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ABSTRACT

This thesis presents the results of a simulation study comparing the current
integral control system with an adaptive control system for potential use in a Uniform
Droplet Spray Process. First, an adaptive control algorithm was derived. Then, this
algorithm and the existing integral control algorithm were coded for use in MATLAB
simulations. The simulations were performed against each other over various sampling
periods and noise classes to compare the performance of both droplet diameter mean and
standard deviation. Results showed that for the target diameter of 760 um, the adaptive
controller could produce droplets with the mean diameter of 759.9 um and a standard
deviation of 0.0066 pm, while the integral controller produced droplets having the mean
diameter and standard deviation of 759.7 um and 0.0084 um, respectively. Over the
sampling periods experimented with, the adaptive controller could produce droplets with
the mean diameter of 759.9 um and a standard deviation of 0.0061 um, while the integral
controller produced droplets having the mean diameter and standard deviation of 759.9
pm and 0.0074 pm, respectively.
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1. Introduction

The scope of the research contained in this thesis centers around computer
simulations of a control system designed to improve the pre-solidification production of
solder spheres in a Uniform Droplet Spray (UDS) apparatus. The current integral control
system is modeled in MATLAB resulting in an accurate representation of droplet
formation under current UDS process conditions. Based on the assumptions of that
model a second simulation was constructed around an adaptive control algorithm. Such
an algorithm is believed to filter systematic noise in a more reliable fashion than an
integral controller. The purpose of this investigation is to determine the potential merit of
such a control system based on both the current sensor configuration and the possibility
of a sensor system with a shorter sampling period.

These simulations are constructed to test the controllability under two primary
conditions: white noise and Gaussian noise. There is reason to believe that the latter
element provides justification for an adaptive system, that is to say, a system that can use
past information to predict upcoming systematic variations. The simulations are designed
to quantify the advantage of such a system in the presence of variations that have
previously been modeled as constant but may in fact vary to some unknown degree.

In this work, the algebraic equations governing the size of the metal droplets were
derived. Then, these expressions were broken down for implementation into an adaptive
control algorithm. Next, both the existing integral control system and the adaptive
control system were modeled in MATLAB. The simulations were run under similar
conditions and tested for both the mean and standard deviation of droplet diameters

formed in the presence of white and Gaussian noise.



2. UDS Process

As the drive for faster processing speed continues, electronic components are
continually redesigned to be smaller, faster and denser. It is this last element that is of
special concern to this particular project. A greater number of Input/Output connections
per unit area correlates to a smaller overall chip while maintaining the same performance.
Ball Grid Array (BGA) technology presents a possible avenue of development beyond
the chip configurations that currently exist. Most prominent among conventional
technologies are the quad flat pack array (QFA) and the pin grid array (PGA) chips. The
latter was developed in the 1960s and has great interconnection flexibility. The geometry
of the pins allows for a great many contact points in a given area but at the cost of a
reduced potential for pitch reduction. QFAs use flatter, wider connective devices,
solving some of the problems found in the PGA arrangement. However, the connector
number is far lower and there are serious size restrictions as a result of the peripheral
geometry of the prongs.

BGA technology brings with it the potential for smaller devices at lower cost. In
some cases the size reduction can be as great as fivefold. The metal spheres are used as
the connective devices and allow for higher densities compared to other current methods.
Of additional interest is the lower defect rate in production, especially when compared
with a device such as the PGA chip. Because of its superior qualities and higher
reliability, it is believed that BGA technology could become the standard in the field of
wafer and chip manufacture within the foreseeable future [Rocha, 1997].

The spheres used in BGA technology can be created through a variety of methods.

Currently, the most promising appears to be the Uniform Droplet Spray process. The



apparatus for such a process is composed of a Pyrex chamber, a crucible chamber, a
control system, and a heater. The crucible chamber houses all droplet-generating
functions (see Figure 1). It is here that the metal is melted. The melt is forced through a
sapphire orifice in the bottom of the chamber by pressurized inert gas. This results in a
laminar molten metal jet. This jet is disturbed by a shaft and disk connected to a
piezoelectric stack. The frequency of oscillation of the stack determines the diameter of
the droplets generated by the break up of the laminar jet. After breaking up, the
individual droplets fall through a charging plate that places a positive charge on each one.
This causes them to repel each other and prevents them from merging as they fall. The
spheres begin to solidify as they fall, and the solidification process is completed as the
spheres are collected in an oil bath, or, if in an inert environment such as Nitrogen, at the
end of flight [Chun et al., 2000].

