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gral in addition to elementary functions. The proof is based on two identities for the
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of functions that are built up from the rational functions by taking transcendental
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Chapter 1

Introduction

In 1967, M.Rosenlicht [11} published an algebraic proof of Liouville’s theorem on
the problem of integration in finite terms with elementary functions, based on the
notions of differential algebra. In 1972, J.Moses [7] started discussing the problem of
extending Liouville’s result to include non-elementary functions in the integral. He
asked whether a given expression has an integral within a class of expressions of the
form F(V;), where F' is a given special function and (V;) is a finite set of functions
lying in the ground field. Singer, Saunders and Caviness [11] proved an extension
of Liouville’s theorem allowing logarithmic integrals and error functions to occur in
the integral in addition to elementary functions. However the techniques used in
their proofs don’t apply directly to special functions such as the dilogarithm since
the later has "non-elementary” identities. Also the dilogarithm is more complex than
logarithmic integrals and error functions, in the sense that if an integrand has an
integral which can be expressed using dilogarithms, these can have derivatives which
contain logarithms transcendental over the field of integrand.

R.Coleman(3] produced an analytic characterization of the identities of the dilog-
arithm for rational functions. We show that two identities of the dilogarithm, in
addition to the identities among primitives and the identities among exponentials,

are required to generate all algebraic relations among dilogarithms and logarithms of



finctions built up from the rational functions by taking transcendental exponentials?,
logarithms and dilogarithms. Our proof uses Ostrowski’s theorem(8] in several places.
Given these two identities, we generalize Liouville’s theorem to include dilogarithms
in the integral, in addition to elementary functions. The basic conclusion is that an
associated function to the dilogarithm, if dilogarithms appear in the integral, appears

linearly, with logarithms appearing in a possible non-linear way.

!Transcendental exponentials are defined recursively as exponentials which are transcendental

over the previous field which could contain logarithms, dilogarithms, and other transcendental
exponentials.



Chapter 2

Dilogarithmic Elementary

Extensions

Definition : A differential ring is a commutative ring R together with a derivation

of R into itself,that is,a map R — R which if z — z' satisfies the two rules
(z+y) ="+

(zy) = z'y + zy’

In a differential ring we have (z™) = nz™ 'z’ for n = 1,2,3,... . In particular
setting £ = 1,n = 2 we have 1’ = 0.

Definition : A differential field is a differential ring that is a field. If u,v are
elements of a differential field and v # 0 we have the relation (u/v) = (v'v — uv')/v2.

Elements of derivative zero are called constants and in a differential field the
totality of constants is itself a field, the subfield of constants.

If u, v are elements of a differential field such that v # 0 and u’ = v'/v , in analogy
with the classical situation we say that u is a logarithm of v or that v is an exponential
of w.

Definition : If k£ is a differential field of characteristic zero, we call K a differential



extension of & if K is a field extension of k and is itself a differential field such that
the derivation on K, when restricted to k, is identical to the derivation on k.

Let & be a differential field of characteristic zero. The subfield of constants of k
will be denoted by C'. Let K be a differential extension such that K = k(t) for some
t € K. An element t € K is called elementary over k if the field of constants of k is

the same field of constants of K and ¢ satisfies one of the following:

17 t' = a'/a for some a € k*. In this case, we write ¢t = log a and call ¢
g

logarithmic over k.

(27) t' = d't for some a € k. In this case, we write t = ezp a and call ¢ exponential

over k.

(3”) tis algebraic over k.

Definition : A differential extension field of a differential field is said to be
elementary if this extension has the same subfield of constants as the base fieid and
if there exists a finite tower of intermediate fields starting with the given base field
and ending with the given extension field, such that each field in the tower after the
first is obtained from its predecessor by the adjunction of a single element that is
elementary over the preceding field.

That is a differential field F' of k is said to be elementary over & if F and k& have

the same field of constants and if F' can be resolved into a tower :

such that F; = F;_,(6;), where, for each 7, 1 <7 < n one of the following holds :

(i) 8= ¢'/¢ for some nonzero ¢ in F;_;, which we write §; = logp. We say that

0; is logarithmic over F;_;.

(ii))  6; = ¢'0; for some ¢ in F;_,, which we write §; = expp. We call §; exponential

over F;_;.



(iii)  6; is algebraic over F_;.

Proposition: see [11]  Let F be a differential field of characteristic zero and
K an extension field of F. Then there exists a differential field structure on K that
is compatible with that of F' and with the field structure of K. This differential field
structure on K is unique if K is algebraic over F and in any case induces a differential

field structure on any subfield of K that contains and is algebraic over F.

Proof: Let D be a derivation on F. We want to show that D extends to a
derivation on K. Assume first that K = F(X), with X transcendental over £ and

consider the map :

defined by :

Do(i ;X)) =Y D(a;)X?

1=0 1=0
if ag,ai,...,a, € F, is a derivation of F[X] extending D.

We extend Dy to the field K = F(X) by setting, for u,v € F{X], v #0

Do(u/v) = ((Dou)v — (Dov)u)/v?

Suppose next that K = F(z) with z algebraic over F. Let X be an indeterminate
over F' and let f(X) € F[X] be the minimal polynomial of z over F. The map

0
— F F
% ¢ FIX] = FIX]
defined by :
J & . n .
- iXt — . in—l
X & a iz:(:) ta
if ag,a1,...,a, € F, is a derivation of F[X] that annuls each element of F. So for

any g(X) € F[X] the additive map D, +9(X)5% is a derivation of F[X] that extends
D. Setting f'(X) = (5%)f, we have f'(z) # 0 and since F(z) = F[z] we can find a



particular g(X) € F[X] such that

(Dof)(z)+g(z)f'(z) =0

So Do + g(X)% maps f(X) into a multiple of itself, hence maps the ideal
FIX]f(X) into itself, hence induces a derivation on the factor ring F[X]/F[X f(X)
which is isomorphic to F(z). This gives us the desired extension of D to K = F(z).
Thus D can be extended to a derivation of any simple extension field of F'. If K is
an arbitrary extension field of F' then using the above and Zorn’s lemma D can be
extended to K. To complete the proof it suffices to show that if D, and D, are two
derivations of the field K that agree on the subfield 7 wud ¢ € K is algebraiv vuer
F then Dz = Dyz. Considering the derivation D; — D, of K, we have to show that
any derivation of K which annuls all of F also annuls each z € K that is algebraic
over F. For this we note that if f(X) € F[X] is the minimal polynomial of z over F
then we have 0 = (f(z)) = f'(z).z’ , so that 2’ = 0. u

Let k be a differential field of characteristic zero. A differential field extension F
of k is said to be dilogarithmic-elementary over k if F' and k have the same subfield

of constants and if F' can be resolved into a tower :

such that F; = F;_;(4!,6;), where for each 7, 1 < i < n one of the following holds :

(i) 6! = ¢'/¢ for some nonzero ¢ in F;_;, which we write 8; = logp. We say that

8; is logarithmic over F;_;.

(ii) 8} = ¢'0; for some ¢ in F;_;, which we write 8; = ezpp. We call §; exponential

over F,_;.

(i) 0! = —(¢'/p)u, where ¢ € F;_; —{0,1}, and u is such that v’ = (1-¢)'/(1—¢).
In this case, we write 8; = [5(¢) and call §; dilogarithmic over F;_;. We note,

in this case, that §; is defined up to the addition of a constant multiple of



a logarithm over F;_; since u is defined up to a constant.We don’t assume ,

however, that u lies in F;_;.
(iv) #0; is algebraic over Fj_;.

Roughly speaking condition (iii) means that #; is the composition of the function

¢ with the dilogarithmic function [,(z) defined as :

l(z) = _/OI log1—t)

¢

If K is a differential extension of k such that K = k(t) for some ¢t £ K and
t' = a € k, we call ¢t primitive over £ and write ¢t = | a.

And finally Definition : If & is a differential field of characteristic zero, K a
differential field extension of k such that K = k(¢,u,v), we say that ¢t = D(¢), D is
the Bloch-Wigner-Spence function, if & is an element of £ — {0.,1} and:

1¢'  1(1-9)

= -yt =

26 T 2(1-9¢)"

where v’ = (1 — ¢)'/(1 — ¢) and v’ = ¢'/$. From this definition, since u and v are
defined up to additive constants, it follows that ¢ is defined up to the addition of a
linear combination of log¢ and log(1l — @) with constant coeflicients. Informally, ¢ is

equal to:

L(®) + %logqﬁlog(l — @)

Definition : For two differential fields £ and K we say that K is a Liouvillian
extension of k if there exist ¢;,...,¢, € K such that K = k(¢1,...,t,) and each ¢; is
either algebraic, elementary, or primitive over k(t1,...,¢;_1).

Here are two results that are used repeatedly in what follows. First, we recall a
version of Ostrowski’s theorem [8] .

Theorem : Let k& be a differential field of characteristic zero and let K =
k(log vi,...,log v,) where v; € k,1 < ¢ < n and K, k have the same field of

constants. Assume that logvy,...,logv. (0 < r < n) are algebraically independent

10



over k and that K and k(logv,,...,logv,) have the same transcendence degree r over
k.

