
A Fast Algorithm for the Bipartite Node
Weighted Matching Problem on Path Graphs

with Application to the Inverse Spanning Tree Problem
by

Ravindra K. Ahuja
James B. Orlin

SWP# 4006 February 1998

A Fast Algorithm for the Bipartite Node Weighted Matching Problem

on Path Graphs with Application to the Inverse Spanning Tree Problem

Ravindra K. Ahuja*
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

James B. Orlin
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

(Revised February 14, 1998)

* On leave from Indian Institute of Technology, Kanpur 208 016, INDIA.

A Fast Algorithm for the Bipartite Node Weighted Matching Problem
with Application to the Inverse Spanning Tree Problem

Ravindra K. Ahuja* and James B. Orlin**

ABSTRACT

In this paper, we consider the bipartite node weighted matching problem on a
special class of graphs, called path graphs, and develop a highly efficient algorithm for
solving it. This matching problem arose while solving the inverse spanning tree problem

defined as follows. Given an undirected graph GO = (NO, A 0) with n nodes, m arcs, and

an arc cost vector c, and a spanning tree T, the inverse spanning tree problem is to

perturb the arc cost vector c to a vector d so that TO is a minimum spanning tree with
respect to the cost vector d and the cost of perturbation given by id - cl =

(ij)EAldij-cijl is minimum. We show that the dual of the inverse spanning tree

problem is -a bipartite node weighted matching problem- on a path graph that contains m
nodes and as many as (m-n+l)(n-l) = O(nm) arcs. We first transform the node weighted
matching problem into a specially structured minimum cost flow problem and use its

special structure to develop an O(n3) algorithm. We next use its special structure more
effectively and use a more sophisticated transformation to solve the node weighted

matching problem in O(n2 log n) time. This approach also yields an O(n2 log n)

algorithm for the inverse spanning tree problem and improves the previous O(n 3)
algorithm.

*Sloan School of Management, MIT, Cambridge, MA 02139, USA; On leave from Indian Institute of
Technology, Kanpur 208 016, INDIA.

** Sloan School of Management, MIT, Cambridge, MA 02139, USA.

2

1. INTRODUCTION

In this paper, we study the bipartite node weighted matching problem on a special

class of graphs, called path graphs, and consider its application to the inverse spanning

tree problem. Let GO = (N 0, A0) be a connected undirected network consisting of the

node set NO and the arc set A0 . Let n = IN°0 and m = A°0 . We assume that NO = { 1, 2, ...

, n} and A0 = {a1, a2, ..., am}. We denote by tail[j] and head[j] the two endpoints of the

arc aj. Since each arc aj is undirected, we can make any of its endpoints as tail[j] and the

other endpoint as headlj]. Let TO be a spanning tree of G0 . We assume that the arcs are

indexed so that TO = {a,, a2, ... an_ }. We refer to the arcs in TO as tree arcs and arcs

not in TO as nontree arcs. In the spanning tree T°, there is a unique path between any two

nodes; we denote by P[aj] the set of tree arcs contained between the two endpoints of the

nontree arc aj. In this paper, we use the network notation such as tree, spanning tree,

matching, rooted tree, path, directed path, as in the book of Ahuja, Magnanti and Orlin

[1993]. We represent a path as il-i2 -i 3- ... - ik with the implicit understanding that all the

arcs (i1, i2), (i2, i3), ... , (ik-1, ik) are present in the network. We refer to the nodes i2, i3,

... , ik-l as the internal nodes in the path il-i2-i3 - ... - ik . We first define the problems

studied in this paper.

Bipartite Node Weighted Matching Problem. Let G = (V, E) be a bipartite graph with

V = V 1uV2 , E V1xV2 and node weights given by the vector w. Let M be an (arc)

matching in G, and let Mv denote the set of matched nodes in M, that is, the set of nodes

in V that are incident to some arc in M. The bipartite node weighted matching problem is

to identify a matching M for which iEM v w i is minimum.

Path Graph. A path graph is a bipartite graph defined with respect to an undirected

graph GO and a spanning tree TO in G° . As above, we assume that that TO = {a1 , a2, ...,

an_1}. We denote the path graph with respect to GO and TO by G' = (N', A') and define it

as follows. The node set N' = N' u N satisfies N'1 = {1, 2,...., n-1} and N = {n, n+1,

... , m} and the arc set A' is obtained by considering each nontree arc aj one by one and

adding the arc (i, j) for each ai E P[aj]; that is, A' = {(i, j): ai E P[aj], 1 < i < n-1, and n <

3

j < m}. Observe that the path graph contains m nodes and as many as (m-n+l)(n-1) =

O(nm) arcs.

Inverse Spanning Tree Problem. The data of the inverse spanning tree problem consists

of a spanning tree TO of GO and an arc cost vector c with cj denoting the cost of the arc aj.

The objective in the inverse spanning tree problem is to find an arc cost vector d such that

TO is the minimum cost spanning tree with respect to d and such that jl Idj-cji is

minimum.

