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Abstract

Several experiments have been performed with an atom interferometer built
from three 200 nm period amplitude diffraction gratings arranged into a Mach-
Zender geometry. The interfering beams are physically isolated from each other
with a metal foil.

The first experiment is a measurement of the electric polarizability of the ground
state of sodium. This produced a result that is a factor of six more accurate than
previous experimental work. The second experiment is a spin rotation
experiment performed with the ground Zeeman states of the sodium atom. A
final separated beam experiment is a scattering experiment where a gas target is
inserted into one of the beams of the interferometer. The forward scattering of
the beam that travels through the target represents the complex index of
refraction of the gas for matter waves.

The near field imaging of amplitude diffraction gratings is investigated with the
sodium beam and two of the diffraction gratings. This is the atom optics analog
of the Talbot effect.

The final experiment described in this thesis is the preparation and diffraction of
an intense molecular beam of sodium dimers.

Thesis Supervisor: Dr. David E. Pritchard
Title: Professor of Physics
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Symbols used in this thesis

The following is a list of the symbols used in this thesis. I have tried to make
symbol definitions consistent throughout the document. The included
papers, however, may use different conventions.

P diffraction grating period
AdB de Broglie wavelength
m mass

v velocity

odiff diffraction angle

0i ith grating rotation angle
C contrast
generic constant
hj height of ith grating
Xi transverse position of ith grating
yi vertical position on ith grating
(0] phase
a arbitrary parameter
P(a) distribution function of a
Q angular rotation of interferometer
k wave vector of the atom
ko wave vector of the atom in the absence of a potential
U(x) a spatially dependent potential
E energy of the atom
electric field
T(dx) spatial translation operator
o electric polarizability
b classical impact parameter
A(b) semiclassical phase shift at impact parameter b

z axial coordinate in machine and scattering problems
B open fraction of a diffraction grating

1 distance between gratings

d source to first grating distance

s separation of diffracted beams at the detector

n diffraction order number

N normalization constant
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Introduction

In this introduction I will attempt to set the stage for this thesis. I will discuss
a little of the history of interferometers in general, and atom interferometers'
in particular. I will give a list of the interferometer experiments that have
been carried out in other labs in the second section. The last section will be a
short list of the experiments we have performed with our interferometer, and
the other atom optics experiments that will be covered in this thesis.

I.1 A little history

I will now give a brief history of interference experiments with an emphasis
on ones that impact or foreshadowed atom interferometers.

Previous Interferometers

Many different types of optical interferometers were demonstrated shortly
before the turn of the century. They include devices by Fizeau [FIZ62], Fabry
and Perot [FAP99], and Michelson [MIC82]. These devices had an immediate
and far ranging application in several areas of experimentation. A classic
example is the experiment by Michelson and Morley [MIM87].

With the revelations of wave-particle duality contained in quantum
mechanics, the paradigm for thinking about matter wave interferometers had
arrived. Matter wave interference was in some sense discovered then, with
the realization that amplitudes of matter states had to be added coherently,
giving rise to interference terms. A simple example is single slit, double slit
or multiple slit diffraction.

The first matter wave interferometer realized in the lab used electrons as the
interfering particles. Two such devices were demonstrated nearly
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simultaneously in 1954. One device used a three crystal geometry [MSS54]. In
the paper describing this interferometer, it was argued that building a Young’s
two slit interferometer with electrons would be “almost impossible”.
Ironically, just such a device was demonstrated later that year [MOD54], using
a single wire biprism.

The first neutron interferometer was demonstrated in 1962 [MAS62]. This
was a biprism made out of glass, and was not used for much else but the
demonstration. Although several different types of neutron interferometers
have been demonstrated, the real workhorse of neutron interferometry is the
perfect crystal interferometer [RTB74]. This type of interferometer uses three
silicon crystals, usually parts of the same monolithic piece of single crystal
silicon. There have been many experiments performed with these devices.
These include: coherent spinor rotation [RZB75], measurement of the Sagnac
effect using the earth’s rotation[WSC79], gravitationally induced phase shifts
[COW75].

The extensive work with neutrons in particular has provided much of the
ground work for how to think about atom interferometers, and good ideas
about what to do with them.

Atom Interferometers

Diffraction of He and H? off of LiF surfaces was first observed in 1930 [ESS30].
The first atom interferometers were demonstrated in the last few years.

There have been three demonstrations that rely on microfabricated structures
as diffractive elements. A Young’s double slit experiment was realized with a
supersonic atomic beam of metastable helium atoms [CAM91] and later with
metastable neon atoms dropped from a magneto-optical trap [SST92]. In
addition, our group demonstrated a three grating atom interferometer
[KET91] with much the same topology as the three crystal electron and
neutron interferometers. There is another type of three grating
interferometer that relies on the near field imaging of amplitude gratings
[CLA92].

Several other interferometers have been demonstrated that rely on light
forces to split, redirect, and recombine an atomic beam. Three Raman pulses
(r/2,m,m/2) were used to demonstrate an interferometer with a tossed ball of
atoms from a magneto-optical trap [KAC91]. The same group has also
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implemented a four zone interferometer with a tossed magneto-optical
trap[WEI93]. Two groups have demonstrated interferometers that are based
on four traveling wave laser interaction regions with an atomic beam
[RKW91,S5M92]. One of these groups [ERT93] has also implemented a
similar temporal interferometer in a magneto-optical trap.

Recently it has become common to consider experiments using the separated
gyrating or oscillating fields technique of Ramsey as longitudinal
interferometers. A device of this type has been demonstrated with metastable
helium atoms [MPV91].

1.2 What have atom interferometers been used for?

Atom interferometers have several things going for them. They have much
shorter wavelengths than optical interferometers, and typically much longer
transit times. They also have easily addressable internal structure in the
interfering particles.

There are several problems with atom interferometers as well. The beam
splitters typically impart small transverse momentum changes to the atom.
This implies either very small diffraction angles, or the use of very slow
atoms. There is also no achromatic beam splitter for atoms analogous to the
partially silvered mirror for light, where the splitting angle does not depend
on velocity.

The short wavelength and long transit times of atom interferometers have
been exploited in two experiments in Steven Chu's laboratory at Stanford.
The first of these experiments uses stimulated Raman transitions [KWR91] as
ground state to ground state beam splitters in a three pulse interferometer.
This experiment demonstrated impressive sensitivity to little g, the local
acceleration of gravity [KAC91, KAS92]. In another experiment, a four zone
type interferometer (with additional n pulses added) demonstrated
impressive precision in measuring the recoil shift of an atom emitting a
photon [WEI93]. This experiment could be used to determine plank’s
constant divided by the mass of the atom.

The group at PTB has demonstrated the sensitivity of their interferometer to
rotations, and has found qualitative agreement with theory [RKW91]. Their
entire apparatus was rotated at up to .1 Hz.
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The group at Bonn has shifted the fringes in their interferometer through the
differential Stark shift of the calcium intercombination line [RSS93]. They
verified the quadratic dependence of the phase shift on the field, and
measured the differential polarizability to 12%.

The group in Tokyo has shifted the fringes of their Young’s double slit
experiment with a gradient electric field [SST92].

1.3 What have we done?: outline of this thesis

This brings us to what we have done with our interferometer. That is the
subject of this thesis. In chapter one I will describe the interferometer
geometry, the apparatus, and the construction of the diffraction gratings. The
second chapter describes the experimental procedures and data analysis
required to run the interferometer. The third chapter will provide a brief
introduction to the theory needed to deal with analyzing the various

experiments.

Chapter four describes the first experiment we performed with the
interferometer, a measurement of the ground state polarizability of sodium.
The core of this chapter is a paper that has been submitted to Physical Review
Letters. Chapter five covers an experiment we have named magnetic
rephasing. This is the coherent rotation of all of the projections of a spin 2
and a spin 1.

The sixth chapter describes a measurement of the index of refraction of a gas
for matter waves. The matter waves in question are in one of the separated
beams of the interferometer.

Chapter seven and eight deal with topics outside of basic atom
interferometery. Chapter seven deals with a study of the near field imaging
of amplitude diffraction gratings called the Talbot effect. Our first results in
molecular optics are covered in chapter eight.

Chapter nine is a short shopping list of future experiments for the

interferometer.
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1 The device and apparatus

In this chapter, I will discuss the experimental apparatus and the basic form of
the interferometer. The apparatus has been reviewed recently in the most
recent thesis from this experiment [KEI91] and I will therefore give only a
rough outline of the device, with more detail applied to portions that have
since been improved, rebuilt, or replaced.

1.1 The interferometer
Geometry

The interferometer has a Mach-Zender geometry, and is based around three
microfabricated diffraction gratings. These three gratings are spaced evenly
down the beam line and are used as beam splitters and mirrors. A basic
drawing of the interferometer appears in Figure 1.1.

Detector

G2 G3
Figure 1.1: The basic geometry of the interferometer.

A beam of sodium atoms is produced by a seeded supersonic source using
argon as a carrier gas. Two 20 micron wide slits collimate the beam with a
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divergence of 24 milliradians. The typical mean velocity of the beam is 1050
m/s, with a 3.4% velocity width.

The beam is then diffracted by a 200 nm period amplitude diffraction grating.
The diffraction angle between orders is 83 microradians. These gratings are
formed from holes cut in a thin silicon nitride film. The first grating acts as a
beam splitter, the zeroth and first orders of which are used in the
interferometer. The second grating intercepts the two split beams and acts as
the two mirrors. The first diffracted order of the zeroth order beam and the
minus-first diffracted order of the first order beam are directed towards each
other. These two beams intersect at the plane of the third grating. The
intersecting beams produce a spatial modulation of the beam intensity across
the beam that has the same period as the diffraction gratings. This is
illustrated in Figure 1.2.

Because the gratings are amplitude transmission structures, we can use the
third grating as a mask to detect the interference pattern. By changing the
relative position of the third grating with respect to the first and second, and
observing the total transmitted intensity through the third grating, we can
map out this interference pattern. The atoms are detected by surface
ionization on a 50 micron wide hot wire detector.

The properties and production of the diffraction gratings are described in
section 1.3.
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Figure 1.2: Phase fronts from the two interfering beams
intersecting at the plane of the third grating. By translating the
third grating with respect to the interfering beams, the transmitted
intensity oscillates.

L L
-400 -200 0 200 400

nm
Figure 1.3: Interference fringes from 20 seconds of data. Each
point represents 1/2 second of data. The fit to the interference
fringes allows us to determine the phase of the interference
pattern to 6 milliradians in 1 minute.
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Theoretical implications

Most of the theoretical implications of this interferometer geometry are
spelled out in [CAL75]. The most important one is that since the path length
difference is zero for the central fringe appears at the same position for all
velocities, or "colors”; this is called a white fringe. It is easy to see that all
velocities will produce the same period fringes at the plane of the third
grating. The angle between the two beams as they approach the third grating
is the same as the diffraction angle from the first grating. Because for a given
velocity, the diffraction angle is set by the grating period and the de Broglie
wavelength, if two beams intersect with that angle and deBroglie wavelength,
they should produce fringes with the same period as the original diffraction
grating. This is true irrespective of the velocity. The fact that, while the
envelope of the beam shifts with velocity, the location of the fine fringes
within that envelope do not, has no simple model. Checking whether this
was the case was the original motivation for the numerical modeling of the
interferometer described elsewhere [KEI91,TUR91,TPK92].

1.2 The atomic beam machine

The atomic beam is produced by a seeded supersonic source with argon used
as the carrier gas. The beam is collimated and ultimately detected on a hot
wire detector.

Source

The source has been replaced with one that is similar in spirit, but with a
much more robust implementation. The basic principle is that sodium metal
is contained in a stainless steel box with an argon inlet that maintains two
atmospheres of pressure. The box is heated to around 700 Celsius (~20 Torr of
sodium). The argon and sodium mixture expands through a 70 micron
diameter hole into vacuum, producing a supersonic expansion. A skimmer
is placed after the nozzle, inside the shock wave, forming a typical seeded
supersonic source.

The entire source and source flange have been replaced. The source is hung
from a flange mounted on the end of the source chamber. The source can be
moved on a three point “optics mount” from outside which allows
alignment with the beam skimmer (Beam Dynamics model 1, 0.5 mm orifice)
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and control of the nozzle-skimmer distance. The 70 micron nozzle is
produced by Apertura, a small local company.

The entire stainless steel source envelope is either swaged or welded together.
Elimination of the brazing on the previous source allows higher
temperatures without worrying that the source will explode at any moment.
The current design should be capable of operation up to 1000 Celsius, the
limit of the heaters (Aerorod coaxial heaters). All of the thermocouples have
been replaced with ARI coaxial thermocouples, which are much more reliable
than the spot welded thermocouples used previously.

The argon carrier gas handling system has also been altered. There are now
two gas purifiers between the gas bottle and the source. They were introduced
because of worries about contamination of the sodium in the source by water
and oxygen, both of which will form sodium oxides in the oven. At high
temperatures, sodium oxides are quite corrosive, and will eat stainless steel.
In the old source, the stainless steel gas inlet lines have been known to
completely corrode away inside the oven. The conversion to oxides also uses
up sodium, may reduce the amount of clean sodium surface producing
sodium vapor in the oven, and may cause the nozzle or gas inlet to clog.

The first purifier is a heated getter (Supelco high capacity gas purifier #2-3800)
that pumps out water and oxygen very efficiently but does not pump argon.
This is the same material that is used in high vacuum getter pumps. One
getter element should last for about 10 cylinders of 99.995% pure argon.

The second purifier is a glass tube filled with chemicals that react with oxygen
and water (Supelco OMI-1 indicating purifier). This has the advantage of
changing color when the chemical charge is spent, telling us that it and the
first purifier need to be refreshed. This is no small advantage, because if you
have to remember to change the first purifier's charge after 2 years, it just
won't happen (for proof, look at the rough pump trap elements and water
filters in the lab).

The combination of the two purifiers yields argon that has water and oxygen
impurities of a few ppb. The source recently ran out of sodium and had to be
refilled. When the oven was opened, the inside was very clean and there was
no evidence of corrosion.
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Vacuum system

The vacuum system is largely unchanged from David Keith’s thesis [KEI91]
and I will only give a brief outline of its form to provide landmarks for
subsequent discussions of the machine. A rough schematic of the vacuum
system is shown in Figure 1.4.

D1
s -/ D2 M D
N O
s S BV
DA = ®
I
St DP2 DP1 Tur
DP3

Figure 1.4: The vacuum system. The five differentially pumped

chambers are, in order: source (S), differential chamber 1 (D1),

differential chamber 2 (D2), main chamber (M), and the detector

chamber (D). The pumps for each chamber are described in the

text. The pneumatic gate valve (V) is shown above the main

chamber diffusion pump.
The vacuum envelope consists of five differentially pumped chambers. The
first chamber houses the atomic beam source. It is pumped by a high
throughput diffusion pump (4" Stokes model 150, 500 1/s). The argon load
from the source into this chamber is ~0.5 Torr 1/s, giving a typical pressure of
several to 10 microns. The aperture into the next chamber is a beam skimmer
(Beam Dynamics model 1) that allows roughly 0.3% of the gas load from the
source into the first differential pumping chamber.

The next two chambers provide differential pumping. The first differential
pumping chamber is pumped by a NRC 10” unbaffled diffusion pump (4,200
1/s). The pressure is typically 1-3x10-6 Torr. The beam travels in this chamber
for only about 20 cm. The opening into the second differential pumping
chamber is the first collimation slit (20 pm x 3 mm).

The second chamber is pumped by a 4” diffusion pump (800 1/s) hung from a
water cooled elbow. The pressure is typically 5-9x10-7 Torr, and the beam is in

Chapter 1 22



this chamber for 50 cm. The aperture into the main chamber is ~1 cm and can
be sealed with a homemade Plexiglas gate valve.

The main chamber is ~150 cm long and contains the second collimation slit
and all of the rest of the interferometer except the detector. The vacuum
system for this chamber is discussed in the next section, and gives typical
pressures of 1-3x10"7 Torr. The aperture into the detector chamber is ~1 cm
and can also be sealed with a homemade Plexiglas gate valve.

The detector chamber is pumped with a Varian V80 turbo pump and also has
a liquid nitrogen pumping surface. The combination gives pressures of 2-
5x10-8 Torr. The turbo pump is hung by its own weight on a 6” conflat
vacuum bellows to reduce vibrations transferred to the machine.

main chamber

The main chamber vacuum system has been improved in three ways: new
pumping fluid in the diffusion pump, a pneumatic gate valve over the
pump, and a new pumping strategy designed to minimize back streaming
into the chamber.

Previously, the canonical pumpdown strategy was as follows: rough out the
chamber with the roughing pump through the diffusion pump until a
pressure of about 50 milliTorr (long rough times up to a day were thought to
be acceptable), turn on the diffusion pump and let it start up, then pump the
chamber down to high vacuum. There are several things wrong with this
prescription. The first is that at pressures below ~150 milliTorr, roughing
pumps start to back stream significant amounts of rough pump oil. The
second is that when starting up, a diffusion pump back streams a lot of
diffusion pump oil. These facts, coupled with the fact that we had destroyed
several sets of gratings by slowly clogging them with oil, necessitated a
change.

An obvious solution to oil clogging the gratings is to use a turbo pump on the
main chamber. We have not done this because we would need to use a very
low vibration pump and isolate the vibrations from the machine. We have
not done this because it would be expensive, and the new operating
procedures allow better than one half of a year of operating time on a single
set of gratings.
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The first change was to move from DC704 diffusion pump oil to DC705,
which has much lower base vapor pressure and back streaming rates. It is
also one of the few oils that exhibits no “creep” along surfaces. The next was
to install a pneumatic gate valve over the pumping stack (NRC 4" belly pump
+ chevron water baffle). The gate valve is powered by a dedicated nitrogen
cylinder and has its own interlock controller. This controller is a latchable
relay that must have line power, and a "true" signal from the diffusion pump
interlock (temp + rough pressure + water flow). The gate valve will shut on a
power failure, and will not reopen until a reset button is pushed on the front
panel. This protects us from the all too frequent power failures at MIT.

The final change was a change in pump down procedure. The chamber is
roughed out with a second mechanical pump with the gate valve closed, and
the diffusion pump on. At a pressure of 200 milliTorr, the secondary
roughing line is closed, and the gate valve is opened. This minimizes total
back streaming into the chamber [OHAS88], and has significantly extended the
lifetime of a set of gratings in the main chamber. A recent set of gratings went
from an open fraction of 45% to 23% over the course of 9 months of regular
use.

Detector

There have been several improvements to the detector. These changes have
been more in implementation than in concept. The hot wire alloy, bakeout
regime, and oxygenation procedure have been changed. We have added a set
of knife edges to limit the vertical height and alter the vertical location of the
beam at the detector. Finally, we are using a more robust mounting system
for a different model channeltron that requires lower voltages.

We are using a 50 micron diameter pure rhenium wire to ionize the sodium
atoms. This has a higher melting point (3180 Celsius) than previous alloys
such as Ir and Pt/Ir. This allows us to bake out the wire much hotter by
heating it with a large current running through it, reducing the background
and noise spikes.

The mounting system for the channeltron has been altered to accept a
Galalieo model 4860 channeltron. This model comes well mounted on a
plate and requires a lower voltage of 2.4 kV. The charge amplifier/pulse
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height discriminator/line driver electronics (Amptek model A101) has been
moved outside of the detector chamber in an effort to clean up the vacuum.

I will now describe the current theory on how the bakeout process works.
The wire comes with a large number of impurities not only on the surface,
but also in the bulk. The bakeout quickly removes the surface impurities.
The bulk impurities diffuse out of the wire over a longer time scale of days.
By baking out at a higher temperature, the bulk impurities near the surface
are heavily depleted. The temperature is then stepped down to the final
operating temperature in several stages.

The oxide layer on the wire appears to be unstable for a bakeout current above
250 mA in our 50 um wire. This is a problem because the oxide has a larger
work function than the bare metal and leads to more efficient ionization of
the sodium atoms. We replenish the oxide layer by leaking pure oxygen
(Matheson grade, 99.997%) to a detector chamber pressure of 1-2x10-> Torr,
with the wire at 200 mA for 1 minute.

