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Abstract

Through extensive literature search, it has been found that there exists strong correlation between
the Mental Workload of an automobile driver with his or her physiological measurements,
especially the Heart Rate Variability (HRV) measurements. In order to make a driver’s HRV
monitoring on the road possible, a new photoplethysmograph (PPG) Ring Sensor prototype has
been devised specifically for countering the problem of motion artifact that almost all wearable
PPG sensors are facing. Most importantly, the motion artifacts on PPG signals caused by motion
in the direction of blood flow in the digital arteries along the finger flanks have been eliminated
using a customized Adaptive Noise Cancellation algorithm. Both the lab results and the road test
results have suggested that the new Ring Sensor is indeed capable of rejecting motion artifacts in
all three possible motion axes and producing considerable amount of usable beat-to-beat heart
rate data on the road for HRV analysis. The problem of occasional missing data on the road has
also been tackled with a suitable linear curve-fitting algorithm. Also, the sunlight saturation
problem is dealt with using a simple DC averaging reference circuit. The final road test has
proven the validity of the driver Mental Workload model and the validity of the Ring Sensor in
monitoring the HRV of the driver on the road. Besides the application on driver monitoring, the
Ring Sensor can also be used for other forms of wearable monitoring such as jogging.

Thesis Supervisor: Haruhiko H. Asada
Title: Professor of Mechanical Engineering
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1 THE IMPORTANCE OF DRIVER MONITORING

Various analyses and comprehensive studies [1][2][3] have shown that human errors are the sole
cause in around 60% of all automobile accidents and are a contributing factor in over 90%.
Despite the fact that a considerable percentage of these errors are contributed by intentional
driving behaviors (e.g. speeding, fail to stop at red light and etc.) [4], most other factors that lead
to road accidents can be categorized in two major groups (based on factors analyzed in [5]): a)

the worsening of a driver’s mental condition and b) the increase in a driver’ task workload.

Crucial mental conditions of the driver include alertness, calmness and concentration on the
road. For example, the lack of alertness due to drowsiness led to 56,000 crashes and 1,550
fatalities in US in 1996 [6]. On the other hand, Type A Behavior Pattern (competitive
achievement orientation, sense of urgency, anger/hostility and etc.), Trait-Anxiety (both physical
and emotional symptoms of nervousness) and Cognitive Failure (everyday slips and lapses)
contribute directly to the loss of calmness and concentration of automobile drivers. These have

been shown to have strong correlations with road traffic accidents [5].

Increase in a drivers’ task workload is the result of complexity of the traffic environment (e.g.
unfamiliarity with the road, heavy traffic) and the increasing amount of tasks to be handled on
the driving panel with the introduction of new in-car systems (e.g. stereo, cell phone, collision
warning system, adaptive cruise control and GPS). This leads to the driver being overloaded and
distracted, and thus causes accidents due to drivers being unable to respond to sudden changes in

the road conditions [5][7][8].



2 DRIVER’S MONITORING BASED ON HEART RATE

VARIABILITY

2.1

A Driver’s Mental Condition and Workload

Since drivers’ mental conditions and workload have been proven to be associated with the

occurrence of road accidents, it is essential that some kind of sensory systems can help to detect

this before it is too late. Dr. Dick de Waard from the Center for Environmental and Traffic

Psychology at the University of Groningen has published an extensive research paper [8] in 1996

on the different ways to measure the mental condition and workload of drivers. It has been

shown that many online and offline measurement are capable of indicating symptoms of bad

mental conditions and task overloading of drivers. The following figure summarizes some of the

experimental results.

Indicative Measurements

1. Self-Report

2. SDLP, SDSTW increase

3. HR increase

4. HRV (0.1 Hz) decrease

5. Frequency of eye fixation on
primary task increase

Complexity of Task

.

Indicate Measurements
1. Self-Report

3. HR increase
4. HRYV (0.1 Hz) decrease

2. SDLP, SDSTW decrease

Indicative Measurements

1. Self-Report

2. SDLP, SDSTW increase

3. HR an HRY (0.1 Hz) varies
depending on the type of mental

Number of Tasks

/

Task Overload

condition

Mental Condition Deteriorates

Legend

HR: Heart Rate

HRYV: Heart Rate Variability

SDLP: Standard Deviation in Lateral Position
SDSTW: Standard Deviation in Steering Wheel

Figure 2-1: Various measurements that indicate mental condition deterioration and task overload

It is clear from the above figure that both offline evaluation (self-report) and real time evaluation

(SDLP, SDSTW, HR, HRV and eye fixation) can be used to access the mental conditions of the




drivers and whether they are overloaded by driving related tasks. In fact, from the driver’s point
of view, the increase in the task workload and decrease in mental condition are essentially the
same [8] and can be viewed collaboratively as an increase in Perceived Mental Workload
(referred to as Mental Workload in the rest if the thesis). The following figure summarizes this
fact and graphically displays the various measurements that can indicate the region of

performance of the driver.

- =~ == w=  Driver Performance
Optimal — Perceived Mental
/ Performance Workload
{/Iental | Riigion ’ \\ + Increase
_” Com_iition . * Decrease
< Deteriorates Task Overload > it eae or DasTesse
* Depending on other
D Al A2 A3 B C conditions
L * * 1 Self Report
r ‘ - ] SDLP
I —* = ] SDSTW
L *. -1 Eye Fixation
| * * - HR
L
% * 1 HRV (0.1 Hz)

Figure 2-2: Measurements indicating the different driver performance and perceived workload
region

A2 is the optimal performance region where the driver is experiencing the least amount of
Mental Workload and the performance is the best. Both Al and A3 are the transition region to
unacceptable driver performance. The driver is experiencing an increasing amount of Mental
Workload and is trying to keep up with the performance by exerting extra mental effort. Region
D, B and C are where the driver can no longer cope with the excessive increase in Mental
Workload and performance starts to deteriorate significantly. This is when accidents usually

occur.



Although the above figures suggest that any single measurement is not sufficient to characterize
the region of performance of the driver, a combination of a few of those measurements is indeed
capable of indicating the Mental Workload of the driver. The measurements presented above are
not an exhaustive list of all the possible measurements. However, these are indeed the ones that
can be most conveniently monitored and measured (e.g. brain wave measurement using EEG can

detect certain driving behavior but it is nearly impossible to do it in the actual driving scenario).

2.2 Heart Rate (HR) and Heart Rate Variability (HRV)

2.2.1 The Importance of HR and HRV in Indicating Change in Mental Workload

With the advance in sensor technology, it is relatively easy to obtain measurement readings that
are associated with the vehicle (such as SDLP and SDSTW mentioned Figures 1 and 2), and it
has even become possible to monitor the eye fixation and facial expression of the driver through
advanced video monitoring and processing technology. However, instrumentation on the vehicle
can only signal either increases or decreases and is thus unable to differentiate between the many
mental conditions of the driver. On the other hand, video monitoring tends to signal false
indications. For example, frowning can reflect the complexity of the road condition, but can also
be because of a glimpse of thought of some unhappy incidents the driver experienced earlier in

the day. Therefore, there is a need for some more objective and highly correlated measurements.

The physiological states (e.g. heart rate, heart rate variability, blood pressure and etc.) of a
person are such kinds of measurements, and it has also been shown that the correlation of these
measurements to the change in Mental Workload varies relatively slightly (based on analysis of
variance of experimental results) among different persons [8]. Both Figure 2-1 and Figure 2-2
have indicated that heart rate (HR) and heart rate variability (HRV) are correlated with the
change in Mental Workload of the drivers. Besides the extensive discussion in paper [8] by Dr.
Dick De Waard, other research papers [9] [10] [11] [12] have also demonstrated the correlation
of HR and HRV with various mental conditions that have direct effect on a driver’s performance
(especially fatigue, drowsiness, stress and frustration). Therefore, the ability to measure
accurately the HR and HRV of a driver in real time is highly valuable for determining his or her
Mental Workload.

10



2.2.2  Definitions for HR and HRV and Their Correlation with Mental Conditions

HR is defined as the rate of pumping of the heart, and in most of the biomedical applications
average HR is used to monitor a person’s health condition. On the other hand, HRV is defined as
the variation of the beat-to-beat HR and is often presented in the frequency domain as a power
spectrum. The unit used on the x-axis is usually Hz instead of rad/sec for many other power
spectrum analyses. Therefore, in order to accurately measure the HRV, the rate of every single

heartbeat becomes essential.

