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Abstract

Prandtl (1904) showed that streamlines in a steady flow past a two-dimensional streamlined
body separate from the boundary where the skin friction (or wall shear) vanishes and admits
a negative gradient. Although commonly thought otherwise, these separation conditions are
purely kinematic: They can be derived for any two-dimensional steady vector field that con-
serves mass (see, e.g. Shariff, Pulliam, and Ottino 1991).

Haller (2002) managed to extend the Lagrangian separation theory to compressible two-
dimensional velocity fields with general time dependence. Specifically, he defines unsteady
flow separation as a material instability induced by an unstable manifold of a distinguished
boundary point. In this general context, the unstable manifold is a time-dependent material
line that shrinks to the separation point in backward time. In forward time, the unstable
manifold attracts and ejects particles from a vicinity of the boundary.

Using the above Lagrangian definition, the above kinematic separation theory renders math-
ematically exact Eulerian criteria for the location of time-dependent unstable manifolds. The
theory only assumes local mass conservation and regularity for the unsteady velocity field.

After recalling the main points of Haller's theory, we apply it to a specific model: a two-
dimensional pitching airfoil. We first analyze the flow around the airfoil, and show how, under
certain conditions, separation happens on the upper part of this airfoil. Next we consider the
unsteady flow conditions, and determine the shape of the separation profile emanating from the
wing. At that point, we also outline a new approach to the control of separation.

In the second part of this thesis, we extend Haller's two-dimensional separation theory to
three-dimensional flows, treating the case of open and closed separation separately.

Next, we use a method developed by Perry and Chong (1986) to derive expansions of the
Navier-Stokes equations that we use as models of three-dimensional separation. We verify our
theory on those models.

Finally we discuss new results on genuinely three-dimensional aspects of flow separation:
open and closed separation, separation lines and separation surfaces.

Thesis Supervisor: George Haller
Title: Associate Professor
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Introduction

Preliminaries

The theory of separation was initiated by Ludwig von Prandtl in 1904 who showed that stream-
lines in a steady flow past a two-dimensional streamlined body separate from the boundary
where the skin friction vanishes and admits a negative gradient. If we define y = 0 to be the
flat boundary of a two-dimensional steady velocity field (u(x, y), v(x, y)), the skin friction -,
along the wall must satisfy a set of conditions at a separation point (p, 0):

TW(p) = vp(p, 0) Uy(p, ) = , (1)
T'W(p) = VP(p, 0)U2.y(p, 0) < ,

where v is the kinematic viscosity and p is the density of the fluid.
For a long time, these conditions have been considered the definition of separation, until

Rott (1956), Moore (1958) and Sears & Telionis (1971) proved that zero skin friction does not
caracterize separation in unsteady flows. This lead to a change of the definition of separation
for unsteady flows and yielded the Moore-Rott-Sears (MRS) principle. This principle, however,
requires that we know the separation speed; indeed, Williams (1977) and Van Dommelen (1981)
explained why this principle is difficult to apply.

Van Dommelen (1981) and Van Dommelen & Shen (1982) were the first to study unsteady
boundary-layer separation in Lagrangian coordinates. The computational simplifications ren-
dered by this method revealed that unsteady separation is in essence Lagrangian. Cowley, Van
Dommelen & Lam (1990) showed that separation is caracterized by contraction towards a point,
accompanied by a spiky expansion in the wall-normal direction at that point. The Lagrangian
notion of separation was further studied by Peridier (1995), Cassel, Smith & Walker (1996),
Degani, Walker & Smith (1998). Formal asymptotic expansions for Van Dommelen's singularity
in the boundary-layer equations have been obtained by Cowley (1983) and Van Dommelen &
Cowley (1990).

Although boundary-layer separation has been numerically studied very accurately, no satis-
fying theory has been formulated. Moreover, because separation occurs both for low and high
Reynolds numbers, one should be able to study separation without solving the boundary-layer
equations. Indeed, Sears & Telionis (1975) pointed out the need for an unsteady separation
definition that does not depend on boundary layers. Moreover, Cowley et al. (1990) stressed
that an ideal separation definition which would be independent of the coordinate system. Fi-
nally, active flow control forced Wu, Tramel, Zhu & Yin (2000) to seek a separation criterion
that only uses quantities obtained along the boundary.

13



The conditions (1) are purely kinematic: They can be derived for any two-dimensional steady

vector field that conserves mass, as shown by Shariff, Pulliam & Ottino (1991). Moreover, the

Lagrangian definition of steady separation has the above three ingredients, and was the starting

point of Shariff et al. (1991): For two-dimensional, incompressible, time-periodic flows, the

separation point is a fixed point with an unstable manifold for the Poincar6 map associated

with the flow. They showed that unsteady separation takes place where the time-average of

the skin friction vanishes. Yuster & Hackborn (1997) re-derived this result in more rigorous

terms for near-steady, time-periodic, incompressible flows, and Hackborn, Ulucakli & Yuster

(1997) verified it experimentally. The latter authors, however, also showed that the principle

of zero-mean-skin-friction fails for compressible time-periodic flows.

Haller (2002) analyzed the steady flow separation as an instability in the Lagrangian frame,
which is due to the presence of a distinguished fixed point (the separation point) with an

unstable manifold. This manifold acts as an attracting material line that collects and transports

particles away from the wall. The distinguished fixed point is degenerate due to the no-slip

boundary conditions, and hence its location and stability cannot be predicted from linearization.

Prandtl's first condition in (1) gives a necessary condition for the existence of such a degenerate

fixed point, while (1) as a whole gives a sufficient set of conditions for the existence of an unstable

manifold. Haller then extended the Lagrangian separation definition of Shariff et al. (1991) to

compressible two-dimensional velocity fields with general time dependence. Specifically, one can

define unsteady flow separation as a material instability due to an unstable manifold emanating

from a fixed boundary point. Then unstable manifold is a time-dependent material line that

shrinks to the separation point in backward time. In forward time, the unstable manifold

attracts and repels particles from a vicinity of the boundary.

Using the above Lagrangian definition, Haller (2002) derive mathematically exact Eulerian

criteria that locate the separation point. Due to nonhyperbolicity of fixed points on a no-slip

wall, classical dynamical systems methods for locating their unstable manifolds fail to apply.

To overcome these limitations of classical invariant manifold theory, Haller (2002) uses a novel

nonlinear technique that gives both the location and the shape of unstable manifolds, that are

named separation profiles. This approach only assumes local mass conservation and regularity

for the unsteady velocity field.
We show on a practical example the validity of the above theory: The analysis of separation

over a pitching airfoil is a matter of interest to the aerodynamics community. We then consider

a relevant example of an airfoil: a NACA 0012. We change periodically its angle of attack,
and use a Navier-Stokes solver (developed by Hesthaven 1998) to derive the flow around the

airfoil. Using Haller's formulae restricted to the upper surface of the airfoil allows us to analyze

aperiodic separation.
As fluid flows are rarely two-dimensional, the matter of three-dimensional separation has

received a lot of interest for decades. Different definitions of separation have been proposed,
some highly contentious.

