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I. Introduction

Emergency response services, provided through 911 calling and ambulance services,

serve as the first line of contact between patients suffering from emergency conditions and the

local health care infrastructure. Together with the emergency rooms in hospitals, emergency

response services play an important role in the health care outcomes for a number of emergency

indications. For example, in the case of out-of-hospital cardiac arrest, the time lapse between

collapse and the initiation of CPR and defibrillation is claimed to be an important determinant of

the probability of survival.' As well, the emergency response system plays a critical role in

selecting which hospital receives each emergency patient, where hospitals may differ in their

quality and in the technologies available for emergency care. The patient benefits from

emergency response services thus arise not only from the direct provision of medical and

transportation services, but also through the system's role in allocating patients to the hospital

facilities which are most appropriate for their particular medical condition. Furthermore,

emergency response systems may have indirect effects on patients through their influence on the

choices made by hospitals. Emergency response systems affect the incentives of hospitals to

adopt certain technologies, such as gaining "trauma center" certification and introducing

capabilities for the provision of cardiac care, since these choices can potentially influence the

allocation of emergency patients to hospitals.

There exists wide variation across communities within the United States in terms of the

level of care provided through the emergency service system. 911 services are publicly funded,

and are almost always operated by local government agencies such as police or fire departments.

At one extreme, some communities have invested in "Enhanced 911" (E91 1) systems, which link



digital information about the source of the call with a detailed address database maintained by the

911 center. The call-takers see each callers' address and location on a computer screen almost

instantaneously when the call is received. Even more advanced alternatives are available,

including computer-aided ambulance dispatching. At the other extreme, there are many

communities which have not invested even in a "Basic 911" capability. In these environments,

individuals attempting to contact the local medical emergency infrastructure must locate and dial

a seven-digit number. When the call is received, the call-taker manually searches for and

contacts the ambulance which is closest to the emergency and has the appropriate equipment.

Likewise, we see substantial heterogeneity in the availability of in-hospital emergency services

across communities. Although the American Heart Association has advocated the adoption of

Enhanced 911 as the first step in a "chain of survival" for cardiac incidents (Cummins et al,

1991), there has been little systematic evidence presented about the benefits of 91 1 services. 2

The principal aim of this paper is to evaluate the determinants and implications of

differences in the pre-hospital and in-hospital emergency services adopted in a given community.

To accomplish this goal, we evaluate the incentives to adopt emergency response systems and in-

hospital technology, as well as the productivity gains from these investments. We focus in

particular on the productivity and adoption of Basic and Enhanced 911 services, services which

entail investments in information technology and telecommunications equipment.

As a service enbabled by investment in information technology, emergency response

systems belong to the substantial portion of the economy which has defied accurate productivity

measurment (Griliches, 1994; Bresnahan and Gordon, 1997). For most services (including

emergency response), it is difficult to measure quality. Each consumer's valuation can depend

on several factors which are difficult to observe, such as timeliness and the location of service



delivery as well as on the extent to which the product is customized to the individual. In the

case of 911 services, however, we are able to address some of these challenges using a unique

combination of data sources. The primary database is composed of a set of ambulance calls

responding to reported cardiac incidents in Pennsylvania in 1995. These ambulance rccords have

been linked with hospital billing records, hospital characteristics, and data about the level of 91 1

technology available in the county in which the call takes place. We use this data to document

how 911 is related to the benefits provided by the emergency response system, including its

relationship to lower response times, more appropriate allocation of patients to hospitals, and

reduced mortality of cardiac patients.

Our analysis focuses on relatively simple, reduced-form procedures. We begin by

exploring the sources of heterogeneity in the allocation of 911 services to different localities. We

find that 9 1 is allocated not only according to factors which might increase their technical

efficiency (such as the number of residents per county), but also according to a county's political

orientation. In particular, communities with more conservative voting patterns are less likely to

adopt advanced 911 systems. Although we do not perform a formal cost-benefit analysis, these

results suggest that public policies concerning 911 systems can potentially increase the efficiency

of the diffusion process. For example, some of the barriers to adoption include the lack of

incentives and information faced by county government officials, problems which could

potentially be remedied at relatively low cost.

We then turn to analyze the productivity benefits from adopting Basic and Enhanced 911

systems, taking the patient as the unit of the analysis. We begin by studying the effects of the

county-level 911 system on the time it takes to respond to cardiac emergencies and transport the

patient to the hospital, factors which are an important component of the quality of emergency



medical services. The detailed nature of the dataset allows us to control for a variety of patient

characteristics, as well as features of the county such as the hospital infrastructure and

demographic characteristics.

We show that an ambulance arrives at the scene of a cardiac emergency 5% faster in

counties with Enhanced 911 as opposed to no 911 or Basic 911. Even larger gains are measured

when we restrict our sample solely to those counties which change their level of 911 technology

during our sample period. Moreover, patients are transported from the scene of an incident to the

hospital approximately 10% faster in counties with Enhanced 911 as opposed to lower levels of

911.

Our findings regarding the relationship between 911 and mortality are more subtle. First,

we are unable to establish a direct reduced-form statistical relationship between the level of 911

in a given county and patient mortality. Of course, this may be due to the fact that the overall

mortality rate is relatively low (approximately 7%) and only a small portion of our sample resides

in counties with no 911 technology (approximately 20%), making it difficult to infer the impact

of the technology level on the mortality rate. However, our analysis of the impact of 911 on

response time suggests an alternative strategy: we use the adoption of 911 as an instrument for an

individual's response time in the patient mortality regressions. In particular, we show that 911

technology affects response time, and we can assume that 911 adoption is unrelated to the

severity of a particular patient. Our preliminary instrumental variables analysis of the effect of

response time on mortality finds that shorter response times do indeed reduce mortality. While

this analysis is still exploratory, we believe that the use of county-level infrastructure as an

instrument for individual-level services is a potentially fruitful approach for further exploration.

Beyond its direct effects on response time and mortality, a second role of the emergency



response system is to allocate patients to hospitals. From a hospital's perspective, the emergency

response system affects both the size and characteristics of its pool of emergency patients; the

sensitivity of the allocation process to the hospital characteristics will also interact with the

incentives of a hospital to adopt certain technologies. We thus take several preliminary steps

towards exploring these effects.

Our first result about allocation is that patient severity affects the allocation of patients to

high-technology hospitals. Our results about allocation have implications for our ability to draw

inferences about the benefits of hospital technology through reduced-form analyses of the direct

effect of technology on patient outcomes. This issue has been recognized by several authors,

such as McClellan and Newhouse (1997), who argue that patient allocation to hospitals with

different technologies is endogenous and so must be treated with an instrumental variables

approach. Consistent with this view, our estimates provide direct evidence about the relationship

between patient severity and allocation.

In addition, we document that in Pennsylvania, many patients reside in counties which do

not include a hospital with certain high-level cardiac-specific technologies (such as a cardiac

catheterization laboratory); as a consequence, these patients are not treated by hospitals with

high-level cardiac technology in response to a cardiac emergency. It is interesting to observe

that, in contrast to the general population, nearly all of the cardiac patients in our sample have

some form of insurance (almost 99%). Instead, it seems to be the availability of medical

technology in nearby hospitals which most significantly limits the access of patients to high

levels of cardiac care in emergency situations.

Among the patients who do have access to high levels of cardiac care technology, we

show that the allocation of patients to hospitals with cardiac catheterization laboratories depends



on the presence of 911 services, where counties with higher levels of 911 technology are more

likely to allocate patients to hospitals with higher levels of cardiac care technology. This can

affect the incentives of hospitals to invest in high levels of technology. While these incentives

can potentially lead to increased investment in technology by hospitals, we do not see strong

evidence of strategic complementarity between 911 and hospital technology in our national

sample. Despite the fact that the level of in-hospital emergency technology is positively

correlated with the level of 911 technology at the national level, most of that positive

interrelationship is accounted for by the fact that both in-hospital and pre-hospital care respond

positively to the population and income of a county.

We further explore the salience of hospital incentives to adopt advanced technologies

through a preliminary analysis of the determinants of a hospital's share of ambulance-transported

cardiac patients in a given county. We find evidence that a hospital's "market share" is sensitive

both to its overall level of emrgency room technology as well as its level of cardiac-specific

technology. In addition, increases in the level of technology by rival hospitals (other hospitals in

the same county) have a negative impact on hospital market share.

The remainder of the paper is organized as follows. In Section II, we motivate our

analysis more fully by introducing the institutional context of emergency response systems,

outlining the principal technological choices faced by these systems and local hospitals, and

suggesting the main economic issues which arise in the analysis of these systems. Section m

presents the data which we will use to conduct the analysis. Sections IV, V, and VI consider the

determinants of adoption of emergency response systems, our analysis of productivity, and the

role of the emergency response system in allocating patients to hospitals. Our concluding

remarks suggest a number of directions for future research.



II. Emergency Response Systems: Background and Motivation

The goal of this section is to motivate our empirical analysis of emergency response

systems through a description of the background and institutions of pre-hospital care. To do so,

we review the operation of the emergency medical response system (in most communities, a 911

system), focusing in particular on potential productivity benefits. We further discuss the

interaction between pre-hospital and in-hospital emergency care. Finally, we describe the factors

which lead to heterogeneity in the adoption of 911.

Emergency Response Systems are a public service providing a standardized and

integrated method for local communities to respond to emergencies. Until the late 1960's,

emergencies were reported to a telephone operator (whose training and equipment usually did not

accomodate the efficient handling of emergency) or by directly contacting a particular public

service agency (requiring individuals to find the 7-digit phone number for a particular agency and

precluding integration among agencies). Under this ad-hoc system, emergency response was

often inappropriate to the particular situation -- overreaction to minor crises coexisted with

frequent underreactions to critical emergencies (Gibson, 1977; Siler, 1988). Following a model

developed in Europe after WWII (most particularly the 9-9-9 system in Great Britain), the first

911 systems were introduced into the US in 1968 (in Haleyville, Alabama and Nome, Alaska).

Shortly thereafter, Federal legislation explicitly encouraged the development of 911 systems in

local communities and ensured that the Bell System would reserve 911 for emergency service use

(Pivetta, 1995).

While the scope and particular details of many systems vary, 911 systems operate

according to the following standard procedure:



* 911 is dialed by an individual in an emergency

* Call is answered by a Public Service Answering Point (PSAP) operator

* A trained 911 call-taker evaluates the caller's emergency and gathers necessary

information (location, severity, etc...)

* Call-taker communicates with the appropriate emergency service agencies for

dispatch to the emergency

While 911 calls can be routed to many different geographical locations, the adoption of

911 usually entails some increase in the centralization of call taking, to avoid duplication of fixed

costs and adoption costs of the relevant telecommunications equipment. Even if centralization

remains unchanged, 911 almost inevitably increases the degree of coordination between call

centers.

From the perspective of the productivity analysis for cardiac patients, the most important

benefit of 911 systems is to reduce response time. Our focus on cardiac care allows us to assess a

particular medical condition for which outcomes have been closely linked (at least in the clinical

emergency services literature) to the effectiveness of the emergency response system and

ambulance technology. According to a variety of medical sources (see, for example, Cummins et

al (1991), Bonnin, Pepe, and Clark (1993), and Tresch, Thakur, and Hoffman (1989)), several

medical procedures can contribute to survival in the case of a cardiac incident, including CPR

and defibrillation. In particular, the medical literature has tied patients' survival probability to

reductions in the time elapsed between initial collapse of a patient and the administration of CPR

and defibrillation (Lewis et al, 1982; Larsen et al, 1993). While CPR can be in principle

conducted by a non-professional bystander (perhaps with over-the-phone instructions from a



trained call-taker), it is typically best performed by paramedics. Furthermore, defibrillation -

electrical shock therapy to "reset" the electrical activity of the heart in the case of ventricular

fibrillation (irregularity) - requires equipment which is transported in ambulances or available in

hospitals. As a result, correct administration of CPR and/or defibrillation are dependent on the

time it takes for an ambulance (equipped with a defibrillator) to arrive at the scene of an

emergency.