The analysis on HR is simple as only an increase and decrease is signified and correlated with
mental conditions. However HRYV is analyzed in different frequency bands and each band
corresponds differently to the change in mental conditions. In normal practice, HRV is

characterized in three major frequency bands.

Table 2-1: The different frequency band for HRV and the mental activities associated

Freq. Band Freq. Range Mental Activities Associated
LF 0.01-0.08Hz Mainly sympathetic activities (stress/frustration)
MF 0.08-0.15Hz Mixed sympathetic and parasympathetic activities
Respiratory sinus arrhythmia and is almost
HF 0.15-0.50Hz exclusively due to parasympathetic activity
y p p

Based on these definitions, it has been shown through ANOVA (analysis of variance) on

experimental data the following correlations between HRV and various mental conditions.

Table 2-2: Correlation of HRV and HR with various mental conditions (N.S.C. = Not Strongly

Correlated)
Mental Condition LF MF HF LF/HF | MF/LF+HF) | HR
Joyful/Relaxed N.S.C. Increase | N.S.C. Increase | N.S.C. Decrease
Anger/Stress Increase | N.S.C. |N.S.C. N.S.C. Increase Increase
Fatigue/Drowsiness | Increase | Increase | Decrease Decrease

Based on the correlation results from the above table and results from Figure 2-1 and Figure 2-2,

it is clear that HRV and HR are associated with all kinds of changes of Mental Workload. The

11




actual real-time road driving test on these correlations are not performed due to the complexity
of the current setup for HRV measurement (complicated and clumsy ECG equipment that is very
difficult to wear while driving), and the high sensitivity of ECG measurement to muscular
movement that is common on the road. Therefore, ECG is not applicable for driver monitoring.
Nevertheless, the simulated lab environments that these experimental tests are based on are
convincing enough that with the possibility of wearable HRV/HR sensors (together with other
vehicle sensors mentioned in the previous session), we can closely monitor the Mental Workload
of the driver, and thus be able to give warning prior to accidents happening. The following

sections will focus on the development of such a device, which is named the Ring Sensor.
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3 RING SENSOR DESIGN FOR HEART RATE VARIABILITY
MEASURMENT

3.1 Working Principle of Ring Sensor

The Ring Sensor is an innovative sensor device that measures photoplethysmograph (PPG)
signals at the base of a human finger. The initial development of this device is discussed in the
Jjournal paper published by H. Harry Asada, Phillip Shaltis, Andrew Reisner, Sokwoo Rhee and
Reginald Hutchinson in IEEE Transaction on Biomedical Engineering [13]. Figure 3-1 shows the
typical waveform of a PPG signal obtained from a human subject at rest. The signal comprises a
large segment of DC signal and a small amplitude AC signal. The DC component of photon
absorption results from light passing through various non-pulsatile media, including tissue,
bones, venous blood, and non-pulsatile arterial blood. Fluctuation of DC components might
happen if light path is disturbed or the arterial blood level being altered. This will result in DC
noise affecting the AC component and thus destroying the pulsatile waveform. In order to get
HR/HRYV information using the Ring Sensor, it is crucial to get as perfect a PPG waveform as
possible. This is especially true for HRV measurement because beat-to-beat HR depends solely
on the time lapse between subsequent pulses’ peaks, which correspond to the systolic points in

the cardiovascular cycles.

pulsatile arterial blood
non-pulsatile arterial blood

venous blood

a
P

tissue, bone, etc...

Light Absorption
w)
A

<

Time

Figure 3-1: Illustrative representation of the relative photon absorbance for various sections of
the finger. The DC component is significantly larger than the AC component. [13]

The Ring Sensor uses a light-emitting diode (LED) and a photodiode (PD) for detecting the PPG
waveform. The locations of the LED and the PD relative to the finger are an important design

issues determining signal quality and robustness against various kinds of disturbances (mainly

13



motion artifacts). Therefore, the LED and PD are placed on the flanks of the finger base rather
than the dorsal and palmar sides. These locations are desirable for two reasons:
¢ Both flanks of the finger have a thin epidermal tissue layer through which photons can
reach the target blood vessels with less attenuation
* The digital arteries are located near the skin surface parallel to the length of the finger.

e The finger base has the least amount of motion under any finger movement

Getting PPG signals from the digital arteries is essential, because an arterial pulsation is not only
greater in magnitude than cutaneous pulsations, but is also less susceptive to motion due to the
naturally higher internal pressure. While the capillaries collapse with small external pressures on
the order of 10~30 mmHg, the arteries can sustain external pressures up to 70~80 mmHg [13].
Figure 4 shows the cross-sectional views of the finger with the two possible sensor locations: a)
reflective setup (LED and PD on the same side of the finger), b) transmittal setup (LED and PD
on opposite sides of the finger)

Digital Artery

Photodiode ontrol Volume 1

(@) (®.)

Figure 3-2: (a) For the reflective illumination method, movement of the photo diode relative to
the LED (position 1 to position 2) leads to a photo path that no longer contains the digital artery.
(b) For the transmittal illumination method, movement of the photodetector relative to the LED
still contains photon paths that pass through the digital artery. [13]

From the above figure, it is clear that the reflective signals will suffer significantly from small
sensor location shift (from 1 to 2), because the amount of light absorbed by the DC component
(tissue, non-pulsatile blood and etc.) changes as the light path changes. This makes the reflective
configuration sensitive to motion artifact. On the other hand, although transmittal setup is much
less affected by small sensor location change (from 1 to 2), the longer light path that travels
through the finger makes the signal quality highly dependent on many factors that might alter or

even cut the path (e.g. deformation of finger under external pressure). Also, the transmittal setup

14



requires much higher light intensity to penetrate through the entire finger base. Therefore, in

order to draw a conclusion on which type of sensor setup to use, extensive experiments were

conducted to compare closely the pros and cons of the two setups.

3.2 Comparison of Transmittal and Reflective PPG Signals

Since the small shifts of sensor location due to hand motion cause the major drawback of the

reflective sensor setup, the sensors were taped to the finger base to ensure no relative motion

between the finger skin and the sensors. Similarly, the LED was adjusted to its maximum

intensity to ensure the amount of light penetration needed for the transmittal signal. By doing

these two adjustments, the comparison between the two sensor locations is believed to be

impartial and judicial. Figure 3-3 shows the comparisons of reflectance signals and transmittance

signals taken on the same finger base simultaneously under the above experimental condition.

Comparison of Transmittance and Reflectance signal with no motion

26

18 Tran: nce Signal

17 13 19 20 21 22 23 24 25
Time (sec)

Comparison of Transmittance and Reflectance signal with fast motion

28 h %

58 S 60 61

62 63 64 65 66 67
Time (sec)

Comparison of Transmittance and Reflectance signal with gentle motion

Transmittance

38 38
Time (sec)
Comparison of Transmittance and Reflectance signal with very fast motion

L

)

.
35

3

Transmittance

285

i
15

1

235 9 945 9% 955 9%

Time (sec)

Figure 3-3: Comparison of Transmittance and Reflectance PPG signals under 4 different motion
settings: a) No motion, b) Gentle motion (<0.5G acceleration), ¢) Fast motion (0.5-1G
acceleration) and d) Very fast motion (>1G acceleration). The motion applied is through lateral
hand shaking perpendicular to the blood flow.
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It is clearly shown by these comparisons that reflectance PPG signals are better than
transmittance PPG signals once the problem of relative motion between the sensor head and skin
is solved. This is because with the LED and PD having firm contact with the skin at all time, the
light path that travels through the reflective setup is barely affected by motion. So, there is much
less fluctuation of the DC component in the reflectance PPG signal, and thus the AC component
to noise ratio is minimal. On the other hand, the long light path that the transmittance signal
experiences makes its DC component very susceptible to any blood level changes or tissue shape
changes along the path. Since the center part of the finger base is soft, continuous motion will
cause it to be compressed and distorted. This affects both the tissue and the capillaries inside the
finger base. These contribute to the large amount of DC component change in the transmittance

signal as can be seen in Figure 3-3.