A computer running a visual basic script governs the control system. The data is
taken by a CCD camera/strobe light combination located near the orifice of the crucible
chamber. The output of the computer is sent to a function generator that drives the
piezoelectric stack with the assistance of an amplifier and a transformer. An oscilloscope
is connected in parallel for user convenience. The entire schematic can be viewed in
Figure 2.

The current control system design uses an integral controller in conjunction with
standard image acquisition software. A CCD camera takes images of produced droplets
within five centimeters of the orifice. The droplets are backlit by the strobe light at a

certain frequency corresponding to the speed of the data and image acquisition software



package of the controlling computer. The strobe, flashing at one-tenth the breakup
frequency, freezes the image of the droplets in space for the data acquisition package.

The captured image is then analyzed to determine the produced metal droplet
diameter. The strobe light provides a strong contrast between the dark droplets and a
resulting white background. The image acquisition process uses this contrast to perform
an edge detection function on the image, thus obtaining an approximation of the diameter
of the droplet. Using this information, the control system is able to adjust the breakup
frequency to bring the actual diameter closer to the target diameter.

The present UDS process uses integral control to reduce droplet size variability.
At its most basic level, integral control is the correction of an observed discrepancy with
a target value by the addition or subtraction of that error multiplied by a predetermined
gain [Kuo, 1975]. Within the UDS, this corresponds to the measurement of a produced
metal droplet diameter, a comparison of that value with the target diameter, and, based on
that discrepancy, a modification the driver frequency accordingly.

The governing equations of the droplet diameters are tied to both the intrinsic
properties of the material and the processing conditions in the crucible chamber under

which the spheres are produced. This diameter, d, can be expressed as [Rocha, 1997]:

1 1

d= 9 dopy |8 p+pigh |0
202 o) M
§

where c, is the discharge constant, an empirically determined value based primarily on
the orifice diameter, dy, and the pressure, p. The densities of the material in liquid and

solid form are given by p; and p;, respectively. The remaining factors are gravity, g, the



breakup frequency, f, and the height of the material, in liquid form, in the crucible, A.
The first term on the right-hand side of Equation 1 remains constant throughout the
process. It contains the parameters affecting the state of the metal and the dimensions of
its container. The second term includes the two applicable elements from Bernoulli’s
equation for flow present in this configuration, pressure and molten metal head. It is also
in this term that one can observe the relationship between the breakup frequency and the
diameter of the resulting droplet. To simplify further calculations, the first term on the

right hand side of the equation can be reduced to a constant called ¢,:

9c,z,d2p 6
co{—"’] : Q)

2
2p;

This constant can be withdrawn in all further calculations. An additional

convenience will be the introduction of & where:

1
s=/" 3)
The simplified expression for droplet diameter is as follows:

]
d=c,(p+pighsé. 4
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3.  Adaptive Controller Design

In a general sense, an integral closed-loop control can be modeled as:

f(H)=K ]e(t)dt (5)

where the frequency changes at a rate proportional to the integral of the error signal.
Here K is the gain by which the error signal is multiplied. This gain must be empirically
deduced and needs to be recalibrated for each ball size. The integral control system is
reasonably robust, generating spheres within 3% of the target diameter. Given an initial
frequency, the controller can bring the ball diameter back within control in under six

seconds. In MATLAB, this control script takes on the following form,

error=(Ddr*1e6)-(TD),
freq(i,1)=frequency;
frequencyl=frequency;
frequency=frequency1+(g)*error;
Here (g) is the constant gain (equivalent to K in Equation 5). The entire code can be seen
in Appendix A.

The use of adaptive control, while not strictly dynamic, takes a more holistic
approach to the UDS control system. This algorithm encompasses not only the target
diameter and frequencies as inputs, but also those empirically derived elements that had
previously been held constant for purposes of simplicity [Kuo, 1975]. By allowing those

values, taken together as a holistic constant, to fluctuate over time, a more accurate

frequency could be obtained to produce desired ball diameters.
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The molten metal height cannot initially be taken as constant, and is related to the
velocity of the jet stream exiting the UDS apparatus, vy, in the following way [Yim,
1996]:

dh__ddvy
a4k ©)
where dc is the inner diameter of the crucible. It can be shown that this jet stream

velocity, vy, can be expressed in the following manner:

v,()=c, ,i_____._._(l’*ﬁlg” (’)7_ %)
1

as it is only a function of the variables from Bernoulli’s Equation for laminar flow acting
on the material itself in the liquid state.