911 systems have several advantages in reducing response times. First, they save time in

the placement of the telephone call, since citizens are unlikely to have memorized the telephone

number for the relevant agency. Further, the personnel who receive the first telephone call are

trained to handle emergencies, as opposed to standard telephone operators or directory assistance

personnel. Even when the appropriate agency is reached, decentralized call centers without 911

tend to assign telephone duties to personnel who also have other responsibilities. Specialization

might be important for learning the details of a geographical area as well as for developing the

skills required to gather information from emergency callers. However, there is potentially a cost

to centralization in the cases where 911 is provided at a central location without Enhanced 911

capabilities, since workers may not be as familiar with addresses and geography when they are

responsible for larger areas.

As 911 systems have evolved and diffused over the past 30 years, there have been several

important advancements in the technology utilized to implement these systems. One main area

for advancement has been the development of "Enhanced" 911 systems (E911) which utilize

caller identification together with databases of addresses. To implement this "Automatic

Location Identification" feature, counties must first develop a system of addressing which

provides unique street addresses to every residence (which often do not exist in rural areas) and



develop a map of the county with all of these addresses. This system allows call-takers to

pinpoint the location of a caller almost instantaneously (the databases may include very precise

information about the location of a telephone in a building or public place, and they can also

include special information about individual health issues or disabilities).

There are a number of benefits to E911 technology. Of course, even when the caller

knows the location and directions precisely, it takes time to communicate this information, and

mistakes are easy to make with callers who are experiencing panic or fear. For the frequent cases

where people do not know their exact address (they are visiting a friend, or experience an

emergency incident in a public place), the location information is even more valuable. Likewise,

the location information can be crucial for callers who are children or adults for who do not

speak English or are unable to speak. Furthermore, once address information can be

communicated instantaneously, the call taker has more time to gather information about the

severity of the emergency, and the call taker can further provide pre-arrival instructions to the

caller. Finally, this system mitigates some of the costs of centralizing the call centers, since

detailed geographic knowledge of an area is not essential.

After a call-taker receives and establishes the location and severity of an emergency call,

the dispatcher directs an ambulance to the scene of the emergency. The ambulance provides

three related services: provision of immediate emergency care, transportation service to a

hospital, and the exercise of (limited) discretion over the allocation of patients to particular local

hospitals. Counties differ in their provision of ambulance services.3

A potential benefit of specialized personnel and coordinated 911 services is that scarce

resources for ambulance services can be more efficiently allocated.4 The dispatcher might have

to choose whether to dispatch an ambulance equipped with Advanced Life Support (ALS)



facilities, or, alternatively, a less technically sophisticated Basic Life Support (BLS) unit. This

decision can be made more efficient when the call-taker gathers the relevant information about

the nature of the emergency. When such decisions are made in the absence of appropriate

information, ambulances may not be available to answer higher priority calls, and average

response times for high priority cases will rise. In fact, a number of studies document the fact

that many ambulance systems service a large number of superfluous calls, where ambulance

service was not the best method for providing care (Gibson, 1977; Smith, 1988; Brown and

Sindelar, 1993). This literature tends to strongly support the increased use of sophisticated

prioritization and computerization in the dispatching process. Coordinated and trained call-

takers and dispatchers can better utilize the scarce ambulance resources, and the adoption of

computer-aided dispatching and other such solutions are more easily accomplished in systems

which have E911.

In addition to the direct effect of the 911 system on the productivity of the emergency

health care system, the emergency response system also affects the allocation of patients to

hospitals. The ambulance personnel are instructed to use a standard protocol for allocating

patients to hospitals (see Figure 1 for a representative county protocol). In Figure 1, patients are

allocated to hospitals according to a number of risk criteria, with more severe patients being

allocated to the "trauma center" (which provides a certified level of emergency room services

and technology) in most cases but to the geographically closest hospital if the nearest trauma

center is greater than 30 minutes away from the site of the emergency. While the protocol

provides "bright line" rules for most situations, ambulance personnel are given a limited amount

of discretion about borderline cases and are also instructed to confirm some discretionary choices

with "medical command." Thus, ambulance personnel, using agreed-upon protocols and their



own judgement, resolve a tradeoff between reduced transport time and allocating the patient to

the hospital with the highest level of cardiac care facilities. By providing better dispatching,

gathering more patient information prior to arrival, and shortening response time, higher levels of

911 service may allow the allocation of patients to hospitals to be more efficient. For example,

when response time is shorter and dispatchers have more precise information about the patient's

location, there will be more time to transport a cardiac patient to a hospital with specialized

facilities.

The mechanism which allocates patients to hospitals can also have unintended

consequences, in that it affects the incentives of hospitals to adopt various technologies.

According to the triage protocols, certain patients should almost never be allocated to hospitals

without a sufficient level of emergency services, and cardiac patients may tend to be allocated to

hospitals known for cardiac care. Thus, hospitals may have a "business-stealing" incentive to

increase the rating of their emergency room or their available technology (Vogt, 1997).

Anecdotal evidence suggests that hospitals are aware of the discretion of ambulance operators,

although their response to this discretion is not always as sophisticated or expensive as increased

technology adoption. In many localities, hospitals provide free supplies to the ambulances, as

well as amenities for ambulance operators such as access to lounges supplied with food and

beverages.

Empirically, there is wide variation across counties in the provision of 911 services.

Some of the heterogeneity may be accounted for by efficiency considerations. For example,

counties where addresses are assigned systematically see lower benefits to E911. Differences in

population may also account for differences in adoption across counties, since, as a service with

adoption costs and fixed costs, 911 should exhibit economies of scale, at least initially (systems



which become too large may experience coordination costs). Further, the costs of adoption and

implementation of 911 may vary across counties. Consider the nature of these costs. When

adopting E911, it is necessary to assign new addresses, create new maps, and develop a

computerized database, a process is very labor-intensive and usually takes at least six months to a

year to complete. Furthermore, the telephone equipment, caller identification database, and the

system of call-taker workstations must be procured and installed. While systematic data about

the start-up costs of E91 1 is unavailable, based on several cases, we estimate a typical county has

a startup cost of between $1 million and $4 million.

For example, consider Berks County, Pennsylvania, whose 1990 population was 336,000.

Berks County reports that the capital start-up costs of its E911 system were approximately $3

million, while annual operating costs were over $2.3 million.5 Its budget comes primarily from a

tax on telephone lines ($.97 per line each month) as authorized by state legislation (Figure 2

shows the national distribution of funding sources for 911 systems). The Berks County 911

program employs nine call-takers, two administrators, a programmer for its computer-aided

dispatching software, and an administrative assistant.

In addition to capital costs, there are other factors which affect the adoption of 911

systems; we explored these motivations in informal interviews of administrators and regulators in

several states. We found that in smaller counties, early adoption of E91 1 was often the result of

the actions of a highly self-motivated and informed government employee. Because many

different public and private agencies are involved in the implementation process (the post office,

utility companies, and telephone companies), political factors and bureaucratic barriers may slow

adoption. While in large counties, there may be personnel assigned exclusively to this task,

smaller counties tend to assign the same personnel to many different tasks, and the incentives as



well as information required to organize an effort for adoption may be lacking. The adoption of a

centralized 911 system may lead small, local police departments, as well as private ambulance

dispatching services, to lose employment as well as local autonomy; these agencies may be able

to block adoption. Finally, as a publicly provided service, public demand for the system will also

play a role, where this demand depends not only on factors such as income, but also on the

political views of the citizens about government services.

III. The Data

As mentioned earlier, little previous empirical research has been done on the pre-hospital

emergency system. Thus, in this paper we choose to conduct our analysis at several different

levels of aggregation: individual, hospital, and county. Each of these sources of data allow us to

address different questions about the adoption and productivity of elements of the emergency

system. Tables 1 and 2 provide definitions, sources, and means and standard deviations for all

variables.

County-Level Variables

For the purposes of this paper, we characterize the pre-hospital emergency infrastructure

and its determinants at the county level. Unfortunately, we are not aware of a comprehensive

accounting of 911 practices in the U.S.. Within Pennsylvania, we gathered information about

911 provision through publicly available sources and telephone interviews. At the national level,

we made use of a survey administered in 1995 by the National Emergency Number Association

(NENA), a national advocacy organization for 911 systems. As a result, our national sample of



counties is limited to 772 counties who completed the NENA survey and who provided answers

which allowed us to characterize the 911 system at the county level. 6

For each county, we organize our analysis around a three-tier characterization of the 911

system: whether there is a 911 system at all (NO 911) and whether it is a basic (BASIC 911) or

enhanced 911 (ENHANCED 911) system. In the national sample, 75% of these counties have

adopted the highest level of service (ENHANCED 911), illustrating that E9 11 has been diffused

substantially (91 1_LEVEL is simply a variable which is 0, 1, or 2, depending on whether the

system is NO 911, BASIC 911, or ENHANCED 911). However, the selection of counties who

responded to NENA's survey is biased towards systems with higher levels of 911 service,

especially under-counting counties with no county-wide 911 system; in Pennsylvania, where we

have a comprehensive accounting of the counties, 30 of the 54 of the counties had E911 at the

start of 1995 (see Figure 3).

In addition to the county level variables, we include in our analysis two "911" variables

which are drawn from NENA state-level surveys which indicate whether there is implemented

legislation guiding the administration of 911 systems (in particular, governing training policies

for workers using the systems) (911_TRAIN_LAW) or whether legislation has been passed but

not yet implemented (911_TRAINPLAN). These variables are intended to be proxies for the

level of administrative information and assistance provided by the state.

We further gathered a variety of demographic, political and economic data at the county

level. In addition to a number of familiar demographic characteristics, (POPULATION,

DENSITY, INCOME PER CAPITA, CRIMERATE, POLICE EXP, HEALTH EXP, each drawn

from the City and County DataBook or the Census of Governments), we also characterize the

political climate of a community by the Presidential voting shares from the 1992 Election. This



election is especially interesting because of the strong showing of Perot, allowing a somewhat

more nuanced measure of county's political demand for public expenditures (Perot voters were

noted for their strong beliefs in limited government).

Hospital-Level Variables

Our information about hospitals is obtained from the American Hospital Association

(AHA) annual hospital inventory survey. We use this information to provide information at three

different levels of analysis. First, when we study the incentives of hospitals to adopt technology,

we consider the availability of hospital technology at any hospital within a county. For example,

CERTIFIED TRAUM CNTR represents the presence of a certified trauma center in a given

county, while HOSP PER SQ. MILE represents the density of hospitals. We also consider the

number of recorded cardiac incidents which required ambulance service in 1995 (COUNTY

CARDIAC PATIENTS). Second, in our patient-level productivity analysis, we link hospital

characteristics to our patient-level database in order to control for hospital quality as well as

analyze the allocation process which assigns patients to hospitals. Third, we consider the

hospital as the unit of analysis when we consider how technology investments interact with the

share of cardiac patients who are treated in a given hospital.

For each hospital, we consider three main types of variables. First, we characterize the

generic emergency infrastructure for a given hospital by whether the hospital is an urgent care

provider (URGENT) and the level of certified emergency care (TRAUMA CNTR LEVEL). In

our analysis of individual data, we examine the case of cardiac care and so we also look

specifically at the cardiac care facilities provided by each hospital. In particular, we observe

whether a hospital has a cardiac catheterization lab (CATHETER) and whether it has open heart



surgery capability (OPENHEART). Finally, we characterize overall features of each hospital

including its size (EMERGENCY ROOM VOLUME; HOSPITAL DOCTORS) and the number

of residents (HOSPITAL RESIDENTS).