Based on the above experimental analysis, it is obvious that reflective sensor setup should be
chosen. Nevertheless, Figure 3-3 does show that when the accelerations are too large, even the
reflectance signal waveforms start to distort. This is most likely because the surface contact
between the sensor head and the skin does not allow light to penetrate deep enough. The PD can
therefore not fully capture the PPG signal from the digital arteries, which are much deeper inside
the finger. When the motion starts to get larger, the surface capillaries from which most of the
PPG signals are actually taken from start to collapse and no pulsatile waveform can be observed
(the last graph in Figure 3-3 shows this effect). Therefore, further improvements are needed to
ensure that the PD is getting signals mostly from the digital arteries, which do not collapse under

normal motion.

3.3 Improvement on Reflectance PPG Signal with Local Pressure Mechanism

The reason why a simple surface contact between the sensor head and the skin is not sufficient to
get a good amount of signal from the digital artery has to do with the transumural pressure of the
digital artery. Transumural pressure is the pressure difference between the inside and outside of
the blood vessel. The pulsatile amplitude of the arterial blood is at a maximum when the
transumural pressure goes to zero due to the nonlinear compliance of the blood vessel [13].
Therefore, external pressure on the digital artery is needed in order to have the maximum arterial

pulsatile signal. However, the pressure applied cannot be excessive because the amplitude will

16



decrease once the transumural pressure passes the zero point (see Figure 3-4), and also excessive
pressure will cause damage over other vasculature [13]. Neither can the pressure be applied
across the entire finger base surface where the ring sensor is attached, as this will cause all base
capillaries to collapse and will block the blood flow in and out of the finger. Thus, the pressure

applied should be local and must be adjustable.
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Figure 3-4: (a.) PPG signal amplitude (b.) Pressure at the photo detector [13]

Based on the above considerations, a new sensor band has been designed. It has a block of soft
rubber pad to provide a local pressure at the sensor head near a digital artery. Also, by adjusting
the tightness of the sensor band around the finger, the local pressure level can be adjusted. Figure

3-5 and 3-6 on the next page illustrates this concept.
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Elastic Sensor Band Spot where Sensor Band

Local Pressure Zone can be Loosened or
Tightened

Sensor Head

Block of soft pads
Digital Arteries
Skin Surfaces

Figure 3-5: Modified sensor band for convenient build-in local pressure mechanism

Figure 3-6: Picture of the actual Ring Sensor with sensor band worn on the same hand

In this setting, the local force applied on the sensor head by the rubber block is counter balanced
by the force distributed along the skin surface on the opposite side of the finger. This allows a
relatively large local pressure (around 70-80mmHg which is equal to the internal pressure of the
digital artery) to be applied at the digital artery near the sensor head and having a small pressure
(<<10mmHg) distributed over the rest of the finger surface. This ensures good signal output
without causing any unwanted damage on the finger. Moreover, the elastic sensor band can be

easily adjusted to maximize the comfort of wearing and ensure skin-sensor contact at all time.

18



The following experimental results show the success of such a local pressure mechanism in
getting good PPG waveforms under motion artifacts of up to 3G acceleration (approximately
30m/s"). The accelerations are applied through lateral oscillations of the hand perpendicular to
the digital arteries along the finger flanks, and the accelerations are measured using a MEMS
accelerometer. Experimental data without the local pressure mechanism are also shown for

comparison.

With Local Pressure No Local Pressure
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Figure 3-7: Comparison of PPG signal with and without local pressure mechanism (1V=1G for
the accelerometer). Without local pressure mechanism the waveform start to distort at about 1G
of acceleration.

It is clear from the above comparison that the local pressure mechanism greatly improves the
signal quality under the influence of hand motion perpendicular to the arteries. However, the
local pressure mechanism is a passive device and it only ensures that the PPG signal reading is
mostly obtained from the digital arteries. Therefore, it cannot help to differentiate between a true
PPG signal and a PPG signal that is corrupted with unwanted blood volume change caused by
external motion. This unwanted volume change usually does not occur under normal
circumstances when the applied external motion is perpendicular to the blood vessel. This
explains why the local pressure works well for this type of motion. However, whenever there
exists some motion along the blood vessel, a simple passive device becomes inadequate and a

more advanced solution is needed.
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4 Advanced Motion Artifact Reduction Using Adaptive Noise
Cancellation

4.1 The Problem

With the local pressure mechanism at the sensor head, the motion disturbances in the directions
perpendicular to the arteries in the fingers are rejected for up to 3G (30m/s?) of acceleration. This
is because the local pressure zone makes the transmural pressure at the digital arteries close to
zero and thus allows maximum PPG signal to be read. Moreover, at 3G of acceleration, the
digital arteries do not collapse. This ensures true readings of the blood volume inside the arteries
throughout the period that the sensor is attached. Furthermore, the blood volume changes due to
perpendicular motion are relatively small compared to that caused by the pulse wave sent down
by every heartbeat. Therefore, the PPG signal obtained from the improved Ring Sensor reflects
mostly the pulsatile blood volume change even with motion disturbances perpendicular to digital

arteries in the fingers.

However, there is a type of hand motion that will cause the blood volume in the digital artery to
change considerably without causing any artery collapses. This is the motion along the direction
of blood flow in the digital arteries along the finger flanks. The following figure illustrates this

motion type and defines the axis notation for the analysis that follows.

Sensor Band Pigital Arteries

X-axis

Hand Motion Along the Digital Arteries

Hand Motion Perpendicular to Arteries

Hand Motion P
; P dicular t -axis
Motion Along the Af_trp?n teutar
g £ eries
Digital Arteries
Z-axis

Figure 4-1: Illustration of hand motion type and axis definition for motion analysis
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Based on the definition of the three axes, it can be summarized at this point that the Y-axis and
Z-axis motion are mostly rejected with the local pressure mechanism for up to 3G of acceleration
as discussed earlier. However, the X-axis motion causes large disturbances in the PPG signal
even with the local pressures. This is because motion along the digital artery will cause the blood
to move up and down along the blood vessels. This dynamic blood movement is unstoppable and
causes dynamic changes in the blood volume, which leads to dynamic disturbances in the PPG
signal. Figure 4-2 shows the PPG signal under X-axis motion and what the correct PPG should
look like without the motion. The correct PPG is collected at the stationary right hand while the
X-axis-motion-corrupted PPG is collected on the moving left hand. Accelerometer readings are

attached to show the extent of oscillatory motion applied.

T T T

ST Corrupted PPG due to Xeaxis Mokia

Correct PPG on Stationary Hapd

N
1

Voltage/V

5

130 132 134 136 138 140
Time/sec
Figure 4-2: Corrupted PPG due to X-axis motion on the moving left hand; Correct PPG on the

stationary right hand; and X-Axis acceleration monitored using MEMS accelerometer (for both
PPG wave, voltage magnitude is scaled for clarity of illustration)
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[t can be seen from the above figure that, the X-axis acceleration totally deforms the PPG signal
on the moving hand that was monitored, with the absolute magnitude of the X-axis acceleration
between 1G and 2G. This shows that the PPG signals are very sensitive to X-axis motion due to
the movement of the blood along the arteries. One interesting observation can be made out of the
above figure: the frequency of the corrupted PPG signal seems to correspond closely with the
frequency of the applied motion. This point will be made clear towards the later part of the

thesis.

For the acceleration monitoring on the finger, a MEMS accelerometer was used and was attached
to the Ring Sensor circuit board fastened on the same finger where the sensor band was located.
The following two figures show an illustration of the attachment details and a picture of the

actual setup.

Blow-up view

Ring Sensor circuit and
MEMS accelerometer

Ring Sensor
Circuit Board

X-Axis \
T Sensor band
Y-AXiS MEMS
accelerometer Structure holder
7-Axis (plastic)

Figure 4-3: Illustration of the MEMS accelerometer attachment relative to the Ring Sensor and
finger
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Figure 4-4: Picture of the actual attachment and setup

Due to the size limitation, the MEMS accelerometer that fits to the size of the Ring Sensor can
only measure acceleration along the X and Y-axis. Nevertheless, this is more than sufficient as
the problem with motion artifact arises mostly in the X-axis as long as the local pressure

mechanism is enforced.

4.2 The Correlation Between Acceleration and Motion-disturbed PPG signal
As observed in Figure 4-2, there exists a correlation between the frequency of the X-axis

acceleration and that of the corrupted PPG signal. Therefore, it is possible to model this

corrupted signal as the system response to the X-axis acceleration. In this section, a discrete time

model of this system will be derived and analyzed.

