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ABSTRACT:

This thesis develops modeling techniques for chemical vapor deposition processes,
specifically metalorganic vapor phase epitaxy (MOVPE). The difficulty in creating an
overall modeling strategy for the MOVPE process is that important processes occur on a
wide range of length and time scales. Gas phase heat and mass transfer affect the flux of
species to the surface, while atomic processes affect the morphology of the growing film.
In this thesis, new computational models are developed that work on specific length
scales, models are linked together, and combined models are used to study the physics of
actual deposition processes.

A Kinetic Monte Carlo (KMC) model is developed in order to simulate surface
morphology during epitaxial growth. Computational methods, such as binary trees, are
used to improve the computational efficiency of the KMC algorithm. To extend the
computationally accessible length and time scales, a new parallel algorithm is developed
based on ideas from Parallel Discrete Event Simulations (PDES). Superlinear speedup is
achieved using this algorithm. The methodology is used along with optimization routines
to fit Temperature Programmed Desorption (TPD) spectra to experimental data of methyl
desorption off Ga-rich GaAs and determine consistent desorption mechanisms.

Physically based reactor scale models are linked to KMC models to gain an overall
understanding of the MOVPE system. Initially reactor models that include surface
unknowns are flux-split; the surface model is separated from the gas phase model and
linked together through the flux to the surface. It is shown that flux-split models exactly
match coupled models and in some cases offer better convergence. This linking
methodology is extended with the use of a KMC model for the surface. A test case using
GaAs growth is modeled, and both accurate growth rate and surface morphology
estimates are achieved using the linked model. Neither model separately could predict
both flux and surface morphology, but the linked models can be used to make a range of
predictions from gas phase concentrations to surface morphology.

A reactor used for Grazing-Incidence X-ray Scattering (GIXS) experiments is analyzed
using the linked model. The linked model matches both gas-phase concentrations and
surface morphology estimates in the reactor. The surface model is compared to



experimental GIXS diffuse scattering. The model predicts that the complex reactions on
the surface (As dimer and organic group adsorption and desorption from the surface)
cause the surface morphology evolution to differ from that observed in molecular beam

epitaxy.
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Chapter 1: Research Motivation and Background

The aim of this thesis is to develop multi-scale computational models that describe the
metal-organic vapor phase (MOVPE) thin film deposition process. The complexity of
the physical phenomena underlying the MOVPE process leads to an approach combining
multiple modeling techniques along with experiments in order to understand the process.
In this thesis, models of the MOVPE process are developed to better understand the
physical phenomena underlying the process, as well as to be used to refine and optimize
current reactors. Chapter 1 begins (Section 1.1) with a motivation for studying the
MOVPE process. Second (Section 1.2) is an introduction to the MOVPE process which
includes a description of the physical processes that occur during thin film deposition.
Section 1.3 contains a review of current modeling techniques used to describe the
MOVPE process. The next section (Section 1.4) gives a review of how models are
currently linked together to form overall process models. This chapter concludes

(Section 1.5) with a summary of thesis goals and objectives.

1.1 Research Motivation

The metalorganic vapor phase epitaxy (MOVPE) process is used extensively in the
fabrication of compound semiconductors. MOVPE is used commercially to fabricate a
variety of semiconductor products ranging from solar cells to cellular phones. In typical
production precesses, layers of compound semiconductors with carefully controlled band
structures and doping levels are built up by vapor deposition. As semiconductor products
become more complex, processing issues that affect the material properties (i.e. stringent
demands on film thickness and impurity concentrations) become increasingly important.
Rising costs for building and maintaining semiconductor fabrication units are another

factor in the design and optimization of processes.

Predictive models of the MOVPE process are developed in this thesis that can aid in the
design and control of MOVPE reactors. Modeling difficulties arise from the complex
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nature of the MOVPE process; physical processes occur on widely varying length and
time scales. Models have been developed to work on specific time and length scales, but
no one modeling strategy is able to simulate the process on all length and time sales. The
objective of this research is to develop strategies to link models on varying length and
time scales, as to form a coherent process model that can predict both macroscopic and

microscopic performance properties of MOVPE systems.

1.2 MOVPE process for deposition of compound semiconductors

MOVPE is generally characterized as a chemical vapor deposition (CVD) process using
metalorganic precursors. A typical growth system would deposit GaAs from
trimethylgallium (TMG) and arsine with a carrier gas of hydrogen. CVD is a widely used
process whereby a thin film is synthesized from gaseous precursors cracking on a heated

substrate. On overview of the CVD process is shown in Figure 1.1.
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Figure 1. 1: An overview of the chemical vapor deposition process with a cartoon of a typical reactor
and the different physical processes occurring in the reactor.

As seen, precursor and carrier gases enter the reactor in the gas phase. As the reactant
gases enter into the heated environment of the susceptor, gas phase reactions occur
affecting the gas phase species concentration. The mixture of unreacted precursor
species and the gas-phase intermediate species are flown over a heated substrate where a
portion of the gas-phase species deposits. By-products from surface reactions desorb
from the surface into the gas phase, and the resulting mixture of reactants and products in

the gas phase leave the system through the reactor exit stream.

On the surface, a whole host of processes occur. Reactant gases adsorb onto the surface.
Surface reactions occur and form by-products on the surface. By-products desorb from
the surface. Adsorbates can also diffuse on the surface. During the diffusion process,

adatoms agglomerate and nucleate to form islands. Adatoms also attach to growing
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steps on the surface. Adatoms are entrapped in the lattice and join the growing film. The
mechanism of crystal growth plays an important role in the resulting surface morphology.

1.2.1 MOVPE reactors

Due to the complex nature of the MOVPE process, a wide variety of reactor geometries

can be used to grow high quality films. A sampling of different reactor geometries is

shown in Figure 1.2.

Figure 1. 2: A variety of reactor geometries typically used in MOVPE growth.
The geometry of the reactor along with the operating parameters of the growth process
(pressure, temperature, choice of carrier gases) can greatly affect the temperature and
flow profiles in the gas phase of the reactor. In turn, the flow profiles affect the
distribution and concentration of species adjacent to the surface and can affect the
growing film. One objective of this thesis is to link the choice of reactor geometry to the

actual surface morphology that occurs during growth processes.
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1.2.2 Process applications

The MOVPE process is used widely in the semiconductor fabrication industry in order to
produce transistors, lasers, detectors, and circuits in cellular phones. MOVPE is used to
deposit I1I-V and II-VI semiconductors such as GaAs, AlGaAs, InGaP, and GaN. Due to
the varying bandgap of these crystals, different color light can be produced and detected.
Important applications in many areas such as optical fiber networks and displays are
driving the industry to gain a deeper understanding of the physics underlying the process.
Forecasts for growth of the GaAs market are shown in Figure 1.3.
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Figure 1. The worldwide GaAs device market over the penod 199§ tckarzéozv’ s&%}how ['s
has recently reached billion-doilar status with further good growth anticipated over the forth-
coming five year period. (Source: Reed Electronics Research).

Figure 1. 3: Forecasts for the growth of the GaAs device market.
As the market for semiconductors produced by the MOVPE process is expanding, larger
reactors are needed to cope with the issue of throughput in the industry. This causes
experimental studies to become vastly more expensive for firms, as experimental studies
using larger and more wafers are utilizing valuable resources. Models can be used as a
priori ‘experiments’ to both design new MOVPE reactors and optimize operating

conditions of currently utilized reactors.

17



1.3 Modeling the MOVPE process

As experimentation in many MOVPE systems are hazardous, difficult, and expensive,

models have been used to try and understand the underlying physics in the reactors. A

generic model of the MOVPE process would take inputs such as reactor configuration,

temperature, pressure, species inlet concentrations, inlet velocities and return predictions

for flow profiles, growth rates, film microstructure, and electronic properties of the film.

A schematic of this type model is shown in Figure 1.4.
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Figure 1. 4: A schematic for a general MOVPE model with user inputs and ocutputs from the model.
Note the length scale variation in the outpui metrics for the model.

The problem with building such a model is the outputs that need be generated are on a

wide range of length and time scales.
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The typical film growth process involved multiple length scales, as shown in Figure 1.1:
formation of active regions on the submicron to nanometer scale on substrates held in a
meter sized deposition chamber. Moreover multiple time scales are involved. Individual
diffusion processes and chemical reactions controlling the film growth and defect
formation occur on typical atomic time scales of 10" seconds. In contrast, the growth of
the active layer takes ~10* seconds and the total processing time for the multilayer

structure is ~10* seconds.

Process models based on detailed physical understanding (as opposed to empirical data)
are becoming necessary to achieve the increasingly higher levels of control of material
synthesis required for cost-effective production of sophisticated microelectronics.
Prediction of device performance requires understanding of how process conditions (e.g.
flow, feed concentration, and temperature) affect the material on the atomic level (e.g.
defect concentration and interface abruptness). However, most modeling techniques have
focused on particular length and time scales. Shown in Figure 1.5 is a schematic that

shows how different length scales are described by various modeling techniques.
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Figure 1. 5: Models used to study particular length scales in MOVPE growth.

However, most models techniques have focused on particular length and time scales; for

example, computational fluid dynamics models of the gas transport in the deposition
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chamber(1, 2], discrete particle transport models of film morphology evolution on the
micron scale[3-5], and Monte Carlo simulations of atomic level surface diffusion and
incorporation processes[6, 7]. These models provide uscful insights into the underlying
physical phenomena, but only at the length and time scales for which they apply.
Fundamental molecular medels could be developed, in principle, for the entire deposition
system, but the needed computational resources would be excessive, if at all available,
and results would have no timely impact upon developments in thin film deposition.
Macroscopic models can often be solved with less computational efforts, but they fail to
resolve phenomena at the microscopic level where the physical assumptions for
continuum models breakdown. There is therefore a need to develop efficient multiscale
linking approaches that combine cost-effective, physically accurate models of growth
phenomena on different length and times. For example, in the case of MOVPE a
multiscale linking strategy could include (see Figure 1.5):
® Continuum descriptions of fluid flow, heat and mass transfer combined with
detailed gas-phase and surface chemical kinetic mechanisms to predict growth
and impurity precursors arriving at the film surface.
e Morphology development at the submicron scale based on precursor arrival rate
and microscopic models of surface growth processes.
¢ Kinetic Monte Carlo simulations of the growth front evolution to provide
understanding of mechanisms underlying growth processes and impurity
incorporation.
e Molecular dynamics simulations to provide diffusion coefficients and surface rate
parameters for the kinetic Monte Carlo simulation
¢ Quantum chemistry computations of gas-phase and surface thermochemistry and
reaction rates.
Additional modeling elements could be included if warranted by the physical situation,

such as the inter-diffusion of film constituents and atoms in a multilayer structure.
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1.4 Methodology for linking models

In order to gain the predictive power of each of the different length and time scale

models, they must be linked together to form a coherent model of the MOVPE process.

1.4.1 Microscopic to surface and gas phase

The link between microscopic models and surface or reactor models is straightforward.
The microscopic models can calculate reaction rates and diffusion barriers that are used
as inputs into surface and reactor models[7, 8]. Many times the levels of ab initio
calculations are not accurate, but the energy differences between similar calculations are
accurate. This information can be important in determining the relative rates of reactions

between competing reactions.

1.4.2 Surface to reactor

A linking between the surface model and the reactor model is important due to the
inherent problems with using each model separately. A reactor scale model cannot
resolve down to the level of atomic roughness, and therefore cannot give predictions on
the morphology of the surface. On the flip side, the surface model does not have a
needed input, the flux of species to the surface. Combining the models into a self-
consistent formula allows the calculation of the net surface flux to the surface along with

a prediction of the surface morphology.

LS5 Thesis Goals

The goal of this thesis is to develop multi-scale models of the MOVPE process. These
models consist of linking reactor scale models, surface models, and microscopic models
of the MOVPE process. The methodology of handling such multi-scale problems along
with a series of case studies exploring the reach and limitations of these modeling
techniques are shown. The end goal of this study is to develop models that can be used

for a priori ‘experimentation’ of new systems and reactors.
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In developing an overall model of a complex process, a series of advances must be made.

In this thesis, this consists of

1. Development of improved modeling techniques on particular length and time scales.

2. Developing linking methodologies that combine different length and time scale
models into a coherent process model.

3. Using the combined model to better understand the physics of a complex system.

In this thesis, step 1 encompasses Chapters 2 through 5. Step 2 is explored in Chapter 6,

and step 3 is shown in Chapter 4 and 7.

In Chapter 2, a surface model, Kinetic Monte Carlo, is explored both from a theoretical
and practical view. The theory behind why KMC models are viable representations of
the surface and how real time is tracked during the simulation is developed. Computer
science techniques, such as hash tables and binary trees are used to speed up the

simulation, so realistic surface problems may be addressed.

Parallel computing techniques to speed to computation of the KMC simulations are
developed in Chapter 3. Using ideas from the field of Parallel Discrete Event
Simulations, techniques to split the problem onto many processors while maintaining
correct causality of the simulation is shown. The techniques are shown to greatly enhance

the speed of the calculations.

The KMC approach is applied to the problem of modeling Temperature Programmed
Desorption (TPD) spectra in Chapter 4. TPD is a commonly used experimental technique
used to study adsorbate interactions with surfaces. Analyzing experimental TPD spectra
is a challenge due to the many surface processes that can affect the shape of the spectra.
Using the KMC approach, the effects of different surface properties such as adsorbate
nearest-neighbor interaction, adsorbate islanding, and dynamic surface reconstructions
can be modeled directly. These effects can be included in surface mechanisms and
directly tested by simulating the spectra for given mechanisms. Chapter 4 elucidates the

methodology of simulating TPD spectra as well as a non-linear optimization algorithm to
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best fit a mechanism’s parameters to experimental data. A case study of methyl

desorption from Ga-rich GaAs is shown.

An extension of the surface modeling ideas to surface growth processes is shown in
Chapter 5. An introduction to the importance of the surface morphology during growth is
given. An overview of the KMC applied to MBE systems is shown, as well as how the
approach is applied to MOVPE systems. A modeling approach is outlined that will
describe the surface morphology given as an input the flux of species to the surface.

Also, simulations are used in order to determine the major differences between MBE and

MOVPE growth.

Chapter 6 describes how a simple reactor and surface model can be successfully linked.
In order to obtain an overall model of the MOVPE process, the surface morphology must
be determined from a given set of reactor conditions. Since reactor scale models cannot
give us predictions of surface morphology, a linking of reactor scale and surface models
is accomplished. The basic framework for the linking methodology is put forth. The
equation set that needs to be coupled is developed in this chapter. A simple example
shows both the accuracy and the convergence properties of the linking methodology. An
examination of GaAs growth from triethylgallium (TEG) and tertiarybutylarsine (TBAs)

is used as a case study to demonstrate the methodology.

In Chapter 7, more detail is given to a surface mechanism used in a KMC approach to the
growth of III-V semiconductors. In MOVPE growth, a different mechanism must be
pursued to explore the growth of thin films than molecular beam epitaxy (MBE) growth.
The handling of the V series compounds on the surface is explored. Direct comparisons

to experimental x-ray scattering data are used to validate the model.

A conclusion is presented in Chapter 8 along with various ideas on how to improve the
models. The modeling methodology employs a building block approach which can then
be improved upon by both increasing the sophistication of the building block models or

improving the giue between models.
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Chapter 2: Kinetic Monte Carlo — Theory and Implementation

Kinetic Monte Carlo simulations are used to model non-equilibrium systems which
typically do not have analytic, closed-form solutions. In the first section an introduction
to Kinetic Monte Carlo Methods is given in order to understand the type of problems
where these methods are used. Section 2.2 contains a theoretical justification of the

methodology. Sections 2.3 and 2.4 include an explanation of the serial implementation of

the methodology.

2.1 Introduction

Kinetic Monte Carlo methods are used to model non-equilibrium systems using Monte
Carlo simulation techniques. A typical example of such a problem is in crystal growth,
where the adatom configuration on the surface is a complex function of temperature, flux,
and microscopic energetics. Typically, no analytic solution for the dynamics of the
crystal morphology can be computed. To understand such problems, Kinetic Monte
Carlo (KMC) methods have been developed that simulate the growing film by applying
physical ‘rules’ to a simplified model of the system. From a comparison of these models

to experimental results, insight into the crystal growth process can be obtained.

2.2 Theoretical Justification

Monte Carlo simulations are typically used to model equilibrium systems[1], but the
growth front evolution of a surface during thin film growth is a dynamic process.
Weinberg and co-workers[2-5] have developed methods to study dynamic processes that

correspond to the physical ‘trajectory’ of the system.

To model dynamic processes, the KMC methodology must solve the Master Equation[1]

as shown in Equation 2.1,

OP(o,t)
ot

=2W(G > 0)P(G,0) -2 W(c > 5)P(a,1) Q.1
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where P(o;t) is the probability of being in state o at time ¢ and W(o-0 ) is the transition
probability to go from state o to state . To solve the Master Equation, one must
choose randomly among the transitions allowable and accept transitions with probability,
W(oc>c). The transition probabilities must also be consistent with microscopic

reversibility, as shown by Equations 2.2 and 2.3.

W(c - o)P(c,eqbm) = W (o — &)P(c,eqbm) 2.2)
-H
P(o.egbm)=2" ¢ " st 2.3)

The partition function is shown as Z, H is the Hamiltonian for the system, and P(o;, eqbm)

is the probability that the system is in state, o, at equilibrium.

Equations 2.2 and 2.3 do not uniquely specify transition probabilities. Kang and
Weinberg([4, 5] have shown different sets of transition probabilities that would eventually
lead to the same equilibrium state can arrive to this state via different trajectories. The
physical trajectory, the one that corresponds to the physical changes in the system, is
needed to model dynamic, non-equilibrium processes. Kang and Weinberg[3] show that
Metropolis or Kawasaki dynamics both are solutions to the Master Equation, but do not
correspond to the physics of the system during the path to equilibrium. Thus, the

transition probabilities must be constructed from rates that have physical meaning.

Fichthorn and Weinberg[2] show that the transition probabilities must be formulated to
correspond to the physical rates of the microscopic processes to arrive at the physical
trajectory. They also show how the theory of Poisson processes can be used to obtain a
relationship between the rates of the transitions and the ‘real’ time step taken in between
MC steps. To obtain the physical trajectory, the transition probabilities should be as in

Equation 2.4.
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dl 2.4)

W=
gmax

In Equation 4, W; corresponds to the transition probability of transition i, r; corresponds

to the rate of transition J, and &4 corresponds to the maximum rate of a transition in the

current state.

The increment of ‘real’ time corresponding to every MC step, transition, taken is shown

in Equation 5.

anr- In(U) (2.5)

sz

In Equation 5, 7; corresponds to the time increment in state j, 3 n;r; is the sum of all
i

rates in state j, and U is a random number between 0 and 1.

Using the above theory, a simulation can be created that models the evolution of surface
morphology. A solid-on-solid (SOS)[6] model can be uscd to mimic a growing surface.
Transitions on the surface, such as adsorption, diffusion, desorption, reaction, and
incorporation can be included. If the correct rates are used in the simulation, a direct
connection between simulation time and real time can be established. This can allow the
direct comparison between experimental results and simulated results for such measures
as roughness of surface morphology and rate of desorbing species. The following section

will be a more detailed discussion of the implementation of a KMC simulation.

2.3 Implementation

In this section, a typical KMC simulation is described. The typical solid-on-solid surface
model used to model the crystal surface is explored. The problem in a straightforward
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implementation of a KMC simulation is computational <fficiency. To increase the speed
of the simulations, we have used computational science techniques to aid in the efficiency
of searching lists and searching for the transition to take. These techniques are in the

form of hash tables and binary trees.

2.3.1 Simulation Qutline

An outline of a typical KMC simulation is shown in Figure 2.1.

s A
Generate initial surface morphology
and set intial reactor conditions

v

Compute all possibie transition from
the current surface state

v

Pick a random transition biased by
the rates of all transitions J
Continue ‘

\
J

until Take transition and update the
set surface morphology. Update the
time transition list. Update time.

v

Compute surface ‘metric’

Figure 2. 1: The algerithm for a typical KMC simulation.
Initially, the surface structure and reactor conditions are set. Example initial surface

morphologies include singular surfaces or vicinal surfaces with a given miscut. Then, all
possible transitions from this surface structure are calculated. A random transition is
chosen with probability given by Equation 2.4. A transition is selected and taken. The
surface morphology is updated, as well as all old transitions that are not allowed are
removed and new transitions that are now possible are added to the overall transition list.

Time is updated using Equation 2.5, and different metrics of the surface morphology is
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computed (for example surface roughness, a count of the number of dimers on the
surface, or the X-ray scattering from a surface). The simulation continues until a given

time is reached.

2.3.2 Surface Structure
Typically the surface structure is modeled as a Solid-on-Solid (SOS) model as pioneered

by Gilmer[6]. The solid on solid model includes the following assumptions:
e Each adatom occupies a given site on the surface.
e Adatoms diffuse from site to site on the surface.

e No overhangs are allowed for adatoms on the surface.

An example of a simple SOS model is shown in Figure 2.2.

L7

Figure 2. 2: A schematic of a solid-on-solid surface model.
The advantages of a SOS model is the rates of only certain transitions need to be known
in order to advance the surface morphology. Only rates of transitions from adatoms
going from one site to the next need be known. This is a simple methodology that can
allow surface sizes of up to 1 micron®. The drawback to this approach is that the exact
path in space of the transition is not mapped out, as it would be in a methodology where

the adatoms were not forced to site on particular sites on the surface. Molecular
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dynamics (MD) simulations[7] are an example of this type of methodology, whereby
potentials are used in order to exactly map out adatom location in space. The
disadvantage of MD simulations is the relatively small surface sizes and time scales
computationally accessible. In the end there is a tradeoff between accuracy and size.
Larger times and surface sizes necessitate the assumption inherent in SOS models of

given surface sites.

2.3.3 GaAs Lattice

The GaAs lattice structure is zincblende; a diamond lattice of Ga intertwined with a
diamond lattice of As. In this work, KMC simulations are developed with a lattice model
that followed the zincblende GaAs model in a SOS model. Thus, the available sites for
Ga and As followed from the relationship to the standard formulation of the GaAs lattice.

Figure 2.3 shows the construction of the lattice used for the simulations.

Matrix form of alternating layers

of As and Ga
0 1 0 1 GaAs zincblende lattice
As 0 0 0 0
0 1 0 1
0 0 0 0
2 0 2 0
0 0 0 0
2 0 2 0
0 0 0 0
As 0 0 0 0
. 1 0 1 0
0 0 0 0
1 0 1 0
Ga 0 0 0 0
' 0 2 0 2
0 0 0 0
0 2 0 2

Figure 2. 3: The computational storage structure used to keep track of the zincblende lattice of GaAs.
As shown, the lattice consists of alternating layers of Ga and As occupying the
zincblende sites. The lines that are connecting the atoms show bonding. The Ga and As
species in the lattice are represented in a three dimensional matrix to aid in the simulation

book-keeping of the atomic positions.
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2.3.4 Hash Tables

Hash tables are used to aid in searching for available sites, current surface adatoms, and
current available moves. In this implementation, there are structures set up for available
sites and current surface adatoms that contain information on the x, y, and z positions of
the sites or adatoms on the surface as well as the surface species. The difficulty in
searching for an available site consists of the problem of searching through an unordered

list of x, y, and z positions.

