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ABSTRACT

This research focuses on two specific research problems in the context of innovation in the biotech
industry. These research problems map to the two phases of innovation process — creation of new
scientific expertise (Phase I) and commercialization of that new expertise (Phase II).

The research problem in Phase I, examines determinants of productivity in the creation of new scientific
expertise, specifically following scholarship in the sociology of networks, assessing the impact of patterns
of scientific research networks on research productivity. The setting for the study is a group of research
scientists associated with the Du Pont - MIT Alliance. Findings suggest that optimal research networks
should have a large number of relatively strong links and avoid over-dependence on a few research
collaborators, to enhance research productivity.

With respect to Phase II and the transformation of scientific ideas into commercial products, existing
innovation literature has identified several ingredients for commercial success, and in particular, for start-
up ventures: reputed management teams, BODs (Board of Directors), SABs (Scientific Advisory Boards)
and prominent VC (venture capital) firms. However the relative influence of the inventor’s reputation
versus the quality of the research idea in assembling these necessary constituents has not been researched.
The study sample for the research problem under Phase 11, consisted of all the biotech start-ups in the
Massachusetts area, founded after 1995. The research findings highlight the usage of ‘signaling’
(reputation in this case) in assembling reputed teams. The study also shows diminishing returns to such
signaling as the uncertainty reduces.

The implications of these finding can be broadly drawn at the level of technology policy and at the unit
level of a firm. Technology policy can influence the organization of university research networks as well
as make funding allocation decisions. Individual firms can use these results to shape their collaboration
with academia. The results also send a strong signal that if a research idea attains prominence, it can be
successfully commercialized regardless of the inventor reputation.

Thesis Supervisor: Fiona Murray,

Michael M. Koerner '49 Career Development Professorship
Management of Technological Innovation & Entrepreneurship (MTIE)
Sloan School of Management
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CHAPTER 1: INTRODUCTION

Biotechnology: The Importance of Start-Up Firms and Research in Academia

The biotechnology industry has witnessed tremendous growth in the last three decades, due to the success
of some pioneering drugs like human insulin (Genentech), erythropoietin (Amgen) and TPA (Genentech).
These innovations and drugs like them offer the best hope against complex illnesses like cancer and AIDS
among others. The pharmaceutical industry’s importance in the US economy is growing (as mirrored in
the recent reconstitution of the Dow Jones Index) and biotech companies play key role in directing that
change. The biotech sector generates $30 billion in annual sales, employs about 200,000 people and has

$90 billion invested in publicly traded companies (Ernst & Young).

The key driver of growth in this industry is innovation. Start-up companies and research at universities
have played a crucial role in driving the innovation engine of this industry. This has been in evidence
from the very beginning of the industry, when the development of recombinant technology by Herbert
Boyer (UCSF) and Stanley Cohen (Stanford) and the formation of a company called Genentech to
commercialize it, is said to have ushered in the biotechnology industry. The growing venture capital
industry made it easier for scientists with cutting edge ideas to start companies to commercialize their

science.

This trend of companies germinating from university labs intensified with the huge IPO success of
Genentech in 1980. Universities also did not lose time in realizing the potential of the research they were
conducting. Research shows that the patenting and licensing activities in leading universities significantly
increased due to biomedical research (Mowery et al, 1993). This trend was supported by the Bayh Dole
Act of 1980, which allowed universities to seek patents from research that came from public funding.

Research from leading universities plays an important role in the creation of new ventures through spin-
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offs and technology licensing. In the Massachusetts region alone, MIT and Harvard University are
directly or indirectly related to more than 40% (based on our analysis) of all the biotech start-ups in that
area. Despite the growing interest of large pharmaceutical companies in biotech, start-up companies

continue to be at the cutting edge of research in this industry.

Innovation Research in Biotechnology

The biotech industry is witness to the launch of several new technologies and business alliances every
year. Given that the industry is still in the growth phase of its cycle, scores of start-up companmes are
crated every year while several more become extinct (through either Chapter 11 (reorganization) or
Chapter 7 (liquidation) and acquisition). This churn in the industry along with the scorching pace of
technological and business model innovation in the biotech industry has attracted the attention of
innovation researchers. Researchers are interested in understanding the two phases ot: innovation
(Utterback model of innovation, 1971): Creation of New Scientific Expertise and Commercialization of

Science. More specifically, they are interested in exploring the factors that assist in both the above.

Overall Research Problem

The research problem addressed in this thesis is set up using a slightly modified version of the Utterback
model of innovation (mentioned above). Phase I (Creation of New Scientific Expertise) is essentially
about investing and developing new scientific capabilities in response to a pre-defined need. It consists of
the following sub-processes: recognition of external market need, recognition of a technical means to
meet this need and the synthesis of this information to develop a new technology/science. Phase II
(Commercialization of this science) consists of taking the product concept from Phase I through to the
market place. It involves the following steps: devising a business model that best suits the new
technology, obtaining financing, setting up a management team and oversight boards, building

commercial expertise (sales and marketing and supply chain) and launching the product. However, it
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should be noted that this is not necessarily a linear process. Often times, the new technology has to be
modified based on feedback loops from Phase I1. Within this overall process model of innovation, 1 have

focused on specific elements within the two Phases (see figure 1).

Figure 1: Process model of innovation

Creation of New
Scientific Expertise |—»
(Phase )

Commercialization of
science (Phasell)

Productivity of Idea Creation Ingredients for commercial success

The broad problem this thesis focuses on under Phase 1 is that of understanding the impact of scientific
research networks on productivity. Under Phase II, this thesis focuses on the relative impact of the
starting conditions (quality of the scientific idea(s), reputation of the inventor(s)) on the ability of the
start-up to successfully commercialize its science. The overall research problem can be recast as below

(see Figure 2)

Figure 2: Overall research schematic

Research - »
networks

T - Idea quality —p»| Commerical
- Inventor reputation ——»] Outcomes

T

ldea Creation
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Research Networks

The wide prevalence of collaborative research in science and its understood benefits (increasing
bandwidth for scientists and cross-pollination) makes research networks an interesting subject for
research. This interest is magnified in the context of innovation in biotech since university labs play a
crucial role in licensing technology to start-ups and large firms (as mentioned before). Typically several
large companies engage in research alliances with top schools and the outcomes of this study should help
in structuring the network of alliances. In addition, the subject has technology policy implications on how
national funding agencies and university administrations should help engender and support these

networks in academia and national labs.

Commercial Outcomes

The biotech industry witnesses the creation and extinction of several start-ups each year. While the
venture capital industry specializes in ‘picking the winners’ from scores of new ideas/concepts thus
lowering the odds of failure, the high level of uncertainty prevailing over a nascent technology ensures
that its hard to predict success. Thus it has become popular to devise surrogate measures to try and predict
apriori, the probability of commercial success of a new venture. This study delves into what are being

widely considered as crucial ingredients for commercial success and their drivers.
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CHAPTER 2: LITERATURE REVIEW

Research Networks

Research networks are considered to be extremely crucial for success in the biotechnology arena (Powell
1996). Start-ups dominate the biotechnology industry and thus it is not uncommon to witness a large
number of alliances between them and large pharmaceutical companies. These alliances have invited
attention from researchers, especially sociologists. Researchers have postulated that network composition
has great bearing on the performance of start up biotech companies (Baum et al 2000). They also talk
about how the network should be efficient and should eliminate non-redundancies (Burt 1992). The
position of firms within a network is also a crucial dimension in its collaborative research success (Powell
1996). To fully leverage the benefits of a research network, firms need to occupy a central position in the
network, i.e. they should maximize the number of contacts with other members of the network, directly or
through structural equivalence. This is shown to positively affect sales growth as well as the ability to

forge more research ties in the future.

This section of the thesis deals with the specific areas of collaboration and its benefits, and nature of
ties among network participants and its impact on the research output of the partners. Scientific
collaboration has long been accepted as being important for research productivity. Some of the earliest
studies have been done on Nobel laureates and how they are more collaborative and more productive than
others (Zuckerman, 1967). Collaborations are said to be useful for several reasons. Many times,
collaborations leverage the use of expensive equipment, which makes the research feasible (joint sharing
of costs and extracting value from the purchase) (Meadows, 1974). The increased incidence of inter-
disciplinary research also brings in collaborators with differing unique expertise, which contributes to
research efforts (Goffman and Warren, 1980). It is also believed that tacit knowledge is best conveyed

through a collaboration (Beaver, 2001). However despite such universal agreements on the benefits of
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collaboration, there have been few studies that have proved that collaborations do indeed enhance
research output. This thesis aims to explore two issues related to collaboration quantitatively — impact of
collaboration on research productivity and what kinds of collaborators (from academia/industry, etc) are

more useful.