First of all, X-axis accelerations bring about blood displacements inside the digital arteries. Let x

be the blood displacement and let a be the blood acceleration in the X-axis direction. For this

discrete model, although a general Infinite Impulse Response (IIR) seems to be the most

adequate representation of the actual continuous system, a Finite Impulse Response (FIR) model

was chosen instead:

X, =ca, +c,a,_,+ca,_,+-+c,a,, 4-1)
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where, a.., represent the X-axis acceleration input at time #-n, and x, is the x value at current time,

t.

There are two reasons for choosing the FIR model and both of them will be further explored in a
later section of this chapter. They are presented here to first support the model in Equation (4-1),
as it will be used for further equation derivations. The two reasons are
¢ Firstly, the motion disturbance causes by the acceleration on the PPG signal has a fast
rise and settling time. Therefore, the system does not need to be fitted with an infinite
model
¢ Secondly, the FIR model is the best form that suits the Adaptive Noise Cancellation

Algorithm for motion artifact rejection

With Equation (4-1) and the assumption that the blood vessel cross-section is uniform and fixed
throughout the motion, we arrive at the following equation
V, =8, =8(a, +ca,_,+ca,_s+--+c,a,,) 4-2)
=V, =pa_+pa,+pa_+--+p,a_,
where V, is the blood volume change at any instant time t due to X-axis motion, and S is the area

of the cross-section. p; to p, are the coefficients for the system FIR model.

Assuming that the magnitude change of a PPG signal is positively proportional to the blood
volume change inside the blood vessel for the duration of the small time window of the FIR
model, V; in Equation (4-2) can be linearly transformed to represent the actual magnitude change
of the PPG signal due to X-axis acceleration. Using y,to represent the change in PPG magnitude,
Equation (4-2) becomes:

Y, =qa,+q,a,_,+qa,_5++q,a,, 4-3)
This y,can also be viewed as the motion artifacts caused by the X-axis accelerations on the PPG

signal.

In order to verify this model and determine the number of model coefficients to use (the value of
n), correlation analyses were performed between the y data series and the a data series obtained

in actual experiments using the sensor setup mentioned in the previous section. The sampling
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rate was set at 1000 samples/sec. Because only the actual X-axis-motion-corrupted PPG signal is
obtained, the y series can only be estimated by subtracting the correct PPG on the stationary hand
away from the corrupted PPG on the moving hand. Denoting the actual corrupted PPG data
series by r; and the correct PPG data series by 4, we have
ye=ri—k; (4-4)
In this subtraction, the following assumptions are made
¢ The changes in the magnitude of the PPG signal due to X-axis motion and due to
heartbeat are assumed to be additive
e The correct PPG signal obtained on the stationary right hand is assumed to be equal to the
correct PPG signal that would have been obtained from the moving left hand if it were

stationary

Furthermore, to analyze the dynamic system response (rise and settling time) to X-axis
acceleration, several additional y data series were created with time delays that were multiples of
+0.01s from the original y data series. For example, y data series having no time delay represent
the data series (y;, y+1...yr+m) and y data series having +0.05s (50 sample points) time delay
represents the data series (Vi+so, Vi+s1..-Vi+s0+m). The a data series, (a,, Gy+... a+m), does not have
delay at all. The correlations between the a data series and each delayed y data series were
performed. Through delaying the y series and doing the correlation with the a series, the exact

time instant of the system’s peak response to X-axis acceleration can be determined.

The formula used for calculating the correlation index is as follows.

120 =40, - 4,)
m

o,0,

Correlation(y,a) = (4-5)

where m is the number of samples in each series, and x and o are the mean and standard
deviation of the series respectively. Both series have the same number of samples. In the table
below, m is set to be 25000, which means 25 seconds of samples for each series. The correlation
indexes calculated between any two series ranges from —1 to 1 with 1 being strongly positively
correlated, -1 being strongly negatively correlated and 0 being no correlation. Six tests were
performed and correlation results are summarized below. Table 4-1 shows the actual correlation

values between a series and the delayed y series for the time instants where the system response
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is around its maximum. Figure 4-5 illustrates graphically the correlation index changes between
the a series and the y series as the time delay increases from 0 sec (no delay) to 0.25 sec. The rise
and fall of the correlation index between the two series reflects exactly the actual rise and settling

time of the system response y to input a.

Table 4-1: Correlation of delayed y and r series with the a series with the strongest correlation

highlighted

a-series Corrupted PPG — Correct PPG (y-series)

Test No.| No delay | +0.07s delay | +0.08s delay | +0.09s delay | +0.10s delay | +0.11s delay
1 0. 28 0.86 0. 89 0. 89 0.88 0. 86
2 0. 05 0.90 0.93 0.92 0.89 0.83
3 0.18 0. 92 0.93 0.92 0.88 0. 81
4 -0. 30 0. 67 0.74 0.78 0.79 0.77
3 -0. 15 0.72 0.78 0. 81 0. 81 0.79
6 0. 02 0. 74 0.78 0. 81 0. 81 0.79

o 1. 00
=
S > 0.80
g
2 S 0.60

o
= -
29 0.40
=
= & 0.20
o
S 0.00

0 0.05 0.1 0.15 0.2
Time delay in y series (sec)

Figure 4-5: Plot of correlation index between a series and y series against the time delay in'y
series (Test 1 only)

From Table 4-1 and Figure 4-5, the following points can be observed and inferred
e The X-axis acceleration (a series) is strongly correlated with the PPG magnitude change
due to X-axis motion (y series) for y series with time delay between 0.06 seconds and

0.12 seconds.
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¢ The a series correlates best with y series with time delay around 0.08 seconds to 0.09
seconds. This means that the maximum effect of X-axis motion on PPG signal comes in
0.08 seconds after the motion is applied. With 1000 samples/sec sampling rate, this
corresponds to 80 to 90 points delay from the current time instant, ¢, for the FIR model.

e Itis valid to use the FIR model instead of the IIR model, as the response of the system to
X-axis motion rises and decays quickly in around 0.2 sec. The response can be
considered as finite.

e The linear FIR system model seems to be sufficient due to the high correlation index of
around 0.9 between the a series and the delayed y series even without considerations of

higher order terms.

Therefore, the FIR model in Equation (4-3) should be used. Moreover, the correlation analysis
suggests a total system response time of around 0.2 sec, which corresponds to 200 discrete input
points with 1000 samples/sec sampling rate. In view of this, it appears that the FIR model has to
have a total of 200 coefficients (n=200). However, if considering the time duration where the
correlation index is above 0.8, only the time duration of 0.06 seconds to 0.12 seconds after the
motion is applied should be incorporated inside the FIR model. The issue of choosing the right

value of » will be revisited in the later part of this chapter.

4.3 The Adaptive Noise Cancellation Algorithm

In order to determine the system parameters in Equation (4-3) and to remove the motion artifacts
due to X-axis motion from the corrupted PPG signal to obtain the correct PPG, a suitable set of
System Identification and noise-filtering techniques should be chosen. Before making the
decision, let’s first look at the System Block Diagram as well as the proposed Motion Artifact

Cancellation Setup illustrated below.
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Figure 4-6: System block diagram showing the effect of X-axis motion on PPG signal as well as
the proposed motion artifact cancellation setup

Looking at the System Block Diagram part of the figure, it can be seen that using the Ring
Sensor, we will be able to obtain the PPG signal corrupted by the motion along X-axis. This
corrupted PPG signal is the sum of the normal PPG signal due to heartbeat and the actual PPG
signal due to X-axis motion. This is the PPG additive assumption that was made earlier on.
Looking at the Motion Artifact Cancellation Setup part of the figure, it can be seen that with the
measured Ring Sensor Signal (r series), the measured MEMS accelerometer signal (a series) and
the knowledge of the estimated system FIR model, we can estimate the PPG signal due to X-axis
Motion (y series), and also to estimate the correct PPG (k series). The system FIR model is not
fixed due to the time-variant model for the blood flow inside the arteries. Therefore, the FIR
model has to be tuned adaptively in real time. The estimated correct PPG (k series) should be
used for tuning the model because of the exact resemblance between this setup and the setup for

Adaptive Noise Cancellation algorithm.
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Adaptive Noise Cancellation is an algorithm proposed by Bernard Widrow in his paper
published in 1975 [14]. It is used for adaptive filtering of signals contaminated with noise

sources, which can be separately measured. The setup is as follows.
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: ) ¥| Distortion by !