By integrating Equations 5 and 6, the following expression can be obtained:

1/p+p,ghit;=a+ﬂt. ®)

Equation 8 is the basis from which the adaptive controller's usefulness is derived.
While gravity and the liquid density of the material remain constants, fluctuations in both

the height of the melt and the pressure acting on the system can now be taken into

account from the controller's point of view. Individual monitoring systems need not be
installed for these two variables because they are taken together in the expression a+ft.

Further examination of this expression reveals the following:

a=cy\p+pgh )
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d2
=c3M, (10)
ﬂ V] \/-Z_dg

Here a is the expression encompassing the initial state of the melt in the crucible,
and S is the dynamic effect of the change in the melt height. Taking all the

aforementioned changes into account, the original expression for the sphere diameter can

be expressed as:

d=(a+p)ic. (11)

Using Equation 11, an adaptive controller should help bring the actual diameter
closer to the target diameter by addressing the effects of both noise and disturbances in
melt height and chamber pressure. The controlled variable, &, is now separated from the
rest of Equation 11 and can respond to variations arising from any part of the equation
within the parentheses. Through this “black box” approach none of the elements
previously held constant are varied individually. Rather, the terms a and £, comprised of
these elements are adjusted over time in an adaptive manner; that is to say, the two
variables may not accurately represent the true values of the variables that constitute
them, but the changes they undergo assist in the ultimate goal of bringing the sphere
diameter closer to the target value.

To get a more accurate error evaluation, a mean squared error approach was
taken. This method results in higher error definition. By setting Equation 11 to zero, and

squaring the absolute value, the following equation results:

J=Y () - (@ - BITHEG] (12)
i=0
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For the purposes of error control, J in Equation 12 must be minimized. In order to give
the adaptive control a time history with which to work, « and # must be modified over
time. Since the only control input into the system is the frequency, which manifests itself

in &, both « and S need to use continuous information.

= - n n n (13)
STYEOT Y0 | [ -TY (@A)

i=0

[am} 2@ -TXEW | | EE0do)
B(n)

Equation 13 shows a matrix implementation of Equation 12. This matrix grows over
time with the addition of each previous £, allowing for systematic discrepancies to be

eliminated as well. This adaptive control takes on the form of Equation 14 below:
-l
Sn+1)=(a(m) - f(n)(n+DT) °. (14)

The implementation of such an expression can be seen in the MATLAB code

below.

u(i)=frequency”(-1/3);
An=An+u(i)"6*[1 -T*(1); -T*(1) (T*(1))"2);
Bn=Bn+u(i)*3*Ddr*3*[1; -T*(1)];
X=(inv(An)*Bn);
u(i+1)=(X(1,1)-X(2,1)*(1+1)*T)*(-1/3)*Ddr;

The entire procedure can be seen in Appendix B. Note the similarity in the

construction of the droplet generating code in both cases. This is to ensure that the

controllers are both responding to identical fluctuations.

14



In order to create a realistic timeframe over which to use historical data, a variable
window size was integrated. This prevents the controller from attempting to handle the
entire frequency data matrix at each update. This feature can be observed in Appendix C.
The larger the window size, the more data the controller has available with which to
adapt to the breakup frequency. However, this window size may be limited by physical
constraints. The larger the windows require the code to process greater amounts of data
to determine the new frequency.

For the purposes of comparison, both the adaptive and the integral controller were
placed under similar conditions in a MATLAB simulation. Of primary concern was the
accurate modeling of the process conditions in which the system was to control. The
mnputs to the program itself were the target diameter, the orifice diameter, the pressure in
the crucible chamber, the initial vibration frequency of the piezoelectric stack, the weight
of the metal, in solid form, that would be used for the melt, the duration of the simulation,
the sampling period, the error level inherent in the system, the gain for the integral
controller, and the window size for the adaptive controller [Rocha, 1997].