We show in this paper that the dual of the inverse spanning tree problem is a

bipartite node weighted matching problem on a path graph that contains m nodes and as

many as (m-n+l)(n-1) = O(nm) arcs. This allows us to solve the inverse spanning tree

problem using any algorithm for the bipartite node weighted matching problem. The

node weighted matching problem is a matroid and hence a greedy algorithm can be used

to obtain its optimal solution (see, for example, Papadimitriou and Steiglitz [1982]). We

however concentrate on developing faster algorithms in this paper. We first transform

the node weighted matching problem into a specially structured minimum cost flow

problem where all arcs have unit or infinite capacity and only the arcs entering the sink

node have nonzero costs. We show that we can solve this minimum cost flow problem

by solving a sequence of graph reachability problems and use its special structure to

develop an O(n 3) algorithm.

We next focus on developing an even faster algorithm. Our minimum cost flow

formulation of the inverse spanning tree problem has O(nm) arcs, which for completely

dense networks becomes O(n 3). Since any minimum cost flow algorithm must look at

each arc at least once, it appears difficult to improve the running time of the minimum

cost flow algorithm unless we can represent the minimum cost flow problem more

compactly. We next present an equivalent formulation of the minimum cost flow

problem that uses only O(m log n) arcs. This formulation allows the node weighted

matching problem to be solved in O(n 2 log n) time. This approach yields an O(n2 log n)

algorithm for the inverse spanning tree problem, which improves the previous best time

bound of O(n3) for solving this problem due to Sokkalingam, Ahuja and Orlin [1996].

4

2. APPLICATION TO THE INVERSE SPANNING TREE PROBLEM

In this section, we show the application of the bipartite node weighted matching

problem to inverse optimization. Inverse optimization is a relatively new area of research

within the operations research community. Ahuja and Orlin [1998a, 1998b, 1998c]

describe several applications of inverse optimization, and describe solution techniques for

solving the general inverse optimization problem, inverse linear programming problem,

and inverse network flow problems. Sokkalingam, Ahuja and Orlin [1996] have studied

the inverse spanning tree problems.

In this section, we show that the inverse spanning tree problem can be

transformed to a bipartite node weighted matching problem on the path graph.

Consider the graph GO = (N 0 , A0) where TO is a specified spanning tree. Recall that the

objective in the inverse spanning tree problem is to perturb the arc cost vector c to d such

that TO is the minimum cost spanning tree with respect to d and such that =lldj -cjl is

minimum. It is well known (see, for example, Ahuja, Magnanti and Orlin [1993]) that TO

is a minimum spanning tree with respect to the arc cost vector d if and only if it satisfies

the following optimality conditions:

di < dj for each arc a i E P[aj] and for each j = n, n+l, ... , m. (1)

Now observe from (1) that increasing the cost of tree arcs and decreasing the cost

of nontree arcs does not take the tree TO closer to satisfying the optimality conditions.

This observation implies that there exists an optimal cost vector d such that d = c + ox, cai

< 0 for each i = 1, 2, ... , (n-l), and j 0 for each j = n, n+l, ..., m. This observation

allows us to formulate the inverse spanning tree problem as follows:

Minimize YjC nocj- -i11caj (2a)

subject to

ci + i < cj + j for each ai E P[aj] and for each j = n, n+l, ... , m, (2b)

c i < 0 for each i = 1 to (n-), and aj 0 for each j = n, n+ , ... , m. (2c)

or, equivalently,

5

Maximize i j- j=nJ (3a)

subject to

a i - aj < cj - c i for each (i, j) E A', (3b)

ai < O for each node i E N' and cj > 0 for each node j E N 2 , (3c)

where the graph G' = (N 1 uN2, A) is the path graph defined with respect to the tree T °.

Recall from Section 1 that each node i E N corresponds to the tree arc ai and each node

j E N 2 corresponds to the nontree arc aj. If we associate a dual variable xij with the arc

(i, j) in (3b), then the dual of (3) can be stated as follows:

Minimize (cj-c i) xij = Y cj(Exij)- ci(xij) (4a)
(i,j)A jeN {i:(i,j)eA} iEN' {j:(i,j)eA }

subject to

d{j:(i,j)eA'}Xij < 1 for each node i E N1 , (4b)

{i:(ij)eA,}Xij < 1 for each node j E N 2 , (4c)

xij > 0 for each arc (i, j) E A'. (4d)

Clearly, (4) is a mathematical formulation of the bipartite node weighted

matching problem on the path graph, where we associate a weight of -ci with any node i

E N' and a weight of cj for each node j E N2 . For every matching M of G', we may

represent M by its vector x defined as xij = 1 for every arc (i, j) E M and xij = 0 for every

arc (i, j) o M. We will also refer to x as a matching.

3. AN O(n 3) ALGORITHM

In this section, we describe a simple O(n3) algorithm to solve the inverse

spanning tree problem. An improvement of this algorithm using a more sophisticated

data structure will be presented in the next section. Our algorithm first transforms the

bipartite node weighted matching problem to the minimum cost flow problem. It then

uses the successive shortest path algorithm to solve the minimum cost flow problem and

uses its special structure to speed up various computations. In the subsequent discussion,

we shall refer to the bipartite node weighted matching problem on the path graph more

briefly as the node weighted matching problem.

