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Abstract

We have conducted a dynamic light scattering study of the homeotropically aligned
highly swollen lamellar phase (layer separation d ~ 180nm) of a non-ionic binary
system (C12E5/water) where the steric and entropic repulsion is the dominant inter-
membrane force stabilizing the lamellar order. We have identified a hydrodynamic
mode in the two momentum transfer limits available to light scattering. Based on
previous models, we have found an explicit expression for the dispersion relation of
this “baroclinic” or “slip” mode for systems with large layer spacing which successfully
explains our experimental results. When d is large, the bilayer curvature elasticity
and the viscous coupling between water and the bilayers become more important to
the understanding of the baroclinic mode. We found the curvature elastic constant
k. ~ kpT, consistent with generally accepted values for flexible membranes.

We have successfully swelled lyotropic lamellar phase of OBS /pentnol /water/decane
from 180nm to 1pm in layer spacing d, using a phase separation method. Moreover,
each of these lamellar phases evolves into a continuous distribution of phases with
different layer spacing when being put in a vertical container. By using Bragg powder
light scattering, we found a linear dependence of the depth from the top of the fluid
h vs. 1/d. We interpret our finding as the result of force balance between gravity and
the Helfrich interaction.

Furthermore, a layer spacing distribution over depth in one sample enables us to
to measure consistently the Bragg peak lineshapes at different layer spacings. We
have discussed the framework of the Landau-Peierls instability as applied to highly
swollen lamellar phase, the effects of finite size and powder averaging and are able to
fit our experimental data with a Kummer’s function, which is a good approximation
to describe the Landau-Peierls instability in our system. We find that the power law



exponent 7 = 0.47 £ 0.09, independent of the layer spacing within our experimental
accuracy, in the range of d = 4000A to d = 1um.

Finally, we have conducted dynamic light scattering near the Bragg peak at one
layer spacing and find an approximate relation, w ~ (¢ — ¢o)?, where w is the imagi-
nary decay frequency of the dynamic process measured.

Thesis Supervisor: J. David Litster
Title: Professor of Physics
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Chapter 1

What We Have Accomplished in
This Thesis Research

At the beginning of this thesis we will have an overview about the goals we have
accomplished in this thesis research. We will answer questions like: ‘What new un-
derstandings have you gained about lyotropic liquid crystals through your research?’;

‘What have you found?’; Or ‘What is the significance of your research?’.

1.1 The First Result: Sample Making

The first goal we accomplished is: we have made two highly swollen samples. Highly
swollen lyotropic liquid crystals are relatively a new class of liquid crystal structures
that have been discovered only in recent years. The phase diagrams are not well
established. In addition, their dilute nature makes them much less stable and more
difficult to align than conventional thermotropic or lyotropic liquid crystals. Some-
times it takes a lot of work simply to reproduce a sample whose phase diagram has

already been published.
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Based on Strey et al.’s phase diagram [1], we have been able to make an oriented
C12E5/Water lamellar phase of layer spacing d ~ 1800A. The evidence of lamellar
order is that the phase can have high magnetic birefringence but at the same time
can be aligned to have optical distinction under a cross-polarized microscope. We
found a method of avoiding phase separation and quickly aligning the sample.

Based on the work of Larche et al. [10], we obtained a non-oriented lamellar phase
of 4-component OBS system with layer spacing d from 1800A to 1um. We used a
phase separation method which is a little different from the method of Larche et al.’s.
Larche et al.’s system has a maximum layer spacing d ~ 60004. We were able to see
brilliant color and beautiful Bragg ring from these lamellar phases as the absolute
evidence of lamellar order up to this large scale.

Moreover, we discovered for the first time a layer spacing distribution in a column
cell of the OBS lamellar liquid.

Our ’hands-on’ experiences and experimental realizations of the two highly swollen
lamellar phases, especially the OBS system, open a new avenue for more systematic
and thoroughly conducted research in this direction for the MIT lyotropic liquid

crystal research.

1.2 The Second Result: Confirmation of Helfrich

Interaction

We have tested the Hefrich formulation of membrane-membrane interaction in highly
swollen systems in several ways.

In experiments of C12E5 and water system, Helfrich formulation combined with
Brochard and de Gennes’s hydrodynamic model [7] of lipid-water system can explain

our dynamic light scattering results. This part of work has been published in Ref. [22].
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In experiments of the OBS system, Helfrich interaction is related to an external
force (gravity) to explain the observed layer spacing distribution. Finally, in the
Bragg peak measurements, the calculated power law exponent 7 based on the Helfrich
interaction is expected to be independent of the layer spacing. This is approximately

confirmed.

1.3 The Third Result: Dynamic and Static Be-
haviors of Highly Swollen Lamellar Phase

In the courses of analyzing our experiments, we have gained new understandings of the
dynamic and static behaviors of highly swollen lamellar system. We have extended
the Brochard and de Gennes’ hydrodynamic model in describing the thermal fluctua-
tions of largely spaced membrane system and applied the model to the C12E5/Water
system to study the baroclinic mode of this system. We found k. >~ kgT', consistent
with generally accepted values for flexible membranes.

We have reconfirmed the Bragg peak lineshape due to the combined effect of the
Landau-Peierls instability, the finite size and the powder averaging in the powder
sample of the OBS system, with layer spacing ranging from 4000A to 1um.

Finally, we have conducted dynamic light scattering near the Bragg peak and find

that the imaginary decay frequency w ~ (¢ — q0)2.

1.4 Research in Perspective

First of all, the structures of the OBS system need to be further investigated. What
kind of lamellar phases are they? Do they look like ‘onions’? What exactly are their

sizes? What are the boundaries of the lamellar pieces like?
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Secondly, we should be able to obtain oriented OBS sample fairly easily. With
an aligned sample, both the static intensity measurement of the Bragg peak and the
dynamic light scattering near Bragg peak will be very interesting.

Finally, experiments can also be conducted in high magnetic field which is available
in the Francis Bitter National Magnet Lab. The large magnetic susceptibility of
OBS molecule (which contains a benzane ring) makes the high field experiment more
desirable. Magnetic field can serve as a controlled external parameter in studying the

thermal fluctuations of the OBS system.



Chapter 2

Introduction to Complex Fluid

The basic building block of our system is a surfactant molecule with a polar head
group and a hydro-carbon tail group as shown in Fig. 2-1. When being put in water,
the atoms in the head group that have strong negative electric affinity such as oxygen
atoms or nitrogen atoms tend to form hydrogen honds with hydrogen atoms of water.
On the other hand, the hydrocarbon tail can not form such bonds with the water
molecules; the existing hydrogen bonds of water have to be bent to leave extra room
for the tail to stay in water. So the energy cost for the head group staying in water
is much less than that for the tail group. If there is an interface between water
and oil (whose molecular structure is similar to the hydrocarbon tail), the surfactant
molecules tend to stay in the interface with their head groups in the water side and
their tails sticking to the oil side to keep the free energy of the whole system the lowest.
So the head group is hydrophilic and the tail group is hydrophobic. Furthermore,
since the hydrogen bond energy depends on temperature, both the hydrophilicity
and hydrophobicity depend very much on temperature. Therefore, depending on the
molecular types, temperature and compositions of the phase, surfactants can form

various complex structures in solutions. These structures have defined a new field of
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Head group Tail group

Figure 2-1: A sketch of a surfactant molecule

research called complez fluid. In the following paragraphs, we will have a brief tour
in the field of complex fluid using some specific examples.
A typical non-ionic surfactant used in our experiment is dodecylpentoglycol(C12E5).

Its molecular properties are listed in Appendix A . It is non-ionic in the sense that
the head group does not contain ionic particles. First, let us examine the structures
of C12E5/water binary system. Its phase diagram is shown in Fig 2-2. At low con-
centration, the surfactants can aggregate into spherical or cylindrical objects called
micelles where the tail groups hide themselves inside micelles to reduce their exposure
to water (see Fig. 2-3). Although the entropy of a solution in micellar form is less than
that of a solution with free swimming surfactants, the lower energy cost of micellar
state make it a more favorable state for the system to stay. Micelle is a relatively
loose structures because surfactant molecules in a micelle constantly exchange posi-

tions with those free in solution; the system is in a dynamic equilibrium. At another
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Figure 2-2: C12E5/water phase diagram (from Streyet al.[1])

region of the phase diagram (Fig. 2-2), surfactants forms bilayers to squeeze water
out of the interiors of the bilayers and these bilayers stack to a lamellar structure
called L, phase that can have layer spacing up to several thousands angstroms (see
Fig. 3-1 in Chapter 3). A close neighbor of the L, phase is the L3 phase. Instead
of stacking to a lamellar structure, the bilayers curve up to form an isotropic, non-
birefringent phase that is believed to be of connected cubic structures [3]. Fig. 2-4
shows a schematic visualization of the L3 topology.

For ternary system of C12E5/water/decane (or a 4-component system when co-
surfactants are added), analogies can be drawn to corresponding structures in the
two component system. Microemulsions are similar to, but more stable than micelles.

Three component lamellar phase is much like the binary lamellar phase except that
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Figure 2-3: Micellar solution (from [2])

it can be swelled both by water and by oil (called inversely swelling). Bicontinuous
phase resembles the L3 phase except that the symmetry regarding the two sides of
the layers is not conserved.

Vesicles are another interesting neighbor of L, phase. A vesicle comprises one
or several bilayers surrounding a pocket of fluid (see Fig.2-5). It is the closest re-
semblance of a living cell thus of the most biological importance among the complex
fluid members. The volume ratio of head to tail is often crucial to the formation of
vesicles. Vesicles made of C12E5 molecules have not been observed. In Chapter 5,
we come across one kind of vesicle made of SDBS, CTAT and water[5].

A more recently discovered structure is tubules that can be as long as 1uym. The

wall of the tubes is of bilayer structures.
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Figure 2-4: L3 topology (from [4])

It is clear that membranes (mostly bilayers) are important components in many
of the complex fluid structures and widely exist in biological system. From a physics
point of view, membranes provide a good system to test certain law of physics

Our goal of research was to study the most regular phase of complex fluid, the
lamellar phase (also called neat phase) in its highly swollen range, thus to gain knowl-
edge about the properties of membranes and the interaction mechanism between them
in this phase. These knowledge can be applied to other membrane structures such as
vesicles and tubules.

As results, we have been able to obtain experimentally two highly swollen lamellar
phases, an oriented C12E5/Water system with layer spacing d ~ 18004 and a non-
oriented OBS/pentanol/water/decane system, with d ~ 18004 to 1um. The OBS
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Figure 2-5: Vesicle (from [2])

system is a inversely swollen lamellar phase with oil (decane) as its diluent.

In the first system, we did dynamic light scattering from a well aligned sample
on a vertical scattering geometry. We identified a hydrodynamic mode in the two
momentum transfer limits available to light scattering and conclude that the hydro-
dynamic model of Brochard and de Gennes [7] combined with Helfrich interaction [6]
mechanism can be applied to this highly swollen system. We also illustrated more
important roles of the bilayer curvature elasticity and the viscous coupling between
water and the bilayers in this swollen range.

In the second system, with layer spacings matching the wavelength of visible light,
we were able to see the Bragg powder ring with light. This is a direct evidence of the

lamellar order. Being able to measure precisely the layer spacing, We found that the
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OBS lamellar phase evolved into a continuous distribution of subphases with varying
layer spacings when being put in a vertical container. There is a linear dependence
of 1/d on the depth h of the subphase from the top of the fluid. We attempted to
explain this dependence as the result of gravitational compression. This layer spacing
distribution over depth in a single sample also enabled us to measure consistently the
Bragg peak as d changes. We confirmed the Bragg peak lineshapes due to the Landau-
Peierls instability[8] for powder sample with layer spacings from 40004 to 1um.

Led by Dr. Sam Sprunt, we have conducted birefringence study of C12E5/water/octane
microemulsion and lamellar to Lz phase transition in high magnetic field. This part
of work is not included in this thesis. It is being published.

The outline of this thesis is: In Chapter 3, we will describe the experimental pro-
cedures to make the above mentioned two kinds of lamellar phases. In Chapter 4, we
will discuss the Helfrich formulation of layer-layer interaction and the hydrodynamics
based on Brochard and de Gennes’ model. In Chapter 5, we will discuss the basics
of dynamic light scattering and the scattering results from solutions of polystyrene
latex sphere and vesicles using a vertical light scattering setup. In Chapter 6 we will
discuss the light scattering results from the C12E5/water system using the vertical
setup. In Chapter 7, we will discuss the layer spacing distribution of the OBS system
and the Bragg peak lineshapes due to Landau-Peierls instability in layered structure

system.



Chapter 3

The Making of Lamellar Phases

3.1 C12E5/Water System

In this section we will have a close examination of the phase behavior of the binary
system of C12E5/Water system, based on the previous work of Strey et al. [1], and

discuss our experiences in making this highly swollen lamellar phase.

