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ABSTRACT

Waves on a planar water jet are studied
theoretically and experimentally. The effects
.of surface tension, viscosity, and an applied
electric field are included in the analysis.
It is found theoretically that for a thin jet
of water, the influence of viscosity is slight,
so that the et may be considered practically
non-viscous. This finding is experimentally
verified for the growth rate of an unstable
wave on a water jet.

A method of exciting waves on a liquid
jet is also studied. The theoretical model
predicts certain nulls in the frequency
response curve which are experimentally
observed. The theoretically predicted shape
of the frequency response curve is also
experimentally verified.
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CHAPTER I

Introduction-

Recently there has been a revival of interest in the

dynamics of liquids stressed by an electric field. Melcherl

and Hoppie2 have studied waves and instabilities on the surface

of stationary and moving fluids both experimentally and theo-

retically, and Lyon has studied the EHD Kelvin-Helmholtz

instability theoretically. However, none of these analyses

have included the effect of losses in the system, so that no

attempt was made to measure the rate of growth of the insta-

bilities or the damping of the stable waves. In this thesis

we will consider experimenttally and theoretically the effect

of viscosity on waves' on a jet.

Chapter II treats waves on the surface of a liquid jet.

The equations of the system are solved with the aid of the

boundary conditions and the dispersion relation is derived.

The solution of this equation is considered in the limits of

a very thick and a very thin jet. The result shows that in

the limit of a very thin jet, the effect of the viscosity on

the waves becomes vanishingly small due to the large surface

to volume ratio. The growth rate of waves on a jet is then

studied experimentally, and compared to the theoretical

results.

In previous work, EHD waves have been excited by both

applied electric fields and mechanical vibrations. The lack

of an adequate model for the exciter, however, made it

impossible to relate the response of the system to the exciter

input.

In Chapter III, a model of a surface wave exciter is

analyzed, and the results are used to determine the magnitude
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of waves excited on a jet. The model predicts nulls in the

frequency response and in the spatial response of the jet.

These are both observed experimentally. The frequency response

of the exciter is also measured for low frequencies, and

compared to the theoretical predictions.

In Appendix A we apply a technique suggested by

Chandrasekhar to show that the state of marginal stability of

the fluid is determined by setting

X = 0.

This result can then be used to show that the onset of insta-

bility is not influenced by viscosity.
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CHAPTER II

Waves on a Jet

2.0 Introduction

We will consider a jet of fluid unbounded in the x2 and

x3 directions which is moving with a velocity V in the x 2

direction. The thickness of the jet is (Fig. 2.1). An

electric field is applied which is normal to-the undisturbed

surface of the fluid, and waves are propagating along this

surface. We shall assume that the fluid above and below the

jet is perfectly insulating and weightless, which is very

nearly the case with air and a conducting liquid. The heavy

fluid is supposed to be a perfect conductor, or equivalently,

to have an electric relaxation time which is very short

compared to the period of the disturbance. This requirement

is easily met, even for very poor conductors, since the

relaxation time is of the order of /a. This means that a

fluid with the relatively low conductivity of 1 mho/meter has
-11

a relaxation time on the order of 10 seconds, far less than

the typical wave;period, which is on the order of 10 3 seconds.

In addition, we will neglect the effect of the induced magnetic

field in the interaction. (The interactions discussed are

quasistatic in nature.) The forces which do play a part in

this analysis are surface tension, the electric field, and

viscosity.

The equations which will be used to describe the electric

field are Maxwell's electric field equations

V xE = (2.1)

V E= e/eo (2.2)
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and their associated boundary conditions

n x El50 (2.3)

'-[ T~ C f (2.4)
where SEX represents the discontinuity in E. The equations

which describe the motion of the fluid are the Navier-Stokes

equations and the continuity of mass equation

di 2- (.
dt '-Vp + V2v -V (2.5)

5V7* v -O (2.6)

5and their associated boundary conditions

n Ir] a = T(i +R2) (2.7)

-n · -o (2.8)
where T is the stress tensor in the fluid, composed of

pressure, viscous, and electric stresses, and T(- + -
R1 R2

represents the discontinuity of the stress attributed to the

surface tension at the interface.

The electric and mechanical parts of the problem are

coupled only at the interface, whose shape, which is determined

in part by the electric field, determines the electric field.

These equations are highly nonlinear, and cannot be solved as

they stand. Therefore, we will use the technique of amplitude

parameter expansion to obtain a series solution to these equa-

tions. To do this, we will expand all the unknowns in terms

of an amplitude parameter ,which we shall take to be the ratio

of the wave amplitude to the wave length

.0 1 22f = f +Xf + f +
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If the technique is successful, when we substitute these series
into the equations, each power of will be the coefficient of
a set of equations which can be solved in terms of the solutions
of lower order equations. Then, each of the unknowns will be
given by a series in the amplitude parameter. If the disturbance
is very small, fl/fo << 1, the first two terms of the series
will give a close approximation to the correct solution.

Physically, the zero-order terms represent the motion and
fields which are not due to the surface waves, such as static
equilibrium or rotation. In this investigation, it is assumed
that the zero-order solution represents only a static equi-
librium and the higher-order terms are all due to the wave
motion of the surface. To the first order, this motion will be
represented by a single eigenfunction, for instance, a sine
wave in rectangular geometry, or a Bessel function in cylindrical
geometry.