6

We now describe the transformation of the node weighted matching problem in

G' = (N', A') to a bipartite minimum cost flow problem in a network which we represent

by G = (N, A). This minimum cost flow problem has the following nodes: (i) a set N 1 of

(n-l) left nodes, one left node i corresponding to each arc ai E TO; (ii) a set N2 of m right

nodes, one right node j corresponding to each arc aj A0 including arcs of TO; (iii) a

source node s; and (iv) a sink node t. The minimum cost flow problem has the following

arcs: (i) a source arc (s, i) from the source node s to every left node i; (ii) a sink arc (j, t)

from each right node j to the sink node t; (iii) an arc (i, i) from every left node i to the

corresponding right node i (this arc corresponds to a slack variable); and (iv) an arc (i, j)

from a left node i to the right node j for every arc (i, j) in the path graph G'. We define

the supply/demand vector b as follows: b(s) = -b(t) = (n-l), and b(i) = 0 for every other

node i. In the network G, we set the capacity of each source and sink arc to 1, and set the

capacity of each remaining arc to infinity. Finally, we set the cost of each sink arc (j, t) to

cj and the cost of all other arcs to zero. Let pt = jETO cj. The following result

establishes a connection between the node weighted matching problem in G' and the

minimum cost flow problem in G.

Lemma 1. For every feasible matching x'in the network G ' there exists a feasible flow x

in G satisfying cx = c 5c' + u. Conversely, for every feasible flow x in G, there exists a

feasible matching x' with cx = c x5' + u.

Proof. Consider a feasible matching in G'. Let Ni(M) and N (U) respectively, denote

the sets of matched and unmatched nodes in N;. Similarly, let N2(M) and N2(U),

respectively, denote the sets of matched and unmatched nodes in N 2 . Observe that in G'

the contribution of a matched arc (i, j) to the objective function (4a) is cj - ci. Notice that

C'x' = C{(i,j)~N} (cj -ci) xj= "{jEN2(M)}cj - y{iNl(M)} ci . We obtain the flow x

in the network G corresponding to the matching x' as follows. We send one unit of flow

along the path s-i-j-t for every arc (i, j) that satisfies x = 1, and one unit of flow along

the path s-i-i-t for every node i N;(U). Observe that cx = X{jEN 2 (M)}Cj+

Y{ieN(u)} Ci Then, cx - c'x' = {ieN'} ci = p. Hence, cx = c'x' + p., completing the

proof of one part of the theorem. To prove the converse result, let x be a flow in G. We

7

obtain a matching x' from x in the following manner: we let xij = 1 if xij = 1, i s, j t,

and i j; otherwise xjj = 0. The proof that cx = c'x' + p is similar to the proof of the first

part. +

The minimum cost flow problem in the network G satisfies the following

properties: (i) each source and sink arc in the network has a unit capacity; (ii) there are

(n-1) source arcs; and (iii) all arcs other than the sink arcs have zero cost of flow. These

properties allow us to solve the minimum cost flow problem in O(n 3) time using simple

data structure. We first need to define some additional notation. Consider the network G

= (N, A), where N = {s, t}uN1uN2 . For any node j E N 2, we let A(j) = {i : i E N 1 and

(i, j) A}. Thus, A(j) is the set of incoming arcs at node j. Let x be a feasible flow in

the network G. With respect to the flow x, we call an arc (i, j) E N 1 x N 2 a matched arc

if xij = 1. If xij = 1, then nodes i and j are both said to be matched. Let M2(x) denote the

set of matched nodes in N 2 with respect to the flow x.

We define the residual network G(x) with respect to the flow x as follows. We

replace each arc (i, j) A by two arcs (i, j) and (j, i). The arc (i, j) has cost cij and

residual capacity rij = uij - xij, and the arc (j, i) has cost cji = - cij and residual capacity rji

= xij. The residual network consists only of arcs with positive residual capacity. In the

residual network G(x), let R 1 (x) and R 2(x), respectively, denote the sets of nodes in N 1

and N 2 which are reachable from node s (that is, have directed paths from node s). We

can determine the sets R 1 (x) and R 2(x) using a graph search algorithm. The search time

is proportional to the number of arcs in the residual network G(x), which in our case is

O(nm).

We use the successive shortest path (minimum cost flow) algorithm to solve the

minimum cost flow problem in the network G. The successive shortest path algorithm is

a well-known algorithm to solve the minimum cost flow problem (see, for example,

Ahuja, Magnanti and Orlin [1993]). This algorithm starts with x = 0 and proceeds by

augmenting flow along shortest (directed) paths from node s to node t in the residual

network G(x). Observe that any directed path from node s to node t will contain exactly

one sink arc, and the cost of the path will equal the cost of the sink arc. Consequently,

the shortest path in G(x) will contain the smallest cost sink arc among all sink arcs

emanating from nodes in R2 (x). We state this result as a property.