3.1.1 Phase Behavior

The phase diagram of C12E5/Water has been studied by Strey et al. and is shown
in Fig. 2-2. They find that lamellar structure can exist at dilution as high as 99 wt.%
water, yielding a lamellar phase with layer spacing d exceeding 3000A. A sketch of the
structure of C12E5/water lamellar phase is shown in Fig. 3-1. The surfactants form
bilayers with thickness (=3.75nm [1]; geometrically, d is determined by the surfactant

volume fraction ¢ according to the simple relation:

d~

(3.1)

o1
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Figure 3-1: A sketch of the structure of a binary lamellar phase

The C12E5 we used was obtained from Fluka and used without further purifi-
cation. The water was triply distilled. Observations under microscope for several
samples ranging from 1.5wt.% to 7wt.% surfactant basically match Strey et al’s
phase diagram.

Take a sample of 2wt.% C12E5 and 98 wt.% water for example. At room temper-
ature, sample looks isotropic and transparent, there is no birefringence under cross
polarizer. It is believed to be in micellar phase. As we raise temperature slowly to
T = 31 C°, clouds appear. The phase is experiencing phase separation. The clouds
consist of numerous small droplets of a new phase emerging from the background

of the older phase. As temperature gets higher, droplets get larger, the two phases
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separate macroscopically. Both phases show no birefringence under cross polarizers.
They co-exist until T = 53 C°. These two phases are designated by Strey et al. as
L) and L]. As T is higher than 53 C°, they tend to rejoin each other and form
lamellar clusters that have strong birefringence (dark and white texture under cross
polarizer). This rejoining process takes a long time and the resulting lamellar phase
is not uniform at all. It often happens that certain regions have a higher concen-
tration of C12ES5 than its neighbors and form local metastable phases with unknown
concentrations. This cause problems when we want to get uniformly aligned lamel-
lar phase. We will discuss a way to solve this problem in the next section. These
lamellar pieces are kept until T = 61 C°. Right above this temperature, they start to
melt into a isotropic, non-birefringent liquid. This is the Ls phase, about 3 C° wide.
When temperature reaches 65 C°, clouds appear again, similar to the earlier clouds.

This indicates that L; phase is emerging from the background of L3 phase.

3.1.2 Sample Cell and Temperature Control

The sample cell is made of two fused silica windows separated by a 0.4mm teflon
spacer which also serves as a gasket to seal the cell (see Fig. 3-2). The shaded
area in Fig. 3-2 is the cross section of stainless steel (which is non-magnetic for
future experiments in the magnetic field) container which serves to hold the windows
together. The stainless steel container is in direct contact with the walls of our light
scattering oven. The oven is electrically heated through a feedback bridge circuit so
that the resistance of a high precision thermistor is compared with a pre-set value of
another resistor for the desired temperature. A third ultra stable precision thermistor
provides a separate measurement of the actual temperature inside the oven. This
measurement is pre-calibrated with a standard quarts thermometer. The temperature

measured by the quartz thermometer should be related to the resistance of the third
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window

sample

Figure 3-2: Cell used to make C12E5 sample andto do light scattering experiment

thermistor by,
T = [ag + arlog (R)] ™' + a3 [log (R)]* + a3 [log (R)]* — 273.15 (3.2)

where T is in C°, R is in ohms. «aq, ai, a9, az are found by fitting the measured
data using the above equation. The fit is shown in Fig.3-3. It should be emphasized
that the coefficients depend on the structure of the oven and the effectiveness of the
insulation. So, new calibration should be conducted for oven under new conditions,

even though the ultra-stable thermistor is still the same.
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Figure 3-3: Oven temperature calibration from a quarts thermometer

3.1.3 Making a Uniformly Aligned Lamellar Phase

To get uniformly aligned lamellar phase, we use a what we call temperature ”shock”
and "cycling” treatment. We load the 2 wt.% sample to the cell at room temperature,
and bring T suddenly to T = 57 C°, so that the sample skips the L) + L’l' region as
quickly as possible not to cause macroscopic phase separation. Local phase separation
does occur, but they quickly rejoin each other and forms lamellar texture with non-
uniform region much smaller than that in the slow process described in the last section.
Then we allow the sample to stay in this L, phase to equilibrate for 24 hrs. Under
cross polarizers, we see evenly spreaded dark/white textures. The white region are

the region where the lamellar layers are not completely aligned along the silica plates.
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Finally, the sample is brought to the narrow isotropic L3 region and is slowly cooled
(0.1 C°/minute) back to the L, phase. This final process can be done more than once,
until we see uniform darkness under microscope and cross polarizers, well aligned L,
is finally achieved. The whole process is done with the cell being put horizontally, so
that gravity plays the minimum role in phase separation. In the following chapters
on light scattering from this phase, the scattering plane has to be vertical to satisfy
this requirement for sample position.

The layer spacing d is slightly larger than calculated from Eq. (3.1) according to
Strey et al.. They claims that thermally induced undulations of bilayers cause the
increase of average layer spacing. The increased average layer spacing of 2wt. %

sample is estimated to be 1800A.

3.2 OBS/Pentanol/Water/Decane System

Sodium p-benzenesulfonate (OBS) is an ionic surfactant which can be used to form
lyotropic liquid crystals together with long chain alcohol molecules (e.g. pentanol) and
water. According to Marignan et al. [9], the lamellar liquid crystal which contains,
by weight, 39.5% OBS, 18% pentanol, and 42.5% water has a layer spacing 35A.
According to Larche et «l.[10, 11], it can be swollen by a diluent of 92% decane and
8% pentanol by weight, up to 0.7% volume fraction of the initial liquid crystal, yet
still keeps its smectic order. This corresponds to a maximum layer spacing of 6000A.
Fig. 3-4 show the structure of this inversely swollen lamellar phase. Our goal is to
obtain a lamellar phase with layer spacing greater than 30004 so that light scattering
can be used to study the Bragg peak. First, we calculated the weight percentage
of each component to make a sample of desired layer spacing of several thousands
anstroms based on the recipe of Ref [11]. Then we put the four components needed

into a bottle at room temperature (25C°). OBS was 4-benzenesulfonate obtained
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Figure 3-4: Inversely swollen OBS lamellar structure (from Larche et al.[11])

from Aldrich Chem. Co. (98% pure). Water was triply distilled, 1-pentanol(99%
pure) and decane(98% pure) are both from Fluka. But we could not get a lamellar
phase, because after being mixed thoroughly, there appeared many colorful strips.
These strips are the crystallizations of OBS together with small amount of water and
pentanol.

Then we tried to swell the original liquid crystal step by step, using the same
diluent of decane/pentanol as Ref [10]. We found that at least from 20 to 50 times
volume swelling, the mixture tends to have phase separation into two phases, an
upper transparent phase and a lower non-transparent white phase. The upper phase
is proved to be lamellar phase by Bragg light scattering. This phenomenon can be

qualitatively understood from the phase triangle in Fig. 3-5 quoted from Ref. [12]
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Figure 3-5: Phase triangle (from Bellocq et al.[12])

where SDS and dodecane were used instead of OBS and decane (we expect SDS and
OBS have similar properties). The D phase is the lamellar phase, the shaded areas
are multi-phase regions. Because the lamellar phase occupies only a narrow strip
in the phase triangle, especially toward the dodecane corner, the mixture has large
chance to enter the multi-phase region (the bottom white phase in our container) to
accommodate excessive components unnecessaray for the formation of lamellar phase.
These components include certain amount of surfactants in our case, because we found
that the upper lamellar phase has a much less surfactant concentration with a layer
spacing much larger than that being calculated if we assume a one phase volume
swelling. For example, with 24 times dilution (OBS 1.605 wt%, pentanol 9.103 wt%,

water 1.738 wt%, decane 87.554 wt%) of the original liquid crystal, the upper lamellar
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Figure 3-6: A sketch of the Bragg powder light scattering from the OBS sample

phase has a layer spacing d ~ 3000A. By changing the amount of water or pentanol
slightly near the given phase point, we can change the layer spacing of the upper
phase significantly. We are able to get a lamellar phase of d ~ 1800A to 1um.

This unaligned lamellar phase (analogous to the powder sample of crystal in x-
ray scattering) scatters laser light into a distinctive ring shape on a screen. Fig 3-6
schematically shows the experimental setup. The dimmer ring on the left is the Bragg
ring from the reflected beam by the glass window. When d is greater than 40004,
the sample displays a brilliant purple or blue color under white light, especially after
being gently shaken(not strips, but colorful cloud). These are the direct evidence of
the existence of lamellar order.

According to Ref. [11], their swollen lamellar phase has a strong tendency to align
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and can align along the glass wall of a 10mm diameter tube, while our lamellar phase
of comparable layer spacing stays as powder form even in a rectangular cell of path
length of 2 mm.

We suck out a fraction of the upper phase into a tall square light scattering cell.
The inside dimension of the cell is: 2mm x 10mm x 30mm. After about 4 weeks, we see
a continuous distribution of ring sizes, corresponding to a distribution of inter-layer
spacings, as we move laser beam along the vertical direction. We take photographs of
the two rings at two different beam height and put them at the end of this chapter.
The beam spot is at a higher position in the first picture than that in the second
picture. The wave length of light is the same in both pictures, the diferent colors are
due to different exposure times in taking the two pictures. The ring size does not
change along the horizontal direction. It is worth noting that similar effect has been
observed in a crystallized suspensions of polystyrene spheres [13]. We will examine

this phenomenon in detail in Chapter 7.



Chapter 4

Theory of Swollen Lamellar

Phases

4.1 Helfrich Interaction

As we see in Chapter 3, both ionic and non-ionic lamellar phase can be swollen to
several thousands angstroms. In this swollen range, hydration effect vanishes since it
is very short ranged. Van der Waals interaction between bilayers is also very small,
since it scales as 1/d*.

So, for a non-ionic highly swollen lamellar phase such as C12E5/water, what
force holds stack of layers together so that they do not collapse into vesicles or other
colloidal forms?

For the ionic system of OBS, there was an electrostatic interaction that could be
long ranged, but by choosing oil (decane) dilution, this force is very much reduced to
insignificance [9, 14]. So, we can ask the same question that is yet to be answered for
the non-ionic system.

The answer is that the membranes of these highly swollen lamellar phase are very
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Figure 4-1: Membrane displacement from equilibrium

flexible and thermal fluctuations of membranes cause them to repel each other. It is
this repulsion formulized by Helfrich [6] that stabilizes the lamellar order up to very
large scale.

We use a slightly different approach from Helfrich’s in the formulation of the
steric and entropic repulsion. For a stack of lamellar membranes, let u (x,y, z) be the
displacement function of each layer in the z direction from its equilibrium (Fig. 4-1).

At any instant, the energy F that is related to compression in the z direction as well
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as splay in the z,y direction can be written as:

1. (ou\® 1 (0% o%\?| ,

where V is the sample volume. B is the compression modulus and I = k./d, k. being

the curvature elastic constant of a single membrane.
It is easier to describe the system in momentum coordinate g than in spatial

coordinate 7. If sample volume V is large enough, we take the Fourier transformation:

u(r)= /u (q) exp (iq -7) d>q (4.2)

Therefore Eq. (4.1) changes to

E= / (%qu + :;—in) u*(q)u(q)d’q (4.3)

At constant temperature T (in unit I{°), we treat the whole membrane system
as a canonical ensemble. Its statistical state can be described by each element of
a functional group { u;(q) }. We have used a discrete function u; (q) instead of a
continuous function u (q), for the convenience of later derivation.

Similarly, we also change the momentum coordinate into a discrete form { g, },

Eq. (4.3) becomes a summation,

1, 1. )
By =5 (586 + 3Ka4) 5 (a.) () (4.4)

The partition function can be written as:

= = Y ewp(—fE)
J
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- Yew|-05 0] (45)
where 8 = 1/kgT and
i@ = (5B + 5Kd) 4 ()4 (9 (4.6)

Change the exponential in Eq. (4.5) into a product form,

= = ) lewp[-8fi(q:)] (4.7)
i
Since u; can be an arbitrary function, the exchange of the summation sign and the

product sign only introduces change of a factor, that is,
= ~ [ exp[-Bfi(a:)] (4.8)
iJ

Now we change the summation in the above equation into a integral over a continuous

varible u (q), the free energy of the system can be found as:

F = —kgTlh=
oo 1 .
= -—kBTZln/ du(q)exp [—ﬂ (-;—qu + 5[&'(]1) | u(q) |2] + constant
q 0
1
= §kBT > In (qu + in) + constant (4.9)
q

At infinite separation between membranes, the compression modulus B vanishes,

so the cost of free energy to bring membranes from infinite separation to a stack of
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membranes with separation d is :

K¢}

YRR (4.10)
Bg? + Kqi

1
AF = -——kBTZhl
2 q
Eq. (4.10) is exactly the same as the result obtained by Hefrich [6]. For the rest, we
follow Helfrich’s derivation and get the first order approximation of the free energy

potential of steric interaction per unit area of membrane in a multi-layer system in

terms of d, k. and T,

21 2
é—F-EVh— 3me (kpT)

A T 128 k.2 (4.11)

where A is the membrane area of the sample.
Knowing the potential of interaction, we can find the compression modulus B
which is also equivalent to the compression coefficient Dy, in the free energy expansion

discussed in the next section,

9n2 (kyT)?
64 k.d?