Then, there exist constants ¢;; (1 <t <r,r <j<n) s; €k (r<j<n)such
that :

logv; = Zcijlogvi +sj, for je€{r+1,...,n}

i=1
and if » = 0, logv; € k for all j € {1,...,n}.

The second result is a useful lemma due to Rosenlicht and Singer [12]:

Lemma : Let £ C K be differential fields of characteristic zero with the same field
of constants C' supposed to be algebraically closed. Assume that %k is a Liouvillian
extension of (" and that K is algebraic over k.

Suppose that ¢1,...,c, € C are linearly independent over @, that u,,...,u, € K*,
v € K, and that we have :

gci% +v' €k

Then, v € k and there is a non zero integer N such that «¥ ¢k, i =1,...,n.

The rest of this chapter is devoted to the statement and proof of one of the main
results of this dissertation.

Definition : Let k£ be a differential field of characteristic zero. We call an expres-

sion S a simple elementary-dilogarithmic expression over £ if ;

S = g + Z cilogwi + Z[sjlog(l - h]) + tjloghj - (Z_,D(h])]

el jeJ

where I and J are finite sets , g, w;, s;, t;, h; € k and ¢;, d; are constants.
Lemma 1 : Let k£ be a differential field of characteristic zero , which is a Liouville
extension of its subfield of constants C' assumed algebraically closed. Suppose that

we have an expression of the form :

[ 7 =9+ cidogwi + Ylsjlog(1 ~ hy) + tiloghy + d;D(h;)]  (2.1)

el jeJ

where I and J are finite sets , f € k, s, t;, g, and w; are algebraic over k, h; € k,

11



and ¢;, d; are constants.

Then, we can write [ f = § | where S is a simple elementary-dilogarithmic ex-
pression over k. (So , we get g, w;,s;,t; in k instead of being algebraics.)

Proof:

Let K be a finite normal algebraic extension field of k that contains g, w;(z € I),s;,
t; (7 € J) (the smallest normal extension containing k(g, w1,..., Wi, ..., 81,0585,

tj...)). Consider the vector space E over k spanned by the vectors
Lloghy,...,loghj,... log(1 — hy),...,log(1 — hj),...

Then, we choose among these vectors a A-basis (1,¢e1,...,ex) for £. By Ostrowski's
’ ? 3 ) ] J

theorem, we can write :

lOth‘ = ZZ.—J Ajmem + P; ,Ajm € C’pj €k

log(1—h;) = YN _1bimem+q; ,bjm€ C,q; €k

We claim that 1,e;,..., ey are still linearly independent over K.
Otherwise, and by Ostrowski’s theorem, there exist constants a,, (2 < m < N)

and (o € K such that :

Q)
(8]
~

N N
€1 = Z Om€m + QO = ell = Z ame:n + Qi) (. .
m:2

m=2

By assumption, e, = logH, (1 <m < N), where H,, € {(1 — h1),...,h1,...}.
Let vo =1, 71, ... , 7» be a vector space basis for the @-span of 1,ay, ... ,a,,

and write :
.
U = Y Ami%i
1=0

with each n,; € Q. Replacing each v; by v;/LC D(n,,;) if necessary, we can assume

nmi € Z (where LCD means Least Common Denominator).

12



So we can write (2.2) as

(H,) O (HPHP L HPY
Y0 = 2L Vi et @
H " ;0 Hp» Hy» . HWY °

which can also be written as :

(Hl_l H.:,m . HnNo r "2:H".‘h . HnN:)
7o I[l—l Hp» . Hwvo Z‘Y’ Hypx | HO

+Qo =0 (2.3)

Using Singer’s lemma, we deduce that Q)g € k. Investigating (2.2) again, we get :

3]
—

N
= Y__: A € + QO
m=2

with Qo € k, an, € kN C = C. This is a contradiction , since the e,, (1 < m < V)
and 1 were assumed to be linearly independent over k.
So, 1,€y,...,en are linearly dependent over K.

Now, we write (2.1) in terms of the relations (*) :

/f go + Z Tmem + Zd D(h;) + Zcilogw,- (2.4)

jeJ el

(where go € K, 7, € K).

Taking the derivative of the previous relation, we obtain :

(1 —h;)

_g0+zc,—-—+\ rmen +Zr €m — ZdJ Jlog(l hj)+ = Zd———lloghj
el i m=1 ]EJ h JGJ (1 hJ)

(2.5)

Using again the relation (*) for log(1 — h;) and logh;, and assembling coefficients

of (2.5) according to the K-basis (1,e;,...,en), we obtain :

—go+2c,—-+ Zrm ——Z jE"b 12%%1—};%15 (2.6)

el w; JEJ jeJ

13



(the above is the coefficient of the vector 1) , and :

—hyy
— h;)

l
-y db]m——i 3 daJm(
J

JCJ j€J

(the above is the coefficient of the vector e,,).
From (2.7), we deduce that r,, € & (using Singer’s lemma and exactly the same
argnment used in the above proof).

Assume that M = [K : k]. For any o € Aut(K/k), we have (using 1.6):

I N '
f=olf)=0a(d) + ch z_: szhqj Zj—hj)) .

jed JEJ

Taking the sum over all the o’s in Aut(K/k), we obtain :

wl)/ N h )1
Mf= ZO'(QO)“FZ;QZ w)+*M[er e Z;,dj‘bh +3 Zd.?] l—h)]
1S 4 t m= = j€
which implies that :

Tr(g0) ¢i | h} (1-hj)

o ; el — = Y dig a2+ = Y dypy )y g
( M ) @Z[‘MN( Z 2]26:]].7h ]26_:]3](1 h])

(2.8)

Where Tr( ) and N( ) are the trace and norm maps, respectively, from K to k.
Now, multiplying (2.8) by 1 and each (2.7) by e, adding them using again rela-

tions (*), and integrating, we get :

-1

Note that Tr(go)/M € k and N(w;) € k , and also e,, = logH,, , where
Hy € {h1,h2,...,1 — hy,1 — hy,...} . So, the right-hand side of (2.9) is a simple

—logN(w, + Z Tmem + »_ d;D(h (2.9)
1.6[ jeJ

elementary-dilogarithmic expression over k, which is what we wanted to prove. ]
Definition : Let k¥ be a differential field of characteristic zero. K is a finite
algebraic extension of k , and logh,,...,logh,, are logarithmics over k (that is,

hi,...,hm € k). Assume that the fields k and K (logh,,...,logh,,) have the same field

14



of constants C'. We call L a linear logarithmic expression over K (loghi,...,logh,,) if

L = ‘Z c.logh; +r

=1
where the ¢; are constants and » € K. L is said to be dependent on logh; (1 < 7 <m)
if Cj 74 0.
Proposition 1: (See [2]) Let k be a differential field of characteristic zero which is

a Liouville extension of its field of constants C' assumed algebraically closed. Suppose
that f < ki hy,...,h, € k;K a finite algebraic extension of k: ay.....a,, € ("

diy...,d, € C;and Lq,...,L,, are linear logarithmic expressions over
K(log(1 = hy),...,log(l — hy)).

Then, if :

/f - Zj: djla(h;) — iailogLi € K(log(l — ha),...,log(1 — hn)) (2.10)

i=1

[ f is a simple elementary-dilogarithmic expression over k.

Proof:

Let » = trans-degree K(log(l — hy),...,log(1 — h,)) over k. If » = 0, then, by
Ostrowski’s theorem, log(1 —h;) € k(1 < j < n) = K(log(1—hy),...,log(1—h,)) =
K ,and L; € K(1 < j <m). So, (2.10) implies that :

/f =Y dila(h;) + Y ailogL; +g, g€ K,Li€ K
. =

i=1

=1

n m 1 n
= /f = Z d;D(h;)+ g + Z a;logL; — 3 Z djlog(1 — h;)logh;
Jj=1 j=1

So, if :
1
s; = —§djlog(l — hj) € k, we get :

15



/f =>"d;D(h;) + g+ > ailogL; +_ s;logh;, s;c€k,ge K,L; €k
=1 i=1

J=1
So, by lemma 1, [ f is a simple elementary-dilogarithmic expression over k and
the proposition is proved for » = 0. Let 7 be greater than 0 and assume without loss
of generality that log(l — hy),...,log(1 — h,) are algebraically independent over K

so that by Ostrowski’s theorem again we find constants ¢, such that :
log(1 — h;) =) cjplog(l — hp) + R; (**)
p=1

where: R €k, r<j<n

So, K(log(1 — hy),...,log(1 — hy)) = K(log(1 — hy),...,log(1 — h.)).

Let A, = K{log(l — hy), .., log(l = hyo1)y log(l = Dygpr)y ooy log(l - b))
(1 < iy < r). Clearly, t;; = log(1l — h;,) is transcendental over K; since we have
assumed that log(1 — k;)(1 < 7 < r) are algebraically independent over K.