The type of research ties between collaborators has also elicited considerable interest. Network theorists
(Burt 1992 and Granovetter 1973) argued for weak ties amongst players in a network. The idea proposed
is that networks are constructed for players to exchange information since players have finite time on their
hands to maintain their network, they should optimize it to maximize their return on social capital
investment. The central tenets of this theory are those of structural equivalence and non-redundancy.
Structural equivalence means that two players can extract information from each other even if they are not
directly connected, if they are connected through a common network partner (some sort of a transitive
relationship). Redundancy of contacts occurs if two players are connected to each other through multiple
ways (direct and/or other transitive relationships). Thus it can be derived that, there is no marginal benefit
of additional ties with entities that are already connected to the protagonist. It is further assumed that
each tie costs effort to maintain and thus such investments should only be made into those networks
where the protagonist does not have existing relationships. Information is treated like a commodity that
can be easily shared (some sort of a transactional relationship) and thus tie strength is not an important
element in the consideration of transmission. The theory further states that an optimal network design can
be engineered by maximizing total unique information (benefit) and minimizing the cost (tie-
maintenance). Assuming that people have finite time to invest, this would posit multiple ties with several
groups of players with low redundancies ar.nd also argues against strong ties with any player. The
argument on tie strength is based on the assumption tie strength has no bearing on the quantity and quality

of information that is being transmitted.
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While other network researchers have broadly accepted this theory, the context of its usage has not been
defined completely. It is unclear if all kinds of collaborations involve only transactional relationships.
Thus there is a body of research that believes that “search problems” in R&D would benefit from weak
ties, while intensive R&D collaborations (“transfer problems™) that exchange tacit knowledge requires
strong ties (Hansen 1999). The main idea was to split collaborations into transactions-based and those
involving transfers of complex knowledge. Transactional relationships benefit from weak ties whereas
sharing of complex knowledge favors stronger ties.

“Findings show that weak inter-unit ties help a project team search for useful knowledge in other
sub-units but impede the transfer of complex knowledge, which tends to require a strong tie
between the two parties for a transfer. Having weak inter-unit ties speeds up projects when
knowledge is not complex, but slows them down when the knowledge to be transferred is highly

complex”

This study was based on R&D projects outcomes within a company. Other than this, there have been few
studies exploring what kind of ties are more productive in collaborative R&D networks. This problem is
relevant to both companies as well as university researchers. Building research networks takes
constderable time and energy and could have fairly long gestation periods to start producing results. Thus
planning for it at the beginning would be more efficient than expensive mid-course corrections, especially
when it’s not easy to terminate relationships. Companies, especially in the biotechnology arena are
investing into creating R&D alliances to improve their research output and they would be keen to
understand a means of an efficient deployment of their funds. Scientists in academia too are measured on
the quality and quantity of their research outcomes and would be interested in selecting research partners.
Thus it is interesting to study how patterns of research networks impact research productivity and quality,
so that scientists and institutions can take the results into considerations while drawing up their plans on

collaborations.
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Commercial Outcomes

This section of the thesis focuses on the relative impact of the status of the inventor and the quality of
his/her invention on the ability of the start-up firm to attain commercial success. To attain commercial
success, start-ups should begin by being able to raise money from investors, recruit talent to run the
company, and set up oversight boards to ensure they are on track. It is then expected to develop the
commercial expertise to sell the product directly or through alliances. Thus, traditional measures used in
literature to size-up start-ups were focused on assets, like the patent portfolio (Henderson and Cockburn,

1994) or strategic alliances.

However, of late, innovation researchers have also published extensively using status variables in explain
commercial success. This is especially true in the early life stage of start-up biotechs when there is little
public information about them. Signaling 'is seen as important economic device, given the great
uncertainty surrounding early stage biotechs. In a similar vein, the importance of collaborating with “star
scientists” (Zucker et al 1996) has been shown to have a positive impact on the quantum of research

output as well as the speed of commercialization of the products.

Stuart et al (1999) argued about how inter-organizational endorsements are crucial for the success of
young biotech start-ups. The central hypothesis is that those start-up companies which have alliances with
prominent partners, suppliers, customers or research scientists are believed to have been endorsed by
these high status partners as being of high quality. These endorsements have been shown to have positive
effects on the speed of the firms going IPO (Initial Public Offering) and also the their initial market

valuation, controlling for other variables. These two outcome parameters have been studies, as they are

key milestones for the venture capitalists funding these companies.
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Higgins and Gulati (2003) studied the impact of the reputation of the senior management team and board
of directors on the prestige of the underwriting bank that took the start-up to an IPO. The premise of using
the underwriter prestige as an outcome variable is that earlier studies (Carter and Manaster 1990) showed
it to be strongly correlated to IPO success. The paper argues that, companies with senior management
with previous experience at top pharmaceutical and biotech companies as well as those who have been
top institutions in academia and research labs, are more likely to obtain a prestigious underwriter for their
IPO process. The rationale for this hypothesis is that when reputed management and BOD members
choose to work at a start-up company and thus put their careers at risk, they are sending a strong signal

about the likelihood of the success of the start-up, which is valued by the outside world.

Shane and Stuart (2002) studied the impact of the endowments of the founding team on the start-up’s life
chances. The endowments were classified as social capital (social network access to VC firms, prior to
founding the company), human capital (prior experience in the pharmaceutical/biotech industry or in
another start-up) and technical capital (inventor status in a research institution and the strength of the
patent portfolio). The findings show that these endowments have a positive impact on the ability to obtain

VC financing, go IPO and whether failed or succeeded finally.

A survey of this literature helps us in arriving at two conclusions, which form the basis for this section of
thesis. There is evidence to suggest that reputed management teams, BOD members, SAB members and
prominent VCs are all good predictors of the eventual commercial success of start-ups. There is lesser
clarity on the core factors that might have contributed in bringing together these crucial elements.
Inventor reputation has been shown to be important, however the impact of the reputation of the research
idea itself is unknown. Thus this thesis focuses on the relative impact of these two reputation variables on

commercial success.
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CHAPTER 3: THEORY PROPOSED

Research Networks

As mentioned earlier, this section of the thesis is interested in exploring the benefits of collaboration and
the nature of ties with research collaborators. Harriet Zuckerman’s work on Nobel laureates (1967)
argued that they tended to collaborate more and also produced more research output than their peers.
Network theorists would also agree that more non-redundant ties to distinct partners would yield more
returns. This can lead us to believe that more external (from other institutions) research collaborators
would yield higher research output. This can be supported by several possible reasons; greater degree of
cross-pollination between different labs, better division of labor, justification of the alliance among

others.

Hypothesis 1. The greater the number of external research collaborators, the greater would be the

research productivity of the scientist involved.

We can believe that research involves both tacit as well as sharing of complex knowledge (Hansen, 1999),
and thus successful research would require strong ties between the various collaborators. There are two
ideas embedded here; one is that of stronger ties are required for the transmission of complex knowledge
and second that of one-off research associations may not necessarily lead to the benefits of collaboration

mentioned above (greater cross-pollination of ideas and division of labor).

Hypothesis 2: The greater the tie strength with external collaborators, the greater would be the research

productivity of the scientist involved.

However once a strong tie is established with a research partner the marginal utility of continued
collaboration may taper off after a while. This is in-line with the arguments of network theorists who
prefer multiple ties with different partners rather than concentrated efforts with a few. This is an

especially difficult problem to resolve in the scientific world as scientists do have their favored
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collaborators with whom they might develop friendships and comfort working together. Its non-intuitive
to believe that such continued collaboration is at the risk of more ideas that can germinate from other

relationships.

Hypothesis 3: The greater the concentration of ties with some external collaborators, the lesser would be

the research productivity of the scientist involved.

Commercial Outcomes

As mentioned before, this section of the thesis explores the relative impact of the reputation of the
inventor and the quality of his/her invention on the ability of the start-up firm to assemble a reputed
management team, board of directors, scientific advisory board and a well networked venture capitalist.
Stuart’s work on inter-organizational endorsements (1999), argued for the importance of signaling for
biotech start-ups. Drawing from this work, we can propose that the presence of a famous inventor is likely

to catalyze the constitution of a reputed team for the start up.