B= D-z-z = (412)

It is worth noting that the Helfrich interaction describes an average entropic effect
for large scale structures compared with molecular length scale, its fundamental origin
is still the electromagnetic interaction. But this entropic effect exists widely in nature.
Two polymer chains repelling each other at finite temperature is an analogy of Helfrich

effect in one dimension.
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4.2 Hydrodynamics of Highly Swollen Lamellar
Phase

A hydrodynamic model of fluid lamellar phase of surfactant/water was first pro-
posed by Brochard and de Gennes [7] for system with d ~ 2004. A more explicit
study of the hydrodynamic modes by experiments was done by Nallet et al.[15] on
SDS/pentanol /water/dodecane system with d ~ 4004 recently. In treating the en-
ergy involved in bilayer deformation, Brochard and de Gennes assumed a stretching
in the plane of the layers, producing a change in the area per surfactant molecule.
Nallet et al. introduced a layer compression which results in a change in bilayer
thickness.

We based our choices of variables on the phenomenological approach of Brochard
and de Gennes and extend the theory to system with large layer spacing. We view
the lyotropic lamellar phase as consisting of two components, membranes and back-
ground solution. At constant temperature we need three variables to describe the
behavior. These may be the total density dilation ©, the dilation of the layer
spacing v = (d —dey) /deg = Ou/0z and the dilation of the surfactant concen-
tration (here, surfactants means all the components that make the membranes)
e = (cg—c)[co = —bc/cy where d, is the layer spacing at equilibrium. Since ©
involves the first sound, which is much faster than the membrane fluctuations we
are considering and couples little to them, We may take © as zero. That means
we assume that the total content of lamellar phase is incompressible. For the third
variable, instead of using ¢, one may use the relative change of the area per polar
head 6 = (A — A¢y) /Aey Where A, is the area per polar head at equilibrium. We
have assumed that concentration variation of surfactants (number of molecules per

unit volume) comes from either the compression of inter-membrane distance, or the



CHAPTER 4. THEORY OF SWOLLEN LAMELLAR PHASES 40

stretching of membrane themselves. Therefor it can be readily proved that ¢ = v+ 6.
Using strain of the area of surfactant molecules as one of our variables is similar to a
more recent theoretical approach by Lubensky et al. [16] where a picture of crumpling
membrane is introduced.

Therefore, we only have two independent variables v and é to describe the system.
For convenience, we will use the specific example of C12E5/water system at d ~ 2000A
for our analysis, with the understanding that theory developed here can be applied
to other ternary or quarnary lamellar phases in the Hefrich regime with layer spacing
on the same order of magnitude.

The free energy density can be expanded as

1 1 2u\>
f = §D) ng’)’5+ Dgzé + I\ (5'1—2>
a’)
= fi4ik <_—a ) (4.13)

where the last term is the membrane curvature elastic energy and K = k./d. Do
should be the constant of inter-membrane compression. As we shall see later, because
of the week Hefrich interaction between largely spaced membranes in our system, we
expect a smaller value of D,, than traditional liquid crystals. In fact, it is so small
that we can no longer afford to treat the curvature elastic energy as higher order
correction.

Following [7], the equations of motion of the fluid are:

o, (')p+ ofi
Pot = “or "oz \d6
(280 4 T O (4.14
! 8"2 02 020z 14)

dv. _ Op af u
a ~ "o: ' o: (5’) -k (81)



CHAPTER 4. THEORY OF SWOLLEN LAMELLAR PHASES 41

2 2 2
-m@a”+a%+a%) (4.15)

022 0z2  0z0z

where we have included the force due to curvature elasticity, and p and v are the
local pressure and velocity of the fluid. Water is assumed not to cross the bilayers,
and the surfactant molecules are assumed not to leave them; that is, no permeation
occurs. With no permeation v, = du/0t, and the x component of the lipid velocity is
given by vr, = 96/dt. Under these conditions, and with the material 98% water, it
is appropriate to use an isotropic shear viscosity 7 equal to the viscosity of water in
Egs. (4.14) and (4.15). (Equations including permeation and anisotropic expressions
for the shear viscosity can be found in {7] and [15].) Water may, however, flow between

the bilayers in the = direction. This is described by the phenomenological equation
[7] 5 (of
1

Vg — VUp) = plm— | —— 4.16

where vy, is the  component of lipid velocity. p is called the slip coefficient[7] and

has an expression|[15],

(d—¢)
=2 4.17
K 12n ( )
From the conservation of surfactant molecules, there is,
V.vp=0¢/0t (4.18)

The incompressibility of the phase means,

V-v=0 (4.19)
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Combining Eq. (4.18) and Eq. (4.19), we have,

3 _ 02 8f1

If we assume the Fourier components of « and ¢ have the time and space dependence
e'd * T -iwt we may use Eqs. (4.15) and (4.20), combined with the incompressibility
and impermeability conditions to arrive at the characteristic determinant for non-

trivial v and ¢

(w? = iwng?/p = w}) (iw + pq?Dss)
—wl (iw + /Lq3D23) =0 (4.21)

where
2 1(qq.\’ ¢
Wg = = Dg-z - D23 + K - (422)
P\ q H
2 ! (¢q. 2
wy = - (D33 — Da3) (4.23)
P\ q

Before solving Eq. (4.21), it is useful to estimate the magnitudes of Day, Da3, and
Dg3. Physically, f; in Eq. (4.13) arises from the effects of the Helfrich repulsion and

layer stretching; these may be described by the phenomenological free energy density

Vi(d) 1 .
= b (d) + Zxc (A4 — Ag)? (4.24)

7 deg 2

where X is a coefficient of layer resistance to stretching [7], and Ay is the area per
polar head in an unstretched bilayer. In order to expand F in terms of v and 6, let
us imagine a static process(with no long range fluctuations) in which such bilayers

are assembled to a lamellar phase of separation dyq. The concentration of surfactant
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will be ¢g = 2/Agdy molecules per unit volume. When such lamellar phase relaxes to
equilibrium, the repulsion between the layers will cause an increase in layer spacing
to deg = do(1 + 70); we expect 79 < 1. Since the surfactant concentration does
not change during this process, A deq = Apdy and there will be a corresponding
reduction of A to A,y = Ap/(1 + 7). To find g, we minimize F while keeping both

the surfactant concentration fixed at ¢y and the number of layers fixed. This requires

1 9Vi(d) 1
4, od X4

2
00d

(1—do/d)* =0 (4.25)

The solution to Eq. (4.25) gives the value for d.,, from which we may calculate 7o,
Aeq, and Fq. The result is yg > V), /xAeq. With v+ 6 + 76 = 0 to maintain constant

surfactant concentration, we calculate

H = f(7v5)“feq

= Sl)_;r_; (Ilifcgjz v+ XCoAZ 0 Y6 + %xcoqu & (4.26)
Thus, , .
Dy = %(i? (4.27)
D33 = ,\’Co-4gq = 2\ Aeq/deq (4.28)
and
D)3 = xcoAZ o = 2 Vi /deg = Da2/3 (4.29)

The cross term Ds3 arises because in equilibrium each bilayer is slightly compressed in
order to reduce the repulsion between the layers. For our system with d, ~ 180 nm,
and k. ~ kpT = 4.58 x 107'2nJ, we estimate Day ~ 0.8 Pa, or 8ergcm™3. We might
naively estimate D33 using typical values [2] for y ~ 2 x 10Pam™ and 4,, ~

0.6 nm?; for our sample we would obtain Dy3 ~ 1.2 x 10° Pa, or 1.2 x 107 erg cm™3.
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Figure 4-2: Crumpled Membrane

However, the large thermal fluctuations responsible for the Helfrich force mean that
the layers are substantially crumpled, although flat on average at long wavelengths.
The coeflicient D33 is therefore greatly reduced, in the same way that crepe paper is
much easier to stretch than smooth paper. Fig. 4-2 shematically shows a crumpled
membrane. The degree of crumpling can be described by the crumpling ratio which
is the ratio of the projected area Ap to its total area A[16]. The magnitude of this
effect has been calculated by Lubensky, Prost, and Ramaswamy [16], who estimate
D33 ~ 200 — 400 D5y, that is D33 ~ 160 — 320 Pa. This leads to vy ~ 2 x 1073, which
is indeed < 1 as assumed.

We now return to solve Eq. (4.21). There are three roots to the cubic equation
and it is not easy to find the analytical solutions to all of them. Our first approach is
to find the purely imaginary root which has the lowest frequency, in order to explain
the diffusive modes in our experiment. It turns out that when Ds3 > Dss, Da3 and

w < 10% sec™!, we can drop the terms in Eq. (4.21) which contain w? and w3, we
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obtain
Dyg? + Kqi 2

ww=I= - -
uq§+unq4+ (K/Ds3)q? 4

(4.30)

It is gratifying to see in the following that Eq. (4.30) can be reduced to two simpler
dispersion relations that has been predicted both by Brochardet al. and Nalletet al.

When ¢, — 0, Eq. (4.30) becomes,
iw=—q; (4.31)

This is the mode of undulation [15] which does not involve concentration variation in
the z direction. In Chapter 7, we will see that to observe this mode by light scattering,
we have to set the detector out of the scattering plane.

In the other limit, when ¢. is not small compared with ¢,(called oblique case),
if d becomes smaller, the second terms in both the numerator and the denominator

become unimportant, since I/ Dyy and p are both proportional to d2. We get,
tw = /J»DQ'_)_(]E. (432)

Nallet et al. call this mode the baroclinic mode. This mode involves strong concen-
tration fluctuation, and is readily observed in light scattering experiment.
In both cases, the third term in the denominator of Eq. (4.30) are small enough

to be neglected.



Chapter 5

Dynamic Light Scattering

5.1 Light Scattering Theory

In this section, we begin with the theory of light scattering[17, 18] in an isotropic
medium. Light is scattered by changing electric dipoles in matter. The radiation

field at point r due to a classical electric dipole p (t) located at the origin is,

1 P*p(t')
E(rt) = 5 [kx [kx o ||, (5.1)

where k is the wave vector along the direction of propagation of the radiation.
Consider a nonmagnetic, nonconducting, non-absorbing medium shown in Fig. 5-1

with an average dielectric constant €y and its local dielectric tensor

¢ = el +6é(r,t) (5.2)
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observation point

Figure 5-1: Light scattering geometry

where 6¢ is the dielectric constant fluctuation tensor at position » and time ¢; I is the

unit tensor. An incoming light has an electric field
E;, = Egxpi(k;-r—uwt) (5.3)

The electric dipole moment of each differential element is,

1 .
dP = —(¢-1)Edr
4r
_ 1 3 Lo
- 47r(60 l)E(lr+4W66Ed'r (5.4)
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When Eq. (5.4) is plugged into Eq. (5.1) to find the radiation field, the first term of
Eq. (5.4) gives the forward plane wave radiation, with a wavelength of 27/ (\/%Ek).
The second term gives the scattered radiation. Thercfore a homogenous, non-fluctuating
medium does not scatter light, while density fluctuations of the medium in either space

or time scatter light off the forward direction of propagation. The scattered field,

E, = / —u’
s vArck2 | r—1r'|
[ks x [ks x 6(r ', t') Egexp i (ki7" = ot Wyy_pr_p qpe 0" (5.5)

where n = /€ is the refractive index of the medium. V' is the illuminated volume.
If we choose the origin of the coordinate system inside the illuminated volume and
assume that the dimension of the illuminated volume is small compared to the distance
of the field observation point from the origin, | » — 7 ’ | in the denominator of
Eq. (5.5) becomes 7. All the light element observed at the observation point have
approximately the same wave vector k,. Under these conditions, Eq. (5.5) can be

simplified to:

—Egu?sind

E. (4m) 2r

/V be(r ', t)exp(iq-r' —iwt)dr’ (5.6)

where g = k, — k; is the momentum transfer from the light to the system. ® is the
angle between k, and E,.

In experiments, we often measure the intensity and the time correlation function
of the field at a given g, instead of measuring the field directly. The time correlation

function of the field is,

(E5(g,t1) - E,(q,t2)) (5.7)
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where ( ) represents ensemble averaging. It is known that the ensemble averaging of a
statistical system at thermal equilibrium can be replaced by time averaging. So in the
following text, we will use ( ) to represent time averaging. At thermal equilibrium, the
process that causes the fluctuations de (r,t) is stationary which means that Eq. (5.7)

depends only on the difference 7 =| t; — t5 |. Therefore, we have,

(E: (q’tl) : Es (qatl» = <E: (Q,O) ' Es (Qa T))
VE2uisin®® / . .
0 = | (6" (0,0) 8¢ (7 ', T)eap(iq-r ' —iwT)dPr’ 5.8
(47()2 C47'2 V< ( ) ( )> 1 ( q ) ( )
The intensity of the scattered light may be obtained by setting 7 = 0 in Eq. (5.8),

and is proportional to the Fourier transform of the equal time correlation function

(6€(0) be(r)).