The potential at the boundary xl = + d is fixed at the
value = o0, and the potential at the surface of the con-
ducting liquid is fixed at = 0. Here the boundaries are
equipotentials, but one of them, representing the surface of
the liquid, may assume any shape. Since there are no simple
solutions of Laplace's equation which will satisfy this type

of boundary condition, we will assume a small sinusoidal

disturband of the liquid surface, and find the approximate

electric field by a means of the amplitude parameter expansion.

2.1 Motion of the Jet

The motion of the fluid is governed by the Navier-Stokes

equations for the motion of an incompressible, viscous fluid,

and the equation of continuity, which are restated for convenience.
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~v +~.2-9)t + Vv] = -p + vv (2.9)

v-= 0 (2.10)

The amplitude parameter expansions for the pressure and velocity

are
v = V + v (2.11)

0 1
p = p + p + .. (2.12)

For the zero-order equations, we have

0
0= -Vp (2.13)

with the solution

0
p = const. (2.14)

The first-order equations are

pitv + (VO * V)v] = - V p + CV2 v (2.15)

V · v = 0 (2.16)

. We will assume that all first order quantities are waves

propagating in the x2x3 plane, so that they may be written in

the form

f(x1 x2 x3 t) = Re[f(xl) expi(k2 x2 + k3x3 - t)] (2.17)

These basic solutions may be used to build up any arbitrary

disturbance by means of Fourier techniques. Then the equations

become

Dp = ip(w-k2V )v + l(D -k )v1 (2.18a)

2 2
ik2P = ip(wo-k2V)v 2 + L(D -k )v2 (2.18b)

2 2ik3P ip(w-k2Vo)V3 + (D -k )v3 (2.18c)
3P~~~~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~ .V 
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Dvl + ik2v2 + ik3v3 (2.19).

where
d

D = d
dx1

Letting

y = -kV (2.20)

we find the solution

p- i[A sinh kx + B cosh kxl] (2.21)

V1 A cosh kxl + B cosh kxl - m (k2C + k3F)sinh mxl

- (k2K + k3G)cosh mxl (2.22a)
ik2

V2 = k (A sinh kx + B cosh kxl) + C cosh mx + K sinh mxl

(2.22b)
ik3

v 3 = k (A sinh kxl + B cosh kxl) + F cosh mx + G sinh mxl

(2.22c)

with

m2 _ k2 _ <4- (2.23)
V

A, B, C, F, and G, and K are constants whose values are determined

from the boundary conditions.

The interfaces can be defined by the equation

F Xl + 2 t(x2,x3,t) = O (2 24)

where , is the displacement of the surface from the static

equilibrium. Then we have, from the definition of the inter-

face,

dF F 
d- = t+ (v.V)F = (2.25)
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and from the definition of the normal vector

n F (2.26)
| VFI

Writing 5 in the amplitude parameter expansion we obtain

na 1 aX2 a2 -X3 a3 (2.27)

V1 a (2-28)

to the first order in x. Now the position of the interface is

defined in terms of the velocity of the fluid at the interface

position. Since we have assumed that ~ has the same wave-like

dependence as the other quantities in the problem we obtain

1 A I

= iVl 1 i- exp(kx ) + (k2B + k3C)exp(mxl)(2.29)

2.2 The Electric Field

Now we are in a position to determine the electric field.

The amplitude parameter expansion takes the form

E1 = E + Ke (2.30a)
0 1

E2 = e2 (2.30b)

E3 = Ke3 (2.30c)

where E is given by

E b (2.31)o b

The first order equations are

V *e = 0 (2.32)

v x e = 0 (2.33)
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Now, making the assumption of waves in the x2x3 plane, we get

the equations

De1 + ik2e2 + ik3e3 = 0 (2.34)

ik2el = De2 (2.35a)

ik3e1 = De3 (2.35b)

ik3e2 = ik2e3 (2.35c)

The components of the normal are, to the first order,

n1 = 1 (2.36a)

n2 =-ik2 (2.36b)

n3 = -ik3t (2.36c)

where we have again made the assumption of periodic waves in

the x2x3 plane. Then, using the boundary conditions

n x E - 0 at xl = 1 + /2 (2.37)

e2 = e3 = 0 at x1 = d (2.38)

The solutions to the first order field equations are given by

o = kE oe shl (2.39a)
sinh kb

e2 = -ik2Eot sinh kb (2.39b)

* 4k E sinh k(2.39c)
e3 =-ik 3Eo sinh kb (2.39c)

The electric field at the interface xl = A + A/2 follows from
these results.