Noise_:i’ FN Noise E
]
1
]

Figure 4-7: Graphic illustration of the Adaptive Noise Cancellation algorithm

This is exactly the same setup as the Motion Artifact Cancellation setup for the Ring Sensor PPG
signal. Therefore, the X-axis acceleration can be viewed as the noise, and the correct PPG can be
viewed as the signal that needs to be reconstructed. The adaptive filter for the Adaptive Noise
Cancellation setup is usually an FIR model, and this further supports the choice of using FIR for
the X-axis motion artifact modeling. The k,+y, is the r series used in the Ring Sensor model in

Figure 4-6.

The Adaptive Noise Cancellation algorithm does not assume any prior knowledge of the
adaptive filter (the FIR model), and it continuously adjusts the filter to minimize the error
between y and y, through minimizing the power in £. The following analysis explains the reason

behind the algorithm.
E[k*]= E[(r - »)* 1= El(k, + v, - )" 1= EIk," 1+ E[2k,»,1- E[2k,y1+ E[(y, - »)']  (4-6)

Since £, represents the correct PPG due to heartbeat and y, represents the PPG magnitude change
due to X-axis motion, there should be near zero correlation between the two time series.

Therefore, E[2k,y,] and E[2k,y] can be neglected and Equation (4-6) becomes:
E[k*] = E[k," ]+ El(y, - »)°] @7
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Since E[k(;Z] is the power of the correct PPG due to heartbeat and is fixed, to minimize E[(y-y.)"]
is the same as minimizing Efk°]. This essentially means that the error between the estimated y
and the actual y, can be minimized if the power of the estimated output £ is minimized. To
perform this minimization, a simple Recursive Least Square (RLS) algorithm can be used for
adaptively determining the coefficient of the FIR filter. The following is the setup for the RLS

algorithm.

Based on Equation (4-3) and letting 6 =[q,,q,--9,]" and ¢, =[a, ,,a,,-a,_,]1,
y=0"p, (4-8)
For the RLS algorithm, the following three calculations are performed in the sequence stated and

recursively [14].

2
gt:€1~1+ 14 T(rt—yt)
1+, P 0,
T
}){ :P_ _ B—I¢1¢t })I—TI (4_9)
1+¢1Pt—1¢1

T
yl = 91 ¢t+l
P is called the covariance matrix and the initial value Py is set to be an identity matrix of
dimension n by n. 6 is set to be an n by 1 matrix of zeros. With the time sequence of y, estimated

using the above recursive algorithm, the reconstructed correct PPG is then equal to r-y,.

In order for this algorithm to work well, one very important point needs to be noted. Within the
time window of the FIR model (defined by the value of n), the expectations of the powers of the
various series in Equation (4-6) and Equation (4-7) need to have consistent mean values
throughout the whole time span of the test. This means that the two input signals (a series and »
series) must have close-to-constant DC values. Shifting of the DC values will lead to shifts of the
power expectations, which leads to inconsistent output from Equation (4-9). Since the corrupted
ring sensor signal and the MEMS accelerometer readings are bound to have small DC shifts due
to inconsistent sensor calibrations and electrical noises, the input signals to the Adaptive Noise
Cancellation algorithm need to be treated first. For this application, I have chosen to use high-

pass filtering to remove any unwanted DC noises that will cause shifting of mean values.
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Before finalizing this section, let us revisit the issue of the determination of # for the algorithm -

and consider the following points:

Due to the high sampling rate (1000 sample points per second) and the fact that the RLS
algorithm needs to be performed for each new sample point, the computation is heavy
and the size of the matrix becomes crucial. Since n determines the matrix dimension,
even n=60 tends to be too large in consideration of the real time computation power that

the computer can provide. For a simple calculation of y = P_ ¢, alone, it will need

(60+60) x 60 x 60 x 1000 = 432,000,000 algebraic computation for every single second.
It will be far worse if n=200 is used. Therefore the smaller the n, the faster the
computation. If the value of n can be reduced to 10, the amount of computation will be
reduced by a factor of 216 to 2,000,000 computations per second.

Also, considering the time variant nature of the system due to unpredictable motion,
when the external X-axis acceleration applied has a high frequency, the system model
parameters change quickly. Therefore choosing a short time window for the FIR (smaller
value of n) will make the mode! adapt quicker to the frequent system changes and will
improve the transient response. Figure 4-8 on the next page compares differences in

choosing n=10 and n=60 to illustrate this point.
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Figure 4-8: Comparing the corrected PPG with n=60 and n=10

It is obvious from the above figures that n=10 is better than n=60 in terms of transient response
from no motion to X-axis acceleration. Since n=60 does not show any other advantage over

n=10, n=10 should be adopted since it helps to save computation time.

4.4 Experimental Results
As analyzed in the previous section, the peaking of the effect of X-axis motion on PPG signal
occurs at 0.08s after the motion is applied. This is equivalent to 80 data points for the 1000
samples/sec sampling rate. Therefore, the 10 input points have to be chosen around the 80" data
point before the current time t and the ¢ vector is adjusted to become

0, =10, 5050, 50 g0 u]" (4-10)
where n=10. The rest of the algorithm remains unchanged and the dimension of the covariance

matrix P becomes 10 by 10 instead.
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The following figures show the reconstructed PPG signals from the X-axis motion corrupted
PPG signals measured by the Ring Sensor on the moving left hand. The actual correct PPG
signals were measured on the stationary right hand and were displayed together for comparison.
The two sensor inputs for the Adaptive Noise Cancellation algorithm (the corrupted PPG signal
and the X-axis acceleration) are included on the same figures as well. The magnitudes of the
three PPG data series have been linearly shifted for charity of representation. The magnitude of
the X-axis acceleration data is not shifted but scaled about the time-axis by a factor of 0.1. This
means that the voltage-axis shows 0.1 times the actual X-axis acceleration measured in G
(10m/s?). Vertical lines are drawn to compare the systolic peaks of the reconstructed PPG signal

and those of the actual correct PPG.
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Figure 4-9: Comparing the reconstructed PPG with the correct reference PPG (1 of 3)
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Figure 4-10: Comparing the reconstructed PPG with the correct reference PPG (2 of 3)
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Figure 4-11: Comparing the reconstructed PPG with the correct reference PPG (3 of 3)
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From the above three figures, it can be seen that the Adaptive Noise Cancellation algorithm is

very successful. Not only do the peaks get reconstructed for almost 100% of the time, but the

correct shapes of the waveform are recovered most of the time as well.

Looking at a commercial PPG device (produced by Heart Math Group) that is built for analyzing

HRYV further contrasts the higher capability and reliability of the Ring Sensor with its ability in

rejecting motion artifacts in all three possible motion axis. See Figure 4-12 for details.

PPG Signal

Acceleration

50 100 150 200
Time (sec)

Figure 4-12: PPG waveform from a PPG sensor recently marketed by Heart Math group for

detecting HRV. The PPG waveform is totally distorted at around 1G of acceleration.
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S RING SENSOR APPLICATION FOR DRIVER MONITORING
ON THE ROAD

With all the development of the Ring Sensor discussed in the previous two chapters, let’s look at
its application on driver monitoring (chapter 2) and some practical problems that need to be

solved.

5.1 Determining Beat-to-Beat HR

Beat-to-beat HR (or other equivalent forms such as RR-interval) is the basis for all the existing
HRYV analysis [14]. Conventionally, beat-to-beat HR is estimated based on the RR-interval of the
ECG signal shown in Figure 5-1 below.

RR interval

>

g

Figure 5-1: Typical ECG signal

Due to the sharp peak corresponding to each cardiovascular systolic point, it is easy to determine
the peak-to-peak distances and thus the beat-to-beat HR. However in the case of PPG signal as
can be seen below in Figure 5-2, the systolic peaks are less sharp compared with the rest of the

pulse wave and there is also a second peak existing for normal healthy person.