V ng4sin2<b

(B?) = T /V(ée*(())ée(r’)>emp(iq-r')c13r' (5.9)

5.2 Homodyning vs. Heterodyning

In measuring the time correlation function in a dynamic light scattering experiment,
the detector receives light scattered by spatial and time fluctuations of the material
that is being investigated. We call this scattered light signal and its field E,. But
the detector may also receive lights by other sources, for example, light scattered off
the incoming beam by small traces on a not sufficiently clean glass window of the
sample cell. We call this kind of light local oscillator [19] and call its field and its
average intensity F; and I;. If the polarization of F; is in the same direction as F,,
so that the two fields can add, the resultant time correlation function will depend
on the local oscillator. In most cases, E; and E, are statistically independent, and

fluctuations of E, are often negligible. Under these conditions, the time correlation
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function of intensity can be reduced to:

(| E;(0)+ E((0) ’| E;(t) + Ei(t) |*)
= I} + LI +2LRe((E; (0) B, (t))) + (| E, (0) P| E,(t) [*)  (5.10)

In most cases of light scattering experiment, the scattering volume can be divided
into many sub-regions that is small compared to the wavelength of light to allow
superposition of electric field, but large to permit particle motions in one subregion
to be independent of those in another. In this case, it can be proved [19], using central

limit theorem, that the last term in Eq. (5.10) can be related to the third term as:
(B P B (D)) = I+ (E(0)E, (1) | (5.11)
The intensity correlation function can be finally written as,
(1(0)i(t)y = I? + LI + I} + 2LLRe ((EZ (0) E, (£))) + | (EZ (O)E, (1)) > (5.12)

There are two limits to the above equation. When the local oscillator is negligible,
the auto-correlator lets the signal beat itself, we get the so called homodyning time

correlation function,

(i(0)i(t)) ~ 1 +a | (E7(0)E, (1)) | (5.13)

where a; is a proportional constant.

In the other limit, when [; > I,, we get the so called heterodyning time correlation
function.
In many diffusive processes, the field correlation function often takes a form of

exponential function as in the case of a dilute suspending particle solution which will
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be discussed in the next section , we then have the following forms of decay functions:

B+ Aexp(-2t/7) (homodyning)
(i(0)i(t)) = | B+ A exp(~t/7) (heterodyning) (5.14)
B+ Aj exp(—2t/7) + Ag exp(—t/7) (intermediate case)

where A, B, A; and A, are all constants with units of I2, 7 is a characteristic time

8§

constant related to the decay process.

5.3 Dynamic Light Scattering from a Solution
of Polystyrene Latex Spheres

Eq. (5.8) and Eq. (5.9) are general formulas for continues medium, which will be used
in Chapter 6 when we discuss light scattering on swollen liquid crystals. As a test
and calibration for our light scattering setup, we did dynamic light scattering (DLS)
on a very dilute solution of standard polystyrene latex sphere. In this case, Eq. (5.6)

should be replaced by a volume integral over each of the particles and a sum over

particles,
E, Ej:c;mq) Z fi (q) vibe;exp (iq - i — iwt) (5.15)
where
1 _ ;
filg) = ;/ea‘p(zg-r)éf('f*,t)d r (5.16)

is the form factor of particle ¢ whose volume is v;.

If the particles are all identical, and move independently, Eq. (5.8) can be replaced
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by a simple form,

V E2uwisin®®
E:(q,0)- E,(q,7)) = —= 2

exp (iwT) (exp (iq - [r (0) — v (7)])) (5.17)

Nv*se® | f(q) |?

where N is the number of particles in the illuminated volume.
(exp(iq - [r (0) — r(7)])) is called Van-Hove self space time correlation function,

it can be proved [19] to have the following form,

(exp(iq - [r(0) — r (7)) = exp (~Dg’t) (5.18)

where D is the difussion coefficient of the solution. According to the Stokes-Finstein
relation,
kT
D = -2 (5.19)

6mna

where 7 is the viscosity constant of water, a is the radius of the particle.
Therefore, combining Eqs. (5.17)-(5.19) with Eq. (5.13), we get the homodyning

time correlation function
G(t)~1+a exp (—2Dq2t) (5.20)

where ay is another constant depending on the number of coherent area [19] the
detector covers.

The experimental setup is schematically shown in Fig. 5-2. Light from a Helium-
Neon laser is guided by a single mode optical fiber of 100um in core diameter to
a vertical metal arm. After passing through some optical components, it hits the

window of the sample cell at normal incidence. Scattered light were collected between
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Y r=6328A

Figure 5-2: Light scattering setup and momentum transfer

0 = 3.8° and 37° by a multi-mode fiber that transmits the light to a photo multiplier

tube (PMT). The magnitude of momentum transfer (see Fig.5-2) is,
.6
q = 2nksm-2— (5.21)

where k = k; = k, and n is the index of refraction of the solution. In the case of very
dilute polystyrene solution, n takes the value of water.

A auto-correlator is solely responsible for calculating the time correlation function
G (t) from digital electronic signals coming from an amplifier and analog-digital con-
verter. The auto-correlator divides the data taking time ¢ (usually 10 to 40 min.) into
N small intervals called sample time 7 (usually 10 to 103 us) as shown in Fig. 5-3. If

the digital counts during interval ¢ is n;, the correlation of two intervals separated by
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Figure 5-3: Calculating auto-correlation function

[ intervals (or [ channels) is calculated as:

N-1

G(lr) ~ Z My (5.22)

=0

Since the solution is a isotropic liquid, only the magnitude of the momentum transfer
g matters. We measured G (t) at 9 different angles. Fig. 5-4 is one example at
0 = 37°. It can be fitted very well, using a single exponential decay function with the
background fixed to the measured background which leaves only one free parameter
D to vary. Using Eq. (5.19), the radius can be found, ¢ = 56nm, while the standard
value of the latex sphere in the solution is quoted as @ = 48.042nm. The discrepancy
is small enough to justify the prediction by Eq. (5.20). Actually, in a later experiment,
with improved angular calibration we obtained « = 46nm. At smaller values of 6,
a single exponential function can not provide the best fit, we get good results using
double exponential function described in the intermediate case of Eq. (5.14). The

slow decay term is a small component. It shows that the detector takes in small
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Figure 5-4: Time correlation function from a solution of polystyrene latex spheres

amount of local oscillator light as the angle becomes smaller. Fig. 5-5 shows decay
coefficient vs. the momentum transfer obtained from the double exponential fit. It
shows a linear dependence on ¢? that goes through the origin, as predicted by theory.
Fig. 5-6a shows the radius dependence on angle. We can see that radiusies calculated
from a single exponential fit are close to the standard value when 6 is above 15°, but
departs from the standard value below that angle. The double exponential fits correct
the discrepancy when angle becomes smaller. So, we can say that when 6 > 15°, the
conditions of the setup allows a homodyning case. Fig. 5-6b plot the background to
signal ratio, which is the B/A in Eq. (5.14), at different angles. Because the solid

angle spanned by the illuminated volume does not change very much as we change the
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angle, so does the coherence area. So the value of s in Eq. (5.20) varies very slowly.
The increase of B/A when 8 decrease is caused by other source of light including the
local oscillator. By comparing Fig. 5-6b with Fig. 5-6a, we get the following criteria for
homodyning; that is, under the current geometry (detector distance, area of exposure,
illuminated volume and range of observing angle etc.), if B/A < 5, homodyning fitting
is valid; if B/A > 5, heterodyning component need to be introduced. We will apply
this criteria to the dynamic light scattering of lamellar phase as discussed in the next

chapter.
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5.4 Polydispersity, Dynamic Light
Scattering from Vesicles

In this section, we first develop a fitting function for polydisperse particle solution.
Then, we combine this function with the result of time correlation function in the
last section and apply them to the data analysis of DLS on vesicle solutions.

For a solution with polydisperse particles, let the particle size distribution be

P (T"), where T is the diffusion coefficient variable. According to Eq. (5.18),
' = D¢ (5.23)

The time correlation function of the electric field scattered by particles having diffu-
sion coeflicient in the range of I" to I 4+ dI" will be proportional to exp (—I'7) dl’, thus

the total normalized correlation function will be,
g(r) = /0 ~ P (D) exp(=T7)dT = (exp(=T7)) ave (5.24)
with
/OOOP(I’)dF—_-l (5.25)

It is not hard to prove that ¢ (7) is the generating function of the moments of the dis-
tribution function P (I"). It is also fairly easy to prove that log ¢ (7) is the generating

function of the cumulants of P (T'), that is,

dlog g (1) _ o
87’ |r=0 B <I‘>Ave - I\I
9?1 2
——————og g (T) = ((F - (P>AL’€)~)AU€ = ]('2 (526)

a1t =0
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d3log g (1)

3 — -
ord |»=0 = ((T' = (T ave) ") ave = I3

Therefore, we can expand log ¢ (7) around 7 = 0 in terms of the cumulants of P (T'),

X Knm.  om
log g(1) = z 7—‘—(—7) (5.27)
= m!
That is,
- 1. o 1.3
g(7) = exp (-1\17 + '2‘1\27 - 3—,1\37' + ) (5.28)

So the homodyning time correlation fitting function for polydisperse particle solution
can be written as,

1., 1 2
(i(0)i(t) = B+ A [e.rp (-—Klt IO = SRt + )] (5.29)

where K is the average diffusion coefficient of the particles, K gives the square of
the width of the distribution function P (I') while I3 reflects the asymmetry of the
distribution function [20]. A function that takes into account both polydispersity and

heterodyning component can be written as,

(i(0)i(t)) = B+ Ay [g ()] + Azg (1) (5.30)

Vesicles are egg shape particles with lipid bilayer as its outer shell, as shown in
Fig. 2-5 in Chapter 3. Its dimension can be from a few hundred to a few thousand
angstroms. We use 0.3% SDBS, 0.7% CTAT and 99.% water [5], all by weight to

make the vesicle at temperature 7 = 19.0°. Fig. 5-7 shows the phase triangle of the
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Equimolar line

Figure 5-7: Phase triangle of SDBS/CTAT vesicle (from Murthy(5])

three component system and the region of vesicle formation. Fig. 5-8 show one of the
auto-correlation functions of intensity scattered by the above vesicle at 12 different
angles from 6 = 32.1° to 0 = 6.8°. It is fitted with Eq.(5.30) with 4 cumulents.
Fig. 5-9 shows one of the similar functions at 9 different angles from 6 = 8.7° to
6 = 4.4° measured a few days later. It is fitted with Eq.(5.30) with 6 cumulants.
In both cases, the baseline is fixed as the measured background. Fig. 5-10 show the
hydrodynamic effective radius of vesicles a calculated from Eq (5.19) using the fitting
results of K for both groups of data. The smooth connection of radius dependence
on g shows that the vesicle size does not change over time. The fitting parameters
shows a smooth decrease of A; and increase of Ay as § becomes smaller.

The data around 6 = 32.1° give radius a = 1015A4. This is about 2 times as large
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Chapter 6

Dynamic Light Scattering from
the C12E5 System

6.1 Introduction

In Chapter 4, we have studied hydrodynamic modes of thermal fluctuations in swollen
lamellar phase with Helfrich inter-membrane interaction. In this chapter, we will
discuss our light scattering result from the C12E5/Water system in observing some

of the modes. The work has been published in Ref. [22].

6.2 Intensity of Light Scattered from Lamellar
Liquid Crystal

Light are scattered by thermal fluctuations of liquid crystals. In this section, we will
work out a quantitative expression for the intensity of scattered light.
For the lamellar liquid crystals described in Chapter 3 and Chapter 4, let u be the

bilayer displacement. Let ¢ and f be the polarizations of the incident and scattered
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light. Also let n be the director (optical axis) and ¢ be the concentration(number of
molecules per unit volume) of surfactant molecules that form membranes; in terms
of their fluctuating components, these may be written, n = ng+ én, and ¢ = ¢y + dc,

where ng and ¢y are equilibrium values. Let the molecular dielectric tensor to be,

€ 0 0
€ = 0 €] 0 (61)
0 0 6”

where the z axis of the matrix representation is along the molecular optical axis. The

vector Eq that appears in Eq. (5.3) can be written in terms of 7 and f as,
Eo=El(i-n)n+[i-(i-n)n]] (6.2)

The vector of the field at the observation point by a differential element should be,

according to Eq. (5.5),

E, ~ k,;x (ks xcé- Ey)

~ kox ko xclg(i-n)n+e i~ (i-n)n]] B (6.3)

Eq. (6.3) has two terms after being expanded, one of them is in the direction of k,
which will be canceled after integration, since electromagnetic wave is a transverse

wave. The other term has a component in the f direction with magnitude
By~ k2[es (i f) + Ae(i-n)(n- )] cEo (6.4)

where Ae = ¢ — €,. From Section 5.1, we know that only the terms that contain

spatial and time variations in the scattering medium contribute to the scattered field,



CHAPTER 6. DYNAMIC LIGHT SCATTERING FROM THE C12E5 SYSTEM66

these variations in Eq. (6.4) are caused by fluctuations of the molecular director n

and the concentration ¢, therefore,

0E; ~ €. (i-f)éc+Ae(n-i)(n- f)éc
+Aec[(6n - 1) (ng- f) + (6n - f)(no - 7)] (6.5)

Similar to the procedure in Section 5.1, the scattered intensity at the observation

point with polarization in the f direction is,

I(q) ~ /exp(iq-r)(éE;éEf) dr
= € (i F)° Sec(q) + A [(no 3) (g F) + (1o F) (g1 %)] Suu (@)
+2A0ec (i f)[(no-i)(qy - F) + (no- £)(q.-9)] L [Seu ()] (6.6)

We have neglected higher order terms containing écAe.