In a list of x, y, and z positions, the universe of possible combinations is large, especially
if large surface sizes are run. Also, many of the combinations of x, y, and z positions will
not be available sites or be occupied by adatoms. Thus, direct addressing of each
structure, the allocation of a memory location for each x, y, and z combination, can
occupy large amounts of memory and most of the allocated space will be empty. This

leads to the idea of using hash tables[8] to allow for efficient searching of the space.

Hash tables are data structures that map the entire universe of x, y, and z positions to a
smaller finite number of keys. This mapping allows searching of the x, y, and z
coordinates to occur in a much smaller space (only consisting of the x, y, and z positions
that map to a particular key). A pictorial representation of the structure is shown in

Figure 2.4 for a hash table representing surface adatcms.
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Universe of possible
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Figure 2. 4: A pictorial representation of a hash table (such as one used to represent surface
adatoms)

Shown in Figure 2.4 is a mapping of surface atoms to a hash table. The mapping
function of x, y, and z positions to an element of the hash table is done using a hash
function. The hash function is picked to disperse the surface atoms among the elements
of the hash table. A linked list is created which contains all surface adatoms that hash to
the same value, which is linked to the hash table. When searching through the list of
surface adatoms given an x, y, and z position, the hash function can be calculated and
only the linked list attached to the hash table at the hash function value need be searched.

As shown in Cormen, er al.,[8], the average case searching time in a hash table is
o+ % ), where n is the number of surface adatoms in the list and m is the number of

elements in the hash table.

2.3.5 Picking a transition and Binary Trees

In addition to searching for surface adatoms, available sites, and possible transitions, the

other main search procedure is to find the next transition to perform. In this section, a
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simple version of this procedure will be shown, as well as an update to this procedure

using binary trees that greatly increase the efficiency of searching for the correct move.

Transitions are taken according to the probability given in Equation 2.4. The

acceptance/rejection implementation of accepting transition is as follows:

1. Pick a random transition from the overall list of transitions from the given surface
state.

2. Choose a random number between 0 and 1.

3. Accept the trensition if the random number is greater than the probability given in
Equation 2.4, the ratio of the transition rate over the largest transition rate.

The problem with this implementation occurs when there is a large variation between the

rates of all transitions. For example, if there were one transition that has a much larger

rate than any other transition, the probability of taking that transition would be high.

Unfortunately in this scheme, O(k)trials would be taken, where k is the number of

attempts before accepting a transition. This is due to the sampling of the many low

probability transitions before finding the large rate transition or randomly selecting a low

rate transition. To fix this problem, two different sampling schemes were used.
The linear searching sampling scheme agglomerates all the transitions into one large list

that is referenced by the partial sum of the rates from the first transition to the transition

at a given spot in the list. A sample is shown in Figure 2.5.
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Figure 2. 5: A schematic of how transition rates are stored and chosen in the linear searching
algorithm. Each block size corresponds to the magnitude of tke rate.

In order to pick a transition, the following steps are taken:
1. A list of all transitions are formed and referenced by the partial sums of the rates for
every additional transition.
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2. A random rate, p, is picked uniformly from the values O to Y r;, the sum of all
i

rates.

3. The transition, j, is taken when ji'lri <p< ilri , the random rate lies within the
i=1 i=

range of the partial sum of transition j.
This methodology biases the transitions by the same probability as given by Equation 2.4,
but only requires one chosen random number. This methodology solves the problem of
sampling and rejecting transitions, as a transition is picked for every random number
chosen. The problem with this methodology lies in the updating of the partial sums. As
transitions can be deleted from the list and added to the list as the surface morphology
changes, inner transitions in the list can change. A recalculation of the partial sums from
the first changed transition to the last transition is necessary, which leads to O(k) updates

at every transition. Also, a binary search is needed in order to find the transition j to be

taken, which takes another O(log, k) operations.

Another efficient searching scheme is to utilize a binary tree to keep track of all
transitions on the surface. Similar to the methodology espoused by Blue and Beichl[9],
the binary tree approach has the advantage of both efficient searching and efficient
updating. As moves are added to the overall list of transitions, the moves are added to a

binary tree. The approach is shown in Figures 2.6 and 2.7.
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Figure 2. 6: A representation of the binary tree used to store the transitions. The root node contains
average value for the transitions. The left leaf of a node contain all moves with position values less
than the average and the right leaf contains all moves with position values greater or equal to the
average.

27 DTk
-k
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1 2 th-1 b
Figure 2. 7: The binary tree as a holder of the rates of the transiticns. Each node has the sum of all
transitions below it on the tree.

I,

The root node of the tree maintains the sum of all rates in the leave nodes below as well

as x, y, and z positions for the beginning and ending sites for a transition. The leaf nodes
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of the root node contain the sum of all the rates below itself, as shown in Figure 2.7. The
node that branches left contains all transitions that have smaller values of the end site and
then beginning site for the transition in the z, x, and y positions compared to the root
node. The right branch has transitions with higher values of the end site and beginning
site in the z, x, and y positions compared to the rcot node. At each leaf node of the binary
tree, a transition and the related rate is stored. The root node for each branch contains the

average of the x, y, and z coordinates of its leaf nodes, as well as the sum of the rates of

its leaf nodes.

The benefits of a binary tree include the efficient addition, deletion and searching of
transitions. Transitions are added to the binary tree by comparing the transition to be
added with the transition at every node. As the transition wends its way down the tree,
the u'ansitjon rate is added to the node, maintaining that every node contains the sum of
the rates below it. A new leaf is created for every added transition. Deleting a transition
is analogous, as the transition is found by wending down the tree and subtracting the rate
of the transition at every node passed. Both addition and deletion of transition from the
tree take O(log,k)operations. Searching for the correct move also takes O(log,k)
operations. After a random rate is picked from a uniform distribution ranging from 0 to
the sum of all rates, the transition is found by examining the leaf nodes of a given root
node. If the random rate lies between O and the left node sum of rates, then the tree is
traversed to the left. Otherwise, the random rate lies between the left node sum of rates
and the sum of all the rates, and the tree is traversed to the right branch. This continues

recursively until a leaf is found, and the transition at that leaf is taken.

Table 2.1 summarizes the operation count for each method for updating and searching
transitions. As shown, the Binary Tree approach dominates the other two methods in
updating and searching the transition list. The Linear Searching approach is empirically
faster than the Acceptance/Rejection approach, presumably because of a large constant

inherent in the Acceptance/Rejection approach.
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Table 2. 1: Comparison of operation counts for different methods to choose from & transitions in

KMC simulations.
Method Update Operation Count Searching Operation
Count
Acceptance/Rejection 0 O(k)
Linear Searching O(k) O(log, k)
Binary Tree O(log, k) O(log, k)

2.4 Conclusions

Kinetic Monte Carlo is a powerful method that can be used to study dynamic systems.
The evolution of thin film morphology is a natural system to be studied by KMC.
Physical transitions on the surface, such as adsorption, reaction, diffusion, incorporation,
and desorption can be mimicked by KMC simulations. An exact correspondence
between real time and simulation time enables the use of KMC simulations to understand

experimental surface science and growth experiments.

The difficulty in using KMC simulations is the computational resources needed to solve
large problems. This difficulty is alleviated by using techniques developed in computer
science, such as hash tables and binary trees, in order to increase the efficiency of the
simulation. Also, as the paradigm of high performance computing moves from
supercomputers to massively parallel machines, parallel algorithms have been developed
for KMC simulations. Chapter 3 contains an exposition of how parallel methods are used
to further speed up KMC simulations.
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Chapter 3: Parallel Kinetic Monte Carlo Models

Parallel methods developed from ideas in Parallel Discrete Event Simulations (PDES) are
applied to modeling a Kinetic Monte Carlo simulation of thin film growth. The
simulated surface is spatially divided onto different processors. Simulations are run on
each processor with communication between processors on the boundaries maintaining
the correct causality of the overall simulation. Due to the poor scaling of the simulation
on one processor, super-linear to linear speedups are achieved. The limitation inherent in
the methodology is based on the interaction length on the surface. As the interaction
length increases, performance degrades quickly due to increased communication between

processors.

An outline of this chapter is as follows. Section 3.1 is an introduction and overview of
surface growth simulations and the PDES technique. Following in Section 3.2 is a
section on the computational scaling of the KMC simulation. The parallel algorithm
development is shown in Section 3.3. Results are included in Section 3.4, and concluding
remarks end the chapter. These parallel techniques have been used to greatly speed the

calculation of KMC simulations.

3.1 Introduction

One of the limitations in the computational modeling of thin film growth is the size of the
surface size simulated. Finite computational resources limit the maximum surface size
studied, which is typically small compared to thc size of interest. One methodology to
increase the feasibie surface size is to parallelize the algorithm. In this study, a Kinetic
Monte Carlo simulation of the evolution of thin film growth is parallelized using ideas

developed from the field of Parallel Discrete Event Simulations (PDES)[1].

Kinetic Monte Carlo simulations can be used to model thin film growth. The technique

has been used extensively to examine the surface dynamics of molecular beam epitaxy
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(MBE) grown GaAs[2] and CVD grown diamond films[3]. The basic idea in KMC
simulations is to simulate thin film growth by modeling the transitions on a surface in
discrete steps. These transitions can include adsorption, desorption, reaction, diffusion
and incorporation into the growing lattice. The computational complexity arises in the
problem when miilions to billions of transitions must be taken in order to simulate large
scale surface evolution (on the order of micron’ surface sizes). Serial computations can
take days to weeks to run given surface conditions, so parallel methods are developed to

speed the computation of the problem.

Theory from parallel discrete event simulations (PDES) is a natural framework to use in
order to parallelize KMC simulations. PDES can be defined as simulations where the
state changes at discrete time points. Examples of such systems range from battlefield
simulations[4] to the simulation of the spread of lyme disease[5-7] to queuing
networks[8]. Methods have been developed to attack these problems in varied fields and

are used in this case io parallelize KMC simulations.

Parallel methods have been used previously to study KMC simulations. Haider et al.[9]
have used a spatial discretization to parallelize a KMC simulation. Their algorithm
allowed for errors in causality along the processor borders. Beichl et al.[10] develop a

parallel model with a spatial discretization that uses a variant of a conservative approach

to PDES.

3.2 Kinetic Monte Carlo Technique

A solid-on-solid (SOS)[11] model can bte used to model a growing surface. Transitions
on the surface, such as adsorption, diffusion, desorption, reaction, and incorporation can
be included. If the correct rates of these transitions are used in the simulation, a direct
connection between simulation time and real time can be established. This can allow the
direct comparison between experimental results and simulated results for such measures

as roughness of surface morphology and rate of desorbing species.
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Fichthorn and Weinberg [12-16]show that the transition probabilities must be formulated
to correspond to the physical rates of the microscopic processes to arrive at the physical
trajectory. They also show how the theory of Poisson processes can be used to obtain a
relationship between the rates of the transitions and the ‘real’ time step taken in between
MC steps. To obtain the physical trajectory, the transition probabilities should be as in
Equation 3.1.

W=—1& 3.1

In Equation 3.1, W; corresponds to the transition probability of transition i, »; corresponds

to the rate of transition i, and &, corresponds to the maximum rate of a transition in the

current state.

The increment of ‘real’ time corresponding to every MC step, transition, taken is shown

in Equation 3.2.

5 n?r -In(U) (3.2)

Tj=

In Equation 3.2, 7; corresponds to the time increment in state j, 3 n;r; is the sum of all

i

rates in state j, and U is a random number between 0 and 1.

A flowsheet of the simulation technique is shown in Figure 3.1.
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Figure 3. 1: A flowsheet of the algorithm for the KMC simulation of growth.
Given the current surface state, all possible transitions are calculated. A transition is

randomly picked with the probability given in Equation 3.1. The transition is taken, and
a new surface state is formed. The time increment is caiculated using Equation 3.2, and

the algorithm loops back until a given stopping time is reached.

The computational complexity lies in picking the transition biased by the probability
given in Equation 3.1 and updating the transition list given a state change. As shown by

Blue et al.[17], a general approach to picking a transition is to store all transitions in a



operations for n total transitions. Another methodology is to first randomly pick a group
of transitions biased by the sum of the entire group’s rate divided by the sum of all the
rates. Then to pick an individual transition, each one is equally likely, so a uniform
distribution can be used to randomly choose the exact transition to accept. This degrades
into a binary tree approach as transitions become differentiated (for example, if diffusion
rates are dependent on surface configuration due to nearest neighbor interactions, each

diffusion transition may have widely different rates).

The computational complexity and memory requirements of a KMC simulation limit the
surface size. This limitation is due to the large increases in simulation run-time and

memory usage with larger surface sizes. The total time for a simulation is shown in

Equation 3.

SimTime == At *N (3.3)

where At is the time per transition and N; is the number of transitions until a real-time
finish time is reached. The number of transitions for a given simulation time is shown in

Equation 4,

N=r—=>L (3.4)

Z”iri
1

where Ty is the real time to finish the simulation and the denominator is the average time
per transition (as shown in Equation 3.2). As the surface size increases, there are more
transitions (n; increases). The number of transitions can be thought of to scale
quadratically with surface size (as the number of free sites increases by the square of the

surface size). Thus, the number of transitions until a real time of reached scales as O(n®)
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with the number of transitions. We have already seen that the time per transition scales as

O(logzn). Thus overall time for a given Tyscales as O(n®log;n).

This is shown empirically in Figure 3.2 to 3.4, as the number of transitions and run time

increase with surface size.
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Figure 3. 2: Computzational runtime as a function of surface size simulated in a serial KMC
algorithm.
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algorithm.
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The problem scales even more poorly as more species (more transitions per surface site)
are added to the model. New methods must be developed to run surface sizes in the
micron range. Thus, methods to split the problem onto multiple processors are

developed.

3.3 Parallelization Strategy

Methods developed for Parallel Discrete Event Simulations (PDES)[ 1] are applied here to
split the KMC problem up spatially over processors. KMC simulations can be classified
as Discrete Event (DE) simulations. These are problems where the assumption is that the
state of the simulation changes at discrete points in simulated time. The simulation
changes state with the occurrence of an event, or a transition in the KMC simulation.
PDES refers to methodologies that execute discrete event simulations on multiple

Processors.

PDES simulations are typically executed by splitting up the problem onto n processors.
The split occurs by spatial elements (in battlefield or surface problems) or processing
elements (queuing systems). An example of a KMC surface split onto processors is

shown in Figure 3.5.
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Figure 3. 5: A cartoon of a simulated surface being split onto processors PO to P4.
Each processor computes in parallel with the information in local residence. Local time

is kept for each processor. Messages are passed between processors when events traverse

over the spatial elements encompassed by processors.

PDES are difficult due to the sequential nature of the simulation. As events occur in
discrete events in time, it is difficult to simulate an event in the future (a transition
timestamped T,) without being worried that a past event (a transition timestamped T))
would have affected the status of the future transition. An error that occurs due to a
smaller timestamped transition affecting the already taken larger timestamped transition
is an error in causality. The difficulty is to maintain causality during the simulation, as
events that occur with smaller timestamps can traverse over to processors whose states

have been affected by larger timestamps.

Two basic protocols are used in PDES in order to maintain causality. Conservative

protocols allow processors to take events only when causality is maintained.
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Conservative protocols force processors to stop until other processors ‘catch up’ in local
time. This maintains causality as an event that traverses from one processor to another
will be the smallest timestamped event occurring, with no chance of being affected by a
smaller timestamped event. Optimistic protocols work by letting processors ‘race’ ahead
without regard for maintaining causality. When a causality error occurs, the state of the
offending processors are rolled back to the timestamp of the event. The simulation thus

continues with causality maintained.

Since millions to billions of moves are made in a typical KMC simulation of the growth
of thin films, the optimistic protocol is used to implement the PDES. Waiting for each
processor to make one move at a time, and then synchronizing all the processors would
entail more communication than computation, drastically reducing the efficiency of the

simulation. The optimistic protocol is shown as a flowsheet diagram in Figure 3.6.

Continue until

set time
Allocate surface Execute transitions on Synchronize
ts to ai)ces " each processor processors every At
segmments o processo simultaneously. and output surface
Event traversed Event updates
to neighboring processor border sites
) Update ghost sites
Local time < Local time > on neighboring processor
neighboring time eighboring time

Rollback neighboring Wait until neighboring
processor time to processor ‘catches’
local time up in local time

Figure 3. 6: An optimistic protocol derived from PDES theory for the simulation of parailel KMC
models. The optimism in the models comes from a processor begin able to race ahead in simulation
time, but being rolled back to a previous time when necessary.
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Initially, the surface is split into equal sizes and placed on each processor (pictorially
represented as in Figure 3.5). If the processors are heterogeneous, surface sizes to be
placed on any given processor can be chosen to correspond to the speed of the given
processor. Smaller size surfaces can be given to slower processors and vice versa.
Optimally, local simulation time on each processor should advance at the same

computational speed for every processor.

Each processor works simultaneously in performing moves on its segment of the surface.
Local simulation time is kept for each processor. After a given local time is reached, all
processors stop at this time and synchronize. This synchronization is to prevent any
processor from falling too far behind or ahead the other processors in local time. During
the period between synchronizations, each processor completes moves within the
encompassing surface. To maintain causality on transitions that include boundary sites
(sites that lie at the edges between processors), ghost sites are maintained that include the
surface structure of the nearby processors. The ghost sites for processor n are shown in

Figure 3.7.

52



Ghost sites for processor n-1
located on processor n

Ghost sites for processor n
located on processor n-1

Figure 3. 7: Pictorial representation of ghost sites for processors. Ghost sites are replicated frem
reighboring processors to ensure the correct environment for adatoms on the boundaries of
processors.

When processor n-1 changes the surface near the boundary of processor n, processor n-1
sends a message to processor n. If at this point, processor # has a greater simulation time
than processor n-1, processor n rolls back to the simulation time of processor n-/. This
forces processor n to be in the correct state (with all the correct surrounding surface
morphology). If processor 7 is at a smaller simulation time than processor n-/, processor

n-1 waits until processor n catches up and then the move is undertaken. The whole

process is shown pictorially in Figure 3.8.

53 ‘-



Transition from processor n-1 inside ghost
site are of processor »

-~

TIME: t , <t TIME: t_, >t
Processor » rolls back to Processor n-1 waits for processor n
timet,_,. Transition is taken if to catch up in time.
still valid. Transition is taken if still valid.

o it 4

Figure 3. 8: A pictorial representation of the racing abead and rollback precess 6f each processor in
the parsllel algorithm.

Thus, messages get passed when the ghost area changes, as well as when adatoms cross
from one processor to the other. If the ghost area is large, this can cause excessive
communication that will slow down the efficiency of the algorithm. Typically the ghost
area should be the size of the interaction length between adsorbates on the surface. The
communication does guarantee that each processor ‘sees’ the correct surrounding surface

morphology, and thus guarantees the correctness of the simulation.

To effect rollbacks of the surface, a data structure storing all the moves taken in

sequential order is stored in a linked list. When a rollback needs to take place on a
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processor, the linked list is traversed back until the simulation time is less than or equal to
the simulation time needed for the rollback. This data structure can get large over time
(as millions to billions of moves can be made in any given simulation). When the
processors synchronize, garbage collecting takes place whereby previous moves that are
timestamped less than the synchronization time are deleted from the linked list and the
memory freed. This can take place when all the processors are synchronized, as a
processor is guaranteed not to roll back further than the simulation time of the slowest

processor.

This methodology is related to the space-time approach to PDES developed by Chandy ez
al.[18, 19]. In their approach, the simulation can be viewed as a two-dimensional space-
time graph. The simulation fills in each region (space) by splitting up the space and
assigning it to a particular processor. Each processor must be cognizant of the boundary
conditions for its region and update them in order to complete its task. This methodology
is similar to PDES with lazy cancellation (rolling back only after a guarantee of finding

an error in causality).

3.4 Results
Performance results are shown for the algorithm. First, the algorithm is tested versus
serial implementations in order to show correctness of the algorithm. Then, speedup is

shown, as well as cases where speedup can degrade due to the physics of the system.

3.4.1 Correctness

To show the algorithm maintains the right causality of transitions, KMC simulations are
run in serial and parallel and compared. More specifically, the on-axis and diffuse x-ray
scattering i1s compared given the same reactor conditions. High-energy x-ray scattering
can both give predictions on the overall surface roughness (the on-axis scattering or the
crystal truncation rods (CTR)[20]) and the distribution of islands on the surface (diffuse
scattering). Thus, a good test of the paraliel version of the algorithm is to compare both

the on-axis and diffuse scattering from the surface.
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The CTR and diffuse scattering is computed from the simulated surface. The exact

scattering is con:puted from the atomic positions by[21, 22],

I=A@A4 (q)

NC
A(q)= 2 f (@)explig er ;)

j=1

(3.5)

where / is the intensity of the scattered beam, A is the structure factor, N, is the number of
atoms in the sample, f; is the atomic scattering factor of atom j, r; is the positior: of atom j,
and q is the scattering wavevector. The CTR for the simulations is computed at the 110
position which is a bulk forbidden reflection; successive bilayers of GaAs scatter out of
phase. This leads to the scattering being extremely sensitive to the top bilayers, so only

the scattering from the highest level of the crystal at every site is computed[20].

Shown in Figure 3.9 is a sequence of overall scattering plots for a serial and parallel

implementation of the algorithm.

56



8 10 F‘T—1 LA DL AL S A T AL B TR TIT T T UL T rTpTroT T ot rrn oy v

710 bﬁ :3'2 T=850K & 5 T=870K
‘°t’ C; i 85 )
610" %, % Pe
5107%” Se;;;jf E ° |
7{,% g% 2y & e ;
—_ 410 '3‘ ® *% R
(] B
g 310’ ? % % 1
-} i 2 . =, 1 %
g 210 : % K %5 ]
= 8 S o T=860K i 2 T=880K
£ 110°= P £ E
2 & £
g 81075 i L5 £
8 u 5 & e g?
%) 61o’f % $ 2 | ® £
PRI i % |5 ¥
LS B | 3 f
2107 § %" 2 -

0O 01 02 03 0405 0 0102 03 04 05 06
Time (sec) Time (sec)

Figure 3. 9: A comparison between the serial implementation (O) and the parallel implementation
(0O) at (a) 850 K, (b) 860 K, (c) 870 K, (d) 880K

The oscillations correspond to each bilayer of growth. The surface becomes rough, the
bilayers scatter out of phase and produce a low signal. As the islands coalesce, only one
bilayer appears, and a large signal is produced from the scattering off the surface. Figure
3.10 shows the diffuse scattering (correlation length) versus temperature.
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Within the error of the simulation, the curves lie on top of one another.

3.4.2 Speedup

Speedup is calculated by monitoring the computational time to finish one run to a given
simulation time. The surface size is 640x640 surface sites which corresponds to
1280x1280 angstroms. The temperature is 800 or 825 K, and the model parameters are
typical for MOVPE growth systems. The simulation time, speedup, and efficiency are
shown in Figures 3.11-13 running on an IBM SP-2 platform. Speedup is defined in
Equation 3.6,

s=n (3.6)
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Where § is the speedup, #; is the simulation time using one processor, and ¢, is the

simulation time using n processors. Efficiency is defined as in Equation 3.7,

tl
E= N(IJ (3.7)

where E is the efficiency and N is the total number of processors used.
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Figure 3. 11: The model was run at temperatures of (O) 800 K and (0OJ) 825 K; A plot of simulation
time versus number of processors.
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An efficiency of 1 implies a speedup proportional to the number of processors. A
speedup of greater than one implies a speedup greater than the number of processors and

vice versa.