After a bakeout and replenishing the oxide layer, we have seen wires with
less than 1 ms time responses and background count rates of only 10 cps. I
must admit that much of the wire preparation is based on “feel” and black
magic. A great method for producing good wires may not work next year, and
“the last word” in detector wire alloys has been spoken many times.

1.3 The diffraction gratings

The basic grating construction method has not changed from when it was
developed by David Keith [KEI91]. I went to the National Nanofabrication
Facility at Cornell University in October of 1991 to build more gratings. These
gratings were used in all of the work described in this thesis. The goals of the
construction run were to produce finer period gratings and to optimize the
process for greatest grating coherence. The grating coherence is the regularity
the structure; it must have the same period and have parallel bars over the
entire grating. A paper that appeared in Applied Physics B concerning grating
construction and atom optics with nanofabricated structures follows.
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Atom Optics Using Microfabricated Structures
Christopher R. Ekstrom, David W. Keith, and David E. Pritchard

Department of Physics, and
Research Laboratory of Electronics, MIT
Cambridge, MA 02139

We present a novel method for fabricating precisely
positioned small openings in thin silicon nitride
membranes. Several optical elements for atoms have been
constructed, including amplitude diffraction gratings and
zone plates, and the results of experiments using these
devices are presented. A method for creating a blazed
diffraction grating is discussed.

Atom optics[1, 2] refers to two things: a new point of view in which atoms in
atomic beams are thought of and manipulated like photons in light beams,
and a growing collection of techniques and devices for performing this
manipulation. While some demonstrations of atom optics are over 20 years
old - including diffraction of atoms from crystal surfaces[3], single slit
diffraction[4], and hexapole focusing lenses[5, 6] - advances in laser and
nanofabrication technology have lead to numerous recent demonstrations of
various types of diffraction gratings[7, 8, 9] and zone plates[10, 11]. Other
recent developments include the demonstration of atom mirrors using light
and specially prepared surfaces[12, 13]. Recent theoretical developments
suggest that momentum transfer by light offers several new possibilities for
the construction of coherent beam splitters for atoms[14]. It now appears that
the field of atom optics is developed well enough to allow the construction of
devices containing several elements working together[15, 16].

This paper concerns optical elements for atoms made from thin membranes
with precisely positioned openings for the atoms to pass through. These are
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essentially amplitude transmission devices - the optical analog of holes cut in
black paper. The short wavelength of atomic deBroglie waves demand sub-
micron size holes, requiring the use of nanofabrication techniques. Although
we have used both gold and silicon nitride nanofabricated devices, here we
describe only techniques for the construction of the latter. Construction of the
gold gratings has been described elsewhere by its originators[17, 18, 19, 20].

The first section of this paper describes details of the new fabrication process.
The subsequent three sections discuss, in turn, the construction and
performance of our atom diffraction gratings, a technique to employ electric
fields to produce “blazed” diffraction gratings, and results from an imaging
experiment using a zone plate. We conclude by offering several speculative
comments about the future of atom optics using microfabricated structures.

1. FABRICATION

We have developed a fabrication technique to make thin (100-200 nm) silicon
nitride membranes with precisely patterned holes of arbitrary shape. The
membrane is stretched flat against the surface of a conventional 0.25 mm
thick silicon wafer which has windows cut in it behind the patterned portions
of the membrane. The pattern of holes is determined by an electron beam
writer, and the overall process has been used to make patterns with
minimum dimensions as small as 50 nm and overall pattern sizes up to 3 x
0.2 mm. An important feature of our fabrication process is that there are few
limits to the pattern that may be written on the window except those imposed
by the requirement that the membrane be self-supporting. The technique has
been used to construct gratings with periods from 400 to 100 nm, as well as
single slits, double slits, and cylindrical zone plates. All of the construction
using this method was performed at the National Nanofabrication Facility at
Cornell University.

Low stress silicon nitride membranes were chosen over gold and doped
silicon as a structural material for several reasons. Gold has little structural
strength, which is important for the construction of large scale, uniform
structures. Fabrication of doped silicon films[21] requires a poisonous and
corrosive silicon etch (ethylene diamine: pyrocatechol) and silicon epitaxial
growth facilities. High stress films can distort or break when they are
perforated. The tensile stress of silicon nitride films can be reduced
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continuously from 1.2 GPa to less than 100 MPa by varying the growth
parameters (the ratio of dichlorosilane to ammonia) of the low-pressure
chemical vapor deposition (LPCVD) system[22] with some decrease in tensile
strength; we used a stress of ~120 MPa, which virtually eliminated problems
of ruptures during fabrication.

The fabrication begins (Fig. 1) with the deposition of low stress silicon nitride
on both sides of a double polished <100> silicon wafer. The silicon nitride is
deposited by low pressure chemical vapor deposition (LPCVD). A layer of
standard optical photoresist is applied to what will be the back of the chip, and
the pattern of windows is exposed on the wafer. After development, the
nitride on the back is removed from the exposed areas of the wafer with a
reactive ion etch (RIE) of CFy.

The wafer is then immersed in hot KOH which etches each window entirely
through the silicon wafer, leaving a suspended nitride “window pane” on the
front of the wafer. This etch removes material with strong preference along
certain crystal planes of the silicon, so the dimensions of the window on the
front side of the wafer can be accurately controlled, provided the window
pattern is aligned to the crystal planes of the substrate.

A 120 to 210 nm layer of Plexiglas (PMMA) is then applied to the front side of
the wafer. To prevent distortions due to charging of the PMMA, a thin layer
of gold is also evaporated onto the wafer. The e-beam writer (a JEOL JBX5DII)
then writes the desired pattern into the PMMA. The areas in the PMMA that
have been exposed by the e-beam writer have their molecular structure
damaged, so they can then be washed away with a mixture of methyl isobutyl
ketone (MIBK) and isopropanol (IPA). This leaves a pattern of PMMA that
has not been exposed to the e-beam on the nitride window. Up to this point
in the processing, all of the steps are standard, well known microfabrication
techniques.

The new feature of our method is a direct process for transferring the PMMA
pattern onto the nitride window. We have developed a reactive ion etch
recipe[23] that etches nitride faster than PMMA, so we can use the PMMA as a
mask when etching through the nitride window. Using reactive ion etching
techniques is essential since wet chemical processes etch non-directionally
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and can also damage the structures due to forces from surface tension. The
residual PMMA is then removed in an oxygen reactive ion etch.

The principal advantage of this procedure is that the pattern transfer to the
membrane is performed in one step. This increases reliability, shortens
processing time, and yields higher resolution. Other pattern transfer
techniques, such as lift-off, which require a transfer of the pattern using a
metal coating as an intermediary, are more complicated, and provide a less
direct transfer of the pattern.

There are several difficulties when writing large area gratings with electron
beam writing. When writing larger area gratings, it is hard to keep the grating
bars parallel and the period constant over the entire area. The e-beam writer
writes large area patterns by writing small fields (~80 um square) and then
moving the sample and “stitching” them together into a large pattern. The
translation stage that holds the sample is positioned by a laser interferometer
to an accuracy of ~2 nm.

In the writing process, several sources of stitching errors occur, which can be
divided in two types: those that are independent and those that are dependent
upon the time between when the adjacent fields were written. There are
several sources of time independent stitching errors. If, for example, the
sample is not mounted in the plane of motion of the translation stage, the e-
beam pattern is projected onto a different plane than intended. This causes
the edges of adjacent fields to be systematically misaligned and introduces
periodic “noise” into the actual large scale pattern. Another source of time
independent errors is due to the software correction of imperfections in the e-
beam writer’s electron optics. The system corrects for improper scaling,
rotational misalignment, and distortions within the writing field; mis-
corrections, as with sample tilt, produce periodic errors.

Field stitching errors which depend on time turn out to be much more of a
problem, and appear to be due to thermal drifts during the writing process.
Temperature variations can alter the distance between the reference mirrors
of the position monitoring interferometer and the sample, or can distort the
e-beam writer housing, moving the lenses and steering the beam. These
changes will lead to errors in the final position of the e-beam relative to the
sample, and will generally increase with writing time.
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We have studied these two classes of errors by writing patterns of verniers
across field boundaries with and without time delays. The errors which are
independent of writing time are on the scale of 20 nm if care is taken in
aligning the sample in the sample holder, as this reduces the amount of
software correction for scaling and rotation. The thermal drifts can, however,
give errors as large as 80 nm over 10 minutes, a typical time to write a large
grating pattern. Reducing these time dependent errors then becomes a
problem of minimizing the time it takes to write a grating.

To reduce the writing time, one can use higher e-beam currents or stronger e-
beam resist/developer combinations, as the latter requires a lower amount of
e-beam exposure for the resist to be reliably removed. Unfortunately, both
approaches result in lower resolution; higher beam currents give larger spot
sizes, and stronger developers don’t resolve fine structures as well. Best
results were obtained with 2 nA of beam current, and a 1:1 mixture of
MIBK:IPA as the developer, which reduced writing times for 140 nm period
gratings to approximately 2 minutes for a 1.5 x 0.05 mm size grating.

2. DIFFRACTION GRATINGS

One of the most interesting and versatile atom optics devices is the diffraction
grating, which can serve as an atomic beam splitter or recombiner. An
elegant way to realize a phase grating for atoms is by the use of a standing
wave of near-resonant laser light[7]. Amplitude transmission gratings,
however, have the advantages of simplicity and the ability to diffract atomic
and molecular species which do not have strong laser-accessible transitions.
Both types of gratings may also be used to construct a three grating
interferometer[16, 24].

One of the problems faced in the construction of any device using one or
more diffraction gratings is the total fraction of the incident beam intensity
that is transmitted. This would be maximized if the gratings could be made
free standing over the entire usable beam height of several millimeters but,
unfortunately, a transverse support structure has to be added to stabilize the
grating bars. This support structure absorbs a significant amount of beam
intensity because it covers 20% to 50% of the area of our gratings. We have
found that, for a given support structure coverage, the unsupported span
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length of the fine grating bars should be kept as small as possible, with several
microns of unsupported length being acceptable for a 50 nm wide grating bar.

The width of the slots between the grating bars as a fraction of grating period
(i.e. the “open fraction”) is another important characteristic of the grating. It
is possible to obtain high resolution pictures of fabricated gratings with a
scanning electron microscope, but we have found that these pictures do not
always correspond to how the gratings "look" to the atomic beam; we have
occasionally found gold gratings which looked good in the electron
microscope but were “opaque” to atoms (these gold gratings were not metal
coated before inspection, so the SEM may not have seen material in the slots).
The best diagnostic that we have to investigate the open fraction seen by the
atoms is the atomic diffraction pattern itself. Figure 2 shows diffraction
patterns produced by 200 nm period gratings built with different methods and
having different open fractions. The diffracted sodium beam has a deBroglie
wavelength of 16 pm. The open fraction of the diffraction gratings seen by the
atoms determines the relative heights of the diffracted orders, as the
modulation of the intensity in each order is given by the single slit pattern
formed by each slot between grating bars.

The fits shown in figure 2 convolve the theoretical diffraction pattern and an
instrumental profile that is determined by a gaussian fit to the zero order
diffraction peak. The relative heights of the various diffracted orders are thus
determined by one variable, the open fraction of the grating. Although
adjustment of the open fraction value gives a clear best fit with only ~1%
uncertainty in the value, it is not possible to fit the diffraction data to within
experimental error. Additional averaging in the fit due to the 12% velocity
width of our atomic beam does not significantly reduce the strong
disagreement in the heights of orders that we predict to be strongly
suppressed using the best fit to the open fraction. The most likely source of
this disagreement is due to small variations in the size and placement of the
actual openings in the grating; this noise causes the opening to vary from the
average size (which would produce essentially zero amplitude in the strongly
suppressed order). We feel that the open fraction that we get from the fitting
pfocess represents a good “mean open fraction” value for the grating.

3. BLAZED GRATINGS
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In addition to varying the open fraction of the grating, the intensity in the
various diffracted orders could be selectively increased by using blazed
gratings. In classical optics, the intensity of the various diffracted orders
produced by a blazed diffraction grating is tailored by systematically varying
the plate thickness so that the phase of the transmitted wave varies across
each grating element. Analogously, to make a blazed grating for atoms, we
need to vary the phase of the atomic wave function over the opening
between grating bars.

We propose to create this phase shift by applying electric fields that vary in
magnitude over the width of the slots in the diffraction grating. These
electric fields could be created by metallizing the front and back of the grating
and then applying a voltage between the metal electrodes (Fig. 3). The electric
field in the slots causes energy shifts in the atoms (the DC Stark Shift). The
potential (U) is much smaller than the incident energy (E) of the atoms (U/E
= 103 - 10-4), so an eikonal approximation[25] can be used to calculate the
phase shift given to an atom traveling through the slot in the z direction a
distance x from the center. In this approximation

1
¢(x)=;[kdz—;[kodz =-£‘Z;[U (x,z)dz

7

where vg is the incident atomic velocity, and kg is the k vector of the atoms
when U=0. Focusing or defocusing of the atoms (i.e. blazing of the grating)
results because ¢ depends on x.

We have calculated the effects of such a blazing potential for a 200 nm thick
grating on a sodium beam with a deBroglie wavelength of 16 pm. The phase
shift across the slot ¢ (x) fits a parabola to within 4%, except for ~1/12 of the
slot width closest to either slot edge (near the electrodes). The use of a
parabolic functional form in our calculations was motivated by the desire for
a simple form that would fit the data and allow an analytic solution of the
single slit integral. We calculated the single slit diffraction pattern
analytically for one such slot, allowing for the spatially varying phase shift
(the fitted parabola), as a function of the applied voltage. This modified single
slit pattern then is used a form factor to determine the intensities in the
various diffracted orders. The results of our calculations appear in figure 4,
where we show the intensities in various diffracted orders as a function of
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applied voltage. Because the phase shift is symmetric about the center of the
slot, the positive and negative diffracted orders have the same intensities.

An advantage of blazing is that it allows the use of wider slots for a given
grating period, because the intensity in the diffraction pattern can be tuned
with the applied voltage as intensity normally sent to the zero order is
diffracted into higher orders. This results in more total transmitted intensity
due to the lower overall opacity of the grating, as well as the larger intensities
in the higher orders. This can be seen in figure 4, where the first order
diffraction of the 80% open grating at a blazing voltage of 2.8 volts is
approximately 1.6 times that of an unaltered 50% open grating. Intensities in
higher orders can be increased even more dramatically. For example, the
second order diffraction of the 80% open grating at 3.3 volts is almost as large
as the first order diffraction in the unaltered 50% grating (which has the
largest first order peak of any unblazed grating).

4. ZONE PLATES

Zone plates for atoms have been constructed[10, 11, 21], demonstrated[10], and
studied[11] by several groups. Both spherical[11, 21] and cylindrical[10] zone
plates have been built. We give here a discussion of our experimental results
first presented elsewhere[10]. The objective of the experiment was to image
an aperture (of one of our collimation slits) onto our detector using a
cylindrical zone plate. The atomic beam was a seeded supersonic nozzle beam
of sodium in an argon carrier gas. The expansion of the carrier gas gave the
beam of sodium a narrow velocity distribution (Av/v = 12%), and a
wavelength of 16 pm. The beam illuminated a 20 pum wide collimation slit
(Fig. 5). A cylindrical zone plate (130 pm wide by 500 um tall) was placed 1.5 m
after the slit, and imaged the slit onto the detector plane, located 0.9 m
downstream. The sodium atoms were detected after they surface ionized on a
moveable 25 um hot wire.

We have performed a complete numerical simulation of the performance of
our zone plate using a procedure which has been described in detail
elsewhere[26, 27]. Briefly, we calculate the sum of amplitudes at the detector
plane generated by a point of the illuminated collimation slit passing through
all the open parts of the zone plate, then sum the intensities for different
locations in the slit and over a distribution of velocities.

33



The result of this simulation appears in figure 6, together with the
experimental results. The curves were adjusted by using only the mean
position and total intensity of the experimental and calculated images. The
experiment was not set up in a way to make it possible to get an accurate
figure for the amount of incident intensity in the image. The experimental
results show a clear central peak, indicative of considerable focusing by the
zone plate. The measured image, however, has more smoothing and greater
width than calculated. There are several factors that could artificially enhance
the observed image width. A narrowing of all open areas by a constant
amount would cause the intensity of the zero order pedestal to fall off
roughly as the inverse of the distance from the center of the image (but would
not appreciably widen the central peak). A narrowing of this type large
enough to account for the almost total suppression of intensity at the edge of
the zero order pedestal is larger than we feel is reasonable to attribute to the
fabrication process. A slight bend or tilt in the detector wire could also
broaden the predicted sharp edges.

One thing that is obvious from the simulation of the cylindrical zone plate
lens is that an unblazed amplitude zone plate is a very inefficient piece of
atom optics, making an image containing only about 11% of the intensity as
the image formed by an ideal lens. Thus, in our experiment, the pattern
expected from a non focusing aperture with the same width as the zone plate
exceeds the peak intensity expected with the zone plate in place (see figure 6).
This intensity loss would seem to rule out the practical use of zone plate
lenses except in a few special applications (e.g. to make an achromatic atom
lens[2] or an atom microscope).

The performance of an amplitude zone plate is determined almost entirely by
the size of the smallest feature s (the size of the slots or bars at its outer edge).
This determines the maximum first order diffraction angle for a deBroglie
wavelength Ad4g, of Om = Ad4B/2s, and directly determines the f-number, f =
1/20m = s/AgB. The focal spot size is Agpf = s, so it is not improved (unlike the
f number) by using a slow atomic beam (we have assumed s << A4B). The
maximum transverse momentum transfer of.the lens is p; = h/2s,
corresponding to a maximum transverse temperature that can be focused[28]
of p12/2m (~42 pK for sodium atoms, assuming s = 50 nm).

FUTURE DIRECTIONS
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There are several promising areas to explore with fabricated amplitude
structures for atom optics. These include better diffraction gratings with
smaller periods and larger areas, blazed diffraction gratings, and more general
atom holograms.

We have recently completed an attempt to construct fine period, large area
diffraction gratings for our atom interferometer experiments. We have
constructed grating periods as small as 100 nm that have ~35 nm free standing
bars. To write smaller periods at more reasonable grating open fractions will
require less e-beam current to get a smaller spot size. Since this will increase
the writing time, thermal drifts in the e-beam writer will become a severe
problem. Perhaps moving to a field emission version of the e-beam writer or
a return to optical holographically written gratings using UV light[17, 18, 19,
20, 29] will be necessary to make uniform large area gratings with fine periods.

As the far field diffraction patterns produced by gratings, single slits, and
double slits are simply the Fourier transform of the pattern itself, there is no
reason not to tailor the e-beam written pattern to make more complicated
images in the far field (or indeed in the intermediate field). With the
addition of lenses and slow, bright atomic beams, one has all of the tools to do
holographic atom printing onto a substrate[30]. This would be analogous to
reduction printing in standard photolithography. With the rapidly growing
collection of atom optics elements, atom beam experiments may soon be used
even in the construction of micro-structures.