See(q) = /e:cp(iq-r)(éc* (0) ¢ (v))d*r
Suwl@) = [ ewplig-r)(su (0)bu(r))dr (6.7)
Sal@) = [ exp(iqr)(6e” (0)6u (r))dlr

Eqgs. (6.6)-(6.8) express scattered intensity in terms of the Fourier transforms of
the spatial correlation functions of the fluctuating variables « and c. The latter are
directly related to the hydrodynamic modes of the system. In fact, viewing the system
in terms of hydrodynamic modes is just a way of analyzing the thermal fluctuations.

In particular, undulation mode, expressed by Eq. (4.31) corresponds to ¢, = 0,
thus does not involves concentration fluctuation. That means undulation mode does
not contribute to either S.. or S,.. It only contributes to the intensity through the

term containing Sy, in Eq. (6.6).
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On the other hand, the baroclinic mode in the oblique limit expressed by Eq. (4.32),
which involves layer displacement fluctuations as well as concentration fluctuations
contributes to both S, S,. and Sy,.

There are other hydrodynamic modes. But they are either too fast, or having a
too small amplitude, to have significant contributions to light scattering within the
time scale of our experiment.

To measure the effect of pure undulation mode, the first thing we need to do is to
isolate the second term in Eq. (6.6). This can be done by setting ¢« L f. But in this
case, the geometric factor in the second term will vanish if q is in the scattering plane
defined by the incoming wave vector k; and the normal of the membrane n. So we
need to measure off-plane scattering. Secondly, even at ¢. = 0, Sy, may include small
amount of contributions from the baroclinic mode. The undulation mode can be
separated from the baroclinic contribution by the auto-correlator because the former
is much faster at near ¢, = 0 (see [15]).

So it is clear that only choosing the right ¢ is not enough to isolate a single
hydrodynamic mode. Scattering geometry and polarizations of incoming and outgoing
light are necessary conditions to be set to isolate certain mode.

If we successfully isolate a mode with a dispersion w(q), what should the corre-
lation function look like? It can be proved ([21]) that the correlation function of the

scattered field,
(E; (q,0) Es(q,t)) ~ eapliw(q)] (6.8)

6.3 Experiment

We focus on measuring the baroclinic mode in the intermediate momentum transfer

range. We set k; in the scattering plane, and keep 7 and f both perpendicular to the
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Figure 6-1: Setup

scattering plane. In this case, only the first term in Eq. (6.6) remains, We are only
receiving light scattered from the baroclinic mode.

The setup used in the dynamic light scattering on C12E5/Water system is schemat-
ically shown in Fig. 6-1. It has been calibrated by experiments on standard polystyrene
solutions. Laser beam of A = 6832A4 is led vertically downward by an optical fiber, so
that, at normal incidence, the thin layer of sample in between two quarts glass plates
can lie horizontally to avoid phase separation. It is also designed that a microscope
can be applied to look at the sample. During the whole process of making sample
and taking light scattering data, sample stayed unremoved, so that minimum spatial
and temperature disturbance is maintained.

Sample of 2.0 wt.% C12E5 were made as described in Chapter 3 and kept at
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T = 59°. Scattered light was collected at 13 angles ranging from 6 = 9° to 8 = 43°
inside the sample. Strong signals were obtained with a background to signal ratio
of at most 5. By comparing the B/A ratio of the autocorrelation function to that
polystyrene latex spheres in the same scattering geometry (Fig. 5-6), we determined
the scattering to be homodyning. Typical correlation functions are plotted in Fig. 6-
2. All of the correlation functions can be fitted very well with two decay times, a
larger amplitude slow mode and a smaller amplitude fast mode. The fitting function

was
y = B+ [Ajexp(~Tt) + Agervp(—l"zt)]2 (6.9)

with B fixed at the measured background. The values for I'} and I'y are plotted vs.
¢. in Fig. 6-3; both modes appeared to depend linearly on ¢2. One temptation is to
associate the large amplitude slow mode (I';) with the baroclinic mode in the oblique
limit described by Egs. (4.32) and (4.27). We obtain Dy = 0.36 Pa from the slope of
the fit to ¢2, and find k. = 2.8kpT from Eq. (4.27). While these values compare well
with those obtained by Nallet et al. [15] from studying the baroclinic mode of the
SDS system, where the range of swelling was from 4 nm to 35nm, k. is two to three
times the value obtained for a similar C12E5 system by Strey et al. [1] by studying
thermally induced deviations from linear swelling with d = (/¢. It is also about three
times the value obtained by Nallet et al. from their study of the undulation mode.
In addition, we also need to explain where the fast mode comes from.

Instead, we applied the more explicit formulation of Eq. (4.21) and one of its
approximate solution Eq. (4.30) for system with large layer spacing.

We also did numerical calculations to all the roots of Eq. (4.21), and find, as we
shall explain later in this chapter, that the other two roots describe modes which

decay too rapidly to see with our autocorrelator.
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If Eq. (4.30) describes the only mode we can detect with our correlator, why did we
see two decay times in the scattering? The reason is that when light passes through
the sample at normal incidence, about 4.5% is reflected back into the sample by the
second silica window, and we see scattering at both the angle  and its complement,
as illustrated in Fig. 6-1. The two components have the same ¢, value, but the
forward scattering has a much smaller ¢, than does the backward scattering. Using
Eq. (4.30), we can associate the slow and fast decays with backward and forward
scattering geometries, respectively.

The scattered intensity for this mode should be inversely proportional to the
decay rate I', which will tend to make up the weaker incident beam for the backward
scattered light. Another factor that make the backward scattered signal relatively
stronger is that we set the time scale of the auto-correlator to the slow mode, which
tends to discount the forward scattering light. However, that is not enough to explain
the observed intensity ratio. One possibility is that since the wave vector for the
backward scattering is about 85% of 27 /d.,, the broadening of the Bragg peak may
increase the scattering. Since we focused on the dynamic measurement rather than
the static measurement, We can only make some qualitative argument about the
intensity.

With the two geometries in mind, we first analyzed our data using a numerical
solution to Eq. (4.21), choosing the low frequency mode, although when D33 > 50 Dos,
the numerical solution is indistinguishable from Eq. (4.30). We chose K = k./d,
Dy, given by Eq. (4.27), and pu is given by Eq. (4.17) where we neglect the bilayer
thickness (. When these substitutions are made, the decay time for our concentration

fluctuations depends strongly on only two parameters: k., and d

'CY

eqs With a weak
dependence on D33. The other quantities are all known by other means. The results
of fitting the forward and backward scattering data simultaneously, with n = 0.005

poise, are shown in Fig. 6-3. When d, D33, and k. were all allowed to vary we
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obtained k, = (7.0 5.0) x 10712nJ or (1.5+ 1) kT, dey = (170 £ 40) nm, and D33 =
(5.6 + 1.4) Pa. The large uncertainties arise because the parameters are correlated
in the fit. When we restrict d to the 180 nm obtained by Strey et al. [1], we find
k. = (1.351+0.35) kT, and D33 = (5.3£0.8) Pa. It is not obvious that the expression
g = deg2/(12n) should hold for crumpled bilayers; one might expect the crumpling
would result in gt = desp2/(121), with dess < de,. As our data could be quantitatively
represented by the simpler expression with reasonable values of the parameters, we
did not introduce this extra complication.

We now come back to Eq. (4.30). When Djy; is large, our fit of Eq. (4.30) to the
data in Fig. (6-3) is as good as the numerical solution. It is rather insensitive to Ds3.
If we take any value of D33 greater than 50 Pa and allow d and k. to vary, we obtain
deq = (210 £ 15)nm, and k. = (0.75 £ 0.1) kT with a \? only 20% larger than the
best fit for all three parameters. For the parameters we found, the penetration depth
A = (K/Dg)? is 210 nm, and D, is 0.8 Pa.

Eq. (4.30) can give a clearer physical picture to the modes. For backward scat-
tering, when ¢, is large, the layer compression term dominates in the numerator of
Eq. (4.30) while the bending energy of the membrane (or curvature elastic energy)
is less important. Because ¢, is large, large concentration fluctuations are involved,
which scatter the backward beam strongly. This mode is the extension of the oblique
baroclinic mode expressed by Eq. (4.32) to a system with large layer spacing. In
our case, the curvature energy is small, but not small enough to be neglected when
compared with the energy of compression.

For forward scattering, the curvature term dominates and the mode has become
mostly one of layer undulation; We are now in a crossover region between the oblique
baroclinic mode and pure undulation mode. it can still be detected in our polarization
setting (¢ || f) because small concentration fluctuations remain.

Another feature due to the large layer spacing is a more important role of viscous
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effect. Large amount of water between layers cause a stronger viscous hindrance to
the movement of the membranes. This is reflected in Eq. (4.30). The denominator of
Eq. (4.30) is essentially ¢ multiplied by a constant in our experiment; the presence of
the ung* term makes this constant approximately 3 instead of 1, and therefore makes
I" three times smaller. This term results from the damping due to the slip flow of the
water between the bilayers.

Returning to Eq. (4.21), we solved numerically for the other two roots; with these
parameters, they had magnitudes of 10* sec™! or greater. We also investigated the
possibility that our two decay times might be the result of simply forward scattering
by two different modes of Eq. (4.21), rather than forward and backward scattering
of only the lowest frequency mode. When Dj3 is large enough and ¢, ~ ¢., the two
higher‘frequency modes are a pair of propagating “second sound” modes. However,
for small values of D33, as we apparently have here, all three roots of Eq. (4.21) are
imaginary, and two of them are relatively low frequency. It was, in fact, possible to fit
our data to forward scattering by the two lowest frequency roots of Eq. (4.21). The
parameters we obtained this way were d., = 200 nmn, k. = 0.08 k5T, and D33 = 1.2 Pa,
which give Dy = 9.5 Pa, and A = 14 nm. These are so far from physically reasonable
values that we believe our interpretation of forward and backward scattering from

the low frequency mode is the correct one.

6.4 Conclusions

We have investigated the spectrum of light scattered from a homeotropically aligned
highly swollen lamellar phase (d ~ 1800A) in a non-ionic binary system (C12E5 and
water), where the Helfrich repulsion is the dominant force between bilayers to stabilize
the lamellar order. At each scattering angle we observed an intensity autocorrelation

function for the scattered light with two decay times. We identified these as coming
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from simultaneous observation of the baroclinic mode in both forward and backward
scattering.

We conclude that the Brochard-de Gennes model [7] combined with Helfrich’s cal-
culation [6] of the entropic and steric inter-bilayer repulsion quantitatively describes
dynamical behavior of the baroclinic mode of highly swollen lamellar phases of non-
ionic surfactants.

We found that for highly swollen lamellar phase, it is important to consider the
curvature elastic energy in calculating the dispersion relation even for the very oblique
momentum transfer case. Because the inter-bilayer repulsion is so weak, the curvature
energy leads to the interesting property that the mode relaxation speeds up as g
becomes smaller. The faster forward scattering branch in Fig. 6-3 is in the crossover
region between the baroclinic mode for large ¢, and the decoupled undulation mode
of ¢, = 0.

Finally, since the slip coefficient scales as d 2, the damping to the fluctuations of
bilayers due to the water in between them plays a more important role in highly

swollen systems.
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Chapter 7

Light Scattering from the OBS

System

7.1 Introduction

As discussed in Chapter 3, the OBS system has been swollen to produce a layer spacing
from 1800A to 1um. With the layer spacing at this large scale, we can see the Bragg
peak simply using visible laser light, while conventional Bragg scattering requires
x-rays. In this chapter, we will discuss our experiments and findings of Bragg light
scattering from this OBS system. By measuring the positions of the Bragg peaks, we
can precisely determine the layer spacings and find a layer spacing dependence on the
distance from the top of the liquid. We attempt to explain this observed phenomenon
by relating the gravitational compression to the entropic Helfrich repulsion that exists
between membranes. Furthermore, we are able to study the intensity lineshape of the
Bragg peaks which is closely related to the Landau Peierls instability that is intrinsic

to smectic-A liquid crystals.

76
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Incoming Light

Scattered Light

Figure 7-2: Enlarged view of the sample.
7.2 Gravitational Compression of the OBS Sys-

tem

7.2.1 Experiment

In Chapter 2, we discussed how to make OBS swollen phase and found the layer
spacing dependence on depth of the illuminated volume from the top of the liquid.