As seen in Figure 3.11 and 3.12, the efficiency for all 10 processors is greater than one.
As the efficiency lies above the 45 degree line in Figure 3.12, super-linear speedup is
achieved. Due to the poor scaling of the problem on one processor ( O(n“logan) ),
splitting the problem up onto up to 10 processors reduces the problem size on each
processor, thus increasing the computational speed of the overall simulation.
Extrapolating to more than 10 processors, communication time overtakes | the size
advantage, as too small of a surface size is placed on each processor. This reduction in
speedup is due to slowing of the algorithm from communication between processors
overcoming the benefit of a smaller surface on each processor. The shift from
superlinear to sublinear speedup can be pushed further out to more processors as the
surface size simulated becomes larger. In Figure 3.13, the parallel speedup and
efficiency is shown for a 512x512 surface site problem at a temperature of 850 K. Here
the efficiency is reduced to below one after the use of 4 processors due to the small sizes
on each processor. Temperature also affects the speedup, as at higher temperatures there
is more diffusion on the surface, as shown by Figure 3. More diffusion causes a higher
probability of adatoms to cross processor boundaries and increases communication. This
is offset somewhat by the benefit of performing moves simultaneously on the processors,
as at higher temperatures, many diffusion steps would be taken in the serial algorithm
before any other transition is taken. Synchronization of the processors can reduce the

communication load, as it may reduce the need for rollbacks in the system.

3.4.3 Synchronization Frequency

Changing the synchronization frequency during the simulations does not affect the
overall computationa! run-time of the simulation. Shown in Figure 3.14 is the simulation
run time as a function of the synchronization frequency, as well as the average rollback as

a function of synchronization frequency.
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As shown, the synchronization frequency does not affect the computational run-time.

This is due to the implicit synchronization of processors in the algorithm. As transitions
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are tried in the ghost area of each processor, the algorithm forces the nearby processor to
be ‘synchronized’ as the environment for a given transition needs to be at the same time
to guarantee the correctness of the transition. This implicit synchronization lessens the
impact of the synchrenization time on the computational time. An upper bound on the
synchronization time is given by memory limitations, since all previous moves are saved
until garbage collection is done. The results in the section are from computing on a 4

processor Intel Pentium Pro server.

Temperature affects the computational run-time, as the simulation ends at a specific
simulation time. This is shown in Figure 3.14. Increasing the temperature increases the
rate of diffusion, thereby reducing the simulation time-step for every transition. Also, the
number of roilbacks increases with increasing temperature, as the species diffusion length
is longer at higher temperatures. The longer diffusion lengths make it more likely that
adsorbates diffuse over processor boundaries and onto other processors, which makes
rollbacks more frequent. A plot of average rollbacks show that although the number of
rollbacks increase with increasing temperature, the average length of each rellback is
similar at all temperatures (all range from 2 to 2.7 moves per rollback). This suggests

again that the implicit synchronization of the processors is occurring due to the algorithm.

3.5 Conclusions

A methodology to parallelize KMC simulations has been presented in this chapter. This
implementation of the KMC methodology was shown to scale as O(n“logan), with n
being the number of transitions. This poor scaling leads to a limitation in performing
simulations at large surface sizes, due to computational constraints. This parallel
algorithm splits the surface up onto processors in order to reduce » on each processor,
and speed up the overall simulation. In order to keep the boundaries matched,
communication between processors must be accomplished. An algorithm is developed in
order to guarantee that every adsorbate on the surface ‘sees’ the correct surface
morphology. Unfortunately, the communication is the slow step in the algorithm. As

shown by the speedup results, with a surface size on each processor greater than the ghost
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area, super-linear speedup is achieved. When too small a surface is simulated on each
processor, communication overtakes the benefits of a smaller » on each processor and
sub-linear speedup is achieved. The benefits of frequent synchronization are muted, as
the algorithm forces an implicit synchronization of the processors. This algorithm works

best in simulating large surface sizes with short-range adsorbate interactions.
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Chapter 4: Monte Carlo Simulations of Temperature Programmed

Desorption

Monte Carlo simulations of Temperature Programmed Desorption (TPD) are performed
in order to better understand the desorption mechanisms for adsorbates on semiconductor
surfaces. Mechanisms developed from TPD studies can then be used in overall
mechanisms of growth, as adsorbate desorption can be the rate-limiting step in MOVPE
growth. The outline of this section is as follows. An introduction to the experimental
TPD method as well as different modeling techniques to extract information from series
of TPD spectra is in Sections 4.1 and 4.2. The KMC TPD algorithm is described in
Section 4.3. The methodology is applied in order to understand methyl desorption from
GaAs, and a mechanism consistent with experimental resuits is described in Sections 4.4
and 4.5. Section 4.6 includes concluding remarks that explore the broad applicability of

KMC simulations in evaluating experimental results.

4.1 [Introduction to Temperature Programmed Desorption

Temperature Programmed Desorption (TPD) is a widely used experimental methodology

to determine the interactions of adsorbates on surfaces [1, 2]. TPD has been used to

determine surface coverage, activation energies of desorption, and orders of desorption
mechanisms. A typical TPD experiment is accomplished as follows:

1. A known concentration of species is allowed to adsorb on a surface. This
corresponds to a given coverage of adsorbates on the surfaces. Adsorption occurs at a
low temperature.

2. The temperature of the surface is ramped up at a constant rate.

3. The type and concentration of desorbed species is measured.

4. A plot of rate of desorption versus temperature is obtained for all species monitored.

Spectra for different initial coverages are obtained in order to understand adsorbate-

adsorbate interactions on the surface.
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5. The resulting TPD spectra are analyzed in order to determine surface-adsorbate

interactions.

A variety of methods have been developed in order to determine the surface coverages,
activation energies of desorption, and the reaction order for desorption [3]. Many of
these methods rely on analyzing TPD spectra using the simple Arrhenius form for

desorption as shown in Equation 4.1,

R,=k(@)e ' 0" 4.1

where R, is the desorption rate, @ is the fractional surface coverage, k(6) is the coverage
dependent pre-exponential, E4 6 is the coverage dependent activation energy, and n is
the order of the desorption. Using the simple Arrhenius form for analyzing TPD spectra
limits one to model simple desorption processes. Many complex effects, such as
adsorbate-adsorbate interactions, dynamic surface reconstructions, and islanding of
adsorbates cannot be taken into account using the Arrhenius model. More advanced

modeling techniques can be used to examine each of these effects in detail.

4.2 Review of TPD Modeling Literature

A variety of methods have been used to analyze TPD data to obtain activation energy,
pre-exponential factor, and order of desorption as a function of adsorbate coverage.[3]
These methods primarily use the Arrhenius rate form to analyze the spectra, which limits

their use to simple desorption mechanisms.

Statistical and stochastic methods have been developed to extract mechanistic
information from TPD spectra. Seebauer[4] has developed a method to calculate a
continuous distribution of energy states for desorption from a single TPD spectra.
Russell and Ekerdt[5] use statistical methods to fit arbitrary mechanisms to TPD spectra.

Non-linear parameter estimation is used to fit the spectra to any model, to evaluate
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competing models, and to calculate uncertainties associated with the fitted parameters.
Houle and Hinsberg[6] have developed a stochastic method that facilitates the
determination of mechanisms and rate constants from TPD spectra. All of these methods
extract mechanistic and rate information from TPD spectra, but most do not account for
the long range effects of surface morphology on the desorption. Effects that include
dynamic surface reconstructions are difficult to include in stochastic and statistical
procedures that do not explicitly keep track of the evolving surface morphology during

the desorption process.

A variety of MC methods have been used to model desorption from single crystal
surfaces. Previously, MC methods have been used to study the effects of adsorbate
interactions[ 7], surface heterogeneity[8, 9], and to compare MC simulations to analytical
methods for simulating TPD spectra[10]. These methods do not have a direct connection
between MC simulation time and real time. More recently, Fichthorn and Weinberg|[11]
have developed an algorithm to study surface processes that make a direct connection
from MC simulation time to real time. Meng and Weinberg[12] have developed an
algorithm to model TPD on metal surfaces, where the assumption is made that the rate of
diffusion of adsorbates is much greater than the rate of desorption. This algorithm has
been compared to analytical methods and found to directly correspond under limiting
conditions[13]. Also, in some cases the MC model can be equivalent to a quasi-
equilibrium cluster approximation in limiting cases[14]. The algorithm has also been
used to model recombinative TPD[15], and the effect of attractive lateral interactions on
TPD spectra[16]. Meng and Weinberg[17] have also simulated TPD spectra under non-
equilibrium conditions and have quantitatively elucidated differences between quasi-

equilibrium and equilibrium approximations for surface diffusion.

4.3 Kinetic MC TPD Algorithm

The algorithm follows both the experimental procedure and the KMC theory in order to
produce simulated spectra that can exactly be compared to experimental spectra. Two

complementary algorithms were developed; one to model adsorbates on metal surfaces
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and another to model adsorbates on semiconductor surfaces. The main difference
between the to models is the assumptions inherent for surface diffusion. On metal
surfaces, diffusion is assumed to be fast compared to desorption, so the surface is
equilibrated at every MC step. Typical semiconductor surfaces have comparable rates of
adsorbate desorption and diffusion[4], so both types of events are simulated in the model.
A flow chart of the ‘metal’ algorithm is shown in Figure 4.1 and the ‘semiconductor’

algorithm is shown in Figure 4.2.

s A
Randomly populate surface with

known coverage of adsorbate
\. J

v

Equilibrate surface adsorbates

v

Pick a random transition biased by
the rates of all transitions

Continue + N
until Take transition and update the
no surface morphology. Update the

adsorbates | transition list. Update time. )
\.

v

Keep track of time and temperature
of desorbed species

Figure 4. 1: Algorithm for ‘metal’ algorithm. The main assumption is that diffusion is much faster
than desorption on the surface.
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.

v
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Figure 4. 2: Algorithm for the ‘semiconductor’ algorithm. No assumptions are made on the relative
rates of diffusion and desorption on the surface.

The initial configuration of adsorbate on the surface is dependent on both the adsorption

temperature and mechanism. Initially, the approximation is made to populate the surface
randomly with adsorbates. This approximation is reasonable since adsorption of species
onto the surface is normally done at a low temperature relative to the desorption
temperature. The low temperature adsorption reducss the diffusion length of the

adsorbates, giving the surface an approximately random initial population.
For the ‘metal’ algorithm, the next step is to equilibrate the adsorbates on the surface. In

Figure 4.1, an equiiibration of the surface is done in order to simulate fast diffusion on

the surface. This equilibration algorithm is shown in Figure 4.3.
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Pick a random transition biased by J

Figure 4. 3: Equilibration flowsheet for the ‘metal’ algorithm.
The assumption inherent in fast diffusion is that adsorbates will find their equilibrium
state on the surface between each MC step in the algorithm. Equilibration is done by
randomly selecting a diffusion move on the surface. If the surface energy (mainly
determined by the number of nearest neighbor interactions for a given adsorbate)
decreases in energy, the diffusion move is accepted. If the overall surface energy is

increased, the diffusion step is taken with the probability shown in Equation 4.2.

AE
P= T 4.2)

kT

In Equation 4.2, p; is the probability of taking diffusion step i and AE is the energy
difference between the initial and final surface states. Equilibration is continued until the

surface is equilibrated (surface energy is minimized).

In both algorithms, the next step is to calculate all transitions from the given state. In the
‘metal’ algorithm, the transitions are desorption events, while in the ‘semiconductor’
algorithm, the transitions can consist of desorption, diffusion, and even reaction on the
surface. After all transitions are computed, a transition is randomly selected and accepted
with the probability given by Equation 2.4. An efficient methodology to accept a

transition is given in Chapter 2.4.
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The transition is then taken and the surface is updated. Time is incremented as shown in
Equation 2.5 and the temperature is increased by the heating rate multiplied by the time
increment. In the ‘metal’ algorithm the surface is then equilibrated at the new
temperature and adsorbate distribution on the surface, while in the ‘semiconductor’
algorithm, new transitions are calculated. The simulations continue until all the

adsorbates have desorbed from the surface.

The ‘semiconductor’ algorithm, as shown in Figure 4.2, is generally the more rigorous
approach as desorption, diffusion, and reaction transitions are accounted for explicitly.
The probicm in using this approach for all systems is when diffusion rates are orders of
magnitude greater than desorption rates, simulation run-times increase exponentially.
This is the situation when the ‘metal’ algorithm can be used. To show the approximate
switching regime between the two methodologies, a plot of the simulation time versus the

ratio of diffusion to desorption rates is shown in Figure 4.4.

)
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Figure 4. 4: Simulation time versus the ratio of diffusion to desorption rates.

There is a transition between the models, as one can always use the semiconductor

algorithm to solve the problem, but the solution will become computationally inefficient
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when diffusion is much faster than desorption. A model was developed that nicely
switches between the two methodologies when the ratio of diffusion to desorption
becomes larger than a given value, which is called the transition ratio. The algorithm
switches between the semiconductor algorithm to the metal algorithm when the sum of
the rates of the diffusion moves divided by the sum of the rates of desorption moves is
greater than the transition ratio. The larger the transition ratio, the more accurate the
metal algorithm will be in describing the surface transitions. The peak temperatures and
peak widths are plotted using the semiconductor algorithm and transition ratios of 1, 10,

and 100 in Figure 4.5.
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Figure 4. 5: (a) Peak temperature versus iitial coverage of adsorbates; (b) Peak width versus initial
coverage of adsorbates. (O) No transition to equilibration, (0) Transition Ratio = 1, (9) Transition
Ratio = 100, (A) Transition Ratio = 10

As seen for large transition ratios (16 and 100), the peak widths and peak temperatures
match the solution of the all diffusion case well. The smaller transition ratio case (ratio
equal to 1) varies considerably from the other cases; this is due to the poor assumption
that diffusion is fast on the surface, even when the rate of diffusion is equal to the rate of

desorption on the surfaces.

4.3.1 Simulating TPD Spectra

Several computational issues are important in calculating accurate spectra. The initial
temperature is important numerically in order to begin the calculation at a point where the
simulation can continue gracefully and to not bias peak widths and peak temperatures.
The rate calculation is important in calculating accurate peak widths and peak

temperatures. Different averaging schemes to compute accurate rates will be discussed.
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4.3.1.1 Initial Temperature:

The simulations are extremely sensitive to the initial temperature. If the initial
temperature is set too low, the first few moves will be associated with a time step that is
too large. Due to the large time steps, the temperature will be ramped too quickly, which
can lead to temperatures that are already above the actual peak temperature. Too high an
initial starting temperature, the peak width can be affected, as the initial upward slope of
the curve can be at too high of a temperature. Examining the time step of initial moves at
a given starting temperature can help ascertain an optimal starting temperature. If the
time step is too large, the initial temperature can be increased until the time step is
reasonable. A graph of how the initial starting temperatures can affect the peak
temperature and peak width is shown in Figures 4.6(a) and (b).
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Figure 4. 6: (a) Peak tempersture versus initial starting temperature for the simulation; (b) Peak
width versus initial starting temperature for the simulation.

The conditions used include 45 kcal for the desorption barrier, and 1x10"® and 62.26 kcal
for the diffusion pre-exponential and barrier, respectively, with a nearest neighbor energy
of 4.6118 kcal for diffusion. The pre-exponential is extremely large in order to make the
rate of diffusion comparable to the rate of desorption. The barrier for diffusion was
approximated as the literature value for Ga diffusion[18]. The number of adatoms
desorbed was set to 6000 and each rate of desorption was calculated over a sequential set
of 200 adatoms. The peak temperature and peak widths are fairly constant over the initial
temperature range between 620 and 660 K. Below 620 K, the peak temperature
increases, as too large a time step is taken initially, and the peak width becomes
unphysical. Above 660 K, the peak temperature is pushed up, and the peak width is
pushed down, as the starting temperature affects the initial slope of the TPD peak and
squeezes the curve. The effects of the initial temperature on the initial rate and initial

temperature rises are shown in Figures 4.7(a) and (b).
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Figure 4. 7: (a) Initial rate versus initiai temperature for simulation; (b) Initial temperature rise
versus initial temperature for simulation.

In the range where the peak width and peak temperatures are fairly constant, the initial
rate is O(1) which corresponds to an initial temperature rise of ~5 K. This study led to
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the ad<ition of a dynamic calculation of the initial temperature based on the initial rates
of the system. The initial temperature is calculated as the minimum temperature (+/- 5

degrees) whereby the sum of all rates in the system is greater than 1.

4.3.1.2 Calculating Rate:
From a run of the simulation, the time of each desorption transition can be tracked, and
simulated TPD spectra can be formed. The rate of desorption is calculated using

Equation 4.3,

Rd—_——gt— (4.3)

where R, is the rate of desorption, JN is the number of adatoms desorbing in time Jf. A
plot of the rate of desorption versus temperature can be obtained by calculating the rate of
desorption over the course of a simulated heating ramp. As in the case of a typical
analysis of experimental data, a cubic spline is used to fit the simulated results. The
spectra can be normalized using the area of the largest spectra. Normalized simulated
spectra can be compared exactly to experimental spectra to determine if model
mechanisms of desorption are consistent with experimental results. Also using the fit, the
peak temperature and peak width at half maximum can be computed and used in

quantitative comparisons between model predictions and experimental data.

Many simulations can be averaged over in computing the rate. Averaging over many
simulations is akin to expanding the surface size and computing the rate of desorption
over more desorbed adatoms. This can greatly improve the statistics of the spectra and
reduce the noise inherent in stochastic simulations. Shown in Figure 4.8 is a series of

spectra over which more adatoms were used in computing the spectra.
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Figure 4. 8: (2) Simulated TPD spectra computed from 5000 adsorbate desorptions; (b) Simulated
TPD specira computed from 50000 adsorbate desorptions.
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As seen, the variability is reduced using more adatoms. Averaging can be over the
number of adsorbates (keeping the number of adsorbates fixed when computing the rate)
or over temperature (averaging over a varied number of adsorbates, but keeping the
temperature range fixed for each rate calculation) can be done. Averaging over the
number of adsorbates keeps the error in the x-axis constant (rate of desorption), while
varies error in the y-axis (temperature). The opposite occurs when averaging over
temperature. There is an inherent tradeoff in accuracy of temperature and rate when
averaging. Shown in Figure 4.9(a) are typical error bars for averaging over 10000
adatoms using a fixed temperature of 2 K. In Figure 4.9(b), the same simulation is shown

but averaged over a fixed percentage of adatoms, 2.5%, in each rate calculation.
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Figure 4. 9: (a) Typical error bars in a simulated TPD spectra averaging over a fixed 2 K
temperature window; (b) Typical error bars in a simulated TPD spectra averaging over 2.5% of the
total desorbed adatoms.

4.3.2 Parallel TPD

The TPD algorithm is computationally expensive, as manv MC steps needs to be
accomplished for everv simulation. In order to study complicated models (many
adsorbates, large surface sizes, many interactions), computational efficiency must be
increased. One way of obtaining speedup is to parallelize the algorithm; run the code on

many processors.

Paiallel versions of the TPD algorithm are developed for the metal algorithm and
implemented. From the assumption that the rate of surface diffusion is much faster than
the rate of desorption from the metallic surface, the algorithm can be split into two
sequential stages. The first stage is the diffusion phase where the surface is relaxed by
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diffusion of adsorbates on the surface until a thermodynamic equilibrium of adsorbates
on the surface is established. In the second stage, an adsorbate is chosen with probability
proportional to its rate of desorption and desorbed from the surface. The stages repeat

until all adsorbates are removed from the surface.

A master-slave programming paradigm is used to parallelize the algorithm. Before the
simulation begins, the master processor block decomposes the surface and sends a section
to each of the slave processors. In the diffusion phase, each slave processor undertakes
Monte Carlo steps to simulate the fast diffusion of adsorbates on the surface.
Asynchronous communication between slave processors ‘maintains the boundary
conditions between slave processors as adatoms diffuse across processors. Before the
desorption phase, the slave processors are synchronized by the master. The master
processor picks the adsorbate to desorb, updates the surface and restarts the slave
processors on the diffusion step. The process is repeated until all adsorbates have

desorbed.

Results of the speedup afforded by parallelization are shown in Figure 4.10.
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Figure 4. 10: Parallel speedup versus number of processors for the master-slave algorithm for the
simulation of TPD spectra. Parallel speedup is defined as the simulation time on one processor
divided by the simulation time on n processors.

The parallelization of the code shows over a 3-fold speedup with nine processors. The
speedup is tested using a code developed with message passing using PVM[19] on an
IBM SP-2. The speedup is limited by the desorption step; all processors must wait for
the master processor to complete the step before further computation can occur.
Nevertheless, this methodology shows promise in speeding up inherently computationally

expensive algorithms.

4.3.3 Optimization Algorithms
Optimization methods can be used to find a consistent set of mechanism parameters for a

given data set. A methodology is shown in Figure 4.11.

85



Initial guess for
echanism Parameters

Mechanism
Parameters

Algorithm

Error Between

Model and Experimert
Simulated Curves

and Simulated Curves

Experimental
Results

Figure 4. 11: Optimization methodology to extract kinetic parameters for surface processes from
TPD spectra.

An initial guess for the mechanism parameters are needed and input into the optimization
algorithm. The KMC TPD program is called and a series of simulated spectra are
generated. The normalized spectra are compared to the normalized experimenial spectra

and an crror 1s computed between the two sets of spectra. The error is used by the
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optimization algorithm to calculate the next set of mechanism parameters. This process

continues until the error is below a set tolerance level.

Powell’s algorithm is used to minimize an error function between the model and the data
set[20]. This algorithm is used, as it does not need the derivatives of the parameter set.
Since the results from the KMC model cannot be derived analytically, the derivatives are
impossible to compute analytically. The basic idea in this optimization algorithm is to
move in the direction of the solution through the computation of conjugate directions.
The conjugate directions are built up through line minimizations along all the dimensions
through direct function calls. Basically, these methods use the black box model to
compute numerical derivatives to build up a numenical Jacobian. The error is computed
as the sum of the squared residuals between the rate of desorption of the normalized data

set and the normalized model result, as shown in Equation 4.4.

” (i(r,,—rd) j

d-=1

E= (4.4)
s =1 (e}

s

In Equation 4.4, E is the error, s is the number of spectra, d is a counter that runs from the
initial to final temperature at discrete steps, »,° is the experimental rate at a given d, r, is
the computed rate at a given d, and o; is the variability of that experimental run. The
variability of each run weights the spectra in computing the error; as the variability of one

spectrum decreases, it gets more weight in computing the error.

This methodology will only find a parameter set that is consistent with the data, not the
‘true’ parameter set. The benefit of this methodology is overall mechanisms can be
tested and compared to the data. Thus, the magnitude of surface effects can be efficiently

determined given the mechanism.
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4.4 Case Study — Methyl Desorption from GaAs

The algorithm described above is used to evaluate proposed pathways for the desorption
of methyl from Ga-rich GaAs(100), which has been investigated experimentally by
Creighton[21]. The initial surface of GaAs(100) in the experimental TPD study is
proposed to be a gallium-rich c(8x2)/(4x2)[22] structure, as shown in Figure 4.12(a).

(b)

A CH,
o Ga

® As

Figure 4. 12: (a) GaAs gallium-rich ¢(8x2)/(4x2) surface; (b) Methyl covered Ga surface after TMGz
adsorption.

Methyl adsorption on the surface stems from the dissociation of trimethylgallium
(TMGa). Ga 'holes’ exist on the (4x2) surface where there are no Ga atoms on the top
surface, corresponding to the missing Ga dimers in Figure 4.12(a). Experimental
results[21] indicate that TMGa adsorbs in the Ga 'holes’ and dissociates, covering the

surface with methyl. This is shown in Figure 4.12(b).