Patient-Level Variables

Our patient-level variables are drawn from a database of every ambulance ride in

Pennsylvania which could be linked to a hospital discharge during 1995 (approximately 170,000

observations). This dataset is gathered by the Pennsylvania Department of Health and has only

recently been made available to a limited number of researchers; we are not aware of prior work

on this database (or a similar ambulance-level database) by health care economists.

The information provided in this patient-level data is unusually rich. First, there are

several indicators associated with the responsiveness of the 911 system. We analyze three

different measures of the timeliness of ambulance response: the amount of time it takes to get to

the scene of an emergency (TIME_TO_SCENE), the amount of time spent at the scene

(TIME_AT_SCENE), and the amount of time elapsed from when the ambulance leaves the scene

to the time when the ambulance arrives at the hospital (TIME_TO_HOSP).

In the next sections, we will examine how the response time measures vary with other

features of the medical care system. To better motivate that type of analysis, we restrict our

analysis of the Pennsylvania data to the case of cardiac incidents. One of the main advantages of

analyzing the case of cardiac incidents is that, in contrast to many datasets, there are in fact a

number of quite precise indicators of the level of severity of each patient. In particular, each

patient is assigned a Glasgow Score which is a number between 0-15 which indicates the severity

of the heart attack (lower numbers imply higher severity with 3 being the worst and 0 indicating



"unknown" or "missing"). While the bulk of observations are coded with the weakest severity

(GLASGOW = 15), there exists a substantial minority for which there is variation in the data.

We are also able to observe whether the incident is believed to be a cardiac arrest or simply a

cardiac incident (CARD_ARR = 1 or 0).

In addition to these measures of severity, the data includes relatively detailed information

about each individual in the dataset, including their insurance status, age, and sex. As well, we

observe some information about the types of procedures administered by the emergency response

paramedics, including whether the patient receives defibrillation treatment prior to arrival at the

hospital. However, since the decision to defibrillate a patient is conditioned on patient

characteristics which are unobserved to the econometrician, this variable serves mainly as a

control in our analysis.

Finally, we are able to observe some concrete measures associated with patient outcomes.

In our main analysis, we will focus on the most extreme of these measures, DEAD: whether or

not the patient dies from the incident, either in the emergency room or in the hospital afterwards.

IV. The Determinants of the 911 System Adoption

We begin by describing the characteristics of three groups of counties in Pennsylvania:

those with no 911, Basic 911, and Enhanced 911. Because four counties are significantly larger,

more dense, and have more hospitals than the others, we also report the counties with E911

excluding the four largest counties (we will also report specifications which exclude these four

counties in our subsequent regression analysis). There are some systematic differences between

the demographic characteristics of the counties which have made different adoption decisions

about 911. The largest and most densely populated counties, as well as those with the highest



income and largest police and health budgets, tend to have adopted Enhanced 911.

When comparing the counties with No 911 to the counties with Basic 911, it is interesting

to note that they are remarkably similar in terms of density, crime, income, and hospitals per

mile. Figure 3 illustrates that many contiguous counties with similar geographic features have

different levels of 911. The main differences are that the counties with Basic 911 have higher

populations, higher expenditures, and more Perot voters. Since 911 systems involve fixed costs,

the differences in adoption appear to be consistent with efficiency motivations on the part of the

counties. However, since the county boundaries are purely political distinctions, this finding

raises the question of whether between-county cooperation in the provision of 911 services might

allow more citizens to be served by 911. The state of Vermont recently implemented a state-

wide 911 system, perhaps recognizing the economies of scale associated the provision of the

service at the state level.

As described in Section II, we expect that the level of 911 technology will respond to

political demand as well as demographic factors related to the efficiency of the service in a

particular locality. While much of our productivity analysis will focus on a subset of cardiac

patients in Pennsylvania, a within-state analysis can provide only limited insight as to the factors

which determine the allocation of 911 services (and their productivity benefits) to different

subsets of the population. Thus, in Table 4, we consider the determinants of adoption of the

level of 911 service in a national cross-section of counties. As expected, POPULATION is

significantly correlated with adoption; politically, counties with a relatively high proportion of

Perot voters tend to adopt lower levels of 911, consistent with the emphasis of the Perot

movement on limited government expenditure. As well, counties in states with regulations about

training had higher levels of 911 adoption. This legislation either requires or recommends



standardized training programs in association with 911 programs, and may further proxy for the

institutional support for 911 provided by the state boards which oversee 911 centers. We

interpret this result to indicate that states which provide legislative support and guidance for 911

systems have a higher propensity to adopt 911 services. Thus, we conclude that 911 adoption

responds to efficiency motivations as well as political and regulatory factors which may be

unrelated to efficiency.

The latter two specifications in Table 4 include a variable whieh measures the highest

level of in-hospital emergency care offered in the county (in addition to the controls described

above). Even though the unconditional correlation between 911 and the level of in-hospital

emergency care is positive (.19) and significantly different from zero, most of that positive

relationship is accounted for by common factors which affect the adoption of both (e.g.,

population). Thus, despite the potential for strategic complementarities between hospital

technology adoption and 911 services when higher levels of 911 better allocate patients to high-

technology hospitals, we do not see strong evidence of this interaction in our national sample.

V. The Impact of 911 Systems and Hospital Choice on Ambulance Response Times and

Mortality: The Case of Cardiac Arrest

We now turn to an analysis of individual cardiac incidents. We evaluate the effects of the

911 infrastructure on patient outcomes, as well as on several "intermediate inputs" to patient

outcomes, in particular, several components of response time. We focus on intermediate inputs

for several reasons. First, since 911 provides service benefits through an investment in

information technology, we are inherently interested in disentangling the extent to which 911



provides services which are more timely and better respond to patient characteristics. Second,

mortality is a very noisy measure of the productivity of the emergency response system, and even

in our large dataset, we see only a few thousand deaths from cardiac incidents, and only a few

hundred in the counties without E911 systems. Third, even in these cases, we expect that the

policy variables will have a significant impact on outcomes in only a small subset of the cases.

Many of the patients who die, would die regardless of the response time; and many patients who

survive did not rely heavily on the emergency response system. However, if we establish that

911 reduces response time, we can rely on a number of clinical studies which provide direct

evidence about the benefits of faster response times for mortality.

Building on our analysis from Section II, we predict that the first component of response

time, TIME_TO_SCENE, should be lower when counties are able to gather address and location

information more rapidly and precisely, and when ambulance resources are allocated efficiently

(recall cardiac emergencies are high priority events). The second component, called

TIME_AT_SCENE, should be longer when more treatment is given prior to moving a patient; it

should also be longer when patients are located in high-rise buildings or large complexes. The

final component, TIME_TO_HOSP, should be lower when dispatchers are able to provide better

assistance to ambulance drivers in terms of routing and directions to hospitals from varied

locations. On the other hand, TIME_TO_HOSP should reflect a tradeoff between the benefits of

arriving at a high-quality hospital and the benefits of receiving hospital attention as soon as

possible. The impact of 911 on this tradeoff might be to encourage ambulances to take

somewhat longer rides, if time has been saved in other parts of the process.

Of course, both TIME_TO_SCENE and TIME_TO_HOSP will depend on the location of

a given patient relative to the hospitals, and variation across counties in the average proximity of



patients to hospitals is a potential source of unobserved heterogeneity which must be considered

in interpreting our results. We partially alleviate this problem in several of our specifications by

including controls for TIME_TO_HOSP in the regressions concerning TIME_TO_SCENE, and

vice versa. For example, in the analysis of the determinants of TIME_TO_SCENE, the variable

TIME_TO_HOSP acts as a control for the remoteness of the patient's location.

Table 5 reports the means of patient-level variables according to the level of 911 provided

in a given county. Only 2,039 of the 24,664 cardiac incidents occurred in counties without 911.

The mortality rates are very similar in counties with no 911 or Basic 911: approximately 6.5% of

cardiac emergencies result in death. In contrast, even excluding the largest four counties, the

average mortality rate in counties with E91 1 is 7% (see Figure 4 for the distribution of county

mortality rates). We further see that counties with higher levels of 911 have lower average

TIME_TO_SCENE and TIME_TO_HOSPITAL, while they have longer TIME_AT_SCENE.

We will explore all of these relationships in more detail in our regression analysis.

The patient characteristics, trauma scores, and insurance status variables have almost

identical means across the No 911, Basic 911, and Enhanced 911 categories, with a few

exceptions. First, the Glasgow score variables have different means in Enhanced 911 counties.

Further, a much larger percentage of patients report cardiac arrest in the Enhanced 911 group.

Finally, many more patients report defibrillation (before reaching the hospital) in the No 911

counties. This might be due to differences in scoring or poor record-keeping in a few counties; it

could also reflect real differences in the composition and treatment of emergencies, or differences

in the availability of defibrillators in ambulances.

It is also worth noting the large differences between patients in No 911 counties and other

counties in the level of technology possessed by the hospital which receives the patients. None



of the No 911 patients receive treatment in a certified trauma center, and only a quarter go to

hospitals with cardiac catheterization laboratories. Likewise, the emergency room volume and

size of hospitals is much lower in No 911 counties. There are also significant differences

between Basic and Enhanced 911 counties in the provision of hospital care, but these differences

are not as dramatic once the four largest counties are excluded.

Now consider the effects of 91 1 technology on the various components of response time,

beginning with the time elapsed between the dispatch of a 911 call and the arrival at the

emergency (TIME_TO_SCENE) (Table 6). There are four specifications, which include a

number of patient-level as well as county-level covariates (the results in Tables 6-8 about the

effects of patient-level characteristics are generally robust to specifications which include county

fixed effects instead of county-level covariates). The base regression includes 911 dummies,

patient-level variables, county-level demographics and hospital infrastructure variables, as well

as characteristics of the receiving hospital. Since the hospital allocation is conditioned on patient

severity, it is difficult to interpret the coefficients for characteristics of the receiving hospitals.

One interpretation is that they are simply controls for the patient's county and severity.

The next specification includes controls for TIME_AT_SCENE and TIME_TO_HOSP.

The TIME_TO_HOSP variable can be thought of as a control for the distance from the patient to

the hospital, although we show later that the hospital allocation (and thus expected travel time)

are conditioned on the patient's severity. The TIME_AT_SCENE is more difficult to interpret.

It might represent the extra time required to administer treatments which are only available on

some ambulances, in which case longer TIME_AT_SCENE should be associated with longer

TIME_TO_SCENE, since we expect a longer wait for the scarce resource of a better ambulance.

It might also represent some features of the patient's location, such as the presence of elevators



or stairs in a high-rise building. High-rises might be located closer to hospitals. However, when

the largest counties are excluded, there are probably fewer high-rises in the dataset.

The last specification considers only counties who changed their 911 system during the

year. Since a fixed effect is included for each county, the coefficients on the 911 dummies can

be interpreted as differences in the mean response time as a result of the change. Of course, all

time-invariant variables are dropped from this regression, and in addition several other control

variables were dropped due to the small number of observations. Since an alternative

explanation for any findings in the first three specifications is that unobserved differences in

counties drive the results, our findings for within-county changes are particularly interesting

despite the limited size of the dataset which considers such changes.

Consider now the results of our analysis. The first result is that TIME_TO_SCENE is

lower in counties with no 911 or basic 911 than counties with E911. In the base specification,

counties with no 911 are about 10% slower than counties with E911, while counties with Basic

are approximately 8% slower than counties with E911. The magnitudes vary somewhat in

different specifications, and the result for no 911 is not always significantly different from zero.