To measure this dependence accurately, we build a second light scattering setup which
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would also be used to measure the Bragg peak lineshape. The top view of the setup is
shown in Fig. 7-1. A photograph of the setup is added at the end of this chapter. The
setup consists of two metal arms, an arm for incoming light and an arm for receiving
the signal. A tall light scattering cell of dimensions 2 x 10 x 30mm is placed on a stage
that can both be moved along the vertical direction and rotated about the vertical
axis (z axis). The scattering plane lies horizontally (that is, in the  — y plane in
contrast with the first setup). Lenses L; and L, are used to collimate the beam to a
cross section with radius Imm and 0.13° divergence. A 1/4 wave plate changes the
linearly polarized beam from the Argon laser into a circularly polarized beam, so that
polarizer P; can define the polarization of the light incident on the sample. The small
pin hole and the fiber tip in the spatial filter define an angular resolution of 0.08°
for each angle. Fig. 7-2 shows an enlarged view of the light path near and inside the
sample. Instead of putting incoming light at normal incidence onto the glass window
of the sample cell, we turn the sample cell to an angle 6, so that the angle between
the scattered light inside the sample and the normal of the sample-air interface 6, is
less than the angle of total reflection. In Fig. 7-2, we did not draw the glass windows
because they does not change the directions of light paths. To measure the height
dependence, we keep #; constant, move the sample in the z direction, and measure

the angle of peak intensity by changing 65 (the signal receiving arm). Thus,

6, = sin7! <81§]01> (7.1)
. infs

6, = sin”! (51:1 ) (7.2)

03 - 02 + 94 (73)

where n, is the index of refraction of the sample. It is a good approximation to use

the index of refraction of decane (n; = 1.412), since it constitutes more than 90wt.%
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Figure 7-3: Layer spacing distribution

of the phase. The magnitude of momentum transfer ¢ can be found,

sin— (7.4)

At the position of peak intensity, with momentum transfer q,, the layer spacing of
the lamellar phase is d = 27/¢go. We plot the layer spacing distribution in Fig. 7-3
where h is the vertical distance of the beam spot from the top surface of the liquid
(see Fig. 7-4). it shows that h depends on 1/d linearly. The relation can be written
as:

=151 x 107%d~1 — 2.06 (7.5)

Both h and d are in cm.
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7.2.2 Gravity as a Compressor of Lamellar Phases

To understand the layer spacing dependence in the last section, we model our sys-
tem as numerous lamellar pieces of finite sizes floating in the background of decane
(92wt%) and pentanol (8wt%) solution in random directions shown in Fig. 7-4. The
background solvent exerts a hydrodynamic pressure which equals the sum of the at-
mospheric pressure (~ 10%erg em™3) and the pressure due to the weight of the solvent
itself (~ 103erg cm™3 for a maximum 2.5¢m height). The latter changes with height,
but changes only by 1073 of the total pressure while the layer spacing changes by
a factor of 2. Thus it is reasonable to assume that the solvent pressure is not the
cause of layer spacing variation. In fact, the solvent pressure is much greater than the
inter-membrane forces which is on the order of Dy ~ lerg em™3, so it is reasonable
to assume that the solvent in between bilayers and the solvent in the background
outside each lamellar piece are freely exchangeable (see Fig. 7-4), so that the solvent
pressure acts on each membrane directly. Then, what force serves to compress the
whole lamellar piece?

The local density of the inverse bilayer p, can be estimated between 0.82 and
1.25 g em™3 using the densities given in Ref. [10]. The uncertainty is introduced
because the presence of the co-surfactant pentanol changes the volume of surfactant
layers (see Fig. 3-4) and we do not know the percentage of pentanol in the layers.
But still, as this density is greater than the background density p;, of 0.74gem ™3, each
bilayer tends to sink. The whole lamellar piece will sink with an effective density:

Peff = a% (s = pv) (7.6)
where w is the thickness of the inverse bilayers. We introduced a factor @ < 1 to
take into consideration that the hydrophobic tail of OBS and that of the pentanol are

soluble in decane solution. We can view these lamellar pieces as the basic constituents
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Figure 7-4: A schematic sketch of the lamellar fluid

of a sub-phase of lamellar particles closely packed with density pes;.

Since p.sy can be very small, the reader may wonder whether thermal effects
expressed by the Boltzman factor can sustain the lamellar fluid to a certain height.
We did the following calculation: Let N be the number density of lamellar particles
due to thermal excitation at given height & from the bottom of the container, we

have,

N = Nyexp (—%) (7.7)
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where N is the number density at the bottom, v is the average volume of a lamellar
particle. The above equation defines a length,
kgT

T = (7.8)
Pefsv9

as the average height the lamellar particles can be excited to by the Boltzman factor.

pess can be calculated from Eq. (7.6). The discounted net density a (ps, — ps) is
estimated to be 0.1 g cm™3, the layer thickness w = 20A [9]. Thus, at a typical layer
spacing d = 40004, pesr ~ 5 x 107 g em™3.

The sizes of the lamellar particles are obtained from the fitting of the Bragg peaks
with the Landau-Peierls theory, which will be discussed in Section 7.4. The result is:
the average dimension of lamellar particles is 19 pum. Thus, v ~ 2.9 x 1078 em 3.
Using these values, we got xy ~ 2.8 x 10™° em. So, if the lamellar pieces could be
squeezed into zero volume, they would all stay within 2.8 x 107 ¢m from the bottom
of the container. Therefore, the lamellar particles are too heavy to be excited by the
Boltzman factor.

Since lamellar pieces can not penetrate into each other, each of them will be under
a pressure due to their own density pess. This pressure is locally hydrodynamic in
the sense that it exerts the same amount of pressure in all directions, because the
lamellar pieces are macroscopically small.

It should be emphasized that this pressure is different from the previously men-
tioned hydrodynamic pressure of the decane/pentanol diluent, since the latter acts
on both sides of all layers, although its value is much greater, it is not directly related
to the layer spacing change.

Now, let us estimate the magnitude of this pressure. At layer spacing d = 40004,

h = 1.72 cm, the average density of the lamellar particles psr ~ 5 x 107 g em™3

’



CHAPTER 7. LIGHT SCATTERING FROM THE OBS SYSTEM 84

this gives the pressure due to gravity,
Dy = pesrhg ~ 0.86 erg em™ (7.9)

On the other hand, the counter pressure from the internal Helfrich repulsion py, is:

OV _ 3n2 (kpT)?
od ~ 64 k.d®

Ph = (710)

where V), is the Helfrich free energy.

At layer spacing d = 40004, if we let k. = 0.5kgT, Eq. (7.10) gives p, =
0.92ergem™3. So, p, and p;, have the same of order of magnitude. It is quite possible
that the layer spacing variation with height is the result of a force balance between
gravity and the Helfrich interaction.

We have not been able to explain the linear behavior h vs. d more quantitatively.

Further experimental and theoretical investigation is being conducted.

7.3 Co-surfactant Concentration in Membranes

The finding of the layer spacing distribution provides us an experimental framework
to study several physical variables as functions of d. In this section, we propose
a model about the variation of the concentration of co-surfactant, pentanol, in the
membranes as d changes.

Similar to the pseudo-phase model for microemulsion system [23], We treat the
surfactant membranes and the decane/pentanol solvent between the membranes as
two separate phases (pseudo-phase) in equilibrium as shown in Fig. 3-4 in Chapter 3.

The alcohol (pentanol) equilibrium between the two phases obeys the equation:

Ha = 1) (7.11)
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where p9 and p? are the chemical potentials of pentanol in the oil (decane/pentanol)

phase and surfactant membrane phase respectively. In the oil phase,

1% = sl + kpTlog 5 (7.12)

where pff is the chemical potential of pure bulk pentanol and ¢% is the volume

fraction of pentanol in the oil phase. Because pentanol is soluble in decane and its
density is close to decane, gravity should have little effect on its concentration in the
oil phase. Therefore, ¢4 and p9 should be constants throughout the lamellar fluid.
On the other hand, the chemical potential of pentanol in the membranes can be
calculated, including the contribution from thermal fluctuations of membranes, as,
372 (kpT)?

8 __ Refs . S A
py =ty "+ kpTlog ¢ +Aﬁ v

(7.13)

where uﬁﬁf * is the chemical potential of pure pentanol aligned in a layer shape and

@% is the area fraction occupied by pentanol in the membrane phase. A is the average
area of surfactant/pentanol head.

From Eq. (7.11) to (7.13), we get,

3n® (kyT)*
128 k.d?

kpTlog &%, + A = -3 (7.14)

where § is only a function of temperature. With condition, A/d? < 1, the above

equation yields,

32 kT A
AL ) (7.15)

A:¢0(1"TZ‘8‘ &

where ¢g = exp(—3/kpsT). Eq. (7.15) shows that lamellar layers at higher positions
have slightly more co-surfactant than those at lower positions. Physically speaking,

thermal fluctuations of large amplitude at higher positions (corresponding to larger
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layer spacing) reduce the free energy of the layer, therefore, the layer needs slightly
more co-surfactant to keep the chemical potential of the co-surfactant the same as
the value in the oil phase.

Eq. (7.15) can be tested in future experiment.

7.4 Landau-Peierls Instability

In this section, we turn our attention to the measurement and analysis of the lineshape
of the Bragg peaks. It was proposed by Landau and Peierls [25, 26] theoretically that
translational order as it occurs in a three dimensional solid can not exist in two
dimensions because it is destroyed by thermal fluctuations. For a two dimensional
system, it was predicted that a transition occurs to a state of quasi-long-range order
in which the positional correlation functions do not extend to infinity, but decay
algebraically as some power of distance. This behavior is called the Landau-Peierls
instability. A closely related phenomenon has been predicted and observed [8] in a
thermotropic smectic-A liquid crystal for the first time and later in swollen lyotropic
lamellar phases [27, 11]. These liquid crystal structures are close analogies of two
dimensional systems in that the calculations of the thermal fluctuations are similiar,
and the thermal fluctuations prevent the smectic ordering to long range.

To understand the Landau-Peierls instability in liquid crystals, we recall Ref. [8]
and Eq. (4.3) in Chapter 4 of this thesis. A stacked membrane system can be described

by a group of harmonic modes, each mode defined by u (g), with an energy,

1 1. .
Eg = (Bqﬁ +5h qi) 2 (q) (7.16)

When we take ensemble average over both sides of the above equation, and apply the

equipartition theorem, the real space mean square amplitude of fluctuations can be
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found,
9 1 q0 qmaz 5 1 . 4 -1
() = kol [ day [T (Baf + 3Kat)  2rasdes
(2 -qo dmin 2
kgT L
= —B [Tl ( ) 717
4mvBK Booo8 ( )
where gq is the upper cut off for ¢;. The cut off wave vectors for ¢, are g¢uin = 27}

and @pez = %f with L the dimension of domain size and « the distance between the
head group molecules.

Clearly, if L is infinite, the amplitude of fluctuations will be divergent so that
thermal fluctuations will destroy any long range order. Thus for a smectic-A or a
layered structure phase in three dimensions, there is no true long range order.

To calculate the Bragg peak lineshape, we first calculate the the positional corre-

lation function [8]:

G(r) = (eioln-uol) (7.18)

G is calculated in Appendix C with harmonic approximation, the result is the Caille

[28] function,

G(r) ~ e (Iziyz)nefcp - [77E1 ( s )] (7.19)

with A = /K/B and 7 given by

k BT([(Q)

A 7.90
= SivVBE (7.20)

and 7 is Euler’s constant; E) (z) is an exponential integral function (see Abramowitz
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& Stegun [29]),

E1 (’L)

/ = (7.21)

—z t
< (~1)"a"
= —’y—logﬂf‘-gm (722)

The Fourier transformation of G (7) gives the lineshape S (q), it has simple forms

in directions both parallel and perpendicular to the normal of the membranes (Ap-

pendix C),
S (OaO,QH) ~ ——'1—2 (7.23)
| a4y = q0 |*77
and
1
S ((Ix, qya QO) ~ 7:2_11 (724)
q,

In the above calculations, we have assumed a single domain liquid crystal of infinite
size. In a real system such as the OBS system in our experiment, lamellar pieces have
finite sizes and light signals are scattered from many lamellar pieces randomly oriented
in space, we have to consider the finite size effect and powder averaging.

First of all, we discuss the finite size effect. Dutta and Sinha [30] have analyzed the
finite size effect in 2-D crystals. Their result includes introducing a Gaussian factor
exp — (r?m/L?) in the Fourier transformation integral in calculating S (g). Although
each crystal piece is sharp-edged, the Gaussian form comes from the averaging of
many domains of randomly distributed sizes[30]. Safinya et al. [27] considered this

Gaussian factor in calculating S (gq) in liquid crystals,

Sps. (@)~ [ dre(TIR) G ()l 4000 (7.25)
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where gy is in the z direction and G has the form of Eq. (7.19) in the same coordinate
system. L is the dimension of the liquid crystal pieces. In order to examine the

asymptotic behavior of Sp g at large | ¢ — g, |, we rewrite Eq. (7.25),
Sr.s.(a) ~ /d3r G (r)exp [z 4=9) _ —] L (7.26)
.S. -

We can always choose | ¢ — g, |> 7/L, so that » < L | ¢ — g, | /(lL’-) covers the
integration volume beyond which G (7) is too small to have a significant contribution
to the integral. Within this integration volume, the second term in the exponential
brackets in Eq. (7.26) contributes little to Sp g_in the contour integral, therefore can

be neglected, Eq. (7.26) becomes,

SF.s.(q) ~/ G(r)ezpi(g—qo)-r (7.27)

Eq. (7.27) is indistinguishable from the case when the lamellar pieces are infinitely
large. The conclusion is, the finite size has only a very small effect on the lineshape
far away from the Bragg peak. Eq. (7.23) and (7.24) should be applicable at large
| ¢ — qo |- On the other hand, as pointed out by Dutta and Sinha, finite-size effect
becomes important at small | ¢ — gy |- They round off the otherwise cusped S (q)
near the Bragg point.

The powder averaging effect is incorporated by integrating Eq. (7.25) over q in
all solid angles [27],

S(q) N/qu/d3re_("2”/L2) G (r)el(9-9)T (7.28)
~ /d3r e~ (7r/1%) G(r)e'de™ /07r d(cosC) eT™*¢  (7.29)

0 2 L2 1—2n 1 cos(qra)
~ dr e "I g (qr / do —————=
/ ) [ da S

(S(Q)FS.)PA.
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xexp — nE, [Z% (-;— - a)] (7.30)

where ( is the angle between r» and q. The last equation is written in spherical
coordinates whose polar axis is in the direction of q,, and a = cos#.