Hypothesis 1: The greater the reputation of the inventor, the greater would be the organization’s ability to

assemble a more reputed team.

Often times, the publication of a new technology in prestigious journals like Science or Nature, and its
acceptance in the broader scientific community, confers reputation upon the idea. It’s not uncommon to
for scientists to use this reputation to find sources of funding (by sending a signal to investors that the
idea has been vetted by the scientific community) for their commercialization and assemble a

management team.

Hypothesis 2: The greater the reputation of the research idea, the greater would be the organization’s

ability to assemble a more reputed team.
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The importance of signaling in biotech start-ups is largely driven by the high level of uncertainty about
the viability of the underlying technologies. Thus to the outside world (and investors), the association of
famous names with that start-up inspire confidence to invest (Stuart et al, 1999). Thus, it is plausible to
argue that reputation effects of either the inventor or the research idea are the most when there is greater

underlying uncertainty about either.

Hypothesis 3: The greater the reputation of the inventor, the greater would be the organization’s ability to
assemble a more reputed team, when the underlying research idea is not highly reputed.
Hypothesis 4: The greater the reputation of the research idea, the greater would be the organization’s

ability to assemble a more reputed team, when the inventor is not highly reputed.

Similarly, using the same rationale, we can argue that when there is more clarity about the reputation of

either the inventor or the research idea, the reputation effects are lower.

Hypothesis 5: The reputation of the inventor has no impact on the organization’s ability to assemble a
reputed team, when the underlying research idea is highly reputed.
Hypothesis 6: The reputation of the research idea has no impact on the organization’s ability to assemble

reputed team, when the inventor is highly reputed.
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CHAPTER 4: RESEARCH NETWORKS STUDY

Research Design

Study Setting: The Du Pont — MIT Alliance

Du Pont is in the process of re-inventing itself as a life sciences company after a century of focus on
chemistry. A significant component of this thrust is to focus on biological sciences, which promise to
deliver the next wave of innovation in several areas including biomaterials. Thus Du Pont, like many
large corporations faces the challenge of transforming its scientific expertise and also being successful in
commercially deploying the same. While Du Pont has already made forays into Crop Sciences (through
genetically modified seeds) and ran a pharmaceuticals division for a short period in the past, its entry into
biomaterials is just taking place. Du Pont has created a separate venture called Bio-based Materials to
ensure that it does not conflict with its existing materials business, which is the chief revenue generator
for the company. In an effort to develop a “character changing” relationship with MIT, Du Pont and MIT
have entered into a long-term research alliance to help advance its research capabilities in the area of

biotechnology, specifically in biomaterials.

The alliance has been in place for the past 3 years and its success is of considerable interest to both
parties. The DMA offers a unique opportunity to study and compare the research collaborative patterns of
two types of entities. These are a) university tie-ups of large companies as represented by the DMA
projects and b) R&D in large firms as represented by the internal projects of Du Pont. This arrangement
would control for behavioral characteristics (e.g. proclivity to publish, initiative to see the idea through to
commercialization, etc) of the scientists involved. For the specific purposes of this thesis, the research

output of the MIT and Du Pont scientists involved in the DMA have been chosen as the subjects.
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Figure 3: Research design schematic — Research networks

Other labs l MIT Du Pontv
1
" Collaboration with - Du Pont internal
Collaborators < other labs Lab 1 DMA project Pl 1 research project
b
Collaboration with \ Du Pont internal
DMA t
Collaborators < other labs Lab 2 <: projec P2 research project
A
Collaboration with . Du Pont internal
DMA project
Collaborators < other labs ) Lab J <: proj PIK research project

-Data Collection Method

The principal subjects for analysis are the Principal Investigators (PIs) from MIT and Du Pont funded by
the Du Pont MIT Alliance (DMA). DMA funds projects through a Steering Committee that screens
project proposals. The Steering Committee also reviews project progress periodically through poster
presentations located both at MIT and at Du Pont. MIT scientists have also received Du Pont senior
management team attention on several occasions. Typical projects have one or many MIT faculty with a
Du Pont scientist in the role of a liaison with the company. The Du Pont scientists (the words scientists
and PlIs will be used interchangeably from here onwards) are from the company’s Central Research and
Development Experimental Station at Wilmington, Delaware. A total of 11 Du Pont PIs are associated
directly with the DMA. This research centre is well reputed and has recently celebrated 100 years of
existence. MIT scientists are from 11 engineering and science departments varying from Physics to
Bioengineering to Brain and Cognitive Science. These Pls include a mix of highly distinguished
scientists, well reputed in their fields to young faculty who have recently joined MIT. Their commonality

however is a research interest in biotechnology. A total of 40 MIT PIs are associated with the DMA.
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Secondary data has been the primary source for the analysis. The limitations of using secondary data
include not being the accurate representation of the actual time spent by the researcher with various
researchers. The other issue is that of identity of the collaborators. Several research arrangements may not
necessarily result in publications (like license agreements, etc) and thus would not be captured with
outcomes based measurements. Thus it would be useful to conduct a primary survey with all the
researchers in addition to secondary data. This was not conducted for this thesis, due to shortage of time.
The following secondary data was gathered for all the Pls:
1. Data on all journal articles published from 1973

2. All issued patents as well as patent applications from 1976

The publications data was sourced from Web of Science (to maintain consistency). This database
maintains records from 1973. Only MIT based publications of MIT Pls (they could have been publishing
other places they were graduate students, post docs or faculty) were considered to control for the
environment. The patents related data was sourced from the US Patents Office. This database is organized
by author, assignee and other search fields only from the time period 1976 onwards. Additional data
collected included the publicly available information on the relationships between MIT Pls and
companies (both start up and established companies). The nature of the relationships list included being

on the Scientific Advisory Board, Board of Directors, founding members, licensing arrangements, etc.

All the publications were classified based on the collaborative nature of the work. This classification was
undertaken based on the address fields listed for each publication. MIT PIs’ publications were classified
as follows: .

¢ Department (if all the co-authors were from the same department as the PI)

e  MIT (if all the co-authors included scientists from other departments at MIT)

®  Other university lab (if one of the co-authors is from a non-MIT university lab)
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e National Labs (if one of the co-authors included a scientist from a National Lab)
e Industry (if one of the co-authors is from any company)

e Hospital (if one of the co-author is from a Hospital)

In case of conflicts (if a publication met more than one of the above criteria), the priority sequence was
Industry, Hospital, National Lab and Other University Labs. The reason being, the incidence of these
occurrences 1s low (in that sequence) and thus the priority sequence to capture as many as possible.
However for the sake of computing total number of collaborators from any category, all instances were
considered (a National Lab collaborator would be counted from a publication, even if the publication’s
classification was “Industry”). The publications of Du Pont PIs were similarly classified as “Du Pont”
(within Du Pont), “University” (with academia), “National Labs” (with National Labs) and “Industry”

(with other companies).
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Dependent and Independent Variables

Dependent variables

Research productivity: Research productivity was measured as the average number of publications per
year during the active publishing period (between the first recorded publication year and the most recent
one). There are several ways to measure productivity. This measure i1s different from several methods
used by vartous researchers. Other methods try to either give full credit only to the first author, or equal
credit to all authors by dividing the credit of a publication amongst all the co-authors. However there are
still theoretical limitations of such methods such as, alphabetical listing of authors which can work against
them, listing of “honorary authors” for social reasons, etc. In additional to theoretical reasons, practical
reasons include the improper listing of all authors (I have personally detected errors in the database where
co-authors have been excluded, when cross-verified with other sources). Thus there is no éasy way of the
complex issue of attributing the “appropriate credit” of a publication to an author. Previous research
(Zuckerman, 1967) also shows how the disputes regarding according the “correct amount” of credit for

research extend to the level of a Nobel Prize.

Research quality: Research quality was measured as the average number of forward citations of the top
three cited publications of a scientist. This is meant to be an indication of the research quality and thus
how widely accepted in the field. The limitations of this measure include the following; no control for
extent of self-citing, no control for the prestige of the journal in which the article is published. However,
it is reasonable to assume that high status journal articles are cited more, because of some association of

quality and thus it may not be difficult to make the leap that the bar is correspondingly high.
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Independent variables

Breadth of links: The breadth of research links was measured as the number of distinct collaborators per
scientist, classified by category. The categories considered for MIT Pls are other University labs and
Industry. As mentioned earlier, the count of the number of collaborators includes all distinct labs
regardless of the classification of the publication. Breadth of ties is used as a surrogate to measure reach
of the scientist into other research networks. The limitation of this measure is, it does not give an accurate
representation of the number of “active” research links, which is more likely to have a relation to research

productivity. The other limitation is the lack of a measure for “structural equivalence” and “redundancy”.