Legendre (1956) and Lighthill (1963) were the first to introduce a theoretical treatment

of three-dimensional separation. Without proposing a theory that would predict 3D steady

separation, they describe separation with geometrical arguments. The topological classification

of Chapman (1986) distinguishes a great number of separation shapes, contrary to the relative

simplicity of two-dimensional separation geometry. Here we show in figure 0-1 three basic

shapes of separation: saddle-sink, saddle-saddle and saddle-focus.

14



Streamtines/

Saddle-sink Saddle-saddle Saddedcu
separation '"' separation separation
point point point

Figure 0-1: Three basic shapes of separation: saddle-sink, saddle-saddle and saddle-focus.

Further work by Wang (1970) introduced the concept of open separation: contrary to the
two-dimensional case, one can observe separation (along a surface) while there is no observed
specific separation point. First highly criticized, this concept has been adopted by others (see
Wang 1983 for details). One can now define steady separation as a breakaway of particles from
the wall. Closed separation occurs at a zero skin friction point, which acts as a distinguished
separation point (and may also be part of a separation surface). By contrast, open separation
does not occur at a zero skin friction point: there is no distinguished separation point but a
separation surface, whose intersection with the wall (the separation line) is a skin friction line.

A similar definition for any unsteady flow has, however, always been missing. Here we define
closed separation as a case of separation (particles breaking away from the wall) where there is
at least one distinguished separation point; we call the separation open when there is no such
point. When the flow is steady, the two definitions coincide.

Later work has concentrated on the experimental verifications of the geometrical concepts of
three-dimensional separation, which are of vital importance in a wide range of engineering ap-
plications. For instance, separation drives the formation of vortices over a surface, as explained
by Wu & Gu (1987). One can also study the transition to turbulence and fully developed
turbulence of various wall-bounded flows. A lot of related numerical computations have been
performed by Legendre and Werl6 (D61ery 2001).

With the increasing development of computational fluid dynamics, one needs a quantitative
criterion to characterize separation. As for now, only a topological theory has been introduced:
the critical point theory of Perry & Chong (1987), which classifies steady separation points
in geometrical terms; an analysis of the topology of pressure surfaces (Tobak and Coon 1996)
which links separation surfaces to pressure surfaces; and a vorticity dynamics theory (Wu et
al. 2000) which analyzes the on-wall signatures of separation, and shows that closed separation
occurs at zero skin friction points. These theories generally describe the flow in an Eulerian
way, and only focus on steady incompressible flows. The ideas they introduce are qualitative
and geometric, and only apply to steady flows. So far, an understanding of three-dimensional
unsteady separation has been missing, and no theory has ever been presented.

In his previous work on two-dimensional separation, Haller (2002) analyzed unsteady 2D
separation; his theory is here extended to three-dimensional unsteady separation. The main

15



result is that fixed closed separation takes place where the weighted backward-time average of
the skin friction remains uniformly bounded. The weight function in the average is just the

squared reciprocal of the fluid density. We also introduce the concept of effective separation

points at which the finite-time mean of the skin friction vanishes. Numerically, these points

converge to the fixed separation points.
To validate this new theory, we derive some three-dimensional separated flow models using

a concept developed by Perry & Chong (1986). We present the three basic shapes caracterizing

steady closed separation: saddle-sink, saddle-saddle and saddle-focus separation, showing how

the predicted separation profile fits the observed shape of separation. Then we develop a new

model: a separation bubble, with an interesting pattern of separation. We study different kinds
of unsteadiness on this model: periodic and quasiperiodic.

Finally, we explain the current limits of our theory and propose further extensions.

Thesis outline

The outline of this thesis is as follows.
In chapter 1, we review the kinematic theory of 2D unsteady separation from Haller (2002)

and apply it to a relevant example. The first part of this chapter is mostly intended to recall the

concepts of separation, separation point and separation profile. The second part of chapter 1
focuses on the validation of the theory in the unsteady case: we analyze the flow around a two-

dimensional pitching airfoil, and show how, under certain conditions, separation happens on

the upper part of this airfoil. We shall also develop some concepts for the control of separation.

In chapter 2, we extend Haller's theory of separation to three-dimensional flows. We define
closed and open separation, then concentrate on closed separation. We still use the concepts of

separation point, separation profile or moving separation.
In chapter 3, we use a method developed by Perry & Chong (1986) to introduce physically

relevant incompressible expansions of the Navier-Stokes equations to be used as models of

three-dimensional separation. These flow models allow us to verify our separation theory on

relevant steady, periodic and quasiperiodic examples. We first introduce a steady model that

contains the three separation patterns one typically observes: saddle-sink, saddle-saddle and

saddle focus. Secondly, we present a three-dimensional model of a separation bubble flow, both

for the steady and the unsteady cases. On this model, we illustrate the usual concepts of three-

dimensional unsteady separation points and profiles. In addition, we also explain the genuinely

three-dimensional concepts of separation lines and separation surfaces.
In chapter 4, we focus on a new approach to separation lines and surfaces. We discuss initial

results for these objects, and outline the next steps to be taken in their study.

Finally, we present our conclusions.
In appendix A, we derive the proofs and formulae used in our three-dimensional separation

theory.
In appendix B, we present details of the arguments used in the validation of the three-

dimensional theory.
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Chapter 1

Location and shape of aperiodic
separation over a pitching airfoil

1.1 Introduction

The objective of this chapter is to visualize the points and angles of separation in an unsteady
flow over a pitching airfoil. This method can be applied to a wide range of vehicles, such as
passenger cars, submarines, etc.

The pitching airfoil is investigated as an example to detect and control dynamic stall. Prob-
lems involving unsteady separation over aerodynamic boundary layers are usually modeled as
nominally two-dimensional flows over a moving airfoil. As explained by Sinha et al. (1997),
such models contain the essential characteristics of dynamic stall on helicopter rotors, where
stall occurs during the pitch-up motion of the blade of a rotor. Particles can separate from the
upper part of the airfoil, which causes fatigue failure in the blade control mechanisms, as well
as loss of lift.

The above problem has been studied experimentally by Pal et al. (1997) and numerically
by Okong'o & Knight (1997), but a full understanding of stall has not been achieved. More
recently, Kuo & Hsieh (2001) analyzed the structure of separation over a pitching airfoil using
vortex visualization. New simulations and experiments by Magil et al. (2001), Reuster &
Baeder (2001) and Emblemsvag et al. (2002) aim to control separation over pitching airfoils.
Here we shall use Haller's (2002) criteria for separation to analyze separation over a pitching
airfoil.