8

Property 1. Let cq = min(c : j R2(x)}, and let P[q] be any directed path from node s

to node q. Then the directedpath P[q]-t is a shortest path in G(x) fom node s to node t.

Our algorithm for the node weighted matching problem uses Property 1 but not

directly. Its direct use requires computing the set R 2 (x) which takes O(nm) time, since

the network G contains O(nm) arcs. We will show how we can identify a shortest path in

G(x) from node s to node t in O(n2) time. Our algorithm instead determines Rl(x) and

for each node i E Rl(x) determines a directed path from node s to node i which we

represent by S(i). Assuming that Rl(x) has been determined, the following result allows

us to determine the reachability of any node j E N 2.

Property 2. There is a directed path from node s to a node j e N 2 if and only if

Rl(x)rAO) is nonempty.

Our algorithm for the node weighted matching problem first orders the nodes in

N 2 in the nondecreasing order of the costs cj's. Let the vector a denote the resulting node

ordering, that is, co(l) < c(2) < < c(m). The algorithm then examines nodes in this

order and uses Property 2 to determine the first unmatched node q that is reachable from

the source node s. The node order ensures that Property 1 is satisfied and the shortest

augmenting path from node s to node t passes through node q; subsequently, the

algorithm augments a unit flow along this path. If an unmatched node is not reachable

from node s, then it can be easily proved that it will not be reachable in subsequent

stages. Thus the algorithm need not reexamine any node in N 2. Figure 1 gives an

algorithmic description of the inverse node weighted matching algorithm.

9

algorithm inverse spanning tree;
begin

let C denote an ordering of the nodes in N 2 in the nondecreasing order of cj's;
x = 0;
compute R 1(x) c N 1;
label all nodes in Rl(x) and unlabel all other nodes in N 1;
forj := 1 to m do
begin

q: = C];
if there is a labeled node in A(q) then
begin

select a labeled node p in A[q];
augment one unit of flow in the path s-S[p]-q-t;
update x and G(x);
compute Rl(x);
mark all nodes in Rl(x) as labeled and all other nodes in N 1 as unlabeled;

end;
end;
x is an optimal flow in the network G;

end;

Figure 1. The node weighted matching algorithm.

We next study the worst-case complexity of the node weighted matching

algorithm. Let dmax denote the maximum indegree of a node j E N 2. It follows that dmax

2 IA(j)I for each j E N 2. In the worst-case, dmax can be as large as n-1, but it may be

much smaller as well. We will determine the running time of the algorithm in terms of

dmax. The algorithm takes O(m log m) = O(m log n) time to determine the node ordering

o. An iteration of the for loop examines each arc in A(q) to find a labeled node p

(Operation 1). In case it succeeds in finding a labeled node, then it augments one unit of

flow along the shortest path (Operation 2); updates x and G(x) (Operation 3); computes

R l(x) (Operation 4) and labels nodes in N 1 (Operation 5). Clearly, Operation 1 takes

O(dmax) time per node in N 2 and O(m dmax) overall. Operations 2 through 5 are

performed whenever an augmentation takes place. There will be exactly (n-l)

augmentations because an augmentation saturates a source arc, there are (n-1) source

arcs, and eventually each source arc will be saturated. An augmentation contains at most

2n+2 nodes because its internal nodes alternate between nodes in N1 and N 2 and IN1 = n.

Consequently, Operations 2 and 3 require O(n) time per iteration and O(n2) overall.

10

We next focus on Operation 4 that involves computation of Rl(x). Let M 2(x)

denote the set of matched nodes in N 2 with respect to x. Any directed path from node s

to a node p in N 1 in G(x) is of the form s-i 0-j -i1-j2 -i2 - -... jk-ik, where each of the arcs

(jl, il), (2, i2), ... , O(k, ik) is a reversal of a matched arc in x. Hence all the nodes jl, j 2, ..-,

Jk are matched nodes in x. In other words, any directed path in G(x) from node s to a

node p in N 1 must have all arcs incident to nodes in M 2(x) (except the first arc which is a

source arc). This observation allows us to compute R 1(x) by applying the graph search

algorithm to a smaller subgraph G s = (NS, AS) defined as follows: NS = {s}UNluM 2(x)

and AS = {(s, i) : i E N 1 }u{(i,j) in G(x) : i E M 2(x) orj E M 2(x)}. Since M 2(x) < (n-1),

we can construct GS(x) in O(n dmax) time and run the graph search algorithm to find all

nodes reachable from node s in the same time. A graph search algorithm not only finds

the nodes reachable from node s, it also finds the directed paths to those nodes which it

stores in the form of predecessor indices. Hence Operation 4, which consists of

computing Rl(x), takes O(n dmax) time per iteration and O(n 2 dmax) time overall. After

computing Rl(x), we label nodes in N 1 in O(n) time. We summarize our discussion with

the following result.

Theorem 1. The node weighted matching algorithm solves the node weighted matching

problem, and hence the inverse spanning tree problem in O(n2 dma) time, where dma is

the maximum indegree of any node in N 2.

Since dmax = O(n), we immediately get a bound of O(n3) for both the problems.