Strength of links: The strength of research links was measured as the average number of publications
with a research collaborator within a category, per scientist. Thus if a scientist published 30 articles with
“Industry” and he/she has 10 Industry collaborators, the average tie strength is computed as 3. Strength of
ties is used as a measure of the depth of research relationships. The limitation of this measure is that, it
ignores the skew in research relationships (many publications with some collaborators and one-off

publications with others).

Concentration of links: The concentration of research links was measured as the skew in research
publications within a category with the lead collaborator. Using the same example from above, if a
scientist published 30 articles with “Industry” and 21 of those with the same company, concentration is
computed as 70%. This measure is used to estimate the level of decreasing marginal utility of

collaboration with a single research partner.
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Method of Analysis

The statistical method used is OLS regression. The analysis was done separately for MIT PIs and Du Pont
PIs. Hypothesis 1 was tested by regressing research productivity with two variables, one at a time; the
number of university collaborators and the number of industry collaborators. MIT Pls were regressed with
non-MIT university collaborators and the number of industry collaborators. Du Pont PlIs were regressed
with number of university collaborators (weak interactions with other industry labs). In addition to testing
for research productivity as a dependent variable, I also tested for research quality as an outcome variable,
with the research productivity. The reason for doing so was to estimate the degree of correlation between
higher productivity with being well accepted in the field. In some sense, it is to check of research

productivity is a good measure of “quality”.

Hypothesis 2 was tested by regressing research productivity with strength of ties variables. Similarly,
Hypothesis 3 was tested using the concentration of ties variables. In addition to these analyses, further
analyses were conducted. A scientist’s time can be used to either publish or produce patents. There is a
common discussion on whether they are competing elements or complementary in nature. This is
especially true for Du Pont Pls since there could potentially be higher pressure in industry to produce
patents as opposed to publish articles. Thus a regression was conducted to measure estimate the
correlation between research productivity and patent productivity (number of patents/patent applications
per year). In addition, the overall research collaboration of Du Pont Central R&D was analyzed (on lines
of Du Pont PIs). This analysis was done to gather additional insight into the functioning of Du Pont

Central R&D, as the number of Du Pont PIs were limited (11).
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Results

I will discuss some summary research statistics initially that will set the context for the broader discussion
on the analysis of the hypotheses (see Appendix 1 for sample data). The overall pattern of publications of
MIT and Du Pont appears similar (see Figure 4). There is a marked majority of publications that are with
in-house collaborators, (MIT for MIT PIs and Du Pont for Du Pont PIs). However there is a dramatic
difference in the levels of output (see Figure 5) in terms of number of publications per scientists, research
productivity, patent productivity, etc. The difference, among other things appears to be in the number of

collaborators seen in the same figure.

Figure 4: Patterns of publications
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Figure 5: Brief research statistics of MIT and Du Pont Pls
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The research pattern of Du Pont Central R&D was found to be broadly similar to the data on the Pls. Joint

research with Academia accounts for over 50% of the research work done at the Experimental Station.

They have had over 200 distinct university labs as collaborators over the last 6 years. However the

relationships appear to be one-off than strong ties with a number of universities (see Figure 6).

Figure 6: Du Pont Central R&D’s research ties
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The test for breadth of ties” impact on research productivity revealed a strong correlation between number
of collaborators and research productivity in line with Hypothesis 1. MIT PIs’ research productivity had a
strong positive correlation with the number of non-MIT university collaborators (see Figure 7). The
regression equations, r squares values and t-test results are as under. The y-values are research
productivity and x-values are the number of collaborators:
MIT PIs — Number of non-MIT university collaborators:

Y =0.1406X + 2.3291; R? = 0.8015 (t value significant at p < 1%)
MIT PIs — Number of industry collaborators:

Y =0.6998X + 2.3181; R?=0.6197 (t value significant at p < 1%)
Du Pont Pls — Number of University collaborators:

Y =0.0963X + 1.283; R?=0.2662 (t value significant at p < 5%)

Figure 7: Breadth of ties — MIT PIs with non-MIT university labs
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The test for strength of ties” impact on research productivity revealed a weak correlation between strength
of ties and research productivity. This could mean either Hypothesis 2 is incorrect or the measure for tie
strength has to be modified (see earlier discussion of variables). MIT PIs’ research productivity had a
positive correlation with the strength of ties with non-MIT university collaborators (see Figure 8), but the
other correlations were quite weak. The regression equations, r squares values and t-test results are as
under. The y-values are research productivity and x-values are the strength of ties:
MIT PIs — Strength of ties with non-MIT university collaborators:

Y =3.4376X + 0.5006; R? = 0.2452 (t value significant at p < 1%)
MIT PIs - Strength of ties with industry collaborators:

Y =0.5217X + 4.7603; R’ = 0.0288 (t value not significant)
Du Pont PIs — Strength of ties with University collaborators:

Y =0.0881X +1.7155; R”=0.0354 (t value not significant)

Figure 8: Strength of ties — MIT PIs with non-MIT university labs
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The test for concentration of ties’ impact on research productivity revealed a mild negative correlation
between strength of ties and research productivity. The direction of the results is in line with Hypothesis
3, though the values are not substantial. MIT PIs’ research productivity had a negative correlation with
the concentration of ties with industry collaborators (see Figure 9), but the other correlations were quite
weak. The regression equations, r squares values and t-test results are as under. The y-values are research
productivity and x-values are the concentration of ties:
MIT PIs — Concentration of ties with non-MIT university collaborators:

Y =-4.3045X + 6.8827, R? = 0.0944 (t value significant at p < 1%)
MIT PIs — Concentration of ties with industry collaborators:

Y =-4.787X + 8.5886; R?=0.1553 (t value not significant)
Du Pont PIs — Concentration of ties with University collaborators:

Y =-0.4373X + 2.1285; R? =0.0237 (t value not significant)

Figure 9: Concentration of ties — MIT PIs with non-MIT university labs
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In addition to the above analysis, two additional analyses were conducted to test 1) the relationship
between patent productivity and publications productivity and 2) the relationship between research

productivity and research quality.

The analysis indicated that publications productivity and patent productivity are positively but mildly
correlated (the analysis for Du Pont PIs was replaced with Du Pont Central R&D as the patent
productivity values of Du Pont PIs were insignificant). This can lead us to believe that these both research
activities are complementary in nature. The significance of this result is that using publications
productivity as a measure of research output maybe reasonable. The regression equations, r squares values

and t-test results are as under. The y-values are patent productivity and x-values are research productivity.

MIT PIs:
Y =0.1918X — 0.3063; R* =0.3728 (t value not significant)
Du Pont Central R&D:
Y =0.9014X +259.11; R?=0.3555 (t value significant at p < 5%)

The analysis indicated that research productivity and research quality are positively but weakly
correlated. The significance of this result is that those scientists that publish more are also likely to be
cited more. This is similar to the finding that Nobel laureates (who are among the most reputed in their
field) also are amongst the most productive (Zuckerman, 1967). The regression equations, r squares

values and t-test results are as under. The y-values are research quality and x-values are research

productivity.
MIT PIs:

Y =35.887X + 53.941; R? =0.1228 (t value significant at p < 5%)
Du Pont PlIs:

Y =18.759X + 32.125; R? = 0.081 (t value not significant)
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CHAPTER 5: COMMERCIAL OUTCOMES STUDY

Research Design

The Du Pont-MIT Alliance was well suited for a study on research networks, and should have ideally
been used for the study on commercial outcomes. However, it could not be persisted with it due to study
sample limitations - few research concepts emerging from the alliance are ready for commercialization.

Thus a new research setting was selected.