E1 Eo + kE coth kb (2.40a)

E2 = -ik2E0 H (2.40b)

E3 = ik 3E0,E (2.40c)
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where

b =d - /2

Similarly, the electric field at the interface x1 - a/2 is

given by

E1 =E o -kEo coth kb (2.41a)

g 2 = ik 2 Eog (2.41b)

E3 = ik3 Eog (2.41c)

2.3 The Dispersion Relation
We must still satisfy the boundary condition requiring

continuity of the stress tensor at the fluid surface, which to

the first order may be stated

av av2 2
n[+ p 6 + (L + ) + T.ij - T + ) 6 ] = O

13- (TX 2 2 xa(x 2 'x3 (2.42)

The quantities in this equation may be obtained from the solu-

tions of the mechanical and electrical equations of the system,

and the definition of the normal. Then the first order equations

become

2 2 2 2 2 2
[(y + 2ivk2Y)Sk k- WtO2Ck]A + (y + 2ivk y)c - WOSk]B

ik 3 2 ik 3 2
+2vkk3YCm + .m IF + [2vkkyS +- 2C]G = 0 (2.43a)3m m om 3m m m



12.

1 2 2
(2 ik 2Ck)A + (2 ik2 Sk)B + (k2 + m )SmC

kk kk
1 2 2 23 k 2 k3(k + m C K + ( m S )F + ( m C )G = (2.43b)m - m - m m . m

k2k3
(2ik3Ck)A + (2ik3Sk)B + ( Sm)C

kk
+ C)K + (k + m)S F+ l(k2 + m)C G = (2.43c)m m m 3 m m 3 m

for the upper and lower surfaces, respectively, with

Ck COsh k2 Cm cosh (2 2.44a,b)Ck c 2 4 co dh

Sk =sinh k2 S = sinh (2.44c,d)
2 m 2

and 22
3 Ek

2 Tk coth kb (2.45)
o p p

Looking at these two sets of equations, we see that the

coefficients of A, D, and G are identical for the corresponding

equations for the upper and lower surfaces, while the coefficients

of B, C, and F are the same except for a change of sign. Thus,

by adding and subtracting the two sets of equations, we find

that the solution splits into two modes, the symmetric mode

with the arbitrary constants B, C, and F in which the upper

and lower surfaces move in opposite directions, and the anti-

symmetric-mode with arbitrary constants A, D, and G in which

the two surfaces move together. This splitting of modes comes

about because the forces in this situation (surface tension,

viscosity, pressure and electric pressure) act always toward

or always away from the jet regardless of the orientation of

the surface on which they are acting. The inclusion of a force
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which does not act like this, such as gravity, would not allow

the modes to split. Let us now consider the antisymmetric mode.

A non-trivial solution of equations 2.43 is possible only

if the determinant of the coefficients of the arbitrary constants

vanishes. This condition yields the dispersion relation

2 2 2 ik 2 3 2
(y +2ivk 2y)Sk-wCk (02Cm -2ivkmySm) - (u2C -2ivkmySm )kok m omm m om

1 2 2 k 2k 32 ik2Ck (k + m )C C
2 k m 2 m m m

k2k3 1 2 2
2i3k C 1(k + m)C3 k m m m 3 m

= 0 (2.46)

This may be written

2 2 22 2 k 2 2 2y (m + k)-_ w (m - k2)coth + 2ivk y(k + m
o 2

-2mk coth a2 tanh m2A) = O (2.47)

At this point it is interesting to consider whether the inclusion

of viscosity will affect the criterion for the onset of instability.

Since the instability on the surface of the jet may be thought of

as a stationary instability viewed in a moving reference frame,

the criterion for instability should be identical to that for a

stationary fluid (in the absence of boundaries which are not

moving with a velocity different from that of the fluid). To

determine the state of marginal stability of a stationary fluid,

we must find the condition for which the imaginary part of 

first becomes greater than zero, so that the disturbance neither

grows nor dies. In the non-viscous case, the answer follows



easily, since the dispersion relation may be written

0=+W
-

where w0 is either pure real or pure imaginary. If w0 is real

the imaginary part of must be zero, and if is imaginary,
0

the real part of must be zero. Then the point at which the

imaginary part of wu first becomes greater than zero will also

be the point at which the real part of becomes zero, so the

condition for marginal stability is just given by

= 0

For the viscous dispersion relation, however, it is not obvious

that the real and imaginary parts of both vanish at the point

of marginal stability. That this is true can be shown by the

application of the principle of the interchange of instabilities,

as is done in Appendix A. Using the result derived there;

namely,

03 0 

at the point of marginal stability, we find that the condition

for marginal stability is again given by

X3 =0
0

when the translational velocity V0 is set equal to zero, just

as in the non-viscous case. The viscosity has no effect on the

stability of the surface, although it will affect its rate of

growth or decay.

2.4 The Thin Jet and the Thick Jet

Now let us make the approximation of a thin jet

kA << 1 ;

14.

ma << 1
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The expansions involving the viscosity terms must be taken to

the second order in since in the first order the result is

the same as for the non-viscous jet. This might be expected,

since the viscous dissipation is a volume effect, while the

energy storage associated with the waves is at the surface.

For a very thin jet, the surface to volume ratio is very

high, and the viscosity accordingly has little effect.

Making these substitutions, the dispersion relation, Eq. 2.46

becomes 2

2w 2 iyv2k4
y A + 3 =0 (2.48)

where use has been made of Eq. 2.23.