For each iy € {1,2,...,7}, let I be the subset of {1,2,...,m} such that, for all
i € Iy, L; is dependent on t;, = log(1 — h;,). Then, (2.10) implies that :

/f — Zn: djlz(hj) — i ailogLi € Kio(tio) (211)
=1 =1

We want to prove that :
(Y aidogLi]’ =0

1€l
and that :
/f — S dil(hy) = 3 ailogL; € K [ti] (2.12)
i=1

iEI.'O

Once (2.12) is proved for each index ¢y € {1,2,...,7}, we deduce that :

/f =D dila(hy) = Y aidlogLi €[] Kilti,] = K[t1,t2,- .-, ]
j=1

1€l 10€{1,2,m.7}

where Iog is such that, for all 7 € Iy, L; is not dependent on any t; = log(1 — h;), for

16



all j € {1,2,...,r}. So, L; € K for all 7 € Iy, and :

/f - Zn:djlz(hj) — Y ailogL; = P(ty,...,t,)

1€loo

where P is a polynomial.
So, let Ko = A, = K (t1y... tig-1,tig41,--.,t-) and t = ¢;,. Then, if L; deperds

ont.l; =bt+r, wherer; € Ky, and b;is a constant, b; # 0. By assumption, we had

/f Zd L(hy) = adogLs = g(t) € Kolt) (2.13)

i=1

If K° is a finite algebraic extension of K, where g(¢) splits into linear factors,

we write :

N Ta, R : .
g(t) = go(t) + > (—t—_Ti)—g ragc KO Tac KO3 N
o, @

a and 3 range over a finite set of positive integers, and go(¢) € K°[t]. (2.13 ) yields :

n h' idds L: 7'10‘7[5 B”'a @( t T,)
f+j_§da’gilog(l‘hj)‘;“iz—gﬁ(t)—g(t_Ta)ﬁZ; oy =0 (214)

The key idea in the on-going proof is that,when we use the relations (*x) the

expression:
)

h'.
f+Zth]log(l——h)
i=1

is a linear polynomial in ¢ over K, . Also, g{(t) is a polynomial in ¢ since

:(1"hio)//(1_hio) €k.So:

Ta, ,37'0‘ - o,z)
Z L,’ Z(t ﬂ) +Z 2t )/@+1

L; depends on t

must cancel.

Let I; = {i such that L; = bt + r;, b; # 0} and I? = {1,...,m} — I,. (2.14) then

17



becomes :

r! (bit' +711)
f+Y‘d "logl—h- - =) a; : o(t)
h ( ) {gl:o T z%l:g (bit + T‘,’) 0(
B T Bras(t’ — T,)
a% T ;: T 0 (2.15)

where 7; € K,.

First, ' — T # 0, otherwise we would have t' = T; and for each o € Aut(K°/Ky)
we have t' = o(T,) = [K°: Kot' = Tr(T,) = t = 1/IK® : Ko!Tr(T,) + ¢, where ¢
is a constant and 7'r is the trace map from K° to K,. But this gives a contradiction
since t was supposed to be transcendental over Kj.

So, if we look at the partial fraction decomposition we have in (2.15), we deduce

that r, 3 = 0 for all a, 3, and we get :

R’ (bt +7)
d;~2log(1 — h , , () =
f+Z 7h Og g}a s ZCZIG“ (bt+7‘l) gO(t) 0

which also implies that :
(b + )
I e
1 (bt +ri)
(by looking at partial fraction decomposition). Also, go € A°[t| Ko(t) = go € Kolt],

and :

Z ailogLi

1€l

1s a constant.

By induction on t = ¢;, € {log(1 — h1),...,log(1 — h,)}, we deduce that :

o(ts, ... /f Zdlz(h S adogl; € Klty,...,t,)and L € K (2.16)

i€lpo

We claim that ¢ is a polynomial of degree 2 with constant coeflicients, for all terms

in tq,...,t. of degree 2. In fact, let A, 0,...a,t7" - ..t be one monomial in the leading

18



homogenous term of g, with 44,4,..4, # 0. Then :

(A4a1a2...art(111 e t:!r)' = A’ tixl ‘ 't(:r + Z Aalaz...arajt‘,jt(ln v tc"]_l te tf'h

X1 X2...Qp
=1

Assuming :
.
> )
Z a; Z &
i=1

and noticing that the derivative of the right-hand side of (2.16) is of degree 1 in
t1,...,t., we deduce that :

!
1.

=0 = A, oy.a tSaconstant

If .
Zaj > 2
=1

then there exists o such that a;, # 0. The coefficient of ¢ gt

10

° ...t must be

zero in the derivative of g(¢;,...,t.). So:
Aa;az...araioti'o + AZ!1CX2...(1,'0_1...CXT = 0
1 1
= tio = - *Aalaz...al‘o-l...a,. +c

Aalaz...ar Qo
where c is a constant. But this is a contradiction since ¢ is transcendental over KA.

So, we deduce that g is a polynomial of degree 2 with constant coefficients, for all

the terms in ¢y,...,¢, of degree 2. That is :

gty b)) = Ao+ D Aty + Y. Aaptats

p=1 a,B ﬁZa

where t,,t5 € {t1,...,t.}, and A, are constants.

gty ste) = Ag+ D Aty + > Arto+ D Aaptits+ Y, Aagtaty (2.17)
p=1 p=1 a8 B>a a,f B>a
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and :

n hl. m L/
g,(tl,...,tr) =f+ZdJ—llOg(1 —hj)—Za,'—i (218)
Jj=1 hJ i=1 L":

Using the dependency relations (*x), we obtain from (2.17) and (2.18) :

R, hie !
Fot =N AL S R - Y 0l
J =1

p=1 i= 1'+1 h i

5‘ | ;Lﬂ - ¥ cjpdjh + 245t + Y Agptl + Allt,

J=r+1 a#p
(where Anp = Apq if @ > p).

From the above, we deduce that :

h’ n h/
24ppt, + ) Aapth, = dp 2+ D cjpd;i Tt — A
P4 hy et h; P
a¥Fp J=r+
and, by integration, we get :
Aty + Z Aopta = [dploghp + Y cjpdilogh; — A, + ¢, (2.19)
aaﬁp j=r+1

where ¢, is a constant.

Notice that we can write :

gty yts) = A0+2At +2Appt +) Aaptaj

p=1 p=1 a;ép

and, using (2.19) and (2.16), we get :

n r 1. r
/f = Z dle(hJ) + Ao + Z Aptp - 5 Z APtP + Z Cptp
j=1 p=1 p=1 p=1

+= Zdlogh + Z c;jpdjlogh;lt Za,log[/

j=r+1

which gives :
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1 T
/f E :d“l2 (log hp)tp] + _S_ : d;[I>(h 7[5 :ijtp]log h;]
2.5

Jj=r+1

+Ap + = ZAt +Zcpt +ZallogL

p=1 =1

But we had :

Z ciptp = log(1 — h;) — R;

p=1

for je {r+1,...,n} and t, = log(1 — h,). So :

2 J— I &
/f = d;D(h;) - 5 > djR;log h; + Ao + 5 > Aylog(l — hy)
i=1

J=r+1 ~ p=1

+ Z cplog(l — hy) + Z a;log L; ,
p=1

=1
R; € k, Ao, 4, € K, L; € K and, by lemma 1, [f = S, where S is a simple

elementary-dilogarithmic expression. This completes the proof of proposition 1. m
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Chapter 3

The Functional Identities of the

Dilogarithm

In this chapter, we exhibit and prove two identities of the dilogarithm that will be
shown in Chapter 4, in addition to the identities among primitives and the identities
among exponentials, to be capable of generating all the algebraic relations among
dilogarithms and logarithms built up from the rational functions by taking transcen-
dental exponentials, logarithms and dilogarithms.

For a differential field £ and ¢ dilogarithmic over k we observe the following fact : ¢
is defined up to the addition of a constant multiple of a logarithmic or more precisely
:if t = —a'/a ¢, where ' = (1 — a)'/(1 — a), ¢ is defined up to a constant. So,
if ¥ = (1 —a)'/(1 — a) we deduce that ) = ¢+ ¥ , where c is a constant and
t' = —(a'/a)(p1 — ¢) = —(d'/a)y + c d'/a so t is defined up to the addition of
¢ loga.

Also, if ¢ is an element of £ —{0,1} and t = D(¢) it follows that ¢ is defined up to
the addition of a linear combination of log¢ and log(1 — @) with constant coefficients.

Informally, ¢ is equal to:

1(8) + Llogslog(1 - ¢)

This motivates considering the dilogarithm and the associated function D as defined
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mod the vector space generated by constant multiples of logarithms over k. We denote
from now on this vector space by M, for any differential field k. So, if W € M, ,
then there exist constants ¢y,...,¢, and wui,...,u, suchthat w;, 1 <:¢<n,is

logarithmic over k for all 7 , and :

n

W= Z Ci Uy

i=1

The first identity satisfied by the dilogarithm is given by the following lemma
which is relatively easy to prove.
Lemma 2: (See [2]) If k is a differential field of characteristic zero, then for all
fek—={0,1}:
D(1/f)=-D(f)  (mod IL)

Proof:
PG el
where : L1y - §
. __?; and 0'_%:—f7
So : , ,
S
=+ D)= 3o (loglL— f) ~ logf) - %(%%f% - Dotoas  (mod a1y
> D(3)= yhleg1- ) - ST o0s = =D (mod b
= D(%) = _D(f) (mod M)
(M}, is the space of derivatives of Mj). .