Study Setting: The Biotechnology sector in Massachusetts

The biotech industry in the US is largely concentrated in geographical clusters. The leading clusters are in
California and Massachusetts and the New England area. The availability of a large pool of scientific
talent is a necessary pre-condition to the creation and sustenance of these clusters. A recent study stated
that there are about five thousand scientists working in life sciences, in the Massachusetts area. There are
about thirteen institutions offering higher education in life sciences. This pool of human resources has
proven to be a happy hunting ground for biotech start-ups. This region has attracted over $2 billion in
venture capital investment as well as receives $1.5 billion in funding from the NIH (National Institute of
Health) every year. This region also has witnessed increased alliances between Big-Pharma and biotech
companies, resulting in $3.9 billion dollars in alliance value since 1996 (The Brookings Institution

Report, 2002).

It is estimated that there are about 400 biotech companies in the Massachusetts area. These companies
have their origins in university labs (through technology transfer), large pharmaceutical and biotech
companies and research laboratories. 150 of these companies have their research origins in technology

transfers from universities. Technology transfers from MIT, Harvard University and Boston University

Page 31



account for a majority (over 50%) of all the biotech companies founded in Massachusetts. These

universities continue to be the major contributors of scientific talent and ideas to companies in the region.

The biotechnology sector in Massachusetts, with its high rate of firm creation, an active venture capital
community and an extensive university — industry collaboration, lends itself to an excellent subject for the
study on commercial outcomes. This region has its fair share of both successful and failed ventures,
technology tie-ups with both reputed and middle rung universities and access to both reputed and smaller
venture capitalists. This large variation across various dimensions as well the presence of a large number
of firms provides for the construction of statistically valid study and control samples to test several

hypotheses.

Data Collection Method

The sample chosen for the study was all the biotech firms based out of Massachusetts, started after 1995.
The reason a cut-off date was chosen due to difficulty in gathering the following data on older companies:
1) venture financing and foupders 2) failed ventures. Another selection variable for the data was choosing
only therapeutics and medical product companies. Several contract research organizations, contract
manufacturers, diagnostics and imaging companies commonly listed under biotechs, were all dropped
from the sample set. A total of 209 Massachusetts based biotech start-ups, started after 1995, were

selected as the final sample set.

Secondary data was the primary source for the analysis. The data on which companies to select was
chosen from the following databases, Massachusetts Biotech Council (MBC) directories (2000 and 2003),
VentureXpert database (Thomson Financial), Boston Business Journal, GEN database and Bioscan.
Together these databases cover extensively, names of most biotech start-ups in the Massachusetts area.

These names were then cross-referenced from data sources on the Internet for their business model
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(therapeutics/CRO, etc) and their start date, to select the sample set. Once the sample set was selected, the
following information was gathered on each company:

e The names and qualifications of the founding senior management team (includes CEQO, COO,

CSO (Chief Scientific Officer), Head of Research and Head of Business Development)

e The names and qualifications of all the Board of Directors

¢ The names and qualifications of all the members of the Scientific Advisory Board (SAB)

¢ All the venture capitalists who invested in the venture

» The starting scientific idea/technology on which the company was built

e The name and qualifications of the scientific founder/inventor

o  Whether the invention was originated in a university lab, and if so which one

In addition, financial data and a list of portfolio companies was collected for all the venture capital firms
that were associated with these companies: The following sources were used to collect data on the
companies and venture capital firms:

e Company websites and other sources like www.biospace.com

e VentureXpert (Thomson Financial)

e  Web of Science - for all journal publications

e USPTO (Patents office) — for all patent related data

After the extensive data search, the sample set reduced to 111 companies. 59 companies dropped out for

having no/limited overall information and 39 dropped due to lack of information on their scientific

origins.
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Dependent and Independent Variables

Dependent variables

Reputation of the management team: Each of the senior management team members was scored using a
binary variable based on whether they worked previously at one or more of the following: 1) Top 15
pharma company (by sales) 2) Top 10 biotech company (by sales) and 3} as a Faculty member at a top 10
school in their department. Higgins and Gulati (2003) used similar measures to value the management
experience of senior management at entrepreneurial biotech firms. The pharma and biotech sales rank was
based on 2002 figures and was crosschecked across multiple sources to verify the authenticity. School
rankings by department were obtained from two sources, US News Graduate School Rankings (quoted by
MIT to report their standing) and the Gourman Report (used by Higgins and Gulati (2003)). These binary
scores were summed up for each management team member (with a range of 0 to 3 of possible scores).
Two sub-variables were computed to measure management team reputation:

1. Management team total score: Total score for the company, across all management team members

2. Management team average score: Average score for the company (total score divided by total

number of management team members)

Reputation of the members of the Board of Directors (BOD): The same methodology as above was
employed to compute two sub-variables (similar to above):

1. BOD total score: Total score for the company, across all BOD members

2. BOD average score: Average score for the company (total score divided by total number of BOD

members)

Reputation of the members of the Scientific Advisory Board (SAB): Each of the SAB members was

scored using a binary variable based on whether they were any of the following: 1) Nobel Laureate 2)
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Member of any of the three Academies (Science, Engineering or Medicine) and 3) Faculty member at a
top 10 school in their department. Audretsch and Stephan (1996) used similar measures to value expertise
of SABs. If a scientist is a member of more than one Academy, additional score is recorded (2 for two
memberships and 3 for three memberships), as each membership carries its own prestige. School rankings
by department were obtained from two sources, as above, US News Graduate School Rankings. These
binary scores were summed up for each SAB team member (with a range of 0 to 5 of possible scores).
Two sub-variables were computed to measure SAB reputation:

1. SAB total score: Total score for the company, across all SAB members

2. SAB average score: Average score for the company (total score divided by total number of SAB

members)

Commercial prominence of the Venture Capital firms: The following data was collected on all the
venture capital firms that were associated with each company: 1) Total sum under investment ($ million),
2) Number of biotech ventures they have invested in and 3) Sum invested in biotech ventures ($ million).
Stuart, Hoang and Hybels (1999) used similar measures to measure the prestige of venture capital firms.
In an attempt to unify the measurement variables, the number of biotech ventures and sum invested in
biotech ventures by venture firms were regressed against each other. The resulting R square was 85%,
prompting the usage of number of biotech ventures as the single variable to measure commercial
prominence. The raw scores of each VC firm were broken up into ranges (5, 10, 20, 40, and greater than
40) and scored on a 1-5 scale. Two sub-variables were computed for each company:

1. VC total score: Total scores for the company, across all its VC firms

2. VC average score: Average scc;re for the company (total VC score divided by total number of

VCs)
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Independent vanables

Idea quality: Two sets of data were collected for each company, on the founding scientific idea — the
relevant patent(s) and journal publication(s) along with their forward citations count. A patent raw score
was computed for each company, based on the number of forward citations of the leading patent. Stuart,
Hoang and Hybels (1999) used similar measures to measure the technological prominence of a start-up
biotech company. These raw scores were broken up into ranges (0, 5, 10, 30 and greater than 30) and
scored on a 0-10 scale. Separately, a raw publication score was computed by multiplying the number of
forward citations of the publication with the impact factor score (Computed by ISI Web Science for all
journals, said to represent their relative reputations) of the journal it was published in. Since these raw
scores had a huge variation (from 0 to 14,000), they were converted to a log scale and broken into ranges
(0-10) and scored on a 1-10 scale. The patent score was eventually dropped due to two reasons: 1)
minimal correlation with the publication score (0.11) and 2) no effects when correlated with other

dependent variables. Thus the publication scaled score was used as a measure of Idea quality.

Inventor reputation: 1 used a methodology similar to the one used to measure SAB reputation, to measure
inventor reputation. Each of the scientific inventors/founders was scored using a binary variable based on
whether they were any of the following: 1) Nobel Laureate 2) Member of any of the three Academies
(Science, Engineering or Medicine) and 3) Faculty member at a top 10 school in their department. These
binary scores were summed up for each inventor (with a range of 0 to 5 of possible scores). Similar to
other variables, two sub-variables (Inventor total and Inventor average) were computed to measure
inventor reputation. The Inventor average score variable was e\-/entually dropped to lack of any significant

effects. Thus Inventor total score was used as a measure of Inventor reputation.

Page 36



Method of Analysis

I used the t-test to check for statistical validity of the various hypotheses segmenting the sample in
different ways for each hypothesis. Dependent and independent variable scores were computed for each
company. Hypothesis 1 was tested by using test (companies with Inventor score of greater than or equal
to 1) and control samples (companies with Inventor score of 0). The means of all the dependent variables
were tested across the two samples for statistical significance using the t-test, with error significance
levels of 5% and 10%. Hypothesis 2 was tested similarly with a test sample of companies with Idea
quality score greater than 5 and a control sample with a score of less than or equal to 5. I also tested the
sample data for impact on the dependent variable on another dimension — research origins are from high

(test sample) and low prestige schools (control sample), using the same methodology.