The organization of this chapter is as follows. We first recall the main points of Haller's
theory in § 1.2. Then we present an airfoil model, and study separation over it in § 1.3. We
finally present our conclusions in § 1.4.

1.2 Brief Review of Separation Criteria

1.2.1 Introduction

For convenience, we briefly recall criteria developed by Haller (2002) for unsteady separation
points and angles. Consider a two-dimensional velocity field v(x, y, t) = (u(x, y, t), v(x, y, t)),
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Figure 1-1: Flow over a pitching airfoil.

with the induced fluid particle motion satisfying

=u(x, y, t), y=v(x, y, t).

Assume further that a boundary is present in the flow at y = 0 with the no-slip boundary
conditions

u(x, 0, t) = v(x, 0, t) = 0.

We also assume that no sinks or sources are present at separation, and hence the continuity
equation

Pt + V - (pv) = 0 (1.1)

holds for the density p(x, y, t) in a neighborhood of a separation point (x, y) = (y, 0) .
We seek a time-dependent material line M(t)-the separation profile-that collects and ejects

fluid particles from a vicinity of the boundary. As a material line, M(t) is anchored to a
boundary point -y due to the no-slip boundary conditions. In dynamical systems terms, M(t)
is an unstable manifold for a fixed point of the y = 0 boundary.

Suppose the separation profile is represented by a time-dependent graph

x = y + yF(y, t),

where the constant y denotes the separation location to be determined later. Suppose that
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F(y, t) has a series expansion

F(y, t) = fo(t) + yfi(t) + -- -

where
fo(t) = F(O,t), fi(t) = Fy (0, t).

Thus, the angle <p of separation at time to with the x-axis is

1
= arctan fo(to)

The explicit criteria and formulae for the point and profile of separation are as follow.

1.2.2 Non-flat boundary

Assuming now that the velocity field satisfies no-slip boundary conditions along a boundary B,
we want to find a necessary condition for separation at a point whose relative location is fixed
on the non-flat boundary. If the boundary is represented by a differentiable graph y = h(x), as
indicated in figure 1-2, we transform the velocity field to a canonical form by letting

(1.2)

Y

y=Jh(x)

OM x

Figure 1-2: Separation over a non-flat boundary.

Compressibility or incompressibility is unaffected by the change of coordinates (x, y) -

(), j). We only need to apply the previous change of variables in all separation formulae given
below.

1.2.3 Necessary Condition

The necessary condition for the separation point y(to) at time to is

0 d to-T

'dT to

d p(y(to), 0, s) /O
dx p(-y(to), 0, s) T=O

>0.

(1.3)
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These two conditions represent an extension of Prandtl's necessary criteria to moving separation.

Here (g) (x, to, - ) is a low-order polynomial least-square fit to sampled values of g(X, to, - ) over

a T interval as large as possible. This practically means a least-square polynomial fit for g values

up to T = to -too, where too is the earliest time at which velocity data is available. For a faithful

approximation of (g), the order of the least-square polynomial should be low relative to the

number of sampled values for g. The slope fo(to) of the separation profile at t = to is given by

p(to)$ /to-T Fb) a) a)(r) - a r
P Lto 2L)a~T f, 2S- ds + bx(i-) f acs) ds) dT~

fo(to) - d(r) T=O (1.4)
fito- ax~r -by1 2bx(T)r Vs) ds d,

where

a(t) = uy(-,0,t),

ax(t) = UXY (-, 0, t),
1

ay(t) = (70)

b(t) = vy(-,0,t),
bx(t) = vxy (7, 0, t),

by (t) = Y b (7, 0, 0),

1
p(t) = pb, 0, )

1.2.4 Sufficient Condition

First, for the present time to, we compute the effective separation point 'Yeff(t, to) for all

available t < to, which is obtained via the formula

ft Uy( eff , 0, T) dT = 0. (1.5)
i PCbeffA-)

We then identify the upper and lower bounds

(t o) = sup 7eff (s, to), y-(t, to) = inf Yeff (s, to),
sE[t,to) sE[t,to)

on 'Yeff(t, to). Let the maximal x distance travelled by -yeff(s, to) over the interval [t, to) be

denoted by
6(t, to) = Y+(t, to) - Y_ (t, to),

which is the length of the interval

I(t, to) = [_ (t, to),Y+(t, to)]
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One can then prove the existence of finite-time separation at the point

'"y(to) = [}+ (to - Tm(to), to) + _Y (to - Tm(to), to)] , (1.6)

where T,(to) is the smallest time for which

1 ito
-J(t, to) max IuxY(x, 0, t)I dt = 1, (1.7)

2 -Tm(to) xEI(to -Tm (to),to)

max uxy(x,0, t) < 0, t E [to - Tm(to), to]
x EI(to-T,, (to),to)

The above conditions distinguish one finite-time unstable manifold out of the infinitely many
near the moving separation point.

The moving separation slope is given by the formula

p(to) a(t0 )b(r) ) ds + b(T) r s) ds - a(T d

fA(to) -- 2b. (1.8)

ftoT.(to) a r) P(3- bxr s

1.3 Separation over a pitching airfoil

1.3.1 Model

The first part of this work consists of defining the airfoil to be studied. We consider the most
common airfoil, the NACA 0012. In such an airfoil of the National Advisory Committee for
Aeronautics with four digits, say MPXX, the digit M represents the maximum value of the
mean line in hundredths of the chord, P represents the chordwise position of the maximum
camber in tenths of the chord, and the number XX is the maximum thickness in percent of the
chord.

The equation of the upper boundary of this airfoil is given by

y = 1(x) = 0.17735V/ - 0.075597x - 0.212836x 2 + 0.17363X3 - 0.06254x 4 .

The lower boundary is symmetric. We translate this airfoil to place it in the middle of our
numerical grid. The length of the airfoil is one; it is placed in the center of a circle of radius 3,
as shown in figure 1-3.

1.3.2 Aperiodic flow

When the inflow is steady, the flow developing near the airfoil is periodic or quasiperiodic,
with vortices behind the airfoil. When the inflow is periodic, the developing flow tends to be
aperiodic. In the latter case, we periodically (period = 10s) change the angle of attack of the
airfoil between -5 to +15 degrees. Under such flow conditions, the airfoil is said to be pitching.

21



Figure 1-3: Mesh of the pitching airfoil.