We would like to thank Mark Shattenburg and Hank Smith for introducing
us to the opportunities and intricacies of nanofabrication, and to acknowledge
the discussions and help in the lab from the staff at NNF, Mike Rooks and
Bob Soave in particular. We would also like to thank Alex Martin for careful
and valuable readings of this manuscript. This work was supported by ARO
grant DAAL03-89-K-0082, ONR grant N00014-89-J-1207, and JSEP grant
DAAL03-89-C-0001.
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Figure 2. Diffraction of an atomic beam from a free standing 200
nm period diffraction grating. The data in (a) was taken with a
gold grating built at the MIT Submicron Structures Lab. The
theoretical fit is for an open fraction of 39%. The data in (b) was
taken with a silicon nitride grating constructed at the National
Nanofabrication Facility at Cornell University. The fit is for an
open fraction of 33%.
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Figure 4. Predicted intensity in various orders of our sodium
beam diffracting through a 200 nm thick blazed grating with an
open fraction of 80%. The horizontal axis represents the voltage
applied between the front and the back of the grating. The two
horizontal dotted lines represent the intensities of the zero and
first order maxima (labeled by 0 and 1 respectively) of an
unaltered 50% open grating.
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Figure 6. Experimental data (points) showing the image formed
by a zone plate lens (the line joining the points is solely to guide
the eye). Curve a is the theoriticaly predicted pattern formed by
the lens (assuming a 1/2 density support structure), and b is the
pattern predicted if the zone plate is replaced by a slit of identical
size. The curves were adjusted by using only the mean position
and total intensity of the experimental and calculated images.
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1.4 The interaction region

Besides getting the interferometer running with 200 nm period gratings, the
most significant step in realizing the physics in this thesis was getting a
barrier between the beams of the interferometer.

The interaction region consists of a stretched foil that is held between two side
plates. The foil is spaced from the side plates with insulating spacers. The 2
mm thick spacers are made from alumina and have been ground to be very
flat. Just how flat they are is covered in section 4.6.

The foil must be very flat to fit between the beams in the interferometer. The
materials that have been successfully used are 10 micron thick copper foil and
12 micron thick metalized mylar. The foil is cut with a sharp scalpel into a
“butterfly” shape as shown in Figure 1.5. This shape was chosen to pull
wrinkles in the foil out to the area that will not be used in the final
interaction region. The foil is then clamped and carefully stretched to flatten
it. The foil is clamped between the spacers, side plates, and clamping pieces in
an assembly jig. The clamping pieces are tightened together, and the resulting
assembly can then be removed from the jig and mounted in the machine.
An exploded view of the interaction region is shown in Figure 1.6. One key
to preserving the flatness of the foil while the assembly is clamped is to round

t t ¢
IR

Figure 1.5: The foil is stretched from both sides to
remove wrinkles. The area inside the dotted lines
is used in the final interaction region.
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Figure 1.6: Exploded view of the interaction region.
The foil is black. The insulating alumina spacers are
shown in white, and the aluminum side plates are gray.
The split atomic beams of the interferometer enter from
the front of the page and pass on either side of the foil.

over the edge of the spacer that touches the foil on the inside of the assembly.

The interaction region is mounted on a complicated stack of manipulators
which is located immediately after the second grating. All of the
manipulators for both the interaction region and the second grating hang
from of the same vacuum flange. The manipulators provide transverse
translation to move the foil into or out of the beam line with .25 micron
accuracy. The rotation about the beam axis is necessary to align the foil to the
beam over its height. Rotation about the vertical axis (y axis) allows the plane
of the foil to be aligned parallel with the atomic beam. All of these motions
are controllable from outside the vacuum envelope.

1.5 The position servo

Up to this point, no mention has been made of how the relative transverse
positions of the gratings are measured. They are monitored and controlled
with a laser interferometer servo system. The laser interferometer built
around four phase diffraction gratings, and has the same topology as the atom
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interferometer.  Figure 1.7 shows the laser interferometer, atom
interferometer, and the position servo system.

The same laser interferometer position servo and position monitor is being
used as was described in David Keith’s thesis [KEI91]. Because they have the
same topology, the laser interferometer changes phase in the same manner as
the atom interferometer. The phase of the interference pattern of either
interferometer is

2r
(p=-—p—(x1 —ZJCZ +X3),

where p is the grating period of the interferometer in question, and x; is the
position of the ith grating. The optical gratings have a period of 333.3
lines/mm. The signal from the optical interferometer is filtered through a
feedback network and sent to a piezeo-electric transducer (PZT) that alters the
position of the second grating. This allow us to lock the optical
interferometer signal to the side of a fringe, fixing the relative position of the
three grating platforms. By altering the reference voltage in the feedback
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Figure 1.7: The atom interferometer with laser interferometer
position servo and monitor shown. Not to scale.

network, we can alter the relative displacement of the three gratings. The
value of the error signal in the lock loop tells us the relative position of the

three platforms. By scanning across several atom interferometer fringes, and
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then correlating the transmitted intensity with relative grating position, we
see the fringe pattern shown in Figure 1.3.

We now operate the lock loop with slightly different parameters, and with
slightly different goals. The change in operating procedure is made possible
by having an atom detection system that is an order of magnitude faster than
before.

The lock loop is now used almost exclusively as a position monitor. This is
because we have a detector that will successfully "track” position changes that
happen on a millisecond time scale. This means that what we care about is
the amount of residual noise above several hundred Hertz. Below several
hundred Hertz, we just record what the relative position of the three gratings
was in a short time bin (almost always 2 msec) and how many atoms went
through the interferometer when it was in that configuration.

Fast noise is a problem. The detector will not be able to track the noise, and
we will lose contrast. The solution was to lower the closed loop gain on the
lock loop. When the gain is increased in the lock loop, the rms width of the
residual motion decreases until oscillations occur. This decreased rms
vibration, however, has more power at high frequencies than the original
vibration spectrum. This is just what we can not tolerate. What we do is to
lock much less tightly, and keep most of the noise power at lower frequencies.
At very low frequencies, the noise is almost totally suppressed due to the very
high DC loop gain in the system. This leaves us with most of the noise in a
“"trackable" frequency band, and also gives us the necessary DC (phase)
stability.
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2 Experimental procedures and data collection

This chapter will cover the basic steps and considerations involved in
aligning the machine, taking the data, and analyzing it. It will also cover
analysis of the diffraction pattern from a single diffraction grating.

2.1 Transverse alignment of the beam machine

The gross transverse alignment of the machine is performed with the aid of a
surveying telescope. The telescope is positioned to look down the beam line
and a light is positioned behind a window in the end of the detector chamber.
The beam line is determined roughly by the location of several bulkheads,
vertical height limiters, the detector box, the interaction region, the Stern-
Gerlach magnet, and any other things that are in there for whatever
particular experiment is set up. To learn this procedure, there is no substitute
for aligning the machine several times with someone who knows what to
look for.

The gratings are located in windows that are 1.5 mm high, and 50 to 200
microns wide. They must all be aligned vertically with each other by moving
them in their mounts and checking the result by looking through the
telescope. Unfortunately, the entire flange with grating positioners must be
removed to do this, making it difficult and time consuming. Rough
transverse alignment is performed by looking down the beam line and
moving the translator motors from the computer. The transverse
alignments of the collimation slits, interaction region, and detector are
performed in the same way.

There are many movements that can be controlled by the computer. These
motions are actuated by DC motors and quadrature position sensors. I will
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describe the movable elements in order down the beam line. The second
collimation slit can be translated across the beam (x axis), and rotated around
the beam axis (z axis). Immediately after the second collimation slit, there is a
vertical height limiter that can be opened symmetrically about the beam axis.
The first diffraction grating can be moved across the beam and rotated around
the beam line as well. The second grating can be moved across the beam line,
and in addition there is a fine control of this motion actuated by a piezo-
electric transducer. The interaction region can be moved across the beam
line, rotated about the beam line, and rotated about the vertical axis out of the
interferometer plane (y axis). The third grating can be moved across the beam
and rotated around the beam. A second beam height limiter is located just
before the detector, and it can be opened and translated vertically (y axis). The
detector can be moved across the beam line.

The first collimation slit can be moved across the beam line by hand from
outside the vacuum envelope.

There are several other adjustments that must be made by hand with the
main chamber vented. All of the grating holders can be translated vertically
and the second grating can be rotated about the beam axis. The first vertical
height limiter can be positioned vertically on the beam line. In practice, once
the limiter is in place, it is used as one vertical height reference for
determining the beam line.

The rough rotational and tilt alignment of the interaction region are also
done optically with the telescope. The interaction region is manipulated
until the septum appears as a fine vertical line.

Fine alignment of the various parts of the interferometer are performed
using the transmitted sodium beam as a diagnostic.

2.2 Rotational alignment of the diffraction gratings

The three gratings must all be aligned with respect to each other around the
beam line (z axis). The fine diffraction grating bars must be rotated until they
are parallel to each other and aligned vertically (y axis). This problem was not
analyzed in enough generality in David Keith’s thesis [KEI91]. That analysis
did not take into account possible paths through the interferometer that
changed height. To analyze the problem of how the contrast in the
interferometer is degraded with rotations I choose a coordinate system with
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the z axis in the beam direction, the x axis is across the plane of the
interferometer, and the y axis runs up the grating bars. While this derivation
logically belongs in chapter 3, I have included it here to make clear the
problems of rotationally aligning the interferometer.
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Figure 2.1: Geometry for the calculation of interferometer
contrast as a function of grating rotation.

For the following derivation, the height of the source is kg and the height of
the detector at the third grating plane is k3. Coordinates will be labeled by
subscripts that denote the grating that they are measured at with the index 0
indicating the source plane. The source is a distance d from the first grating,
and there is a distance | between gratings. The rotations of the gratings are
given by 6;. The geometry of the problem is illustrated in Figure 2.1

The calculation starts with the basic formula for the phase shift from
translation of the gratings.
2r
o="=(x,—2x,+x,)
p
A point y on a grating appears to have been shifted over by (for small angles)

x; =06y, .

If we consider a ray through the interferometer that originates at a height y(
at the source, and ends at a height y3 on the third grating, it has an angle &
down or up through the interferometer given by

_Y3— Yo
§ d+21’

which fixes the height that the ray intersects the first and second gratings to be
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With all of these ingredients, we can find out the phase shift of the
interference pattern for each ray through the height of the interferometer in
terms of the angles of the gratings, the source point location, and the third
grating (detector) point location. The result is:

(p(01792$ 03’y0ay3) = A(9|102)y0 + B(eli 02,03))’3,

where
27mh
A= —;—(9] - 62)
=22 (o(6,~26, +6,)+b(6, - 6,))
p .

I have defined two dimensionless geometric factors a and b as follows:

_d
T d+21
2

T d+2l,

It is clear that there are only two independent angular variables in the
problem. The natural ones for us to use are o;=6,-6, and o;=6;-6,,
because we can rotate the first and third gratings while the interferometer is
running.

The interference pattern for a given ray looks like

cos(kx — 9(6,,6,,6,,%,,,))

To find the total reduction in contrast, this interference pattern must be
averaged over all source and detector point heights. The result of these
averages gives a relative contrast of

Sin( A(6;,6,)h, ) sm[ B( e,,92, 03)h ]

0(91’92’93;”0”’3)=l 0T, Il LGRIRAL ‘
2 2

A typical plot of relative contrast plotted against 0.1 and o3 is shown in Figure
2.2
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Figure 2.2: Relative contrast as a function of the two angular
variables o;=6,-6, and a3;=0;-6, The angles are in
milliradians. The source height and detector height were both
500 microns.

We line up the gratings in two stages, a preliminary alignment outside the
vacuum envelope, and a final rotational search using the interferometer
contrast as a diagnostic.

The initial alignment is performed with the grating flanges flipped over and
the grating mounts protruding into the air. A He-Ne laser is diffracted from
the grating support structure and all diffracted orders are aligned in a
common plane. The plane is defined by two plumb bobs. There is a wire that
runs between the tops of the two plumb bobs that defines the top of the plane.
The basic idea is unchanged from David Keith's thesis [KEI91], but by using a
single wire to define the plane, we feel that the gratings can be aligned to
within +/- 1/2 milliradians. By rotating the entire flange around the beam
axis, any tilt in the flange seats cancels out. This is important because the
seats are tilted with respect to each other by many milliradians.
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Figure 2.3: Contrast of the interference pattern as a function of

first grating rotation. The fit is to a gaussian and is to guide the
eye.

The final alignment involves rotating the first and third gratings to
maximize the contrast in the interferometer. It is sometimes necessary to
search blindly to find interference the first time. It can be seen from Figure 2.2
that a grid search would be optimal in finding the maximum of the contrast
pattern. In practice, we tend to do one dimensional searches of the first and
third gratings. If we had to make a large correction to any one grating, we will
do another search of the other to get closer to the maximum contrast
available. Figures 2.3 and 2.4 show the dependence of contrast in the
interferometer on the rotational alignment of the first and third gratings for
typical operating parameters. For the data in these figures, the beam was
limited to 500 microns high.
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Figure 2.4: Contrast of the interference pattern as a function of
third grating rotation. The fit is to a sinc function as predicted by
the calculations from this section.

2.3 Data acquisition and analysis
Data collection on the IBM AT

Most of the data in this thesis was acquired with an IBM AT computer and a
multifunction data acquisition card. This computer controls motor
movement inside the vacuum envelope using a home built motor control
box that can address up to 16 DC servo motors with quadrature position
encoders. These motors are used to perform a variety of translations and
rotations of gratings, slits, height limiters, and the interaction region.

The computer records the 5 volt pulses from the detected atoms on an
accumulator. These counts can be recorded for a given length of time and
correlated with the position of any motor to produce a scan of counts versus
position. This feature is used in gross alignment of the interferometer, and to
produce detector scans of the diffraction pattern from the first grating.
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The computer also monitors the signal from the photodiode of the laser
interferometer in the position servo system. Time histories of the number of
counts and the photodiode signal are the standard way that interference data
are taken.

All of the instrument control is accomplished with the aid of a data
acquisition program (“tupeleck” for historical reasons) written by David Keith
and myself. This has recently been replaced, as learning how to maintain it
was quite a chore, and the last author is now leaving.

Data reduction and analysis

Data reduction is performed on a Macintosh Quadra 700 using a set of data
analysis macros written for the data analysis and plotting package Igor. This is
a great computer program that I would heartily recommend to anyone. The
structure of the macros is described shortly.

The basic algorithm of binning the counts vs. position data is covered in
David Keith's thesis [KEI91] but will be described briefly here. The basic idea is
to correlate relative grating positions, as measured with the laser
interferometer, with count rate to provide an average count rate versus
relative grating position. This pattern is fit to a sine function, and the mean
count rate, fringe amplitude, and phase are extracted.

One change in the analysis procedure a different way of removing noise
spikes from the count data. With our new detector, problems from noise
bursts from the detector have been greatly reduced. We now set a chopping
threshold and invalidate any data with a count rate above that level. This has
proven quite adequate, resulting in binned data that fits a sine function with
typical reduced chi-squared values of 1.0(2).

Another modification has been increased automation of the data reduction.
This has become necessary because of the large amount of raw data
represented by the experiments described in this thesis. A set of interference
scans is typically put in its own directory. The calibration data that is necessary
for converting the position monitor’s signal to relative displacement units is
also included. The parameters from the calibration are extracted, and then
the program will load, convert, correlate into bins, and fit each interference
pattern. The results are loaded into a table of data for further manipulation.
We typically do not look at the raw data after this point unless the reduced

Chapter 2 54




chi-squared for that data set is ridiculous. This begs the question of why we
transfer all that raw data, and future data acquisition schemes will perform
most of the initial data reduction on line.

Further reduction such as fitting the phase or amplitude of the interference
patterns against some parameter is performed in Igor. The analysis that is
specific to a given experiment will be discussed in its own section.

The next generation: Macintosh data acquisition

The next generation data acquisition is being performed with a Macintosh
Quadra 950. The computer uses the data acquisition system LabVIEW by
National Instruments. The data for the Talbot effect, molecular diffraction,
and some of the scattering data were acquired with this system. This system
allows the user to quickly acquire and analyze interference scans. The short
feedback time on the contrast and phase of the interference pattern allows
quick rotational alignment searches, interaction region positioning, and on-
line diagnostics of how you experiment is working.

2.4 Velocity measurements

We measure the mean velocity of the beam and the width of the velocity
distribution by examining the diffraction pattern of atoms from the first
grating. The angular separation of the diffracted orders is

045 = A =—h_'
p mpv

The diffracted orders will also broaden because of the finite width of the
velocity distribution coupled with the fact that the diffraction angle depends
on the inverse of the velocity. By fitting the diffraction pattern, we can extract
the mean velocity of the distribution and its width. The geometry is shown
in Figure 2.5.

sodium
beam

diffraction grating

Figure 2.5: Diffraction of the sodium beam by an amplitude
diffraction grating.

detector
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Early attempts at fitting the diffraction were not very successful. We were
lacking a good model function for the diffraction pattern. The problem was
in the way that the open fraction of the diffraction grating was dealt with.
The open fraction of the grating determines the relative intensities in the
various diffracted orders, or the form factors of the grating. When the fit
called for a heavily suppressed order, the data always showed a more intense
diffraction peak. This was because there was no provision for varying open
fractions over the face of the grating to model roughness in the bars.

A more sophisticated fitting function is used now that includes an incoherent
distribution of open fractions over the grating. If we consider a perfect grating
with an open fraction f (slot width to period), the relative amount of power
in the nth diffraction peak (the form factor) is
sin’(nmf)
(nB)’ ’

which is just the diffraction pattern from the slot between two grating bars
evaluated at the angle of the nth grating diffraction order. We now need to
average over a distribution of open fractions. This averaged form factor will
be

1 -(B-Bo)’ - sin? (nﬂ:ﬂ)

I e i

In the above equation, o is the width of the distribution of betas, and B is
the mean open fraction of the grating. This result can be simplified by first
changing integration variables to another that represents the deviation of 8
from B0, which I will call a=(B,-B)/By. This leaves

sin’ (ap(1—a))

(ap(1- a))2

where P(a) is a normalized gaussian with width 0g, and aqq =nnfy. I next

_‘.P(a) da,

expand everything except the distribution function in a power series as a
function of a. Because the distribution function is even, only even powers of
the expansion will give non-zero results when integrated. I will include only
the zero and second orders in 4, so the result will then be correct up to third
order. The expansion is
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sin?(ay(1-a)) _ Sinz(za(’) +0[a]

(a(1-a)” 4

+ l:cos2 (ag)

. )
B 4cos(ag)sin(ag) + 3sin gao) _sin? (a )]a2 + 0[a3]+_“
a0 !
To aid in the readability of this section, the n dependence of g, has been
suppressed. The only remaining integral to perform is that of the normalized
distribution P(z) multiplied by a2. This is a standard gaussian integral,
yielding o,’. The final form factor for the nth diffraction order of a grating

having an open fraction B0 with a distribution of betas having a width %5 is:

sinz(nrcﬂo) 2 4 cos(nmfy)sin(nrfy) 35in2(n7rﬁ0) . 2 2
+ — + —sin“(nnf,) |o
(nnﬁo)z cos“(nmfy) n7Bg (nnﬁ0)2 in“(n7fy) |og

It can be seen by inspection that the additional term will tend to add power to
an order that would ordinarily be heavily suppressed. If an order is heavily
suppressed, sin(nzfy) must be small, and therefore cos’*(n7fy) must be the
dominate term in the square bracket, insuring that the form factor correction
is positive.

The width of the diffracted peaks increases with increasing order number
because of the velocity width. We use a gaussian as the model function for
our beam. The correct function would be a trapezoid convoluted with a

rectangle. The gaussian function is a close description to the experimental
beam profile, and makes calculations much easier, yielding analytic solutions.

The width of the zeroth diffraction order is o,. If the separation of the
diffracted orders at the detector plane is s, then the width of the nth diffracted

order is given by
2
o2 +(nso,)” .

A typical diffraction pattern with a fit is shown in Figure 2.6.
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Figure 2.6: Diffraction of sodium atoms from a 200 nm period
diffraction grating with f=0.50. The solid line is a fit to the
function described in the text, giving 053 =0.73. The dashed line
is a fit with og set to zero, which produces a poor fit at the
heavily suppressed second order. Note the log scale, showing
good visibility of the high diffracted orders.
Velocity widths

By the source by varying the carrier gas pressure we can produce relative
velocity widths in the source that vary from 0.03 to 0.25. By fitting diffraction
patterns from atomic beams produced with different carrier gas pressures, we
can investigate the behavior of the velocity width as a function of carrier gas
pressure. As expected, the velocity width increases with decreasing carrier gas
pressure, with the limit of zero pressure and low sodium pressure being an
effusive source. Figure 2.7 shows the relative velocity width as a function of
source pressure.
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Figure 2.7: Relative velocity width of the atomic beam as a
function of the argon carrier gas pressure. All of the data was
taken with a nozzle diameter of 70 microns.
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3 Theory

This chapter will cover the basic theory of the interferometer. This will
include the addition of a potential in one beam, a prescription for carrying
out an average over some perturbation that causes a phase shift, and an
analysis of the contrast and interference amplitude in the interferometer as a
function of the open fraction of the diffraction gratings. The coherence length
of the beam will be dealt with as a special case of averaging over some
perturbation, in this case, the velocity distribution. The chapter will end with
a short discussion of the various quantum mechanical lengths present in the

interferometer.
3.1 A potential in one arm of the interferometer

With the interaction region isolating the two beams of the interferometer, we
can interact with each beam independently. The simplest case, which is very
close to reality for many of the experiments, is to insert an external potential

8]

| |
| !