Now let us consider a thin jet with oscillations excited

at a frequency , and look for the spatial behavior, that is,

for k. We assume that the jet is infinite in the x2 direction,

and the wave propagates in the x2 direction, so that

k3 = 0

k = k2

Now, Eq. 2.48 is quintic in k, so we will make the assumption

that the jet velocity is much greater than the propagation

velocity of the surface waves, or

k =V + 6 (2.49a)
V
0

6<< V (2.49b)
0o

Substituting this into Eq. 2.48, we find

2w2 ivA2V 5 5ivA2V 4
° = -= - 6-3 ( -) 6 + V(2.50)

0o 
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plus higher order terms in 6. All of the higher order terms

are essentially lower order terms multiplied by 6V / and may

be neglected in the approximation 6 << /V . From the defini-

tion of 6 we see that a negative imaginary part corresponds to

a growing wave, while a positive imaginary part corresponds to

a decaying wave. Thus the viscosity tends to damp the wave.

The wave will grow whenever < O and its growth rate is

determined by Eq. 2.50. As expected, the stability criterion

is identical to that of a non-viscous jet.

Defining the dimensionless parameters

E E2

E' = 2 kl T (2.51a,b)
pV pV0

PV2b

pV 2 2

01 = Al = ° (2.51e,f)
T T

-61 T (2.51g)
pV0

the dispersion equation becomes

2 dr3 2 *4 2 *2
5 iv't *3 2 iv'a' 2X 2w

3 13
2E'w+ =r coth k'b' =- (2.52)

The cutoff frequency is defined by
6' = 0 (2.53a)
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or

o)' = E'coth w'b' (2.53b)

At the cutoff frequency, the dispersion relation takes the

form for ,2 i,3 , 2 *4
[1- 5iv ]6 _ 6' = 0 (2.54)

3 3

One root, which describes the wave that is potentially unstable,

is 6' = 0. The other, which describes a wave which is always

stable is
ivA2 *4

6= 2 *3 (2.55)
3-5iv'A' 

Then at the cutoff point of the growing wave, this stable wave

has a propagation constant

5,214 4*7 3iv 2 *4
5v' A' 4 *6 3iv'A' 2 *6(

(9 + 252 4 w) (9 + 25v'2 'w6)

This describes a damped wave with a phase velocity slightly

faster than the equilibrium velocity of the fluid. In the limit

of low viscosity, this becomes

5,2 \,4,*7 2 *4

k'= ) i ( --- ) (2.57)

If the jet is very thick, m >> 1, k >> 1, and the

dispersion relation reduces to

y (m + k2) + 2ivk2(mk)2y 2( 2 2(258)

In the limit of low viscosity, vk2/6 << 1, this becomes
2 2 2

y - 4ivk y - = 0 (2.59)o
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Again making the assumption

W 3Wk v + 6 , << (2.60)
V V
0 0

The dispersion relation reduces to

6' 211-8iv'w'] - 4iv'w'2 6' - w'3 + E w 2 coth w'b = 0 (2.61)

2.5 Experiments

Although the theory here presented is based on the assump-

tion of a planar jet, the experimental work made use of a

circular jet, due to the difficulty associated with the construc-

tion and operation of a planar jet. Although the two geometries

are different, previous work on non-viscous fluid jetsl indicates

that the rate of growth of the unstable waves should be similar

for the planar and the circular geometries.

The experimental apparatus for the study of the growing

waves is sketch, in Fig. 2.2. A jet of water leaves the

reservoir tank at a constant velocity V through a circular

nozzle. The jet then passes through the exciter section, which

consists of two electrodes with applied potentials and spacings

as described in Chapter III. However, spherical electrodes are

used here instead of the flat plate electrodes described in

Chapter III because it was found that a spherical electrode

would eliminate the nulls in the frequency response curve.

After passing through the exciter, the grounded jet

continues on between two metal plates at a high DC potential.

The electric field at the surface of the jet due to this
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applied voltage is large enough to cause the waves excited on

the jet to grow. Photographs of the growing wave were taken,

and from these photographs, measurements of the growth rate

were made. The results are plotted in Fig. 2.3.

To evaluate the electric field at the surface of the jet

theoretically would involve a laborious solution of Laplace's

equation with the potential specified on the metal plates and

the surface of the jet. The electric field can also be

determined experimentally by measuring the cutoff frequency of

the jet. Previous experimental workl indicates that the cutoff

frequency can be predicted quite accurately in terms of the

applied electric field for a circular jet. We have inverted

this result to find the applied electric field from a measure-

ment of the cutoff frequency.

For a jet of water of reasonable size, the theory indicates

that the viscous damping of the surface waves is very slight,

so slight that it may be neglected in the calculations with no

noticeable error. For instance, for a jet of water (viscosity

of 1 centipoise) 3 millimeters thick and moving at 3 meters

per second, with a frequency of 300 cps. the complex part of
-4 -1

k due to viscosity is of the order of -10 cm while that
-1

due to the electric field is on the order of 0.1 cm . For

the present experiment, the effect of the viscous damping is

never greater than this, and so the effect of viscosity is

not expected to be significant.