The second identity satisfied by the dilogarithm is one of the main discoveries of
this thesis. It is given in the following proposition whose proof, although lengthy and
involved, uses only standard techniques from differential algebra.

Proposition 2: (See [2]) Let k be a differential field of characteristic zero, and
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let 8 be transcendental over k with k() being a differential field having the same
subfield of constants as k. Let f(f) € k(f) and K be the splitting field of f(8) and
1 — f(8). We define, if a is a zero or a pole of f(), ord, f(f) to be the multiplicity
of (6 — a); this is positive if a is a zero of f(#) and negative if a is a pole f(§). Then,
there exists f; € k such that :

D(f(9)) = D(f1)+ > ords(1—f)ord.(f) D(Z:Z) (mod M) (A)
ab a#b

where a runs over the zeros and poles of f, and b runs over the zeros and poles of

(1—=1).

Remark: The splitting field of a rational function S(8) = Z& were T and U7 are
relatively prime is the splitting field of the polynomial T(8)U(8).

Proof: Let f(8) = foP(8)/Q(8) , where fy € k, and P(8), Q(8) are relatively prime
polynomials over k which are monic. We can also assume that degP(8) > degQ(f)

otherwise, using lemma 2, we replace f by 1/f.

Q) — fuP(6) _ | R()
Q(8) °Q(6)

1- £(6) =

where go € k, and R(#) is a monic polynomial relatively prime with both P and Q.
First step:

D(f) = g Floa(1 = f) + 5 =T loa

is well-defined mod M}{(a)- We can check easily that, if ¢ # b and a,b € K, then :

g — b b

):l( _ 1.6 —d ¢
—a” 2 6-0 b

§(b~a 9

: Zl)log(ﬂ —a)+ : Z’)log(ﬂ -b)

+1(6”—a’_0'—b')
2 6 —a 8->

log(b—a)  (mod Mg)

(this is because log (gh) = log g+ log h + constant, and log 1/g = —logg + constant.)
Second step: Consider the set I; = {(e,b) | ais a zero of P or of @, b is a zero

of R or of @, but whenever one of a and b is a zero of @ the other is not }. (So the
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set (a,b), a zero of @ and b zero of @ is excluded)

We have:
PRI ()
1 — 1
hQ6) T 00) (B)
= foP(8) + goR(8) = Q(6) (C)
Let us compute
1 b —a
—=[ Y orda(f) ords(1 — f) log(§ — a)
2 aen, -
1 bl ! ,
+;[ Z ord,(f) ordy(1 — f) — log(6 —b)]  mod My,
T lad)eh
We call the above quantity or sum S,

51_

SRS

. b — a
> ord.f | > ordy(1 — f) ‘ ] log(8 — a)
a zeroof P b zero or pole of (1—f) b—a

1 ¥ —a
= Z ord, f | Z ordy(1 — f) ?
2 a zeroof Q b zeroof R

] log(8 — a)
—a
1
+§ Z ordy(1 — f) | Z ord, f b-d, 1 log(8 —b)
bzeroof R a zero or pole of f
1 I
+= Y ordy(1-f)] Z ord, f } log(6 — b)
sze'roon a zeroof P
since (a,b) € 1.
Now, (B) above implies, if a is a zero of P, that
R(a) 9 , Ra) Q'(a)
"Q(a) R(a)  Q(a)
but, as we can easily check
— b —a' R'(a) Q'(a) g6
ordy(1 — f) = - =% 3.1
b zero orp%l‘eof (1-1) —a R(a‘) Q(G‘) go ( )
(where a is a zero of P)
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Also, if b is a zero of R, we have, using (B) above :

PO)_, | h__PO), Q)

fo

Q(b) fo P(b) Q)

So we get :

o P QB _ i
> ordf g b—a " P O f (3.2)

a zero or pole of f

(where, in the above, b is a zero of R).

Now, we look at the sum :

-

So=—2 Y ordaf[ Y ords(1- f) o] log(t —a)
2azeroo)‘Q bzeroof R b-a
1 ¥ —a
t5 X erd(1-f)[ X ordaf 5——]log(6—b)
“ bzeroof Q a zeroof P T
i Y —
= Gy == Z ord, f | Z —ordy(1 — f)
2azeroon bzeroof R b—a

+ Z ordy

b zeroof P

(6 —a)
But the relation foP () + goR(8) = Q(8) implies, if a is a zero of @, that :

a) = fo (a) _ gO R'(a)
foP(a) + goR(a) =0 = fo * P(a) o " R(a)

P'la) Rla) g0 _fo

Pla) Ba) 9 (3:3)
and :
b —a R'(a)
_ rdi(1 — - _

bzerozofno b(l_ /) b—a R(a)

b —a  P'(a)

ord =
bze%f}’ " b(f) b-a P(a)

(if @ is a zero of Q).

26



(3.3) and the above imply that :

S, =+ S ordaf 122 - L0 10g(8 - a)

a zeroof Q 9o fO
which is exactly :
_ ! fo 1 9
Sr=—3 Y ordy(1— f) =2 log(8 — b) + 5 > ord,f =2 log(f — a)
“ b zeroof Q fO T azeroof @ 50
(3.1) and (3.2) imply, respectively, that :
- Y — o
v% S ord.f T M ordy(1 — f) = fl' 11log(8 — a)
“ a zeroof P b zero or pole of (1—f) v
!
LS arda(f) B tog(h - )
2 a zeroof P 9o
This sum will be denoted by Sj.
b — o
LS o1~ p) S ordaf | log(d - b) =
bzeroof R a zero or pole of f —-a
1 f
~ = Y ordy(1—f) 7 log(6 —b)
b zeroof P f(]

This sum will be denoted by 5.
Now, S; = S5; 4+ S3 + S4, and by regrouping the terms in S5, S; and Sy we

deduce that :
S, = ! > ord,(f) %o log(f — a)
2 Jo

a zero or pole of f

Z ordy(1 — f) % log(6 —b) (3.4)

b zero or pole of (1—f)

BN | =

Now, consider the four following sums :

=l T wdtl Y od- g o) G20

a zeroof P b zero or pole of (1—f)
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Ty
orda(£) log(b —a)) =

2]4:—l Z ordy(1 — f) [ Z

a zero or pole of f

bzeroof R
1 L v L8 —ad
Y, = ) o ordaf| ). ordy(1— f)log(b—a)] 7
a zeroof Q bzeroof R —a
1 -~ 9/ _ bl
) L ordy(1 — f) | Z ord,(f) log(b — a)] 73
“bzeroof Q a zeroof P B
and : ¥, =¥, + ¥3 + ¥,. It follows immediately that :
1 o — o g —
Bi= Y Sorda(f) ords(1- f) [ v T | log(b =)
(apYel, = @ -

Now, and as before, integrating (3.1), (3.2), and (3.3), we deduce

ordy(1 — f) log(b — a) = logR(a) — logQ(a) + constant

>

b zero or pole of (1—f)

= —log go + constant,  where ais a zero of P (3.17)
> ord, f log(b — a) = logP(b) — logQ(b) + constant
a zero or pole of f
= —log fo + constant, where b is a zero of R (3.2°)
> —ordy(1— f)loglb—a)+ > ordy(f)log(b—a)
bzeroof R b zeroof P
(3.3")

= log go — log fo + constant, where a is a zero of @

Plugging (3.1%), (3.2°) and (3.3’) in X3, ¥4 and X,, respectively, and regrouping,

as we have done for computing S;, we obtain :

Z ord, f

a zero or pole of f

!

# —a ]
f—a o4 go

D=

215~
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— (3.4°)

log fo (mod A[}{(g))

D S (e

b zero or pole of (1-f£)

(This is because we had constants in relations (3.17), (3.2’) and (3.3").)

Third step: We compute D'(f(8)) mod M4y, which can be immediately verified

to be :
D'(f(8)) = Zord f)ordy(1 - f) ( ) log(# — b)
f—b)
+ > ordy(f) ordy(1 — f) <9 — ) log(6 — a) |
a,b
1 (6 —a) L (0 — by
~§Zordﬂ(f) R log gg-i—;z—%:ordb(l—f) PR log fo
—lzord (1-1) Joy, (0-b)+12m~d (f) % 4, (8 — a)
2 b ’ fO J 2 a ¢ Jo I
L fo lg )
— 5;-1051 go + —ﬂlog fo (mod Mk 4)) (3.5)

(where Y°,, runs over all zeros and poles of f and (1 — f), respectively, >, runs

over the zeros and poles of f, and Y, runs over the zeros and poles of (1 — f))

The term :

S (ordo(f) ordy(1 — 1) £

(a,b)&1;, asb

log(8 — b)

+ ord,(f) ordy(1 — f) (?9— b), log(8 — a))

is zero since a and b run over the roots of Q.