Systolic peak Second peak

Figure 5-2: Typical PPG signal
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Nevertheless, the time intervals T between successive systolic peaks in the PPG signals are
almost equivalent to the RR intervals in the ECG signals. Figure 5-3 compares the beat-to-beat
HR calculated using the PPG signals with that calculated by the ECG signal. Figure 5-4
compares the HRV calculated using the beat-to-beat HR obtained with both the PPG and the

ECG signals. For reference purpose, a gold standard PPG measurement device (Nellcor sensor)

is included as well.

Comparison of Beat-to Beat Heart Rate measured by Ring Sensor, NeliCor Sensor and ECG
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Figure 5-3: Beat-to-beat HR compared between ECG, Ring Sensor and Nellcor Sensor
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Figure 5-4: HRV calculated from the beat-to-beat HR measured by ECG, Ring Sensor and
Nellcor Sensor
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These two figures show that the PPG signals obtained from the Ring Sensor are capable of
measuring the beat-to-beat HR and HRV, and the measurement result is very close to that

obtained using the standard ECG device.

Despite the feasibility of using PPG signal for beat-to-beat HR measurement, the requirement for
a clean and non-distorted PPG waveform is still essential, as any missing systolic peaks will lead
to missing HR readings. When it is out on the road, the harsh road conditions (high accelerations
at bumps and sharp turns) are still able to distort the Ring Sensor’s PPG signals occasionally
despite all the motion-artifact designs that have been implemented. This leads to occasional
missing beat-to-beat HR data. On the other hand, direct sunlight can cause signal saturation due
to the relatively low intensity of the LED. These two problems have to be addressed before the
HRYV analysis can be performed using the beat-to-beat HR data.

5.2 Preventing Signal Saturation under Direct Sunlight Influence

As discussed in the original work on the Ring Sensor [13], the sensor works on the principle of
varying light absorption due to the changing blood volume inside the blood vessel brought about
by the pressure wave sent down by the heart beating. The Ring Sensor has a photodiode and an
LED that does the detection of the changing light absorption by the blood. Therefore, the LED is
the light source that the rest of the Ring Sensor circuit is based on for signal filtering,
amplification and tuning. The LED that has been chosen for the Ring Sensor is a strong local
light source (30 mcd luminous intensity at 660nm wavelength) for its size. When it is used in
most indoor environments as well as outdoors with no direct sunlight, the light source provided
by the LED is dominant and the subsequent circuit design is valid. However, whenever there is
direct sunlight shining on the sensor band, its luminous intensity largely surpasses that of the
LED and causes both the base DC level and the AC amplitude of the light saturation in the finger
to increase considerably. This makes the original LED-oriented sensor design invalid, as the
same amount of AC-amplification and DC reference level designed for the light source provided
by the LED will saturate the sensor output signal to its maximum (which equals to the DC power
supply voltage to the sensor) under direct sunlight. This essentially means that there will be no

usable PPG signal for that duration of direct sunlight exposure. The following figure shows one
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section of the road test data that has been saturated by the direct sunlight and has become

unusable for HR estimation.
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Figure 5-5: Ring Sensor‘s PPG wave saturated by sunlight

In order to solve this problem, the level of AC amplification as well as the DC-reference in the
circuit has to be automatically adaptive to the real-time lighting condition at the point on the
finger where the sensor head is attached. Due to the power consumption consideration,
complicated adaptive amplification circuitry is not suitable for the onboard electronics on the
Ring Sensor. Therefore, the amplification level is fixed at the maximum that will still keep the
signal from saturation under direct sunlight. With the AC-amplification fixed, the DC-level is
designed to adjust by itself to provide the correct reference point for amplification. For example,
when there is sunlight, the DC-level of the signal is usually at 0.2V and the DC reference for the
AC-amplification has to be set to 0.2V; when there is sunlight, the DC-level of the signal will
shoot up to 2-3V and the DC reference has to be set automatically to follow that. Furthermore,
due to the high sensitivity of light intensity to sensor locations, the local light intensity
information at the sensor head is needed to provide the correct DC reference. Therefore, the DC
reference information has to be obtained from the actual raw PPG signal (pre-amplified signal)

instead of any reference points elsewhere on the finger. In fact, experimental results have shown
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that placing a DC light reference anywhere else makes the sensor setup unusable, even if it is just

millimeters away.

The automatic DC reference setting is done using the following dynamic averaging circuit.
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Figure 5-6: Automatic DC Reference Level Setting and Amplification Circuit

For the complete new Ring Sensor circuit, please refer to the Appendix. With this improvement,
the sunlight saturation problem is fixed. Figure 5-7 shows the PPG signals obtained from six
human subjects, both male and female, ranging in age from 24 to 30. The experiment is done
under simulated direct sunlight environment using a strong flash light right above the sensor
band. None of the PPG signals are saturated under the strong ambient light. Therefore, the

sunlight saturation problem is solved.
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PPG of € different people (weight: 130-200, 5 male & 1 female) with strong ambient light

15 1
“’\Ml\f\J\J@‘\\,\j\J\N\J\;- —
1 4
0.8
0.5 ; 0.7
0 d me?soc 10 0 S 10
1 0.5 time/sec
0.95 1 045
0.9 0.4
0.85 - 0.35
0 -] 10 0 5 10
0.95 time/sec 0.8 time/sec
0.9 1 0.7
0.85 a 0.6 k
0 5 10 0 5 10
time/sec time/sec

Figure 5-7: PPG signal from 6 different people with strong ambient light
5.3 Discrete Fourier Transform of Beat-to-Beat HR Having Missing Points

Before addressing the problem of missing HR data points, let’s take a preliminary look at some

road test results and see how badly the PPG signal gets distorted.
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Figure 5-8: PPG waveform from part of the road test with two sessions enlarged

From the above result, it can be seen that the PPG waveform of the Ring Sensor is clean for
normal road conditions but becomes distorted when the road surface condition is rough.
Therefore, it is reasonable to expect that the new Ring Sensor will work well for normal road
conditions and will miss some pulses when the driver passes large potholes or makes sharp turns.
In the later two cases, the acceleration that the driver experiences is believed to be more than the

30 m/s” produced in the control lab environment for Ring Sensor testing.

In order to have a valid frequency domain analysis on HRV, at least five continuous minutes of
valid beat-to-beat HR result are needed [15]. Since the road test result suggests the possibility of
missing beat-to-beat HR reading due to distorted PPG pulse wave over rough road surfaces,
some data processing algorithms are needed to recover those missing points. This section

discusses the details of finding beat-to-beat HR and the algorithms for missing data recovery.
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5.3.1 The Problem

The standard procedure for obtaining HRV is to compute the Fourier Transform of the entire
time series of beat-to-beat HR. Let A(i) be a time series beat-to-beat HR and N be the total
number of samples, hence 1<7 < N . The Discrete Fourier Transform of /(i) for the finite time

interval, 1<i< N, is given by
1 & 2 ki
=— > h(i) exp(—j —), k=01, N-1 5-1
&= 2, Hi) exp(=j =) (5-1)
where k =0,---, N —1is the frequency index, and corresponds to the actual frequency w, by

w, =277, %, where 7 is sampling period.

5

In this application on HRV, the frequency components we would like to identify are at very low
frequencies, 0.01 Hz ~ 0.5 Hz. This implies that data must be obtained for a long period of time.
To cover one complete cycle of low frequency sine waves, 0.01 Hz, for example, data must be
taken for /00 seconds. In fact, the standard time duration for HRV analysis is at least five
minutes [15]. Furthermore, such data must be taken continually without interruption. This turns
out to be unrealistic, since PPG signals may be corrupted with disturbances and often HR data
cannot be obtained for certain periods. Although the Ring Sensor is able to reject most of the
motion artifacts, as described previously, it is still infeasible to take data uninterruptedly for such

a long period of time due to unforeseen extreme road conditions.
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Missing data periods due to motion artifact and disturbances
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Figure 5-9: Data with corrupted periods

Figure 5-9 illustrates a HR time series with occasional corrupted periods. The frequent
occurrence of missing data makes the uninterrupted period not long enough to recover the low
frequency components in HRV frequency spectrum. Therefore we must use the entire duration of

data, although it includes missing data periods.