Since the jet is accelerating in a gravitational field,

its velocity is not constant, and there is some doubt as to
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which value of velocity should be used in the equations. The

growth rate has been calculated for the velocity at the exciter

exit and for the velocity at the base of the amplifier section

.for a very thick and a very thin jet, and these results have

been plotted along with the experimental results. The theo-

retical predictions for a thin non-viscous, circular jet, as

derived by Melcher,l are also plotted in the same figure, for

the two values of velocity. The two predictions are almost

identical, and have been represented by a single dashed line.

From the figure it is apparent that the experimental

results were predicted fairly accurately by the various

theoretical models, with the thin, circular jet model giving

perhaps the best results, not surprisingly. The results also

indicate that the viscosity of the fluid plays a very small

role in the growth rate under the experimental conditions.
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CHAPTER III

Excitation of Waves on a Jet

3.0 Introduction

A practical problem which must be faced in conducting experi-

ments of the type described in Chapter II is that of exciting

the surface waves on the jet. In this work we excite the waves

by means of an applied electric field.

As the grounded jet passes through the exciter section

(Fig. 3.1), it is given an impulse by means of two electric

fields of different strengths which are set up by the two

exciter plates on either side of the jet. The voltage on the

exciter plates is divided into a steady bias voltage and a

sinusoidal signal voltage whose amplitude is less than the

bias voltage. With this arrangement, it is possible to choose

the voltages and plate to jet separations so that the deflection

of the jet is linearly proportional to the signal voltage for a

given frequency of excitation and distance along the jet.

3.1 The Theory of the Exciter

The exciter is modeled by two infinitely wide, perfectly

conducting parallel plates of length on either side of the

infinitely wide planar jet of perfectly conducting fluid

(Fig. 3.1). The plates are separated from the grounded fluid

by distances h and h2, and potentials 61o + el(t ) and 0o2-e2(t)

are applied to the plates.

Now, let us apply the impulse-momentum relation to a differ-

ential length of the jet, dxl, which enters the exciter at time to

and which is moving at a constant velocity V. The relation may

be written
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mv2 t + l/V
dx1 f d(mv2)= dx f F(t)dt (3.1)

o t
0

where m is the mass per unit length per unit width of the jet.

The force on the differential length of the jet will be a

function of time both through the variation of the field due

to the applied signal voltage and to the motion of the jet.

In the model we have chosen, a change in the electric field

due to a change in geometry can occur only when the displace-

ment of the jet in the exciter section becomes large enough

to change the plate-to-jet separation appreciably. Since

the experiments indicate that the jet suffers very little

deflection in the exciter, we will neglect this effect, and

assume that the variation of the force with time is due only

to the variation in the signal voltage. This assumption also

implies that surface tension has no effect on that portion of

the jet inside the exciter.

The force per unit area on the surface of the jet can be

found by means of the relation

Fi = Tijn.da (3.2)

where Tij represents the ijth component of the Maxwell stress

tensor at the surface of the jet, n. is the outward normal to

the jth surface, and the integration is over a unit area. From

this, the force per unit area is found to be

(3.3a)
F1 F3 O (3.3b)

2 2 2 2
o ol 2 ! 1 o22 1 22 (-~ -) + 2(-~ 2 ) + 2 (3.3c)

1 2 1 2 1 h 2

In order for there to be no net force on the jet when the bias

is applied, we must satisfy the relation
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~ol 'o2 (3.4)
hl h2

and if the force is to be linearly proportional to the signal

voltage, we must have

h h 2(3.5)
1 2

In this experiment,

h1 - h2 - h (3.5b)

and

Ool = o2 o 0 (3.5c)

If these conditions are fulfilled, the net force per unit area

on the jet will be

2£ o (t)
F2 = 2 (3.6)
2 h2

If the signal voltage is

¢(t) e cos t

the force per unit area may be written

2 e

F(t) 0 °2 0 cos t (3.7)

and the impulse-momentum relation. becomes

MV2 to+ A/vo 2e e
f d(mv2) = f ,o 02 cos t dt (3.8)
o t h

This may be integrated to give

2 e o= 0:20 [sin(wt + -)-sin ot ] (3.9)
mh wo o
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By means of trigonometric identities, this may be rewritten as

V 2 0- [((cos - - l)sin t + (sin )cos t] (3.10)
mh2w Vo o 

Defining the dimensionless quantities

WI W (3.11)
Vo

v2mh2V
v2 2 e (3.12)v2 2 eo o 2

the velocity response may be put in the form

, (cos '-1) sin t + (sin W') cos t (3.13)
2 W03 O WI 0O

Here to, which represents the time of entrance of the differential

length of the jet into the exciter, may be related to the real

time at any point on the jet by an additive constant, so that

Eq. 3.13 gives the velocity response of the jet to a sinusoidal

input signal to within an additive phase constant. The magnitude

of the response

= I/(cos '-2l) + (sin ')2

C Vl-=o s a"
= 2 1-cos (3.14)

is plotted in Fig. 3.2. The response has nulls at

1-cos W' - 0 (3.15)

or
3' = 2nr, n integral (3.16)

The maxima of the response may be found by setting the

derivative of the response with respect to 0c' equal to zero

sin a' /-l-cs 3'sin 1-cos - (3.17)
2w' 1 -cos ' l2
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which yields
W' = 0 (3.18)

and

a' sin ' =I 2(1-cos w') (3.19)

This yields two sets of solutions. One of them, ' = 2nr, gives
us the minima of the function, which are identical with its nulls,

and shows that the slope of the function at a null is zero. The

other, which gives solutions which approach (2n+l)r as n increases,

represent the maxima of the function. The amplitude of the maxima

fall off as for high W.