1
Figure 3.1: The basic geometry of the interferometer
with a potential U inserted into one of the arms.
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into one of the arms. The basic setup is shown in Figure 3.1, with the

potential acting for a given length in one arm.

To calculate the effect of the potential on the interferometer, we must
calculate the change in the "optical length" of the path when the potential is
introduced. The phase is then shifted by 2n for each wavelength of path
length change. The phase shift is

A@ = [ (k- ky)ds
=IAkds

in the JWKB approximation, where k, is the wave vector without the
potential present, and k is the wave vector with the (possibly spatially
dependent) potential present.

This integral can be greatly simplified by applying an eikonal approximation.
This approximation is valid in the limit that the potential is much smaller
than the energy of the particle, as is true for all of the experiments in this
thesis. The mean particle energy is about .1 eV, and the typical applied
potentials are about eight orders of magnitude smaller. The approximation
follows

Ap = [ Akds
—j( ZHE-U(x)) - \[zhmE]d
\/ Ej[\/l— U —1}1

—kf (x)

= EjU(x)dx

This result tells us that the phase shift is just proportional to the average
value of the potential. It is also proportional to the length divided by the
velocity, or the transit time. This will mean that except for the special case of
potentials that increase linearly with the particle's velocity, such as the
Aharonov-Casher phase shift discussed in chapter 9, there will be dispersion
in the phase shift.
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You can arrive at this result by just adding a phase factor of ¢ Y/ to the wave
functions. This is an incorrect approach because the phase accumulates like
e /" in time dependent quantum mechanics, and E is conserved when the
atom has different potential energies. The phase shift comes solely from the

spatial part of the wave function.
3.2 Averaging over some perturbation

It is often necessary to average over some effect or distribution of interference
patterns that will contribute to the signal from the interferometer. I will
present here the basic method for predicting the phase shift from the average
over a distribution of phase shifts. This will be used for adding in the effects
of a velocity distribution and contrast loss due to phase drifts.

I will assume that the phase shift depends on some parameter 4, and there is a
probability distribution P(a) that describes the distribution of the values of a
over the measurement time. The interference pattern for a given value of a
will look like

C, cos(kx — p(a))

This must be averaged over the distribution P(a) to give the measured
pattern. The pattern is altered as follows.

JP(a)CO cos(kx ~ ¢(a))da = C, J. P(a)(cos(kx) cos(¢(a)) + sin(kx) sin((p(a)))da
= Co[cos(kx)j P(a)cos(¢(a))da + sin(kx)j P(a)sin(¢p(a)) da]
= C(P(a):0(@))COSKx = @ppyuyrea(P(@): 9(a))]

The realized contrast and phase shift depend on the form of the phase shift as
a function of 4, and the form of the distribution of P(a) . These are given by
the following.

[ Pa)sin(g(a))da

[ P(@)cos(p(a))da

0] @, 10ea (P(2): P(a))] =

C(P(a):(a)) = \/ ([ P sin(go(a))a!a)2 +(J P(a)cos(q)(a))da)z

3.3 Optimum open fraction of the gratings

In this section I will present a calculation of how the contrast and the
amplitude of the interference fringes depend on the open fraction of the three
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gratings in the interferometer. The goals will be to find the optimum open
fractions for maximum fringe intensity, contrast, and best phase
determination. The ith grating’s open fraction (the ratio of slot size to bar size)
will be S,.

To calculate the intensity and contrast of the fringe pattern at the plane of the
third grating, we must add up the amplitudes of the various paths to the place
on the third grating where the fringes occur. For this calculation, I will only
consider the paths shown in Figure 3.2. These are the only paths that arrive
at the detector in our interferometer because the other paths are clipped off
due to the width of the grating windows. The amplitudes for each path are
identified in the figure.

The path lengths for A1 and A2 are the same, reflecting the white fringe
nature of the interferometer (section 1.1). This means that there will be
interference terms involving A1A2. The path length for A3 is approximately
10 nanometers longer than the paths for A1 or A2, which is much larger than
the .6 Angstrom coherence length (section 3.4). This means that there will be
no interference terms involving A3

Figure 3.2: The paths that arrive at the detector considering the
width of the grating windows. The amplitudes of the paths are
A1, A, and A3.
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The amplitude in a diffraction order

The amplitude for a beam to make a diffractive “bend” into the nth order
through a grating is sin(nzf;)/nw. 1 will now justify this. The total
transmitted flux through a grating that is illuminated with one unit of flux is
the open fraction. The relative form factor for the grating is the single slit
diffraction pattern for the slot between two grating bars with a slit of width
Bp, where p is the grating period. By summing up the intensities of all of the
diffracted orders, multiplied by a normalization constant N, we can be sure
that the sum should be S,

B= N[l + 22————“;’;([’;)‘? )].

The sum in the above equation can be done in closed form,

i sin’(nB) 1 1

n=1 (n7tﬁ)2 ﬁ 5

By using the above results, we can solve for the constant N.

1 1
=N[14+2| ———
=553
N =p?
This gives us the desired result for the amplitude to go into a given order

with a given open fraction of the grating. The intensity of the nth order is
then

sin(nzB) _ sin’(nxf)
"By oy

This allows us to evaluate the three amplitudes for the beams that arrive at

the detector as

A< sin(7p, ) sin(7B,)
! T T

A2 =ﬁl Sin(ZﬁZ)

A= sin(7f, ) sin(27B, )
3 /4 2r
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Near field detection by the third grating

I will first deal with the amount of contrast and interference amplitude that
survives the near field detection process illustrated in Figure 1.2. The fraction
of the total flux that is transmitted through the third grating, averaged over
grating positions, is f;, the open fraction of the third grating. The amplitude
of the transmitted fringes as a function of grating position and open fraction
is found by multiplying a cosine function with a windowing function that is a
grating with open fraction B;. This gives a relative reduction in the

transmitted fringe intensity of

sin(7p,)/m

’

and a reduction in the contrast (relative to the standing wave atom pattern) of

sin(%,)/ 7B, .

The transmitted fringe intensity is maximized for B;=0.5. While the
contrast is maximized for fB; =0, no atoms get through the third grating.

Interfering amplitude

The amplitude of the interference pattern that is formed at the plane of the
third grating is 2A1A2. A1 is the amplitude for a first order diffraction from
the first grating multiplied by the amplitude for a first order diffraction from
the second grating. A2 is the amplitude for a zero order diffraction from the
first grating multiplied by a first order diffraction from the second grating. A
plot of this function is given in Figure 3.3. The maximum of this function is
realized with $7=0.65 and 2 = 0.5. The maximum interfering amplitude as a
function of the third grating’s open fraction is realized for 83 = 0.5.
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Figure 3.3: Interfering amplitude as a function of the open
fraction of the first and second gratings. The magnitude is
expressed as the fraction of the incident intensity of the atomic
beam onto the interferometer.

Contrast

To find the contrast of the interference pattern we need the constant intensity
at the third grating plane. This constant intensity is A% + A3 +A2. A3 is the
amplitude for a first order diffraction from the first grating multiplied by the
amplitude for a second order diffraction from the second grating. The
interfering amplitude divided by the constant intensity is the contrast. The
contrast as a function of the open fractions of the first two gratings is shown
in Figure 3.4. The maximum contrast is realized with f1=0 and 2 = 0.5. The
maximum contrast as a function of the third grating’s open fraction is
realized for B3 = 0. It is clear that, once again, while this may give the
maximum contrast, no atoms get through the interferometer.
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Figure 3.4: Contrast as a function of the open fraction of the first
and second gratings.

Best phase determination

In almost all cases, what you want to do with an interferometer is to make the
most accurate determination of the phase in a given time. The figure of
merit for this is the square root of the transmitted intensity multiplied by the
contrast. This figure of merit as a function of first and second grating open
fraction is shown in Figure 3.5. The best phase determination is realized with
pB1=0.56 and B2 = 0.5. The best phase determination as a function of the third
grating’s open fraction is realized for 3 = 0.37. This combination of open
fractions gives a fringe amplitude at the detector that is 1.0% of the intensity
incident on the first grating, with 67% contrast.
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Figure 3.5: Best phase determination as a function of the open
fraction of the first and second gratings. Units of the figure of
merit are arbitrary.

3.4 Coherence length

The time evolution of a non-relativistic particle is quite different from that of
a relativistic one, such as a photon. The key difference is that for non-
relativistic particles, the vacuum is dispersive. In other words there is a
definite dependence of propagation velocity on the wavelength of the
particle. This is not very surprising, as it is just another way of saying that all
other things being equal, non-relativistic particles with more energy move
faster. One consequence of this is that a wave packet will spread due to its
different momentum components.

The length of a wave packet does not in general tell us anything about the
coherence length of the particle (or ensemble of particles). The coherence
length is amount of additional path length that can be inserted into one arm
of an interferometer and still have good contrast. As the additional path
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length is increased, the contrast will decrease. For a gaussian wave packet, the
length of the wave packet is equal to the coherence length only at the time
when it is at its minimum size (the “focus” of the gaussian evolution)
[KWG83, KOHS3].

To calculate the loss of contrast as a function of phase shift with a given
velocity distribution we use the results of section 3.2. In this case, the
parameter that the phase shift depends on is the wave vector of the atom.
The wide velocity distribution implies a wide wave vector distribution. For a
gaussian distribution of wave vectors with a width o,, it can be easily verified
that the contrast as a function of phase shift is:

C(:0,) = e (9%) 158

where ¢ is the phase shift for the mean wave vector k, This means that the
width of the contrast function with respect to interferometer phase is &y /0y .

The translation to a coherence length is made by realizing that 27 of phase
shift is one de Broglie wavelength of additional length.

ky _2ml;
o, A
ky h
ILL=—
Oy 2mmy
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This result looks quite familiar when written as hjo,, which looks like an
uncertainty principle limited length. This result can also be rearranged into
another form, giving

I =&illl_

° 2rmo,

This is roughly the one sigma speed ratio multiplied by the de Broglie
wavelength.

We have applied many radians of phase shift to the interferometer and
studied the coherence length of the beam. The phase shift was realized by
applying an electric field to one beam. The details of the experiment are
described in chapter 4, but for the purpose of this section, the applied electric
field should be thought of as a phase knob on the interferometer.
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When we plot the contrast of the interference pattern against applied phase
shift, we obtain a pattern that reflects the finite coherence length of the beam.
A plot of this type is shown in Figure 3.6.
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Figure 3.6: Interferometer contrast as a function of applied phase

shift. The fit is to a gaussian, yielding a coherence length of .57

Angstroms.
By examining the coherence length of the beam in the interferometer, we can
extract the width of the velocity distribution. This can be compared to the
width that we find by fitting the diffraction pattern from the first grating. We
have found good agreement between the velocity widths extracted from these
two methods if the interaction region does not introduce additional phase
inhomogenaities. The errors introduced by using a gaussian velocity
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distribution instead of a v3 weighted gaussian are small for all of the
experiments in this thesis, and are discussed in section 4.2.

3.5 The various quantum mechanical lengths in the interferometer

It is interesting to look at the various quantum mechanical lengths in the
interferometer. There are four lengths that can be associated with the atom.
The first and smallest length is the de Broglie wavelength. This is .16
angstroms for the beam using argon as the carrier gas. The next length is the
coherence length, which is roughly .6 angstroms. The next largest length is
physical size of the sodium atom in the ground state. For this length we can
use the rms radius of the 3S state in sodium, which is about 3 angstroms,
larger than either of the previous lengths associated with the center of mass
motion of the atom.

The final length in the system is the “wave packet length”. This has been
encased in quotation marks because there are no wave packets in our beam,
because we do not prepare them. If we did, by chopping the beam to a
minimum uncertainty length wave packet corresponding to the velocity
width just before the first grating in the interferometer, the wave packet
would have spread to about 4 cm by the third grating. This is not very
surprising. It is just a consequence of the interferometer being about 1 meter
long and the speed ratio in the beam being about 4.
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4 Polarizability of sodium

The first experiment that we conducted with the interferometer was to apply
an electric field to one side of the interaction region and watch the fringes
shift. This phase shift is caused by the quadratic Stark shift of the ground
state, and allows us to determine the polarizability of the ground state of
sodium.

Initially, this was intended to be a first demonstration experiment with the
separated beam interferometer. We intended to do a rough measurement of
the polarizability at the 2% to 5% level, publish, and get on to other
experiments. When we analyzed the first set of data, we found that we had a
statistical uncertainty of 0.4%. Then we got greedy. We set out to do a 0.1%
measurement and quickly ran afoul of the systematic errors that will be
discussed in this chapter. In the end, we ended up with a value that is good to
0.3% and spent about six months on the experiment.

The work in this chapter is written up in a paper that has been submitted to
Physical Review Letters, included as section 4.2. The remainder of this
chapter will only cover ground that had to be condensed or not included in
the letter.

4.1 History of alkali measurements

The study of the Stark effect enjoyed a resurgence due to the tunable laser.
All of these studies, however, looked only at the difference between the
polarizabilities of two states. In other words, all experimental studies of the
Stark shift of excited states have a common ground state shift subtracted. The
study of ground state shifts of alkali atoms has previously relied on the
transverse force on an atomic beam [HAZ74,MSM74]. Our work is the first in

73



which the effect of a constant electric field has produced a phase shift in an
atomic state, and therefore given us a way to find the polarizability. A good
overview of theoretical and experimental studies of atomic and molecular
polarizabilities are given in two review articles by Miller and Bederson
[MIB78,MIB88].

The electric polarizability of an atomic ground state is the lowest order
description of the response to an electric field. It is therefore not surprising
that this quantity paramatrizes a large number of phenomena and
interactions in physics. One area that the polarizability appears is the long
range interaction of atoms with electrons or ions, and other atoms. The
polarizability parametrizes the interatomic attraction through the van der
Walls constant in the Slater-Kirkwood approximation, and the dipole-
quadrapole attractive term in a dominate level approximation. Other
manifestations of the polarizability (really the interaction with electric fields)
include: the Rayleigh scattering cross section, the ion mobility in a gas, and
the Casmir-Polder effect.

4.2 Paper submitted to Phys. Rev. Lett.

Measurement of the Electric Polarizability of Sodium with an Atom
Interferometer

Christopher R. Ekstrom, Jérg Schmiedmayer, Michael S. Chapman,
Troy D. Hammond, and David E. Pritchard.

Department of Physics and Research Laboratory of Electronics
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

We have demonstrated an atom interferometer with interfering beams that are
physically isolated by a metal foil. By applying an electric field to one beam of
the interferometer, we have measured the phase shift resulting from the quadratic
Stark effect. By studying these phase shifts, we have determined the ground state

polarizability of sodium, with much improved precision, to be

24.08(5)statistical(7)systematic X 10724 cm3.

PACS numbers: 35.10.Dj, 07.60.Ly
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Recently, there have been several atomic interference experiments that have
culminated in the demonstration of atom interferometers!”’ that are now
beginning to be used as tools in the field of atomic physics.> We report in this
letter an atom interferometer in which the two interfering beams are
physically isolated by a metal foil, permitting the controlled application of
different interactions to the two beams. We have used this interferometer to
measure the polarizability of the ground state of sodium to 0.3% by applying a
uniform electric field to one beam and examining the resulting phase shift.

The interferometer has a Mach-Zender geometry that uses three
nanofabricated transmission gratingsg(Figure 1). Since the path length
difference is zero for the central fringe for all velocities, or "colors”, this
geometry produces a robust white fringe.!? The experimental apparatus has
been considerably improved since our first demonstration experiment,® and
has been described in detail elsewhere.!!
that separate the centers of the interfering beams by 55 pm at the position of

the second grating, where the FWHM of the beam is 40 um. An interaction

We now use 200 nm period gratings

region consisting of a stretched metal foil held symmetrically between two
side electrodes is positioned between the beams. This septum is 10 pm thick,
up to 10 cm long, and casts a shadow corresponding to a width of 20-30 pm on
the detector. The mean velocity of the beam is 1050 m/s, corresponding to a
deBroglie wavelength of 0.16 A, with a typical velocity width of 4% rms.

With the septum between the beams of the interferometer, we have observed
fringes with 35% contrast and an interference amplitude of more than 800
counts/s (Figure 2). We can determine the phase of the interference pattern
with a precision of 10 mrad in one minute.

We now examine the effect of applying a potential U(x) to one beam of the
interferometer. The phase evolution of the wave function can be written
within the JWKB approximation as y(x)e<eilk(x)dx, with the integration
performed along the classical path. Here,

k(x)= 1 2m(E -U(x)) = k, + —l—U(x)
h IAY
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where kg is the wave vector without the potential, U(x) is the applied
potential, and v =#hk,/m. The approximation for k(x) assumes U(x) is much
smaller than the energy (U(x) = 10%E in our experiment).

If we apply a potential to only one beam, the resulting phase difference
between the beams is:

Ap(k) = [k(x)ds — [kyds = ;11; Juexdx. 1)

This phase difference is the phase shift in the measured interference pattern.

In this experiment we apply a Stark potential U=-a€?/2, were € is the
applied electric field and o is the scalar electric polarizability. The
polarizability parameterizes many important processes in atomic and
molecular physics, including the index of refraction, the van der Waals
constant between two polarizable systems, and the Rayleigh scattering cross

section.1?

To measure the polarizability, we subject one beam of the interferometer to a
uniform electric field and record an interference pattern. The polarizability is
determined from the phase shift of the interference pattern using Eqn. 1 with
E =V/D, yielding

a= (é-(-’ﬁ“-’i)(-gz—}(%v), )

2
vi AL,

where L.y is the effective interaction region length, V is the voltage applied
to one side of the interaction region, D is the width of the spacer across which
the voltage is applied, and v is the mean velocity of the atomic beam. We
now examine each of the three terms in Eqn. 2, discussing their measurement
and associated statistical and systematic errors.

To measure the first term of Eqn. 2, (A@y,,/V?), we fit the phase shifts from
several different voltages to a quadratic function of voltage (Figure 3). The
phase for a given voltage is measured with respect to the phase with no
voltage applied. This zero voltage reference phase changes with time.
Typical long term drift rates are 1 rad /hour, but on a short time scale (30 sec)
we find rms fluctuations as large as 150 mrad. To correct for these drifts and
fluctuations, we take frequent measurements of the reference phase. In the
fit, the quadratic term has a statistical uncertainty, typically 0.2%, dominated
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by the phase measurement, but also includes residual scatter from the
reference phase fluctuations. There are no significant systematic errors
associated with this measurement.

The second term in Eqn. 2 depends only upon the geometry of the interaction
region. We numerically calculated the electric fields of the interaction region
and then evaluated the integral of €* along the beam path. We define an
effective length L,z as

(5)roslere

These calculations yield an effective length that, due to fringing fields, is 3.0%
shorter than the nominal physical length. The fringing fields at the end of
the foil were minimized by guard electrodes, held at the same potential as the
foil, located at the ends of the side plates (see Fig. 1). We have included an
uncertainty in Ly which contributes a 0.1% relative error in the
determination of the polarizability. The spacer thickness D has been
measured to 0.05% with a dial indicator. This error, combined with the effect
of other dimensional uncertainties on the field calculations, produces a
systematic error of less than 0.2%.