1.3.3 Separation

We use a Navier-Stokes solver developed by Hesthaven (1998) to generate the velocity field
around the airfoil. We then use the method explained in § 1.2 to find the zero skin friction
points, and evaluate the sufficient and necessary separation points. Figure 1-6 underlines the
difference between the zero skin friction points and the separation points.

Computation

We use both the necessary and the sufficient criteria in Section 1.2 to determine the approximate
points and angles of separation. For the necessary condition, we use a third-order polynomial
least-square fit to extract the mean components. Figure 1-4 shows that such a fit well captures

the profiles of sampled values of fto Y(to)O ds and

ato-T by(rax(r) Usr ds + b.(r) a)dsr - 1 dr, respectively.to p~) io ps)ds b~T) \Jt ps) /s -p (,r)

For the sufficient condition, the time scale T is determined by (1.7) and is shown in figure
1-5.

Visualization of separation

We compute the approximate points and angles of separation through formulae (1.4) and (2.5),
as shown in figure 1-6. We track the particles and show the zero skin friction points, and the
necessary and sufficient separation points along with their slopes (see the legend of the figure
for explanation). We conclude that our formulae give a good approximation of the separation
point and angle. Indeed, the two separating lines are close to the exact separation profile along
which the spikes of fluid particles are formed. Furthermore, we see that the zero skin friction
point is not the point of separation; this disproves the common belief that the zero skin friction
point is the point of separation in unsteady flows.
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I

Figure 1-4: Third-order polynomial least-square fit to sampled values of fto d('y to),Os)

and fo"-T [by(r) (T) f ds + ba(r) ( ds dr, respectively.

Figure
lation.

1-5: Time-scale determined by (1.7) for the sufficient condition in the separation simu-

1.3.4 Control of separation

A next step of this analysis will be, instead of looking at separation, trying to control it. We
still need an efficient device capable of controlling the phenomenon of separation, which creates
losses of drag and lift.

Wang et al. (2003) established a feedback control law to control separation in two-dimensional
shear flows. Work by Salman et al. (2002) established a feedback control law for Stokes flows,
noting that the same control law fails for Navier-Stokes flows. This failure is due to inertia-
related delays in real flows, as explained by Insperger (2003). Later work has concentrated on
implementing delays in the controller; preliminary results by Lekien et al. (2003) are promising.

1.4 Conclusion

We have performed numerical simulations for real-time monitoring of separation points and
angles in the unsteady pitching of an airfoil. These simulations showed Haller's criteria for
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Figure 1-6: Separation over the pitching airfoil.

separation in two-dimensional unsteady flow to be accurate. We have also found that the zero
skin friction point is not the point of separation, and that the behavior of the separation point
depends on the flow. If the flow is periodic, or quasiperiodic, the separation point is fixed; If
the flow is aperiodic, the separation point appears to move, but its motion is unrelated to that
of the zero skin friction point.
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Chapter 2

Kinematic theory of
three-dimensional unsteady flow
separation

2.1 Introduction

In his work on two-dimensional separation, Haller (2002) analyzed unsteady 2D separation as
a material instability due to an unstable manifold emanating from a fixed boundary point and
extended Prandtl's formulae to any unsteady flow: He derived mathematically exact Eulerian
criteria that locate the separation point and obtained both the location and the shape of the
unstable manifolds that generate the separation profiles.

As explained in the introduction, Wang (1970) introduced the concept of open separation:
contrary to the two-dimensional case, one can observe separation (along a surface) while there
is no observed specific separation point. We define closed separation as a case of separation
(particles breaking away from the wall) where there is at least one distinguished separation
point; we call the separation open when there is no such point. When the flow is steady, our
definition coincide with Wang's.

Haller's theory is here extended to three-dimensional unsteady separation. The main result
is that fixed closed separation takes place where the weighted backward-time average of the
skin friction remains uniformly bounded. The weight function in the average is just the squared
reciprocal of the fluid density.

The organization of this chapter is as follows. We first derive necessary conditions for fixed
compressible separation in § 2.2, where we also give a first-order approximation for a general
compressible separation profile. Section 2.2 also contains equivalent Lagrangian and density-
independent formulations of our criteria, as well as a version for moving boundaries. We show
how the theory simplifies for incompressible flows in § 2.3, and exploit this simplification to
derive a third order approximation for incompressible separation profiles. In § 2.4 we give
a kinetic version of the separation criteria for Navier-Stokes flows, and in § 2.5 we formulate
sufficient conditions for sharp unsteady separation. Section 2.6 explores how our fixed separation
criteria simplify to steady, time-periodic and quasiperiodic flows. Unsteady reattachment is
discussed in § 2.7, and we deal with the difficult problem of moving separation in § 2.8. We will
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finally present our conclusions and some open problems in @ 2.9.

2.2 Fixed unsteady separation

2.2.1 Set-up

Let us consider a three-dimensional unsteady velocity field

v(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))

which admits a boundary at z = 0, with

u(x, y, 0, t) = v(x, y, 0, t) = w(x, y, 0, t) = 0. (2.1)

To distinguish the velocity components parallel to the boundary, we shall use the shorthand
notation x = (x, y) and

u(x, z, t) = (u(x, y, z, t), v(x, y, z, t)) , w(x, z, t) = w(x, y, z, t).

Fluid particle motions satisfy the three-dimensional system of differential equations of mo-
tion

0= u(x, y, z, t), i = v(x, y, z, t), i = w(x, y, z, t), (2.2)

or, briefly,
x = u(x,z,t), = w(x, z, t),

We seek a time-dependent material line M(t)-the separation profile-that collects and ejects
fluid particles from a vicinity of the boundary. We also seek a surface of separation which
attracts all particles away from the wall. The separation profile is a material curve that attracts

all fluid particles within the separation surface. The separation surface may be degenerate: It
may just coincide with M(t). An example of this type of separation is given by tornado-type
vortex formation near the boundary.

To exclude degenerate or unphysical cases of separation, we shall only consider separation
profiles with the following properties:

1. The separation profile is unique: no other separation profiles emerges from the same
boundary point.

2. The separation profile is transverse, i.e., M(t) is not tangent to the boundary.

3. The separation profile is regular up to nth order: M(t) admits n derivatives (n > 1) that

remain uniformly bounded at y = 0 for all times.

2.2.2 Assumptions

Assuming that no sinks or sources are present at separation, the continuity equation

Pt + V - (pv) = 0 (2.3)
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Figure 2-1: Unsteady separation profiles emanating from separation points
time-dependent material line that guides particles away from the wall.

is satisfied in a neighborhood of a separation point (x, z) = (y, 0). The
conditions at z = 0 simplifies the continuity equation to

pt (x, 0, t) + p(x, 0, t)wz(x, 0, t) = 0

at boundary points and implies

(p,O) viewed as a

no-slip boundary

p(x, 0, t) = p(x, 0, to)e- fi w(x,0,s) ds (2.4)

Differentiation of (2.4) with respect to x and y gives the wall-tangential density gradient evo-
lution

pX(x, 0, t) = px(x, 0, to)e- ft wz(x,0,s) ds - p(x, 0, to)e ,f w (x,O,s) ds wt 2(x, 0, s) ds. (2.5)

Here and in later formulae, the subscript x refers to the gradient operation with respect to the
variables x and y.