Hypothesis 3 was tested By first constructing a sample set of all companies with an Idea score less than or
equal to 5. Within this sample set, companies were split into a test sample (with an Inventor score greater
than 0) and a control sample (Inventor score of 0) to test for significance in dependent variables.
Hypothesis 5 was tested using a similar method — an overall sample was constructed of all companies
with an Idea score greater than 5 and similar test and control samples (like for Hypothesis 3) were set up

to test for statistical significance.

Hypothesis 4 was tested by first constructing a sample set of all companies with an Inventor score of 0.
Within this sample set, companies were split into a test sample (with an Idea score greater than 5) and a
control sample (Idea score less than or equal to 5) to test for significance in dependent variables.
Hypothesis 6 was tested using a similar method — an overall sample was constructed of all companies
with an Inventor score greater than 0 and similar test and control samples (like for Hypothesis 4) were set

up to test for statistical significance.

Page 37



Results

This section will first run through some overall statistics about the companies in the sample set before
detailing the results of the hypotheses (see Appendix 2 for sample data). As stated before, the final sample
size of companies analyzed was 111. The starting dates of these companies (see Figure 10) appear to have
a slant towards companies that have been started recently. This might be a survivor bias for lack of
information about companies that have been shut down earlier leaving behind no traces in secondary
sources. This i1s confirmed by looking at the investment status of these companies (see Figure 11), which
shows only 2 firms from the sample (of 111) have been shut down, suggesting a relatively high success

rate.

Figure 10: Commercial outcomes study - Sampie sorted by start dates
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Figure 11: Commercial outcomes study - Sample’s investment status
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The test for inventor reputation’s impact on the dependent variables revealed a strong effect through a t-
test, in line with Hypothesis 1 (see Figure 12). At a broad level, higher inventor reputation for a company
correlates with a more reputed management team, BOD, SAB and a more commercially prominent VC.

Figure 12: Inventor reputation impact (high vs. low)

Idea.. "~ Mgmt - Mgmt BOD SAB Inv'tor

T Quality  sum  avg. sum BOD avg SAB sum avg VCsum VC avg sum
All inventors
Mean 55 1.2 0.4 25 0.4 4.2 0.9 123 25 1.5
Sigma 25 1.3 0.4 2.2 0.3 33 0.7 9.8 0.9 1.8
n 111
High score inventors (>=1)

IMean 6.0 14 0.4 27 0.4 5.1 1.1 12.4 26 24
Sigma 24 14 0.5 2.2 0.3 34 0.7 9.6 1.0 17
n 69
Other inventors (=0)

Mean 4.5 0.9 0.3 2.0 0.3 2.3 0.5 12.2 2.3 0.0
Sigma 23 1.2 0.4 2.0 0.3 21 0.4 10.1 0.7 0.0
n 42

T value 3.34 2.19 2.14 1.79 1.82 5.38 5.73 0.12 2.22 11.74
T significant value (5%) 1.98
T significant value (10%) 1.66

Page 39



The test for idea quality’s impact on the dependent variables revealed a strong effect through a t-test, in
line with Hypothesis 2 (see Figure 13). At a broad level, higher idea quality for a company correlates with
a more reputed management team, BOD, SAB and a more commercially prominent VC.

Figure 13: Idea score impact (high vs. low)

S - Mgmt |- BOD: 1.5 SAB y Inv'tor

o Quaﬂy  eumi- % e BOD avg {SAB sum| av VC sum| VC avg sum
All pubs
Mean 5.5 1.2 0.4 2.5 04 4.2 0.9 12.3 25 1.5
Sigma 25 13 04 2.2 0.3 3.3 0.7 9.8 0.9 1.8
n 111
Idea Quality (>=6)
Mean 7.6 1.5 0.4 29 0.5 4.8 1.1 13.3 25 19
Sigma 1.3 1.4 04 2.2 0.3 3.0 0.7 10.6 0.9 1.8
n 53
Idea Quality (<=5}
Mean 3.5 0.9 0.3 20 0.3 3.5 0.7 11.2 25 1.1
Sigma 1.5 1.2 04 2.0 0.3 34 0.7 8.7 1.0 1.6
n 58
T value 15.05 2.20 1.34 2.33 2.40 2.15 2.57 1.15 -0.02 2.61
T significant value (5%) 1.98
T significant value (10%) 1.66

As mentioned earlier, I also ran a test to check the impact of university reputation on the dependent
variables. It revealed a strong effect of university reputation through a t-test (see Figure 14).

Figure 14: Impact of university reputation (high vs. low)

} BOD: 15op avg|sAB sdm{; SAB. | vc sum| vC avg | MVtOr

sum- §- ) — | avg . . sum
All schools
Mean 5.5 1.2 0.4 25 04 42 0.9 12.3 25 15
Sigma 25 1.3 0.4 2.2 0.3 33 0.7 9.8 09 1.8
n 11
High status schools
Mean 6.0 1.5 0.5 28 0.4 4.8 1.1 13.0 2.6 22
Sigma 24 1.2 0.4 1.9 0.3 27 0.4 8.8 0.8 0.4
n 70
Other schools
Mean 4.5 0.7 0.2 1.9 0.3 28 0.5 1.3 23 0.2
Sigma . 24 1.2 0.4 1.9 0.3 27 0.4 8.8 0.8 0.4
n 41
T value 3.41 3.25 3.19 223 225 3.73 6.52 0.98 2.26 25.77
T significant value (5%) 1.98
T significant value (10%) 1.66
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The test for inventor reputation’s impact on the dependent variables, controlling for the underlying idea
quality revealed the following outcomes:
1. No effect, when the underlying idea score is high (>=6), in line with Hypothesis 5 (see Fig. 15)

2. Strong effect when the underlying idea score is low (<=5), in line with Hypothesis 3 (see Fig. 16).

Figure 15: Impact of inventor reputation (high vs. low), given a high idea quality

0 §‘§B§‘!"‘ “ ava - | YC Sum VCavg ~ gumk
Idea Quality (>=6)
n 53
High score inventors (>0)
Mean 7.7 15 0.4 2.8 0.5 54 12 121 25 26
Sigma 1.3 1.3 0.4 22 0.3 3.1 0.8 10.2 1.0 1.7
n 40
Other inventors (=0)
Mean 7.2 1.5 0.5 33 0.5 3.2 0.7 16.7 24 0.0
Sigma 1.3 1.7 0.5 22 0.3 20 0.5 114 0.8 0.0
n 13
T value 1.12 -0.16 -0.21 -0.79 -0.43 3.00 2.76 -1.29 0.19
T significant value (5%) 2.01
T significant value (10%) 1.68
Figure 16: Impact of inventor reputation (high vs. low), given a low idea quality
- idea”. |- Mgmt. | Mgmt T ain avaleag cim]: SAB Tun co [ ue oo | Invitor
e quatty | sum | oavg” BQDavg SAB sum Cavg. VCsum|VCavg |~ .
Idea Quality (<=5)
n 58
High score inventors (>0)
Mean 3.8 1.3 0.5 2.7 0.4 47 1.0 13.0 2.9 21
Sigma 1.6 1.4 0.5 22 0.3 37 0.7 8.7 1.1 1.7
n 29
Other inventors (=0)
Mean 33 05 02 1.2 0.2 1.7 0.3 9.8 22 0.0
Sigma 1.5 0.8 0.3 1.5 0.3 1.9 0.3 8.6 0.7 0.0
n 29
T value 1.21 2.62 254 3.04 2.32 3.88 4.99 1.39 297
T significant value (5%) 2.00
T significant value (10%) 1.67
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The test for idea quality’s impact on the dependent variables, controlling for the underlying inventor
reputation revealed the following outcomes:
1. Strong effects, when the inventor reputation is low (=0) (see Fig. 17), in line with Hypothesis 4

2. No effect when the inventor reputation is high (=1) (see Fig. 18), in line with Hypothesis 6

Figure 17: Impact of idea quality (high vs. low), given a low inventor reputation

Loﬁ reputation inventors '
(=0)
n 42

|High Idea quality (>5)

[Mean 7.2 1.5 0.5 33 0.5 32 0.7 16.7 24 0.0
Sigma 1.3 17 0.5 2.2 0.3 2.0 0.5 1.4 0.8 0.0
n 13
Low Idea quality (<=5)