We found no statistically significant difference in the polarizability from
measurements made with positive vs. negative voltages, indicating the
absence of significant contact potentials. There was also no statistically
significant difference between the left and right side of the interaction region,
confirming interaction region symmetry to at least 0.2%.

The third term in Eqn. 2 is the velocity of the sodium beam. The mean
velocity and the width of the velocity distribution are extracted from the
diffraction pattern produced by the first grating with the second and third
grating removed. The velocity is determined from the diffraction angle by,
g <tue o B 1
d mvd

3)

where d is the grating period and A,, =27/k, is the deBroglie wavelength. A
typical diffraction pattern, with a fit that determines the velocity to 0.15%, is
shown in Figure 4.
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In the limit of a monochromatic atomic beam, we have measured all the
quantities in Eqn. 2 necessary to determine the polarizability. The finite
velocity distribution of our beam complicates this simple analysis. The rms
width of the velocity distribution varies between 3% and 5% and depends
primarily on the carrier gas pressure and nozzle diameter of the seeded
supersonic source. We can measure this width to 10% from the broadening
of the high order peaks in the diffraction pattern or from the coherence

length of our beam.!!

We first consider the results of averaging over an arbitrary velocity
distribution P(v), which will effect the measured phase of the interference
pattern. The measured phase will not be ¢(V), where V is the mean velocity,
but will be given by

J P(v)sin p(v)dv
- j P(v)cos @(v)dv .

tan(Ppeasurea) (4)

The phase shift depends primarily on the mean velocity and, to a lesser
extent, on the velocity width. It is only weakly dependent on the exact form
of the distribution. We use a gaussian model function (instead of a more
realistic v3 weighted gaussian) for calculational convenience as there is no
difference between the results at the 0.01% level. A similar velocity average is
applied to the fit of the diffraction pattern, producing a 0.15% correction to the
mean velocity found from Eqn. 3.

Because we use diffractive beam splitters in our interferometer, atoms from
different velocity classes travel on different paths. Therefore, systematic
errors can occur because the velocity distribution contributing to the
interference pattern differs from the velocity distribution of the supersonic
source, which is fit determined from the diffraction pattern.

In our experiment, there are two sources of this type of systematic velocity
distribution change. One is the velocity selective blocking of atoms by the
septum. Faster atoms have a smaller diffraction angle and, therefore, a larger
chance of being blocked by the septum. The second is velocity selective
detection of atoms. The same correlation between velocity and diffraction
angle results in a correlation between the detector position and the velocity
distribution of the atoms that are detected. These systematic effects are
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modeled with a ray tracing algorithm. The calculation is performed for a
variety of septum and detector positions, allowing us to find corrections to
the measured phase shift and the contrast reduction for each experimental

configuration.

We measured the polarizability at many positions of the interaction region
within the interferometer. These measurements agreed with the predictions
from the model, showing no variation in the polarizability at the 0.1% level
for excursions of the septum that reduce the contrast to 50% of its peak value.
This systematic is insignificant at our level of precision and required no

correction.

We also measured the polarizability at several detector positions. These data
showed a correlation between measured polarizability and detector position
of 0.025% per micron, agreeing within errors to the model calculations. The
resulting corrections of about 0.4%, which include the velocity average of Eqn.
4, introduced a systematic uncertainty of 0.15% in our determination of the
polarizability.

To arrive at our final value, we performed polarizability measurements with
three different interaction regions. The first and second had no guard
electrodes and different length foils. The third interaction region had guard
electrodes and provided the measurements that dominated the final result.
These different electric field geometries gave consistent results. We find the
electric polarizability of the sodium ground state to be 24.08(5)(7) x 1024 ¢m3,
where the first error is statistical and the second is systematic. The systematic
error is dominated by uncertainties in the geometry of the interaction region,
but also includes other geometric factors common to all measurements such
as uncertainty in the grating period and the distance from the first grating to
the detector which are used to find the velocity. Our statistical error is
dominated by uncertainty in the determination of our velocity distribution,
the short term stability of the phase reference in our experiment, and to a
lesser extent by counting statistics.

Unlike the present work, previous measurements of alkali polarizabilities
relied on the transverse force acting upon atoms in an electric field gradient.
These efforts were limited by the knowledge of the exact value of the gradient
and the field at the position of the atomic beam, giving 24.4(1.7)!2 and 23.6(5) x
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10-24 ¢m3.1% In another deflection experiment, the fringes from a Young's
double slit have been shifted with an electric field gradient.® Our experiment
has the advantage of applying a nominally uniform field and detecting a
quantity that depends only on the field magnitude to measure the

polarizability.

In conclusion, we have performed an interferometric measurement of the
polarizability of the ground state of sodium. We have an uncertainty that is
six times smaller than previous results. By performing a pulsed beam
experiment with a better characterized interaction region, it should be
possible to improve the accuracy of this measurement to below 0.1%.

Atom interferometers with physically separated beams open up the possibility
of several other experiments, such as a measurement of the index of
refraction of a gas for matter waves, a topological measurement of the
Aharonov-Casher phase shift, and the measurement of Berry's phase for the
wave function of a massive boson,!! all of which require the ability to apply
uniform, well controlled interactions to one portion of a split atom wave.

This work was supported by the Army Research Office contracts DAAL03-89-
K-0082 and ASSERT 29970-PH-AAS, the Office of Naval Research contract
N00014-89-J-1207, and the Joint Services Electronics Program contract
DAALO03-89-C-0001. TDH acknowledges the support of a National Science
Foundation graduate fellowship. ]S acknowledges the support of an Erwin
Schrédinger Fellowship of the Fond zur Férderung der Wissenschaftilchen
Forschung in Austria.
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Figure 1: Schematic of our interferometer and interaction region. Vertical
dashed lines are 200 nm period diffraction gratings. The detail of the
interaction region shows the 10 micron copper foil suspended between the
side plates. The guard electrodes are indicated in black at both ends.
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Figure 2: Interference pattern from 40 seconds of data (1 second per point). A
constant background of 200 cps has been subtracted.
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Figure 3: Phase shift of the interference pattern as a function of voltage
applied to the left (open circles) or right (filled circles) side of the interaction
region. Typical statistical error bars are contained within the markers. The fit
is to a quadratic.
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Figure 4: Diffraction pattern of sodium atoms from a 200 nm period grating.
The solid line is calculated for a grating with average open fraction of 39.5%.

The fit yields a mean velocity of 1040(2) m/s, AdB = 0.165 A and a rms velocity
width of 3.7(4)%.
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4.3 Theory

I will now present two simple models for how you might calculate the
polarizability of the ground state of sodium, with varying levels of
sophistication. To give perspective to the results of each method, we have
determined the polarizability to be 24.08(5)(7)x10'24 cm3.

Charged ball and spring

The ball and spring model of the polarizability is just about the simplest
model you can think of. Take a particle with charge e and mass m on the end
of a spring with an oscillation frequency . An external electric field with
strength E is present. We now find the response of the system, and its energy
shift.

The mass experiences a force in the direction of the field with magnitude eE.
The displacement of the charge is found by balancing the forces

mw’x = eE
el
x= 5
mao

The dipole moment is the charge multiplied by its displacement , and is also
the electric polarizability multiplied by the field.

2
e’E
ex = 2=aE
mo
o= ¢
mo*

This simple result is quite accurate for the sodium ground state because
optically, it is connected most strongly to states at one optical frequency. You
must use the frequency of the sodium D line for . This results in a
polarizability of 24.9x10-24 cm3.

Oscillator strengths

A more sophisticated analysis relies on perturbation theory using the sodium
matrix elements. The first order in perturbation theory is

AEW =(g|eF-E|g)

and vanishes for any state with a definite parity.
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Extending this to second order turns out to be the same as replacing the
simple ball and stick model with a sum over a collection of oscillators, each
weighted by its oscillator strength. The expectation value of the inverse
square of the transition frequency is then written as

<L> =y Jos

o g

where f,; is the oscillator strength between the ground state and the excited
state i, and @,, is the transition frequency between these two states. Because
sodium is very much like a one electron atom, z fo;=1. This alteration to
the frequency is small, resulting in a polarizability of 24.5x10-24 cm3.

Real calculations

More sophisticated calculations quickly get much more complex, without
getting much more accurate. The review by Miller and Bederson [MIB78] has
a good list of theoretical references.

4.4 Phase drifts

As was mentioned in the paper (section 4.2), the phase reference of the
interferometer drifted with time. The behavior of the phase reference with
respect to time is shown in Figure 4.1, showing a drift of approximately 1
Rad/hr. The current working theory on the cause of this drift is that
fluctuations in the laser interferometer laser’s intensity are translating into
scale shifts in the detected relative position of the gratings. One other possible
cause is the residual effects of temperature gradients in the machine. One
way in which temperature gradients can effect the interferometer are by
warping the beam tube that the entire experiment is housed within. This will
result in the phase of the interference pattern shifting if transverse
movement is imperfectly canceled by the laser interferometer servo system,
or if vertical displacements couple into phase changes through imperfectly
rotationally aligned gratings.

The short term fluctuations can be quite a bit larger. The rms of the phase
differences from sample to sample on a minute time scale can be as large as
150 millradians. This could be caused by short term laser intensity
fluctuations, which can be reduced by more frequent reversals or chopping in
the experiment.
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Figure 4.1: Drift of the reference phase in the interferometer
with time.

4.5 Systematic errors and corrections
Interaction region field calculation

The electric field produced by the interaction region was modeled with a
standard relaxation algorithm [PTV92]. The geometry of the interaction
region is shown in Figure 4.2, viewed from above. An exploded view is
shown in Figure 1.6. There were several important physical dimensions that
we had to measure in the interaction region. The first is the thickness of the
insulating spacers, which is discussed below. We also needed to know the
distance between the guard electrodes. This was measured with a digital
caliper to 25 microns. We needed to know the spacing from the guard
electrode to the side plate as well, but to much lower accuracy. This was also
measured to 25 microns with a digital caliper.
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Figure 4.2: Detail of the interaction region viewed from above.

The guard electrodes are shown in black and are held at the same

potential as the metal foil. The side plates are shown in gray.
The relaxation code was run on our local Cray super computer with a 1
micron grid size. We then calculated the integral of the square of the electric
field along different paths through the interaction region. For the final
interaction region used in the experiment, the effective length was shorter
from the nominal physical length by 0.3%.

Detector/septum clipping

Ray tracing code

Because we use diffractive beam splitters in our interferometer, atoms from
different velocity classes travel on different paths. Therefore, systematic
errors can occur because the velocity distribution contributing to the
interference pattern differs from the velocity distribution of the supersonic
source, which is fit determined from the diffraction pattern.

In our experiment, there are two sources of this type of systematic velocity
distribution change. One is the velocity selective blocking of atoms by the
septum. Faster atoms have a smaller diffraction angle and, therefore, a larger
chance of being blocked by the septum. The second is velocity selective
detection of atoms. The same correlation between velocity and diffraction
angle results in a correlation between the detector position and the velocity
distribution of the atoms that are detected.

To deal with these systematic effects, we used a numerical ray tracing
algorithm. We also looked at the correlations of the measured polarizability
with detector and septum position. The ray tracing code used an incoherent
sum over paths through the interferometer. This produced an average phase
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shift for a given location of the detector and interaction region. The
algorithm is different from the one that was used to model the entire
interferometer [TPK92,TUR92], which used a coherent sum of amplitudes
over all paths.

The algorithm involved starting from each of several source points in the
first collimation slit. The paths that lead to interference were identified by the
transverse momentum change at each diffraction grating. Each set of
interfering paths that arrived at a given location in the detector plane was
evaluated for the difference in phase between the paths, and therefore the
phase shift. The interaction region was included as a phase shift in certain
paths with the size of the object determined by the interaction region field
calculation. The physical size of the metal septum was included as an opaque
object that occluded some of the possible paths through the interferometer.
The results were averaged over an extended source, and an initial velocity

distribution.

Polarizability vs. interaction region position
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Figure 4.3: Change in the measured polarizability with
interaction region position. The dashed line is the average of
the measurements. These measurements show no linear
correlation with interaction region position.
By altering the transverse position of the interaction region and therefore the
septum, we could predict the correlation between interaction region position

89



and realized phase shift. These correlations were all small, as discussed in the
paper. Figure 4.3 shows the results of these measurements taken with several
interaction region positions, which were converted to polarizability units as

outlined in section 4.2.

Polarizability vs. detector position

By running the simulation for several different detector positions, we could
predict the amount of correlation between measured phase shift and detector
position. The results of polarizability measurements taken at several
different detector positions is shown in Figure 4.4 and agrees within errors
with the simulations. These results were converted to polarizability units as
outlined in section 4.2.
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Figure 4.4: Change in the measured polarizability with detector
position. The solid line is a linear fit to the data.

4.6 Physical measurements

There were several physical dimensions that needed to be measured to
determine the polarizability. In this section I will describe in detail how they
were measured.

The interaction region spacers

To find the electric field seen by the atoms, we need to know the voltage that
was applied to the interaction region, and the distance that it was applied
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across. The distance is determined by the alumina spacers that hold the side
plates and the metal foil apart. We wanted to know the thickness of the
spacers, which were supposed to be 2 mm thick, with a 1 micron tolerance.
The spacers were made by the San Jose Delta company, and were specified to
1.3 microns (actually 0.05 thousandths of an inch).

Measuring a physical dimension to one micron is not a trivial task (although
it is easier than the method we actually used). The basic measuring tool was a
Mitutoyo digital dial indicator. This indicator has a precision of one micron,
but an accuracy of only four microns. The indicator was mounted over a
good granite block (Starrett Grade A inspection plate, “master pink”), that is
flat to 2.5 microns over 12 inches. We used only about 3 inches of this block.

The system still needs to be calibrated to reach the desired accuracy of one
micron. This was accomplished by measuring several gauge blocks (2, 2.25,
and 2.5 mm) that are all calibrated to 50 nm. We were all surprised at how
good the gauge blocks were (we used the worst grade available). The flatness
is as good as a lambda/10 mirror. They also have the added attraction of being
NIST traceable.

We measured several spacers, including pieces of broken spacers which
should give the same value. The broken pieces gave the same values, and
the gauge blocks all measured the same each time they were removed and
replaced from the measuring apparatus. The rms of the measurements were
all less than 1 micron, but all of the spacers were not at all within
specifications. While all of the spacers that were measured were flat to within
1 micron, very few were the correct thickness. We had to end up measuring
each spacer and its position in the interaction region to find the spacing at the
location of the atomic beam. The spacers varied by as much as five microns,
not a very impressive fabrication job.

The grating period

To convert from the separation of the diffraction orders in a diffraction
pattern to a velocity we need to know the period of the diffraction gratings.
The grating period was determined from SEM pictures. While measuring
almost anything on an absolute scale from a SEM picture is a dubious practice
at best (due to the projection onto the imaging system from the sample), I will
now describe the measurement process.
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To describe the method, I will need to introduce a few details of the electron
beam lithography system. Much of this is covered in an article from Applied
Physics B that is included as section 1.3. The e-beam writer (a JEOL JBX5DII)
writes fields that were set to 50 micron squares. The writer moves a
translation stage to “stitch” fields together to write large patterns. These stage
moves are monitored by a Hewlett Packard laser interferometer ranging
system in two dimensions that is accurate to 2 nm (once again, NIST
traceable). This means that the 50 micron stage move is accurate to 0.004%.

The size of the error at a field boundary is measured in grating periods. This
error is typically 0.1 periods, the practical limit of this measurement method.
The 10% measurement is leveraged up by a factor that is the field size
measured in grating periods (250 for 200 nm period gratings). This yields an
uncertainty in the grating period of one part in 2500.

The measurement is made by assuming that no whole periods of a diffraction
grating are “missed” by stitching errors. I have made this assumption on the
basis of a series of tests of the field stitch tests made with verniers written
across field boundaries that never showed more than one half period
stitching errors for fields that were written one after another.

Distance from the first grating to the detector

Another quantity that is necessary for the determination of the velocity is the
distance from the first grating to the detector. This allows the peak separation
in the diffraction pattern to be converted into a diffraction angle. This is
measured by measuring the distance between flanges that hold the detector
and the first grating from the outside of the machine to 1 mm. The location
of the detector wire and the first grating relative to their respective flanges are
determined much more accurately by measurement with dial micrometers to
several thousandths of an inch (approximately 100 microns).
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4.7 The final number
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Figure 4.5: The measurements that lead to our value of the

polarizability (average). The experimental results of Zorn

[HAZ74] and Bederson [MSM74] are also included. In this figure,

the statistical and systematic error bars for each point have been

added in quadrature.
The final number was determined by several different measurements. Figure
4.5 shows the different measurements, and our final result. The October 30
value is dominated by statistical errors in the velocity determination. The
November 11 and December 5 values are dominated by uncertainty in the
length of the septum. The final four values determine the average, and were
all performed with an interaction region that had the guard electrodes shown
in Figure 4.2.

The table in Figure 4.6 shows the various error sources discussed in this
chapter and their effect on the final errors. All errors are relative and the

93



number reflects the total effect on the final number’s errors, so some are the
typical error for a given measurement, and some are de-weighted by

averaging over several measurements.

Error source systematic error statistical error
Spacer width 0.07%

Grating period 0.05%

Velocity 0.12%
1g - det distance 0.06%

Interaction region 0.08%

length

Field calculation 0.10%

correction

Fit to Ag per E2 0.15%
Corrections from 0.15%

ray tracing

Total 0.25% 0.21%

Figure 4.6: Relative contributions of the various error sources.
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5 Magnetic rephasing

Another experiment that was made possible by the basic interaction region is
called magnetic rephasing. In this experiment, the basic variable measured
from the interference pattern in the contrast, which is highest when a
number of different types of atoms experience different phase shifts that
nevertheless line up their interference patterns. This experiment is closely
related to the spin 1/2 rotation experiment in a neutron interferometer
[RZB75]. Our experiment performs spin rotations of all of the spin
projections of a spin two and a spin one state.

5.1 The experimental setup

The experimental setup uses the same conductive septum and interaction
region as used in the polarizability measurement. There are two electrical
connections to the septum, one at the top and one at the bottom, located in
the center of the foil. This allows a current to flow down the septum,
through the plane of the interferometer.

The experimental configuration of the interaction region and the resulting
magnetic fields are shown in Figure 5.1. A nominally uniform external
magnetic field is imposed over the entire interaction region area. The field is
produced by three sets of “Helmholtz-ish” field coils wound around the cross
at the second grating flange that houses the interaction region. This magnetic
field is directed along the beam axis (z axis), and is typically 3-4 Gauss. This
will be the largest magnetic field in the experiment and will be the major
constituent of the local magnetic field, which will provide the quantization
axis for the experiment.
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The unpolarized sodium beam has two hyperfine ground states having total
angular momentum F of 2 and 1. These two states have g-factors that are the
same in magnitude, but have opposite sign. This means that there will be
one state (F=2, mp=2) with one Bohr magneton of magnetic moment
projection along the z-axis, two with half a Bohr magneton (F=2 and 1, mp=1,-
1), two with no projection (F=2 and 1, mg=0), two with minus one half (F=2
and 1, mg=-1,1), and one with minus one Born Magneton (F=2 , mp=-2). At
this point there is no shift in the phase of the interference pattern because
there is no difference in the phase accumulated on the two sides of the foil,
assuming that there is no magnetic field gradient across the interferometer.

B guide > ( a)

(b)

Figure 5.1: Detail of the interaction region and magnetic fields
for the rephasing experiment. The dark arrows are magnetic
fields, and the light arrows represent the atomic beams. In (a),
the large guide field is shown above the interaction region.
There is a current flowing up out of the page that creates the
field circulating around the foil. In (b) the resulting fields are
shown for each beam, their different lengths cause different
Zeeman phase accumulation for the two beams.

A current is then passed down the foil, through the plane of the
interferometer. This forms a current sheet that creates a magnetic field. This
field points along the guide field on one side of the foil and against the guide
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field on the other. This has the effect of shortening the guide field for one
path, and lengthening it for the other path.

