ( A + )

1 2 C= ( ( X ) E I P ( X ) -BF I ( X ) * , P ( ) / ( X 2 + E I ( X ) **2 )
P=(BFR(X)*!¶A.E. RP(X)+P, FI(X)*H~,F IPTX) )/(RE!KX)**2+FI(x)**2)Tr = ( F F? R ( X +P ; I X ) I X *e I r 9 ( < ) ) / ( 4 ' !·' ( X " ) 7r 4 2 + t;, I ( X ) * * 2 )
A= ( 2. *C/X ) **2
F (2.0*D/X )**2
ICH ID=SORT ( A+P)
? E T U ? "
F D
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Nomenclature

a Constant of integration (equation 71)

an Fourier coefficient of cosine

A Defined in equation 28

Ae Surface area of electrode

A Correction factor defined in equation 129

Amp Mass transfer to pressure amplitude ratio

Asp Shear rate to pressure amplitude ratio

B Defined in equation 28

bn Fourier coefficient of sin

C Concentration of ferricyanide ion (moles/liter)

-C Time average concentration

c Fluctuating concentration

CF Amplitude of the fluctuating concentration

c Defined by equation 111

0o Quasi-steady value of c

CB Bulk concentration

CW Concentration at the wall

d Electrode diameter (cm)

D Pipe diameter; also defined in equation (A2-8)

V Diffusion coefficient (cm2/sec)

E Defined in equation (A2-8)

AE Potential difference (volts)

F Faroday's constant, 96,500 coulombs/eq. wt.
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f Amplitude of first order fluctuation of +
Defined in equation 48

f+ First perturbation term of f+

f+ Second perturbation term of f

f Friction factor, equation (A4-1)

Gz Graetz Number, equation 43

I Instantaneous current

Is Steady flow current

I Time averaged cell current

I' Fluctuating cell current = IFeiWt

IF Amplitude of fluctuating current

Jn(x) Bessel function of the nth order

K Instantaneous mass transfer coefficient (cm/sec)

Ks Steady state mass transfer coefficient

<Ks> Spatial average of Ks

K Time averaged mass transfer coefficient

<K> Spatial average of K

Ka Fluctuating mass transfer coefficient = KF(n)ei nwt

KF(n) Amplitude of the nth harmonic of the fluctuating

mass transfer coefficient = Xp(nKf(n)

Kf(n) First order perturbation term for the nth harmonic
of the fluctuating mass transfer coefficient

<Kf> Spatial average of Kf

KF Amplitude of quasi-steady fluctuating mass transfer
o coefficient

L Equivalent electrode length, = .82 d

M{O Modulus

M1 Modulus of J1
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Mo Modulus of Jo

N Mass flux of ferricyanide ion

NL Defined by equation 105

NuF Fluctuating Nusselt Number

n Number of integral multiples of fundamental frequency

ne Number of electrons involved in electrolytic reaction

p Pressure

Ps Pressure gradient for steady flow, equation 14

Q Non-defined quantity; also flow rate (cc/min)

Re Reynold's Number

R Pipe radius

RMp Mass transfer to pressure ratio (complex)

r Radial position

Sc Schmidt Number

S Instantaneous shear rate

s Fluctuating shear rate

S Time averaged shear rate

sF(n) Amplitude of the fluctuating shear rate for nth harmonic

T Period of pulsation

u Instantaneous axial velocity

Us Steady flow velocity

U0 Area averaged mean velocity for steady flow

U Time averaged bulk velocity, = Uo

u Fluctuating component of velocity
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un Amplitude of fluctuating velocity, defined in
equation 19

v Velocity normal to wall, = 0

W Refers to pipe wall

Wn Defined by equation (Al-10)

WK Spectral density function for mass transfer coefficient

WS Spectral density function for shear rate

x Axial position, position on electrode surface

y Transformed radial position, R - r

z Correlation constant for equation 93

Zl'Z2'Z3 Expansion terms of z

aL SISc 
1/ 2 , equation 50

8 Defined in equation (A1-7)

r( ) Gamma Function

y, or n Defined in equation 31

6 nth harmonic phase lag between shear rate and mass transfer
coefficient

6T Defined in equation (A4-6)

6C Thickness of concentration boundary layer

6H Hydrodynamic boundary layer

Defined by equation 40

Transformed y variable defined by equation 52;

Also equal to r in Appendix 1

in Phase with respect to fundamental frequency of nth
harmonic of pressure gradient or mass transfer coefficient;
also dimensionless variable of Appendix 3
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A Defined in equation 115

Ap(n) nth harmonic pressure ratio amplitude

AX Ratio of the amplitude of the oscillatory shear rate to
the steady flow shear rate

Xm Ratio of the amplitude of the oscillatory mass transfer
coefficient to the steady flow value

Viscosity (g-cm/sec)

v Kinematic viscosity (cm2/sec)

Transformed x variable defined in equation 51

p Density (g/cc)

aT Defined in equation (A4-6)

T Defined in equation 76; also instantaneous shear stress
in Appendix 4

Ts Steady flow wall shear stress

Dimensionless concentration defined by equation 34

o Steady state dimensionless concentration
Solution given by equation 42

First order fluctuation of p

Defined in equation 56

w Fundamental frequency of pulsation (radians/sec)

Dimensionless frequency parameter, = R nw
V
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