There is no analytical solution to Eq. (7.30). A numerical fitting program based
on Eq. (7.30) is written (see Appendix B) which requires large amount of CPU time
(up to days on a SUN workstation). Numerical fitting to our experimental data is
currently being conducted.

In fitting our experimental data, we have also tried a simpler but less rigrous
approach. The narrow central peaks of the experimental lineshapes which will be
presented in the next section, show that the sizes of the lamellar pieces are rea-
sonablely large, so that we can first consider the powder-averaged Landau-Peierls’

lineshape at large ¢ — qo, which is a power law,
I(p)~— (7.31)

where p =| ¢ — ¢o | and ¢ = 1 — 7 according to Safinya et al. [27]. Eq. (7.31) would

have a one dimensinal Fourie transform, provided 0 < ¢ < 1, given by:

1 [ eiP?
Gg(z) = gf_oo-p};‘dq

1
|z [1=¢

(7.32)

We could transform this back to the momentum space, but with a gaussian cutoff to

incorporate the finite size effect, that gives,

o< 2 2 .
S(p) = / | 2 |67 em*/ emiez g

-0



CHAPTER 7. LIGHT SCATTERING FROM THE OBS SYSTEM 91

1 (¢—q)° L
%5;5; (¢ 2110) ) (7.33)

~ T(¢/2)L*M (
where M is the Kummer’s function [31].
In the case of lamellar phases obeying the Helfrich formulation for the membrane-

membrane interaction (see Eq. (4.12)),

1

The value of i can be calculated theoretically by combining Eq. (7.34) and Eq. (7.20).
It turns out to be independent of k., d and T for layer spacings as large as our OBS
system. For a smaller layer spacing, n does depend slightly on d, n ~ 1.33(1 — ¢ /d)2
when the layer thickness ¢ can not be neglected [27]. For highly swollen lamellar
phases, the predicted value of n depends solely on the coefficient of the Helfrich
interaction. This could give a value of n > 1.

Interestingly, ¢ = 1 — 1y sets a upper limit for . That is, n has to be smaller than
1 for Eq. (7.31) to generate a Bragg peak. Because Eq. (7.31) is an approximation at
large p, whether this upper limit is a true condition or not is not clear.

Experimentally, the value of 7 > 1 has never been observed. Larche et al.[11]
measured the Bragg peak in a similar OBS system with an oriented sample and
found n = 0.7. In the next section, we will discuss our Bragg peak measurements
from our OBS powder sample. The layer spacing distribution allows us to measure

Bragg peaks from d = 40004 to d = 10000A with the same sample.

7.4.1 Bragg Peak Measurement

The Bragg light scattering setup is the same as described in Fig. 7-1 and Fig. 7-2
except that:
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1). The polarizations ¢ and f are set in the plane of scattering.

2). 0, = tan™! (;117), the Brewster angle.

These two conditions guarantee that the multiple reflections from the two inter-
faces, which would contribute to the broadening of the peak, are minimized.

Signals were recorded by the same photo multiplier and auto-correlator that were
used in the dynamic light scattering of C12E5 lamellar phases described in Chapter
6. The baseline of the time auto-correlation function should be proportional to the
scattered intensity. The Argon laser provides a well collimated beam with power
~ 100 mW, but unfortunately, the laser light has an intrinsic 10% modulation at
120 Hz. We replace the Argon laser by a new Helium-Neon red laser to do dynamic
light scattering and find that the characteristic correlation time ranges from 0.02 sec
at positions far away from the peak to 0.5 sec near the peak point. This decay rate
dependence on ¢ near Bragg peak deserves further analysis (see Section 7.5). For
the intensity measurement, the blue light of the Argon laser provides a more suitable
range of angles to observe. But the modulation at 120 Hz and the variation of the
decay rate with ¢ may introduce errors in the determination of base line by the auto-
correlator. To minimize this effect, we choose sample time 7 to be much greater than
the decay time even at angles very close to the center of Bragg peak.

Because the lamellar pieces are much smaller than the path length of the container
and the sample is an extremely dilute, transparent fluid, the lamellar phase stays in
a powder form randomly distributed in orientation, instead of being oriented by the
glass walls. This is supported by the observation of a smooth Bragg ring on a paper
screen. The Bragg rings measured when the glass walls are turned in direction also
satisfy the Bragg angle conditions for powder sample, Eqs. (7.3) and (7.4).

Since we are only changing the receiving arm, g changes both in magnitude and in
direction. Due to the uniform distribution of lamellar piece orientation, the intensity

of the scattered light is independent of the direction of q. Its dependence on ¢ should
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in principle be given by Eq. (7.30).
Let Iy, be the measured intensity flux in the lab, let Iz be the real intensity flux
before the scattered light comes out of the sample. The differential intensity per unit

solid angle can be calculated according to (see Fig. 7-2):

dlg 1 cosl,\ dIp
dlg _ 7.
o, (1 - r2> (cose5) a0 (7.35)

where r is the reflection coefficient,

o tan (94 - 05)

=T 7.36
"7 tan (64 + 65) (7.36)

Now, we consider the instrumental resolution and the finite size effect. The incom-
ing beam is collimated to within a 0.13° divergence. This is converted to an uncer-
tainty of momentum transfer Ag = 158cm ™! for a typical layer spacing d = 5434.44
using Eq. (7.3). In the receiving arm, P; and the spatial filter (see Fig. 7-1) define a
direction for the scattered beam at each angle so that any light rays deviating from
the line by more than 0.08° can not get into the fiber tip in the spatial filter. This
corresponds to a momentum resolution Aq = 123cm™!. The total instrumental reso-
lution should then be below 300cm~! which is small compared with the Bragg peak
width (~ 103 to 10%cm™!). On the other hand, the finite size effect may not be as
small. This will be seen from the data.

We measured the differential intensities vs. ¢ for 3 different layer spacings and
plot the Bragg peaks from Fig. 7-5 to Fig. 7-7. The solid lines are least square fits to
the Kummer’s function expressed by Eq. (7.33) plus a constant background term and
a linear background term. The results of the fitting parameters are presented below
each graph, d, L and 7 are readily obtained, and are put at the upper left cornor of

each graph.
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The Kummer’s function resembles a power law at large | ¢ — ¢ |, but rounds off at
small | g—qo |. This can be seen from the graphs. Since L ~ 12 to 21um, the departure
of the lineshape from a power law ocurs within | ¢ — o |< 7/L ~ 2 x 103em™!.
The central broadening characterized by /L should be the combined effect of the
finite size and the finite instrumental resolution. From the last paragraph, we can
see that the instrumental resolution is too small to cause the observed broadening,
therefore, the finite size effect dominates the broadening, thus L should give the
average dimension of the lamellar pieces which is about 19 £ 7 pm.

The value of 7 varies for different d, which gives the uncertainty of 7, therefore,
n = 0.47 £ 0.09. The value of n measured by Larche et al. [11] in an oriented OBS

sample is n = 0.7.

7.5 Dynamics Near the Bragg Peak

As we approach the end of this thesis, we present a preliminary result of dynamic
light scattering near the Bragg peak. The set up and sample are the same as in the
last section. The diffusion time constant also shows a peak at the intensity Bragg
peak. Fig. 7-8 shows the diffusive frequency of the time correlation function vs. ¢. It
can be fitted by (¢ — qo)2 on both sides of the peak as shown in the second and third

graph in Fig. 7-8.

7.6 Conclusion

We discovered a layer spacing distribution as a function of depth of the observed phase
region in a vertical cell containing OBS 4-component lamellar phases. We attempt
to interpret the the finding as the result of force balance between the gravitational

pressure of the lamellar fluid and the internal Helfrich repulsion between membranes.
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We also propose a model to calculate the amount of co-surfactant pentanol in the
membranes as a function of the layer spacing.

Furthermore, a layer spacing distribution over depth enables us to measure con-
sistently the Bragg peak lineshapes at different layer spacings. We have discussed
the framework of the Landau-Peierls instability as applied to highly swollen lamellar
phase, the effects of finite size and powder averaging, and are able to fit our exper-
imental data with a Kummer’s function, which is a good approximation to describe
the Landau-Peierls instability in our system. We find that the power law exponent
n = 0.47 £ 0.09, independent of the layer spacing within our experimental accuracy,
in the range of d = 40004 to d = 1um.

Finally, we have conducted dynamic light scattering near the Bragg peak at one
layer spacing, and find an approximate relation, w ~ (¢ — qo)z, where w is the imagi-

nary decay frequency of the dynamic process measured.



Appendix A

Molecular Properties of C12E5
and OBS

1). C12E5

Full Name: Pentaethylene Glycol Monododecyl Ether.
Moleuclar Form: CH3(CH,),,(OCH¢H,);OH.
Molecular Weight: 406.61.

Density: 0.963 at room temperature.

Purchased from Fluka.

2). OBS

Full Name: 4-Octylbenzenesulfonic Acid, Sodium Salt.
Moleuclar Form: CH3(CH,), CsHySO3Na.

Molecular Weight: 292.38.

Purity: 98%

Purchased from Aldrich Chem. Co.
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Appendix B

Comments on Computer Files

Related to the Thesis

The computer we use is a NeXT Workstation, with address name:
complex.mit.edu.

The general directory is: /home/cyzh/

The thesis is in: /home/cyzh/phd.d/

The oven temperature calibration: /home/cyzh/temp.d/

The DLS from polystyrene latex sphere: /home/cyzh/polyst.d/
The DLS from vesicles: /home/cyzh/vesicle.d

The DLS from C12E5/Water system: /home/cyzh/cl12e5lam4.d/
The OBS sample height dependence: /home/cyzh/obs4.20.d/

The OBS Bragg light scattering: /home/cyzh/obs105.d/obs10.5*.d/
The dynamics near the Bragg peak: /home/cyzh/obs525.d/

The fitting program for Eq. (7.30): /home/cyzh/plot_func/lpsph.5.c

The fitting program for the Kummer’s function: /home/cyzh/plot func/kummer.5.c
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Appendix C

Notes on Landau-Peierls Line

Shape Calculation
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Landau Peierls Calculation in a Smectic-A
[Written by J. D. Litster]

The elastic free energy for layer displacements is
/]-"ez dr = Y (Bqi + x.H*&} + Kiq})v*(q) (1)
q

The scattering with respect to the Bragg peak is given by the Fourier transform of the
correlation function:

G(r) = (e~ aolur)—u(0)) (2a)

= % (u(r)—u(0)—(u(0)*)] (harmonic approximation) (2b)
Tq0 eI -1

= ex { then H =0 2c

exp /Bq” Tl ‘ q} (when ) (2¢)

Thus we need to evaluate:

kTq3 / ”
lq 3
(27)3 Bq“ + I\qu (3)

which is most easily done in cylindrical coordinates, with 22 4+ y? = r2 and A\ = v K1/B.

1 27rd6 0 ; 1% [ e-—iq::-iq_|_rcoso -1
(2m)3 /0 /0 L /~oo 4 B¢ + K¢

o<} 00 Wz ] -1
/ qL dql/ dq. cos(q,(j2)+o£2q;_4r) (using G&R 8.411.1)
AL

Jg qur)e™: |
47rB/\ qL

_ 1
" 272B

(using G&R 3.723.2 and 2.124.1)

Note that in these expressions z is really | z|. The Bessel function can be expanded according
to Abramowitz & Stegun formula 9.1.12. Also using Abramowitz & Stegun formulas 5.1.11
and 5.1.39 along with G&R 3.381.4, one obtains for Eq. (3):

kqu Gmaz e—/\“}i -1 s ( 1)17:7 2m . peg
dg, ——87 AR A / —-Az (/L 2m-—1 1
47I'B)\ /0 q-L + Z 4711 (771.!) 0 € (_[ ¢ q1.

qL m=1
kquA /’\Zq;lnaz 1- e_t ad (—l)m' 7’2 " peo _ _

- H _ / tym—1 '
re [ 0 2% m{:l s \Dhz) b T U
kqu/\ ) ) =< __l)m r2\™

- 87!'1(1 v + ]'H(A‘;qm(mr) + El()\"(bn(w) - 122:1 mom! 4Nz

2 2
=-n [27 + ln(/\zquaa) + El(/\ (Im(n ) + In (4/\~> + El ('_’_;):l

where = kT¢3\/(87K;) and v = 0.5772156649 ... is Euler’s constant.
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Thus the correlation function is

G(r) = e {———————4 )r e~nEl(#> (4a)

GPraa(2? + 42

4 !
| e “b)

_ 1
=e "”m for 22+ 4> =0 (4c)

= e~ 21 [

This gives the structure factor S(¢., gy, ¢.) proportional to

2

1 2
_ © [ o L 1 _,}El(:y_)
e 2‘"’/ e’q‘xd:c/ e“”’y(ly/ 4 =102 e e
oo .o}

o a2+ y?