As the density of the fluid should remain bounded from below and from above for all times
along the boundary, for appropriate P2 > Pi > 0 and for all t,

0 < Pi < p(x, 0,t) P2 < 00 (2.6)

must hold along the boundary region of interest.
We also assume that the tangential density gradient along the boundary remains uniformly
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bounded near the separation point for all times:

WXZ(X, 0, s) ds < K, < o, (2.7)

for an appropriate constant K 1 , for any time t, and for all x values near Y.
Assumptions (2.6)-(2.7) hold automatically for incompressible flows, because for such flows,

wZ(x, 0,t) 0, wxz(x,0, t) 0.

2.2.3 Equation for the separation profile

We rewrite the velocity field in a form more suitable for separation studies. The no-slip boundary
condition simplifies the velocity filed (2.2) to

x = zA(x, zt, = zB(x, z, t), (2.8)

where we define the quantities

1 1
A(x, y, z, t) = , uz(x, s z, t) ds, B(x, z, t) = Jw(x, s z, t) ds. (2.9)

Fixed unsteady separation occurs if a boundary point p = (-y, 0) admits an unstable manifold

M (t) not tangent to the boundary: then we locally represent this manifold

x = Y + zG(z, t).

Changing to the new horizontal coordinates ( x - -y, we seek the following representation for

the separation profile:
= zG(z, t). (2.10)

Substitution of (2.10) into (2.8) yields

z [(B(y + zG, z, t)G + zGz) + Gt - A(y + zG, z, t = 0. (2.11)

As the separation profile is continuously differentiable, the bracketed expression in (2.11) must

vanish for all z > 0. (It is zero for z > 0, and continuity implies that it also vanishes at z = 0.)

Then (2.12) implies that the separation profile must satisfy the partial differential equation

Gt = A(-y + zG, z, t) - B(y + yG, z, t) (G + zGz) . (2.12)

We call this equation the separation equation; we use it to deduce necessary criteria for

separation, then for devising approximations to the separation profile at any order. These

approximations are obtained from a series expansion

G(z, t) = go(t) + zgi(t) + I z2g2(t) + 1 z392(..., (2.13)
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where
go(t) = G(0, t), gi(t) = Gz(0, t), g2(t) = GZZ(0, t).

2.2.4 Necessary conditions for separation

We first simplify our notation and set

a(t) = A(y, 0, t), b(t) = B(y, 0, t), p(t) = p(-y, 0, t),

where (-y, 0) indicates the separation point we wish to characterize. Then the density satisfies

p(t) = p(to)e Jt b(s)ds. (2.14)

When we set z = 0 in the separation equation (2.12), we obtain the linear differential
equation

9o(t) = -b(t)go(t) + a(t), (2.15)

whose general solution can be written

go(t) = go(to) + p(t) a(s) ds, (2.16)
p(to) Ito p(s)

using (2.14).
Recall that (go(t))i is the tangent of the angle that the separation profile encloses with the

wall-normal direction at = 0, z = 0, in the x-direction, (go(t))2 is the tangent of the angle in
the y-direction. Fixed separation takes place at x = -y, if go(t) remains bounded in backward
time. By assumption (2.6), the first term on the right-hand side of (2.16) and the p(t) factor
in the second term are both bounded in backward time. Therefore, a necessary condition for
separation is the boundedness of the integral of the second term in (2.16). Using the skin
friction field

r (x, t) = vp(x, 0, t)uz(x, 0, t), (2.17)

we express this boundedness requirement

ft(TQ,0,s)
lim sup ] Y 0s) ds < oo, (2.18)
t--oCo to P 2(-y, 0, S)

or, equivalently,

lim sup uz(, 0, S) ds < oc. (2.19)
t--oo Jto p(7Y,0, s)

Just as Prandtl's first two-dimensional separation condition, (2.18) is also satisfied at any
point of a fluid at rest, which shows the need for a second condition to describe separation. A
second necessary condition turns out to be

[-t ax(s) - bz(s)I _ a(r) 0 bx(s) + bx(s) - a(r)I
lim p) 1pr)dr] ds = oc, (2.20)

a -snxer to Pth) mttO pde) [

as we show in appendix A.1. Here a(r) 0 b.(s) refers to the matrix defined as [a 0 bx]i =
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(a)2 (bx)j. Condition (2.20) ensures that all material lines emanating from boundary points
near -y converge to the wall in backward time, a feature that flows at rest do not admit.

2.2.5 Effective separation points

The theoretical necessary condition (2.18) is not suitable for computation. To derive an equiv-
alent condition, we again recall that material lines emanating from any boundary point near
(y, 0) align with the boundary as t -- -oo. By formula (2.16), this asymptotic alignment in
backward time is only possible if, for all small enough Ix - -Yj with x different from y,

lim sup u(x0) ds = +oo.
t-u-oo ito p(x,O,s)

Defining the integral

it (x) = u(x S) ds
J'0 p(x,0,s8)'

we see in the same way as in the two-dimensional case, that it(x) must admit at least one

zero that approaches -y as t approaches -oo. As a result, defining the effective separation point

7eff (t, to) via the formula

f jt UZ(eY',os) ds = 0 (2.21)
to P(Yeff ,,s)

we obtain
y= lim Yef f(t, to). (2.22)

t-+-oo

We do not prove the existence of the effective separation point (2.21) here; we simply
postulate it and find that it works perfectly well in rigorous computations. Equations (2.21)
and (2.22) give a practical algorithm for computing fixed unsteady separation points at time
to from velocity data. For a past time t with It - to I large enough, one computes the integral
in it(x) in the whole plane and finds one effective separation point gIeff(t, to). By (2.22), this
effective separation point will converge to the real separation point -y as t -+ -00.

Two remarks are in order. First, it turns out that fixed separation points of time-periodic or

time-quasiperiodic flows are exactly computable from finite-time velocity data without the use
of effective separation points (cf. § 2.6). Second, taking the limit t -+ -oo in our formulae does
not require solving for the velocity field in backward time: It requires computing longer and
longer backward-time averages from the available velocity data as the current time to progresses.