88



Creighton has found that methyl coverage on the surface is limited to 50%{23] with a
(1x2)-CHj covered reconstruction. This was confirmed by a (1x2) LEED (low-energy
electron diffraction) pattern for this surface. As the methyl groups desorb from the
surface, liquid Ga droplets form on the surface and the surface reconstructs back to the
(4x2) surface geometry. We have ignored the formation of Ga droplets and have
represented the surface after all methyl groups have desorbed.

The experimental data by Creighton for TPD of methyl of Ga-rich GaAs is shown in

Figure 4.13.
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Figure 4. 13: (2) Experimental TPD spectra of methyl off Ga-rich GsAs|21], the legend is the initial

surface coverage for esch spectra; (b) Experimental peak iemperatures and peak widths as a
function of initial coverage of methyl
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The larger curves correspond to increasing initial surface coverage of methyl. Figure 4.14

shows how peak temperatures and peak widths change with increasing initial surface

coverage of methyl.

Peak temperatures increase with increasing coverage and peak widths narrow with
increasing coverage. These results suggest that a variety of surface relaxation processes
may be taking place as methyls desorb from the surface. Some hypotheses for the surface
dynamics described by the TPD daia is summarized in Table 4.1.

Table 4. 1: Possible physical pathways explaining experimental TPD data

Experimental Observation Possible Physical Explanation
Increase in peak temperature with increasing Attractive adsorbate interactions
coverage
Narrowness of desorption peaks Formation of 2-D islands
Multiple binding sites
Surface reconstruction occurring during
desorption

Simple Arrhenius type desorption mechanisms might not be sufficient to describe the
dynamics of desorption. Thus, KMC methods are used to explore possible desorption

mechanisms that can be consistent with the experimental data.

4.5 Model Results
Using the methodology outlined above, the TPD curves for methyl desorption of Ga rich

GaAs is studied. Mechanisms are developed in order to understand the experimental
data. In Section 4.5.1, the effects of each of the possible parameter changes are shown
through changes in the TPD spectra. In Section 4.5.2, non-linear optimization techniques
are used to best fit parameters in differing mechanisms. The point is to find plausible
mechanisms that fit the data that can bring details of the mechanism out for further

simulation and experimentation.
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4.5.1 Mechanism Effects

The effects of changes in each of the parameter space are examined. The base case

parameters are shown in Table 4.2.

Table 4. 2: Base case parameters for TPD simulations

Transition Barrier (kcal)
Desorption 42
Nearest Neighbor for Desorption 2
Diffusion 39.2
Nearest Neighbor for Diffusion 2

The adjustable parameters include the desorption barrier, the nearest-neighbor
interactions for the desorption barrier, the diffusion barrier, and the nearest-neighbor

interactions that affect the diffusion barrier. Figure 4.14 shows the simulated spectra.
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Figure 4. 14: (a) Simulated TPD spectra of methyl off Ga-rich GaAs using parameters in Table 4.2.

The pre-exponential for desorption and diffusion barriers are fixed at 1x10". The pre-
exponential could also be considered as an adjustable parameter, but due to the large
correlation between the pre-exponential and the barrier (typically called the compensation
effect), the pre-exponential and the barrier are not independent variables. Table 4.3

shows the possible changes to the base case parameters.
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Table 4. 3: Parameter changes to base case studied

Parameter Changes from base case
Desorption Barrier 40-44 kcal
Diffusion Barrier 30-50 kcal
Nearest Neighbor Barrier 1-4 kcal

4.5.1.1 Desorption Barrier:

The desorption barrier ir. the model is a representatior: of the zero coverage desorption
energy for a methyl. Using techniques such as the Chan-Aris-Weinberg mesthod,
Creighton[21] found that the zero coverage activation energy is 43 +/- 1 kcal. The effect
of the desorption barrier is to shift the peak temperature up as the desorption barrier rises.

The quantitative effect is shown in Figure 4.15.
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Figure 4. 15: Effect of desorption barrier on (a) peak temperzture and (b) peak width; (O) 42 kcal
desorption barrier, () 44 kcal desorption barrier, (©) 40 kcal desorption barrier.

As shown, the peak temperature rises as the desorption barrier is increased, but the shape

of the curve remains the same. It is very difficult to determine an exact peak width in
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both experimental results and simulations, as the peak width is dependent on measuring
the exact peak temperature and rate. As shown by Figures 4.7 and 4.8, there is error in
computing the rate at the peak temperature. This error magnifies the uncertainty in
computing the width at half maximum. The shape of the curves suggests that the

desorption barrier does not affect the peak widths.

4.5.1.2 Diffusion Barrier:

The diffusion barrier is a representation of how fast adsorbates can move around on the
surface. This is especially important when there is a nearest-neighbor energy for
desorption. Fast diffusion increases the chances of island formation, which in turn makes
all the effective desorption barriers closer to the same value. This creates a sharpening of

the peak (the peak width decreases), as shown in Figure 4.16.
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The peak temperatures are all similar, even with changing diffusion rate. The peak width
for high diffusion rates shows a maximum at intermediate coverage. In this case, the
peak width is a measure of the spread of the nearest neighbor barrier. At low coverage,
most of the adsorbates do not have a nearest neighbor and diffusion cannot bring the
adsorbates closer together. At high temperatures, many of the adsorbates have nearest
neighbors, and diffusion does not split up the pairs. At intermediate coverage, there are
half of the adsorbates, which have neighbors, and half that do not. This creates a wide

distribution of nearest-neighbor interactions, and broadens the peak width.

4.5.1.3 Nearest Neighbor Parameter:

The nearest neighbor parameter is a measure of the lateral attraction between adsorbates
on the surface. This attraction can be a measure of the stabilizing force that certain
atomic configurations have on the surface. Attractive lateral interactions show up
through increasing peak temperatures with increasing initial surface coverage. As the
initial surface coverage increases, there is a greater chance of islands, and any attractive
interactions will show through an increase in the effective desorption barrier for that

spectra. The effect of increasing lateral interactions is shown in Figure 4.17.
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The peak temperature increases with increasing nearest neighbor barrier, and the slope of
the peak temperature increases with respect to surface coverage as the barrier increases.
At increasing coverage, the number of interactions increases, and in concert with the
nearest neighbor barrier increases the effective nearest neighbor barrier. The peak widths
maintain the same shape, following the same general downward trend with increasing

coverage.

4.5.1.4 Surface Reconstructions:

Surface reconstructions play an important role in the dynamics of surfaces. Creighton
has determined through LEED experiments that methyl on GaAs form a (1x2)-CHj3
reconstruction on the surface[23]. This suggests that there are attractive nearest neighbor
energies between methyls on different dimers, while there are repulsive nearest neighbor
interactions between methyls on the same dimer (as shown in Figure 4.7(b)). This is
included in the nearest neighbor interactions by including a repulsive 2 kcal barrier to
methyls on the same dimer. The resulting spectra along with the base case results are

shown in Figure 4.18.
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Figure 4. 18: Effect of surface reconstructions on (a) peak temperature and (b) peak width; (O) base
case model, ([J) reconstruction model with a repulsive 2 kcal barrier to methyls on the same dimer.

The peak temperature does not increase as quickly with increasing coverage in the
reconstruction model due to the attractive and repulsive interactions at higher coverage.

The peak width is interesting, as it remains level over the entire coverage range. The
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distribution of interactions is broad throughout the coverage range. Both attractive and

repulsive interactions are felt in both low coverage and high coverage regimes.

4.5.2 Optimization Results

Optimization routines were used in order to determine optimal parameters for a given
mechanism as outlined in Section 4.3.3. This procedure does not guarantee that the
mechanism is the ‘correct’ one in comparison to the physics of the surface. This
procedure does give a procedure to extract surface barriers from experimental data, given

a mechanism.

Optimization was initially done with two floating parameters, the desorption barrier and
the nearest neighbor interaction barrier. Since the diffusion barrier is the biggest
unknown factor in the model, three separate runs were done at high, low, and comparable
diffusion barriers to the desorption barrier in order to determine the effect of diffusion on
the spectra. Plots of the tested barrier for the three cases are shown in Figure 4.19 and the
results are tabulated in Table 4.4.

Table 4. 4 :Optimized barriers from 2 parameter optimization using fixed diffusion barriers

Desorption Barrier Nearest Neighbor Diffusion Barrier (kcal)
(kcal) Barrier (kcal)
41.68 1.68 , 39.2
42.51 2.51 20
423 1.3 80
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The desorption barriers are fairly consistent over the three optimization runs. The
desorption barrier is the zero coverage limit for methyl desorption, so it is not surprising
that the nearest neighbor barriers or diffusion barriers affect the value of the desorption
barrier. The other two parameters seem to be correlated; with an increasing diffusion
barrier, there is a decrease in the nearest neighbor parameter. The peak shift with
increasing coverage can be modeled by an attractive nearest neighbor barrier. With fast
diffusion, all the adsorbates can cluster into islands, creating a single ‘effective’
desorption barrier. Slowing diffusion decreases the effect, and the optimized nearest-
neighbor barrier broadens the ‘effective’ desorption barrier . This is seen in Figure 4.19
as the fast diffusion plot has very narrow peak widths compared to experimental (all the
adsorbates have the same desorption barrier which means that all the adsorbates had the
same local environment), and the slow diffusion plot has a much broader peak widths.

Plots of the optimization results are shown in Figure 4.20.
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Figure 4. 20: Optimized desorption and nearest-neighbor barriers (+) 39.2 kcal diffusion barrier, (0)
20 kcal diffusion barrier, (*) 80 kcal diffusion barrier.
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There is a constant desorption rate, regardless of the starting diffusion barrier. Also, for

each diffusion barrier, there seems to be a clear local minima.
To quantify the correlation between parameters, a series of simulations were run in a grid

around the desorption and nearest-neighbor barriers at a diffusion barrier of 39.2 kcal. A

surface and contour plot of the error is shown in Figure 4.21(a).
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diffusion barrier. Another valley is seen in Figure 4.21 (b) where the diffusion barrier was
fixed at 20 kcal. Examining Figure 4.19(a), the correlation between these parameters is
due to the computation of the error. The ranges of desorption and nearest-neighbor
barriers fit part of the spectra of initial coverages, but not all the spectra. This correlation

can be reduced if the diffusion barrier is simultaneously changed.

Similar results were achieved using three floating parameters, desorption, nearest-
neighbor, and diffusion barriers. Plots of the resulting spectra are shown in Figure 4.22
for an initial guess of 38 kcal for the diffusion barrier. In this case, the optimization
routine searched for local error minima around the initial diffusion rate and found a local
optimum at a desorption barrier of 42.69 kcali, a nearest-neighbor barrier of 1.06 kcal, and

a diffusion barrier of 38.76 kcal.

0.025 : ey

0.02¢

0.015

T

0.01;

Rate (arb. units)

0.005+

&

Temperature (K)

Figure 4. 22: Experimental (red line) and simulated (dark blue +) TPD spectra

4.6 Conclusions

In this section, a methodology was developed to study temperature programmed

desorption using KMC simulations. It was shown that multiple modeling methods must
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be used, depending on the physics of the surface. For systems where the diffusion rate is
slower than or on the same order of the desorption barrier, the diffusion step must be
explicitly included in the model. On the other extreme, if the diffusion rate is much
smaller than the desorption rate, than a pseudo-equilibrium approximation must be used
on the surface in order to complete the simulation in reasonable computational time. A
ratio of 1000 for the diffusion to the desorption rate was found to approximate the
transition between the two models. An optimization methodology was developed in
order to ‘fit’ entire surface mechanisms to experimental data. This is especially
important where the spectra cannot be fitted to typical Arrhenius desorption kinetics. A
case study was performed to examine the desorption of methyl from Ga-rich GaAs(100)
reconstructions. Effects of changing each of the parameters on the overall spectra were
shown. The desorption barrier fixed the initial peak temperature. The nearest-neighbor
parameter determined the shift in the peak temperature with increasing initial coverage.
The diffusion rate determined the impact of the nearest neighbor interactions. At high
diffusion rates, islands formed on the surface increasing the effect of the nearest neighbor
interactions, while low diffusion rates blunted the effect. The peak width was determined
by a combination of the diffusion and nearest-neighbor barriers. Narrow widths resulted
from the adsorbates all having the ‘same’ local environment, while broader widths came
from a distribution of local environments. In this case, the local environment of an
adatom corresponded to the number of nearest-neighbors of the average adatom. Finally,
optimization methods were used to test different mechanisms. It was found that methyl
desorption has a diffusion barrier that is comparable to the desorption barrier with
estimated desorption barrier of 41.77 kcal, diffusion barrier of 38.76 kcal, and nearest-
neighbor barrier of 1.06 kcal. This section shows the utility of KMC simulations in
interpreting experimental data, by running analogous simulations at the exact

experimental conditions and testing possible mechanism.
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Chapter 5: Kinetic Monte Carlo Models for Growth Processes

The development of Kinetic Monte Carlo (KMC) models of surface morphology during
GaAs growth is explored. In Section 5.1, the study of thin film growth is motivated.
Section 5.2 is a review of important experimental studies used to elucidate pathways for
thin film growth of GaAs. Different models for thin film growth are described in
Section 5.3. New models developed to understand MOVPE growth are contained in
Section 5.4. These new models build upon older models and add MOVPE specific
physics. The differences between MOVPE and other thin film growth methods are also
developed. Section 5.5 concludes the chapter with a wrap-up of the KMC model and its

further applications to other systems.

5.1 Introduction

Thin film growth is an important process in yaried applications such as semiconductor
processing and coating processes. Morphclogy evolution during thin film growth is
especially important when fabricating multi-layer semiconductor devices, as each the
morphology of each successive layer is important to the electrical properties of the entire
device. Reactor conditions greatly affect the morphology. Shown in Figures 5.1 and 5.2
are Atomic Force Microscopy (AFM) images of GaAs grown under different reactor

conditions[1].
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Figure 5. 1: AFM image of GaAs(100) after growth. The surface consists of a series of terraces with a
height variation of less than 4 nm. (T.F. Kuech, Univ. of Wisconsin)
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Figure 5. 2: AFM image of GaAs(100) after growth. The surface consists of mounds and large
islands on the surface with a height variation of more than 20 nm. (T.F. Kuech, Univ. of Wisconsin)

Notice the order of magnitude difference in surface heights. These large differences in
surface smoothness can impact the electrical properties of multi-layer devices, especially

in the production of such devices.

In modeling the MOVPE process, an important step is the prediction of surface
morphology given reactor conditions. In order to develop such a model, the following
steps were undertaken:

* A review of experimental work that focused on understanding surfiée growth
processes. Experimerital work focused on surface processes during MOVPE growth
is especially difficult as many surface science techniques have been optimized for use
under vacuum conditions.

® Models of surface morphology evolution is reviewed in order to understand the
benefits and limitations of modeling techniques ranging from continuum to quantum
mechanic methods.

s A new KMC model is developed in order to study the growth surface under MOVPE
conditions. This model is then tested using experimental grazing incidence x-ray
scattering and reflection difference spectrometry results.

The surface model for MOVPE growth has limitations, the main one being that there is

no easy way to obtain the flux of species to the surface (a needed input into the model).

The net consumption of species can be computed, but only if the needed input of the flux

110



of species is given. This leads directly into the next chapter where linking methodologies

between surface and reactor scale models will be discussed.

5.2 Experimental GaAs

Experimental studies of GaAs can be grouped into three major categories that are of

interest in understanding thin film growth:

®*  Vacuum studies of the surface morphology before and after growth.

= Surface science studies of reactions on the surface (typically done under vacuum or at
extremely low pressures).

® In-situ monitors of the surface during growth and general growth studies.

Each of these types of experimental studies can give a different view on the physics

occurring during growth. Studies done under vacuum can be very sensitive to the growth

morphology and can pick up reaction barriers for select surface reactions. On the other

hand, vacuum studies may not be an accurate representation of the surface under growth

conditions (high pressures and temperatures). In-situ studies are necessary to understand

processes occurring during growth, but many sensitive surface science techniques cannot

be used under the harsh environment (high pressures and temperatures) of MOVPE

growth.

Another interesting area of research is the comparison of MOVPE growth of GaAs to
MBE growth. Due to the different surface reconstructions on a MOVPE grown and MBE
grown surface, the surface processes are very different. This leads to different surface

morphologies from MOVPE and MBE grown films.

S.2.1 Surface Morphology Before and After Growth

The GaAs surface exhibits many surface reconstructions, depending on the atmosphere
and temperature of the exposed GaAs surface. The different surface reconstructions play
an important role in the growth of thin films, as each surface reconstruction has a
different stochiometry of As to Ga adatoms on the surface, as well as different surface

properties. An example of a c(4x4) reconstruction[2] is shown in Figure 5.3.
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Figure 5. 3: GaAs c(4x4) reconstructed surface. The surface is covered with As dimers.
As will be discussed, a disordered version of the c(4x4) reconstruction has been found to
be the surface reconstruction during MOVPE growth[3]. A c(4x4) reconstructed surface

has an As coverage of 1.75 monolayers. MBE growth operating conditions produce a

B(2x4) or a B2(2x4) reconstruction as shown in Figure 5.4.
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Figure 5. 4: GaAs reconstructed surface; (a) f(2x4), (b) B2(2x4)

These reconstructions only have an As coverage of 0.5-0.75 monolayers. As expected,

with increasing As flux to the surface, the reconstruction can change from B(2x4) to
c(4x4). The increased As flux in MOVPE systems creates the disordered c(4x4)

reconstruction during growth. A thermodynamic picture of GaAs surface phases is given
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in Northrup and Froyen[4], who calculated the stability of different reconstructions

(energy of the surface) as a function of the chemical potentials of Ga and As.

Two groups, Kasu and Kobashyi[5-7] and Hicks er al.[8-11] have grown GaAs using
MOVPE and then tried to ‘freeze’ the surface by stopping growth and cooling the surface
at a rapid rate. Then both groups would transfer the samples into a vacuum chamber
where a scanning tunneling microscope (STM) is used to examine the morphology of the
MOVPE grown film. The fast quenching of the wafer is supposed to freeze the
morphology of the surface as to represent the surface during growth. There is great
difficulty in accomplishing a quick quench, and the surface morphology during the STM
is probably representative of a slightly annealed MOVPE grown surface. Nevertheless,

these studies do provide insight into the surface morphology during growth.

Kasu and Kobayashi [5-7] computed the number density of two-dimensional islands on
the surface from the STM pictures at different operating conditions. They found the 2D
nuclei extend in the [110] direction, which is opposite of MBE growth. It is hypothesized
that the surface reconstruction during MOVPE growth plays an important role in this
difference. The anisotropy of the islands range from 2.2 at an operating temperature of

530 ° Cto 1.3 at 650 ° C. The work was extended in the observation of step bunching of

GaAs using the same experimental approach(S, 6, 12, 13].

Hicks et al.[8-11] determine that the structure of the surface under MOVPE growth is a
disordered c(4x4) reconstruction. The disorder is due to CH, groups attached to free As
adatoms on the surface. They annealed the surface at 350 K and regain the ordered
c(4x4) reconstruction. Li and Han also find that the (2x4) reconstruction formed after
annealing a MOVPE grown film is similar to a (2x4) reconstruction grown by MBE.
This is not surprising, as in a clean film of GaAs, the surface reconstruction is based on
the last environinent seen by the film. Annealing the film under H; at high temperatures

leaves the film in the same state as an MBE grown film.
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Asai studied the anisotropic lateral growth of GaAs[14] This was accomplished by
creating a mesa of GaAs on top of a flat substrate. Under varying reactor conditions (As
and Ga flux and temperature), the lateral and vertical growth rates were compared. The
lateral growth rate was a factor of 3-5 times as fast as the vertical growth rate. This
suggests that adatoms hopped down off the mesa and attached to the edge of the mesa.

The fastest growth direction occurred in the [110] direction, and the slowest in the [110]

direction. The vertical anisotropy depended on reactor conditions, but the horizontal
anisotropy is independent of reactor conditions. Increasing the growth temperature
decreased both lateral growth rates. While decreasing As pressure, the [110] growth rate

decreased, while the [110] remained constant. This suggests that As on the surface

blocks kink sites for Ga, but does not cover the surface and block overall growth.

5.2.2 Surface Processes Studied Under Vacuum

Vacuum studies typically try to determine the mechanism and energetics of surface
processes. For example, TPD experiments are done in order to determine the energetics
of surface desorption. Laser assisted desorption experiments are similar to TPD, but to
better simulate growth temperatures a laser is pulsed onto the surface and the species
fragments leaving the surface are determined. Other vacuum studies study adsorption
behavior by infrared spectroscopy in order to determine adsorption sites of different
precursofs. All of these techniques are valuable in determining surface energetics, but
the applicability toward surfaces undergoing the harsh conditions of MOVPE growth

(high temperatures and pressures) must be determined on a case by case basis.

Banse and Creighton [15] examined the desorption behavior of As on the GaAs surface
by TPD. The TPD experiment showed 3 distinct peaks that corresponded to As
desorption from the overlayer of As, and in two bursts from 1.00-0.75 monolayer of As
and 0.75-0.25 monolayer of As. Adamson et al.[16]modeled the TPD spectra and
developed a model for As uptake into the thin film. For MOVPE modeling, the
interesting parameter is the desorption barrier for As,/Ass from the overlayer of As,

which is estimated to have a 44 kcal barrier.
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McCaulley and Donnelly[17-20] have examined the decomposition of triethylgallium
(TEGa) and trimethylgallium (TMGa) adsorbed on GaAs surfaces. Their experiments
consisted of adsorbing precursor species on clean GaAs surfaces, heating the surface both
thermally or by using a laser under ultra-high vacuum, and measuring the products by a
mass spectrometer. Both the type and rate of species desorption was determined.
Buchan and Yu[21] used a pulsed molecular beam and time-resolved mass spectrometry
to study the pyrolysis of TEGa on GaAs(100) and determined that ethyl desorbs from two
different surface sites with different activation energies. Due to the compensation effect,
the given reaction rates are not very different. Shown in Table 5.1 is a synopsis of the

results.

Table 5. 1: Reaction rates of adsorbed species on GaAs(100)

Reaction Reaction Rate
C,Hs(adsorbed) = C,H; (g) 5x10'" exp (-32 kecal / (RT) )[20]
1x10" exp (-37.5 kcal / (RT)) [22]
C,Hs(adsorbed) - C,Hs (g) 5x10° exp (-17.4 kcal / (RT) )
(from two sites) 1x10° exp (-23.9 kcal / (RT)) [21]
CHs(adsorbed) = CH; (g) 1x10" exp (-43 kcal / (RT) ) [23]

Li et al.[24] and Qi et al.[25] determined the adsorption sites for As and Ga precursors on
the GaAs surface using infrared spectroscopy. Since infrared spectroscopy must be done
under vacuum, the precursors are adsorbed onto different surfaces. On the c(2x8)
surface, arsine adsorbed at low temperatures onto second layer Ga adatoms and
transferred the H to adjacent As sites. Above 438 K, arsine completely decomposed with
the desorption of As; and H,. On the (1x6) surface at high temperatures (above 573 K),
arsine transformed the surface into the c(2x8) surface. The results suggest that arsine
decomposition on Ga dimers lead to As incorporation into the lattice, and arsine
decomposition onto second layer Ga adatoms leads to As; formation. Ga precursors

adsorb in between the As dimer and transfer a CHy groups to a nearby As on the surface.
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5.2.3 In-situ studies

5.2.3.1 Grazing Incidence X-ray Scattering

Grazing Incidence X-ray Scattering (GIXS)[26, 27] has been used to monitor the surface
in-situ during MOVPE growth. GIXS is accomplished by using high energy x-rays
(typically from a synchrotron source) that enters into a specially designed reactor. The
scattering of the x-rays off the growing semiconductor surface is monitored and both the
surface reconstructions on the surface, as well as the correlations between larger

structures (such as islands on the surface) can be monitored.