This time bound matches the time bound of the algorithm by Sokkalingam et al. [1996]

for the inverse spanning tree problem. However, the algorithm given here uses simpler

data structure and is easier to implement. An additional advantage of this algorithm is

that its running time can be further improved to O(n 2 log n) by using some additional

transformations. We study this speedup in the next section.

4. AN O(n 2 log n) ALGORITHM

In this section, we develop an improved implementation of the O(n3) algorithm

for the node weighted matching problem developed in Section 3. A fundamental

bottleneck operation of the minimum cost flow formulation given earlier is that each

11

node in N 2 may have as many as n-1 incoming arcs. Thus the minimum cost flow

network may contain as many as Q(nm) such arcs. If the original spanning tree problem

is defined on a dense network, this bound becomes Q(n3). Since any minimum cost flow

algorithm must look at each arc at least once, we obtain a lower bound of Q(n3) for dense

minimum cost flow problems obtained through this formulation. Our improvement

described in this section in based on a transformation that reduces the number of arcs in

the minimum cost flow formulation from O(nm) to O(m log n) and improves the running

time of the algorithm from O(n 3) to O(n2 log n).

Notation and Definitions

We now introduce some additional notation. We will henceforth conceive of the

spanning tree TO as a tree rooted at node 1. We visualize the tree TO as if it is hanging

down from node 1. We use the notation that arcs in the tree denote the predecessor-

successor relationship with the node closer to the root being the predecessor of the node

farther from the root. A node in the tree can have multiple successors but each non-root

node has exactly one predecessor. We denote the predecessor of node i by pred(i) and

follow the convention that pred(1) = 0. We define the descendants of a node i to be the

set of all nodes belonging-to the subtree of To rooted at node i, that is, containing node i,

its successors, successors of its successors, and so on. We denote by d(i) the number of

descendants of node i. We assume without any loss of generality that for any node its

child with the maximum number of descendants is its leftmost child.

Consider a tree arc (i, j) with j = pred(i). As per Sleator and Tarjan [1983], we

call an arc (i, j) heavy if d(i) >2 /2 d(j), that is, node i contains at least half of the

descendants of node j. An arc which is not heavy is called a light arc. Notice that since

the descendant set of nodes includes node i, node i will have at most one heavy arc going

to one of its successors. If a node has a heavy arc directed to its successor, then this arc

will be node's leftmost arc. We denote by q' the set of heavy arcs in TO and by Z the set

of light arcs in T°. We define a heavy path as a path in T O consisting entirely of heavy

arcs and which is maximal in the sense that none of its supersets satisfies this property.

We define the root of a heavy path as the node on the path closest to node 1. We refer to

a subset of a heavy path as a heavy subpath. We illustrate the definition of heavy arcs

using the numerical example given in Figure 2. In the figure, we show the light arcs by

thin lines and heavy arcs by thick lines. The tree has three heavy paths: 1-2-4-7-9-12, 5-

8-10-13, and 3-6, with roots as 1, 5, and 3, respectively.

12

al

a2

a4

Figure 2. The initial tree T .

We point out that our definitions of the heavy arcs have been adapted from the

dynamic tree data structure due to Sleator and Tarjan [1983]. The two properties we

prove next, Property 3 and Lemma 2, can also be found in the same reference.

Property 3. The set W of heavy arcs comprises of a collection of a node-disjoint heavy

subpaths.

Proof. Any node in TO is incident to at most two heavy arcs - one going towards to its

successors and one to its predecessor. This fact together with the acyclicity of the tree TO

implies the property.

Each node i in the tree TO has a unique path to the root node which we call the

predecessor path and denote it by P[i]. We can efficiently identify the predecessor path

P[i] by tracing the predecessor indices starting at node i. Now consider a predecessor

path from any node k to the root node. This path is a sequence of heavy and light arcs,

where heavy subpaths alternate with light arcs. The following lemma shows that a

predecessor path will have O(log n) light arcs and, hence, O(log n) heavy subpaths.

Lemma 2. A predecessor path can have at most O(log n) light arcs and at most O(log n)

heavy subpaths.

Proof. Consider the predecessor path of node k in TO starting at node k and ending at the

root node. Observe that as we move along the predecessor path, the number of

descendants of the nodes encountered in the path strictly increase. Further, whenever we

encounter a light arc (i, j) with j = pred(i), then the number of descendants are at least

doubled (because d(i) < '/2 d(j)). Since the tree TO has n nodes, we can have at most

Llog nJ light arcs. Since each heavy subpath lies in between two light arcs (except the

subpaths at the beginning and at the end of the predecessor path), there can be at most

[log nJ + 1 heavy subpaths, completing the proof of the lemma.

We will assume in the subsequent discussion that arcs in the tree TO are numbered

so that all arcs in each heavy path are consecutively numbered. We accomplish this by

performing a depth-first search of the tree TO and numbering the arcs in the order they are

examined. While performing the search, we follow the convention that arcs

corresponding to the children of each node are examined from left to right. (The tree in

Figure 2 shows such an ordering of arcs.) This convention together with the fact that any

13

heavy arc is a leftmost arc implies that arcs will be renumbered in a manner so that arcs
in each heavy path (or, subpath) are consecutive.