At low frequencies, W'- 0, we find

2 (l-cos 1 (3.20)

so that

V{ = 1 (3.21)

This means that for low frequencies the velocity increment is

given by

mv2 (t) = F(t)At (3.21a)

where the force F(t) is essentially constant over the period

of time At, a physically plausible result.

The phase angle is given by

tan cos ' (3.22)
p sin '

to within an additive constant. This changes sign as we pass

a null.

3.2 The Response of the Jet

Now, let us find the motion of the jet after it leaves the

exciter. As we found in Chapter II, the deformation of the jet
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can be described by means of waves with the dispersion relation

(w-kV W _ m coth 2 (3.23)

neglecting viscosity, where

2
2 Tk3 aE 2

W . k coth kb (3.23a)
o p P

We will now make the assumption that the jet is moving much

faster than the propagation velocity of the surface waves, so

that k may be written as

k V + 6 (3.24)
Vo

6 << V (3.24a)V0

Then we obtain

k =-+ 6 (3.25)+ V
-- o

with
2 1/2

wh6 coth k) (3.25a)
Vo 

The solution of the wave equation for the jet is

+ik+x ikx
(xlt)- Re[e + A e t (3.26)

where (xt,t) is the transverse displacement of the jet.

The first boundary condition at x1 0 is

(o0,t) = 0 (3.27)

which requires that the jet leave the exciter with no net

displacement. Using this condition we find

A++A_ - o (3.28)
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The other boundary condition specifies the magnitude of the

transverse jet velocity at the exciter exit.

dt(O,t) = (O,t) + V ° f (Ot) - v2(Ot) (3.29)

From this condition we obtain

-i v2(0)
A+ 2V 6 (3.30)

0

Then the solution for (xlt) may be written

v2(0) ix 1/v
(Xl) =V 6 (sin xl)e (3.31)

0

This shows that the displacement wave is the product of two

sinusoids, one oscillating at the frequency determined by the

excitation, and the other oscillating at a frequency which is

the difference between the fast and the slow waves on the jet.

The fast and the slow waves interact to give the effect of

"beating" in space.

Now consider the special case in which the applied electric

field is zero, and the jet is very thin, kA -O 0. In these

circumstances, we may write

62 -2 (3.32)
o

Then, defining the dimensionless quantities

u) 2Ti x1"aw 2 T x (3.33)

02s0 e 1 2 -2
mhV 
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We may express the displacement response of the jet as a function
of frequency and position as (combining Eqs. 3.14 and 3.30)

Ker . sin(a_'/2(1-cos W) (335)
12

-2Thus, the displacement response falls off as m'

The function

1-cos X'
,2

is displayed in Fig. 3.3. This function gives the magnitude of

the response at high frequencies, without the complicating effect

of the term sin ax' which depends on the point at which the

response is measured. Near w = 0 of course, this representation

is not valid, since the term sin ac' approaches zero. This

figure is plotted to the same scale as the velocity response of

the exciter (Fig. 3.2), to show the strong effect on the response

curve of the 2 dependence.

The maxima of the displacement response can be found by

setting the derivative with respect to frequency of the response

equal to zero.

/ l-cos =-
2 )5:

This gives the equation

;)'sin ' - 4(1-cos ') :0

The solutions of this equation for the maxima are again a series
of frequencies which approach (2n+l)? as n increases, but the
frequencies of the maxima are always lower than the corresponding
frequencies for the velocity response maxima.
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3.3 Experiments

Due to the difficulty of producing a planar jet and making

accurate measurements on it, the experimental work was conducted

on a circular jet. We must accordingly correct our model to

take into account the change in the geometry of the system. The

geometrical effect first affects the velocity response of the

exciter by modifying the force of the electric field on the jet.

To correct for this would require an exact solution of Laplace's

equation for the situation in Fig. 3.4, a lengthy task. We will

instead find an approximate value by using the minimum distance

between the jet and the exciter plates for the quantity h.

Continuing this approach, we will use the radius of the jet to

calculate the mass per unit area instead of the thickness of a

planar jet. These substitutions are permissible (for the

exciter model used here) because the form of the exciter response

does not depend on the shape of the jet, but only on the length

of the jet in the exciter, and the distance from the exciter to

the point of measurement.

As shown in Fig. 3.5, the jet of tap water issues from a

long, tapered nozzle beneath a constant head of water main-

tained by an overflow system. The velocity of the jet at the

nozzle is in the range 2-5 m/sec. depending on the head. After

it leaves the nozzle, the jet passes between the exciter plates,

where the electric field gives it an impulse. The jet then

falls under in the earth's gravitational field for a known

distance, and the amplitude of the disturbance on the jet is

measured by means of a cathetometer.

Two types of measurements were made to test the theory.