Table 1: Initial Conditions of Simulations

Variable Integral Adaptive
Target Diameter (um) 760 760
Orifice Diameter (um) 406 406

Pressure (psi) 5 5
Initial Frequency (Hz) | 1500 1500
Metal Weight (kg) 0.5 0.5
Simulation Duration (s)| 120 120
Sampling Period (s) 0.8 0.8
System Noise 0.025 0.025
Gain 3 -
Window Size - 25,50, 75, 100

15



As Table 1 shows, the initial conditions for the two simulations are almost
identical. The only differences lie in the final two parameters that are specific to the

controllers themselves.
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4. Controller Simulations Results and Discussion

Figure 3 shows the performance of both controllers in the MATLAB simulation in
the absence of noise. The adaptive controller performed better in the simulation with a
sampling time of 0.8 seconds. The droplet diameter settled to exactly 760 pm in the
adaptive case while the integral controller reaches a peak of 759.7 um. It also took the
integral controller 5 seconds to reach a steady-state value. The adaptive controller
reached its steady-state value in 0.5 seconds. Neither run showed overshoot.

Next, the controllers were compared in the presence of white noise (Figure 4).
White noise is modeled by generating random numbers in a uniform distribution and
fitting them within the error range determined empirically from the UDS process itself.
The noise profile was saved to allow both controller simulations to use the same one,
therefore more tightly controlling the experiment. Consistently through the simulations
the adaptive controller deviated less from the target diameter in response to the error
noise than did the integral controller. The results are presented in Table 2.

Table 2: Controller response simulations to white noise

Integral Adaptive

Mean Standard Mean | Standard
Diameter | Deviation | Diameter | Deviation| Window

(um) _{um) (pm) (um) Size
759.7 0.0075 759.8 0.007 25
759.7 0.0075 759.8 0.0067 50
759.7 0.0075 760 0.0067 75
759.7 0.0075 760 0.0065 100

The next comparison involved Gaussian noise. This distribution is believed to
more accurately model the noise that is caused from the system as opposed to the uniform

distribution of the white noise. The resulting responses are presented in Figure 5. Once
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again the adaptive controller’s tighter variance is evident in almost every data point.
Both the sphere diameter standard deviation and mean are more variable than in the white
noise scenario. A complete evaluation of the results is available in Table 3.

Table 3: Controller response simulations to Gaussian noise

integral Adaptive

Mean Standard Mean | Standard
Diameter | Deviation | Diameter | Deviation| Window

(um) (pm) (pm) (um) Size
759.7 0.0084 759.6 0.008 25
759.7 0.0084 760.1 0.067 50
759.7 0.0084 760.3 0.007 75
759.7 0.0084 759.9 0.0066 100

The final point of comparison between the controller simulations involved the
reduction of the sampling period. Sampling periods of 0.6, 0.4, 0.2, 0.01, and 0.005
seconds were compared with that of 0.8 seconds. A minimum of 0.2 seconds is currently
the fastest commercially available sensing system that suits these purposes. For ease of
comparison, the window size was held constant at 50. Both controllers show improved
performance with respect to the standard deviation as the sampling period decreases. The
adaptive controller, however, shows a greater improvement, 0.0061 um as compared to
the 0.0074 pum of the integral controller at a sampling rate of 0.2 seconds. Table 4 shows

a complete breakdown of the results.
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Table 4: Controller response simulations at different sampling periods

Integral Adaptive

Mean Standard Mean | Standard

Sampling | Diameter | Deviation | Diameter | Deviation
Time (s) (um) (um) (um) (um)
0.8 759.7 0.0082 760.1 0.007
0.6 759.7 0.0076 759.9 0.0068
04 759.8 0.0074 759.9 0.0062
0.2 759.9 0.0074 759.9 0.0061
0.01 759.9 0.0074 759.9 0.0061
0.005 759.9 0.0074 759.9 0.0061

An inspection of the results between controller simulations provides considerable
support for the implementation of the adaptive procedure. In the present configuration
the adaptive controller demonstrates superior performance in the simulation even at the
lowest window size. The mean droplet diameter was closer to the target diameter in the
white noise simulation and the standard deviations of both sirnulations favored the
adaptive controller. The results of window comparisons against the baseline of the
integral controller can be seen in Figure 6. Window size has no effect on the integral
controller. Above a size of 50, however, the adaptive controller shows a mean diameter
jump of 0.2 micrometers to 760 pum. A maximum window size of 100 was used for the
purposes of these experiments, but there are undoubtedly physical limitations to window
sizing. From the observed results, the response of the adaptive controller improves with
increasing window size. This is due to the fact that larger window sizes allow for a larger
sample set from which to adapt the breakup frequency. The correlation will need to be

established in actual UDS runs to determine a maximum applicable value.