2.2.6 Direction of separation

To obtain an expression for the direction of fixed unsteady separation, we first differentiate
(2.12) with respect to z and set z = 0 to obtain the differential equation

gi = az + (a. - bI) go - (bx - go) go - 2bgi. (2.23)

Our notation here is consistent with that of the previous sections; for instance, we have ax(t) =

Ax(y, 0, t) and gi(t) = G2(0, t).
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Using the density formula (2.14), we write the solution of the above linear ODE in the form

gi(t) = gl(to)I2(7) + .1: p2 (t) [az(s) + (ax(s) - bz(s)I) go(s) - (bx(s) -go(s)) go(s)] ds,

(2.24)
where I denotes the 2 x 2 identity matrix. For a second-order separation profile (i.e., for a
profile of bounded curvature), the above solution must be bounded as t - -oc. As we show in
appendix A.1, this boundedness requirement leads to the following formula for the slope of the
separation profile at t = to:

go(to) =-- t [ Q(s, to, t) dsl p(s, to) ds, (2.25)
t+- to _ to

where we define

az(s) ax(s) - bz(s)I S a(r) ( s a(r) 2
p(s, to) = p()+ p~) ]~dr - by (s) y'~ dr)

p 2(S) p(S) to plr) to PCTr)

Q (S to, t) - I [ax(s) - bz(s)I /.s a(r) 9 bx(s) + bx(s) - a(r)I dr (2.26)
p(to) p(s) to p(r) (

Similar expressions can be derived for higher-order derivatives of G(z, t) in a recursive fashion
by further differentiating the separation equation (2.12) with respect to z at z = 0.

2.2.7 Density-independent formulation

Using the density relation (2.4), we can express the density in terms of the integral of wz (y, 0, t),
and obtain a density-independent formulation of our separation theory. In this formulation,
assumptions (2.6) and (2.7) are expressed as

wz(x, 0, s) ds < Ko < oo, wxz(x, 0, r) dr Ki < oo,
.1to t

and the separation criteria (2.18) and (2.20) are replaced by

lim sup e O ,0 ) dsz' 0, T) dw < oo (2.27)
t--+-oo Jto

and

~lo im ef; wz(yOs)ds (ad(s) - Ibz(s))

(ef w(7,,s) ds(a(r) 0 bx(s) + bx(s) - a(r)I) dr) ds = o. (2.28)

Similarly, effective separation points are defined by the formula

teo z(YeffOs) sUZ(ef f, 0, ) dw = 0. (2.29)
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The separation slope and curvature, as well as higher order derivatives of the separation
profile can all be expressed in purely kinematic terms using the density relation (2.4). We shall

use the above density-independent formulation in deriving separation conditions for moving

boundaries in § 2.2.8.

2.2.8 Separation on moving boundaries of general shape

Let us assume now that the velocity field (2.8) satisfies no-slip boundary conditions along a
boundary B(t) which is not flat and steady but moves with velocity vB(t) = (US(t), wB(t)).
Thus we would like to find a necessary condition for separation at a point whose relative location
is fixed on the moving boundary. As the previous formulae are not directly applicable, we need

to transform them.
If at time to the boundary-say, a moving airfoil-is represented by a differentiable graph

z = h(x), then at a later time t the boundary satisfies

z - j wB(s) ds = h(x - j un(s) ds),
to t 0

as indicated in figure 2-2.

z

x

Figure 2-2: Moving boundary.

Then we transform the velocity field to the canonical form (2.2) by setting

= x - u (s) ds, 7 = z - h() - fwS(s) ds. (2.30)

In terms of the ((, r) coordinates, fluid particle motions satisfy

= 'C( , 77, t), I = fs( , 77, t),
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with the new velocity field

((, t) = u( + I: U3(s) ds, r + h () + / w8(s) ds, t) - uB (t),

t((, r/, t) = w( + ft U3(s) ds, 97 + h( ) + Jt wB(s) ds, t) - wB3(t) - h'(,) - i(, 7 , t).
t0t

The transformed velocity field (fi, zb) satisfies the boundary conditions

fi(x, 0, t) = 0, '(x, 0, t) 0. (2.31)

Furthermore,
Tr fl + zi Trux + h' -u, + whf - uz = Tr ux + wz,

which corresponds to the continuity equation (2.36), thus compressibility or incompressibility
is unaffected by the change of coordinates (x, z) -4 (, rI) .

Because

(, 0, t) = uz(( + j us(s) ds, 9 + h( ) + jwB(s) ds, t), (2.32)
t t

7(, r7, t) = wz( +-f uB(s) ds, 9 + h( ) + jw (s) ds, t) - h'() - fiq r7, t),
t t

the density-independent necessary condition (2.27)-applied in the ( , rI) coordinates-takes the
form

lim sup fE(-y, T, t) uz(-y + u(s) ds, h(-y) + w1(r) dr, ) dT <00, (2.33)

where

E(-, r, t) exp wz ( + u3(r) dr, h(-y) + w1(r) dr, s)
to - t'O J10

-h'(y) -uz(-y + f u3(r) dr, h(y) + / wi(r) dr, s)] ds. (2.34)

As in the case of flat boundaries, we locate the separation point on general boundaries by
computing the effective separation point yeff(t, to) for It - toI large enough from the formula

ft E(yejf, r, t) uz(-y + f u3(s) ds, h(-yeff) + j' wB(r) dr, T) dT = 0. (2.35)

To evaluate the second necessary condition (2.28) in the present ( , 97) coordinates, we
compute the second derivatives

i tfi rom (3, Wit th se( er h, s

in terms of the original velocity field from (2.32). With these expressions, the second separation
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condition (2.28) becomes a straightforward but lengthy condition, which we omit here for

brevity.

2.3 Fixed unsteady separation in incompressible flows

In this section, we consider incompressible flows, and show how our theory for fixed unsteady

separation simplifies in this case. (We also derive a general third-order approximation for the

separation profile.)

2.3.1 Set-up

Consider again the velocity field (2.2), but which also satisfies the incompressibility condition

Tr ux + wz = 0. (2.36)

The no-slip boundary conditions again enable us to rewrite the velocity field in the form (2.8),
with the equivalent incompressibility condition

zTrAx + B + zB, = 0.

Setting z = 0 in this equation gives B(x, 0, t) 0, thus we can further rewrite the velocity field

in the form
x = zA(x, zt, = z 2C(x, z, t), (2.37)

where we have

C(x, z, t) = wzz(x, spz, t)p dp ds. (2.38)

Enforcing the incompressibility condition (2.36) for system (2.37) yields

z (Tr Ax + 2C + zCz) = 0. (2.39)

Away from the boundary, i.e., for z > 0, this relation between the functions A and C implies

TrAx + 2C + zCz = 0. (2.40)

Because Ax, C, and Cz are continuous, this last equation extends to z = 0. Therefore, (2.40)

must hold all over the fluid, including the boundary.
In our arguments, we will work with the incompressible canonical velocity field (2.37) for

simplicity. Alternatively, one could work with the compressible canonical form (2.8) and use the

incompressibility condition (2.40), but that approach would quickly lead to intractably complex

expressions.