Type 1 and Type 2 Subpaths

We are now in a position to describe the basic idea behind our improvement. The

running time of the inverse spanning tree algorithm described in the previous section is

O(n2 dmax), where dmax is the maximum indegree of any node in N2 . For the minimum

cost flow formulation described earlier, dmax could be as large as n and the running time

of the algorithm is O(n 3). In the new equivalent formulation described in this section,

dmax= O(log n), and the running time becomes O(n2 log n).

Consider any nontree arc aj in the original graph. In the previous formulation, a

node j E N2 has an incoming arc from every node i E N1 if arc ai E P[aj]. Recall that

P[aj] is the set of all tree arcs between the two endpoints of the arc aj. Observe that P[aj]

= P[tailjU]]uP[headUj]] - P[taillj]]nP[head[j]]. We call the node where the two

predecessor paths P[tail[j]] and P[head[j]] meet as the apex of the path P[aj] and denote it

by apex[jI.

The set P[aj] may contain light as well as heavy arcs. By Lemma 2, P[aj] contains

O(log n) light arcs, but may contain as many as (n -1 - log n) heavy arcs. We thus need

to handle heavy arcs carefully. Lemma 2 also demonstrates that P[aj] contains O(log n)

heavy subpaths and each such heavy subpath is a part of a heavy path. Each heavy

subpath in P[aj] is one of the following two types: it contains the root of the heavy path

(Type I subpath) or it does not contain the root of the heavy path (Type 2 subpath). For

example, for the tree shown in Figure 2, if aj = (12, 13) then P[aj] contains one Type 1

subpath alo-al 1-a l2 and one Type 2 subpath a2 -a 3-a 4-a 5. It is easy to observe that P[aj]

can contain many Type 1 subpaths, but it can have at most one Type 2 subpath. If P[aj]

contains a Type 2 subpath, then this subpath contains apex[j]. Our new formulation

defines a transformation to represent heavy subpaths in a manner so that each Type 1

subpath in P[aj] contributes only one incoming arc to node j, and the Type 2 subpath in

P[aj] contributes O(log n) arcs. After these transformations, the total number of

incoming arcs at node j are O(log n), which will lead to the necessary speedup.

14

We will denote the network corresponding to the new formulation by G =

(N, A). We will explain later how to construct G efficiently. For now, we will explain

the topological structure of G. To construct it, we start with the graph G = (N, A) where

we delete all arcs emanating from each left node i E N1 if ai is a heavy arc; we however

keep the arc (i, i). It follows from Lemma 2 that each right node in G has O(log n)

incoming arcs at this stage. We have, however, modified the minimum cost flow

problem because we have eliminated the incoming arcs in P(aj) corresponding to arcs in

the heavy subpaths. Observe that the arcs we have deleted had zero cost and infinite

capacity. We next show how to add arcs and nodes to the network G so that the

minimum cost flow problem in G is equivalent to the minimum cost flow problem in G.

We will show that by adding O(n) nodes and O(m log n) arcs, we can ensure that for each

arc (i, j) in G with the left node i and right node j, there is a directed path, say path[i, j],

from node i to node j in G of zero cost and infinite capacity. Moreover, if arc (i, j) is not

in G, then we will not create any path from node i to node j in G. Using this property,

any flow in G may be transformed into a flow in G as follows: for every xij units of flow

sent on any arc (i, j) in G, we send xij units of flow on path[i, j] from node i to node j in

G. The converse result is also true. Given any flow x in G, we first decompose the

flow into unit flows along paths from node s to node t. For every unit of flow sent along

the path s-path[i, j]-t in A, we send a unit flow along the path s-i-j-t in A. This

establishes one-to-one correspondence between flows in the networks G and G both of

which have the same cost.

In the subsequent discussion, we describe in detail the method used to represent

heavy subpaths in our transformation.

Handling Type 1 Subpaths

Consider a heavy path ap-ap+1- ... - aq, with ap as the root of this heavy path. For

this heavy path, any heavy subpath of Type 1 will include exactly one of the following

path segments: ap, ap-ap+ 1, ap-ap+l-ap+2 , , , ap-ap+-ap+2-...-aq. We can handle these

possibilities using the transformation given in Figure 3, where we expand the network G

by adding the nodes (p,p + 1,...,q) and adding the arcs (h, h) for each h = p, p+l, .. , q,

and the arcs (h- ,h) for each h = p+l, p+2, ... , q. Each arc in Figure 3 has zero cost

and infinite capacity.

15

Figure 3. Construct for handling Type 1 subpaths.

Suppose that the tree path P[aj] contains the Type 1 subpath ap-ap+1- ... - al for

some 1, p _ 1< q. The minimum cost flow formulation in G contains the arcs (p, j), (p+l,

j), ... , (1, j). But in the new formulation, we will only add the arc (1, j). It follows from

our construct, as illustrated in Figure 3, that there is a path from node i to node j in G for

each i = p, p+1, ... , . Consequently, for each arc (h, j) in G, 1 < h < p, there is a directed

path of the same cost and capacity in G.