The reactor used to monitor the surface during GaAs growth is shown in Figure 5.5[28].

Figure 5. 5: Reactor used for GIXS studies. The reactor consists of two quartz tubes surrounding a
heated graphite susceptor. The high energy x-rays enter and exit through a beryllium window near
the wafer.

The reactor consists of a smaller quartz tube inside a larger quartz tube. The inner tube
has the inlets for the IIl and V series precursors (typically trimethylgallium or
triethylgallium and tertiarybutylarsine) along with a carrier gas (typically hydrogen). The

outer tube has an inlet for only carrier gas. This outer tube is used to keep the beryllium

116



window clean of GaAs deposits in order to allow a portal for the x-rays to enter and exit

the reactor.

Experiments were done in order to determine the surface reconstruction during growth[3,
28, 29]. The scattering of the x-rays from the surface can monitor the correlations
between atomic positions on the surface. A direct Fourier transform of the scattering data
can be used to calculate a Patterson map of the electron density. By using optimization
techniques, the positions of atomic species on the surface can be estimated using these
Patterson maps. For GaAs, these Patterson maps show that the surface is covered by As

dimers during MOVPE growth in a disordered c(4x4) reconstruction.

The scattering can also monitor larger scale structures on the surface. By monitoring the
diffraction at a Bragg peak[30], the crystal truncation rods (CTR) can be measured. At
the Bragg peak, alternating bilayers of GaAs diffract exactly out of phase, making the
scattering extremely sensitive to the top bilayer of the crystal. During layer-by-layer
growth, the top bilayer of the GaAs surface becomes half covered with GaAs islands and
then the islands coalesce to form the next bilayer. A typical plot is shown in Figure

5.6[31, 32].
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Figure 5. 6: The crystal truncation rods during a typical growth run at a temperature of 580 °C and
growth rate of 5 ML/sec.
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During this process, the crystal truncation rods oscillate with the roughening and
smoothening of the surface. The CTRs disappear during step flow growth on vicinal
substrates. The disappearance of CTR oscillations can be used to map out the surface

growth mode for given growth conditions (temperature and growth rate). A map of the

surface growth modes is shown in Figure 5.7[33].
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Figure 5. 7: A map of the surface growth modes as a function of flux to the surface and temperature.
At high temperatures and low fluxes, step-flow growth is dominant as the adsorbates have high
mobility on the surface. At low temperatures and high fluxes, adsorbates have low mobility and

island growth is found [33].

The slope of the transition in Figure 5.7 corresponds to an activation energy of 2.7 eV.
One of the questions in MOVPE growth is why this transition has such a high activation
barrier as compared to MBE growth (which has a barrier computed similarly of 1.58

eV[34]). This high activation barrier has been confirmed in other systems, such as the

growth of GaN.

Along with the crystal truncation rods, the off-axis scattering can be monitored. Along
with the assumption that the islands are correlated, the off axis scattering can give a
measure of the island-island correlation length at half coverage (a minimum in the CTR).
This can be measured by monitoring the scattering at a wavevector at positions away
from the Bragg peak. A secondary maximum is found that corresponds to the correlation
length between islands at half coverage. By monitoring the island-island correlation

length as a function of temperature and growth rate, the growth mechanism for MOVPE
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can be compared to theoretical models of island growth. The island-island correlation

lengths as a function of temperature and growth rate are shown in Figure 5.8[35, 36].

103 6 T T Ty Y T T TTTT

(a)

Correlation Length (Ang)

2 1 L1 a2 a1 aal 1 AL 0 1i i

0.1 1 10
Growth Rate (ml/sec)

4

10 LANLENL S0 (L SN0 SN SN U AN AN S 0 B N RN SN SN B M A N B R I M

LN BN B B e ]

L]
I

(b)

T
a2 a3l

Correlation Length (Ang)
8@

A WA I N I A A

102
11 112 114 116 118 12 122 124
1000/T (1/K)

Figure 5. 8: (a) Correlation length as a function of growth rate at a temperature of 813 K; (b)
Correlation length as a function of temperature at a growth rate of 5 ML/sec; The correlation length
is derived from the diffuse x-ray scattering from the surface.

Thus, the GIXS data represents a method to study the long range order of the surface

from an analysis of the growing islands on the surface.
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5.2.3.2 Reflection Difference Spectroscopy _

Reflection Difference Spectroscopy (RDS) or Reflection Anisotropy Spectroscopy (RAS)
is an optical, in-situ technique to monitor surfaces during MOVPE growth. The groups
of Aspnes, et al.[37-40] and Richter, et al.[41, 42] have pioneered this technique to study
MOVPE surfaces during growth. In a typical RDS experiment, the difference between
the normal incidence reflectance of light polarized parallel and perpendicular to a
principal crystallographic axis in the plane of the crystal is measured as a function of
time, photon energy, and surface conditions. The results are extremely sensitive to both
the chemical and structural state of the surface. Since RDS is an optical probe, it can be

used in the harsh environments in MOVPE processing.

RDS has been used to study the surface reconstruction during MOVPE growth. Kamiya
et al.[43] has characterized different surface reconstructions on GaAs by distinct RDS
spectrum. By matching the RDS spectrum with one that has been observed in UHV with
a known surface reconstruction, Ploska et al.[44] and Wassermeier et al.[45] observed a
disordered c(4x4) reconstruction covers the GaAs surface under MOVPE conditions.
Certain photon energies have been found to be extremely sensitive to the number of As
dimers and Ga dimers on the surface. By monitoring these photon energies during
MOVPE growth, the growth dynamics can be extracted. The entire RDS spectrum has
been analyzed over a range of growth rates and temperatures and three main surface
regimes have been found during MOVPE growth[44, 46]. Each regime seems to
correspond to the carbon content on the surface, typically from trimethylgallium or

triethylgallium, the group III precursor molecules.

Oscillations in photon energies have been found that correspond to layer by layer growth
on the GaAs surface[44, 47-50]. It has been hypothesized that the edges of growing
islands have a different reconstruction (which include Ga dimers) that the flat terraces (a
c(4x4) reconstruction dominated by As dimers). Since the orientation of the Ga and As
dimers are perpendicular, the RDS signal from each orientation can be picked up in a
specific photon energy. Thus, as islands cover the surface, more Ga rich reconstructions

form at the edges of islands. As the islands coalesce, the number of Ga dimers dwindles
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until a completely flat surface is formed, which is covered only by As dimers in a

disordered c(4x4) reconstruction.

Creighton and Baucom[46] use RDS in a rotating disk MOVPE reactor and a surface
science experimental setup. Using both systems, they are able to use the RDS along with
surface science techniques to determine the surfacc species at a variety of temperatures
and growth rates. They find that at intermediate temperatures and growth rates, a (1x2)-
CH; covered surface occurs during growth from the decomposition of TMGa on the

surface.

Both RDS and GIXS were performed simultaneously [51, 52] and it was found that the
oscillations from both methods correspond to layer-by-layer growth and are in agreement.
Interesting is at the conclusion of growth, the RDS signal returns much more quickly to
the steady state signal than the GIXS signal does. Since the RDS signal measures Ga and
As dimers on the surface, the number of Ga dimers may drop quickly after growth stops.
GIXS measures long range order, so the island shapes and densities may still evolve after
the flux of Ga atoms has stopped, until the equilibrium structure of islands on the surface

has been found.

5.2.3.3 Differences between MBE and MOVPE Growth

Molecular Beam Epitaxy (MBE) and MOVPE growth both produce high quality GaAs
films, but the mechanism of film growth is different. For example, the transition between
step flow and island growth has been measured in MBE by RHEED and found to
correspond to an activation energy of 1.58 eV([34]. This is drastically different than the
transition found using RDS and GIXS in MOVPE growth that was found to range from
2.3-2.7 eV[33, 44]. This high activation barrier for the transition between growth modes
has also been seen in GaN growth[53]. Also the shape of the islands during STM studies
are found to be different in MBE as compared to MOVPE grown films. MBE grown

films bhave islands that are anisotropic and extend further in the [110] direction than the

[i10] direction. MOVPE grown films have the opposite anisotropy with islands

extending in the [110] direction[6]. Also, it was noted that B-type steps are straighter
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than A-type steps in MOVPE growth[5]. This is the bpposite of MBE growth where A-
type steps are relatively straight, while B-type steps are relatively rugged[54]). The cause
of such differences in MBE and MOVPE grown films may be the presence of excess As
in MOVPE systems. The excess As creates a different surface reconstruction (c(4x4)
rather than B(2x4) in MOVPE as compared to MBE}, which leads to different diffusion,
nucleation, and incorporation differences. KMC simuiations are used to determine the

nature of such differences between MBE and MOVPE growth.

Another major difference between MBE and MOVPE growth is the processing
conditions. MBE temperatures are typically much lower than MOVPE conditions, and
the As flux in MBE is much lower than MOVPE As fluxes. The higher temperatures in
MOVPE growth are due to the decomposition of the Ga precursors. Stable Ga
precursors, such as TEG and TMGa decompose on the surface with the carbon chains
leaving the surface. At low temperatures (less than 500 ° C), unintentional carbon
incorporation impedes with the electrical properties of the thin film[S5]. At these higher
temperatures, As precursors desorb from the surface rapidly as shown by Banse and
Creighton[15] and Adamson et al.[16]. Thus a large As overpressure is needed in
MOVPE growth in order to force the As into the thin film during growth. Without
enough As in MOVPE growth, the film becomes extremely rough and Ga droplets form
on the surface. A stable Ga precursor that decomposes at lower temperatures would

allow for lower temperature growth, but a suitable candidate has yet to be found.

5.3 Maoedels of the GaAs surface

Models of surface morphology can range from continuum, analytic models to ab initio
quantum models of surface reactions. The model to use depends on the time and length
scale of the needed prediction. An overview of surface modeling techniques and their

relevant length and time scales is shown in Figure 5.9.
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Figure 5. 9: Relevant length and time scales for & variety of surface medeling techniques.

5.3.1 Analytical Models of Surface Growth

Thin film growth has been studied using analytic models. Reviews of these methods are
developed in Venables ¢t al.[56] and Markov[57]. Surface growth has been modeled by
mean-field type approximations which neglects both statistical fluctuations and all spatial
degrees of freedom[58]. For modeling growth below a surface coverage of 0.25, rate
equations can be developed that describe the average number density of adatoms, p(1),

and the average number density of immobile islands, N(?).
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In Equations 5.1 and 5.2, F is the deposition flux and D is the surface diffusion constant.
The term, i, corresponds to the number of adatoms greater than one that are needed to
form a critical nucleus on the surface. So the critical nuclei term, i, equaling one
corresponds to a critical nuclei of two adatoms. The first term in Equation 5.2
corresponds to the birth of islands and the second term corresponds to coalescence of
islands. These equations are only valid for the coverage regime of 0 to 0.25, as
coalescence of islands reduces the number density of islands as the monolayer of islands

fills in to complete one layer of growth.

From these birth-death equations, scaling laws of how the number of islands on the
surface depends on flux and diffusion rate can be extracted. Solution of these equations

results in Equation 5.3.
i
N x[ﬂ) 2 (5.3)

This relationship suggests the number density of islands is a result of a competition
between diffusion and flux to the surface. As the diffusion rate is increased, the number
density of island decreases (due to the negative exponent). Since each adatom is exposed
to more of the surface as the diffusion rate increases, each adatom is more likely to attach
to a growing nuclei, reducing the number density of nuclei. If the flux to the surface
increases, the number density of islands increases, as more adatoms are on the surface at
any given time and can find each other faster than they can find a growing nuclei. The
exponent reflects the effect of the minimum nuclei size. As the minimum nuclei size

increases, the number density of islands on the surface decreases.

This simple model of nucleation can be used to measure the correlation lengths between

islands on the surface. The correlation length between islands is shown in Equation 5.4,

N o2 (5.4)
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where L is the correlation length between islands. This is derived under the assumption
thut islands are circular, thus the correlation length scales as zv° with island size of radius
r. As N is smaller, r is larger (smaller number of islands results in each island being
larger) and the correlation length scales as . Thus the correlation length can be derived
from the diffusion rate and flux to the surface under the assumptions of this model. This
simple model describes some of the dynamics of crystal growth, but a description that

gives a spatial representation of the surface can be embodied in a KMC simulation.

5.3.2 KMC simulations

KMC models have been used extensively in modeling thin film growth. Many of the
analytic models have been tested using KMC models to determine the island density and
other surface characterist::s given reactor conditions. KMC models have also been used

to study real systems, such as the MBE growth of GaAs and other thin films.

5.3.21 KMC Models — Theory

KMC methods have been used to validate many of the analytic models for thin film
growth that have been developed[59, 60]. Bartelt and Evans[61-63] have studied the
nucleation and growth of different shaped islands to understand the behavior of the size,
coalescence, and correlations between islands on the surface. Ratsch et al.[64. 65]
studied island size distributions for KMC models that include nearest neighbor barriers
for diffusion. The nearest neighbor barriers included in the diffusion barrier in their
simulations allow for nucleation without a critical nucleus size. They find that the
exponent in Equation 5.3 is a smoothly varying function of the diffusion rate and nearest

neighbor barriers on the surface.

Simulations have also been used in order to derive surface parameters from experimental
results, once a given model is known to be consistent with an experimental system. Mo
et al.[66, 67] computed the activation energy for surface diffusion of Si on Si(001) by

measuring the island size distribution by STM studies. Using an analytic model for the
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island size distribution and a KMC model, the data was fitted in order to determine the

activation energy for surface diffusion of Si, 0.67 eV.

5.3.2.2 KMC Models for GaAs MBE

The surface evolution of MBE grown films have been extensively studied by KMC
simulations[68, 69]. KMC models were used extensively to study the GaAs surface by
Vvedensky et al. [70-74] for MBE systems. The models were solid on solid models with
a cubic lattice. A KMC approach was used whereby the Ga adatoms on the surface were
tracked and there was initially assumed to be an infinite source of As that would
incorporate with probability one when an As site appeared.  Nucleation was
accomplished using nearest neighbor barriers for Ga diffusion. The first studies were
used to interpret oscillations in RHEED experiments that correspond to monolayer
growth of GaAs. Layer-by-layer growth corresponded to roughening and smoothing of
the surface that matched up exactly with oscillations from the RHEED experiments.[75].
The simulations exactly matched up with the experimental results][34]. Others included
the As directly in the model and developed similar models[76]. The model was extended
when further experimental STM work was done in order to examine the nucleation
behavior on the B(2x4) surface[77]. It was found that Ga adatoms nucleate on top layer

of the base reconstruction and not in the trenches of the reconstruction.[78].

5.3.3 Quantum studies of GaAs surfaces

Quantum studies of various levels of accuracy have been done in order to study the GaAs
surface during growth. From first-principles density functional theory (DFT) to the use
of empirical potentials in molecular dynamics simulations, a range of techniques have
been used to study the GaAs surface. A review of quantum techniques used to study

epitaxial growth is given in Kaxiras[79].
First principles techniques have been used to study equilibrium structures on the surface,

reactions on the surface, and diffusion coefficients of adsorbates on the surface. Moll et

al.[80] used a first-principles pseudopotential DFT approach to obtain a Wulff plot of the
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GaAs equilibrium surface energy as a function of orientation. Northrup and Froyen[4]
studied the surface energies of a set of GaAs surfaces by local density approximation.
They find that the c(4x4) reconstruction is stable under the As-rich limit. Reactions of
hydrogen on the surface have been studied using both cluster calculations and band-
structure total energy calculations using the local density approximation[81, 82]. The
adsorption of H; on the surface is ruled out, but H-atom adsorption is found to occur
without breaking the As dimers on As-rich surfaces. Surface diffusion of Ga adatoms on
B(2x4) surfaces have been studied by total energy calculations and diffusion has found to
be anisotropic with activation barriers ranging from 0.8 to 0.6 eV[83]. Kratzer er al.[84]
determined a model for nucleation of GaAs on [3(2x4) surfaces using DFT methods that
disagrees with experimental and KMC work, whereby Ga dimers nucleate in the trenches
of the reconstruction. Adsorbates on the (2x4) surface has been studied using ab initio
DFT methods in order to examine the adsorption and desorption physics[85]. LePage er
al.[86] has examined the diffusion barrier on c(4x4) surfaces using ab initio calculations

and found the barrier to be anisotropic and range from 0.15 to 0.33 eV.

In a series of first-principles calculations, trends in the calculations can be observed.
Zhang and Zunger[87] use these trends to develop a methodology called the linear
combination of structural motifs. This methodology uses a ‘group contribution’ approach
by building up larger structures through a limited number of structural motifs (for
example, tetrahedrally bonded Ga and As). The motif energies are fitted to a series of
pseudopotential total-energy calculations.  Each motif energy included with a
electrostatic term can then be used to calculate the total energy of large surfaces, such as

steps, to find the lowest energy structurcs[88].

First principles calculations were used along with the Electron-Counting Monte Carlo
(ECMC) model in order to study surface processes such as adsorption and diffusion of As
and Ga on the c(4x4) and P(2x4) surfaces[89-91].  Adsorption, diffusion, and
incorporation were studied on the B(2x4) surface and the energetics were found to be
coverage dependent. The As; adsorption energy drastically increases as the As coverage

increases[92]. The diffusion barriers were found to depend on the surface coverage of As
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and Ga, and Ga adatoms were found to be more stable attaching to B steps than A
steps[93, 94]. For c(4x4) surfaces, the adsorption, descerption and diffusion behavior was
again found to be coverage dependent, but in different ways than the B(2x4) surface. The
diffusion behavior was reverse that on MBE surfaces, as Ga adatoms were more stable
attaching to A steps than B steps[94]. This is what is seen experimentally as a difference
between MBE and MOVPE growth[7]. A self-surfactant process was observed from the
simulations, as As dimers were found to desorb more quickly (with a lowered barrier) in
the presence of Ga adatoms[95]. Desorption of As, changes the structure of the surface
to allow further Ga species (such as TMGa or TEGa) to adsorb[96] [97]. This is also
consistent with experimental data, as As overpressure was not found to affect the lateral

growth rates, but it does affect the horizontal growth rates[14].

128



Molecular dynamics simulations are also used to determine diffusion coefficients of Ga
and As on GaAs(001). A methodology has been developed to fit empirical potentials to
semiconductor surfaces[98]. Unfortunately, empirical potentials miss many of the
electrostatic contributions to the surface energy and using slightly different potentials can
lead to vastly different results for diffusion barriers. Palma et al.[99] and Salmi et
al.[100] both compute the diffusion barrier of Ga and As on GaAs(001). Shown in Table
5.2 are the results of their calculations. There is a large discrepancy in their results as

different surfaces were modeled and different potentials were used.

Table S. 2: Diffusion barriers as estimated by molecular dynamics simulations

Adsorbate [Surface Direction | Barrier Pre- Reference
(eV) exponential
(cm?/s)
Ga As either 0.101 | 1.637x10” [99]
terminated ‘
As As either 0.077 | 7.59x10™ [99]
terminated
Ga B(2x4) 110 2 [100]
Ga B (2x4) [110] 1.9 [100]
As B (2x4) 110 1.6 [100]
As B (2x4) [110] 1.5 [100]
Ga c(4x4) 110 0.8 [100]
Ga c(4x4) [110] 1.15 [100]
As c(4x4) 110 1.55 [100]
As c(4x4) [110] 1.7 [100]

5.4 MOVPE Models of GaAs

The structure of the KMC algorithm does not change when applying it to growth

problems as compared to TPD problems. A flowsheet of the algorithm is shown in

Figure 5.10.
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Figure 5. 10: Algorithm for the KMC algorithm to simulate thin film growth.
The differences between models of MOVPE growth and MBE growth occur in the
transitions on the surface. As shown by both quantum calculations and experimental
results, the MBE surface greatly differs from the MOVPE surface, especially under

growth conditions. Thus, a different model must be developed in order to describe the

MOVPE surface.

5.4.1 Model Parameters

KMC models with varying parameters where investigated to determine their effectiveness
in describing the evolution of surface morphology in MOVPE of GaAs films. An initial
model was tested that was similar to MBE models of the surface. This model was
extensively tested in Chapter 6. Further refinements to the model included the
implementation of the c(4x4) reconstruction on the surface with the inclusion of As;

dimers on the surface. This model is tested in Chapter 7.

The initial model used the approximation that there is an infinite source of As on the
surface that will fill in all available As sites. This assumption was used in MBE

simulations, as the Ga flux controlled the growth rate. This should be an even better
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assumption in MOVPE simulations, as reactors are typically run 10-50 time excess As
precursor (this creates the c(4x4) As rich reconstruction on the surface). Thus, Ga
dynamics are the controlling dynamics for growth and the diffusion and incorporation
dynamics need to be input into the KMC simulations as rates. Table 5.3 has a list of the
transitions and the accompanying rates. Transitions 6-10 in Table 5.3 were used in the
simulations, as the other rates are much faster than the rate-limiting steps to growth

(diffusion and incorporation).

Table 5. 3: Initial Model of MOVPE surface processes for GaAs(100) growth

Time
Transition Rate Cuastant | Refere
@550°C | nce
(sec)
I 13.8kcal [101]
I | HAs +HGa" D Hy+As" | 1210 P(R—J 3.85x10™
+Ga’
o (~1Tkeal [101]
2 | AsH +AsH >2As"+ | 10x107ex ( R ) 3.27x10°™"
H,
9 18.5kcal
3 | CHsGa' >Ga" +CHs | 10x10 e"P( ] 8.18x10° | [17-
20]
32kcal
4 (C2H5) zGa‘ 2> CszGa' + S'OXIOHC [ RT j 6-3’(10"4 “7'
C;Hs 20]
' 18.5kcal
5 C,Hs" = C;Hs l-OxIO“’CXP( ] 1.26x10% | [17-
20]
6 As species flux Input parameter
7 Ga species flux Input parameter
—64kcal 2
8 Ga diffusion 8-°x‘°3exp(—kT—‘J AN TYR )
- 102
9 Ga’ - Ga 1-0x10'3exp(%c—d) 2.03x10° 1o

This model neglects the As dynamics on the surface. Ito and Shiriashi[95] have explored
a diflerent mechanism which includes As dimers on the surface which creates the c(4x4)
reconstruction found during MOVPE. Their self-surfactant model predicts that As
dimers have a lower barrier for desorption when Ga adatoms are in the nearest-neighbor

positions. This suggests that As dimers on the surface hinder Ga diffusion, but are likely

131



to desorb around Ga islands on the surface. These initial dynamics were included in the
model by adding As; adsorption and desorption into the model. The adsorption rate of
As; was derived from the concentration of As precursor above the surface. The butyl
groups on the TBAs were assumed to desorb quickly from the surface[24]. The
desorption rate of As; is derived from Adamson. et al.[16], who found that the desorption
of Asdimers from the surface occurs with a barrier of 44 kcal. The self-surfactant effect
was included with a nearest-neighbor barrier that decreased the desorption barrier by 4
kcal for every neighbor. This 4 kcal number is derived from the slope of the ECMC
simulation by Ito and Shiriashi[95], by scaling their slope by the ratio of the experimental

barrier of 44 kcal to their calculated barrier of 98 kcal.