So :
1f 1 g;
D'(f(9)) = —5% log g0 + 5 %log fo
1 6 — b)Y —a)
—= Y ord,f ordy(1— f) | gy—_—b)— log(8 —a) — (00 — a) log(6 — b) |
(ap)en

+X: + 51 (mod M (4))
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(6 )

(33) = D) = [ Y ordef ords(1 ) (0=
(ableh -
1 fo 1 9 :
~3 Elog go + 2 % log fo (mod Mk 4))
Now, we distinguish three cases :
Case 1:

deg P > deg Q (strict inequality)

= deg(Q(8) — foP(8)) = deg P(6) = go =

And :
ZU!J(_fO) = loggo = logfo + constunt
So :
L £ L gp
—- 51 - =1 =0 d M:
2 7, 0g go + 2 7 og fo (mod M )

and we take f; in proposition 2 to be a constant. So D'(f;) = 0.
Case 2: If deg P = deg Q (and fo # 1), then the leading coefficient of Q(8) —
foP(#)isl—fo = go=1-fo

1 fo 1 gg 1 fo 1
- __ 10y + =20 = =29 150(1 — ot
2 Jo 09 9o 2 4 og fo 2 fo 09( fo) D)

(L= fo)
(1= fo)

log fo

and we take f; in proposition 2 to be f.

Case 3: deg P =deg Q and fo = 1.

Let I = {(a,b) | a pole or zero of f,b pole or zero of (1 — f)}. Then, I-1, =
{(a,b) | a zero of @,b zero of Q}. But :

(372) = —D( 3=+

= > ord,(f) ordy(1 — f) D(

(a,b) el--1)

So :

> orda(f) ordsy(1 — f) D(

(a)b)en
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§-1b

= Y ordy(f)ordy(1 - f) D(g—

(ab)el

Now, deg P =deg @ and fy =1 =

) (mod IWK(Q)) (36)

_ Q(8) - P(9)
1-f= GO = deg(Q(0) — P(0)) < degQ(9)
But, since :
D(f) = =D(1=f) = D(y=)  (mod Mxie)
and:
—b
Z ord,(f) ordy(1 — f) D( . )

(ab)el;
is unchanged if we replace f by 1/(1 — f), we are again in case 1.
But, by the results of case 1 and case 2, and relations (3.5) and (3.6), proposition
2 is proved. n
We would like to end this chapter by giving one example that illustrates the power
of these two identities in generating well known 1dentities of the dilogarithm.
Example: Let £ = C(z), where z is transcendental over C and 2z’ = 1, and C

is the field of complex numbers. Applying Lemma 2 and Proposition 2 to f(z) =

=2 f(z) = =z, and f(z2) = —z, repectively, yields
z—1 z+1
D(z*) = 2D( - )+ 2D( . ) (mod Mc¢(.))
z—1
D) = DAY (mod M)
z+1

=
S
il

S

So,

which implies that
2 1 2 2
L(z*) + ilogz log(1 — 2%)
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1 1
= 2|L(z)+ l(—2)+ Elogzlog(l —z)+ ilog(—z)log(l + z) (mod M,

and we obtain

il

12(22) 2[2(3) + 2[2(—2) (mod AMc(:)),

which is a well known identity of the dilogarithm.
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Chapter 4

An Extension of Liouville’s

Theorem

In this chapter, we state and prove the major result of this thesis. Our result
is a new theorem that generalizes Liouville’s theorem on integration in finite terms.
It allows dilogarithms to occur in the integrals in addition to elementary functions.
The proof is based on the two identities of the Bloch-Wigner-Spence function given
in Lemma 2 and Proposition 2 of the previous chapter. It also uses Proposition 1 of
Chapter 2 in several places.

The statement of the theorem uses the following definition of a transcendental-
dilogarithmic-elementary extension of a differential field:

Definition: A transcendental-dilogarithmic-elementary extension of a differential
field k is a differential field extension K such that there is a tower of differential fields
k=KyC K; C... C Ky = K all having the same constant field and for each

1 =1,..., N we have one of the following three cases :
(1) K; = K;_1(0;), where 8, is logarithmic over K;_;.

(2”) K; = K;_1(9;), where 6; is exponential over K;_;. We also assume #; transcen-

dental over K;_; in this case.
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(3”) K; = K;_1(6,,8!), where 8; = [5(a) for some a € K;_;.

The theorem reads as follows:
Theorem: (See [2]) Let k be a differential field of characteristic zero, which is a
Liouville extension of its subfield of constants assumed algebraically closed. Let f € k

and suppose that there exists a transcendental-dilogarithmic-elementary extension K

of k such that :
/f e K

Then, the integral [ f is a simple elementary-dilogarithmic expression over k. That
is :

m n
/f =g+ Z si log v; + Z ¢; D(h;) (n,m are positive integers)
i=1 =1

where g, s;, v;, hj € k, and the ¢;’s are constants.

The rest of the chapter is devoted to the proof of this theorem.

We start by recalling a lemma due to Kolchin [4].

Lemma 3: Let k& be a differential field of characteristic zero. Assume that
Ui,...,u, are logarithmic and algebraically independent over k , that v is expo-
nential over k and that k(v,us,...,u,) and k have the same field of constants. Then,
if v is algebraic over k(uq,...,u,) there exists an integer n # 0 such that v € k.

Corollary 3.1: Let k be a differential field of characteristic zero. Assume that

Uy, ..., Un are logarithmic over k, that v is exponential and transcendental over k and
that k(v,u1,...,%,) and k have the same field of constants. Then,v is transcendental
over k(U ..., Um).

Proof: We can assume using Ostrowski’s theorem and without loss of generality

that there exists n < m such that k(ui,...,u,,) is algebraic over k(ui,...,u,) where
U1,...,U, are assumed to be algebraically independent. If v were algebraic over
E(u1,...,um) it would be algebraic over k(ui,...,u,), but by the previous lemma

there exists an integer n # 0 such that v™ € k and this contradicts the fact that v is

transcendental over k. u
Lemma 4: Let & be a differential field of characteristic zero. Assume that

Uy, ..., U, are logarithmic over k, that ¢ is primitive over k and that k(t,us,...,u,)
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and k have the same field of constants. If ¢ is algebraic over k(u1,...,u,) then there

exist constants c¢q,...,¢, and an element s € k such that :

t= zn:c,-ui + s
1=1

Proof: This is Ostrowski’s theorem , for a proof see [8]. ]

Proposition 3: Let k be a differential field of characteristic zero, and let # be

primitive and transcendental over k. Let ai,...,a, € k (o # aj, tf 1 # j),

Uy,... Uy, = k and assume the existence of constants ¢y,....c,,dy,....d,, such that

n

m
Zci log(d — o) + Z o loguy T (A

i=1

w
—

(where k and k(8)(log(8 — a1),...,log(0 — ay,),logu,,...,logu,,) have the same field
of constants). Then ¢; =¢; =+ = ¢, = 0.

Proof: There exists s(8) € k(8) such that :

Zci log(8 — ;) + Z d; logu; + s(8) =0
1=1

Jj=1
This implies that :

9

>
1=1

r__ / m
a',, +Sl(9):—zdlu

H—ai

L~

J=1 u]

In a suitable finite normal algebraic extension field K of & s(#) will split into

linear factors so that we can write :
5(0) =Y hui(0 — ;)" + > lai(8 — Bi)* + (element of K|[6])
% a,t

where j ranges over the set {1,2,...,n}, v ranges over a finite set of negative integers,
: ranges over a finite set of positive integers, a ranges over a finite set of negative
integers and h,j, lo; and B; € K (a; # B;,V4i,]).

We work in the differential field K (#) which is an extension of k(#). By assumption
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we have :

g 0, B ai v a\/!
() e gt Sk (8- )+ Sl (0 8)7) € K1Y
=1 K 8% Ol,j
The baisc idea of the proof is the following. When the various functions appearing
in (*) are expressed as quotients of polynomials in # we get no pole cancellation,

and therefore all the ¢;’s and h,;’s will vanish.

Since 6 is primitive over k we have 8’ = a, where a belongs to k.

! ! /
' —a. a—al

f—a; 6—a

We claim that a — ol # 0 that is the previous fraction is in lowest terms.
If a—a!=0 then (§—qa;) =60 —a) =0 which implies that § — «; is a constant
in k and that contradicts the fact that § is transcendental over k.

Now :

(hui (0 — aw)")' = ki (0 — i)’ + v hyi (0 — )" (0" — o))

We notice that since #'—a! € K and is different from zero and since —v+1 > 1
the various terms of the left-hand side of (*) would not cancel unless A,; = 0 for all
the v’s and the i’s and this will imply that ¢; = 0 for all ¢ € {1,2,...,n} which is
what we want to prove. n

Proposition 4: Let k be a differential field of characteristic zero, and let § be

exponential and transcendental over k. Let ai,...,a, € k (o # a; if 1 # j

and «; # 0 for all ) , uy,...,um € k, and assume the existence of constants

ClyeevyCnydyy...,d,, such that :

Zci log(0 — a,') + Z dj log u; € k(H)

i=1 Jj=1
(where k and k(8)( log(8 — e1),..., log(6 — an),log ui,..., log u,) have the same
field of constants). Then ¢; = ¢y =--- =¢, = 0.
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Proof: There exist s(8) € k(8) such that :

> i log(8 —al)—%Zd logu; +s(8)=0

Jj=1

This implies that :

idj—?