We introduce the construct described above in G for every heavy path in T °.

This construct allows each heavy subpath of Type 1 in any P[aj] to be equivalently

represented by a single arc in G. Subsequent to this construction, there is a path in G

from a node i E N1 to a node j E N2 if and only if there is an arc (i, j) E G and ai is not a

Type 2 subpath of P[aj]. To summarize, the above construction allows us to represent

each heavy subpath of Type 1 in P[aj] by a single arc. Since any P[aj] can contain at

most O(log n) heavy subpaths of Type 1, G will have at most O(log n) incoming arcs on

any node j after Type 1 heavy subpaths have been considered.

Handling Type 2 Subpaths

Consider again the heavy path ap, ap+1, ... , aq with ap as the root of the heavy

path. For this heavy path, any subpath of Type 2 can start at any of the arcs ap, ap+l, ... ,

aq and can terminate at any of the arcs ap, ap+1, ... , aq. There are Q((q-p+1)2) such

possibilities and our transformation should be able to handle all of them. We define a

construct which will allow all of these possibilities by adding O(q-p+l) nodes to G and

increasing the indegree of a node in N 2 by O(log n). First, we introduce more notation.

We insert q-p+l additional nodes to G and construct a binary tree T[p, q] with

nodes p, p+l, ... , q, as the leaf nodes of the binary tree; each arc in this binary tree has

zero cost and infinite capacity. Figure 4 shows the construct for the heavy path 7-8-9- ...

-21. We denote by parent[i] as the parent of node i in the binary tree. We refer to the

two children of a same parent as siblings. For each node i in the binary tree, we let D[i] =

{j : p < j < q and j is a descendant of node i}. Observe that we denote by D(i) the set of

descendants of node i that are also the leaf nodes of T[p, q]. Observe that D(i) is an

interval of consecutive integers and can be compactly represented as [ai, i], where cai is

16

Figure 4. Construct for handling Type 2 subpaths.

the first integer and Pi is the last integer in the interval. For example, in Figure 4, D(B) =

[7, 14] and D(F) = [15, 18].

Now consider P[aj]. Suppose that it contains a heavy Type 2 subpath S of the

heavy path ap, ap+l, ... , aq, where S = {ak, ak+1, ... , all} with p < k < I < q. (Recall that

any heavy path and any heavy subpath consists of consecutively numbered arcs.) We can

thus alternatively represent the set S by [k,]. We call a node i in the binary tree T[p, q]

maximal with respect to S if [ai, Pi] C [k,] but [caj, j] cZ [k, 1] for j = parent[i]. For

example, in Figure 4, if S = [11, 17], then the nodes E, L, and 17 are maximal while the

remaining nodes are not. We denote the unique path from node k to node in the binary

tree T[p, q] by P[k, 1]. We call a set of nodes in the binary tree tree T[p, q] to be a cover

of S if [k, 1] = Uiec[k,11 [ctai pi]. The set of maximal nodes of S forms a cover of S. We

denote it by C[k, 1] and call it the maximal cover of S. For example, C[k, 1] = {E, L, 17}

is the maximal cover of S = [11, 17]. Recall that graph G contains an arc (i, j) for every

node i E [k, 1]. But in the graph G, we will add an arc (i, j) for every j E C[k, 1]. It is

easy to see that for each such arc (i, j) in G, there is a corresponding directed path from

node i to node j in G with the same cost and same capacity. We will now show that

IC[k, /1 = O(log rr) and we can determine it in O(log n) time.

It is easy to verify that a cover is the maximal cover of S if and only if it does not

contain two siblings. This result yields the following iterative method to determine C[k,

]. We start with C'[k, 1] = {k, k+l, ... , l} and if C'[k, 1] contains two siblings we replace

them by their parent. We repeat this process until C'[k,] has no siblings. Finally, we

terminate with C'[k, 1] = C[k, I]. Moreover, each node of C[k, 1] is either a node in P[k,]

or a child of a node in P[k,]. This result implies that there are only O(log n) nodes

qualified to be in the set C[k,] and yields the following more efficient algorithm to

determine C[k,]. We consider each node i in P[k,] as well as the children of each node

of P[k,] and check each to see if it is a maximal node of [k, I], we add i to C[k,]. This

method may be implemented in O(log n) time.

To summarize, we handle Type 2 subpaths in the following manner. For each

heavy subpath ap, ap+1 , .. , aq in T0 , we introduce the construct of a binary tree as shown

in Figure 4. (We point out that this construct is a superimposition over the construct

shown in Figure 3.) If some P[aj] contains a Type 2 subpath S, then we determine its

maximal cover C[k, 1] and add the arc (i, j) for each i E C[k,] to the network G.

17

Suppose i E N 1 and j E N 2 . Then, there is an arc from node i to node j in G if and only if

there is a path from node i to node j in G.