Nonetheless, the signs of the coefficients are robust to a variety of specifications. When

interpreting these results, it is of course important to observe the caveat that results may be

driven by unobserved differences between counties, such as the distribution of residences relative

to hospitals. However, as shown earlier in Figure 3, many adjacent counties in similar

geographical areas have different 911 systems, and further, when the four largest counties are

excluded, the counties are fairly comparable in terms of demographics. Of course, controls are

included for several important demographic variables as well as the number of hospitals per mile

in the county (which decreases response time, as expected).



In order to provide further evidence about the robustness of the results, we consider the

final specification, which includes only counties who changed during the year. The county which

changed from Basic to Enhanced 911 saw a 14% decrease in its TIME_TOSCENE, while the

counties which changed from No 911 to Basic saw a decrease which is not statistically

significant. The weaker results about changes from No 911 to Basic may reflect the fact that

moving to a centralized 911 system without automated address-finding technology may have

ambiguous results, especially in the short run. At a minimum, the system may require some

learning-by-doing before call-takers in a new 911 system are able to gather correct address

information for a large area.

We also find that the emergency response system appears to respond to the severity of the

patient's symptoms: patients with a higher Glasgow score have somewhat higher

TIME_TO_SCENE, although this result is not statistically significant. We do not, however, see

differences in the TIME_TO_SCENE for different categories of insurance (Medicare is the

comparison group) or for different ages, with the exceptions that Medicaid patients and younger

patients tend to have faster response times.

County-level demographics are also correlated with TIME_TO_SCENE. When the

largest counties are included, counties with large populations and high densities have faster

response times; once the large counties are excluded, the results are reversed. In all cases, higher

income is associated with faster response times.

Table 7 analyzes the determinants of TIME_AT_SCENE, following the same set of

specifications as in Table 6. TIME_AT_SCENE is negatively related to both

TIME_TO_SCENE and TIME_TO_HOSPITAL. It is increasing in the level of 911, and it is

longer for more severe patients. TIME_AT_SCENE is also longer for highly populated counties



and especially in those with high crime rates, while it is lower in densely populated, high-income,

and high-expenditure counties. A full interpretation of these results would require further

investigation into the services provided by ambulances, and how they vary with

TIME_AT_SCENE. For example, if longer TIME_AT_SCENE is positively correlated with

more services, we can interpret the results as saying that more ambulance services are provided

in counties with higher levels of 911. This interpretation seems inconsistent with the results on

income and expenditures, however.

Table 8 considers the determinants of TIME_TO_HOSP. Again, the specifications

parallel Tables 6 and 7. We find that, in all specifications, counties with higher levels of 911

have shorter TIME_TO_HOSP. Again, this result holds controlling for demographic factors as

well as the number of hospitals per mile (which decreases TIME_TO_HOSP sharply), as well as

when large counties are excluded and when only within-county changes are considered (although

the result for changes from No 911 to Basic 911 are weakened substantially in the within-county

specification). In future work, we hope to consider interactions between enhanced 911 and other

allocation variables.

We find that travel times are longer for patients allocated to hospitals with a large number

of doctors, residents (indicating teaching hospitals), and with cardiac catheterization laboratories.

Thus, we have some evidence that patients with more severe indications are transported to higher

quality, but more distant, hospitals. This is consistent with the official protocols for patient

allocation for Pennsylvania counties: according to the protocols, the most severe indications are

to be transported to hospitals with appropriate capabilities, while less severe indications are to be

transported to the nearest hospital.

Also in contrast to the results on TIME_TOSCENE, we see that the patient insurance



mix affects the time it takes to transport patients to the hospital. Relative to Medicare patients

(the majority of our sample), Medicaid patients have shorter transport times. This may partly

reflect the fact that Medicaid patients are more likely to reside in the urban areas of their counties

(though rural areas of Pennsylvania have Medicaid patients as well). It may also reflect a lack of

patient choice: better insured patients may travel longer to get to a better hospital. Privately

insured patients tend to travel longer, although this result is somewhat weaker. In addition to the

possibility that these patients choose to travel to better hospitals, an alternative explanation is that

their insurance policies make some hospitals more desirable than others. For example, patients

may anticipate financial penalties from receiving treatment from a hospital which is not affiliated

with their health plan.

Having characterized the "intermediate inputs" to patient outcomes, we can now turn to

assess the impact of 91 1 and hospital type on the probability of dying from a cardiac incident

requiring ambulance transportation (Figure 4 and Table 9). We begin with a simple reduced-

form regression of mortality on 911 as well as the controls from Tables 6-8. We do not find

strong effects of 911 on mortality. There are several potential explanations for this result. One is

that mortality rates are fairly low, and there are simply not enough deaths in the No 911 and

Basic 911 counties to uncover the effects. Another possibility is that unobserved heterogeneity

across counties confounds the effects of response time (although our results are robust to a

variety of county-level control variables). We do see that mortality is decreasing in the number

of hospitals per mile and the income of a county, while it is increasing in the crime rate and

police expenditures.

In all of the specifications, we find that older patients are less likely to die (they may also

be more likely to use ambulance services in less severe situations), while patients for whom



cardiac arrest and defibrillation are reported are more likely to die. Likewise, we see a very

strong effect of severity as measured by the Glasgow score: sicker patients are significantly more

likely to die than patients with less severe symptoms. Privately insured patients are more likely

to die than Medicare patients.

The second and third specifications consider the effects of response time and patient

characteristics on mortality. We have already shown that response time varies with the severity

of the patient as well as the kind of hospital to which the patient will eventually be admitted.

Thus, it will be somewhat difficult to interpret the effects of the response time variables in the

reduced-form mortality regression. We then propose a preliminary strategy for instrumental

variables: we use county-level characteristics, and in particular the level of 91 1, as instruments

for response time. We have already established that such characteristics affect the response time;

it remains to argue that the level of 911 is uncorrelated with the unexplained variation in patient

mortality (when patient-specific variables are included as controls in the regression). Our

approach excludes all county-level demographic information from the regression; in future work,

it may be possible to include zip-code level demographic data to capture any heterogeneity which

might have been correlated with excluded county-level demographics.

Our instrumental variables results, while preliminary in nature, are suggestive. They

show that shorter response times reduce the probability of death. The main coefficient which

changes in sign as a result of the instrumental variables approach is the coefficient on

TIME_TO_HOSP. It is not surprising that the coefficient changes in sign, since it is most

sensitive to the severity of individual patients (in particular, patients with non-urgent symptons

are transported to the hospital without lights and sirens). It is interesting to note that the

instrumental variables strategy is successful despite the fact that higher levels of 911 are



(unconditionally) correlated with both lower response times and higher average mortality rates.

We do not attempt an instrumental variables strategy for the technology of the hospital,

though this is a potential area for future work. In our reduced-form specification, it is difficult to

separate out the potentially beneficial effect of going to a better hospital from the effect due to

the differential allocation of more severely ill patients and non-emergency patients to better

hospitals.

VI. The Role of Emergency Response Systems in Allocating Patients to Hospitals

As described in Sections I and II, the pre-hospital system plays an important role in

allocating patients to hospitals. However, one of the most critical factors in determining a

patient's allocation is the simple availability of a hospital with advanced technologies in her

county. Table 10 shows that 80% of patients in our dataset had within-county access to hospitals

with cardiac catheterization laboratories, while only half had access to a certified county trauma

center. Conditional on access to a hospital with a cardiac catheterization laboratory,

approximately 80% of patients were allocated to such a hospital. The conditional probabilities of

being allocated to hospitals with other features is substantially lower for the cardiac patients in

our dataset. Table 10 illustrates that, as opposed to the more common situation where the

primary barrier to access derives from a patient's insurance status, a patient's geographical

location may be the main determinant of whether a patient receives treatment in a hospital with

specialized cardiac care or emergency services. Patients in poorer and less populated regions

may not receive access to such care.

In Table 11, we explore further the factors which affect allocation of patients to hospitals,



conditional on availability of the technology. The main result in this table is that for cardiac

catheterization laboratories, the level of 91 1 significantly increases the probability of being

admitted to a high-technology hospital (this result is robust to including controls for the number

of hospitals in the county with cardiac catheterization laboratories). This is consistent with an

important allocative role played by 911 centers.

We further find that, excluding the largest counties, patients with very severe and very

mild indications were most likely to go to hospitals with high levels of technology. The result

for less severe patients could be due to the use of ambulances for cases which are more elective

in nature, since patients may be reporting emergencies in order to have access to the ambulances

for basic transportation. Patient insurance status further affects the hospital allocation decision.

We find that privately insured patients are allocated in a similar fashion to Medicare patients.

However, Medicaid and self-pay patients are more likely to be treated in high-tech hospitals.

This result, which is somewhat puzzling, may be due to fact that hospitals are often located in

poor areas; further, this result may be spurious, as almost all patients are insured either privately

or through Medicare.

Table 11 also shows that the probability of being admitted to a hospital with a cardiac

catheterization laboratory is decreasing in the number of hospitals per square mile. We interpret

this result as a consequence of the allocation protocols: patients are generally taken to the closest

hospital which meets general criteria, and areas with more hospitals per square mile may have a

number of hospitals with low levels of technology. In contrast, many counties have only two or

three hospitals, one of which has a cardiac catheterization laboratory.

Our final empirical exercise considers directly the incentives of hospitals to adopt higher

levels of technology. Identifying the role that hospital characteristics play in determining the



allocation of ambulance patients is in many ways similar to a study of a differentiated goods

demand system, in which hospitals compete in the marketplace for patients on the basis of

geography and characteristics. However, these two settings also differ in some respects; in

particular, while hospitals will presumably have incentives to attract some ambulance patients, a

given hospital may want to deter particular types of patients (the uninsured or patients whom are

hard-to-treat but do not generate significant income). While these distributional questions are

extremely interesting, the present analysis will focus on the sensitivity of the overall patient share

to particular hospital investments.

Table 12 presents a results which relate the proportion of a county's patients in the dataset

who are allocated to a given hospital, SHARE, to the characteristics of that hospital as well as the

characteristics of other hospitals in the county. First, and not surprisingly, the market share of a

given hospital is declining in the total number of hospitals present in a given county. Our more

interesting results are derived from our analysis of the specific features of hospitals which seem

to impact this market share. In particular, simple measures of the overall "size" of the hospital--

the total number of physicians, the total number of hospital beds-- are uncorrelated with the

hospital market share. In contrast, specific technological investments (such as cardiac

catheterization laboratories and the rating of the emergency room) are correlated with the overall

market share. Since allocation does appear to respond to technology investment, we conclude

that the interaction between the pre-hospital system and technology adoption should be

considered in analyses of the incentives for investment by hospitals.

One important caveat to our interpretation of Table 12 is that our results do not

necessarily imply that if a given hospital increased its technology, it would increase its market

share. If our sample contains some hospitals characterized by higher than average quality, larger



number of consumers would use that hospital. The large market share could increase the

incentives of the hospital to adopt technology; or, it could be that technology is an integral part of

maintaining high overall quality. In either case, a low-quality hospital who adopted sophisticated

technology would not necessarily increase its market share.

It is also possible to investigate how the sensitivity of market share to hospital

characteristics might depend on the type of pre-hospital emergency response system available in

a given county. However, in our preliminary analysis of this dataset, we have not found a robust

interaction effect.

VII. Conclusions

From our analysis in this paper, we draw several conclusions which we hope will impact

future research. First, our results highlight that emergency response systems play two distinct

roles: productive and allocative. It therefore seems important to consider the potential bias

which arises in studies which take allocation as exogenous or which do not account for the

heterogeneity in county mortality rates which are induced by higher levels of pre-hospital care

(such as lower response times or on-the-scene defibrillation). Further, the incentives generated

by the pre-hospital system need to be taken into account when regulators and insurance

companies consider creating additional incentives for hospitals. Our analysis highlights one

particularly important feature of the pre-hospital system: it interacts with the incentives of

hospitals to adopt new technologies and maintain highly rated emergency facilities.