Jj=1
In a suitable finite normal algebraic extension field K of & s(#) will split into

linear factors so that we can write :
8) = h,;(0 - +Zl o] )* + (element of K|[8])

where i ranges over the set {1,2,...,n}, v ranges over a finite set of negative integers,
J ranges over a finite set of positive integers, a ranges over a finite set of negative
integers and h,;, lo; and 3; € K (a; # 3,,Y1,7)

We work in the differential field K () which is an extension of k(§) . By assumption

we have :

n ¢ — o

(**) Zcz "_—'+Z vi - +Z ﬁ] ), EK[Q]

The baisc idea of the proof is the following. When the various functions appearing
in (**) are expressed as quotients of polynomials in # we get no pole cancellation,
and therefore all the ¢;’s and h,;’s will vanish.

Since 6 is exponential over k we have 8’ = a’§ where a belongs to %.

! ! ! !
' —a; af—al

0 —a; 0—aq

We claim that the previous fraction is in lowest terms.
For if the fraction were not in lowest terms we would have a! = a’a; but since
a; #0 weget al/a; = a’ =6'/§ which implies that (8/a;)’ = 0 and this gives

f/ca; is a constant in k and that contradicts the fact that 8 is transcendental over k.
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(hw' (0 — ai)”)’ = h:n (0 - ai)" + v hui (49 - ai)"—l (0’ - a:)
By what has been done and since —v+1 > 1 the various terms of the left-hand
side of (**) would not cancel unless h,; = 0 for all the v’s and the ¢’s and this will

imply that ¢; = 0 for all 2 € {1,2,...,n} which is what we wanted to prove. ]

Corollary 3.2: In the conditions of propositions 3 and 4, log(6 — ay),...,log(8 —

a,) (where a; # 0 for all 7 if # is exponential) are algebraically independent over

k(8)(log ui,...,log um).

Proof: If log(# — aq),...,log(8 — a,) were not algebraically independent and since
log(§ — ay),...,log(8 — an),log ui,...,log uy are logarithmic over k(#) , we deduce
by Ostrowski’s theorem that there exist constants ¢;,....c, not all zero and constants

dy,...,dn such that :

Y i log(0 — i) + > dj log uj € k(8)

=1 j=1

and the above implies by propositions 3 and 4 that ¢; = ¢; = -+ = ¢, = 0 which
gives a contradiction. ]

Proposition 5: Let k be a differential field of characteristic zero. Let § be tran-

scendental over & where we assume that k and k() have the same field of constants.

Let s(8) € k() be such that s'(f) € k. Then :
(17) If 8 is primitive over k, s(f) = ¢ 6§ + v , where c is a constant and v € &.
(2”) If 0 is exponential over k, s(8) € k.

Proof: By partial fraction decomposition we can check that s(6) is a polynomial

in #. In the case # is primitive over k we write :

s(8) =3 b; 6
7=0
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where each b; € k and assume, as we may, that m > 0, b,, # 0. Then :

$'(8) = b, 0™ + (mb,8 +b )8! + (elements of k(] of degree < m —1)

Since s'(8) € k, we get b, = 0, so b, is a constant, and if m > 1 we get
mb,8'+b,_; =0 thatis (mb,0+b,_1) =0 sothat mb,,0+b,_; € k contradicting
the transcendency of § over k; thus m = 1 and s(8) is of the form ¢ 8+ v where c is
a constant and v € k.

In the case where § is exponential over k then 8 = a’ § for some a = % and if we

write again :

SOED L.
J=0
with each b; € k and b,,, # 0 we have :
s'(0) =D (b + jba )8
7=0

!

If m # 0 we have b, + mbna’ = 0 so that %ﬁvLm%:O or (b, 8™) =10
giving b,, 8™ € k which is impossible , so s(§) € k. =
Now we are ready to prove the main theorem in this thesis. We recall first the
definition of a transcendental-dilogarithmic-elementary extension of a differential field
k, which is a differential field K such that there is a tower of differential fields & =
Ky C K; C...C Ky = K all having the same constant field and foreach:=1,..., N

we have one of the following three cases :
(1”) K; = K;_1(0;), where 8; is logarithmic over K;_;.

(2”) K; = K;_1(0;), where §; is exponential over K;_ ;. we also assume §; transcen-

dental over K;_; in this case.

(3”) K; = K;_1(6;,0.), where 8; = l3(a) for some a € K;_;.

1

The number N will be called the length of K over k.
Theorem: Let k be a differential field of characteristic zero, which is a Liouville

extension of its subfield of constants assumed algebraically closed. Let f € k and
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suppose that there exists a transcendental-dilogarithmic-elementary extension K of

k such that :
/f €K

Then, the integral [ f is a simple elementary-dilogarithmic expression over k. That

1s :
/f =g+ Esi log v; + Z ¢j D(h;) (n,m are positive integers)
1=1 J=1
where g, s;, v;, h; € k, and the ¢;’s are constants.
Proof: It is by induction on .V, the length of K over k.

If N=0then [f=g €k and the theorem is proved.
If N > 0, we apply the induction hypothesis to f € K; and the tower A} T

K, C...C Ky = K, to obtain :

/f:g+zs,- logv; + 3 ¢; D(h;) (4.1)
i=1 Jj=1

where g, s;, v;, h; € K1, and the ¢;’s are constants.

We want to modify equation (4.1) in such a way that g, s;, v;;and h; arein k = K.
For this we consider three major cases .
Case 1: K; = k(0) and 0 logarithmic over k: 6 =loga, a € k. If § is algebraic

over k, then, by lemnma 4, § € k and there is nothing to prove.

So, we assume 4 transcendental, and factor v;, h;,1 — h; over k. So we will be

working over k°, the splitting field of these quantities which we assume normal.

By proposition 2 :
b

D(h_,(o)) = D(HJ) -+ Z OTda(hJ') OTdb(l - h_,) D( Z_;a) (mod JMko(g))

where H; € k, a,b € k% a # b where a and b are the zeros and poles of h; and 1 — h;

respectively.
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So, (4.1) can be written as :

i=1 p=1

+ L )+ Z ci; D
7=1

where in the last sum ¢ € {1,...,n}, j € {1,...,n}, { # j and a; # o, if i # j.

) (mod JIkO(\g)) (4.17)

9—a3

Also dj, c;; are constants , f,, H; € k for p € {1,.... r} and j € {1....,m} and
g(8), Si(8), sp(8) € k(8) for i€ {1,...,n}and pe {1,...,7}.

We notice that the last sum can be written as :

Z ¢ij D -)

9—(11

9—a1 9—a1 9-(11
= : o d, D
dlzD(H—ag)lesD(O—ag) ! (Q—an)
0 — oy 0 — oy
+do3D( )+d24D( )+ -+ dan D( )
—013 9—a4 9—0’_n
0 — «;
+> di; D “)
; ’ 0»aj
Qn_1
dp_1. D
tan-1, ( ~an)
+ constant  (mod Mo (g)) (4.2)

(This is possible because : D( 4=2i) = — D( 3:—‘;%) (mod M;o(g)).)

0—ayj

We call the above expression reduced, that is, (4.2). For example :

d, ! + d»

Ofs) + ds D( 2)

0—&3

41



is reduced, while the expression :

f — g —
+d; D( a1)+d30(9 22)

az — Q3

d, D(

is not reduced.

Without changing the notation S;(8), (4.1’) becomes :

/f__g +25(0 log()—al-i-zsp ) log f,

p=1

m n—1 0 - a;
+ 3 diy D(Hy) + 3 Y diy D( 5—) (4.3)
1=1 j>1 J

Jo=1
(with a; # a; for all 7 # j) and (1 < 7 < n).
Now, we take the derivative of (4.3), to get :

n

F = g0+ Y 5) Gk Y 86) togl# - o

+Z »(0) "+Z (0) log f

m 1 H 1 (1 - H,,Y
d — —2 log(1 — H LU= Hy) log H;
+ ,'-OZ:I Jo [ 2 HJO Og( JO) + 2 ( JO) Og ]

g — o a——a

1 i
+sz11[§( G—a,- —ai_aj)log(ﬁ—aj)

=1 7>1
1 ai—a) 6-—a
— (= log(0 —
by (oot = G logl0 — )
1, 60—-a, ¢—a
- - ‘) log(a; — a; 4.

Identifying the term which multiplies log(8 — a;), we get :

—a; 0 —aj
S’(o -I-Z—( ~9_a1)d1]=0
J

J>1 -

(4.5)

This is because the log(# — a;) (1 < i < n) are algebraically independent over
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k°(8)( log Hj, (1 < jo < m), log(l — Hj) (1 <jo<m), logf, (1 <pc<
), log(a; — ;) (i < 7)), by corollary (3.2).
Now, (4.5) implies :

)+ Z (log(ay — o) — log(8 — « ) ) dij + constant =0
512
which, by proposition 3, gives di; = 0 for ;7 > 1, and 5(8) = s; is a constant. By
induction we prove easily that d;; = 0 for all 7,7 and that S;(§) = s; is a constant. So

we get :

/ f=g0 Zs log(# — n;) + S (A log f, + S d:., DIH.) (4.6)
p=1 Jo=1
where d;,.s; are constants, a; € k%, and f,, H;, € k.
At this point, we distinguish two cases :

Case 1-a : § is algebraic over k% log Hj, (1 < jo < m), log(l — H;

Jo

) (1 <50 <
m), log f, (1 <p<r)). So, by lemma 4, we get :

0—'ZCP long+ZbJo log jo+zajo log(l_Hjo)+g

Jo=1 Jo=1

where c,,b;,,a;, are constants, and g € k°.
So, L; = § — «; is a linear logarithmic expression over F = k°( log H;, (1 < jo <

, log(1— H;) (1 <jo<m), log f, (1< p<r)),and (4.6) can be written as :
P

/f ZdJol2 Jo ZOZ? )

Jo=1 Jo=1
=Y O0.(1—f,) =Y silogL; €F (4.7)
p=1 1=1

which implies, by proposition 1, that [ f is a simple elementary-dilogarithmic ex-
pression over k and our theorem is proved in this case.