Also, the diffusion barrier for Ga on the surface during MOVPE growth has ranged from
0.04 eV to 2.7 eV[33, 86, 102]. In this model, reasonable parameters were found in

Salmi et al.[ 100] for Ga diffusion, and these barrier were used (as shown in Table 5.2).

5.4.2 Step Flow versus Island Growth

The model can be used to determine the different growth modes (given a surface model)
as a function of the surface temperature and flux to the surface of precursor species. The
growth modes for GaAs include step-flow growth and island growth modes. Both growth

modes are shown pictorially in Figure 5.11.
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Figure 5. 11: (a) Step flow growth — on vicinal surfaces adatoms attach to the steps during growth.
This maintains a flat film over time; (b) Island growth (Layer-by-Layer Growth)- adatoms nucleate
and form islands on the surface. Other adatoms attach to the edge of growing islands.

In step flow growth, species are added to a vicinal surface and attach to the step edges
rather than nucleating on the terraces. Adatoms diffuse fast enough to find a step edge
rather than find each other to nucleate new island on the terrace. In island growth modes,
adatoms find each other and nucleate to form islands before finding step edges. Thus, the
growth modes are a competition between diffusion (controlled by surface temperature)
and ﬂux.to the surface. At relatively high temperatures (high diffusion lengths) and a
low flux, step flow growth modes prevails, while at relatively low temperatures and high

flux rates, island growth modes dominate.

Figure 5.12 shows the oscillations in the x-ray scattering along with the surface
morphology in island growth mode at 790 K. Before the beginning of growth, the
terraced surface is generally smooth. Since the scattering off the surface only picks up
the top bilayer, the resulting signal is relatively strong. As the surface evolves when
growth begins, islands appear on the surface. When the surface is half covered with

islands, zero scattering results, as the bilayers scatter exactly out of phase. This
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corresponds to the first trough in the scattering. Continued growth occurs, and the islands
coalesce to form a relatively smooth surface, which corresponds to the second peak in
Figure 5.12. This roughening and smoothing process continues until the flux is stopped.
Note that the peaks lower in intensity as more monolayers are grown. This corresponds
to the overall roughening of the surface during growth. Due to the low temperatures and
high flux of this simulation, islands appear on the surface, rather than the free adatoms on

the surface attaching to the step edges.
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Figure 5. 12: Computed x-ray scattering from the surface along with pictures of the model surface.
Note the oscillations in the x-ray scattering correspend to each monolayer of growth.

Figure 5.13 shows the constant x-ray scattering signal along with the surface morphology
in step flow mode at 850 K. Before growth, a high scattering signal emanates from the
top bilayer. As growth proceeds, the surface remains flat, with the adatoms attaching to

the step edges. This does not change the overall morphology of the film, but just shifts
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the front. This causes no change in the scattering, as shown by Figure 5.13. A constant
signal is generated throughout growth. Much smoother films are produced in step flow

mode than island growth modes.

Figure 5. 13: Computed x-ray scatterihg from the surface along with pictures of the model surface.
Note the constant signal corresponds to step flow growth whereby adatoms attached of the edge of
the steps (as in the pictures of the model surface). '
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Experimentally, RHEED, RDS, and GIXS have been used to dcterminé the transition
between growth modes. In all three of these in-situ techniques, oscillations have been
observed that correspond to island growth mode. The disappearance of oécillations at
higher temperatures and lower fluxes correspond to the transition from island growth
modes to step flow. Shown in a series of scattering plots and corresponding pictures of
the surface in Figure 5.14 is the transition from island growth to step flow growth at a

constant flux of 5.0 ML/sec Ga flux and 100 ML/sec As flux to the surface.
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Figure §. 14: The transition from island growth to step flow growth with the increase in temperature.
Note how the surface becomes smoother at higher temperatures and fewer islands form on the
terraces. (a) 790 K, (b) 860 K, (c) 810 K, (d) 820 K. (e) Oscillations from (a), (b), (d) one same plot.

As seen, as the tcmpcrature is increased, the surface is in general smoother. Also, note
that the oscillations in the diffuse scattering become less pronounced as the temperature
is increased, and finally becomes constant at high temperatures. This is shown in Figure
5.14 (e). The oscillations occur at a scattering wavevector which exactly corresponds to
the two times the terrace length. Since each bilayer scatters exactly out of phase at a
Bragg peak, scattering off each terrace cancels the neighboring terrace exactly out at a
wavevector of 0. Oscillations occur at a wavevector of exactly two times the terrace
length, since the correlation of surface heights are ai this lcngth scale. A simulation on a

singular ¢ ~face will have the oscillations at a scatiering wavevector of 0.

5.4.3 MBE versus MOVPE grown films
One of the major differences seen in MBE film growth as compared to MOVPE film

growth is the transition from step-flow to island are affected differently by changes in

temperature. For MBE growth, the slope of the transition is suggested to be the diffusion
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barrier, since the average diffusion length must be at least one half the length of a step in
order for step flow growth to occur[103]. Typically, Equation 5.5 is used to convert the

transition temperature into a diffusion coefficient. In Equation 5.5,

x =2Dt | (5.5)

x is the terrace length, D is the diffusion coefficient and ¢ is the time for monolayer
growth. Unfortunately, this does not take into account the nucleation behavior on the
surface. For example, in Figure 5.15, this technique was used to map out the diffusion

coefficient for MBE[104] and MOVPE[33].
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Figure 5. 15: Diffusion coefficient computed during (a) MBE growth[104], (b) MOVPE growth{33]
using Equation 5.5.
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There is an order of magnitude difference in the diffusion coefficients. This order of
magnitude difference could be due to that diffusion is faster on MOVPE surfaces than
MBE surfaces. This could be the case, as an MOVPE grown film has a c(4x4)
reconstruction, while an MBE grown film has a (2x4) reconstruction. On the other
hand, the surface is ‘rougher’ on the MOVPE surface, as organic species, As dimers, and
hydrogen fly around the surface. ~Another explanation is that the measured diffusion
coefficient and barrier is not a true measurement of diffusion on the surface, but a

convolution of diffusion, nucleation, and other reactions on the surface.

As shown in the previous section, the transition between step-flow and island growth can
be mapped for a given surface model. To test the idea that nucleation may be drastically
different in MBE and MOVPE growth, the same model was used to determine the
transition between step-flow and island growth, except the nucleation criteria was
changed. The nucleation criterion was based on the morphology of the surface.
Mechanism A and Mechanism B nucleated the circled adatom when in the configuration

shown in Figure 5.16.

Mechanism B

Mechanism A

Figure 5. 16: Configuration of adatoms for nucleation to occur for the circled adatom in (a)
Mechanism A, (b) Mechanism B

In Mechanism A, the circled adatom is nucleated, and not allowed to diffuse after gaining
the trimer configuration. Other adatoms are fixed as they are attached to nucleated

adatoms. Mechanism B is similar, except the configuration for a fixed atom is one where
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the adatom is surrounded by other Ga adatoms. Both diffusion coefficients were the

same as shown in Equation 5.6.
D = 8x10"%exp*7 Y/ *D cm¥/s (5.6)

Shown in Figure 5.17 are the results of the simulations.
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Figure 5. 17: Diffusion coefficients computed from Mechanism A and Mechanism B. Notice the large
difference in the magnitude of the coefficient due to only the nucleation mechanism.

The nucleation mechanism plays an extremely large role in determining the apparent
diffusion coefficient. Mechanism B has a much higher apparent diffusion coefficient due
to the lack of nucleation on the surface (as compared to Mechanism A). This leads to the
conclusion that nucleation behavior along with diffusion behavior affect the transition
between step flow and island growth. The transition may be even a more convoluted

function of surface reactions and diffusion in MOVPE growth.
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Using an updated mechanism that includes As; adsorption and desorption from the
surfaces, the transition behavior can again be examined through simulation. The apparent
diffusion barrier is measured from the slope of the transition with respect to inverse
temperature. In MBE systems, this slope has been measured from 1.58 eV to 2.8 eV, but
it now has been established that 1.58 eV is the correct barrier[34]. As seen in Figure
5.15, the apparent diffusion barrier for MOVPE growth is 2.7 eV. This seems
unreasonable as a diffusion barrier, but it may represent a convolution of surface
processes. A study was done in order to determine the transition for a model that
included 1.3 eV diffusion barriers and a 0.2 eV nearest neighbor attractive barrier as the
nucleation model. The apparent diffusion barrier was determined for a model that did not
include As; adsorption and desorption (a simplified model of an MBE surface), and a
model that included the As; dynamics with an As flux 100 times that of the Ga flux (a
simplified model of a MOVPE surface). Two plots of the transition are shown in Figure
5.18.

Apparent Diffusion Coefficient (Ang/sec)

100 SRSV TE U RT SR Y SN U B A S T S A S SR TS U UPRPITN S S AT
11512125131351414515
1000/T (1/K)

Figure §. 18: Transition between step flow and island growth used to derive diffusion coefficients for
(0) MOVPE model (0) MBE model. The activation barrier for diffusion is calculated as 45.7 kcali for
the MOVPE model and 28.2 for the MBE model.
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The activation barrier for diffusion computed from the two models varies significantly
with the MOVPE barrier being 45.7 kcal and the MBE barrier being 28.2 kcal. The MBE
barrier is similar to that of the diffusion barrier in the model, 1.3 eV (29.9 kcal), while the
MOVPE barrier is significantly larger. This is due to the As dynamics on the surface.
The As dimers on the surface block diffusion sites, which leads to an effective diffusion

barrier much larger than that of the input diffusion barrier. This is similar to what is seen

in MOVPE growth.

5.5 Conclusions

Thin film growth of GaAs is a complex and important process. Due to the complexity of
the many surface reconstructions and growth modes of the surface, experimentation and
modeling has been done in order to understand the surface during growth.
Experimentally, the surface has been studied using vacuum techniques, STM studies of
the surface, and in-situ techniques. Vacuum techniques, such as TPD and Laser assisted
desorption have allowed the determination of adsorption and desorption kinetics of
adsorbates on the surface. Also, infrared spectroscopy was used in determining
adsorption sites for precursors. STM studies were done in order to examine the surface
morphology of MOVPE grown films. In-situ studies, such as RDS and GIXS, were used
to examine the evolving morphology of the film during growth. Each of the techniques
has apiece of the puzzle in developing an overall mechanism for MOVPE growth of

GaAs.

Models have been used to understand growth processes. Ranging from analytic models
that are used to examine the distribution of islands on the surface to KMC models of
surface morphology to quantum calculations of barricrs of surface processes, calculations
have been used to examine every length and time scale in MOVPE processing. The
‘right’ model to choose from depends on your choice of predictive metric. Using a
combination of experimental and modeling results. a model for the MOVPE growth of
GaAs is presented and compared to MBE models of growth. Its is shown that previous
techniques oversimplify the analysis of surface processes on MOVPE grown surfaces

(such as simple scaling rules), due to the interactions of the precursors on the surface.
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Simple comparisons between MBE and MOVPE models show the drastic differences in
measured diffusion coefficients can be explained by the addition of the As; dynamics on
the surface. MOVPE models of surface evolution need to be developed from a

combination of experimental and previous modeling efforts.
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Chapter 6: Linking Models

In this chapter, linking of macro-scale finite element models with micro-scale Kinetic
Monte Carlo models will be described. As a variety of models describe the different
length and time scales in MOVPE growth, linking methodologies are developed to
combine the models into a coherent process model. This process model can then be used
to do a priori modeling of a system to determine optimal operating parameters. An
introduction and review of linking methodologies are given. In Section 6.2, finite
element models of MOVPE reactors are separated into gas phase and surface models.
The separated model is tested for both accuracy and convergence properties in Section
6.3. Section 6.4 extends the linking to a different surface model, a KMC model for the
growth of GaAs. Gas phase and surface predictions for the growth of GaAs are shown.

Section 6.5 is a conclusion to the topic with an overview of linking methods.

6.1 Introduction

Considerable efforts have been devoted to develop physical models and simulation
strategies within each length and time scale regime[1-3]. In this chapter, the focus is on
linking methodologies between reactor models and surface models. The reactor scale
model will be explored in detail, focusing in on how reactor scale models use surface
scale models as a boundary condition. A case study will be shown removing the surface
problem from the reactor model and solving both models in a concurrent fashion. This
separation then can be extended to use various surface models. Kinetic Monte Carlo
models of the surface of GaAs are then used along with reactor models as a model system

to show the flexibility of this modeling methodology.

6.2 Theory of Linked Models

The premise in separating the surface model from the reactor scale model is that surface

processes occur on a widely different time and length scale than the gas phase fluid flow
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and reactions. Many simulations of CVD processes include the surface as a set of partial
differential equations and include the gas phase and surface unknowns together in an
overall solution vector. Thus the gas phase and surface unknowns are solved together.
Other approaches invert the surface problem and couple the two problems through their

expressions for flux of gas-phase species to the surface.

There are advantages and disadvantages to flux-splitting the problem. Separation of the
gas phase and surface problems allows the use of a variety of models for the surface
problem. Since the surface sub-problem has physical underpinnings, insights into its
behavior (i.e. bounds on solution components) may be invoked to make its solution easier
and more reliable when separated from the gas phase problem. For example, many
surface and gas-phase chemical mechanisms have multiple solutions, with solution
branches occurring in negative gas-phase or surface-phase species concentration regimes.
These solutions are unphysical, but exist mathematically. By separating the surface-
phase mechanism and ensuring that surface-phase concentrations are positive definite, the
convergence properties of the entire problem may be improved. In a practical note,
separation of the problem leads to a constant number of solution components at every

grid node, a much easier coding task than if the number of unknowns differ from element

to element.

The disadvantage of separating the problem lies in the additional computational time
necessary in solving the problem. Typically the surface model will take more
computational time to solve when a separate model is solved, rather than if the set of
partial differential equations describing the surface-phase are solved along with the gas
phase solution vector. A case study using SPIN[4] will show both the advantages and

disadvantages of flux-splitting the MOVPE problem.

There have been attempts to link reactor and surface models. Srolovitz er al.[5] use a
sequential approach to link reactor scale fluxes to surface models describing diamond
deposition by chemical vapor deposition. In this approach, the reactor scale fluxes were

computed initially and used as inputs into the surface model. Vlachos[6] extends this by
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directly coupling simple surface models in order to determine the effect of gas phase
fluxes on surface morphology. Rodgers and Jensen[7] also couple reactor and surface
models for the application of etching and deposition of contact holes and vias in
semiconductor processing. In this problem, the surface morphology evolves over time
affccting the fluxes coming out of the surface model, which in turn affects the gas phase

concentrations.

6.2.1 Flux Split Method - Equation Development

Both the coupled and flux-split modeling approaches start from the same basic equations.
The flux-split method connects the gas phase and surface problems through the boundary
condition on the gas-phase species flux at the surface. The gas-phase species
conservation equations may be simply stated as in Equation 6.1,

p%"—+pu-wk= pDkV2Yk+F(Y,%1—() (6.1)
Where Y, is the mass fraction of gas-phase species k, Y is the vector of all gas phase
species mass fractions, dY/dn is the gradient of mass fraction vectors normal to the

surface, facing into the surface. The boundary condition is shown in Equation 6.2,

ne(j +puY,)=—-5.(Y,0X° nw M (6.2)

k=1...N,

where ji is the diffusive mass flux of gas-phase species k, 8 is the concentration of
surface species, X" is the vector of bulk mole fractions, ¢ is the time, n is the outward-
facing normal to the gas phase (facing into the surface). The molar production rate of gas

phase of species k due to surface reactions, s, , is generally a complicated function of gas-

phase mole fractions, surface species concentration, bulk mole fractions, temperature and
pressure. The molecular weight is shown as W,. The morphological area function is
shown as M (assumed as one in our case). In undulating or patterned surface
morphologies, M can change from one. Under certain conditions, M can be a complex
function of reactor conditions, and as shown by Rodgers and Jensen{Rodgers, 1998

#149}, different linking methods must be developed to solve this interesting problem.
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To obtain the macroscopic flux of a gas-phase species, one integrates the microscopic

surface flux term, s, , over the microscopic area and then divides by the macroscopic
area. The term, nej,, is related to the gradient of the mass fraction of & in the direction

of the surface normal, and for binary systems reduces to Equation 6.3. For multi-

component systems or systems with thermal diffusion, it can be a quite complex function.

oY .
_pDk_aTk.—_ncjk (63)

The second expression on the left-hand side of Equation 6.2 is the Stefan velocity
component. It can be found by summing Equation 6.2 over all gas phase species to yield

Equation 6.4,

N :

neji=—s W, 35 W, Y, (6.4)
k=1

To close the conservation equations for gas phase species an expression for the surface

production rates due to surface reactions, §; (Y ,6,X".1) must be obtained.

To determine &k(Y,G,Xb,t) , a surface model must be solved at each surface node. This

model can be general in nature and can range from a simple, closed-form expression for
the surface production to separate complex models. In this study we will compare the
flux-split methodology with the coupled methodology using a set of partial differential

equations to describe the dynamics of the surface.

6.2.2 Surface Model - Equation Development

The typical surface model used in reactor models is a set of partial differential equations
describing the surface species. This derivation is taken from the Surface Chemkin[8]

description of the surface. The starting point for the derivation of these equations comes
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from the time-dependent conservation equations. Equation 6.5 describes the change in

total mass of surface species k with respect to time,

-gt-(Ac;:w J=AW LG (Y.0), k=K. K! 6.5)

where cjis the surface concentration of the k" surface species (mole cm?), A is the
microscopic surface area (treated here as a constant), K f; is the first surface species in

the first surface phase, and K ; is the last surface species in the last surface phase. The

concentration of surface species is broken down further into the surface site fraction of

surface species k, &, and surface site density of phase n on which species k is defined,

I',, , using Equation 6.6,

cf=—aot ©6)
Oy

where Oy is defined as the number of surface sites the k™ surface species covers. There is

the possibility that the value of I', changing over time (i.e. surface sites of type n may be

created or destroyed as part of the surface mechanism). This leads to additional variables

for the surface problem of I',. An expression for the surface site fractions may be

obtained by plugging Equation 6.6 into Equation 6.5.

a_0£_+0 ar"
n ot k ot

Equation 6.7 does not fully specify the surface site fractions, since for any valid surface

=05, (Y.0) k=Kk/..K! 6.7)

mechanism, Equation 6.8 also holds true.

ar k=K'(n) '
———-—-a n = So'ksk (6'8)
L k=k(m)

In Equation 6.8, n specifies the phase for each of the surface species. Equation 6.8 is the

surface site conservation equation, and is used to determine the production rate of surface
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sites for phase n. An additional requirement must be added so that all the surface site

fractions for each surface phase must sum to one:

$6, =1 (6.9)

Equation 6.9 has been incorporated into the equation set by the replacement of one of the
surface site species in the conservation equation, Equation 6.7, with Equation 6.9 for each
surface phase. The equation to be replaced is set to the one corresponding to the surface

species with the largest site fraction. This leads to a reduction in numerical round-off

€ITors.

For deposition, the relative growth rates can be used to provide for an equation for the

bulk mole fractions, X°. Equation 6.11 represents the bulk mole fractions for all bulk

species in bulk phase n,

b Ky(n)
x oo MXGEYOXDO) 6 N naxt 0) (6.10)
Gn k:be'(n)

where G, is the total growth rate of bulk phase n.

The equations to be solved in the surface problem are encompassed by Equations 6.7, 6.8,

6.9, and 6.10. The unknowns consist of & , I',,, and X®. The steady-state problem is

obtained by dropping all time derivatives from Equations 6.7 and 6.8.

The solution of the surface problem is accomplished using Placid, a routine developed in
MPSalsa[9]. Placid uses a damped Newton’s method to relax the surface problem. The

relaxation method uses an extremely conservative time-stepping algorithm.

6.2.3 Separation of Surface and Gas Phase in FEM Models

Both the coupled and flux-split problems actually solve the same equation set. The

coupled approach adds the unknowns from the surface problem into the global unknown
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solution vector and solves the entire gas and surface phase problem. The flux-split
methodology solves the surface problem separately from the gas phase problem. The
surface solver takes the gas-phase concentrations at the surface as input and returns the
gas-phase fluxes. The gas-phase pfoblem then uses the gas phase species surface fluxes
as a boundary condition for the gas-phase species continuity equation in the residual

calculation.

A schematic for both methodologies is shown in Figure 6.1.

Fully Coupléd
—

Compute J, R
JAau=R
(a) Newton’s
Method un+1 = yn 4 Au

u includes all unknowns

Flux-Spilit
e
Cofnpute Jf R,
Newton'’s
(b) Method Solve surface prob.

Update J,, R,

J),Auy = Ry

Figure 6. 1: Algorithm for (a) Fully coupled methodology to solve surface and gas phase unknowns in
MOYVPE reactor simulations; (b) Flux-split methodology whereby the surface problem is separated
from the gas phase problem and solved separately, maintaining consistency through the flux of
species to the surface; J is the Jacobian, R is the residual, u are the unknowns, y corresponds to the
gas phase.

As seen in the coupled method, all the unknowns are lumped and solved together. In the
flux-split methodology, the surface problem is solved separately and used as the flux

boundary condition. The Jacobian stencil in the Newton’s method to solve the overall set

of partial differential equations is shown in Figure 6.2.
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Figure 6. 2: Jacobian matrix for (a) Fully coupled methodology; (b) Flux-split methodology. Note
that the matrix size is slightly smaller in the flux-split methodology, but the bandwidth is similar.

The coupled problem has a slightly larger matrix problem to solve since both gas and
surface phase unknowns are included. The cost to invert the Jacobian matrices is almost
the same, since the bandwidth of the two matrices is typically the same. Only if the
number of surface unknowns is larger than the number of unknowns in the gas-phase

problem is the bandwidth larger for the coupled problem.

The flux-split method is closely associated with a subblock-solution method for a linear
system. In that method, a linear system is considered to be broken up into two parts, as
shown by Equation 6.11. Each subblock has its own set of solution components, X1 and
X2. The matrix is then split up into 4 subblocks, with the off-diagonal subblocks

representing the interaction terms between the subblocks.

A A X B
[ h 12][ 1]:[ 1} 6.11)
Ay AnjX.] |B2
The second block can be inverted and presolved if X; is known through Equation 6.12,
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X =A7(By~Ay Xl (6.12)

Thus the first subblock matrix problem becomes Equation 6.13,

[A~Ap AR A,y 1X=B,~A,AZB, (6.13)
The flux-split method links the two subblocks at the non-linear solver level. Therefore,
Equation 6.12 and 6.13 is not fully representative of the matrix problem in the flux-split

method.

6.3 Steady State Solution and Convergence Comparison

The steady state solution for the coupled problem and the flux-split problem are
compared for a few representative reaction mechanisms to test that the methods produce
the same solution. A simple study is done to compare the convergence properties of the

two methods.

A mechanism for the deposition of SiN[10] is used to compare the two solution methods.
The mechanism includes 17 gas-phase species, 33 gas-phase reactions, 6 surface-phase
species, 2 bulk phase species, and 6 surface-phase reactions. The comparison was done
using SPIN, a code that solves for the species, temperature, velocity profiles, and
deposition rates in a steady-state one-dimensional rotating disk or stagnation-point flow
reactor. Solutions for the steady-state mole fractions of HF and SiF, using both methods

are shown in Figures 6.3 and 6.4.
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Figure 6. 4: Comparison of the steady state mole fractions of SiF, using (+) coupled and (o) flux-split
linking methodologies.