2.3.2 Equation for the separation profile

As in the compressible case, we want to express the unsteady separation profile as an unstable

manifold satisfying = x - - = zG(z, t). Differentiating in time and substituting this relation
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into (2.37) implies

z [A(zG + -y, z, t) -- zC(zG + -y, z, t) (G + zGz) - Gt] = 0.

By continuity, the bracketed expression must vanish for all z > 0, which yields

A(zG + y, z, t) - zC(zG + -y, z, t) (G + zG,) - Gt = 0. (2.41)

Applying the incompressibility relation to the compressible separation equation (2.12), we also
recover (2.41).

2.3.3 Necessary conditions for separation

We now write the constant term in the Taylor expansion of the incompressible relation (2.41)
and obtain the differential equation

go = a.

We integrate this equation to obtain

go(t) = go(to) + j a(T) dT. (2.42)

As at the point (y, 0) we require go(t) to be bounded in backward time, we obtain the first
necessary condition:

limsup uZ(y, 0,T) dT < 00. (2.43)
t--oo

Re-applying the ideas in (2.20) and the proof of appendix A.1, we obtain the second necessary
condition at fixed separation points:

lim f (a(-y, 0, r) + I Tr a(-y, 0,,T)/2)dT = 00. (2.44)

2.3.4 Effective separation points

As the separation criterion (2.43) is unsuitable for direct computations, we still use the effective
separation point principle. Effective separation points are now defined as

/ Uz(ef f (to, t), 0, s) ds = 0. (2.45)

They approximate the location of the actual flow separation. Our argument for the convergence
of effective separation points to actual separation points applies here again.

2.3.5 Separation profile up to third order

We now give explicit formulae for the time-dependent coefficients of the cubic separation profile

x = y + go(t)z + gi(t)z2 + g 92(t)z3. (2.46)
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These coefficients are tedious to compute for the compressible case, but they become manageable
in the incompressible case. As we show in appendix A.2, the coefficients at time to satisfy

go (to) -li [j(ax(s) + I Tr ax(s)) ds (2.47)

x f[a(s) + (ax(s) + -I Tr ax (s)) a(r) dr] ds,

gi(to) - lim [2 (ax(s) + I Tr ax(s))ds (2.48)

x azz() + 2 axz(T) + I Tr axz(T) go( )

+ [[ax (T) + (Tr ax(T))x -1] go(T)]go(T)

+2 [ax(r) + I Tr ax(r)] x az(s) + ax(s) + I Tr ax(s) go(S) ds] d,

g2(to) = - lim [3 (ax(s) + 2 Tr ax (s))ds (2.49)t +-00. to2

x azzz(T)+3 axzz(r + ITraxzz(T) g(7)LO 4

+ [(axxx(T)go(T) + 2(Tr ax(T)) xgo * I) o() gor)

+3 [(axxz(T) + 3(Tr axz(T))x i go(T)N go(T)

+3 axx(r) + 3(Tr ax(T))x xI go() gi(1)

+ [(axx(T) + 3(Tr ax(r)). I gi()1 go(T) + 6 (axz(w) + 2 Traxz()I) gi(r)

+3 [ax r) + 3ITrax(T)] I azz(s) + 2 axz(s) + I Tr axz(s)I go(s)

+ [[axx(s) + (Tr ax(s)), -1] go(s)] go(s) + 2 [ax(s) + I Tr ax(s)] gi(s)] ds] dw.

2.4 Unsteady separation from pressure and skin friction

In order to monitor and control unsteady separation in experiments, one needs separation
criteria phrased in terms of physically measurable quantities. Here we present a formulation of

our separation theory in terms of pressure, skin friction, density, and viscosity measured along
the wall.

Using the skin friction (or wall-shear) -r(x, t), we have already expressed the first separation
condition (2.19) in (2.18). For some t < to, we compute the effective separation point from the
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equation

t (Yef f (t, to), s)

t'O P2(-Yeff (t, to), 0, s)

For incompressible flows, the effective separation point coincides with the point of zero mean-
skin-friction. For compressible flows, however, the zero-mean-skin-friction rule is generally
inadequate as a true separation indicator: To obtain a good estimate for the separation location,
one needs to use 1/p 2 as a weight function when integrating the skin friction in time.

For incompressible flows, the second separation criterion (2.20) also admits a simple kinetic
formulation. Differentiating equation (2.17) with respect to x, we obtain

7'(X, t) = T(x, t)p.(x, 0)/p(x, 0) + vp(x, 0)ux, (x, 0, t),

from which we express and substitute ux, into (2.44) to obtain the second condition

lim [(T'(x,T)p(x,0) - r(x,r)p.(x,0)) +ITr(r'(x,-T)p(x,0) - T(X,T)p.(X,O))/2]dT = 00.

The separation slope formula also admits a purely kinetic form for incompressible flows:
along the no-slip boundary z = 0, the incompressible Navier-Stokes equations imply

Px (x,1 0, t)/p (x, 0) = Vquzz(X, 0, t),

with p(x, z, t) denoting the pressure. Combining the above formulae with the definition of
a(y, t), we can write the slope

go(to) - lim [(r'(x, s)p(x, 0) - T(x, s)p,(x, 0)) (2.50)

+I Tr(r'(x, s)p(x, 0) - w(x, s)px(x, 0))/2]ds] 1 x [px(x, 0, s)/2vp(x, 0)
to

+[(r'(x, s)p(x, 0) - T(x, s)p.(x, 0)) + I Tr(-r'(x, s)p(x, 0) - T(x, s)px(x, 0))/2]

x "7-x r d] ds.
Jt. px,0)

If the initial density of the incompressible fluid is equal to a constant po along the wall, then
the kinetic separation simplifies to

go(to) = - [r'(x, s) + I Tr -'(x, s)/2]ds

X px ' s) + [r'(x, s) + I Tr -r'(x, s)/2] j dr ds. (2.51)

Formulae (2.18) and (2.50) show that for incompressible flows, the separation location and slope
can both be monitored from pressure and skin friction sensors distributed along the wall.
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2.5 Sufficient conditions for sharp separation