19



The simulation comparison involving decreasing sampling times also provided
additional support for the adaptive control scheme. Figures 7 and 8 show the effects on
the mean and standard deviation of droplet diameters for both controllers of decreasing
sampling periods. The mean droplet diameter results are not entirely conclusive.
Although the adaptive controller levels out faster, an advantageous trait, it appears to
undershoot the target diameter by 0.1 microns on average, and that trend appears to
continue as the sampling time decreases further. The integral controller shows a steady,
albeit slower, improvement towards the target diameter. Both controller simulations
level off after a sampling time of 0.2 seconds with respect to the mean diameter. The
standard deviation results are more conclusive. The standard deviations of the adaptive
controller are smaller than the integral controller at every sampling period. Also, the rate
at which the standard deviation decreases is faster for the adaptive controller. The
standard deviation improvement seen in the adaptive controller is the result of the
continuous store of frequency data on which to adjust the breakup frequency. The
integral controller only has one past data point with which to correct the frequency. This
implies that, with respect droplet diameter standard deviation, the adaptive system totally
outperforms the integral system.

By virtue of the reduced variability in the adaptive controller, there 1s ample
reason to consider further research for implementation. As mentioned above, the
advantage of the adaptive controller with respect to decreasing sampling times makes 1t a
superior candidate for expansion potential, especially with the advent of a more

structured data acquisition device.
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The next step in development should be the codification of the adaptive system
into the controlling computer using Visual C++. Should the Gaussian noise be as
substantial as believed with respect to white noise, a significant decrease in droplet
diameter variation should be observed. A determining factor of the success of the
implementation of this algorithm will be the speed at which it is able to carry out its
computations. The present codification in MATLAB allows for a frequency update that
does not require a major matrix operation, simply a multiplicative one. If that same
method is not easily importable into C++, then the insertion of a matrix operation that
increases with each iteration could lead to significant processing slowdowns, especially

with the advent of a faster data acquisition package.
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S. Conclusions and Recommendations

The adaptive controller performs better than the integral controller under all
simulated conditions. In the noise simulations, both white and Gaussian, the
improvements to the mean droplet diameter are relatively small, on the order of 0.2 pm
for the noise simulation comparisons. This alone may not be a significant enough gain to
warrant an adoption of the adaptive algorithm into the actual control system of the UDS
process. However, the 0.0016 um decrease in the standard deviation of the adaptive
system as compared to the integral system is notable. The smaller standard deviation and
slightly closer mean make the adaptive controller a worthwhile change to the UDS
control system.

The simulations that involved decreasing the sampling period also lent support for
the adaptive control aigorithm. As Figures 6 and 7 indicate, performance improvements
in both mean and standard deviation are observed in simulations using both control
systems. Again, the mean droplet diameter showed a slightly smaller improvement at
higher sampling periods under the adaptive regime than it did using the integral system.
The standard deviation also decreased as the sampling time decreased. This rate of
decrease was similar for both control system simulations, but at every sampling period
simulated the adaptive controller standard deviation was at least 0.001 pm smalier. The
results of the simulations involving sampling times also show no change between
sampling times of 0.2, 0.01, and 0.005 seconds. It is unknown whether this performance
lower bound exists or if this is the result of the coding of the simulation.

The 1ssue of window sizing is also of great importance to the strength of the

adaptive controller. Not only does a greater window size improve the performance of the
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controller with respect to both mean and standard deviation of droplet diameters, it also
provides another element that could potentially be improved with further research.