As the comparisons show, the two methods produce the exact same solution.

Convergence properties for the two methods are compared by supplying poor initial
guesses and checking whether the methods converge to a solution. The mechanism used

to test the convergence properties of the two methods is one used to model GaAs
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deposition from Ga(CHs); and AsH; with H; as a carrier gas{11]. The mechanism
includes 17 gas phase species, 6 surface species, 2 bulk species, 24 gas-phase reactions,

and 38 surface reactions.

The initial guesses for the surface site fractions are very important for the coupled
problem. Empirically, we have found cases where poor initial guesses for the surface
unknowns prohibits the coupled problem from converging to a solution, regardless of
how good the gas phase initial guesses. The poor initial guess for the surface site
fractions consist of equal fractions for each species, whereas the true solution has one
species that is very high in concentration compared to the others. The problem with the
same (poor) set of initial guesses is solved successfully using the flux-split method. Poor
initial guesses for the surface species do not hinder the flux-split method from converging
to a correct steady-state solution. Given either method poor guesses for the gas phase and
good guesses for the surface phase lead to convergence in both methods. The surface
model’s relaxation method for solving the surface problem (based on a false transient
algorithm) pushes the surface concentrations into appropriate physically realistic regime,

regardless of the initial guess.

Transit time stepping must be done in the surface model to relax the surface problem
before a steady state solution can be found. Typically, this only needs to be done the first
time the surface model is called, as further calls to the surface model have similar gas
phase concentrations and do not change the surface site fractions greatly. This is shown
in Figure 6.6, as the number of Newton iterations taken per call to the surface model

decreases sharply after the first few calls to the surface model.
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Figure 6. 5: Number of Newton iterations needed for convergence of the surface model as a function
of the calis to the surface model.

There is a trade-off in using the separated method, as more work is done in solving the
surface problem separately than is done in the coupled method. As shown above, the
extra work is used to solve problems with poor surface guesses that could not be solved

using the coupled method. A comparison in run times for solving the problem with gbod

Table 6. 1: Comparison of computation times between methods

Method Time in Time for Time for Total Total
Surface Matrix Matrix Fill Time Residual
Model Solve (sec) (sec) Evaluations
(sec) (sec)
Coupled 0.0 113.49 99.419 311.95 14134
Separated 203.96 365.64 377.82 682.81 15970

for convergence using good initial guesses.
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A substantial amount of work is done in the surface model to solve the surface problem

for every residual calculation. This behavior is reflected in the greater total time needed




6.4 Linking to KMC surface models

Using the same linking methodology, realistic reactor scale models can be linked to KMC
models of growing films to predict both macroscopic and microscopic features in the
growth. In this section, both the reactor scale and surface model will be described, as
well as the linking between the models. Then, results of the model will be compared to
experimental GIXS results. The main point of this section is to show that each model run
separately would not be able to predict important features of the growth, but linked the

models can make predictions on various length scales.

6.4.1 Reactor Model:

The set of differential equations describing mass transfer, heat transfer, and chemical
mechanisms in the reactor is solved by discretizing the reactor domain and solving for
unknowns using the Finite Element Method (FEM). The methodology is described in
detail in Fotiadis et al.[12] Partial differential equations describing heat and mass transfer
are soived to generate the flow and temperature fields in the reactor. The flow and
temperature fields along with the chemical mechanism are then used in solving for
species concentrations throughout the reactor. The separation of solving the flow and
temperature fields before solving for the species concentration profile in the reactor
assumes that the heat of reaction due to chemical reactions in the gas phase do not affect
the flow and temperature fields. This is a good assumption for many MOVPE systems,
as the concentration of the reacting species is normally extremely dilute compared to the
concentration of the carrier gas. From the concentration profiles in the reactor, the flux to
the surface of reactive precursors can be estimated to compute growth rate and uniformity

of the film.

In this work, a reactor designed by Kisker, Fuoss, Stephenson, and Brennan[13] is

modeled. Shown in Figure 6.6 is a two-dimensional axisymmetric diagram of the reactor.
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Figure 6. 6: Two dimensional axisymmetric portrayal of reactor used in GIXS experiments[13].
A simplified gas phase mechanism for the precursors, triethylgallium (TEG) and

tertiarybutylarsine (TBAs), is shown in Table 6.2.
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Table 6. 2: Gas Phase Mechanism for GaAs growth from TBAs and TEG.

Reaction Rate Reference
[14]
1 C4H9ASH2 -> i-C4Hg + AsH; " —48.5kcal
1.7x10"exp
=)
1.2x10" cxp( = 37keal ) [15]
2 (CzHS):;Ga -> (C2H5)2GaH + R
C:H,
1.2x10“exp("3 7"“”) [15]
3 (Csz)zGa -> (Csz) GaH2+ RT
CHy
4 (C;H5)Ga =2 GaHs + C;H;4 FAST

Diffusion and thermal diffusion coefficients were determined through the usual group

contribution methods.

6.4.2 Kinetic Monte Carlo Model

In this work, the KMC method is used to model the evolution of the GaAs surface during
MOVPE growth using TEG and TBAs. Table 5.3 has a list of the transitions and
accompanying rates. Transitions 6-9 in Table 5.3 were used in the simulations, as the
other rates are much faster than the rate-limiting steps to growth (diffusion and
incorporation). Inherent in the growth mechanism is the assumption that Ga is the
limiting reagent, so As is 2ssumed to incorporate fast compared to Ga. This is usually

assumed for MOVPE of GaAs as most reactors are operated As rich.
The only other input parameters to the KMC model are the anisotropic barriers to
incorporating at an up or down step and the nucleation mechanism. It has been

hypothesized that this anisotropic barrier to incorporation leads to step bunching(16, 17].

168




Both parameters have been extracted through comparison to X-ray diffraction data[18,
19]. The anistropic barriers have been extracted through comparison to the degradation
in the oscillating signal for layer-by-layer growth. The overall roughening of the surface
during growth could cause this degradation. The difference between incorporating at an
up step (hopping across a terrace to incorporate at a step edge) and a down step (hopping
down from a ledge to incorporate) is estimated as 2.2 kcal. This estimate was obtained
by varying the barrier and determining the overall degradation of the signal. Too large of
a barrier difference leads to a smoothing of the surface (no degradation of the signal) ,
while too small leads to a coarsening of the surface. The nucleation mechanism was
derived from the comparison of the island formation with the diffuse scattering[18, 19].
The diffuse scattering provides an estimate of the correlation length, the average distance
between islands on the surface. Nucleation occurs in the model when specific

configurations of Ga atoms arrange on the surface, as shown in Figure 6.7.

Figure 6. 7: Nucleation mechanism for Ga on GaAs(100) surface. The circled adatom is fixed in this
configuration.

Nucleation occurs when a Ga adatom is surrounded by other Ga adatoms. Then, the
center Ga adatoms is fixed (as shown by the circle in Figure 6.7). After nucleation, the
center Ga adatom is fixed, and other adatoms can incorporate around it. Incorporation
occurs when an adatom has at least 1 other incorporated atoms as a nearest neighbor and

also has at least 2 total adatoms as nearest neighbors.

To study the GaAs system, one terrace is modeled. The model system is shown in Figure

6.8.
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Figure 6. 8: Vicinal surface of GaAs(100) studied.
The terrace length is computed using the initial miscut of the surface. Periodic boundary

conditions are used to limit edge effects. A step is introduced in the middle of the system

to allow for step-flow motion.

6.4.3 Linking the Models

The FEM and MC models are connected through the flux of species to the substrate. The
MC model uses the flux given by the FEM as inputs, and returns the computed flux. The
FEM uses the flux calculated by the MC model as a boundary condition at the substrate.
The solutions of both problems are iterated until a consistent flux to the surface is
determined. The FEM uses a Newton’s method to solve for the gas phase species
unknowns. In the Newton’s method, a Jacobian (direction matrix) and residuals (error
terms for each unknown) are calculated analytically using the partial differential
equations describing the chemistry of the system. At the elements near the substrate,
species fluxes from the surface are needed. When the surface fluxes are needed, the
Monte Carlo code is called and a flux is computed and sent back to the FEM code. The
Jacobian is updated by numerically differentiating the surface fluxes to obtain the
derivatives of fluxes with respect to the unknown species. This method of solving the

surface problem separately from the gas phase problem and linking through the boundary
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conditions of both models allows the use of any model for the surface problem. This

methodology is exactly the same one developed in Section 6.2.

To minimize running the computationally expensive MC code, a set of procedures has
been developed. A set of partial differential equations representing the surface processes
can be used as a surface model, which can then be fully coupled to the partial differential
equations representing the gas-phase. By solving this problem, a steady state gas phase
solution is obtained. Using this steady state solution as an initial guess in the “linked”
model minimizes the number of MC runs needed in converging the Newton’s Method.
Also, a table of fluxes at varying conditions is stored to minimize the running of the MC

code.

6.4.4 Monte Carlo Model Comparison

The MC model is used to determine the transition between step flow and island-growth
(layer-by-layer) modes. During step-flow growth modes, the majority of the Ga adatoms
incorporate at a terrace edge. Island growth occurs when islands nucleate and coalesce
on terraces. Normally step flow growth is preferred, as flatier films are generally
produced. The growth mode is determined through a complex function of temperature,
flux of adatoms to the surface, and initial miscut of the crystal. Temperature affects the
diffusion length of the adatoms on the surface. The flux of species affects the total
surface concentration of adatoms on the surface, which affects the probability of island
nucleation. The initial miscut of the crystal determincs the average initial terrace length.
If the diffusion length of an adatom is larger than the terrace length and there are fewer
adatoms on the surface than needed for nucleation, adatoms will incorporate at kink sites
on terrace edges and step-flow growth will occur. If adatoms cannot reach terrace edges
before nucleating or incorporating on islands in the middle of a terrace, then island-

growth modes arisc.

Experimental studies have determined the growth mode by cxamining the X-ray

scattering from the surface in MOVPE reactors off the surface. The X-ray scattering is
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monitored at a Bragg peak[20, 21]. At this peak, the bilayers of GaAs scatter exactly out
of phase with the adjacent bilayers. A smooth surface corresponds to one bilayer of
scattering; as the surface roughens during island growth, the bilayers scatter out of phase
with each other and a low scattering signal is recorded. This X-ray scattering signal can
be interpreted as a measure of the roughness of the surface. During island growth, there
is an oscillation in the X-ray intensity as the surface roughens during the nucleation of
islands on the surface, and smoothes during the coalescence of the islands. Step-flow
growth produces a constant X-ray intensity, as the overall roughness of the surface

remains constant during growth.

MC simulations can determine the transition by computiag the variance of the surface
height over the growth period. Oscillations in this measure of surface roughness would
correspond to island growth and a constant signal would correspond to step-flow growth.
A comparison of the oscillations in the X-ray intensity for an experimental and

corresponding simulated system is shown in Figure 6.9.
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Figure 6. 9: Comparison of CTR oscillations between (a) simulated and (b) experimental systems.
The simulated signal matches the frequency of the experimental signal. As the simulated
signal is a measure of the surface roughness in the system, as more monolayers are

grown, the maximum roughness of the surface increases. This is shown by the
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decreasing minimums in each of the oscillations. The experimental signal does not show

this decrease, as the degree of roughness of the surface is not measured.

6.4.5 Linked Model Comparisons

Through linking the models, predictions on both the macroscopic gas phase and the
“mesoscopic” surface can be made. The linked model is compared to experimental
growth rate experiments for the growth of GaAs from TEG and TBAs. In the
experiments, TEG and TBAs are flowed into the reactor (shown in Figure 6.5) and react
on a heated substrate. The growth rate is monitored by in-situ X-ray scattering, and the
number of oscillations of the X-ray intensity gives the number of monolayers of GaAs
grown. The linked model is used to simulate the exact operating conditions of the

reactor.

A comparison of growth rate with changing inlet flux is shown in Figure 6.10(a). The
simulated growth rates exactly match the experimental measurements. The straight line
in Figure 6.10 shows that the growth is mass transport limited. For a given flux to the
surface, the temperature is varied, and the experimental and simulated growth rate is

shown in Figure 6.10(b).
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Figure 6. 10: Map of growth rate as a function of (a) flux of Ga precursor and (b) temperature; ( )
experimental data , (-) simulation resuits.

Again, the simulated growth rates match the experimental growth rates closely. It is

interesting that a mass transport limited system has a slope corresponding to an activation
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energy of 4 kcal. From the simulations, this slope is due to the increased diffusion of
species at higher temperature, which increases the concentration of precursors at the
surface, leading to higher growth rates. These flow effects on the growth rate cannot be
determined unless a reactor scale model is used. Monte Carlo simulations of the
evolution of surface morphology cannot be input the correct flux of species to the surface

without the use of these reactor simulations.

The morphology of the surface during and after growth cannot be determined by FEM,
but can be determined by Monte Carlo simulations. By linking the MC simulation to the
FEM, the growth mode can be determined at various operating regimes. Shown in Figure
6.11 are the experimental and simulated mappings of growth modes with changing flux

and temperature.
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Good agreement is found with the experimental and simulated results, except at high
temperatures and growth rates. The model does not include the breaking up of islands,
and at high temperatures and growth rates, the breaking off of adatoms from the lattice

may be significant.

There are some deficiencies to this model, specifically in the KMC surface model. The
diffusion barrier used, 2.7 eV, is much larger than typical diffusion barriers found on
semiconductor surfaces. This barrier, although measured experimentally[22], is probably
an effective barrier for diffusion. This effective barrier may be made up of a sequence of
reaction and diffusion steps on the surface. As shown in Chapter 7, a more rigorous
model that includes As dimers on the surface will be needed in order to determine smaller
surface structures. When effective barriers are used, large-scale surface structures can be
determined (such as growth mode) but smaller scale structures on the surface (such as
island density) can be determined only by using microscopic inputs. This again brings up
the point that the inputs to the model must be on the same scale as the outputs for the

model.

6.5 Conclusions

Surface and gas phase models for MOVPE growth are linked through their flux boundary
condition at the edge of the growing wafer. The methodology for linking includes flux-
splitting the models. It was shown that flux-splitting exactly matches a coupled model.
The benefits of flux-splitting the problem include better convergence when poor initial
guesses for the surface unknowns are given. Also, any surface model can be used; all
that is needed is a model that takes incoring fluxes and solves for the resulting flux. The

disadvantages of flux-splitting the problem include longer simulation run-times.

The methodology was tested on a case study of GaAs growth using TEG and TBAs.
Using a realistic reactor geometry, the linked model was able to predict both macroscopic
features of the film (such as growth rate), as well as microscopic details (growth mode on

the surface). The benefit of such linked models is the ability to make predictions on
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multiple length scales. Using each model separately, one would not be able to predict
both growth rate and morphology. The reactor scale model cannot predict the
morphology of the film, and the surface model needs as an input, the flux of gas phase

species to the surface.
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Chapter 7: Putting it ail together-Realistic Linked Simulations for GaAs
Growth

This chapter is the capstone of the thesis; many of the methodologies developed in
chapters 1 through 6 are used to simulate a realistic system. The system studied is a
reactor used by Kisker er al[l] for GIXS experiments. This system allowed a
quantitative comparison of both gas phase concentrations and surface morphologies.
Section 7.1 is an introduction to the system and the modeling methodologies. A review
of the experimental setup and results are contained in 7.2. The models are briefly
reviewed in 7.3 and the resulting gas-phase and surface predictions are elucidated in

section 7.4. Conclusions are in Section 7.5.

7.1 Introduction

Understanding the microscopic surface processes that occur in semiconductor growth
during MOVPE is critical in order to determine reactor processing conditions to grow
high quality films. Due to the extreme conditions encountered in MOVPE (high
pressures and temperatures), an in-situ study of the surface during growth is difficult. In-
situ studies of GaAs growth during MOVPE have been done using grazing incidence x-
ray scattering (GIXS)[2] and reflectance difference spectroscopy (RDS)[3]. Also, ¢x-situ
methods, such as scanning tunneling microscopy({4] and atomic force microscopy{5] have
been performed in order to understand the surface morphology during growth.

Experimental and theoretical work has been reviewed in Chapter 5.

In this work, GIXS is applicd for the in-situ study of the vapor phasec epitaxial growth of
GaAs using organometallic sources. Surface kinetics will be derived from the literature
and used to compare simulated and cxperimental growth morphologies. The difficulty in
producing a single model describing MOVPE is inherent in the complex nature of the
process; physical processes occur on a variety of length and time scales. Hcat and mass

transport in the gas phase occurs on the length scales of millimeters, while surface
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processes occur on the length scale of nanometers. A combination of modeling
- techniques will be used to analyze the system; models describing the heat and mass
transport in the gas phase of the reactor will be linked to models of the evolving surface

morphology. Linking methodologies have been developed in Chapter 6.

In this chapter, the KMC model developed for MOVPE surfaces is used in conjunction
with a reactor scale model that mimics the exact reactor used in the GIXS experiments.
This allows a quantitative comparison between gas phase concentrations, growth rates,

and surface morphology.

7.2 Experimental Results

The experimental system has been described previously(1, 2, 6, 7). The experimental runs
were done using triethylgallium and tertiarybutylarsine in a carrier gas of H; at a pressure
of 60 torr. The crystal truncation rod (CTR)[8] and the in-plane diffuse scattering was
observed as a function of time. Shown in Figure 7.1(a) is the time dependent CTR for a
typical growth run at 580 ° C. The CTR shows the familiar oscillations of roughening
and smootning that corresponds to layer-by-layer growth. Each oscillation corresponds
to one bilayer of GaAs growth. Shown in Figure 7.1(b) is a typical diffuse scattering map

monitored in the [110] direction. The well-defined maximum at Aq = 0.02 A’ is a

measure of the island-island correlation length on the surface when the surface is half
covered with islands (at a minimum in CTR intensity). At half coverage of islands, the
correlation length between islands should be similar to the island size in that direction.
The temperature and flux dependence of the island-island correlation length can be seen
in Figure 7.2. The diffuse scattering was monitored in the [110] direction and the
correlation lengths were found to be between 2 and 3 times higher in this direction than in

the [110] at 540 ° C and 0.2 MlJ/sec. suggesting anisotropy in surface diffusion

processcs.
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Figure 7. 1: (a) Time dependent crystal truncation rod for a typical growth run at 580 ° C.; (h)
Diffuse scattering for a typical growth run. Note the maximum at the non-zero scattering

wavevector, q, occurring at the minimum of the first CTR oscillation. This is a measure of the

correlation length of islands en the surface.
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7.3 Models

In order to understand the experimental data, reactor scale models are linked to models of
the evolving surface morphology. The reactor scale model consists of a set of non-linear
partial differential cquations describing mass transfer, heat transfer, and the chemical
mechanism in the reactor. The equations are solved over the reactor domain using the
Finite Element Method (FEM). The methodology is described in detail in Fotiadis et
al.[9] The gas-phase chemical mechanism for the precursors used is simplified from
Mountziaris[10] and Ingle[11]. The reactor models arc important in order to determine the
correct flux of precursors to the substrate; many MOVPE reactors have complex flow and

temperature fields that can affect the transport of growth species to the surface.

A Kinetic Monte Carlo (KMC) approach{12] is used to model the evolution of the surface
morphology during growth. A modified solid-on-solid (SOS) model is used to represent
the surface which takes into account the zincblende crystal structure of GaAs. Either

singular or vicinal substrates arc used as the initial surface, as shown in Figure 7.3.
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(b)

Figure 7. 3: Examples of simulation surfaces used in simulating GaAs(100) (a) singular; (b) vicinal.
The surface consists of 2D lattice sites whose separation is 0.4 nm. and cach successive
bilayer is shifted to match the zincblende crystal structure. A host of processcs can
modify the surface morphology. including adsorption of specics. diffusion of specics on
the surface, surface rcactions. and incorporation of species into the lattice.  The
methodology is similar to that used for simulating MBE growth of GaAs[13-15] and

MOVPE growth[4].

Two different surface models were tested. Model T includes adsorption and diffusion of
Ga specics on the surface.  In this model, As is ignored and assumed to incorporate
immediately when an As site is available. The assumption is typically made in MOVPE
grown GaAs, as the As is 10-40 times in excess of the Ga precursors during growth. The

model is summarized in Table 7.1.
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Table 7. 1: Model I - Ga dynamics only (typical parameters given).

Transition Rate
Ga Adsorption flux from reactor scale model
E,=1.3+#NN*0.2+# NN+, *0.2

The important input parameters to the model are the rates of each of the transitions.

Diffusion of Ga adatoms on the surface is given by Equation 7.1,

R,=1x10" *exp(_E%T) o
Ed=5s+#NNxonN|10+#NNTloENT10

where Ry is the rate of diffusion and E4 is the activation barrier for diffusion. The
activation barrier for diffusion can be anisotropic, as E,, which is the diffusion of an
adatom on a bare surface, can be a function of the direction of movement of the adatom.
Also, the diffusion barrier for an adatom is affected by the number of lateral nearest

neighbors, as #NN,jo and #NNj;, are the number of nearest neighbors of an adatom in
the [110] and [T 10] dircctions respectively, and by the anisotropy of the ncarest neighbor

cnergies, as shown by Exj10 and Exqj¢o. Incorporation in the lattice occurs when adatoms
are surrounded by other adatoms and As is added to the layer above. Incorporation is

reversible, as adatoms can break away from nuclei.

Model II includes adsorption, diffusion, rcaction of organic species, and As; adsorption
and desorption. Only Ga specics and As dimers on the surface are considered during
growth, with As adatoms added to the surface immediately if a growth As site is
available. This assumption is justificd by thc high V/III ratios usually used in MOVPE
for growing GaAs films. The ¢(4x4) As rich rcconstruction is automatically added to
terraces on the surface by As; dimer adsorption desorption, as shown by GIXS
studics[16]. The As; kinetics were derived from Adamson er al.[17] who modeled the
desorption kinctics of arsenic specics from GaAs(100). In modeling growth of GaAs
from triethylgallium and tertiarybutylarsine, the reaction rates of the organic species on

the surface must be considered in MOVPE growth. The As precursor is assumed to react
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quickly to form As on the surface, with both organic species and H; desorbing from the
surface[10]. The desorption of ethyl from the surface was cntered as one of the transitions
on the surface. The desorption of GGa adatoms from the surfacc is negligible compared to
diffusion and incorporation. The final transition is the adsorption rate of species to the
surface, and this is the link to the reactor scale model. Model II is summarized in Table

7.2

Table 7. 2: Model II - Ga, As dimer, and organic dynamics

Transition Rate Reference
Ga flux from model Reactor scale
model
As flux from model Reactor scale
model
As dimer desorption 44 kcal - 8 kcal*# Ga adatoms - 4 kcal* # next [17, 18]
nearest neighbor As adatoms
CHsGa(*) = CHs (g) + 37.5 kcal [19]
Ga(*)
Ga diffusion - [110] 0.9¢V +0.4eV * # Ga adatom [110] direction [20]
direction +0.2 eV * # Ga adatom [ 10]direction
Ga diffusion - [110] 1.1eV +0.4cV * #Ga adatom [110] direction [20]
direction +0.2 eV * # Ga adatom [1 10]direction

The linkage between the reactor scale FEM model and the surface KMC model is through
the flux of specics to the surface. Methods have been developed to link the models that
range from separating both models completely and using the flux from the FEM model as
an input into the KMC model to embedding the KMC model into the FEM modecl as the
boundary condition at the surface. Linking the modcls is needed for any type of
predictive modeling of surface morphology: given rcactor dimensions and operating
conditions, the FEM code calculates the flux to the surface that the KMC code uses to
predict morphologies. In this study, the KMC model was embedded in the Newton
iteration of the reactor scale model, as shown in Chapter 6. This lcads to a strong linking
between the models through the flux boundary conditions and aids in convergence of the

reactor scalc model.
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7.4 Model Results

Due to the flexibility of the linked models, both macroscale gas phase concentrations and

microscale surface morphology can be compared.