The first was a measurement of the position of the peaks and

the nulls in the response curve. It was not possible to determine

the amplitude for frequencies above the first null, since the

34.
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displacement response of the jet at the higher frequencies was

too small to measure reliably. In order to make the peaks and

nulls in the response curve evident, an electric field large

enough to cause growing waves was applied normal to the jet.

(These growing waves were described in Chapter II.) The

driving frequency was then adjusted until the jet appeared

undisturbed and the frequency of the signal was measured with

an electronic counter. The results of this measurement are

plotted in Fig. 3.6. The scatter around the theoretically

predicted position of the peaks and nulls may be partly

attributed to the zero slope of the response curve at both

the peaks and the nulls, so that both are relatively broad

and ill-defined. It can be seen from the plot that the

frequencies of the nulls are definitely lower than (2n+l)v

as would be expected from a simple sinusoidal response,

offering a verification of the w2 dependence of the maximum

response.

The displacement response of the exciter was also measured

for frequencies below the first null with no applied electric

field. Photographs of the jet were taken at various frequencies

with the aid of a strobe lamp flashing at twice the frequency

of the signal voltage. Measurements of the amplitude of the

wave versus the distance along the jet were made from these

photographs and the results plotted in Fig. 3.7. These plots

indicate that the displacement response is sinusoidal in space,

with the wavelength of the sinusoid decreasing as the frequency

of the signal increases, as predicted by Eq. 3.35. From these

plots the displacement response of the jet at any particular

position may be found.
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The values of the displacement were read from the graphs

at a distance of 30 cm. from the exciter, and these displace-

ment values were plotted versus frequency in Fig. 3.8. Now

the jet used in the experiment was circular, and the jet

postulated in the model was planar, so we would not expect

a very close agreement between the absolute magnitude of the

response curves for the two situations. The shape of the jet

should not change the form of the response curve, however,

since that is affected only by the length of the jet in the

exciter and the distance from the exciter to the point of

measurement. Accordingly, the theoretical response curve

has been scaled to give a reasonable fit to the experimental

results.

The theory also assumes that the velocity of the jet is

constant, and for a jet falling in a gravitational field this

is obviously untrue. As the jet falls, its velocity increases,

and from the conservation of mass, its radius must decrease.

Both of these effects will influence the parameter a which

depends on both the velocity of the jet and the phase velocity

of the surface waves. To give some idea as to the uncertainty

in the predictions, the exciter displacement response curves

corresponding to conditions at the exciter exit and at the

point of measurement were both plotted along with the experi-

mental results. It can be seen that the response at the higher

frequencies is not affected by the difference in the values of

a, but that at lower frequencies there is a fairly large

difference between the two theoretical predictions, indicating

that the response is more sensitive to slight perturbations in

this range. It should be noticed that the experimental points

also show more scatter in this frequency range, but that the
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points are still more or less contained between the two extremes

of the theory.

From the experimental points, it appears that the response

falls off somewhat faster than expected at high frequencies.

This may be due to the effect of fringing fields at the edges

of the exciter plates, since the wavelength of the disturbance

is not much larger than the separation of the two plates at

these frequencies. Also, it was noticed in the course of the

experiment that when the plates were separated about five times

as far as in this measurement, the response fell off approximately

twice as fast at the higher frequencies.

A rough estimate of the magnitude of the displacement response

was made for a frequency of 15 cps at a distance of 30 cm from the

exciter from the planar jet formula, Eq. 4.33. This predicted a

peak-to-peak displacement of approximately 1.1 cm while the

measured peak-to-peak displacement of the jet for these conditions

was around 1.4 to 1.6 cm, a fairly good agreement considering

all the approximations made in going from the planar geometry

to the circular.

The equation obtained for the displacement response,

Eq. 3.33, predicts nulls in the response at distances from the

exciter determined from the equation

sin . p . ) -- 0

0
or nr2

L = 2 , n integral

Here again, the precise distance at which the null should be

observed is obscured by the acceleration of the jet. The
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observation of this null is further complicated by the inherent

instability of a circular jet, which tends to break up into

little droplets,5 thus violating our continuum approach. In

spite of these difficulties, the null was actually observed

for a frequency of 75 cps at a distance of 45 cm from the exciter.

The velocity of the jet at the exciter was 300 cm/sec. This

observed distance is bracketed by the predictions made on the

bases of conditions at the exciter and at the point of measure-

ment, 27 cm and 93 cm.

These experimental data offer evidence that the model used

in this analysis describes the electric field EHD exciter.
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APPENDIX A

A Criterion for the Onset of Instability

The proof that the onset of instability is determined by

the condition

=0

is given by Chandrasekhar for a disturbance on the surface of a

fluid. In his analysis he considers the effect of gravity,

surface tension, and viscosity. To show that the same condition

applies in EHD systems, we will generalize his derivation to

include the effect of an electric pressure at the surface of

the liquid. The effect of gravity will be neglected. The

equations of the system may be written (cf. Ref. 4, Ch. X,

Eqs. 70, 15, 16, 17)

Dp = iwpv + (D 2- k2)v + 2(Dvl)(DpI)

+[k2T - kE2 coth kb] Z Y ,E - )(x (A.la)
o ( 1

5

2 2
ik2P = ipv 2 + ((D - k )v2 + (D -)(ik2v + Dv2) (A.lb)

2 2
ik3p = iwov3 + (D - k )v3 + (D4)(ik3v1 + Dv3) (A.lc)

Dv1 + ik2v + ik3v3 = 0 (A.2)

where we have allowed the viscosity to be functions of space.