Our reduced-form results can be extended to provide a more structural understanding of

the interaction between the pre-hospital infrastructure and hospital competition. For example, we



find that patients are allocated by the pre-hospital system according to their severity and the

technology which a hospital employs (see Tables 11 and 12); it is left to future work to evaluate

whether these allocative effects are reflected in terms of strategic investment behavior by

hostpials.

Examining 911 services also provides a glimpse into the challenges (and types of data)

which are necessary for accurate measurement of productivity in the service sector. In particular,

service sector productivity measurement must incorporate the quality of the activity (such as

timeliness) as well as whether the services received by the customer are responsive to his

idiosyncratic characteristics (in this case, different patients experience different diagnoses and

different degrees of severity of illness). By developing and analyzing a novel dataset, we are able

to provide evidence about both of these factors (in this case, timely response and allocation of

patients to appropriate hospitals). Of course, we are not the first to evaluate multiple attributes of

a service provided. However, our analysis is further able to connect these measures of quality to

a well-defined overall service outcome measure, mortality.

Finally, a more careful understanding of the production structure of services is an

important first step towards analyzing the nature of strategic interactions between service

providers. For example, the extent to which firms can influence their market share through

overinvestment in technology and wasteful business-stealing activities will depend in part on the

importance of customized service and the quality of the match between consumer characteristics

and firm investments. These considerations might have implications for the regulation and

management of service industries.
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1. The literature on this topic is large, but several relevant studies include: Gibson (1977),

Hoffer (1979), Siler (1975), Cummins et al (1991), Bonnin, Pepe, and Clark (1993), Fischer,

Fischer, and Schuttler (1997), Larsen, Eisenberg, Cummins, and Hallstrom (1993), Tresch,

Thakur, and Hoffman (1989), and Weston, Wilson, and Jones (1997).

2. For an exception, see Joslyn, Pomrehn, and Brown (1993), who find in a sample of 1,753

Iowa patients that 911 reduces response time, time to CPR, and time to defibrillation, as well

as mortality. This study has a limited number of county-level covariates, however, leaving

open issues of unobserved heterogeneity between counties.

3 However, we have not collected detailed data about the ambulance services in different

counties for this paper.

4. While we focus in the current paper on the choice of technology for a community's 9-1-1

system, there are also important differences among counties in terms of the human resource

practices employed. In the context of medical emergencies, there has been a diffusion of

"Emergency Medical Dispatch" (EMD) systems which provide a more systematic way of

handling particular emergencies. EMD systems enable call takers to provide medical

instructions over the phone to bystanders (such as instructions for CPR) to reduce the time

until key medical procedures are performed (such as CPR) and to maintain calm at an

emergency site until ambulance care arrives.

5. This number does not include overhead incurred by the Berks County Communication

Center, which handles many calls in addition to 911 calls. For further information, see

http://www.readingpa.com/911/.



6. A large number of responses in fact reflected the technology and training choices of smaller

911 systems (e.g., townships or even university campuses). We selected out only those

observations who reported that they were the PRIMARY PSAP center and who stated that

their coverage was county-wide. This selection process under-represents counties for which

there is no county-wide 911 system.



TABLE 1
VARLABLES* & DEFINITIONS

DEFINITION SOURCE

OUTCOME MEASURES

DEAD Dummy Variable =1 if Spell Outcome = Dead PA EMS

TIME_TO_SCENE Time (Mins) from Dispatch to Arrival at Scene PA EMS

TIME AT SCENE Time (Mins) of EMS Unit at Scene PA EMS

TIME_TO_HOSP Time (Mins) from Scene to Hospital PA EMS

911 LEVEL

NO 911 No Countywide "911" Emergency Response NENA; Telephone Survey

BASIC 911 Countywide 911; No Automatic Location NENA; Telephone Survey
Identification (ALI)

ENHANCED 911 Countywide 911 with ALI NENA; Telephone Survey

911_LEVEL No 911=0; Basic 911=1; Enhanced 911=2 NENA; Telephone Survey

PATIENT CHAR.

MALE Dummy =1 if Sex=Male PA EMS

AGE Patient Age (Years) PA EMS

CARDIAC ARREST Dummy=1 if EMS Unit Records Cardiac Arrest PA EMS
Incident

DEFIBRILLATE Dummy=1 if Patient Receives Defibrillation prior PA EMS
to Arrival at Hospital

GLASGOW ## Glasgow Trauma Score Dummies PA EMS
(15=Least Severe; 3=Most Severe)

GLASGOW 0 Glasgow Score = 0 (Unknown or Unrecorded) PA EMS

INSURANCE STATUS

MEDICARE Dummy = lif Insurance Status = Medicare PA EMS

MEDICAID Dummy = lif Insurance Status = Medicaid PA EMS

PRIVATE Dummy = I if Insurance Status = Private or Govt. PA EMS

SELF PAY Dummy = 1 if Insurance Status = Self-Pay PA EMS

OTHER Dummy = 1 if Insurance Status = Other PA EMS

HOSPITAL CHARACTERISTICS

URGENT CARE Dummy =1 if Certified Urgent Care Center AHA
CENTER

CATH LAB Dummy = 1 if CardiacCatheterization Lab Present AHA

OPENHEART FAC Dummy = 1 if Open Heart Surgery Facility AHA

TRAUMA CNTR Dummy = 1 if Clinic AHA
LEVEL = 2 if Emergency Room

= 3 if Trauma Facilities Present
= 4 if Certifed County Trauma Hospital

EMERGENCY ROOM Total # of Emergency Room Visits in 1995 in AHA
VOLUME Thousands

HOSPITAL # of FTE MDs on Staff in Hospital AHA
DOCTORS

HOSPITAL # of Medical Residents on Staff in Hospital AHA
RESIDENTS



DEFINITION SOURCE

COUNTY HOSPITAL INFRASTRUCTURE

CERTIFIED TRAUM Dummy = 1 if County Contains at Least One AHA
CNTR Hospital with "TRAUMA CNTR LEVEL= 4"

HOSP PER SQ. MILE # of HOSPITALS IN COUNTY / # OF SQ MILES AHA / CCDB

COUNTY CARDIAC # of Recorded Cardiac Incidents in 1995 PA EMS
PATIENTS

COUNTY DEMOGRAPHICS (Reference Year = 1992)

POPULATION County Population / 1000 CCDB

DENSITY POPULATION / County Square Miles CCDB

INCOME PER CAP County-Level Income per Capita / 1000 CCDB

CRIMERATE Crime Rate (Incidents per 100K Population) CCDB

VCRIMERATE Violent Crime Rate (Incidents per 100 K Pop) CCDB

POLICE EXP 1992 Level of Police Expenditures COG

HEALTH EXP 1992 Level of Public Health Expenditures COG

% REPUBLICAN 1992 Republican Voter Percentage (Presidential) CCDB

% PEROT 1992 Perot Voter Percentage (Presidential) CCDB

STATE LEGISLATION

911_TRAIN_LAW Legislation Implemented for 911 NENA
Telecommunicator Training Requirements

911_TRAIN_PLAN Legislation Approved but not Implemented for 911 NENA
I Telecommunicator Training Requirements

*The natural logarithm of a variable will be denoted L VARIABLE NAME.



TABLE 2A
SUMMARY STATISTICS

(COUNTY-LEVEL AVERAGES)

PA SAMPLE NATIONAL SAMPLE

MEAN STANDARD MEAN STANDARD
DEVIATION DEVIATION

# OF COUNTY / SYSTEMS 58.000' 722.0000

911 LEVEL

NO 911 0.1897 0.3955 0.0692 0.2541

BASIC 911 0.2759 0.4509 0.1731 0.3786

ENHANCED 911 0.5345 0.5032 0.7576 0.4288

COUNTY HOSPITAL INFRASTRUCTURE

CERTIFIED COUNTY 0.2586 0.4417 0.1898 0.3923
TRAUMA CENTER

HOSP PER SQ. MILE 0.0072 0.0215

COUNTY CARDIAC 1264.8800 898.2086
PATIENTS

DEMOGRAPHICS

POPULATION 201.5020 280.0837 192.5940 370.3810

DENSITY 0.5084 1.5455 0.3331 0.7796

INCOME PER CAP 12.3244 2.6010 12.5994 2.9939

VCRIMERATE 0.0023 0.0021 0.0410 0.0234
(CRIMERATE FOR
NATIONAL SAMPLE)

POLICE EXP 16.1920 49.0941 15.4987 44.0724

HEALTH EXP 13.7416 40.4254 5.9974 14.4659

% REPUBLICAN 39.0000 7.6273 38.8680 7.8322

% PEROT 22.1622 3.3542 21.6440 6.1476

LAWSTRD 1.0000 0.0000 0.4626 0.4989

LAWPLAN 0.0000 0.0000 0.3518 0.4778

* Out of 54 PA counties for which we observe the 911 Level, 4 experienced mid-year changes, yielding 58 "County
System" observations.



TABLE 2B
PATIENT-LEVEL SUMMARY STATISTICS

(PA SAMPLE ONLY)

MEAN STANDARD
DEVIATION

# OF COUNTIES 54.0000

# OF PATIENT OBS 24664.0000

OUTCOME MEASURES

DEAD 0.0711 0.2571

TIME TO SCENE 9.1251 6.0180

TIME AT SCENE 15.9059 7.6573

TIME TO HOSP 13.2354 9.6674

911 LEVEL

NO 911 0.0827 0.2754

BASIC 911 0.1397 0.3467

ENHANCED 911 0.7777 0.4158

PATIENT CHAR.

MALE 0.4799 0.4996

AGE 69.8678 14.1957

CARDIAC ARREST 0.1043 0.3057

DEFIBRILLATE 0.3999 0.4899

GLASGOW TRAUMA SCORE (15=Least Severe; 3=Most Severe; O=Unknown)

GLASGOW SCORE 14.2011 2.7239
(EXCLUDING GLASGOW = 0)

GLASGOW 0 0.0442 0.2056

INSURANCE STATUS

MEDICARE 0.6627 0.4728

MEDICAID 0.0516 0.2212

PRIVATE 0.1885 0.3911

SELF PAY 0.0115 0.1067

OTHER 0.0358 0.1859

HOSPITAL CHARACTERISTICS (BASED ON PATIENT ALLOCATION)

URGENT CARE CENTER 0.2172 0.4123

CATH LAB 0.6703 0.4701

OPENHEART FAC 0.2940 0.4556

TRAUMA CNTR LEVEL 3.1670 0.4486

HOSPITAL DOCTORS 13.7234 19.3413

HOSPITAL RESIDENTS 27.2592 72.0307

EMERGENCY ROOM 29.9091 12.7018
VOLUME



TABLE 3
COUNTY CHARACTERISTICS

BY 911 LEVEL
(MEANS OF COUNTY-LEVEL AVERAGES)

# OF COUNTIES

# OF CARDIAC OBS

COUNTY 911 LEVEL

No 911 Basic 911 Enhanced 911 Enhanced 911
(Excluding 4 largest

counties)