2 2
—"El (rtl:{-z )

= 8e 771/0 COS((Jz-l')fll'/o cos(q,y) dy/o cos(q. — qo)z] d= W (5a)
If we change to cylindrical coordinates, 72 = a2 + y?, the integration over the azimuthal
angle 6 can be done to get:
e’ J . o] —nE _,i
S(q) «x 47 6_27"/ rdr D(ZLIT ) / cos[(q — )] dze ! 1(“‘) (5b)
0 e 0
so that for ¢, = g, = 0, by setting 3% = r? |¢q — ¢o| /A and |qj — @| z = a, we find
. AL=n e o —nEy (£
S5(0, 0, ¢;) 47re“27"—————1——/ /3’1"2’%1[)’/ cosae 1(“")da
lay — qo[>7" Jo 0
o gy = go| ™ (6)
Similarly when ¢ = qo, by setting # = rq; and ¢3 Az = a, we obtain
c 1 o ; o CT—. Jid
(e 1y ) x a1y [~ g gyag [ ()
Ag, o 0
o gt = (g + qp) T (7)

If we fix the magnitude of ¢ but allow it to range over all orientations, we may use Eq. (5b)
to calculate the scattering that would be observed for a powder sample as:

Fid oo - Q] 00 _ 2
S(q) x 27 6“2"’7/0 sinadé‘/o rdr M/ cos[(qcost — 1)goz] e nEl(W)dZ (8a)
0

r2n

1 oo /1 — $2
=27 6_2'7”/ dt/ rdr Jolaor V1 —
-1 0

11'21)

) /Ooo cos[(qt — 1)qoz] e_nE1(4ra\21)(lz (8h)

where ¢ =|q| /.
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For computational purposes it may be helpful to put all quantities in dimensionless form.
This can be done with the following substitutions: p = g7, { = oz, { = gy}, and retaining
q =|q| /go. When these substitutions are made, we find

s<q)o<2—“—27—"/ it [ pap MLZE) [ (gt~ 1)) o () g (oa)

3~2n
oc/oopl"2'7 dp /ooe— ﬁ? d(/ Jo(gpv'1 —2) cos[(¢qt — 1)¢] dt (9b)
0 0

= 2/'000 cOS(C) dc Amp (l{) [;13 e_El (%)J /01 Jo(qp /1 — t‘Z) COS(th) dt (9(3)

Eq. (9¢) can be used to do a numerical integration to calculate the line shape for a powder
sample with very high spectrometer resolution. There are two parameters: n and ¢.
Consider:
1
2cos(¢) | Jo(gpV1 —t2) cos(q(t) dt

0
= /_1r Jo(gpsin@) [cos(() cos(q¢ cosB) + sin(¢) sin(q( cos )] sind db (10)

From G&R 8.514.5, 8.514.6, 8.440, and 1.320.3:

cos(q( cos ) = Jo(q¢) + Z V¥ Tae(qC) cos(2Kk6) (11a)
sin(q( cosf) = QZ )* Jor41(qC) cos[(2k + 1)8)] (11b)
£=0 o0 (_ 1\n 2n
Jo(gpsinf) sinf = siné ( '1)' ((i/f) sin" @ (11c)
= ninl \2

n _1\n+mys
in2n+1 f = 1 ( ]-) 2" + 1)
220 &~ (2n —m+ 1)!m!

. . o 1 q/) 2n n (_1)1)1(271 + 1)'
J 6) sinf=3 ——— (-—) S M — 2
o(gpsin @) sin 2 55 \ 2 D —— LT sin[(2n —2m +1)0]  (1le)

sinf{(2n — 2m + 1)6] (11d)

It is clear that the cos(¢{ cosf) term in Eq. (10) contributes nothing, while from the
sin(q¢ cos@) term we obtain 7 whenever n —m — k = 0. So Eq. (10) becomes:

) = (=D g\ & (2n+1)!
2w Sln(C) Z 22n( ( ) 7§0 (271 —m+ 1)| i ']‘2n~2m+1(qC) (12)

which should converge fairly rapidly.
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Following this, the powder structure factor of Eq. (9¢) becomes
S(q) x 27r/0°° sin(() d¢ /0 pdp
1 -5(&)] & " (qp)% ! (2n +1)!
X {[ 5 € nz=;:) (2 \4 }: (2n —m + 1)!m!=]~2n—2m+1(‘10 (13a)

m=0

= 27r/0msin(C) d¢ /oopdp

1 (£ e e Y T
v {[Fe ( )] %JQH-I (lC Z n') (n+k+1)! (n—k)! (Z) } (131))

However a little playing with this expression showed that the series did not compute very
well, largely because of large terms of alternating sign. A more sensible approach would be
to start with the momentum space function for a powder pattern, namely é(¢ — ¢;), and find
its Fourier transform:

1 — ¢ singr
—_ 6 [ / l —igrcos0 19 = A1
(271')3 / q (q (11 aq ¢ ¢ . e ¢ o2 qar

thus convolving Eq. (5a) with 6(¢ — ¢1) is the same as multiplying G(r) by (sinq;7)/(qi7),
with 7 = /22 + yZ + 22, before taking the Fourier transform.
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Now the scattered intensity is the convolution of S(q) with the instrumental resolution
function. Since the Fourier transform of S(q) is G(r), which is known, the simplest way to
calculate the scattering Z(q) is to transform the resolution function to real space, multiply
it by G(r), and transform back. If we let R(r) be the real space transform of the resolution
function, we find

Z(q) x e~ 2m /oo =Ty /oo e'wYdy /oo =)y R(r) 1 e_E1 (12&2) ! (14)
00 00 oo 2 + 'y2
We consider some simple cases.

First, if the spectrometer selects only ¢ = ¢ 1., R(q) is 6(¢.) 6(qy) 6(q: — q) and R(r) =
(27)~3 exp(—igyz). The integrand G(r) is an even function of z, y, z, so the result becomes

2

( ) l /OO ( ) l /oo ( ) ’ ( ) 1 —-E; (Li,\z ) n
; f 1 cos(q. — qg)zdz R(r €
COS qxﬁE axr o COS qyy y 0 0} 1_ 10 ( _’L‘2 y2

oo

I(q) oc/O

(15)

The spectrometer resolution function used for the Risp measurements on 8OCB was gaussian
(representing slits) in the transverse directions, while an exponential fall off convolved with a
gaussian was a good representation for the longitudinal resolution. The real space resolution
function was

1 6—03:2/2
2P 1+ Qe

R(r) = e R ooy (16)
which corresponds to momentum space resolutions of (2702)1/2e=%/(203) @ ¢=4:/Q ip the ¢,
direction, (2m02)/2 e%/272) in ¢, and (2702)!/2 ¢=%/(%) in q,. Using this R(r), one gets

—2 e —0222/2 g —o2y2)2 o 6”0352/2
I(q) xe 'm/o e % cos(ql.:v)/(J e %Y -cos(qyy)/o Wcos(qz—qo)z

1 _ z""+ 2 n
[We El( e )] dvdydz (17)

To use this in numerical calculations, it is useful to put things into dimensionless form. So
put T = 0,2/V2, y1 = 0,y/V2, 21 = 0.2/V2, F = V2Q/(907%), X = Ao, 0. = 02/q0,
0y = 0y/Q, 0, = 0:/90, & = 4=/ %0 @, = 44/ %0 and ¢, = (¢: = q0)/qo. These give

R 2.: ( ,, 0 2 2 , o0 “32 !
I(q) x e~ 21" /0 e~ cos <_\/___f_l_ll_> / e~ cos (\/_7/’1 (./y) / e A cos (\/QZII qz)
0 0 2

a’ o 1+ F2z o

Y z

Y

1 e—El (?‘ffxﬁ [(oi’:) +(£J§) }) dxy dyy dzy (18)
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One way to include the effect of a finite sample size is to limit the region of space integrated
over in calculating S(q) from G(r). Thus Eg. (18) can be used to make an approximate
correction for a finite sized sample. If we suppose the effects of the finite sample size can
be represented as a gaussian cutoff, the result will be given by Eq. (18). Let us suppose a
“sample size” given by a spherical gaussian, exp —(2? + y? + 2?)/L2. Then, if L' = goL, we
would have

* 2 o 2 o0 2
T(g) e [T et costar o, ) [ e ¥ costyn g ) [ e cos(z ¢, L)
0 0 0

24y’
1 _El (( 4;”:)
e 1

n
)] dzy dy, dz)

2 2
zi +yi
6—2’777 0o " . o) o . 00 2 .
—_ e~ 1 it 4= L / e~ Y1 et¥1 4y L / e %1 el (g2—qo) L
8 -0 -0 -0
1 g (e
A lv) dy, dz
5 5 € axr) dy) azy
1+ Y1
-2 oo 9 x (rl L sin? o) n
€ _p2 . 1 —-E ey
= / r2e™ dr / do | sinfdf |w5———e hcosd
8 Jo 0 - r{ sin“ 6

exp t{q Lri[sinf sin? cos(¢ — ) + cosf cos V] — ¢o L ry cos b}

o e —r? T 1 —E Lli%:'ﬁ !

=3e 27”/‘; rle ldm/O sin 6 df [T%—Sh-l.z—ee ( A eos? )}

Jo(q Ly sin sind)cos(q L1y cosf cost) — gy Lry cosb) (19)

where 6, ¢ are the co-latitude and azimuth for r;, and ¥, ¢ are the co-latitude and azimuth
for q. Because of the azimuthal symmetry it was possible to integrate over ¢ in Eq. (19)
and obtain the Bessel function. For an aligned sample, we can chose an orientation for q by
specifying 9. If we replace cos8 by x and r; by r, we obtain the integral:

T 1 © 5, .2 1 —py (k=227
I(q) 5¢€ 27"/0 (1.’13/0 r2e”" dr [7_2(1——72_)6 '( A )}
Jo(qLr V1 —2a?sind) cos(qLra cost) —qyLra) (20)

If we had a powder aligned sample, we should integrate over all orientations of q to get,
where y is cos ¥:

T o_ 1 ° . 1 — iy (2=
I(q) X '8—6 2717_/_1 d.’l?/o 7'26 (l'l“ [;‘2—(—1—:—2—56 ]( A )]

. 1 .
e o lre /ldy Jo (qL-7'\/(1——;v2)(1—y2)) eltlrey

L(1—z2 n
7T -2+ /1 /oo 2 -2 1 —E (%)
= —¢ 1 : lr | ———m———
2 0 @ 0 re @ 7'2(1-—1172)6

1
cos(qoLra;)/O dy Jy (qu\/(l—w?)(l—y?)) cos(qLrxy)

(21)
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The integral over y can be done using 6.677.6 of G&R (p 737), to get:

1 o0 (19—“‘—;—’:1)] " sin(¢ Lr) cos(qo Lz ) (22)

1 oo
2.- 4
I(q) OC/O da:/o r-e r [7.2(1 —2?)

Eq. (20) and Eq. (22) are in a form that might be tractable by numerical means in a data
fitting program. Or, the order of integration in Eq. (22) might be reversed for numerical
calculations

qLr

1 —E rL!l—zz!

I(q) x alz/ooore“rz sin((_/Lr)dr/O1 [me ( e )] cos(qo Lar)dr  (23)

I() get an idea ()f the eﬁect ()f Sample SiZC‘ L on the Scattel'illga we n]ight CODSidel' the integral
7 = '—'1 ? si L { l L 1 24
a - re ! S ¢ r)ar cosl (g , TT)dAr

The integral over x can be done immediately, and the remaining one over r is given in G&R

3.896.4. One finds

- 2712\ /¢
- ﬁ Slllh((]o L .X/Z) e_qg L2(1+<\'2)/4

L) =" =y

(25)

where X = ¢/qo. The resulting Mathematica output, normalized to the peak height at
X =1, is shown below.
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It appears as if the sharpness of the data is going to require g L > 100, so that the
sin(q L r)cos(go L r x) term is going to oscillate rapidly compared to changes in remainder of
the integrand in Eq. (22), which is plotted below:

IGND(x, 1)

The oscillating part of the integrand in Eq. (22), sin(q L »)cos(qy L ¥ ), is plotted below for
gL =10 and gy L = 20. Since the useful values of ¢y L for Chao’s data appear to be around
300, the impracticality of a brute force numerical integration becomes clear.

Sin(qgLr)Cos (g0Lrx]
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A simple thing to try is to assume the infinite sized sample would give a power law, say

1
lgql®

This would have a one dimensional Fourier transform, provided 0 < ¢ < 1, given by:

g@)zé%/zfgédw_Fu—¢)m501~ww)

Com|zie 2

I(q) =

where G&R 3.761.9 has been used. We could transform this back to Z(g), but with a
gaussian cutoff of the form exp —22/L2. That gives, using G&R 3.952.8:

o) 2 . oo 2
/ | 2 |¢! e~ 1L o—iaz g — 2/ g9l e= /L cos(gz)dz
0

1 ‘2L‘2
=T/ (5 3 - )

35 T
1 QL2
= T(p/2) L? M (g 5 —(14 ) (26)

where M is the Kummer function [J. Spanier and K. B. Oldham, An Atlas of Functions,
Hemisphere, New York, 1987}, also called a degenerate hypergeometric function. Thus we
may fit our data to something like:

1 _ 2L2
Iw)aAf(g;i;—ﬁl—%ﬁ——) (27)

This requires ¢ < 1; otherwise there is a singularity at the origin one can’t integrate across.
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