This difference in the strength of the guide fields, and therefore a difference
in the accumulation of phase, will result in a differential Zeeman phase shift
of the interference pattern for each magnetic moment projection. The total
interference pattern is the incoherent sum of the patterns produced by the
individual magnetic moment projections, each with a different phase and
contrast. The paths of the two beams form, to a very good approximation, a
Amperian loop about the current distribution. If we assume that there is an
angle theta between the local magnetic field and the propagation direction of
the atoms, and the current flows straight down the foil, we can use Ampere’s
law to find the differential phase shift for a given magnetic moment
projection. This phase shift is

Ao, = ﬂy—’"—lcos( 0)
hc

m
v 7
where [ is the current flowing down the septum. This assumes that there is a
constant angle between the local magnetic field and the beam direction. A
more realistic treatment must average this misalignment over the path
arriving at an expression with a “fudge factor” (cos(6))
4t n,, 1
Ag,, = —=——(cos(0
O =5 v {cos(6))
In the limit of a monochromatic atomic beam the form of the contrast of the
interference pattern as a function of septum current is fairly simple. In this

limit, the contrast is

C= %[cos((o) +2 cos(%) +2+2 cos(— %) + COS(“‘P)]

= %[cos((p) +2 cos(ﬁz’i) + 1]

where ¢ is the phase shift (the A has been dropped) applied to the state with
one Bohr magneton of magnetic moment projection (the “stretched state”),
and C is the initial contrast. The function simplifies to

G cos? (2) 005(2)
4 2/,
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This function is plotted in Figure 5.2. As expected, when small amounts of
phase shift are applied (experimentally by turning up the current flowing
down the foil), the contrast degrades. The first interesting feature occurs
when the phase shift applied to the stretched state is 4n. The phase shift of
the four states with |Jm|=1 is then 2n. At this point, all of the interference
patterns have the same phase modulo 2x, and high contrast fringes should
reappear because all of the interference patterns will line up with each other.
The same conditions will be fulfilled for every additional 4n of phase shift

applied to the stretched state.

Another interesting feature of this contrast function is that there are regions
with low contrast that have a phase shift of ©, with the other regions having
no phase shift, and sudden transitions between them.
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Figure 5.2: Contrast and phase of the interference pattern versus
phase shift applied to the stretched state.

The situation is complicated by the velocity distribution and therefore finite
coherence length of the atomic beam. The contrast of the interference pattern
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for any state decreases like a gaussian function of the applied phase shift for
that state (see section 3.4). The contrast is then

%[P(q))cos(cp) + ZP(g)cos(%) + l]

where P is the relative loss of contrast as a function of the applied phase. At
large applied phase shifts, the contrast damps out to a level that is one quarter
of the original contrast. This is the contribution of the two states that has no
projection of their magnetic moment along the guide field, and therefore no
phase shift as a result of the current in the foil.

Throughout this discussion, I have ignored the curvature in the Zeeman
manifolds. This is because we operate at total magnetic fields of
approximately 5 Gauss, while the decoupling of the Zeeman states occurs at
several hundred Gauss.

5.2 Experimental results

This section contains data from two magnetic rephasing experiments. The
first set of data is well accounted for by the simple theory outlined in the
previous section. It appears in Figure 5.3 with a fit to the function described at
the end of section 5.1. It is clear that the maximum contrast is not realized for
zero current flowing through the septum. This is the result of a small
magnetic field gradient across the machine, which produces a differential
Zeeman phase shift for zero current.

By fitting the data in Figure 5.3 we can extract the velocity from the amount of
current required for each contrast revival. This data yields a velocity of
1088(4) m/s if we do not include the (cos(6)) fudge factor. Diffraction data
taken during the same run yields a velocity of 1071(3) m/s, which we trust.
This implies an average local field misalignment that corresponds to
(cos(8)) =0.984, demonstrating that without better control of the local field
direction, finding the beam velocity from rephasing data is flawed at the 1%
level.

By looking at the rate that the rephasing pattern washes out over, we can
extract a velocity distribution width. This indicates a rms width of 5.6%, as
compared to 3.6% from diffraction patterns. This discrepancy could be caused
by magnetic field gradients being induced by increasing septum currents.
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Figure 5.3: Magnetic rephasing data. The top graph is the
contrast of the interference pattern as a function of the current
flowing down the septum. The lower graph is the phase of the
same interference patterns. Note the sudden changes in the
phase by .

The second set of data, shown in Figure 5.4, is not well accounted for by our
theory. The peaks in the contrast function are not symmetric. The key to our
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qualitative understanding of these data is how the current leads were hooked
to the foil for this data. The current flowed down one end of the foil. We
believe that the sudden change in field around the end of the foil caused non-
adiabatic following of the spins. We could construct no simple model to
describe this non-adiabatic behavior.

30 43
1%
25
g 2038
= .
S 11 ¢
S 15
c .
g .
R |
] &
5: Y
Ja r
O N - N
IIII]IIIIIIIII[IIIIIIIII[IIII IIll|IlIl LILILILE R IIII]IIII LRELER LA
0 100 200 300 400 500 600 700

current (mA)

Figure 5.4: Contrast versus septum current for a configuration of
magnetic fields that presumably produces non-adiabatic
transitions between the Zeeman states. The solid line is a fit to
the function derived in section 5.1, with poor agreement.

5.3 Balancing phase shifts with the Stark effect

As mentioned at the end of section 5.1, for large applied phase difference, only
the states with no magnetic moment projection on the guide field contribute
to the interference fringes. If we were to add a small additional interaction to
one beam of the interferometer, we would see the effects in the interference
pattern from only the mg=0 atoms. This is an easy way to do interferometery
on an aligned beam without the difficulty of optically pumping the beam.
This would be a real advantage for an atom with no simple light source for an
optical pumping transition. This is important because the gratings used in
our interferometer are not specific to the structure of the atom.
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We performed an experiment in which we independently addressed two of
the different spin projections. This was accomplished by adding a Stark phase
shift to the magnetic rephasing setup. The experiment was run with an
electric field applied to one beam of the interferometer that corresponded to
70 radians of phase shift. This Stark phase shift was well outside the
coherence length of the beam, and destroyed the contrast for all of the mp

states.
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Figure 5.5: Phase shift versus septum current, and therefore
differential Zeeman phase shift. There is an additional 70
radians of Stark phase shift applied between the beams of the
interferometer. The two slopes of the phase correspond to
different magnetic moment projections being within their
coherence length.
The next step was to apply a differential Zeeman phase shift with the
rephasing magnetic fields. For certain ranges of septum currents, and
therefore differential Zeeman phase shifts, one magnetic moment projection
would have a total (Zeeman plus Stark) phase shift that was within the
coherence length of the beam. Figure 5.5 shows the phase shift of the
resulting interference pattern as a function of septum current. The slope of
the line reflects the magnitude of the magnetic moment projection.
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While this is a nice way to address only one spin projection, optical pumping
in our beam is possible and provides four times the intensity. This optical
pumping is made easier because we have a room full of working

spectroscopic dye lasers.
5.4 Applications

The question remains: what is this experiment good for? If the local field
direction and the current distribution in the foil were well known, the only
other parameter that determines when the rephasing “resonances” occur is
the velocity. This would allow us an independent measure of the mean
velocity and the velocity width of the beam. This would be even more
important than a simple check of our velocity distribution because it would
measure the velocity distribution that we really care about, the one that is
present and contributing to interference when the interferometer is running.
Issues of the change in velocity distribution due to interaction region position
and detector position are dealt with in sections 4.2 and 4.5.

In its current form, this experiment does have several virtues. It is (at least to
my tastes) simple and elegant. You have to believe several fundamental
things about quantum mechanics to understand the results of this
experiment. The first is that the phase shift of the particle depends on it’s
magnetic moment projection. The second is that the different spin
projections form independent interferometers. This makes it an interesting
pedagogical tool. The final, and not insignificant value, is that it provides a
simple way to balance two phase shifts that have the same dispersion.
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6 Index of refraction of a gas for matter waves

In light optics, it is common to characterize a material by its index of
refraction and its transmission. The index of refraction occurs from the
forward scattering of the light, as does the attenuation. The attenuation is
related to the imaginary part of the forward scattering amplitude by the
optical theorem. This means that these bulk properties are determined by the
microscopic scattering events within the material.

These ideas can be extended to matter waves. The attenuation of a beam of
particles is due to the scattering of the beam into other directions and is
governed by the imaginary part of the forward scattering amplitude. The
phase shift of the wave function is governed by the real part of the forward
scattering amplitude. This chapter deals with a scattering experiment that we
performed by inserting a gas target into one arm of the interferometer. This
opens up to opportunity to probe different properties of atom-atom and atom-
molecule collisions. Scattering experiments have been performed with the
noble gasses (He, Ne, Ar, Kr, Xe) and several molecules (N2, CO2, H2O, NH3)
as target gasses. The results for the ratio of the real to imaginary parts of the
forward scattering amplitude are compared to several semiclassical scattering
models.

6.1 Experimental setup

The gas target is created by making a small modification to the basic
interaction region. The altered interaction region and beam paths are shown
in Figure 6.1. One side plate has a hole drilled through it to allow the
introduction of the target gas into one beam path. There are tabs to close
down the ends of the volume on the side of the interaction region with the
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gas to decrease the gas load into the main chamber of the vacuum system,
creating a large differential pumping factor between the cell and the main
chamber. The openings on either end of the gas cell are 200 microns wide.

unscattered
beam

scattered
beam

gas ____ \— gas target
inlet
Figure 6.1: The gas target interaction region showing the
scattered and unscattered beams.
The question now is: What is the effect on the beam that goes through the gas
target? I will consider a beam that is transported through a gas sample of
length L and density n. If the wave function has a well defined wave vector
k, the wave function will be altered as follows.

w(L)= ‘P(O)eikLe_z_kﬂnL Im( f(k,9=0))ei27”nLRe( f(k,6=0))
The first term, ¥(0), is the envelope of the incident wave function of the
beam. The second term is the standard phase factor for propagation of a plane
wave with wave vector k. The third term is a reduction of the amplitude of
the wave function that represents scattering out of the beam. This
attenuation of the amplitude is just the square root of the attenuation we
expect from the total cross section from the optical theorem. The
transmission T of intensity through the gas sample is

4n _
T e—TnLIm(f(k,G—O))

- e_ OotaL .

We will be able to study this attenuation in two ways, by looking at the
amplitude of the transmitted beam, which decreases like T, or by looking at
the decrease in the interference amplitude, which decreases like VT (since
only one beam is attenuated by the gas).

The last term is the phase shift from forward scattering. It is obvious that if
we were to analyze this experiment by simply counting particles after the
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beam exits the gas target, we would never see effects from this term. In our
experiment, however, we interfere the altered wave function with an
unaltered copy of itself, preserving the phase information. The phase shift
appears as the phase shift of the interference pattern.

I am justified in considering only the forward scattering because the
differential scattering amplitude has no features as small as the total angular
size of the experiment. The size of the scattering potentials that are use in
this experiment are ~15 Angstroms. This gives a diffraction angle of 11
milliradians for our sodium beam with a wavelength of .165 Angstroms. The
target is 80 cm from the detector, so the diffractive spot size is 9 mm at the
detector plane. This is the minimum size for structure in the scattering
amplitude, and the total angular width of the beam at the detector plane is
less than 0.1 mm, so I am justified in considering only forward scattering.

6.2 Calculating f(k,0)

To compare the results of the experiment to theory, we need to be able to
calculate the forward scattering amplitude. The quantity that we are most
sensitive to in the experiment is the ratio of the real to imaginary parts of the
forward scattering amplitude. We have used several models to see if we can
gain any qualitative information about the different scattering results.

Hard sphere scattering

The problem of scattering from a hard sphere is soluble in closed form. The
partial wave phase shifts are given in most quantum mechanics texts [SAK85]

tan(6;) = (kR

ny(kR)

The radius of the hard sphere is R and the wave vector of the incident particle
is k. The scattering amplitude in the forward direction is found by
completing the following sum over angular momentum quantum number,

f(k,0)= 2—1162(21 + 1)[e2"5t(") - 1]P,(cos(9)),
)

which reduces to the following in the forward direction.

F(k,0=0)= %2(21 +1)9® sin §, (k)
{
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This model gives a very small ratio of real to imaginary part, on the order of
one over the number of partial waves contributing to the scattering process.

Semiclassical scattering models

For all of the scattering experiments, a large number of partial waves
contribute to the scattering process. The maximum angular momentum that
contributes to the scattering process is on the order of the momentum of the
sodium atoms multiplied by the maximum impact parameter of interest in
the scattering potential. This product is equated to the maximum angular
momentum quantum number multiplied by #, yielding a maximum angular
momentum quantum number that is the range of the potential divided by
the reduced wavelength of the sodium atom. This is 500-600 for the systems
we have studied.

The large number of partial waves contributing to the scattering process
suggests a semiclassical approach coupled with the eikonal approximation
introduced in section 3.1. I will summarize the results of semiclassical
scattering theory [SAK85] when we look only in the forward direction.

The phase shift for a trajectory that approaches the scattering center with an
impact parameter b is

Ab)=—-—2 jV( b2+z2)dz

where V(r) is the radial scattering potential. This phase shift at a given
impact parameter takes the place of the partial wave phase shift at a given
angular momentum. We then transform the sum over angular momentum
quantum number in the standard expression for the scattering amplitude

f(k,8) = -21;2(21 + 1)[e2"5l(") - 1]P,(cos(e))
{

into an integral over impact parameter. If we drop the angular dependence,
as P)(1)=1, we arrive at

f(k,8=0)= —ikadb[e“”’) -1],
0

or, applying a simple trigonometric identity,
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Re[f(k,0=0)]= kadbsin(ZA(b))

Im| f(k,0 =0)] = ZkI bdbsin®(A(b)).
0

The actual quantity that we will be investigating is the ratio of the real to
imaginary parts of the forward scattering amplitude. Calculation of this ratio
will be much simpler than calculating each part in some cases, and will be
relatively independent of the magnitude (but not the shape) of the potential.

Pure long range attraction

The lowest order attractive potential between two neutral, polarizable atoms
is

C

V(r)=-=%.

r
For this potential, there are fairly general things that can be said about the
ratio of the real to imaginary parts of the forward scattering amplitude. That
ratio is in fact independent of Cy if one uses an eikonal approximation for the
phase shift, and a semiclassical approximation for calculating the scattering
amplitude.

The phase shift for this potential is proportional to the integral of the
potential along a line through the potential. If we operate at a fixed impact
parameter b:

o

A®) < | V(\/zz-i-—bz )dz

Here, C is not the attractive coefficient, but is a constant that depends upon
the attractive coefficient and the center of mass wave vector like

3mrm
= C.
16kh® ©
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The real and imaginary parts of the forward scattering amplitude have the
following dependence on b and the phase shift in the semiclassical

approximation.

Re(f) = deb sin(2A(5))
0

Im(f) o< TZbdbsin2 (A(B))
0

The key is to make a substitution for b and do the integral over the phases.
=[S
A

1
db = -—1(%)5 dA
S\A
With these substitutions, and changing the order of the integration limits we

arrive at:

2
= 7

Re(f) o< 955- [ A 5sin(24)dA
0

2
= 7

Im(f) e %5 [A 5 sin*(a)da
0

We can see that any dependence on C in the scattering amplitudes and the
phases cancel when we look at the ratio of real to imaginary parts. The two
integrals can be done analytically and the result is:

Re(/) =_r(%)r(%)
S

=.7265

This procedure can be easily extended to any potential that varies like r'T! (n is
a positive integer), and gives a result:

Re() _l)r(%"ﬁ)r(";'*ﬁ?)
o F(—;—l——l) F(n 1 1)
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Molecular potentials

Molecular potentials have been determined for some of the systems we have
studied experimentally. These potentials can be used along with the
semiclassical scattering methods to predict the ratio of the real and imaginary
part and the magnitude of each. We have 6-12 potentials for sodium
interacting with argon, krypton, xenon [DRS68], and neon [DFS72]. We also
have a 6-8 potential for sodium interacting with neon [GAL81]. These
potentials are shown in Figure 6.2.
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Figure 6.2: Interatomic potentials for sodium-noble gas

molecules.
We can integrate the straight line trajectories through these potentials to find
the semiclassical phase shift as a function of impact parameter. The resulting
phase shifts are shown in Figure 6.3. It is clear from the form of the potential
that the phase shift gets very large for small impact parameter, and will be
increasing in magnitude like at least b=/ for small b.
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Figure 6.3: Semiclassical phase shift as a function of classical
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shown in Figure 6.2.
To find the forward scattering amplitude, we must integrate the weighted
trigonometric functions of these phase shifts over all impact parameters. The
integrands of the real and imaginary parts of the scattering amplitude are
shown in Figure 6.4 for the case of an argon target. The rapidly changing
phase shift at small impact parameter causes rapid oscillations in the
integrand. These rapid oscillations will prevent a simple numerical

integration.

For the imaginary part of the forward scattering amplitude, the oscillations of
the integrand are due to the square of the sine of the phase, so they will
average to a positive value (see figure 6.4). For small impact parameters, we
can replace the square of the sine with its average value of 1/2. We then
break the integral up by integrating over two ranges. The first is out from
zero to an impact parameter where the phase is still falling rapidly, but from
where a numerical integration becomes possible for the correct expression of
the integrand. In this first range of impact parameters, we replace sin? with
1/2, yielding an integral that is solved analytically. From the end of the first
range out to infinity, the full integrand is integrated numerically. This is
similar to the Schiff-Landau-Lifshitz approximation.
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For the real part, the rapid oscillations of the integrand are symmetric about

zero. This allows the first integration range discussed in the evaluation of the

imaginary integral to be set to zero. The outer range is integrated

numerically.
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Figure 6.4: Behavior of the integrands for the real and imaginary
parts of the scattering amplitude. The rapidly oscillating
behavior at small impact parameter averages to zero for the real
integrand and to a positive value for the imaginary integrand.
The parameters are for the sodium-argon system colliding at 1

km/sec.

Velocity average of the transmission and phase shift

The atomic beam used in the interferometer has a velocity width of 10%
FWHM. This, along with the thermal velocity distribution of the target gas
provide a center of mass velocity distribution that we must average over.
There is an interesting feature in the realized phase shift and attenuation of
the interference due to this average. The measured transmission of the
sodium beam must be averaged over this distribution which we choose to
perform in k space. Given that the probability distribution in k space is P(k),

the measured transmission is
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T,

measured

= j P(k)T (k)dk

_ J P(ke -2EnIm( £ (k.0)) dk
When we look at the effect of the average on the phase, things are a little
more complicated. The attenuation will depend on the wave vector of the
atom, so for reasonably large attenuations, there will be a different surviving
velocity distribution. This should produce behavior that will not follow a
simple linearly increasing phase shift and optical density with column
density of the target.

To compute the phase shift we must average the k-vector dependent phase
shift over P(k).

(k) = 31’-nRe(f<k,0))

J’ P(k)\T (k) sin @(k)dk
j P(k)\T(k) cos @(k)dk

(Pmeasurzd

The decrease in interfering amplitude is governed by a more complex
function than the standard expression for the first order coherence function
mentioned in section 3.4.

Ay = \/UP(k)x/T_(kSsmqo(k)dk) +(f P(k)\/?l'—fl?)_cosrp(k)dk)z

It should be noted that the basic formula for the average phase shift in the

interferometer worked perfectly well at the level of precision in this
experiment. The additional transmission factor may lead to additional
information about the energy dependence of the collision process in
experiments with enough extra intensity to measure the phase shift at larger
attenuations.

6.3 Attenuation

The attenuation of the beam can be measured in two ways. The first and
most obvious way is to record the reduction in intensity of a beam that is
transmitted through the gas target. We performed this experiment by
sending the first and minus first order diffracted beams of a single grating
diffraction pattern through the two sides of the interaction region (the zeroth
order beam was aligned to run into the end of the mylar foil). By measuring
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the reduction of one beam relative to the other, we can determine the
attenuation per amount of column density in the sample. The differential
pumping ratio of the gas cell is reflected in the relative reduction of the
attenuated and nominally unattenuated beams. The reduction of the
nominally unattenuated beam represents a gas target that is the entire main
chamber at a lower pressure than the gas cell.
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Figure 6.5: Transmission of the attenuated (open circles) and
nominally unattenuated (closed circles) beams. The lower axis
in the pressure rise in the main chamber, and is proportional to
the column density of the target. The ratio of the exponential
fits implies a differential pumping ratio of 600.