11.0000 16.0000 31.0000 27.0000

2039.0000 3445.0000 19180.0000 10993.0000

OUTCOME MEASURES

DEAD 0.0567 0.0565 0.0680 0.0671

TIME TO SCENE 11.7469 11.2579 9.8656 10.1360

TIME ATSCENE 12.8364 14.3900 15.7645 15.5155

TIME TO HOSP 16.6352 15.2248 13.7586 14.2163

COUNTY HOSPITAL INFRASTRUCTURE

CERTIFIED TRAUM CNTR 0.0000 0.1875 0.3871 0.2963

HOSP PER SQ. MILE 0.0032 0.0024 0.0111 0.0040

COUNTY CARDIAC 255.2500 267.3300 671.3667 421.8077
PATIENTS

DEMOGRAPHICS

POPULATION 109.0007 106.6353 283.2884 172.4249

DENSITY 0.1756 0.1405 0.8164 0.2807

INCOME PER CAP 11.2406 11.6869 13.0380 12.5100

CRIMERATE 0.0018 0.0018 0.0026 0.0020

POLICE EXP 4.2037 4.3714 26.5468 7.9701

HEALTH EXP 2.3600 3.5011 23.0656 8.4577

% REPUBLICAN 39.9091 41.6875 37.2903 38.0741

% PEROT 23.6667 22.5455 21.7826 22.5500

I



TABLE 4
911 DEMAND REGRESSIONS

(NATIONAL SAMPLE)

DEPENDENT VARIABLE = 911 LEVEL
BASE BASE INCLUDE INCLUDE

(OLS) (ORDERED HOSPITAL (ORDERED
LOGIT) INFRASTRUCTURE LOGIT)

COUNTY HOSPITAL INFRASTRUCTURE

CERT. TRAUMA j -0.06458 -0.44596
CNTR . I (0.06221) (0.29835)
COUNTY DEMOGRAPHIC CHARACTERISTICS

L POPULATION 0.11172 0.37180 0.11555 0.37754
(0.02972) (0.13783) (0.02995) (0.13877)

DENSITY 0.000004 0.00078 0.000008 0.00088
(0.000037) (0.00069) (0.000037) (0.00070)

INCOME PER CAP 0.01207 0.06675 0.01266 0.06894
(0.00956) (0.05483) (0.00958) (0.05516)

CRIMERATE 0.27501 4.34417 0.33910 4.77066
(1.14780) (5.69929) (1.14940) (5.74605)

POLICE EXP -0.00108 -0.01212 -0.00104 -0.01176
(0.00081) (0.00747) (0.00081) (0.00781)

HEALTH EXP 0.00088 0.04322 0.00113 0.04601
(0.00243) (0.03065) (0.00244) (0.03077)

COUNTY POLITICAL CHARACTERISTICS

% REPUBLICAN -0.00332 -0.01023 -0.00344 -0.01050
(0.00284) (0.01282) (0.00285) (0.01286)

% PEROT -0.00854 -0.04217 -0.00873 -0.04301
(0.00402) (0.01774) (0.00386) (0.01781)

STATE LEGISLATION

911_TRAIN_LAW 0.16148 0.47014 0.15724 0.46095
(0.05926) (0.23082) (0.05940) (0.23085)

911_TRAIN_PLAN 0.26570 1.04053 0.26365 1.04598
(0.06372) (0.27448) (0.06375) (0.27465)

CONSTANT 0.41650 0.38349
(0.31374) (0.31533)

ORD. LOGIT Insignificant Insignificant
PARAMETERS

OBSERVATIONS 722 722 722 722

LOG-LIKELIHOOD -444.51963 -443.44308

R-SQUARED 0.1192 0.1206

I I



TABLE 5
DISTRIBUTION OF PENNSYLVANIA 911 LEVEL

(PATIENT-LEVEL AVERAGES)

# OF COUNTIES

# OF CARDIAC OBS

COUNTY 911 LEVEL

No 911 Basic 911 Enhanced 911 Enhanced 911
(Excluding 4 largest

counties)

11.0000 16.0000 31.0000 27.0000

2039.0000 3445.0000 19180.0000 10993.0000

OUTCOME MEASURES

DEAD 0.0652 0.0668 0.0726 0.0707

TIME_TO_SCENE 10.8759 10.1756 8.7503 9.2553

TIME AT SCENE 13.9897 14.2517 16.4068 15.4553

TIME_TO_HOSP 15.8141 15.5509 12.5453 13.8118

PATIENT CHAR.

MALE 0.4723 0.5013 0.4757 0.4825

AGE 70.0844 70.0673 69.8090 70.0183

CARDIAC ARREST 0.0510 0.0456 0.1205 0.0494

DEFIBRILLATE 0.5311 0.3358 0.3974 0.3879

GLASGOW TRAUMA SCORE (15=Least Severe; 3=Most Severe; O=Unknown)

GLASGOWO 0.0711 0.0761 0.0357 0.0259

GLASGOW3 0.0436 0.0369 0.0455 0.0432

GLASGOW4-9 0.0118 0.0134 0.0153 0.0121

GLASGOW10-12 0.0098 0.0171 0.0171 0.0140

GLASGOW 13-14 0.0392 0.0360 0.0414 0.0388

GLASGOW15 0.8244 0.8206 0.8450 0.8659

INSURANCE STATUS

MEDICARE 0.6714 0.6572 0.6628 0.6738

MEDICAID 0.0520 0.0453 0.0527 0.0505

PRIVATE 0.1751 0.1878 0.1900 0.1846

SELF PAY 0.0181 0.0125 0.0106 0.0142

OTHER 0.0451 0.0229 0.0372 0.0287



COUNTY HOSPITAL INFRASTRUCTURE

CERTIFIED TRAUM CNTR 0.0000 0.0967 0.6380 0.3684

HOSP PER SQ. MILE 0.0040 0.0033 0.0284 0.0050

COUNTY CARDIAC 331.7543 687.1756 1467.8430 778.5308
PATIENTS

DEMOGRAPHICS

POPULATION 169.3076 226.2671 603.5968 261.0682

DENSITY 0.2812 0.2851 2.1253 0.3925

INCOME PER CAP 11.8924 13.3673 14.8970 14.0029

CRIMERATE 0.0020 0.0020 0.0045 0.0025

POLICE EXP 7.1510 10.4612 74.1042 13.4522

HEALTH EXP 3.9969 8.7517 61.2895 13.6651

% REPUBLICAN 36.9716 47.8389 35.3231 38.1708

% PEROT 21.9413 19.9428 19.9104 22.4042

HOSPITAL CHARACTERISTICS

URGENT CARE CENTER 0.0329 0.3759 0.2082 0.1957

CATH LAB 0.2398 0.6453 0.7205 0.6499

OPENHEART FAC 0.1525 0.3840 0.2929 0.2996

TRAUMA CNTR LEVEL 3.0000 3.0581 3.2049 3.2105

HOSPITAL DOCTORS 4.1187 9.6569 15.4748 14.7493

HOSPITAL RESDIENTS 5.3198 12.0136 32.3299 17.4391

EMGCY ROOM VOLUME 30.4250 27.0173 30.3736 31.0908



TABLE 6
TIME-TO-SCENE EQUATION

DEPENDENT VARIABLE = L TIME_TO_SCENE

BASE TIME EXCLUDING ONLY COUNTIES
REGRESSION CONTROLS 4 LARGEST WITH 911 LEVEL

(OLS) (OLS) COUNTIES CHANGES
(OLS) (FIXED EFFECTS)

TIME CONTROLS

L TIME_AT_SCENE -0.13163 -0.15461 -0.19951
(0.00654) (0.00763) (0.02159)

L TIME_TO_HOSP 0.32575 0.3462 0.36371
(0.00507) (0.00607) (0.02057)

911 LEVEL

NO 911 0.09383 0.01831 0.05215 0.08953
(0.01698) (0.01557) (0.01656) (0.07063)

BASIC 911 0.07538 0.0222 0.00226 0.13546
(0.01341) (0.01228) (0.01261) (0.04305)

PATIENT CHARACTERISTICS

MALE 0.03631 0.01558 0.01846 0.04848
(0.0083) (0.00759) (0.00924) (0.02857)

AGE 0.00745 0.00398 0.00197 0.01683
(0.00205) (0.00188) (0.00252) (0.0076)

AGE_SQUARED -0.00006 -0.00002 -0.00001 -0.00011
(0.00002) (0.00001) (0.00002) (0.00006)

CARDIAC ARREST -0.12503 -0.06098 0.05545 0.15153
(0.01787) (0.01635) (0.03558) (0.11695)

DEFIBRILLATE 0.03474 0.02764 0.02735 0.02532
(0.00846) (0.00773) (0.0095) (0.03216)

GLASGOW TRAUMA SCORE (15=Least Severe; 3=Most Severe; O=Unknown)

GLASGOW 0 1.60486 1.33791 0.41029 -0.05927
(0.20163) (0.18496) (0.22467) (0.18582)

GLASGOW 3 1.63347 1.41933 0.41626 -0.10982
(0.20315) (0.18649) (0.22637) (0.18081)

GLASGOW 4-9 1.6558 1.4468 0.47398
(0.20322) (0.18644) (0.22688)

GLASGOW 10-12 1.70663 1.43213 0.49918 -0.17747
(0.20283) (0.18607) (0.22608) (0.18852)

GLASGOW 13-14 1.6681 1.39132 0.45937 0.0092
(0.20118) (0.18456) (0.22433) (0.15863)

GLASGOW 15 1.6887 1.38023 0.47959 -0.08971
(0.20057) (0.18403) (0.22347) (0.1426)



INSURANCE STATUS (EXCLUDED CATEGORY = MEDICARE)

MEDICAID -0.08647 -0.0497 -0.02478 0.1198
(0.02068) (0.0189) (0.02335) (0.06903)

PRIVATE -0.00113 -0.01811 -0.02074 -0.02352
(0.01306) (0.01193) (0.01476) (0.04388)

SELF_PAY -0.00863 -0.0371 -0.0866 -0.27909
(0.03815) (0.03484) (0.03826) (0.20312)

OTHER -0.01691 -0.0206 -0.01409 0.10725
(0.02288) (0.0209) (0.02733) (0.06999)

COUNTY HOSPITAL INFRASTRUCTURE

CERT. TRAUM CNTR 0.15789 0.09753 0.13947
(0.01474) (0.01349) (0.0196)

L HOSP PER SQ. MILE -0.12588 -0.04815 -0.00084
(0.01189) (0.01092) (0.01412)

L COUNTY CARDIAC -0.0567 -0.08468 -0.10222
PATIENTS (0.01177) (0.01077) (0.01176)

COUNTY DEMOGRAPHICS

L POPULATION -0.09277 -0.03693 0.0374
(0.03064) (0.02812) (0.02924)

DENSITY 0.0315 0.02544 -0.33748
(0.0055) (0.00505) (0.04916)

L INCOME PER CAP 0.10874 0.22698 0.72577
(0.03698) (0.03388) (0.04689)

VCRIMERATE 6.98859 9.77737 -6.69225
(4.24895) (3.88727) (4.69215)

L POLICE EXP 0.06323 0.03356 -0.03753
(0.0224) (0.02049) (0.0219)

L HEALTH EXP -0.013 -0.02067 -0.01945
(0.00422) (0.00386) (0.00403)

HOSPITAL CHARACTERISTICS

URGENT CARE CENTER -0.03722 -0.04101 -0.03001
(0.01138) (0.0104) (0.01389)

CATH LAB -0.03328 -0.04442 -0.04749 0.20105
(0.01185) (0.01084) (0.01375) (0.04967)

OPENHEART FAC 0.02769 0.0203 0.02798
(0.01243) (0.01137) (0.01865)

TRAUMA CNTR LEVEL -0.06379 -0.04453 -0.04719
(0.01181) (0.01079) (0.01872)

EMERGENCY ROOM -0.00031 0.00046 -0.00073 0.00614
VOLUME (0.00025) (0.00039) (0.00054) (0.05292)

HOSPITAL DOCTORS 0.00023 -0.00075 -0.00039 -0.01573
(0.00007) (0.00023) (0.00052) (0.04498)

HOSPITAL RESIDENTS 0.00043 0.00003 0.00102
(0.00043) (0.00007) (0.00036)

CONSTANT 1.241
(0.31835)