In conclusion, the implementation of the adaptive control system into the Uniform
Droplet Spray apparatus appears to have numerous definite benefits with few potential
pitfalls. The current model for the integral controller provides a very accurate simulation
if used within the parameters for which it was designed. Using this baseline, the adaptive
controller performs betier both in terms of approaching the target diameter and in
reducing the variance of droplet diameters. Also, should the sampling period be

decreased, the adaptive controller would further outperform the integral system.
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Appendix A

The following MATAB code simulates the integral control system in the presence of

noise.

function curlcont=adap 2(TD,Od,pressure,frequency,mtlkg,time,noise,Ki)

k=1;

g=Ki;
vi=(mtlkg/8400);
a=toots([8.017e-3 5.585e-3 1.297e-3 -vi});
z0=a(3,1);
Aj=(((Od*1e-6)"2)*(p1))/4;
hyp=20*9.81*8400;
pressuretot=(pressure*6894.7572)+hyp;
vel=0.87*(2*pressuretot/8400)"(1/2);
1=1;
Q=Aj*vel;
T=time(1,2);
for j=time,
b=(-1.1315e62+(1.06372e31+4.4767e35*Q*))"2)(1/2);
c=1.06372e31+4.67703e35*Q*y;
z=-0.154819+((1.70243e9)/(c+b)"(1/3))+(3.5198e-12*((c+b)*(1/3)));
hyp=(z0-z)*9.81*8400;
pressuretot=(pressure*6894.7572)+hyp;
vel=0.87*(2*pressuretot/8400)"(1/2);
w=vel/frequency;
Ddr=(1+(noise(1)))*(.9848*(6*Aj*w/p1)"(1/3));
Q=Aj*vel;
error=(Ddr*1e6)-(TD);
freq(i,1)=frequency;
frequency l=frequency;
frequency=frequency1+(g)*error;
Dd(i,1)=Ddr;
zz(i,1)=20-z;
11, 1)=1;
vv(i,1)=vel;
1=1+1;

end

[mean(Dd),std(Dd)]
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plot(time,(Dd*1e6),’b:');
hold off;

Y%pause

%plot(time,zz);

%pause
%plot(time,freq,'b");
%pause

%oplot(ii,Dd);

%pause

Y%plot(time,vv);
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Appendix B

The following MATAB code simulates the adaptive control system in the presence of

noise.

function UDS=adap 1{TD,Od,pressure,frequency,mtlkg,time,noise,ws);

%System initialization

vi=(mtlkg/8400);

a=roots([8.017e-3 5.585e-3 1.297e-3 -vi]);
z0=a(3,1);

AJ=(((0d*1e-6)"2)*(p1))/4;
hyp=z0*9.81*8400;
pressuretot=(pressure*6894.7572)+hyp;
vel=0.87*(2*pressuretot/8400)"(1/2);
Q=Aj*vel;

T=time(1,2);

%~ Controller initialization
%ws=10; %window size
wvl=ones(ws,1);
wv2=-T*((1:ws)-1)’;
wv3=wv2."2;
wv=[wvl,wv2,wv2 wv3];
wu=zeros(ws,1);
wd=zeros(ws,1);

1=0;
uu={];

dd={};

for j=time,
%Ddr calculation
b=(-1.1315e62+(1.06372e31+4.4767e35*Q*})"2)"(1/2);
¢=1.06372e31+4.67703e35*Q¥*j;
7z=-0.154819+((1.70243e9)/(c+b)(1/3))+(3.5198e-12*((c+b)*(1/3}));
hyp=(z0-z)*9.81*8400;
pressuretot=(pressure*6894.7572)+hyp;
vel=0.87*(2*pressuretot/8400)"(1/2);
w=vel/frequency;
Q=Aj*vel;
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Ddr=(1-+noise(i+1))*(.9848*(6* Aj*w/pi)*(1/3));

%Frequency update
uu=[uu;frequency”(-1/3)];
dd=[dd;Ddr};

ul=length(uu);
wu=uu(max([1,ul-ws+1]):ul);
wd=dd(max([1,ul-ws+1]):ul);

lw=length(wu);
A=reshape(wv(1:lw,:)'*wu."6,2,2);
B=wv(1:lw,[1,2])"*(wu.*wd)."3;
ifi=0
X=[uu(1)*-6*(uu(1)*Ddr)"3;0];
else
X=inv(A)*B;
end
frequency=(X(1)-X(2)*Iw*T)*(TD*1e-6)"(-3);
1=1+i;
end

[mean(dd),std(dd)]

plot(time,(dd*1e6),'r');
hold;
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