Determining Type 1 and Type 2 Subpaths

We will now describe a method to determine all Type 1 and Type 2 subpaths for

any P[aj], n < j < m. Notice that P[aj] may contain as many as (n-1) arcs and if we scan

all arcs in it while identifying all the Type 1 and Type 2 subpaths, then it would take a

total of O(nm) time and would constitute the bottleneck operation in the algorithm. We

will show how we can determine these subpaths for any P[aj] in O(log n) time. To do so,

we would need two additional indices for each node in the tree T°, namely, depth[i] and

root[i]. The index depth[i] gives the depth of node i in the tree T0 , that is, the number of

arcs in the predecessor path from node i to node 1. We define root[i] = i if (i, pred[i]) is a

light arc; otherwise, it is the root of the heavy path containing node i. For the tree T ° ,

these indices can be determined in a total of O(n) time.

We give in Figure 5, the procedure to determine the light arcs and heavy subpaths

in any P[aj] and add the corresponding arcs to the network G. The algorithm assumes

that we start with the network G = G, where we have not added arcs from nodes in N1 to

the nodes in N2. We also assume that the constructs shown in Figures 3 and 4 needed to

handle Type 1 and Type 2 subpaths have already been added to G. The while loop in the

procedure traces the predecessor indices starting at the endpoints of the arc aj. For each

light arc ar encountered it adds the arc (r, j). For each heavy Type 1 subpath encountered,

it identifies the corresponding heavy subpath using the root indices, adds an appropriate

arc to G and moves to the root of the heavy path. At the termination of the while loop,

there are three possibilities which we show in Figure 6: (i) a = P (as in Figure 6(a)); (ii)

= root[k] (as in Figure 6(b)); and (iii) I # root[k] (as in Figure 6(c)). In case (i), there is

no additional heavy subpath to consider; in case (ii), there is an additional subpath of

Type 1 to consider; and in case (iii), there is an additional subpath of Type 2 to consider.

The algorithm then adds the corresponding arcs to the network G. The running time of

this procedure is O(log n) since it devotes 0(1) time per light arc or per Type 1 heavy

subpath, and O(log n) time for a Type 2 heavy subpath. By Lemma 2 there are O(log n)

light arcs or heavy subpaths in P[aj] and at most one Type 2 heavy subpath.

18

G(=P

(a) (b)

Figure 6. The three termination conditions.

'-I

procedure determine-subpaths(IT, a);
begin

a := tail[j];
P := head[j];
while root[a] • root[3] do

if depth[root[a]] < depth[root[O]] then scan(x) else scan(O);
if a = p then return;
if root[a] = a then k := and := a else k := a and 1 :=;
if l = root[k] then add the arc (k, j) to G
else compute the set C[k, 1] and add the arc (i, j) to G for every i E C[k, 1];

end;

_procedure scan(h);
begin

let ar := (h, pred[h]);

if ar is a light arc then add the arc (r, j) to G and set h := pred[h];

if ar is a heavy arc then add the arc (, j) to G and set h := root[h];
end;

Figure 5. Adding arcs to G corresponding to heavy subpaths in P[aj].

Worst-Case Complexity

To solve the node weighted matching problem, we solve the minimum cost flow

problem in G = (N, A) using a minor modification of the algorithm described in Figure

1. The modification consists of replacing the set N1 by the set N 1, where N1 consists of

the nodes in N 1 plus all the additional nodes added by the constructs shown in Figures 3

and 4. We also replace Rl(x) by R1 (x), where R1 (x) denotes all the nodes in N 1 that are

reachable from node s in the residual network G (x) with respect to the flow x. Since

I N1 is O(n), these changes do not affect the worst-case complexity of the algorithm,

which remains as O(n2 dmax). But since dmax = O(log n), the running time of the

algorithm improves to O(n2 log n). Hence the following theorem.

Theorem 2. The improved node weighted matching algorithm solves the bipartite node

weighted matching problem on the path graph, and hence the inverse spanning tree

problem, in O(n2 log n) time.

19

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the Office of Naval Research under

contract ONR N00014-96-1-0051 as well as the grant from the United Parcel Service.

REFERENCES

Ahuja, R. K., and J. B. Orlin. 1998a. Inverse optimization, Part I: General problem and

linear programming. Working Paper, Sloan School of Management, MIT,

Cambridge, MA.

Ahuja, R. K., and J. B. Orlin. 1998b. Inverse optimization, Part II: Network flow

problems. Working Paper, Sloan School of Management, MIT, Cambridge, MA.

Ahuja, R. K., and J. B. Orlin. 1998c. Combinatorial algorithms for inverse network flow

problems. Working Paper, Sloan School of Management, MIT, Cambridge, MA.

Papadimitriou, C. H., and K. Steiglitz. 1982. Combinatorial Optimization: Algorithms

and Complexity. Prentice Hall, Inc., Englewood Cliffs, NJ.

Sleator, D. D., and R. E. Tarjan. 1983. A data structure for dynamic trees. Journal of

Computer and System Sciences 24, 362-391.

Sokkalingam, P. T., R. K. Ahuja, and J. B. Orlin. 1996. Solving inverse spanning tree

problems through network flow techniques. Working Paper, Sloan School of

Management, MIT, Cambridge, MA To appear in Operations Research.

20