There are some ad hoc methods to resolve this difficulty. For example, one may simply ignore
the missing data periods and append the segmented data durations into one continuous time
series, as shown in Figure 5-10(b). This distorts the phase information of each frequency
component and results in an inconsistent power spectrum. Another two similar ad hoc methods
are to reconstruct the missing data using the Linear Curve Fitting method (Figure 5-10(c)) or to
replace missing data by the mean of the valid data points (Figure 5-10(d)). Both methods will
cause higher frequency components to be missed as the missing period prolongs. However since
we are interested in only the low frequencies (<0.5Hz), missing periods of less than 2 seconds

will still be tolerable.
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Figure 5-10: Ad hoc methods for dealing with missing data points

Since the validity of these ad hoc remedies are questionable, a systematic method for estimating
the HRV power spectrum from incomplete data set having missing data periods will be
developed in the following section. To this end we examine the computational structure of the
Discrete Fourier Transform given by Equation (5-1). The Fourier Transform g provides the
strength of periodicity in the original time series with respect to the 4th frequency component.
A set of original data points at the same phase angle of the k—th frequency component are
averaged and multiplied with the exponential function. When some data points are missing, this

averaging may cause some error, providing unfaithful results.

53.2 New DFT Algorithm
Let T be the sampling interval with which data are taken; A(?) = h(7 1), or h(i) for simplicity,

1 <i< N . Substituting this to Equation (5-1) yields DFT of the HR time sequence,

G(-jo) =~ Y. hi) exp(-jo. (5-2)

i=0
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In discrete form, DFT is computed at discrete frequencies, @, , usually spaced equally in

frequency;

wk=;—’;]k, k=01, -, N-1 (5-3)

In the new DFT algorithm, DFT is computed at discrete frequencies but with different frequency
spacing

o, =;)_2_%, =23, P (5-4)
Unlike the standard DFT algorithm, the frequency spacing of this DFT decreases as the
frequency becomes smaller. This is a desirable feature for computing HRV, since very low
frequencies, less than 0.01 Hz, must be computed more finely than high frequencies, say larger
than 0.1 Hz. The new varying frequency spacing gives finer discretization as the frequency
decreases. The fastest frequency, on the other hand, is bounded by p=2, according to the

Sampling Theorem. The slowest frequency is bounded by the duration of data, or the total

number of data points, p< P = [ﬁz—;—;} , where [x] represents the largest integer not exceeding x.

5

For this particular frequency spacing, DFT coefficients can be computed despite missing data
periods. Basically Fourier Transform provides the strength of periodicity imbedded in the
original time series data by evaluating the correlation between the time series data and

trigonometric (exponential) functions with various frequencies. For each frequency @, , every
cycle of the trigonometric function corresponds to p sample points. According to Equation (5-4),

the period given by pT, =27/, . Therefore every cycle contains an integer number of sample

points, p. See Figure 5-11. If data point / is the ¢ —th data point in the (m-1)-st period, it can be
written as:

i=m-p+4, £=0,1,---,p-1, m=0,1,---,M -1 (5-5)
where M is the number of cycles involved in the observation time span over which DFT

coefficients are computed.
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Figure 5-11: Graphical illustration of the new DFT algorithm for recovering missing data points

The observation time span is an important design parameter in particular for identifying low
frequency HRV. It is interesting to note that high frequency variation may be determined in a
shorter time span, while low frequency variation may need a longer time span. Physiological
aspects should also be considered in determining the time span for each frequency range, as will
be discussed later. For now, let’s consider M complete cycles of observation time span for

identifying the periodicity of frequency @, in the HR data. The DFT coefficient of frequency
o, for M complete cycles of HR data is then obtained by substituting Equations (5-4) and (5-5)

into Equation (5-2) and setting N=pM;
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M-1p-1

S S h(p-m+1) exp(—f%”(p-mw»

1=0
1

G*(jo,)=

%|-

1 L& ) 2l

——Z h(p-m+1) exp(—j2mam)exp(—j—)

pM 505 P
: (5-6)
M

& Y=
exp(—j=—)> h(p-m+1)

=0 P mo

1 & 2xf —
=—> exp(-j=—)h(; p)
P o p

- o

where A (l; p) is the average of the I-th data points over the M cycles of data, as shown in Figure

5-11.
h(l;p)=—"> h(p-m+1) (5-7)

It should be noted that the summation over m can be computed prior to the multiplication with
the exponential function in the last expression of Equation (5-6). Therefore the number of

multiplications reduces, compared with that of the first expression.

The final expression of Equation (5-6) is not only computationally efficient but also quite
powerful for dealing with a time series having missing data periods. When all the data points are
available, the above averaging is literally performed. However, once some data are missing, it
cannot be computed in its original form. The missing data must be filled and the optimal value of
those missing data is given by the average of the other available data. Without loss of generality
let us assume that, among the M data points, only the first M* points are available, i.e. the last M-

M* points are missing, then the average is given by
M1

hl; p) = ML S h(p-m+1) (5-8)

It can be shown under mild assumptions that the expected estimation error is minimum when the
missing data are filled with the above average of the available data. Using Equation (5-8) in

Equation (5-6) yields the estimated DFT coefficient & ,,
. 1& 27zl -
g, == exp(=j=—) - h(l; p) (5-9)
P b

for frequency w, =27/ pT,.
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5.3.3 Remarks

In the above method, the coefficients g, do not have to be computed for all the discrete

frequencies. Unlike the standard FFT, coefficients of specific frequencies relevant to HRV can
be computed separately. This reduces computational complexity. Since the frequency of HR is
approximately 0.5 Hz, the sampling period is around 0.5 sec. Therefore the fastest frequency

component is @, =1 Hz, for p=2, and the next frequency is 0.67 Hz, for p=3, both of which are
irrelevant to HRV, hence omitted. For p=4, 5,6, 7, 8, w, =0.5, 0.4, 0.333, 0.286, 0.25 Hz,

respectively. This is the range of respiration rate and is overlapped with the high frequency HRV
range, so care must be taken to differentiate the two. All the frequency components should be

computed. The vicinity of @, =0.1 Hz, is an important range strongly connected to the

parasympathetic activities. Therefore the Fourier coefficients should be computed densely
around p=20. Similarly, low and very low frequency ranges should be computed at the right
granularity level to meet both accuracy and computational efficiency. This can be accomplished
by selecting a set of integers p having appropriate intervals. Note that the frequency separation

becomes smaller as the frequency gets lower according to Equation (5-4).

One of the features of the proposed method is that the data are averaged for each p prior to the
multiplication with the exponential function. This separation reduces computational complexity
as mentioned before. Furthermore, this separation would allow us to streamline the storage and
computation of time-series data for real-time applications. Although this part of research remains
unfinished and needs continued investigation, the outline of the real-time algorithm is

summarized below.

In real-time applications, time-series data must be processed while acquiring data, rather than
batch processing a large block of data. To this end we divide the incoming data into small
segments of data, and update the Fourier coefficients g, every time a new block of data is

- ki
processed. The computation of average h(/; p) = e ;h( p-m+1)can easily be extended to a
recursive form. Given a new block of data, the average can be updated by taking a weighted

average with the new data. See Figure 5-12. Furthermore, we can introduce a forgetting factor
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a, (0<a<l) tomore heavily weigh the recent data and to suppress the contribution from old
data. Since the physiological system under consideration is a time-varying system, we would like
to identify recent trends of HRV rather than its history. However, data must be observed for a
time span that is long enough to estimate periodicity at low frequencies. This implies that a
recent data block must be weighted more, but it must be augmented with some older data blocks
as well. As the data block becomes older, its weight should be lowered and finally vanish. This

can be implemented simply by multiplying a forgetting factor to the previous result, i.e. the

average fz(l o)

/

h(l; p,n) = h(£; p,new)+ & - h(£; p,n—1)

Figure 5-12: Recursive formulas and forgetting factor

Care must be taken in selecting this forgetting factor. Physiological aspects must be taken into
account, since the rate of changes in HRV is dependent upon the dynamic response of the
sympathetic and parasympathetic systems. Sympathetic and parasympathetic tones are altered
with specific time constants. The forgetting factor must be selected in such a way that is
consistent with these physiological activities. The time constant associated with the sympathetic
tone is different from that of the parasympathetic tone. Fatigue may occur much slowly; hence its
time constant will be very slow. Note that each physiological behavior is connected to a specific
range of frequencies. Therefore, the forgetting factor should be given for each frequency range.
Fortunately, the proposed computational algorithm allows us to implement multiple forgetting
factors without difficulties. Since the average is computed separately for each frequency, a

different forgetting factor can be used for each frequency range.
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There are numerous challenging issues worth further investigation. The new DFT algorithm has

the potential to be a powerful method for real-time computation of HRV for driver monitoring.