OBSERVATIONS 24664.0000 24664.0000 16477.0000 1635.0000

R-SQUARED 0.7040 0.7170 0.7170 0.2774



TABLE 7
TIME-AT-SCENE EQUATION

DEPENDENT VARIABLE = L TIME_AT_SCENE

BASE TIME EXCLUDING ONLY COUNTIES
REGRESSION CONTROLS 4 LARGEST WITH 911 LEVEL

(OLS) (OLS) COUNTIES CHANGES
,(OLS) (FIXED EFFECTS)

TIME CONTROLS

L TIME_TO_SCENE -0.12301 -0.1574 -0.25261
(0.00611) (0.00777) (0.02734)

L TIME_TO_HOSP -0.04943 -0.05542 -0.10568
(0.00529) (0.00669) (0.02515)

911 LEVEL

NO 911 -0.18644 -0.16716 -0.18038 -0.0343
(0.01522) (0.01501) (0.01665) (0.07951)

BASIC 911 -0.09558 -0.08014 -0.07043 0.11722
(0.01202) (0.01186) (0.01271) (0.0485)

PATIENT CHARACTERISTICS

MALE -0.03912 -0.03228 -0.03712 -0.03224
(0.00744) (0.00733) (0.00932) (0.03216)

AGE 0.00536 0.00691 0.00397 0.00001
(0.00184) (0.00181) (0.00254) (0.00857)

AGE_SQUARED -0.00001 -0.00003 -0.00001 0.00002
(0.00001) (0.00001) (0.00002) (0.00007)

CARDIAC ARREST 0.02266 -0.00199 0.06571 0.13014
(0.01602) (0.01581) (0.0359) (0.13162)

DEFIBRILLATE 0.03347 0.03949 0.0247 0.06299
(0.00758) (0.00747) (0.00959) (0.03616)

GLASGOW TRAUMA SCORE (15=Least Severe; 3=Most Severe; O=Unknown)

GLASGOW 0 2.17322 2.45456 2.54128
(0.1807) (0.1783) (0.22585)

GLASGOW 3 2.45973 2.74229 2.75759 0.17614
(0.18206) (0.17964) (0.22742) (0.19364)

GLASGOW 4-9 2.30703 2.58851 2.60049 -0.26967
(0.18212) (0.1797) (0.22805) (0.20899)

GLASGOW 10-12 2.20594 2.5016 2.55148 -0.03566
(0.18177) (0.17938) (0.22728) (0.19633)

GLASGOW 13-14 2.19037 2.48132 2.54956 -0.15936
(0.18029) (0.17792) (0.2255) (0.1574)

GLASGOW 15 2.17405 2.47202 2.51962 -0.10864
(0.17975) (0.17741) (0.22466) (0.13614)



INSURANCE STATUS (EXCLUDED CATEGORY = MEDICARE)

MEDICAID 0.00908 -0.00695 0.00054 -0.00165
(0.01854) (0.01827) (0.02357) (0.07775)

PRIVATE -0.02494 -0.023 -0.0457 -0.10748
(0.01171) (0.01153) (0.01489) (0.04931)

SELF PAY -0.00607 -0.00293 -0.01054 -0.51433
(0.03419) (0.03368) (0.03861) (0.22833)

OTHER 0.01131 0.01001 -0.00877 -0.10236
(0.02051) (0.0202) (0.02758) (0.07877)

COUNTY HOSPITAL INFRASTRUCTURE

CERT. TRAUM CENTER -0.08111 -0.05414 -0.11849
(0.01321) (0.01305) (0.01979)

L HOSP PER SQ. MILE 0.12706 0.10232 0.08358
(0.01066) (0.01054) (0.01423)

L COUNTY CARDIAC -0.10168 -0.10644 -0.104
PATIENTS (0.01055) (0.0104) (0.01187)

COUNTY DEMOGRAPHICS

L POPULATION 0.43383 0.42261 0.37463
(0.02740.02706) 0.02935)

DENSITY -0.07099 -0.06761 -0.03212
(0.00493) (0.00486) (0.04967)

L INCOME PER CAP -0.19859 -0.20712 -0.11367
(0.03314) (0.03275) (0.04764)

VCRIMERATE 35.18246 36.32172 52.4423
(3.80783) (3.75116) (4.71698)

L POLICE EXP -0.17784 -0.16911 -0.18477
(0.02007) (0.01978) (0.02205)

L HEALTH EXP -0.01733 -0.01811 -0.01583
(0.00378) (0.00373) (0.00406)

HOSPITAL CHARACTERISTICS

URGENT CARE -0.03078 -0.0354 -0.07251
CENTER (0.0102) (0.01005) (0.014 )

CATH LAB 0.0825 0.08175 0.09871 0.13936
(0.01062) (0.01047) (0.01386) (0.05607)

OPENHEART FAC -0.07375 -0.0707 -0.11318
(0.01114) (0.01098) (0.0188 

TRAUMA CENTER 0.0035 -0.0072 -0.00458
LEVEL (0.01059) (0.01044) (0.01889)

EMERGENCY ROOM 0.0008 0.00087 0.00174 0.13112
VOLUME (0.00038) (0.00038) (0.00054) (0.05946)

HOSPITAL DOCTORS -0.00019 -0.00017 -0.00113 -0.12205
(0.00023) (0.00022) (0.00052) (0.05052)

HOSPITAL RESIDENTS 0.00027 0.00033 0.00167 -0.02503
(0.00006) (0.00006) (0.00037) (0.00954)

CONSTANT 3.20254
(0.33705)

OBSERVATIONS 24664.0000 24664.0000 16477.0000 1635.0000

R-SQUARED 0.7040 0.7170 0.7170



TABLE 8
TIME-TO-HOSPITAL EQUATION

DEPENDENT VARIABLE = L TIME TO HOSPITAL

BASE TIME EXCLUDING ONLY COUNTIES
REGRESSION CONTROLS 4 LARGEST WITH 911 LEVEL

(OLS) (OLS) COUNTIES CHANGES
(OLS) (FIXED EFFECTS)

TIME CONTROLS

L TIMETOSCENE 0.44086 0.47724 0.44745
(0.00686) (0.00837) (0.0253)

L TIME_AT_SCENE -0.07159 -0.07504 -0.10268
(0.00765) (0.00906) (0.02444)

911 LEVEL

NO 911 0.15649 0.10178 0.10605 0.09964
(0.01963) (0.0181) (0.01943) (0.07834)

BASIC 911 0.12466 0.08459 0.08718 0.07311
(0.01551) (0.01427) (0.01479) (0.04786)

PATIENT CHARACTERISTICS

MALE 0.04784 0.02903 0.02066 0.03623
(0.00959) (0.00882) (0.01085) (0.0317)

AGE 0.01282 0.00992 0.00874 0.00106
(0.00237) (0.00218) (0.00295) (0.00845)

AGESQUARED -0.00011 -0.00009 -0.00008 -0.00002
(0.00002) (0.00002) (0.00002) (0.00006)

CARDIAC ARREST -0.18747 -0.13073 -0.13198 -0.00151
(0.02066) (0.019 ) (0.04177) (0.03567)

DEFIBRILLATE 0.03532 0.0224 0.03799 -0.21201
(0.00978) (0.009 ) (0.01115) (0.07646)

GLASGOW TRAUMA SCORE (15=Least Severe; 3=Most Severe; 0=Unknown)

GLASGOW 0 1.6977 1.14576 1.15614 -0.34525
(0.23308) (0.21527) (0.26366) (0.19073)

GLASGOW 3 1.65137 1.10733 1.11887 -0.41187
(0.23483) (0.21709) (0.26567) (0.20586)

GLASGOW 4-9 1.57387 1.00906 1.07255 -0.0466
(0.23491) (0.21707) (0.26628) (0.19352)

GLASGOW 10-12 1.73412 1.13965 1.14773 -0.30685
(0.23446) (0.2166) (0.26532) (0.15502)

GLASGOW 13-14 1.73479 1.1562 1.16163 -0.04845
(0.23255) (0.21483) (0.26326) (0.13422)

GLASGOW 15 1.8255 1.23666 1.2426 -0.10085
(0.23185) (0.21419) (0.26224) (0.12976)



INSURANCE STATUS (EXCLUDED CATEGORY = MEDICARE)

MEDICAID -0.1092 -0.07043 -0.07683 -0.07046
(0.02391) (0.02198) 0.02741)(0.04865)

PRIVATE 0.04206 0.04077 0.04224 0.27275
(0.0151) (0.01388) (0.01732) (0.22532)

SELF PAY 0.08497 0.08834 0.11029 -0.08129
(0.04409) (0.04053) (0.04492) (0.07766)

OTHER 0.01589 0.02416 -0.00221
(0.02645) (0.02431) (0.03209)

COUNTY HOSPITAL INFRASTRUCTURE

CERT. TRAUM 0.15252 0.07711 0.05555
CENTER (0.01704) (0.0157) (0.02305)

L HOSP PER SQ. MILE -0.18727 -0.12268 -0.09829
(0.01374) (0.01269) (0.01656) _

L COUNTY CARDIAC 0.0448 0.06252 0.09978
PATIENTS (0.01361) (0.01254) (0.01382)

COUNTY DEMOGRAPHICS

L POPULATION 0.00389 0.07585 0.06252
(0.03542) (0.03272) (0.03432)

DENSITY -0.01008 -0.02905 0.18259
(0.00636) (0.00587) (0.05779)

L INCOME PER CAP -0.44325 -0.5054 -0.46603
(0.04275) (0.03932) (0.05533)

VCRIMERATE 5.65587 5.09363 2.34351
(4.91153) (4.52272) (5.50937)

L POLICE EXP 0.01922 -0.02139 -0.08667
(0.02589) (0.02383) (0.0257 )

L HEALTH EXP 0.01653 0.02102 0.02104
(0.00488) (0.00449) (0.00473)

HOSPITAL CHARACTERISTICS

URGENT CARE -0.00081 0.0134 0.00072 0.16509
CENTER (0.01316) (0.0121) (0.01631) (0.05522)

CATH LAB 0.06756 0.08813 0.10653
(0.0137) (0.01261) (0.01613)

OPENHEART FAC -0.00712 -0.02461 -0.01003
(0.01437) (0.01322) (0.0219)

TRAUMA CENTER -0.05772 -0.02935 -0.05217 -0.02545
LEVEL (0.01366) (0.01256) (0.02198) (0.0587)

EMERGENCY ROOM 0.00025 0.00012 -0.00144 0.02418
VOLUME (0.00049) (0.00045) (0.00063) (0.04989)

HOSPITAL DOCTORS 0.00126 0.00138 0.00244 0.01174
(0.00029) (0.00027) (0.00061) (0.00942)

HOSPITALRESIDENTS 0.00073 0.00065 0.00135 1.67951
(0.00008) (0.00008) (0.00043) (0.33885)

CONSTANT 3.20254
(0.33705)

OBSERVATIONS 24664.000 24664.000 16477.000 1635.000

R-SQUARED 0.704 0.717 0.717



TABLE 9
MORTALITY EQUATION

DEPENDENT VARIABLE =
DEATH OUTCOME DUMMY

REDUCED BASE BASE
FORM REGRESSION REGRESSION
(OLS) (OLS) (IV)

TIME OUTCOMES

L TIME_TO_SCENE 0.00535 0.03122
(0.00268) (0.01974)

L TIME_AT_SCENE 0.01266 0.04073
(0.00275) (0.01434)

L TIME_TO_HOSP -0.00690 0.01896
(0.00228) (0.01187)

911 LEVEL

NO 911 -0.00104
(0.00658)

BASIC 911 0.00030
(0.00520)

PATIENT CHARACTERISTICS

MALE 0.00529 0.00591 0.00479
(0.00322) (0.00322) (0.00329)