Mean 33 0.5 0.2 1.2 0.2 1.7 0.3 9.8 22 0.0
Sigma 3.3 0.5 0.2 12 0.2 17 0.3 9.8 22 0.0
n 29

T value 5.59 2.16 2.08 3.30 3.15 2.35 2.74 1.87 0.60
T significant value (5%) 2.02
T significant value (10%) 1.68

Figure 18: Impact of idea quality (high vs. low), given a high inventor reputation

e el g VUM VORI sum
High reputation

inventors (>0)

n 69

High Idea quality (>5)

*Mean 77 1.5 0.4 28 0.5 54 1.2 121 25 26
Sigma 1.3 13 0.4 2.2 0.3 31 0.8 10.2 1.0 1.7
n 40

Low Idea guality (<=5)

Mean 38 13 0.5 27 04 4.7 1.0 13.0 29 21
Sigma 1.6 1.4 0.5 22 0.3 37 0.7 8.7 1.1 17
n 29

T value 10.97 0.41 -0.34 0.11 0.52 0.91 1.22 0.40 -1.58

T significant value (5%) 2.00

T significant value (10%) 1.67
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CHAPTER 6: DISCUSSION AND CONCLUSIONS

Summary

The findings of this study can be summarized under the two units of analyses conducted, Research

networks and Commercial Outcomes.

Research networks

The main findings of this study are 1) larger number of collaborators from different domains increases
research output, 2) stronger ties maybe more productive than weaker ties 3) concentration of ties with a
few collaborators, appears to have a negative impact on productivity. The results of the analysis of Du
Pont PIs are consistently statistically weak and it could be attributed to a small sample size. The potential
explanations for breadth of ties could be greater degree of cross-pollination of ideas is beneficial, or an
efficient division of labor amongst other possible explanations. The benefits of strong ties validate
Hansen’s arguments somewhat, but it appears as though multiple strong ties are considerably better than a
few. This is illustrated in the research productivity of MIT Pls as opposed to Du Pont PIs and Du Pont
Central R&D. The idea that concentrated ties with a few collaborators has a negative impact on
productivity appears to be inline with network theorists (Burt and Granovetter) who argue against
redundancy in networks and how that lowers the returns on investment. However, it can also be
interpreted as, less productive researchers do not manage to get more collaborators and thus there could

be a reversal of causality.
The additional findings that patent productivity and research quality variables are also closely correlated

with research productivity are significant as this measure can be used in future research as a single

variable to capture research output and in some essence its quality.
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Commercial Outcomes

The main findings of this study are 1) higher inventor reputation augurs well for the constitution of a
reputed management team, BOD and SAB as well as roping in a prominent VC firm, 2) higher idea
quality has similar effects and 3) the strength of these effects is strongly correlated with the extent of
underlying uncertainty. The theory to link these results can be constructed by trying to understand the
process by which potential investors and employees evaluate the risk-return trade offs by investing in a
relatively unknown start-up company. Thus a high reputation inventor or a highly cited technology can be
seen to address some of those concerns. However it is interesting to note other effects. The analysis of the
impact of idea quality, controlling for inventor reputation led to the following results. If the underlying
inventor is of high repute, idea quality does not appear to make any impact on the outcome variables.
However, if the inventor is of relatively low reputation, then, idea quality has a significant effect on the
reputation of the Management team, BOD and SAB and to some extent on VC prominence (see Figure
19).

Figure 19: Impact of idea quality (high vs. low)

ldea Quality
Low score(<=5) High score(>=6)

No impact on

High score reputation of
(>=1) Mgmt, BOD,
SAB or VC

Higher reputation
Low score . Mgmt, BOD, SAB

(=0) * & moderate
impact on VC

Inventor reputation
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Similarly, an analysis was run for the impact of Inventor reputation, controlling for idea quality. It led to
the following results. If the idea quality is high, Inventor reputation does not appear to make any impact
on the outcome variables, except for SAB reputation. However, if the idea quality is relatively low, then,
Inventor reputation has a significant effect on the reputation of the Management team, BOD and SAB and

to some extent on VC prominence (see Figure 20).

Figure 20: Impact of inventor reputation (high vs. low)

Idea Quality
Low score(<=5) High score(>=6)
Higher reputation No impact on
. Mgmt, BOD, SAB reputation of
c Highscore | = - g moderate Mgmt, BOD or VC,
g (>=1) impact on VC strong impact on SAB
©
5
Q
e
|
=
c
S
£ Lowscore
(=0)

These results reinforce the notion of the value of signaling in uncertain environments, in line with general
theories in economics about the same subject. This is also broadly in line with recent sociological
literature (Higgins and Gulati (2003), Stuart et al (1999), etc). However, based on the above two results, it
1s interesting to note that this signaling appears to work best when the underlying uncertainty is highest.
Once one of the two variables (idea quality or inventor reputation) is set as “high”, the effect of the other

variable diminishes considerably. These effects appear to have a good promise for future testing.
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Implications

This study looks at research networks and their impact on both research productivity and quality and then
looks at the impact of research quality and inventor reputation on commercial outcomes. However, as
seen in the research schematic (Figure 2), the process is not linear and has several feedback components
to it. Research quality can enhance inventor reputation that might in-turn impact the ability to construct a
different scientific network. The results also show that a scientific idea/technology, which is highly
reputed, has an equivalent chance at commercial success regardless of its inventor. Implications can be
drawn from these results at two levels — at the level of the technology policy and at the unit level of a

firm.

Technology Policy

The results ;)ffer some pointers on how to organize university research networks and making funding
allocation decisions. Broader research collaboration is beneficial to academic researchers and universities
must be equipped to support such efforts. This can take the shape formally organizing networks between
departments of several schools, which can facilitate collaboration as well as investing in infrastructure to
support it. This can also mean, increasing the industry-academia interaction as well as with other national
labs. These results also show that highly cited and quality research can emanate from schools and labs not
considered to be highly reputed. This might have general implications on the decision heuristics
allocating funding across schools — emphasizing on the quality of the science per se rather than the

prestige of the lab associated with it.

Firm level implications
The study results send a strong signal that if a research idea is highly cited, it has the same chance at
commercial success regardless of the inventor reputation. This should offer encouragement to young

scientists to persist with their research and try to commercialize their science. This also shows that the
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commercial engine of innovation and entrepreneurship is exhibiting meritocracy to the extent possible

and that augers well both for the investors as well as the economy in general.

The results also have some pointers for compantes like Du Pont and other established firms trying to enter
the field of biotechnology. The importance of research networks and university collaboration (with star
scientists) is well documented in literature. However, ideas on the mechanism of constructing these
networks are not extensive. The preliminary conclusion that can be drawn from the study is that,
companies need to establish several strong ties with academia in order to boost research output. High
degree of concentration with a few universities or other collaborators could be detrimental. These
networks maybe have been in place for historical reasons, but efforts must be made to increase the

number of strong ties.

Page 47



Limitations

Research networks

The study has the following shortcomings 1) construction of variables and 2) generalizabilty of the
findings. Breadth of research links variable has to be refined to include the following; accurate
representation of the number of “active” research links (as opposed to total research links across al time),
measures for “structural equivalence” and “redundancy”. These measures are more likely to reconstruct
‘real’ network relationships, which are more likely to have an impact on research productivity. The
strength of research links variable needs to be modified as the current variable only captures mean values
and thus ignores the skewness in research relationships (many publications with some collaborators and

one-off publications with others). A modal value maybe a preferred option.

The second limitation of this study is the generalizability of the results. This study was based on one
university-industry research partnership. While this relationship is typical of the kind of arrangements

seen on this campus and others, the results should be quoted in other contexts with adequate caution.

Commercial Qutcomes

The main limitations of this study are 1) survivor bias, 2) variables construction and 3) measurement. As
mentioned before, there is a likelihood that firms that could have failed may not have made it into the
sample due to lack of information in secondary sources. I tried to counter this by gathering data from
multiple sources across different time periods, but the bias could not be completely negated. Based on

subsequent analysis with a limited sample set, the direction of the bias is unclear.

Constructing the variables has also been a challenge. Prior studies which evaluated the effects of

reputation and prominence, constructed dependent or independent variables based on single binary
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measures (worked previously in a top 20 pharma company, faculty of a top 10 school, etc). This study
used binary variables which in-turn was a summation of sub-binary variables (e.g. inventor reputation
was a summation across the sub-binary variables of Nobel laureate, Member of the National Academies
and Faculty member in a top 10 school). The effects of such horizontal summation on statistical

significance and validity need to be further studied.