One problem arises when we want to know the absolute number of atoms in
the gas target. We monitor the rise in the main chamber's pressure on a
Bayard-Alpert type ionization gauge. The rise in main chamber pressure is
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proportional to the column density of the target. Any absolute measurement
depends on the accuracy of the ionization gauge, corrections for the response
of the gauge to the particular target gas, and the differential pumping ratio of
the target. We trust the ionization gauge to about 25% of its reading. The
only reference we have for the corrections for gas type have scatter in the
values for a given gas of 5% to 40%. This makes any absolute measurement
of the size of the imaginary part of the cross section difficult without much
more care applied to the measurement of the column density of the target.

Another way to measure the attenuation is to monitor the interference
amplitude of the interferometer as a function of pressure rise in the main
chamber. This measurement has less good statistics that the previous
measurement because there are three amplitude gratings in the beam instead
of one (so the signal is reduced), but you win a lot of that back because you are
only attenuating the amplitude of the scattered wave function, so the loss of
interfering amplitude goes down by a factor that is the square root of the
intensity transmission factor. The problems of pressure measurement still
remain, but this wound up being the best way to measure the ratio of the real
and imaginary parts of the scattering amplitude.

6.4 Phase shifts

As outlined in section 6.1, the phase shift of the interferometer is
proportional to the column density of the gas target multiplied by the real
part of the scattering amplitude. The same problems with target density
measurements remain, and the relative sizes of the different real parts for
different gas targets suffer from not knowing the gauge calibrations. The
phase shift of the interferometer as a function of main chamber pressure rise
is shown in Figure 6.6.
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Figure 6.6: Phase shift versus pressure rise in the main chamber.

The horizontal axis is the pressure rise in the main chamber,

and is proportional to the column density of the gas target. The

linear fit minimizes the chi-squared for both dimensions.
To determine the phase shift for a given pressure rise, the interference
pattern is recorded for a given pressure rise in the main chamber. The phase
shift is measured with respect to the mean of the phases of interference
patterns taken before and after with no gas in the target cell. The time
constant for evacuating the gas from the target after a measurement has been
made is a few seconds, allowing fast changes between gas and no gas in the
target cell.

6.5 Ratio of the real to imaginary part of f(k,0)

From the measurements described above, we can experimentally determine
the ratio of the real to imaginary parts of the scattering amplitude.

Ratio of attenuation to phase shift

The first method uses a combination of the intensity attenuation
measurement and the phase shift experiment. We combine the results of our
fits of transmission versus column density and of phase shift versus column
density. The column density measurements are not calibrated, but we
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assume that they are repeatable. These two quantities are combined as

follows:
2 —
Ay l—ﬁ—Re[f(k’e_O)]
3
In7(n)]/ 5 1mlf(k,0=0)]

_Re[f(k,6=0)]
Im[ f(k,6 = 0)]

1
2

On the first line, the numerator is the slope of the line fitting the phase shift
as a function of pressure rise, from Figure 6.6. The denominator is one half of
the decay constant from the fit shown in Figure 6.5.

Ratio of interfering amplitude to phase shift

There is another way to determine the ratio of real to imaginary parts of the
scattering amplitude that does not rely on the repeatability of the ion gauge.
This involves fitting the natural log of the interfering amplitude as a
function of phase shift. Each quantity is determined from the same
interference scan, and therefore at the same time with the same gas target
parameters. This method also takes advantage of attenuating only the
amplitude in one beam, so that the interference amplitude decreases like the
square root of the intensity transmission. The decay constant from a fit to this
data is exactly the ratio we are interested in. Figure 6.7 shows the fitting
procedure for this method when applied to neon and helium.

A fitting procedure that minimizes the total chi-squared for error bars in both
dimensions was used. The algorithm was supplied by a standard numerical
simulation library [PTV92].
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Figure 6.7: Phase shift versus the amplitude of the interference

fringes for helium and neon. The slope of the fit on a semi-log

plot as shown here is minus the ratio of the real to imaginary

parts of the forward scattering amplitude.
It is interesting to make a rough comparison of the relative real and
imaginary parts of the forward scattering amplitude between helium and
neon target gasses. This comparison is limited by uncertainties in the
ionization gauge corrections and gauge accuracy to approximately 30%
relative errors. The imaginary parts of the forward scattering amplitude, and
therefore the total cross section, are the same. The real parts of the forward
scattering amplitudes, however, are different by a factor of ten. This
difference in the real parts would never have been seen by counting particles
in the forward direction. In this case, they look the same in an attenuation
experiment.

The results of the various scattering models and our best experimental
determination of the ratio of the real to the imaginary parts of the scattering
amplitude are shown in Table 6.1. By comparing these results with theory,
we can say several qualitative things about the scattering we have observed.
The interaction with helium looks most like a hard sphere (the ratio being
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very close to zero). The large ratio of real to imaginary part for neon can be
explained by the fact that the positive phase shift is never larger than one
radian, allowing a large accumulation of the real part in the semiclassical
integral. The remaining three gasses have phase shifts that vary more quickly
with impact parameter, and reach much larger positive values. This
produces ratios that are much more like the pure long range interaction,
which has a phase shift that varies like b-(n-1), accumulating large amounts
of phase shift at small impact parameter.

All of the molecular target gasses have ratios that are considerably lower than
that predicted for a pure long range attractive potential from dipole-dipole
interactions. The prediction for r8 (dipole-quadrapole) attraction gives a
lower ratio of 0.48 from the r'™ results of section 6.2. We are currently
attempting to model these results, but are hampered by a lack of atom-
molecule potentials.

" He Ne Ar Kr :-Il
A

%I“[T(")]/n 0.08(4) | 1.13(10) | 0.75(10) | 0.817) | 0.72(7)

m‘?i”] 0.19¢7) | 1.13(11) | 0.78¢9) | 0.97(10) | 0.64(11)

Il Cg only 072 | 072 | 072 | o072 | o7 "
|6—12 potential 112 | o7 068 | 0.69 ]I
6-8 potential 1 133 J

Table 6.1a: Table of the ratio of real to imaginary parts of the
forward scattering amplitude for sodium-noble gasses. The
results are from the experiments and the theoretical models
discussed in this chapter.
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H»0 NH3 CO2 N2 "
Agp 0.66(7) | 0.62(5) | 0.65(6) | 0.57(4)
ln[A,]
Cg only 0.72 0.72 0.72 0.72

Table 6.1b: Table of the ratio of real to imaginary parts of the
forward scattering amplitude for sodium-molecules. The results

are from the experiments and the theoretical models discussed
in this chapter.
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7 The Talbot effect

This chapter will cover the first demonstration of the Talbot effect with
matter waves. In contrast to previous experiments with diffractive atom
optics elements, which were all demonstrated in the far field, this is a near
field interference effect. This deals with near field images produced by
amplitude diffraction grating.

7.1 Theory

The self imaging of periodic structures in the near field was discovered by
Talbot [TAL36] and von Laue [LAU48], and first explained by Rayleigh
[RAY81]. The basic effect is that an amplitude diffraction grating illuminated
by a monochromatic plane wave source produces high quality images of itself
at a series of locations downstream in the near field. These locations are
integer multiples of a distance called the Talbot length, given by p2/A, where
p is the grating period and A is the wavelength of the plane wave. The phase
of the image flips by 180 degrees at each successive image. There are also
images with other periods at different distances downstream which have
been recently explained by Clauser [CLR92].

I will now give a plausibility argument for why the length has the value that
it does. The argument will refer to the geometry in Figure 7.1. If there is a
plane after the grating that has an image that has amplitude oscillations with
the same period p as the grating, you would expect the length difference of the
paths from the two radiators distance p apart to change by 4 when you move a
distance p at the image plane. This means that the path length difference
must be half of the wavelength. By looking at the geometry in Figure 7.1 we
can see that

123



2
(L+%) =I? + p?

By assuming that the wavelength is much smaller than the grating period,
and therefore also L (a small angle approximation), we can expand the square

and arrive at
2

LTalbot = 'pz'
I L+A/2
L

| !
|

b

Figure 7.1: Diagram for the plausibility argument for the Talbot
length. A plane wave with wavelength A arrives from the left.

In the experiment, we masked the image of the grating with another
amplitude grating and translated the masking grating to produce a fringe
pattern. This near field detection is the same as the basic near field detection
process in the interferometer (sections 1.1 and 3.3). There will be high
contrast fringes only at multiples of the Talbot length. By varying the
separation of the imaging grating and the detection grating, we can analyze
the contrast of the Talbot image at various separations.

We have modeled this situation using a coherent ray tracing algorithm that
was developed to model the interferometer [TUR92,TKP93]. This algorithm
performs a coherent sum of the amplitudes for each path through a
succession of planes located at various distances down the model beam line.
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The model was run with an extended source, and propagated through, in
turn: the collimators, the imaging grating, and the detection grating a variable
distance downstream. The transverse position of the detection grating was
moved across the beam line, and the total flux as a function of position was
recorded. The contrast of these fringes is shown in Figure 7.4. These results
show high contrast images for multiples of the Talbot length, as expected.
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Figure 7.2: Calculated contrast of the transmitted intensity as a
function of the separation between the gratings. Open markers
are calculated with a monochromatic source for 200 nm (circles)
and 300 nm (triangles) period gratings. The filled points were
calculated with a polychromatic source.

7.2 Experimental setup

We realized this experiment by replacing the interaction region in the
interferometer with an assembly that holds another grating just upstream
from the second interferometer diffraction grating (Figure 7.3). This holder
allows the distance that the new grating is upstream of the second grating to
be varied. The transverse position of the second grating can be moved with a
piezo-electric transducer (PZT) (this PZT is the same one that is used in the
position servo for the interferometer).

The total transmitted intensity is recorded on the detector. This intensity will
display a fringe pattern with respect to displacement of the second grating if
there is a Talbot image present.
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Figure 7.3: The experimental setup for the Talbot experiment.
The distance between the gratings can be varied, and the total
transmission of the atomic beam with respect to the piezo-
electric transducer (PZT) position is recorded.

7.3 Experimental results

We used gratings of the same period for the first and second gratings. In this
case we expect to see high contrast fringes when we translate the PZT at
integer multiples of the Talbot length. We then expect the transmitted
intensity as a function of PZT position to show high contrast fringes when the
gratings are separated by integer multiples of the Talbot length.

The number of transmitted atoms as a function of the PZT position is shown
in Figure 7.4. This represents the first demonstration of the Talbot effect with
atoms.
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Figure 7.4: Demonstration of the Talbot effect with atoms. The
transmitted atomic beam is correlated with relative PZT
position. This data was taken with 200 nm period gratings at
approximately two Talbot lengths.
We have performed this experiment with 200 nm and 300 nm period
gratings. These two periods yield Talbot lengths of 2.4 mm and 5.5 mm
respectively. The distance between the gratings was varied, and the contrast
of the fringe pattern recorded at each location. We were able to vary the
separation of the gratings from 3.5 mm to 11 mm. The minimum separation
was imposed by the grating mounting system we use. The experimental
results are shown in Figure 7.5.

127



0.5 -
®
0.4+ ) ®
@ e
g 03 ¢
5 ; i ¥
0.2- ¢ ;
0.1 3 I
: P 3 ;8 ¢
0.0 @
! | | |
5 6 7 8
Grating separation (mm)
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8 Molecular diffraction

This chapter will cover our first results with molecular optics. The first
section will describe the production of an intense molecular beam of Naj.
The second section will cover the diffraction of these sodium dimers. The
chapter will end with short discussions of the relative dimer fraction and
speed in the beam, and the response of our detector to the molecules.

8.1 Molecular beam production

We produced an intense molecular beam of sodium dimers using the source
described earlier in this thesis. We used high carrier gas pressures, high
reservoir temperatures (750 Celsius), and nozzle temperatures that were close
to the temperature of the reservoir to enhance the population of sodium
dimers in the beam. The atoms were removed from the beam with resonant
light forces. The maximum fraction of dimers was realized with no
temperature gradient across the source.

The problem remains of removing all of the sodium atoms from the beam, to
leave only the sodium dimers. This was accomplished with the use of a
“pushing laser” located between the collimation slits. Because of the required
frequency stability, we locked the laser frequency to our atomic beam.

The laser lock

The laser locking system is the same as described in Phil Gould’s thesis
[GOU79], but it has been many years since the system has been used, so I will
briefly describe it here. The laser we used for these experiments was a
Coherent model 599 standing wave laser operating at 589.2 nm. The light is
transported to the experiment with a single mode polarization preserving
fiber. A schematic of the optics outside the machine are shown in Figure 8.1.
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pushing beam

lock
beam

Figure 8.1: Optical layout at the beam machine.

A small portion of the laser beam is split off and intersects the atomic beam at
right angles to the nominal beam direction (Figure 8.2). The intersection
occurs after the beam skimmer, and before the first collimation slit where the
beam still has a large angular divergence. This large angular divergence from
a relatively small source means that the transverse velocity of an atom is
correlated with its transverse position.

The laser frequency that a given atom sees is changed by the Doppler shift,
which is the portion of the atomic velocity along the laser beam multiplied by
the wave vector of the laser light. This shift coupled with the correlation of
atomic position and transverse velocity means that for a given laser
frequency, only one transverse position along the laser beam will have atoms
that are in resonance, and are scattering light.

This fluorescence is imaged onto a split photodiode that is located above the
atomic beam and has the two diodes oriented along the laser beam direction.
The imaging system and photodiode can be translated along the laser beam,
allowing the selection of a given frequency shift from the free space atomic
frequency.
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Figure 8.2: The fluorescence laser locking system. The area of
imaged fluorescence is collected onto the split photodiode
located above the page. The location of the imaged region can be
translated along the laser beam, changing the Doppler shift.
The difference of the split photodiode signal is filtered with a low pass filter
and fed back to the laser to complete a lock loop. By using the difference
signal, the sensitivity to stray light, laser intensity fluctuations, and atomic
beam fluctuations, is greatly reduced. This difference signal produces a
dispersion line shape, making the lock easy to implement.

We lock to the stretched state transition, F=2 to P3 /2,F'=3. The laser has 1.713
GHz sidebands that are created with a resonant electro-optical modulator.
This frequency makes the repumping resonant with the F=1 to P3/9,F'=2
transition. When we scan this laser across the two ground state hyperfine
state, we see four lines which are shown in Figure 8.3.
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Figure 8.3: Signal from the split photodiode after amplification.
The laser is scanned across the two hyperfine levels of the
ground state, which are separated by 1.77 GHz. The structure
inside the lines is from the hyperfine structure of the P3/2 upper
state. The inset shows the structure of the largest line.

The pushing laser

The atoms are removed from the beam with resonant light forces. The atoms
absorb photons and the associated momentum from a “pushing laser beam”.
The spontaneous emission of the atoms averages to zero net momentum
change, so the atoms are shoved to the side by the laser (Figure 8.4). The
molecules have no strong optical transition at the same frequency as the
sodium atoms, so they are not shoved out of the beam. The pushing laser
intercepts the atomic beam between the two collimation slits.

In addition, there is a knife edge formed be a razor blade mounted on a
translation stage directly before the laser beam. This knife edge prevents
sodium atoms from being shoved so that they make it through the second
slit. Even though these atoms will have the wrong transverse momentum to
make it to the detector on the beam line, if there is a diffraction grating
directly after the second collimation slit, the atoms will be diffracted back into
the beam line, complicating the interpretation of our diffraction data.
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Figure 8.4: Removal of the sodium atoms from the beam. The
pushing laser imparts a transverse momentum to the sodium
atoms, which fail to arrive at the second collimation slit.

8.2 Diffraction of molecules

One beauty of amplitude diffraction gratings is that the really don’t care what
type of particles they are diffracting (providing the particles will fit through
the slots). Therefore, we are in a position to extend our matter wave optics
and interferometry to molecules.

The molecules in a seeded supersonic beam have nearly the same velocity as
the sodium, so they have twice the deBroglie wavelength, and half the
diffraction angle. This would yield a separation of the diffracted orders at the
detector plane that is roughly the same size as our detected beam width. In
order to increase their diffraction angle we have changed the carrier gas in the
source, and decreased the period of the diffraction gratings.

The velocity of the beam should be given approximately by m ,
where mcgrrier is the mass of the carrier gas. By using krypton as the carrier
gas, we were able to slow the mean velocity down to 750 m/s from the 1000
m/s we get with argon, agreeing closely with the square root of the carrier gas
mass difference. This gives us 4/3 as much diffraction angle as we get with
the argon carrier gas.
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We have performed the molecular diffraction experiment with 200, 140, and
100 nm period diffraction gratings, and krypton as well as argon as a carrier
gas. All that I will discuss here is the data from the 100 nm period gratings,
because it is the most impressive. The separation of the diffracted orders of
the sodium atoms is so wide with the 100 nm period gratings that we can see
the molecules appearing as peaks between the diffracted atomic beams (Figure

8.5). We fit this type of pattern by adding a molecular diffraction pattern to
the atomic pattern in our fitting function.

Na + Na,
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Figure 8.5: Diffraction of sodium and sodium dimers by a 100
nm period diffraction grating. The fit indicates 16.5% of the

intensity is molecules.
There is one danger in identifying the small peaks with half the diffraction
angle as molecules. The same sort of structure could be produced by
irregularities in the grating that have twice the nominal grating period, as has

been observed due to the grating bars collapsing against each other in pairs
[KSS88]. This failure mode is common in weak gratings.

In order to make sure that the small peaks were only sodium dimers, we
took the data in Figure 8.5 and then immediately afterwards turned on the
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Figure 8.6a: -Diffraction with only the molecules remaining in
the beam when the pushing laser turned on. The fit is the same
as in Figure 8.4, indicating that the small orders were entirely
molecules.
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Figure 8.6b: The same data as Figure 8.5a on a linear scale.
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pushing laser beam. This removed only the sodium atoms, and resulted in
the data shown in Figures 8.6a and 8.6b. These figures also includes the fit
from Figure 8.5, showing that the small peaks were entirely molecules.

8.3 Relative velocity of the monomers and dimers, dimer fraction

By fitting the diffraction patterns that contain both sodium monomers and
dimers like the one shown in Figure 8.4, we can investigate the relative
velocities of the two constituents. Any amount that the velocities are
different represent different behaviors in the supersonic expansion. This is
called a velocity slip for the entrained species. We see indications of velocity
slip that increases with decreasing carrier gas pressure. This data is shown in
Figure 8.7.
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Figure 8.7: The ratio of the dimer velocity to the monomer

velocity in our beam as a function of carrier gas pressure. The

dimers show significant velocity slip at low source pressure.
We have also looked at the fraction of dimers in the beam as a function of
source temperature. The data we have is preliminary, but show a definite
enhancement of the dimer fraction with increasing source temperature,
increasing source pressure, and decreasing temperature difference between
the nozzle and reservoir in the source. The data shown in Figure 8.8 shown
the fraction of dimers (by recorded intensity) in our beam as a function of the
mean of the reservoir and nozzle temperatures. This data is complicated by
the fact that the mean temperature is correlated with a decreasing
temperature difference between the reservoir and nozzle.
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Figure 8.8: Fraction of dimers (by detected intensity) in our beam
versus nominal source temperature. The temperature is the
mean of the nozzle and reservoir temperatures.

8.4 Do we get one or two counts on the detector?

An interesting question at this point is how many counts are registered on
our detector for each sodium dimer. If the sodium dimers ionize and are
ejected as ionized molecules, we should see one count. It we are seeing a
sodium ion the question is whether the other sodium atom is ejected as a
neutral or an ion, giving two counts per molecule with a short time delay
between counts.