Case 1-b : § is transcendental over F' = k% log H;, (1 < jo < m) , log(l —
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H ) (1<j<m), log f, (1 <p<r)). (4.6) can be written as :

/(f_[z—:djoD( ) )—g +Zstlog “ai)
+Z::SP(9) log f, (4.8)

From this, and as in the proof of Liouville’s theorem, we deduce that s; = 0 for
all 1 <: < n.
Also, by proposition 5, we deduce that there exists ¢, a constant, and v £ F such
that:
g(9) rsisp(ﬂ) log fy=cO+v (§=Tloga)

o]
—

SO !

/f Z d.?o Jo i Ol?(l - Hjo)

Jo=1 Jo=1
—ET:O.lg(l“fp)*Cloga cF
p=1
= by proposition 1 that [ f is a simple elementary-dilogarithmic expression over
k, and the theorem is proved in case 1.
Case 2: K; = k(#,0') and 8 = [5(a), where a € k. Let ky = k( log(1 — a) ). So,
§' € ky. If 6 is algebraic over kq, then, by lemma 4, 8 € k;. So, writing (4.1) again,

we have :

/f:g+f:si logvi+zn:cj D(h;) (4.9)

where g, s;, vi, h; € ky.

Then, using case 1 (the logarithmic case), we deduce that [f 1is a simple
elementary-dilogarithmic expression over k.

So, we consider the case § transcendental over k;. As in the previous case, (4.9)

can be written :

[ 7= 9(0)+ 3 5(0) log(t — @) + X ,(0) tog 1,
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+ZdjoD JO+ZZdUD

Jo=1 1=1 j>1

=)

ﬂ—aJ

where f,, H;, € ki, o # aj, 1 # j,1 < j < n,and o; € kY a normal finite extension
of k containing the roots of v;, h;, and (1 — h;) for all 7,7.

Now, we use the same argument as in case 1 (§ = log a) and proposition 3 to

deduce :
/f =g(8) + Z s; log(8 — a;) + Z sp(8) log f,
i=1 p=1
+ > diy D(Hy,) (4.10)
Jo=1
where f,, H;) = by n; € k? and s;, d;, are constants.

We also distinguish two cases :

Case 2-a : f is algebraic over Fy = k¥( log H;, (1 < jo < m), log(1 — H;;) (1 <
jo<m),logf, (1<p<T)).

We apply again the same argument as in case 1-a (using lemma 4), and obtain

[ f is a simple elementary-dilogarithmic expression over k&;, = by case 1 and
sincef € k that [ f is a simple elementary-dilogarithmic expression over k.

Case 2-b :  is transcendental over F; = k?( log H;, (1 < jo < m) , log(1l —
H) (1< jp<m), log f, (1<p<r))

Then, from (4.10) and as in case 1-b (8 = log a), we deduce that : s; = 0 , for
all 1<:<n

and that there exists ¢, a constant, and v € F, such that :

)+ X (0) log fy=cO+v (8= 1(a)

(4.10) =
Z dj, l,(H Z 0.1,(1 — Hj,)
Jo=1 Jo=1

— ZO L(l1 - f,) —clya) € Fy=Fi(log(l—a))

p_-

(since log(1 —a) € k;) = by proposition 1 that [f is a simple elementary-
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dilogarithmic expression over k&; = by case 1 that [ f is a simple elementary-
dilogarithmic expression over k.
Case 3: Ky = k(f), 6 = exp a, a € k, and # transcendental over k. As seen

before, we can write (4.1) as :

[£=0(0)+ 3 50 tog0 — ) + 3" s,(0) log 1,

p=1

(only (n — 1) terms)

m n-—1 0_ ; )
F Xy D(H) ¢ 33 Ay Dl 5 (1.11)
Jo i=1 j>1 Qa;

(a; € k°),(1 < j < n)and k° is a finite normal extension of k..
In this case log § € k, we assume that o, = 0, and that «; # 0 for i # n.
The derivative of (4.11) is exactly (4.4), from which we extract the coefficient of
log(8 — o) and use corollary (3.2) to obtain :
o) —ay’ g o 9

, 1 a1 _

>ri#Ead AT !

= S0+ Y —;— (log(ar — ;) — log(f — ;) ) dy;

I>1L,j#n

1 1
+; di, log a; — 5 di, a = constant

&

(since logd =a € k) = by proposition 4 :
di; =0, forallj > 1,7#n

and :
1 g o
10 — M 1
$1(6) = 5 dun (5 = 21)
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By induction on ¢, we can now deduce that :

di; =0, foralltand forally > 1,7#n

and:
1 6 ! ,
Si0)=5dn (5 ~ =) (1<i<n—1) (4.12)
So, (4.11) becomes :
n—-1 r
J£ = 9®)+ X Su0) log(h o) = 3 5,(8) log
1=1 p=1

'LTL

ZdJOD

= f=4(9)+ "Z:: 5i(9) %%}% + ”Z‘: Si(0) log(6 — ;)

+XT:SP 0) Z log fp

co 1 H), 1 (1- Hy,)
, Sl Sl DA .

1,6 —cal : 1 A
+Zin§ S (a5 (2 =2 ) log(6 - a)

0 —a; o 2 o 6

¢ — al

0 — «;

* ) log a; ] (4.13)

(c is a constant such that log # = a + ¢). In the above expression, the coefficient of
log(8 — ;) is zero, as we have seen before.

Now, by corollary 3.1, 8 is transcendental over :

Fo = k°(loga;(1 <3 <n—1),logH;, (1< jo <m),

log(1— H;,)(1 < jo <m),logfp(l <p<r)).

On the other hand, we choose the log f, (1 < p < 7) in such a way that they are
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linearly independent and transcendental over k°. Then, by lemma 3 and corollary

(3.1), they are algebraically independent over k°(4).
From (4.13), we deduce that there exist subsets J,,I,,T, such that :

| 1 H 1 (1- H,,)
S0+ 2 (=5 F-di )+ 2. (57— %)
’ j();lp 2 Hj, joze:lp 2 (1 - Hj,) ’
0 0" — ol ‘
+Z =~ dzn i 0—(12')—0 (414)
1€Tp

(this is the coefficient of log f,; J,,I,,T, exist because log o; [log Hj,, log(1 — H;,)

could depend on log f,).
By proposition 4, we deduce that d;, = 0 for all : € 7). So:

si(0) €k = s,(8) = s, € k by proposition 5 (for all p).

So, (4.13) becomes :

F=gd0)+ 3 siey =) +zsp—+§js log f,

= (0 - ;)
e 1 H; 1(1-H;)
. 0 ] — H. b St [ | :
+.Z—1d.70 2 HJO Og( JO)+2 (I—HJO) og H]O]
jo=
o 18 4
+de[ a_az“—)(a+c)+§('9—'H_Qi)logaJ (4.15)
But, from (4.12), we had :
1 0 o
S0 ==din (—— =2
(0) = 5 (5 -2
1 .
= S5;(0) = 3 din (@ — log a;) + ¢, ¢; s a constant (4.16)
<1 - 1)7 log HJo (1 <Jj< m), log(l - ) (1 <

So, S; € Fy = k% log a; (1

jo<m), log f, (1<p<r)).
Computing the coefficient of (8 — «;)'/(8 — ;) in (4.15), we get :

s 0" — ol

§(O)+ L (Si(8) + 5 dnl (a+¢) = log a:]) G

1=1

€ Fy
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Considering the partial fraction decomposition of g(8), we can prove, as in the proof

of Liouville’s theorem, that (since o; # 0) :
S:(9) + % dinl(a+c¢c)— loga;] =0, foralli < n-1 (4.17)
Comparing with (4.16), we deduce that :
din [a —log a; | = constant, foralli < n—1 (4.18)

We claim that d;,, = 0, otherwise we would have :

a; 4 al g Norm(ey)

- — = 4.19
a; 9 o; 9 Norm(e;) 0 ( )

where Ng = [k° : k], and Norm is the usual norm from &° to k.