There were several challenges in measuring the variables. It would be ideal to get data on the founding
management team, BOD, SAB and VC firms to rigorously test the hypotheses. However, as time
progresses, in many cases, the distinction between historical and current information blurs creating
accuracy challenges. Survivor bias would have a role here, as if start-up firms last longer, they signal
positive results which might lead to more high status teams joining the firms thus creating measurement
issues. The other challenge was in obtaining idea quality data. Many companies do not list their
originating patents and publications and thus such data had to be reconstructed based on the inventor
names as well as research profile of companies. This might lead to some inaccuracies. Also, a significant

chunk (39 companies) of the initial sample was dropped only due to lack of data on Idea quality.
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Directions for Future Research
The findings of the study offer avenues to direct future research along the following lines:
1. Refinement of the current research

2. New affiliated research problems

As discussed before, the studies on both research networks as well as commercial outcomes need to be
refined in terms of sample section, the construction of variables and measurement. It is also very
important to conduct primary research to supplement the findings based on secondary research. The Pls of
MIT and Du Pont need to be interviewed and administered questionnaires to understand how they allocate
their time. This will help us understand their pattern of collaboration and active research links. Similarly
interviews need to be conducted with scientific founders of start-up companies to understand the process
of how they got VC funding and assembled their teams. This will help corroborate the results from the

analysis as well help in choosing appropriate variables and measurement.

While this research focused modularly on the impact of research networks, idea quality and inventor

reputation, studying the interdependencies and feedback loops would offer much interest. Such problems

would be in the nature of:

e How do research networks evolve over time and what are the determinants?

e The impact of research and social networks on the success of start-up ventures, and its feedback into
the research network

e How can the commercialization process be speeded up, what can other firms learn from successful

start-ups, in this aspect?
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APPENDIX 2 — A: Commercial Outcomes Study — Sample Companies

Company name 3:;': UniVersity afﬁliéfioh:‘ B o -
ActivBiotics 1996 |[Vanderbilt School of medicine, Univ of Washington
Aderis Pharmaceuticals 1994

Advanced Inhalation Research 1997 |MIT, Penn State

Afferent Corporation 2000 {Boston University

|Agencourt Bioscience 2000 |MIT

Akceli, Inc. 2001 {MIT

Alantos Pharmaceuticals, Inc. 1999 [University Louis Pasteur, College de France

Alnylam Pharmaceuticals

2002

MIT

AltaRex Corporation 1995 |University of Alberta
Ancora Pharmaceuticals 2002 (MIT

AngstroMedica 2001 [(MIT

Antigen Express Inc. 1995 |U Mass Medical

Aptanomics

2001

Harvard Medical School

Archemix Corporation

2001

Yale, U Texas

AVANT Immunotherapeutics, Inc.

1998

Harvard Medical School

Avocet Polymer Technologies

1996

MIT, University of Chicago

Back Bay Scientific 2000 |MIT

Beyond Genomics, Inc. 2000

Bionaut Pharmaceuticals 2000

Biopolymer Engineering 1997 [MIT

BioProcessors Corporation 2000

Biostream 1997 |Harvard Medical School
BioTrove, Inc. 1997 |MIT

CardioFocus, Inc. 1997

Cellicon Biotech 2000 |Boston University
CeNeS Pharmaceuticals Inc 1995

Centagenetix 2001 IMIT

Cetek Corporation 1996 |Northeastern University

Coley Pharmaceutical Group 1997

Collagenesis, Inc 1996

Collgard Biopharmaceuticals Inc. 1996

CombinatoRXx, Inc 2000 |MIT, Harvard

Concurrent Pharmaceuticals 2001 |MIT, Harvard

Critical Therapeutics, Inc. 2001 |North Shore-Long Island Jewish Research Institute

Curis, Inc.

2000

MIT

Cyclis Pharmaceuticals, Inc.

2001

Harvard Medical School

CytolLogix Corporation

1996

Boston University




APPENDIX 2 — A: Commercial Outcomes Study — Sample Cos (cont’d)

Company name 3::;: University affiliation . . .
Cytomatrix 1995 |Harvard Medical School
deCODE 1996 |Harvard Medical School
Descartes Therapeutics, Inc. 2002 [Harvard Medical School
Domantis, Ltd. 2000

Dyax Corporation 1995

Eligix Inc. 1997

ENANTA Pharmaceuticals, Inc. 1998 [Harvard

EndoVia 1996 |MIT, Boston University
engeneOS, Inc. 2000 [MIT

eNOS Pharmaceuticals, Inc. 1998 |[MIT

Exact Sciences Corporation 1995

Fluidigm 1999

Genitrix, LLC 1998 IMIT

GenoMEMS, Inc. 2000 [MIT

GenPath Pharmaceuticals, Inc. 2001 |Harvard Medical School
Hydra Biosciences 2001 |Harvard Medical School
Hypnion, Inc. 2000 |Stanford

Idenix Pharmaceuticals, Inc. 1998 |University of Alabama, Birmingham
Iguazu Biosciences 2001 |MIT, UCSF

InfiMed Therapeutics, Inc. 1998

Infinity Pharmaceuticals, Inc. 2001 [Harvard

Inotek Pharmaceuticals 1996

KINETIX Pharmaceuticals Inc 1997

Lightlab Imaging 1998 [MIT, Harvard

Living Microsystems 2001 [MIT, Harvard Medical School
MDS Proteomics 1999

Merrimack Pharmaceuticals, Inc. 2000 [MIT, Harvard

Microbia, Inc. 1998 |[MIT

Microbiotix, Inc. 1998 |U Mass Medical
MicroCHIPS, Inc. 2000 |[MIT

Mnemoscience 1999 |[MIT

Modular Genetics, Inc. 2000 |Harvard, Boston University
Momenta Pharmaceuticals, Inc. 2001 |MIT

Morewood Molecular Sciences 2001 |University of Pennsylvannia
Nano--C 2001 [MIT

nanopharma 2001 |Harvard Medical School
Nanosys, Inc. 2001 |MIT, Harvard, UC Berkeley
Nantero, Inc. © 2001

Page 54



APPENDIX 2 — A: Commercial Outcomes Study — Sample Cos (cont’d)

Company name 3::: University affiliation

NEUROMetrix 1996 [Harvard Medical School

Novasterilis 2000 {MIT

Orasomal Technologies 1996 |MIT

Pangaea Pharmaceuticals 1996 |Harvard

Parallel Solutions 2001 |[MIT

Paratek Pharmaceuticals, Inc. 1996 |Tufts School of Medicine

Peoples Genetics 2000 [MIT, Northeastern

Peptimmune, Inc. 1995 |MIT, Harvard

Pharmadyne, Inc. 1996 |Boston University

Phylos, Inc. 1997 |Harvard Medical School

Pintex Pharmaceuticals 1999 [Harvard Medical School

Point Therapeutics 1996 |[Tufts School of Medicine

PolyGenyx, Inc 1998 |IMIT

Prana Biotechnology 1997 |Harvard Medical School, University of Melbourne

Pro-Pharmaceuticals, Inc. 2000

Protein Forest, Inc. 2002

Proteome Systems 1999

Quantum Dot Corp 1998 IMIT, University of Melbourne
[Repair 2000 |MIT

Rib-X Pharmaceutical, Inc. 2000 |Yale

Sangamo BioSciences 1995 |MIT

Scion Pharmaceuticals, Inc. 2001 [Boston University

Sedecim Therapeutics 2000 |Boston University

Sionex Corporation 2001

Sontra Medical Corp 1996 |MIT

Spherics, Inc. 1997 [MIT

Stresngn Biotechnologies 2000 |MiT

Corporation

Surface Logix, Inc. 1995 |MIT, Harvard

Syntonix Pharmaceuticals, Inc. 1999 |Harvard Medical School

Tepha, Inc 1998

TolerRx Inc. 2000 |University of Oxford

TransForm Pharmaceuticals, Inc. 1999 |MIT

VisEn Medical 2000 |Harvard Medical School

Xanthus Life Sciences, Inc. 2001 IMIT, McGill University

Xerion Pharmaceuticals, Inc. 1998 |Tufts School of Medicine

Zelos Therapeutics 2001
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