5.3.4 Algorithm Comparison

In order to compare the ability of the different algorithms in recovering missing data points for
frequency spectrum analysis, a simulated 20 minutes of beat-to-beat HR data were used. The
simulation data is a sum of seven different frequency components (0.01Hz, 0.03Hz, 0.05Hz,
0.1Hz, 0.15Hz, 0.3Hz and 0.5Hz). The mean HR is set to 80 beats/min and the range of variation
is set to be 10 beats/min. The absolute energy for each frequency component is randomly
determined by uniform random distribution. This is a typical beat-to-beat HR pattern of a normal
healthy adult [15]. Figure 5-13 below shows the simulated HR in time domain and the frequency

domain HRV analysis.
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Figure 5-13: Time sequence data on the left and the frequency analysis on the right. The seven
frequency components can be seen clearly from the frequency spectrum analysis.

10% of the simulated HR data points are randomly taken out to simulate the missing HR data
occurring on the road and the four different algorithms discussed earlier (a. Time domain
truncation, b. Linear curve fitting, c. Mean curve fitting and d. New DFT algorithm based on
stochastic averaging) are applied to the same corrupted data set and the frequency analysis

results are compared in Fig 5-14 below.
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a) Truncated Time Domain Data b) Linear Curve Fitting
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Figure 5-14: The comparison of the frequency spectrum analysis using the four different
algorithms. The data sequence has 10% randomly picked missing points. Linear curve fitting
appears to recover both the frequency and the magnitude of the original frequency spectrum in
Figure 5-13.

It is clear from the above four frequency plots that the Linear Curve Fitting method is the best as
it not only recovers the exact frequency component but also the absolute energy of each
frequency. The Mean Curve Fitting method is reasonably decent as it can recover the frequencies
but not exactly the absolute energy of each frequency. The new DFT algorithm based on
Stochastic averaging performs well for low frequency components but give erroneous result
when the frequency gets larger. This is because of the data truncation that the algorithm does in
order to keep the number of data points in each DFT calculation bock to be integer value. This
drawback of the algorithm needs further improvement but the idea of stochastic averaging over
the entire data sequence is better than the Linear Curve Fitting and Mean Curve Fitting methods,
which only consider local information for averaging and estimation. Nevertheless, since the new
DFT algorithm is fresh and not mature enough for immediate application, the Linear Curve
Fitting method should be used instead for the time being to recover the missing HR data for

driver monitoring. Future research work needs to be done to perfect the new algorithm.
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The following frequency analysis result based on Linear Curve Fitting with 50% randomly
missing point on the simulated HR data further supports the use of this ad hoc method for

missing HR data processing.

a) Original DFT with no Missing Points b) Linear Curve Fitting Method with 50% missing points
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Figure 5-15: Comparison of frequency analysis of Linear Curve Fitting method for 50% missing
data points

5.4 Ring Sensor Implementation and Road Test Result

5.4.1 Ring Sensor Implementation
Figure 5-16 shows a closed-up picture of the Ring Sensor and the picture of the Ring Sensor with

data transfer cable. Figure 5-17 on the next page shows the Toyota Matrix used for road testing

and the test setup inside the car.

Figure 5-16: On the left: Close-up look at Ring Sensor and the sensor band; On the right: Ring
Sensor setup with data transfer cable

o3



Test Setup

stemep

Figure 5-17: Toyota Matrix used for road test and the actual test setup in the car
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The Ring Sensor’s specifications as well as the specifications for the peripherals are listed in the

table below.

Table 5-1: Ring Sensor and Peripherals Specifications

Ring Sensor Specifications

Voltage Supply 4.5V DC
Power Consumption (Typical) 100mW
Dimension 1.1%% 1% 1.27
Weight ~10g

Peripherals Specifications

Battery Pack

3 AA batteries

Battery Life (Typical) 30 hours

Ring Sensor Cable Type 9 Lead Coaxial

Ring Sensor Cable Length 2m

Data Acquisition Card NI DAQCard-6024E

Data Acquisition Box NI SCB-68

Data Acquisition Cable NI RC68-68

Data Acquisition System Windows XP Professional
Data Acquisition Station IBM Thinkpad T30

Data Acquisition Software NI LabView 6.0i

Elastic Sensor Wrap 3M Nextcare No Hurt Tape

5.4.2 Road Test Data

The complete road test is performed on Highway 93 in Boston Metropolitan area. The Ring

Sensor data was recorded continuously for 10 minutes and data processing was done offline with

Matlab. The actual percentage of missing data is 30%. Linear Curve Fitting of the time sequence

beat-to-beat HR data was performed first before the HRV is analyzed. The following is the

overall HRV of the driver in the entire 10 minutes period.
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Figure 5-18: HRV analysis of the entire 10 minutes
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In order to look at the change of the HRV over the 10 minutes period, six time sequences of 5

minutes each are individually analyzed in the following figure.
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Figure 5-19: Six 5-minutes HR data sets are analyzed for the HRV trend
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The driver started driving from the less populated town Newton, MA to Boston, MA. Along the
road, the driver was experiencing increasing traffic and more winding roads. The HRV trend
above clearly indicates the increase in the energy content of the LF (0.01-0.08Hz) and MF
(0.08Hz-0.15Hz) region of the HRV as the driver approached heavier traffic. This road test result
has confirmed the earlier conclusion on driver’s Mental Workload as well as the validity of using

the Ring Sensor for HRV measurement on the road.

5.5 Other Possible Ring Sensor Applications

With the success of eliminating the X-axis motion artifacts from the PPG signal using Adaptive
Noise Cancellation, there are some other applications of the Ring Sensor that can be readily
thought of. One typical application that can be verified in the lab environment is the monitoring
the PPG signal of someone who is running. The hand motion associated with running is often the
forward and backward swinging motion, which contains mainly motion in the X-axis defined in
this thesis. The following figure shows how successfully this algorithm recovers the corrected
PPG signal from a corrupted one obtained by the Ring Sensor attached to someone simulating

the running hand motion. As can be seen below, this is clearly an success.
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Figure 5-20: Comparing the reconstructed PPG with the correct reference PPG for running
motion
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6 CONCLUSION

Through extensive literature search, it has been found that there exists strong correlation between
the Mental Workload of an automobile driver with his or her physiological measurements,
especially the Heart Rate Variability (HRV) measurements. In order to make a driver’s HRV
monitoring on the road possible, a new photoplethysmograph (PPG) Ring Sensor prototype has
been devised specifically for countering the problem of motion artifact that almost all wearable
PPG sensors are facing. Most importantly, the motion artifacts on PPG signals caused by motion
in the direction of blood flow in the digital arteries along the finger flanks have been eliminated
using a customized Adaptive Noise Cancellation algorithm. Both the lab results and the road test
results have suggested that the new Ring Sensor is indeed capable of rejecting motion artifacts in
all three possible motion axes and producing considerable amount of usable beat-to-beat heart
rate data on the road for HRV analysis. The problem of occasional missing data on the road has
also been tackled with a suitable linear curve-fitting algorithm. Also, the sunlight saturation
problem is dealt with using a simple DC averaging reference circuit. The final road test has
proven the validity of the driver Mental Workload model and the validity of the Ring Sensor in
monitoring the HRV of the driver on the road. Besides the application on driver monitoring, the

Ring Sensor can also be used for other forms of wearable monitoring such as jogging.

The following summarizes the two major contributions that have been presented in this thesis

1. Motion-artifacts on the Ring Sensor’s PPG signals due to motions in all three possible
motion axes have been largely eliminated by using the local pressure setup and most
importantly by using the Adaptive Noise Cancellation algorithm. For the Adaptive Noise
Cancellation, only a time window of 10ms was found to be sufficient in reconstructing
readable PPG waveforms. Moreover, it also ensures faster transition time for sudden
motion and faster computation time.

2. Road test results confirm that the changes in the different frequency bands of the HRV
spectrum are correlated to the changes in the driver’s Mental Workload as described in
various research papers on driver monitoring. Practical problems such as missing data

points and sunlight saturation were also solved to make the road test data trustworthy.
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7 APPENDIX

7.1 Circuit for the LED with Pulse-width Modulation Capability
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