AGE -0.00281 -0.00276 -0.00352
(0.00080) (0.00080) (0.00083)

AGE_SQUARED 0.00003 0.00003 0.00004
(6.06 e-6) (6.05 e-6) (6.26 e-6)

CARDIAC ARREST 0.01709 0.01271 0.02566
(0.00693) (0.00627) (0.00718)

DEFIBRILLATE 0.02500 0.02441 0.02149
(0.00328) (0.00326) (0.00342)

GLASGOW TRAUMA SCORE (15=Least Severe; 3=Most Severe; O=Unknown & Default)

GLASGOW 3 0.31672 0.31605 0.30487
(0.01177) (0.01146) (0.01249)

GLASGOW 4-9 0.19542 0.19380 0.19219
(0.01485) (0.01419) (0.01536)

GLASGOW 10-12 0.11793 0.11838 0.11426
(0.01423) (0.01419) (0.01449)

GLASGOW 13-14 0.02183 0.02261 0.01969
(0.01077) (0.01071) (0.01090)

GLASGOW 15 -0.01625 -0.01459 -0.02021
(0.00769) (0.00762) (0.00783)



INSURANCE STATUS (EXCLUDED CATEGORY = MEDICARE)

MEDICAID 0.00943 0.00782 0.01291
(0.00802) (0.00800) (0.00818)

PRIVATE 0.01071 0.01128 0.01137
(0.00507) (0.00505) (0.00513)

SELF PAY 0.01425 0.01500 0.01194
(0.01479) (0.01473) (0.01498)

OTHER 0.00219 -0.00022 0.00156
(0.00887) (0.00877) (0.00886)

COUNTY HOSPITAL INFRASTRUCTURE

CERT. TRAUM 0.00378
CENTER (0.00572)

L HOSP PER SQ. MILE -0.00729
(0.00461)

L COUNTY CARDIAC 0.00499
PATIENTS (0.00457)

COUNTY DEMOGRAPHICS

L POPULATION -0.00905
(0.01188)

DENSITY -0.00348
(0.00213)

L INCOME PER CAP -0.22546
(0.01434)

VCRIMERATE 2.12906
(1.64770)

L POLICE EXP 0.01159
(0.00869)

L HEALTH EXP -0.00039
(0.00164)

HOSPITAL CHARACTERISTICS

URGENT CARE 0.01411 0.01818 0.01782
CENTER (0.00441) (0.00399) (0.00428)

CATH LAB -0.00171 -0.00118 -0.00071
(0.00460) (0.00394) (0.00441)

OPENHEART FAC -0.00320 0.01818 0.00157
(0.00482) (0.00443) (0.00469)

TRAUMA CENTER 0.00726 0.00872 0.01215
LEVEL (0.00458) (0.00399) (0.00404)

EMERGENCY ROOM 0.00023 0.00033 0.00447
VOLUME (0.00458) (0.00015) (0.00404)

HOSPITAL DOCTORS -3.46 E-06 0.00003 0.00003
(0.00098) (0.00009) (0.00009)

HOSPITALRESIDENTS -0.00005 -0.00008 -0.00010
(0.00003) (0.00003) (0.00002)

CONSTANT 0.04104 --0.00302 --0.20416
(0.07819) (0.03106) (0.07180)

OBSERVATIONS 24664.000 24664.000 24664.000

R-SQUARED 0.107 0.092

*INSTRUMENTS: NO 911, BASIC 911, CERTIFIED TRAUM CNTR, HOSP PER SQ MILE,
L POPULATION, DENSITY, L INCOME PER CAP, VCRIMERATE, POLICE EXP, HEALTH EXP



TABLE 10
DISTRIBUTION OF IN-HOSPITAL EMERGENCY & CARDIAC TECHNOLOGIES

IN-HOSPITAL TECHNOLOGY

CATH LAB OPEN HEART URGENT CERTIFIED
SURGERY CARE "COUNTY
FACILITY CENTER TRAUMA

CENTER"

Total Share of Patients 0.6703 0.2940 0.2170 0.1983
Allocated to Hospital with
Technology

Shareof Patients Living in 0.8243 0.6141 0.6055 0.5097
Counties with At Least One
Hospital With Technology

Conditional Share of Patients 0.8131 0.4787 0.3586 0.3892
Allocated to Hospitals with
Technology ...



TABLE 11
PATIENT ALLOCATION EQUATION

DEPENDENT VARIABLE =
ALLOCATED TO HOSPITAL WITH CATH LAB
(CONDITIONAL ON AT LEAST ONE CATH LAB
HOSPITAL WITHIN COU INTY)

CATH LAB CATH LAB
(PROBIT) (PROBIT) EXC. 4

LARGEST
COUNTIES

911 LEVEL

NO 911 -1.00733 -1.16728
(0.06863) (0.07387)

BASIC 911 -0.28051 -0.46803
(0.03050) (0.03800)

PATIENT CHARACTERISTICS

MALE -0.03312 -0.00646
(0.02189) (0.02860)

AGE -0.00412 0.00091
(0.00562) (0.00795)

AGE_SQUARED -1.85 E-06 -0.00005
(0.00004) (0.00006)

CARDIAC ARREST 0.58741 -0.08791
(0.05086) (0.10797)

DEFIBRILLATE -0.01392 0.01356
(0.02256) (0.03001)

GLASGOW TRAUMA SCORE (15=Least Severe; 3=Most Severe;
0=Unknown & Default)

GLASGOW 3 -0.84533 -0.37461
(0.08582) (0.13860)

GLASGOW 4-9 -0.47575 -0.67050
(0.10140) (0.14290)

GLASGOW 10-12 -0.32729 -0.53630
(0.10122) (0.13994)

GLASGOW 13-14 -0.37244 -0.41117
(0.07923) (0.10938)

GLASGOW 15 -0.32983 -0.38695
(0.06085) (0.08417)



INSURANCE STATUS (EXCLUDED CATEGORY -
MEDICARE)

MEDICAID 0.18089 0.171265
(0.05760) (0.07802)

PRIVATE 0.04216 -0.00565
(0.03485) (0.04621)

SELF PAY 0.11544 0.27962
(0.09776) (0.10839)

OTHER -0.22751 -0.26058
(0.05842) (0.08373)

COUNTY HOSPITAL INFRASTRUCTURE

CERT. TRAUM -0.19506 -0.66830
CENTER (0.04109) (0.05677)

L HOSP PER SQ. MILE -0.15402 -1.15404
(0.03673) (0.06159)

L COUNTY CARDIAC -0.09191 -0.13927
PATIENTS (0.04060 (0.05710)

COUNTY DEMOGRAPHICS

L POPULATION -2.34760 -2.67815
(0.13631) (0.15202)

DENSITY -0.04246 1.72541
(0.01450) (0.18301)

L INCOME PER CAP -0.39597 0.15092
(0.10642) (0.15613)

VCRIMERATE -134.69580 -105.51410
(14.0461) (15.50315)

L POLICE EXP 1.85107 2.08144
(0.10056) (0.10894)

CONSTANT 11.41237 5.40536
(0.74178) (0.86296)

OBSERVATIONS 20333.000 12146.000

LOG-LIKELIHOOD -9089.698 -5336.958



TABLE 12
HOSPITAL MARKET SHARE EQUATION
(EXCLUDES FOUR LARGEST COUNTIES)

DEPENDENT VARIABLE =
L HOSPITAL MARKET
SHARE

INDIVIDUAL HOSPITAL CHARACTERISTICS
URGENT CARE CENTER 0.6070

(0.2911)

CATH LAB 0.5998
(0.2717)

OPENHEART FAC 0.1522
(0.3994)

TRAUMA CENTER LEVEL 0.6626
(0.3233)

HOSPITAL DOCTORS 0.0163
(0.0122)

HOSPITALRESIDENTS 0.0008
(0.0102)

INTENSITY OF RIVAL HOSPITAL COMPETITION
# of HOSPITALS -1.0527

(0.1432)

AVERAGE URGENT CARE -0.3947
CENTER (0.3850)

AVERAGE CATH LAB -0.6712
(0.3689)

AVERAGE OPENHEART FAC -0.1427
(0.5958)

AVERAGE TRAUMA CENTER -0.6226
LEVEL (0.3575)

AVERAGE HOSPITAL -0.0213
DOCTORS (0.0157)

AVERAGE 0.0084
HOSPITALRESIDENTS (0.0138)

CONSTANT -0.1513
(0.7788)

OBSERVATIONS 101.0000
R-SOUARED 0.5419



FIGURE 1

How is 9-1-1 funded in the 50 states?

12% - State and Local Fee
\ (6 STATES)

8% - State/Local Tax

Minnesota Department of Administration - January 1995



FIGURE 2

MEASURE VITAL SIGNS
AND.

LEVEL OF CONSIIOUSNESS

- GLASGOW COMA SCALE < 13 OR
- SYSTOLIC BLOOD PRESSURE < 90 OR
- RESPIRATORY RATE <10 OR > 29

NO

YES

POST EXTRICATION . TAKE TO CLOSEST HOSPITAL IF > 30
MINUTE TRANSPORT TO TRAUMA CENTER POST

EXTRICATION 2

~~~~~~i ,,1 ii

ASSESS ANATOMY OF INJURY
AND MECHANISM OF INJURY

YES

TAKE TO TRAUMA CENTER IF <
30 MINUTE TRANSPORT POST
EXTRICATION'. TAKE TO
CLOSEST HOSPITAL IF > 30
MINUTE TRANSPORT TO TRAUMA
CENTER POST EXTRICATION 2

NO

-AGE< 5 OR> 55
- KNOWN CARDIAC OR RESPIRATORY DISEASE

YES

REEVALUATE WITH MEDICAL
COMMAND, CONSIDER TAKING TO
TRAUMA CENTER FOR MODERATE

SEVERITY INJURY

NO

TO CLOSEST HOSPITAL, REEVALUATE PER
INTERHOSPITAL TRIAGE CRITERIA

1 cnadt dUeopir ilpolapd auexi.A I 1 bdid _.
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- PENETRATING TRAUMA TO CHEST, ABDOMEN, HEAD, NECK OR GROIN
- 2 OR MORE PROXIMAL LONG BONE FRACTURES
- COMBINATION WITH BURNS > 15%, FACE OR AIRWAY
- FLAIL CHEST
- AMPUTATION ABOVE WRIST OR ANKLE, OR DEGLOVING INJURY
- MULTIPLE AMPUTATION (E.G., TWO FINGERS, THREE TOES)
- INJURY INVOLVING TWO OR MORE BODY SYSTEMS (E.G. CENTRAL NERVOUS SYSTEM, CARDIOVASCULAR, PULMONARY,

GASTROINTESTINAL, GENITOURINARY)
- UNCONSCIOUS WITH EVIDENCE OF TRAUMA
- MECHANISM OF INJURY: - FALLS 20 FEET OR MORE

-CRASH SPEED > 20 MPH; 30" DEFORMITY OF AUTOMOBILE
- EXTRICATION REQUIRED
- REARWARD DISPLACEMENT OF FRONT AXLE
- PASSENGER COMPARTMENT INTRUSION 18" ON PATIENT SIDE OF CAR;

24" ON OPPOSITE SIDE OF CAR
- EJECTION OF PATIENT
- ROLLOVER
- DEATH OF SAME CAR OCCUPANT
- PEDESTRIAN HIT > 20 (INCLUDES BICYCLIST, MOPEDIST)
- SERIOUS BLUNT TRAUMA IN A CHILD

- PROLOGNED EXTRICATION (CONSIDER HELICOPTER: CONTACT MEDICAL COMMAND)

WHEN IN DOUBT, TRANSPORT TO TRAUMA CENTER

._ _ I

d,

I
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