To investigate this, we have built a system to analyze the spectrum of time
delays between count arrivals. For single atoms that are arriving randomly at
a constant rate, the distribution of delays between counts will follow a
exponential decay as a function of delay time. The decay constant will be the
inverse of the mean count rate. This results from integrating a constant
probability per unit time for when the next count arrives.

To record the distribution of time delays between count arrivals, we start a
timer when an atom arrives, turn it off when the next atom arrives, and then
read out the result of the timer. We implement this by generating a gate
signal and then send it to a counter on one of the computer data acquisition
boards. This gate signal has a length that is the time between two successive
counts. The digital circuit for generating this gate is shown in Figure 8.9.
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This circuit is just a divide by two counter that counts 0, 1, 0, and then disables
itself on the trailing edge of the second pulse, until the reset line is pulsed.
After gating the counter in the computer with the output of this circuit, we
make the time to digital conversion by reading out the counter and
multiplying by the counting time base.
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Figure 8.9: The digital circuit for producing a gate that has the
length between two successive count arrivals.

Figure 8.10 shows the distribution of time delays that we see from the
background count rate from the hot wire detector. The data in the figure were
taken with a background count rate of 120 count per second, and the decay
constant of the exponential in the fit agrees with this count rate. We do not
understand the large number of count delays at 0.4 milliseconds. This feature
is reproducible and only appears when there is no atomic or molecular beam
striking the detector. We have checked for ringing on the detector signal line,
that could produce such a feature, and have found none.

When we study the spectrum of time delays when we have sodium dimers
striking the detector, we see two new features, shown in Figure 8.11. The first
is an exponential decay that matches our constant count rate of 240 counts per
second. The second feature is a steeper decay at short time delays. We
attribute this to two sodium ions being produced from a single sodium dimer,
and infer that the time constant of the decay reflects the time response of the
detector wire. The additional area under the second feature is about 4%.
Unfortunately, to assign the different features with confidence, we should
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have a mass filter on our detector to discriminate between sodium ions,
dimer ions, and other ions from the background.
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Figure 8.10: Distribution of delays between successive counts
from the hot wire detector’s background.
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Figure 8.11: Distribution of delays between successive counts
from the molecular beam. Note the increased probability of
short time delays.
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9 Future experiments

This chapter is a short list of experiments that the interferometer is well
suited for. All of the experiments except for the investigation into molecular
polarizabilities are in various stages of preparation.

9.1 The Aharonov-Casher phase shift

There has been a lot of interest recently in a phase shift proposed by
Aharonov and Casher [AHC84], which is similar in flavor to the Aharonov-
Bohm effect [AHB59]. This phase shift occurs when a neutral particle with a
magnetic moment passes through an electric field. An experimental
investigation of this phase shift was carried out with a neutron
interferometer and an unpolarized neutron beam [COK89].

The existence of this phase shift can be seen from a Lorentz transformation. If
the particle moving through an electric field E with a velocity v, it will see a
magnetic field in its rest frame that is proportional to vE/c. The magnetic
moment will interact with the magnetic field, producing a phase shift. This
phase shift will be proportional to velocity, so as discussed in section 3.4, if the
interaction is applied for a given length in the interferometer, the phase shift
will be independent of velocity. For certain orientations of the dipole, there
will be no classical force on the particle [ANA89].

We plan to perform the experiment with an optically pumped beam of
sodium atoms in our interferometer. The atomic beam will be optically
pumped with the beam that plays the role of the "locking beam" in the
molecular beam preparation described in section 8.1. Magnetic guide fields
will define the direction of the optically pumped atoms through the
interferometer and interaction region.

141



The interaction region will have the same design as used for the polarizability
measurement, and is shown in Figure 4.2. The septum will be held at a large
voltage, and the side plates will be grounded. The electric fields will be
directed in opposite directions in either beam of the interferometer,
producing a net phase shift between the beams. There will also be a large
amount of phase shift from the Stark shift that will be the same for each beam
to within how well we can balance the two sides of the interaction region.

An applied voltage of 5 kV on the septum will produce a 1 radian phase shift
in the interferometer when we change the sign of the voltage. We will also
be able to change the direction of the dipole (the optically pumped atom) with
respect to the interaction region fields. This will allow us another systematic
reversal, and the opportunity to test the directional dependence of the
interaction. It appears that a 10% measurement of the magnitude and
angular dependence of the phase shift should be realizable.

9.2 Berry’s phase

Another possible experiment is the explicit measurement of the Berry phase
[BER84] of the wave function of the sodium beam. We will apply three
magnetic fields at the interaction region. The first is a bias field that is
directed along the y axis (across the interferometer). The second is the septum
magnetic field the arises from passing a current down the septum, through
the interferometer. This field is the same as used in the magnetic rephasing
experiment described in chapter 5. The third field is produced by a screw
winding around the interaction region that produces a field in the x-y plane
(across the interferometer) that rotates once along the interaction region.

This combination of fields will produce total magnetic phase shifts that are
the same for both beams. If the atoms follow the fields, however, they will
traverse paths in angle that have different solid angles, yielding a phase shift

Agogeometric =mg AQevolution

where AQ,, ...ion is the difference in the solid angles of the paths swept out by
the magnetic field on the two sides of the interferometer.

A key feature of this arrangement of fields is that there is no Berry phase for
combinations of the magnetic fields that do not include both the septum and
screw fields. This will allow us to separate out any phase shifts from mis-
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matching of the lengths of the field vectors on either side. The solid angle
difference can be varied by changing the relative size of the field components.
The dependence of the phase on magnetic moment projection can be tested by
optically pumping the beam into different Zeeman states, including one with

no projection along the field axis.
9.3 Inertial sensitivities

The interferometer is an accelerometer. Accelerations cause the gratings to
appear at different transverse positions when the atoms arrive. The phase
shift from a transverse acceleration is

2
Ag= [2n1 ]a

D

where the transit time between gratings is 7 and p is the grating period. This
gives a one radian phase shift for 0.09 m/s2.

The interferometer is also a very sensitive gyroscope. This sensitivity to
rotations is just the response to the Coriolis acceleration. With work to deal
with long term drifts, the current version of the interferometer should be able
to demonstrate a sensitivity of approximately 2x10-7 radians/second (2x10-3
Earth’s rate) in one hour of integration time.

9.4 Molecular interference

A straightforward extension of the molecular diffraction experiment
described in chapter 8 is the demonstration of a molecular interferometer.
The same molecular beam preparation techniques would be used along with
three of the diffraction gratings. All of the infrastructure that has been built
up for the atom interferometer could be used for realization of a molecular
interferometer.

One slight difficulty with this experiment would be the fact that there would
be no clear signature in the interference pattern that molecules instead of
atoms were the interfering particles. This could be addressed by interacting
with the split beams inside the interferometer with some laser light that is
resonant with the atoms. This could be split off of the pushing laser beam.
By demonstrating that this destroyed the interference pattern in the
interferometer containing only atoms it would be clear that when the
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interference pattern did not degrade that the interfering particles are

molecules.
9.5 Molecular polarizabilities

A first application of a molecular interferometer could be a measurement of
the tensor electric polarizability of the sodium dimer. The same style of
interaction region as was used in the sodium polarizability measurement

could by used.

The sodium dimer has an electric polarizability that is roughly the same size
as the sodium atom, but is different by a factor of two for fields applied in the
plane of the molecule versus out of plane. A first generation experiment
without any further modifications would measure the average of the in plane
and out of plane polarizabilities. Later generations of the experiment would
select the rotational state and orientation of the molecule to measure the
independent components. It may be possible to employ the different phase
shifts applied to molecules in different states in an experiment where the
contrast of the interference pattern is modulated. This would be very similar
to the magnetic rephasing experiment described in chapter 5.

Chapter 9 144




References

[AHB59] Aharonov, Y., D. Bohm, “Significance of Electromagnetic
Potentials in the Quantum Theory”,Phys. Rev. 115, 485 (1959).

[AHC84] Aharonov, Y., A. Casher, “Topological Quantum Effects for
Neutral Particles”,Phys. Rev. Lett. 53, 319 (1984).

[ANAS89] Anandan, J., Interactionof a Dipole with the Electromagnetic
Field: Quantum Interference, Classical Limit, and Field Equations, 3rd Int.
Symp. Foundations of Quantum Mechanics Tokyo, 1989), pp. 98.

[BER84] Berry, M. V., Proc. Roy. Soc. A 392, 45 (1984).

[CAL75] Chang, B. ], R. Alferness, E. N. Leith, “Space-invariant
achromatic grating interferometers: theory”,Applied Optics 14, 1592 (1975).

[CAM91]  Carnal, O., J. Mlynek, “Young’s double slit experiment with
atoms: A simple atom interferometer”,Phys. Rev. Lett. 66, 2689 (1991).

[CLA92] Personal communication with John Clauser

145



[CLR92] Clauser, J. F., M. reinsch, “New Theoretical and Experimental
Results in Fresnel Optics wiht Applications to Matter-Wave and X-Ray
Interferometry”,App. Phys. B 54, 380 (1992).

[COK89] Cimmino, A., et al., “Observation of the Topological Aharonov-
Casher Phase Shift by Neutron Interferometry”,Phys. Rev. Lett. 63, 380-383
(1989).

[COW75] Colella, R., A. W. Overhauser, S. A. Werner, “Observation of
Gravitationally Induced Quantum Interference”,Phys. Rev. Lett. 34, 1472
(1975).

[DES72] Diiren, R., A. Frick, C. Schlier, “Glory undulations of some
alkali-molecule systems”,]. Phys. B 5, 1744 (1972).

[DRS68] Diiren, R., G. P. Raabe, C. Schlier, “Exact Potential from
Scattering Measurements: Alkali-Rare Gas Systems”,Z. Phys. 214, 410 (1968).

[EKP92] Ekstrom, C. R., D. W. Keith, D. E. Pritchard, “Atom Optics Using
Microfabricated Structures”,App. Phys. B 54, 369 (1992).

[ERT93] Personal communication with W. Ertmer

[ESS30] Estermann, 1., O. Stern, “Diffraction of Molecular Beams”,Z.
Phys. 61, 95 (1930).

[FAP99] Fabry, C., A. Perot, Ann. Chim. Phys. 16, 115 (1899).

[F1Z62] Fizeau, H., Ann. Chim. Phys. 66, 429 (1862).

References 146




[GALS81] Gottscho, R. A., R. Ahmad-Bitar, W. P. Lapatovich, I. Renhorn,
D. E. Pritchard, “Global analysis of the NaNe eximer band systems: A
molecule between Hund’s cases”,]. Chem. Phys. 75, 2546 (1981).

[GOU79] Gould, P. L., “Momentum Transfer to Atoms by Absorption and
Emission of Radiation” PhD, MIT (1979).

[HAZ74] Hall, W. D,, J. C. Zorn, “Measurement of alkali-metal
polarizabilities by deflection of a velocity-selected atomic beam”,Phys. Rev. A
10, 1141 (1974).

[KAC91] Kasevich, M., S. Chu, “Atomic Interferometry using Stimulated
Raman Transitions”,Phys. Rev. Lett. 67, 181 (1991).

[KAS92] Kasevich, M. A., “Atom Interferometry in an Atomic Fountain”
PhD, Stanford (1992).

[KEI91] Keith, D. W., “An Interferometer for Atoms” PhD, MIT (1991).

[KET91] Keith, D. W., C. R. Ekstrom, Q. A. Turchette, D. E. Pritchard, “An
Interferometer For Atoms”,Phys. Rev. Lett. 66, 2693 (1991).

[KOHS3] Klein, A. G., G. I. Opat, W. A. Hamilton, “longitudinal
Coherence in Neutron Interferometry”,Phys. Rev. Lett. 50, 563 (1983).

[KSS88] Keith, D. W., M. L. Shattenburg, H. I. Smith, D. E. Pritchard,

“Diffraction of Atoms by a Transmission Grating”,Phys. Rev. Lett. 61, 1580
(1988).

147



[KWGS83] Kaiser, H., S. A. Werner, E. A. George, “Direct Measurement of
the Lontgitudinal Coherence Length of a Thermal Neutron Beam”,Phys. Rev.
Lett. 50, 560 (1983).

[KWR91] Kasevich, M., et al., “Atomic Velocity Selection Using
Stimulated Raman Transitions”,Phys. Rev. Lett. 66, 2297 (1991).

[LAUA4S] Lau, E., Ann. Phys. 6, 417 (1948).

[MAC92] Mach, L., Zeitschr. f. Instrkde 12, 89 (1892).

[MAS62] Maier-Leibnitz, H., T. Springer, “An Interferometer for Slow
Neutrons”,Z. Phys. 167, 386 (1962).

[MIB78] Miller, T. M., B. Bederson, “Atomic and Molecular
Polarizabilities-A Review of Recent Advances” in Advances in Atomic and
Molecular Physics(Academic Press, 1978), vol. 13, pp. 1-55.

[MIB88] Miller, T. M., B. Bederson, “Electric Dipole Polarizability
Measurements” in Advances in Atomic and Molecular Physics(Academic
Press, 1988), vol. 25-60, pp. 37.

[MIC82] Michelson, A. A., “Interference Phenonena in a new Form of
Refractometer”,Phil. Mag. 13, 236 (1882).

[MIM87] Michelson, A. A., E. W. Morley, Phil. Mag. 24, 449 (1887).

[MOD54] Mollenstedt, G., H. Duker, “Frensnelscher interferenzversuch
mit einem Biprisma fur ekektronenwellen”,Naturwissenschaften 42, 41
(1954).

References 148




[MPV91] Miniatura, C., et al., “A longitudinal Stern-Gerlach
interferometer: the <<beaded>> atom”,]. Phys. I 1, 425 (1991).

[MSM74] Molof, R. W,, H. L. Schwartz, T. M. Miller, B. Bederson,
“Measurements of electric polarizabilities of the alkali-metal atoms and the
metastable noble-gas atoms”,Phys. Rev. A 10, 1131 (1974).

[MSS53] Marton, L., J. A. Simpson, J. A. Suddeth, “Electron Beam
Interferometer”,Phys. Rev. 90, 490 (1953).

[MSS54] Marton, L., J. A. Simpson, J. A. Suddeth, “An Electron
Interferometer”,Rev. Sci. Instr. 25, 1099 (1954).

[OHASS] O’Hanlon, J. F., A User’s Guide to Vacuum Technology (Wiley,
1988).

[PTVI2] Press, W. H., S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing (Cambridge
University Press, 1992).

[RAYS81] Rayleigh, L., Phil. Mag. 11, 196 (1881).

[RKW91] Riehle, F., T. Kisters, A. Witte, J. Helmcke, C. J. Borde’, “Optical
Ramsey Spectroscopy in a Rotating Frame: Sagnac Effect in a Matter-Wave
Interferometer”,Phys. Rev. Lett. 67, 177 (1991).

[RSS93] Rieger, V., K. Sengstock, U. Sterr, J. H. Miiller, W. Ertmer,
“Atom-interferometric determination of the dc-Stark shift of the Mg-
intercombination line”,Opt. Comm 99, 172 (1993).

149



[RTB74] Rauch, H., W. Treimer, U. Bonse, “Test of a Single Crystal
Neutron Interferometer”,Phys. Lett. 47A, 369 (1974).

[RZB75] Rauch, H,, et al., “Verification of coherent spinor rotation for
fermions”,Phys. Lett. 54A, 425 (1975).

[SAKS5] Sakurai, J. J., Modern Quantum Mechanics (Addison-Wesley,
1985).

[SSM92] Sterr, U., K. Sengstock, J. H. Miiller, D. Bettermann, W. Ertmer,
“The Magnesium Ramsey Interferometer: Applications and Prospects”,App.
Phys. B 54, 341 (1992).

[SST92] Shimizu, F., K. Shimizu, H. Takuma, “Stark Phase Shift and
Deflection in the Ultracold Atomic Interferometer”,Jpn. J. Appl. Phys. 31, L436
(1992).

[TAL36]  Talbot, H., Phil. Mag. 9, 401 (1836).

[TPK92] Turchette, Q. A., D. E. Pritchard, D. W. Keith, “Numerical model
of a multiple-grating interferometer”,JOSA B9, 1601 (1992).

[TUR91] Turchette, Q. A., “Numerical Model of a Three Grating
Interferometer for Atoms” SB, MIT (1991).

[WEI93] Weiss, D. S., “A Precision Measurement fo the Photon Recoil of
an Atom using Atomic Interferometery” PhD, Stanford (1993).

References 150




[WSC79] Werner, S. A., J. Staudenmann, R. Colella, “Effect of the Earths
Rotation on the Quantum Mechanical phase of the Neutron”,Phys. Rev. Lett.

42,1103 (1979).

[ZENO91] Zender, L., Zeitschr. f. Instrkde 11, 275 (1891).

151



Acknowledgments

Now the time has come to thank everyone who has helped with the work in
this thesis, or helped me through my graduate career.

The people who deserve the first thanks are my parents Janice and Philip
Ekstrom. They have supported me in all ways and instilled in me curiosity
and a love of discovery. My wife Gretchen has been a constant source of
support and tolerance to the demands of the lab.

I have had the pleasure of working on the experiment with a large number of
extremely competent people without whose help this work would not have
happened. They are all good friends as well as co-workers. David Keith was
the driving force behind the first demonstration of the atom interferometer.
The experiment still bears the marks of our Led Zeppelin fueled building
frenzies. Bruce Oldaker was a calming influence on me and the lab, trying to
create order from the chaos. The current interferometer crew is a great group:
Mike Chapman, Troy Hammond, Jorg Schmiedmayer, Richard Rubenstein,
and Stefan Wehinger. All of these people have contributed to the high
quality of life on the experiment, helping to make the work enjoyable and
possible. I enjoyed working with you all.

The interferometer has benefited from the efforts of the many
undergraduates whom I have worked with. They are: Quentin Turchette,
Garth Zeglin, John Berberian, Amrit Pant, Eliot Quaterat, Richard Pengelly,
and Bridget Tannian.

Dave Pritchard's lab is a great place to do physics, learn, and meet new friends.
Dave has provided large amounts of guidance and taught me to quickly think
through a physics problem to filter what is worth spending time thinking
about or working on. I hope that I have also learned something about "taste"
in experiments from his examples. He has managed to keep us all funded
and surrounded with a steady stream of interesting people in a stimulating
environment.

152




Carol Costa is our group secretary and always knows just how to get
something done at MIT. Peggy Berkovitz is our wonderful graduate secretary.
She seems to always make graduate life simpler.

There are two other experiments in Dave’s lab that are populated with great
folks. The neutral trap crowd have been good compatriots and generous with
their lasers that we use in some of our experiments. Wolfgang Ketterle has
been a great source of ideas and help in the lab. Kris Helmerson always had
time to help someone else, and probably had a good idea about how to solve
your problem. Mike Joffe is a good friend, and valuable source of practical lab
techniques. The rest of the crowd have been great: Alex Martin, Michael
Andrews, and Min Xiao.

The ICR gang have provided help with problems electronic, and broadened
the horizons of the lab by using atoms other than sodium. I enjoyed talking
about obscure physics with Vasant Natarajan, and audio with Kevin Boyce. I
have enjoyed the rest of the gang as well: Frank DiFilippo, Eric Cornell, Mike
Bradley, and Abe Stroock.

The friendships I have gained from the Pritchard group extend beyond people
now in the lab. Warren and Debbie Moskowitz still invite crowds of
Pritchard group people up to they’re house for wonderful parties. Rick Stoner
an Brian Stewart are great friends as well.

I have benefited from knowing and working with many of the graduate
students in the Kleppner group. I must thank Robert Lutwak for lab hints,
computer support, and conversations over coffee in the morning. Jeff Holley,
Scott Paine, and Peter Chang, from the same experiment, were always friendly
and helpful.

I must also acknowledge the rest of the Kleppner group that I have
overlapped with: Mike Kash, George Welsh, Hong Jiao, Michael Courtney,
Barbara Hughey, and Tom Gentile.

In closing, thanks to all of you for making my years as a graduate student
something that I will be able to look back on happily and feel that it was all
worth while. T would do it again because of you.

153