7.4.1 Reactor Scale Comparisons:
To validate the reactor model, simulated TBAs corncentrations are compared to
experimental X-ray fluorescence data[l, 6]. In the experiments, the reactor was moved
vertically past a stationary synchrotron beam. The fluorescence rate, a measure of the
number density in the gas phase, was measured at heights above the GaAs substrate. The
experiments consisted of flowing TBAs through the reactor, and measuring the As Ka
fluorescence from the gas phase. The experimental and corresponding simulation results
are shown in Figure 7.4.
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Figure 7. 4: Comparisons of experimental and simulated fluorescence of As as a function of distance
above wafer. (O) Experimental at 50 C, (1) Experimental at 510 C, (@) Simulated at 50 C, ()
Simulated at 51¢ C. ‘
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The simulations accurately predict the gas phase concentration of As in the reactor.
Shown in Figure 7.5 are flood plots of the concentration of As precursors. In the low

temperature (50 C) case, there is a maximum in concentration near the substrate.
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Figure 7. 5: Flood plots of the concentration of As above the wafer (a) 50 ° C; (b) 510° C.

The slow fluid velocities near the surface coupled with the lack of thermal diffusion away
from the surface (due to the small thermal gradicnt) leads to a build up of As near the
surface. The high temperature case (510 C) shows thc opposite result.  There is a
significant decrease in the density of the gas near the heated substrate and therefore a
decrease in the concentration of As-specics.  Also, thermal diffusion of the larger As
specics (compared to the smaller H; carrier gas) away from the hot substrate explains
some of the decrease in concentration. The matching experimental and simulated results

confirm the accuracy of the gas phasc FIEM model.
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During growth processes, the temperature and flow profiles affect the concentration of
growth precursors above the surface. A typical TEG concentration profile in the reactor

is shown in Figure 7.6.
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Figure 7. 6: Flood plot in the GIXS reactor of TEG concentration (mole fraction).
As seen by the concentration profiles, the TEG reacts on the surface, with the resulting
depletion of concentration seen above the wafer. Also, a considerable flow of precursors
never ‘sees’ the wafer and flows directly into the inlet. This underscores the importance

of the gas phase reactor model in determining the correct flux of species to the wafer.



7.4.2 Surface Model Comparisons:

In comparing the model with the experimental results, different length scales can be
compared. The growth rate can be compared on the micron scale, the growth mode can
be compared on the nanometer scale, and the correlation length between islands can be

compared on the order of hundreds of angstroms.

7.4.2.1 Growth Rate:

The growth rate can be compared using the linked model. By embedding the KMC
model into the Newton steps, the growth rate can be determined from the KMC
simulation as a function of the flux to the surface from the reactor scale model. This has
been previously shown in Chapter 6, where the simulated and experimental growth rates
matched using the linked model. A comparison of growth rate as a function of flux of Ga
to the surface is shown in Figure 7.7 (using Model II). The model matches experimental
growth rate measurements. A slight overestimate of the growth rate by the model is due
to a finite size effect of the KMC model. Smaller than realistic size KMC models were
used in the linking simulations in order to run the simulations in reasonable computation
times. Due to the high diffusion rates, islands were formed more quickly on the surface
than on a larger simulated surface. These islands created more available sites for
adsorption that increased the effective growth rate. Moving to larger surfaces gives a
more accurate growth rate measure. Nevertheless, this is again a validation of the reactor

scale model, as this confirms the correct flux of precursors to the growth surface.
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Figure 7. 7: Comparison of experimental (0) and simulated (1) growth rates in the GIXS reactor.

7.4.2.2 Correlation Length:

An interesting development in the experimental results is the temperature and growth rate
dependence on the correlation length on the surface. Surface mobility is dependent on
the temperature, growth rate, and surface. A comparison of these results to similar MBE
results shows that Ga adatoms in MOVPE growth appear to be more mobile than in MBE
growth, and also have a much larger dependence on temperature and growth rate.
Computed from the transition from island growth to step flow growth, the apparent
activation barrier for diffusion was computed as 2.3 to 2.7 eV from GIXS and RDS
experiments in MOVPE growth[1l, 3], while only from 1.3-1.58 eV for MBE
surfaces[21]. These aggregate numbers are ‘lumped’ in that they are a function of many
variables (miscut, temperature, growth rate). A better comparison is one between island
sizes (correlation length) on the surface as a function of temperature and growth rate.

This can be studied through both analytic models and KMC models of surface growth.
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7.4.2.2.1 Analytic Models:

From standard nucleation theory[22], the correlation length should scale as in Equation
7.2, where D is the diffusion length, J is the flux to the surface, /. is the correlation
length, N; is the number density of islands, and % is an exponent that depends on the

minimum number of atoms that form a stable nuclei.

D —X
N, o< 172 oc | = 7.2

The assumptions in the model include isotropic diffusion and irreversible attachment of
the adatoms to the surface. The exponent, ¥, can be computed from the experimental plot,
Figure 7.2(b), but this leads to an unphysical value for y of greater than 1, which implies
an infinite number of atoms as the critical nucleus. Kisker[23] used the same approach to
show that the critical number of atoms in order to form a nuclei should be very large (~25
atoms). The difficulty in applying these models to the GIXS experiments is the standard
nucleation model is only directly applicable to the pre-coalescence regime, while the
scattering measures the correlation lengths at half coverage of islands on the surface.
This may be the reason for the unphysical value of the exponent. The assumptions in this

model can be relaxed if a KMC model is used to represent the surface.

7.4.2.2.2 KMC Models:

To compare to the experimental scattering results, the CTR and diffuse scattering is

computed from the simulated surface. The exact scattering is computed from the atomic

positions by,

I=A@A ()
N, _ (7.3)
A@) =3 f fg@)expliger ;)

j=l
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where [ is the intensity of the scattered beam, A is the structure factor, N, is the number of
atoms in the sample, f; is the atomic scattering factor of atom j, r; is the position of atom j,
and q is the scattering wavevector[24]. The CTR for the simulations is computed at the
[110] positon which is a bulk forbidden reflection; successive bilayers of GaAs scatter
out of phase. This leads to the scattering being extremely sensitive to the top bilayers, so
only the scattering from the highest level of the crystal at every site is computed. The

diffuse scattering is computed in both the [110] and [110] directions from the [110]

position in order to examine the anisotropy of the islands on the surface. Predicted CTR
and diffuse scattering are shown in comparison to the experimental diffuse scattering

data.

The model scattering in Figure 7.8 shows the same features as the experimental
scattering; oscillations in the CTR that correspond to layer-by-layer growth and
oscillations in the diffuse scattering that are out of phase with the CTR. The initial signal
for the CTR is different in the experimental and simulated surface, as the experimental
surface had an As flux to the surface at all times. This created some disorder on the
surface that lowers the initial signal. The simulated surface started with a clean surface
(as shown by the high signal) and started both As and Ga fluxes at the same time. During

growth the scattering shows the same features.
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Figure 7. 8: Comparison of features of simulated and experimental CTR and diffuse scattering (q =
0.0374 A™"). Note the CTR oscillates with the onset of layer-by-layer growth and the diffuse
scattering oscillates out of phase with the CTR.

7.4.2.2.3 Testing Model I:

Using the direct comparison between model and experiments, surface models are tested

to explore the trends in correlation length on the surface as a function of temperature and
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growth rate. Each of the simulated conditions is run on surface sizes of 512 by 512

angstroms or larger. F'irst,‘ simple MBE type diffusion models are used without As,

adsorption and desorpticn.

Figure 7.9 shows a set of simulated runs with isotropic diffusion and nearest neighbor
barriers. Similar results were obtained using a range of diffusion and nearest neighbor
barriers. The temperature dependence of the simulated correlation lengths is less than the
dependence of the experimental correlation lengths. The growth rate dependence of the
correlation lengths is influenced by the nearest neighbor parameters. For this parameter
range, the lower the nearest neighbor energies, the more strongly the correlation lengths
of islands depend on the flux to the surface. Lower nearest neighbor energies imply a
higher number of adatoms to form a stable nuclei . This suggests that the experimental
slope of -0.57 for the growth rate dependence on correlation length is consistent with the
idea that a large number of adatoms are needed for a critical nucleus in MOVPE growth.
This can be contrasted to recent STM studies for MBE growth, where pairwise addition
of 2 Ga adatoms to a critical nucleus of 2 adatoms'is seen for GaAs(001) growth[25). The
dependence of temperature and growth rate on the correlation lengths is not consistent

with the data in Model 1.
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Figure 7. 9: Correlation length as a function of (a) temperature; (b) growth rate for a wide range of
diffusion models. The numbers in the graph give the nearest neighbor barriers for each curve.

From STM studies of MOVPE GaAs growth([4], islands are longer in the [110] direction

than the [110] direction, and the experimental diffuse scattering results are consistent
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with this result. This leads us to examine the effects of surface diffusion anisotropy to
the model. In Figure 7.10, the degree of anisotropy of the diffusion coefficient, Es, is

studied.

The temperature dependence is similar to that using isotropic diffusion. It is to note that
the dependence on growth rate is constant over the range of anisotropies studied. This
seems to imply that the nearest neighbor parameters control the growth rate dependence

of the correlation length. Over the entire range of anisotropies studied, the maximum

ratio of correlation lengths iri"the [110] to the[110] direction is ~1.4, lower than the

experimental values. A plot of the ratio of the correlation lengihs in the [110] and [110]

direction is shown in Figure 7.10(c). Differences in anisotropy of the diffusion barrier do
not change the anisotropy of the islands to a degree anticipated due to the breaking off of
adatoms from nucleated islands in the fast diffusion direction. The adatoms diffuse over

to the edges of nuclei faster in the [110] direction, but also break off at a higher rate than

do adatoms in the [1 10] direction.
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STM studies have also shown that A steps on MOVPE grown surface are much rougher
than B steps[26]. Also, quantum chemical calculations have found that diffusion away
from A steps is slower than diffusion away from B steps on a c(4x4) reconstructed
surface [27]. The‘ degree of anisotropy is also studied for the nearest neighbor energies.
The dependence of correlation length for temperature and ratio of correlation lengths in
the two directions are shown in Figure 7.11. Anisotropy in the nearest neighbor energies

have a large effect on the anisotropy of islands, but as the anisotropy increases, the

temperature dependence of the correlation lengths in the [110] direction decreases.
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Figure 7. 11: Computaticn of correlation length anisotropy as a function of nearest neighbor energy
anisotropy, E,[110] = 1.4 eV, E,[710] = 1.48 eV; (O) NN[110] = 0.15 eV, NN[710] =0.1eV; ( )
NN[110] = 0.2 eV, NN[T10] = 0.1 eV; () NN[110] = 0.25 eV, NN[7 10] = 0.05 eV

The simple Model I does not include the physics necessary to model the MOVPE surface
during growth. Unless an unphysical activation barrier for diffusion is used (as in
Chapter 6), the surface morphology evolution cannot be correctly modeled. Even though
a range of parameter values is used, none fits the data. This behavior suggests that
additional physical phenomena are occurring on the surface during MOVPE growth. This
emphasizes a theme of this work; data and parameters are needed on the same length

scale as the predictions. In this case, there is a need for microscopic data in order to build
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microscopic models. Thus in Model II, surface chemistry is added in order to test if the

added physical detail can explain the GIXS data.

7.4.2.2.4 Model II - inclusion of surface chemistry dynamics:

Models that include As; adsorption and desorption and organic groups on the surface are
tested. Payne et al.[28] showed that the GaAs(100) surface is covered with As dimers
with a coverage of 50-75% of the surface in a c(4x4) reconstruction. The As dimers do
not impede the adsorption of the Ga species, as experimental results show no dependence
on the overall growth rate with increasing As precursor flux. The transitions used in the

simulations are summarized in Table 7.2.

The important features of the model include the nearest neighbor barriers for As;
desorption. This causes a modified c(4x4) reconstruction to appear on the surface with

sufficient As flux to the surface, as shown in Figure 7.12.
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Figure 7. 12: Surface during growth with inclusion of As dimers on the surface. Note the reduction of
dimer density around the islands on the surface, as well as the modified c(4x4) reconstruction on the
surface.

Also, the As dimers cover roughly S50% of the surface. This reconstruction on the surface
allows for roughly 50% of the surface o always be available for Ga precursors to adsorb.
and causes a zero dependence on the As flux, as seen experimentally [29]. The nearest

neighbor barricr for As desorption is derived from Shiriashi and Ito[ 18], as an example of
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the self-surfactant affect of Ga on the surface. The self surfactant effect appears in
Figure 7.12 with the lack of As dimers around islands on the surface. Another important
features is the barrier for ethyl desorption is included in the model, as its time constant at
growth temperatures is on the same order of magnitude as the diffusion barrier. The
diffusion barrier and nearest neighbor barrier for diffusion are extracted from an MD
study of the GaAs c(4x4) surface[20]. Both the diffusion barrier and nearest neighbor
barriers are anisotropic and consistent with experimental studies[4] and theoretical

calculations[30, 31].

The surface model was directly linked to the reactor scale to compute flux to the KMC
models. The growth rates match with experimental growth rates, as shown in Figure 7.7.
The GICS scattering was computed from the growing surface and computed to a measure
of the RDS signal. As explored in Chapter 5, RDS is an in-situ optical probe of the
surface. It has been hypothesized that the oscillations in the RDS signal in certain photon
energies is due to the As and Ga dimers on the surface[32-34]. The model picks this up,
as shown in Figure 7.13. The ndmber of As dimers on the surface is plottcd as a function
of time along with the GIXS CTR. Both show the oscillations with roughening and

smoothing of the surface.
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Note the similarities in the oscillations.

A comparison of the experimental and simulated correlation lengths will respect to

temperature and growth rate is shown in Figure 7.14 and 7.15.
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As shown, the model has a much higher dependence on the temperature than the MBE-
type models. Since the barrier measured by the correlation length dependence on
temperature is a convolution of barriers, the effective dependence on temperature is high
in MOVPE growth. In the model, the temperature dependence is a convolution of the
barrier for ethyl desorption, diffusion, and As, desorption. If the transitions were
independent, the effective barrier would be the sum of the individual barriers. There
seems to be some ‘correlation’ between the barriers, as the effective barrier is less than
the sum, but the correlation is small. This can be explained, as in the early stages of
growth all three barriers must be overcome in order for islands to form. Later stages of
growth proceeds with some percentage of the Ga precursors adsorbing near islands,
bypassing the diffusion barrier and the As; desorption barrier. Other adsorbates land near
islands, and due to the self surfactant effect, have a clear path to an island, unimpeded by
As dimers. The convolution of all these processes forms the effective barrier on the

surface.

7.5 Conclusions

In this work, GIXS experiments were performed in-situ during MOVPE growth of GaAs
to characterize the surface morphology during growth. The temperature and flux
dependence of the correlation lengths was found at half coverage. Standard nucleation
theory is not directly applicable to the experiments, so a combination of FEM and KMC
simulations were done in order to understand the surface processes during growth. The
surface seems to be characterized by a large critical nuclei size and anisotropic diffusion
and/or nearest neighbor barriers. The many surface processes occurring during MOVPE
growth may explain the high measured activation energy for the step-flow to island
growth transition. Desorption of organics, adsorption and desorption of As on the
surface, and anisotropic surface diffusion all play a role in the high ‘effective’ barrier for
diffusion on the surface. The linked models were shown to predict the flux of species to
the surface correctly and can be used to predict surface morphologies given reactor

conditions.
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Chapter 8: Conclusions and Recommendations for Future Work

8.1 Conclusions

Various computational methods can be useful in describing and predicting physical
phenomena. Computational methods such as Monte Carlo simulations, optimization
techniques, and numerical solutions to partial differential equations are all used in this
thesis to model a complex system. Unfortunately, one technique is not sufficient in
modeling all the detail inherent in physical systems. In the MOVPE process, we showed
that phenomena that can greatly affect the growth process are on widely different length
and time scales. In this thesis, we developed models, linked models, and used the linked

models to better understand the physics of the complex MOVPE system.

8.1.1 Kinetic Monte Carlo Simulations

Kinetic Monte Carlo simulations are developed in this thesis to model the TPD process
and growth processes. This modeling technique has shown the flexibility to exactly
model experimental results due to the direct connection between real time and Monte
Carlo steps. The technique is computationally expensive, so different techniques from
computer science were used in order to speed the computation. Hash tables and binary
trees were used in keeping track of the surface and quickly picking the next transition to

take.

Parallel techniques were also used to speed the calculation. In TPD simulations, a
master-slave approach was used to parallelize the diffusion step in algorithm. A speedup
of over 3 times on 9 processors was achieved. The growth model was parallelized using
a new algorithm developed in this thesis that is a variant of a parallel discrete event
simulation. The surface was split onto the processors and growth initiated on each
processor simultaneously. Due to the poor scaling of the algorithm on one processor
(empirically about n%), the algorithm achieves superlinear speedup when there is a large
enough surface on each processor. Superlinear speedup and a large enough parallel
machine allows the computation of micron size surfaces in reasonable runtimes. Also,

the algorithm runs on all tested platforms (SGI Origin 2000, IBM SP-2, and Intel Pentium
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Server). As serial processors become faster, the algorithm will allow the computation of
even larger surfaces. The algorithm allows the modeling of problems that are inaccessible

with current computing technology.

TPD models were developed that can model any surface mechanism. The difficulties in
modeling all mechanisms are inherent when rates on the surface are of widely different
magnitudes. In TPD simulations, when the desorption and diffusion rates are different by
orders of magnitude, different methods must be used in order to simulate the spectra in
reasonable runtime. The thesis developed a model that robustly switches between
modeling techniques when the assumption of fast diffusion leading to a quasi-equilibria
of adsorbates on the surface is met. The algorithm was used extensively in modeling
methyl desoi‘ption off GaAs(100). In conjunction with the TPD algorithm, an
optimization scheme was developed to quantitatively determine parameters for surface
mechanisms. This allows researchers to test surface mechanisms and determine if the

mechanisms are consistent with experimental findings.

KMC simulations have been shown to be flexible in studying a variety of experimental
techniques; an exact comparison between the model and experiments can be made. The
main difficulty in using the models is the computational expense leads to restrictions on
the system size studied. This was alleviated by the development of parallel techniques.

The methodologies have been used to study GaAs(100) growth and TPD systems.

8.1.2 Multiscale Modeling

Multiscale modeling techniques were developed in this thesis that linked realistic surface
morphology models to reactor scale models. Different models must be used in order to
match the needed predictions; for example, reactor scale models are described by sets of
. partial differential equations that represent the macroscopic conservation equations and
surface models can be represented by adatoms hopping on a defined lattice in a KMC
simulation. A reaci-r scale model cannot predict surface morphology and the KMC
simulations eannot predict gas phase concentrations. Only both models used together can

make predictions on both macroscopic and microscopic length scales. The models were
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linked together by matching fluxes inside the Newton iteration of the reactor scole model.
It was shown that this methodology has better convergence properties than a combined
methodology, with the tradeoff of longer runtimes. The technique was used to make
realistic predictions on ihe surface morphology and gas phase concentrations during

GaAs(100) growth.

8.1.3 MOVPE GaAs Growth

A new model was developed for GaAs(100) MOVPE growth. This model explicitly kept
track of As dimers on the surface and included the As dynamics. This was different than
previous MBE models, which ignored the As species due to the Ga species being growth
limiting. In MOVPE growth, Ga is also the limiting reagent to growth, but it was shown
that the As dynamics play a role in the evolution of surface morphology. The As dimers
on the surface block diffusion and access to growing islands. This leads to a large
temperature dependence on the correlation length between islands on the surface (much
larger than in MBE growth). The model may have broad applicability to MOVPE
systems; recently GaN growth was shown to also have this large temperature dependence

on the transition between growth modes[1].

8.2 Future Work

The methodologies in this thesis allow the simulation of many systems that were
previously inaccessible. Better methods can be developed in modeling surfaces through a
modified KMC simulator and better linking methodologies can be developed through
methods used in linking air and ocean models from global climate change. These
methodological advances can lead to multi-scale modeling over the entire range of length
scales from macroscopic reactor simulations to the prediction of the electrical and optical

properties of the thin film.

8.2.1 Kinetic Monte Carlo Simulations

Large scale KMC simulations have been developed in this thesis. The simulations on a
fixed lattice can be extended to new surfaces, such as the GaAs(111). Concurrent

simulations of multiple surface structures can lead to simulations of grain growth on
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semiconductor surfaces. Shown in Figure 8.1 is experimental work of the growth of

novel AlGaAs structures.
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Figure 8. 1: Structures grown out of masked areas on the wafer corresponding to different
compositions of Ga and Al in AlGaAs|2, 3].

The drawback to KMC simulations is the adatoms are forced onto a pre-determined
lattice. The benefit of KMC simulations over MD simulations is that longer length and
time scales are accessible. A new methodology may be developed that is a hybrid
between MD and KMC simulations. For example, after every KMC step is taken, a MD
potential can be used to move adatoms off their lattice sites. This movement can affect

future KMC transitions. In this way, interstitials may be modeled. A sliding scale can be
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attached to the simulation to change the degree of MD or KMC in the model. For
example, some parts of the surface may need more MD steps due to many interstitials,
while other parts of the surface may be relaxed and KMC moves may be the most
efficient method to change the surface structure. Exciting theoretical work in this area

remains to be developed.

8.2.2 Multiscale Modeling

One of the themes of this work and much of the work being done in multi-scale modeling
is methodologies from other academic fields can be applied tor problems in chemical
engineering. One such example is the linking of air and ocean models in global climate
change models. Since such models are extremely expensive to run, linking
methodologies have been developed that use the structure of the problem to minimize
running of each model[4]. In the ocean-air linking, ocean temperature fields change at a
much longer time scale than air models that can be used in smart methods to link the

models.

The other area of multiscale modeling that can be extended is a push into smaller length
scales. After the surface morphology of a given system can be predicted, models can be
used to simulate the device performance from these films. With such models, device
performance characteristics can be directly traced back to reactor conditions. A whole
array of models must be used in this case. The advancement of quantum chemical
techniques is another driver that will allow the predictions of properties on smaller length

scales.

8.2.3 Other Systems

Other physical systems can be modeled using the same basic methods. A simple
extension is the modeling of AlGaAs with the larger surface sizes enabled by the parallel
technology. Segregation of Al and Ga on the surface can be studied, as well as multi-
layer structures. Another example is InAs islands on GaAs. The larger surface that are
accessible to be simulated can lead to a better understanding of island formation on the
surface, as well as why island morphology is drastically different between MOVPE and
MBE growth.
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In addition to MOVPE growth, the methodology can be extended into other physical
systems that are similar. For example, heterogeneous catalysis has many of the same
characteristics of MOVPE growth. Heat and mass transfer and chemical reactions in the
gas phase occur in both systems. Surface processes play an important role in determining
the gas phase concentrations in both cases, and the surface evolves over time. Also,
many areas in biology can be modeled using many of the same techniques. For example,
the transport of viruses through the body can be modeled on many different length scales
(macroscale through blood and microscale through cells). Interdisciplinary research in

this area seems to be a fruitful direction.
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