So, (4.19) implies :
(07 Norm(a;)) =0 = 6% €k = contradiction

and :

din =0, foralll1 < i1 < n-1

which implies that S/(8) =0 by (4.17) = S;(8) = constant(that we denote S;) =

, n—1 6_ai ! r [ r ,
F=g@)+ s s e s g
i=1 (6 — o) p=1 P p=1
il 1 H; 1 (1-H,,)
d: [ == 22 Joag(1 — H: R S A )
+JDZ=1 Jo [ 2 HJO Og( H]O) + 2 (1 _ H]O) Og HJOJ

Let Foo = ko( log fp (1 <p< T)7 log Hjo (1 <J < m)’ log(l - Hjo) (1 <7 <
m)). 8 is transcendental over Fy, and , as in the proof of the Liouville’s theorem, we

get S; =0, for all . Also, we get g(f) = g € Foo, by proposition 5, so we get :

1 =13 dsy D(H) V) = g+ 3 5, log £,

Jo=1
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= /f - i djy Lo(Hj,) — i 0.l(1 — Hjy)

jo=1 jo=1
- 0.(1-f,) € Foo
p=1
= [ f is a simple elementary-dilogarithmic expression over k£ by proposition 1, so
the theorem is proved. ]
We end this chapter by giving a nontrivial example that illustrates the fundamen-
tal concept behind our generalization of Liouville’s theorem, which is that integration
in finite terms is actually a simplification process.
In fact, what we have proved is:
Let & be a differential field of characteristic zero, which is a Liouville's extension
of its subfield of constants assumed algebraically closed. Let f be an element in %

and suppose that f has a transcendental-dilogarithmic-elementary integral. Then
m n
/f =g+ swi+ Y djv;
i=1 1=1

where n and m are positive integers, g € k, s; € k, forall 2z, 1 < ¢ < m, w; is
logarithmic for all 7, 1 < ¢ < m ,d; is a constant for all 7, 1 < j <n, and v; = D(¢;),
where ¢; € k — {0,1} for all j, 1 < 37 < n. In our proof of the theorem, we observed
that, although v’ does not in general belong to k, it can even be transcendental over
k, as is illustrated in the following example.

Example: Let k£ be any differential field of characteristic zero. Assume that 4 is
primitive and transcendental over k. Let p(#) and ¢(8) be two irreducible polynomials
over k such that degp > deggq # 0.

We consider the differential field K = k(8)(¢1, ¢2), where ¢; and ¢, are such that

P'(0)
p(9)

and ¢, = ﬂ—
q

(9)

N—

¢ =

It is immediate that ¢; and ¢, are algebraically indenpendent over k(). It is also
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clear that, if ¢3 is such that
5 _ (0)+ 4O
T p(9) +q(8)

then ¢3 is transcendental over K. Consider the function:

_l(d (p+a), 1 (p+q)’_g’), 1 (p+q)
f_2(<1 1r’+<1)¢1 2(;v+q p) 2Tl h ey

f € K, and we can check that

[D(:ql—)) + %((ﬁl + ¢2)¢3] = /f (mod Mg)

but (D(—p,/q))" is transcendental over A since @j is.
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Chapter 5

Further Results

In this Chapter we report on two results that we have obtained but where we
don’t give the proofs because they are quite long. The first one concerns finding a
decision procedure for integrating a function in terms of elementary functions and
dilogarithms if such an integral exists. Formally this is stated as follows.

Theorem: Let C(z) be a differential field of characteristic zero where z is tran-
scendental over C, the field of complex numbers, and z is a solution to 2’ = 1.

Let k = C(2,60:,6,,...,0,), n > 0, be a transcendental elementary extension of
C(z). Given f € k one can decide in a finite number of steps if f has a transcendental-

dilogarithmic- elementary integral and if so determine g,v;, s;, ¢;, and h;, satisfying

/f =g+ silogvi+ > c; D(h;) (n,m are positive integers).
=1 7j=1
The second result extends the theorem we proved on integration in finite terms
with elementary functions and dilogarithms to elementary functions, dilogarithms
and trilogarithms.

The trilogarithm is defined as:

Is(z) = jf) ht)

t
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Consider the function utilized by Kummer [13] defined as
z 2(1 —
Az) = / %_t)dt_
0

A simple integration by parts gives
A(z) = log zlog?(1 — ) + 2log(1 — z)la(z) — 2l3(1 — z) + ¢

where ¢ is a constant.

Definition: A transcendental-trilogarithmic-elementary extension of a differential
field k of characteristic zero is a differential field extension K such that there is a tower
of differential fields

k=Ko CK, C..CKy=K

all having the same constant field and for each ¢ = 1,..., N we have one of the

following cases :
(1”) K; = K;_1(0;), where 0; is logarithmic over K;_;.

(2”) K; = K;_1(6;), where 0; is exponential over K;_;. we also assume #; transcen-

dental over K;_; in this case.

), where 8; = l3(a) for some a € Ki;.

(3") K; = K;_1(6;,0!

1

(4”) K; = K;_1(6;,6!,¢) where 8! = (%)u, u = ly(a), and ¢ = L&%‘g for some
a € K;,_; —{0,1}. In this case, we write 8; = [3(a).

We say that f € k has a transcendental-trilogarithmic-elementary integral if [ f €
K where K is a transcendental-trilogarithmic-elementary extension of k.

We also give the following definition

Definition: A transcendental-A-elementary extension of a differential field % is a
differential field extension K such that there is a tower of differential fields k = Ky C
K, C...C Ky = K all having the same constant field and for eachz =1,..., N we

have one of the following cases :
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(1) K; = K;_1(6;), where 6; is logarithmic over K;_;.

(2”) K; = K;_1(6;), where 0; is exponential over K;_,. we also assume §; transcen-

dental over K;_, in this case.
(3”) K; = K;-1(6:,9!), where 8; = l5(a) for some a € K;_;.

(4”) K; = K;_1(8;,8!) where 8 = (2u?) with a € K;_y — {0,1}, v’ = (=2) In this

- (1-ae)°
case, we write §; = A(a).

We say that f € K has a transcendental-A-elementary integral if [ f € K where
K is a transcendental-A-elementary extension of k.

But since I3 can be expressed using logarithms, dilogarithms, and the function A,
for f € k (where k is a differential field of charactersistic zero) to have a transcendental-
trilogarithmic-elementary integral, it is equivalent for f to have a transcendental-A-
elementary integral.

It turns out as in the case of the dilogarithm that the function (see [13])
1 2
M(z) = A(z) — gloga:log (1-=z)

satisfies simpler identities than A(z).

This motivates the following

Definition: If k£ is a differential field of characteristic zero, K a differential field
extension of k such that K = k(t,u,v), we say that ¢t = M(¢), if ¢ is an element of
k —{0,1} and

36 3(1-9)

28, 2(1-9)

uv

where u' = ((11;:% and v' = %'
From this definition it follows that ¢ is defined up to the addition of a linear
combination of I,(¢), logg, log(1— @), logplog(1—¢), and log?(1— ¢), with constant

coefficients. Informally, ¢ is equal to
1 2
A(9) — +logp log*(1 — )
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This motivates considering the function A and the associated function M as de-
fined modulo the vector space V, where t € V}, if and only if it can be written in the

form

n m N M
ST RIS 35 Sy
=1 j=1 r=1s=1
where ¢;, d;, ¢, are constants, v;, u,, u, are logarithmic over &, and w; is dilogarithmic
over k.
We can prove the following proposition:

Proposition: (i) If £ is a differential field of characteristic zero, then for all
fek-{0,1}

M(f) (mod Vi)

TN
-
| [
[e—
N———
I

M(f) + M(

+
=
—
l
=
1

0 (mod V%)

(ii) If k is a differential field of characteristic zero, let # be transcendental over
k with k(#) being a differential field having the same field of constants. Let f() €
k(8) — {0,1} and K be the splitting field of f(#) and 1 — f(f). If a is a zero or pole
of f(8), we define ord, f(8) to be the multiplicity of (# — a); this is positive if a is a
zero of f(#) and negative if a is a pole of f(#). Then there exists f; € k such that

MFO) = M(R)+g X erda(l = flordb(forde(1 - (T
a,b,c,a#b,a#c,btc
+ % Z ord,(1 — f)ordy(f)ord.(1 — f)M(-z;:—b)
a,b,c,a#b,a#c,b#c
+ % S orda(1 - fords(forde(1 - F)M(5—5)
a,b,c,a#b,a#c,b#c
1 (0 —b)a—rc)
- = ord,(1 — f)ord ord.(1 — fIM(—-"~F——=< o
2 a,b,c,a#z,;#c,b;éc ( f) b(f) ( f) ((0 - C)(a - b)) (m d VK(G))

where a runs over the zeros and poles of 1 — f, b runs over the zeros and poles of f,

and ¢ runs over the zeros and poles of 1 — f.

Using the above proposition and techniques similar to those used in proving the

structure theorem for the dilogarithm, we can prove the following
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Theorem: Let k be a differential field of charactreristic zero, which is a Liouvillian
extension of its subfield of constants assumed algebraically closed. Let f € k and

suppose that f has a transcendental-A-elementary integral, then

ff =g+ s.dogh. + Y tilogpilogg; + Y cmla(gm) + Y. dM(H)

réR 1el,jed meM leLl

where R, I,J, M, and L are finite set of positive integers, and g, s, h-, t:;, pi, q;, g, H; €

k, and c,,.d; are constants.

We hope that the theorems we proved will spur others to continue this line of

research.
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