These equations merely express the force balance on the fluid

and the continuity of the fluid, where the surface tension

and electric pressure have been considered as forces which act

only at the surface. This is expressed by the summation sign,

which sums over the various interfaces in the system, and the
th

Dirac delta function, which is non-zero only at the s inter-

face, x1 = s We have also assumed that all quantities may

be expressed as waves propagating in the x2x3 plane.
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Multiplying Eq. A.lb by k2 and Eq. A.lc by k3, adding

and using Eq. A.2, we get

k2p = ipDv 1 + (D2 - k2 )(Dvl) + (D4)(D2 + k 2)v (A.3)

Eliminating p between this equation and Eq. A.la we find

D {p + (D2 k2)]Dv + (D1)(D2 + k2 )LF iW -k)ID 1 -(t) (D +k1v =W

2 {Ip 4- (D2 2 2k [p + (D + k )v + i(D4) (Dvl)

+ 1 [-z(k2T - E2k coth kb)6(xl - ) (A. 4)

We will now assume two solutions for vl

V Ui

1 U.

and the corresponding values of 

W -- o.
1

Writing Eq. A.la for ui, multiplying by u and integrating from

-c to + we obtain

Co
00 -00

+ r/ [ujD ui + 2uj (ID)(Dui)]dx1

1 2 2
+ f (k T - E2k coth kb)u.i( )u. (Es)

1i - S j
For the remainder of the section, we will omit the limits on the

integrals for convenience. Since the disturbance of the fluid is
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localized to the jet we may take as a boundary condition the

restriction that both the velocity and its space derivative

approach zero far from the jet.

Integrating the left-hand side of Eq. A.5 by parts, we

get

fujDpidxl = -piDuj dx (A.6)

Now substituting the value of p from Eq. A.3,

3w.p

-fpiDujdX1 = ( 2 - )(Dui)(Du )dxl
k

-I (D)u i (Duj )dx1 - 2 D(D2ui ) (Duj)d (A.7)

Integrating the last term by parts

Du D( (D 2ui) dx1 = -D 2uiD 2uj dx (A.8)

Eq. A.7 becomes
i.P

-fpiDujdxl = - 3. (Dui (Dj)dx 1

-f (DL)ui (Du )dx +12 7 (D i) (D ) d x (A. 9)

combining this with Eq. A.5, we find

1 i 2 ( (uj) ]2dx

+1 Z (k2T- E2k coth kb)u i(Es)u. () =
+W i S 0 iSi s

fJl[k u. + (Dui)(Du.) + (D u)(D U. )dx
3. J k

-f [u.ij[D 2u + 2(DpL)(Dui)] + u(Dp) (Duj)]dxl (A.10)

The last term is equal to

-I {uiD(iDui) + (DIL)D(u.u)} dx i (Dui) (Du. )+(D l)U. u 1d
(A.11)



Multiplying by wi' we now have the equation

2 IP CUIYJ2 2

21 5D u ) irui JP {uu+ 12 (Du u dX1. -iIk T-EEk2 coth kbu(4,)uj (2s)=i f(D )uiuJdX1 + JL[k uiu+2(Di)(Du)+ 2(D ui)(Du)]dx

(A.12)

If we now interchange the indices i and j and subtract we get

the equation

-(W-z.)ifp iu + 2 (Du)(Duj) dx1] i(Wi-W)
1 3 J k2 

i(Dp).u.udx + l/[k uiu. + 2(Dui)(Duj)+--1 k(D2 i)( D2ujd , 1 ) j
(A.13)

If we take w. and w. to be complex conjugates, we have, dividing
1 3

by iw. - iw.,

2Re(iw) jp liul2 + u2 xf(D2) 12 dx

+ 1f(U12| k2 + 2 Du2 + 1 D2 u 2 )dx 1 (A.14)
k 

The integrand of the integral

f(D2 )uI2 dx1

is non-zero only at the interface, since the fluid properties,
including the viscosity, are constant except at the interface.
At the interface, however, the viscosity is a step function, so
that its second derivative is a doublet. The integral may now
be written

c2 2 d 2 d 'ui2
f (D ) lu dxc 1 |u | - dx 1

d1 ~A/2+~ -/2+ (A.15)

For the motion we are considering, the upper and the lower surfaces
of the jet move together, so that the term in parentheses vanishes

by symmetry, and the integral accordingly equals zero.

47.
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All the remaining terms in the equation are positive definite,

and we have the result that if w. W .3, the real part of iw is
1

positive, corresponding to a stable decaying disturbance. Con-

versely, if the real part of i is negative, corresponding to a

growing disturbance, then . = . and the growth is pure exponential,
1 3

with no sinusoidal components. Since all growing disturbances are

characterized by a real value of i, we can find the state of

marginal stability by letting i approach 0 through positive

values or equivalently setting

W = 0 (A.16)

This means that the marginal state is stationary and not

characterized by a constant amplitude sinusoidal motion.
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