So far we have only looked for necessary features of fixed unsteady separation: if separation

takes place at the point (-y, 0), then conditions (2.18) and (2.20) must hold. We are now

looking for sufficient conditions: when slightly stronger conditions are satisfied, one obtains

the existence of a time-dependent nonlinear separation profile linked to a boundary point, the

separation point.
We first note that condition (2.18) is general enough to allow for weak separation: a scenario

whereby particles near the separation point may turn back towards the wall for finite periods

of time, and are only ejected from a vicinity of the wall asymptotically. Such weak separation

behavior is atypical: In observed fluid motion, once started, separation tends to be sharp,
which means that particles in a vicinity of the separation point move away always in the same

direction from the wall.
We establish here a sufficient criterion for sharp separation. To avoid lengthy technical

arguments, we also assume that the flow is incompressible. As we prove in appendix A.3, sharp

incompressible separation takes place if the first necessary condition

lim sup uz(^y, 0, s) ds < o (2.52)
t- -Coo . 0

and a stronger version of the second criterion (2.44) both hold. This stronger criterion requires

both Tr a, to be negative and uniformly bounded away from zero for all times, and at the same

time the matrix ax to be uniformly bounded:

Tr ax(y, 0, t) < -co < 0, (2.53a)

I1ax(, 0,t) < M, (2.53b)

where the norm refers to the maximum of the matrix over the sphere of radius 1. For details

of the argument, we refer the reader to appendix A.3.
As a simple Taylor expansion shows, the quantity wzz(Y, 0, t) - Tr ax(y, 0, t) is the dom-

inant term in the instantaneous strength of separation. Requiring it to be strictly positive for

all times ensures continued ejection of particles (sharp separation) from a vicinity of the wall.

By contrast, the incompressible necessary condition (2.44) is less restrictive, and hence allows

for weak separation.

2.6 Separation in flows with simple time-dependence

We now evaluate our results for three simple classes of flows that produce fixed separation:

steady, time-periodic and quasiperiodic flows. In all three cases, separation points and profiles

turn out to be exactly computable from finite-time velocity data, and hence the use of effective

separation points is unnecessary. Even these special cases are important, because no related

results are available in the literature.
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2.6.1 Steady flows

Assumptions

Considering a steady compressible flow with a horizontal no-slip boundary at z 0, the conti-
nuity equation (2.3) yields

p(x, 0)wz(x, 0) = 0.

As the density cannot vanish along the boundary, we obtain

wZ(x, 0) = 0, (2.54)

and differentiating this expression with respect to x, we have

Wx(x, 0) = 0. (2.55)

Thus the two assumptions (2.6)-(2.7) are satisfied for steady flows.

Separation criteria

In steady flows the density p(x, z) is constant in time, then the first separation condition (2.18)
can be transformed to

lim t uz(y, 0) ds = lim Iuz(r, 0)(to - t)I < 00,t-*-o0 it t--0

which is equivalent to
uz (Y, 0) = 0. (2.56)

Differentiating the continuity equation (2.3) with respect to z, we obtain

p(Y, 0) [Tr uxz(-Y, 0) + wZZ(Y, 0)] = 0,

which implies the equality

Tr uxz(7,0) = -wzz(7,0). (2.57)

Then the second separation criterion (2.44) becomes

lim (uxZ (7, 0) + I Tr uxz(-, 0)/2)dr

=lim Iuxz (-, 0) + I Tr uxz(-y, 0)/211 (t - to) = oc, (2.58)

implying |Iuxz (7, 0) + ITr uxz(-y, 0)/2115 0, which is equivalent to

uxz(Y, 0) 0 0. (2.59)
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Separation profile

From formula (2.25) we can write and simplify the slope:

g0(to) = - lim [ax(s) - bz (s)I] ds az (s)dst- *-0 o t
= - [uxz(y, 0) +ITruxz(y,0)/2]-uzz(y,0), (2.60)

where we have used (2.56) and (2.57). Higher-order approximations for steady separation
profiles can be derived following the previous analysis.

Steady examples

They are developed in chapter 3: a saddle-sink, a saddle-saddle, a saddle-focus (§ 3.3.2) and a
closing bubble (§ 3.4.4). We also develop a method to analytically calculate all the orders of
separation and the real separation profile in appendix B.2.1.

2.6.2 Time-periodic flows

Assumptions

If we suppose that the velocity field v = (u, w) is T-periodic in time, then v and its derivatives

admit Fourier expansions in time. In particular, wz(x, z, t) can be written as the sum of a

time-independent mean and a time-dependent oscillating part:

WZ(x Iz, t) = z'9Z(x, z) + iC,(x, z, t),

where we have

vz (x, z) = - wz(x, z, t) dt, jT Cvz (x, z, t) dt = 0.
T 0 Jo

The first major assumption in our fixed separation study was (2.6), which now takes the

particular form

lim sup ] w(x, 0, s) ds = lim sup wZ (x, 0) (t - to) + Jibz(x, 0, s) ds < 00. (2.61)
t--0o to t-+-oo

As zv(x, z, t) is a zero-mean periodic function of t, the integral ft. z(x, 0, s) ds is a zero-mean

periodic function of t, and remains bounded for all t. Then, in view of the density formula

(2.4), assumption (2.6) can be expressed as

JTz(y, 0, t) dt = 0. (2.62)

Without this last assumption, the density at the separation point would tend to zero or
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infinity. Repeating the above principle for (2.7), we obtain

T

WxZ(, 0, t) dt = 0, (2.63)

which prevents the unbounded growth of the wall-tangential density gradient at the point of
separation.

Separation criteria

Under assumption (2.62), the first separation condition (2.18) becomes

lim sup jtU (-os) ds < oc. (2.64)
t--00 to P(7Y, 0, S)

The integrand in this condition is again a T-periodic function, and this integral can only remain
bounded if

f T u 2 dt = 0. (2.65)

We now have a general criterion for separation in two-dimensional time-periodic flows.
For incompressible time-periodic flows, the relevant first separation criterion is (2.43), which

simplifies to
T

UZ(-, 0, t) dt = 0. (2.66)

To evaluate the second separation criterion, we again split the integrand in (2.20) into a
mean and an oscillating part. For the criterion to be satisfied, we need the mean to be nonzero:

T ax(t) - bz(t)I _ t a(s) 0 bx(t) + bx(t) - a(s)I ds dt =,0 (2.67)
f6 [ p(t) Ito p(s) I

must hold for all t 0 . For incompressible flows, this criterion simplifies toT
[ax(t) + I Tr ax(t)/2] dt 0 0, (2.68)

as one readily deduces from (2.44).
Time-periodic flows illustrate that the lim sup operation cannot be replaced by lim in the

separation criterion (2.18). Indeed, at a fixed separation point -y, formula (2.61) becomes

lim sup uz(y, 0, r) dr = lim sup ] f(-y, 0, -) dT
t--OC to to--+oo to

and the integrand in this formula will have no limit as t -- -oo for an unsteady time-periodic
velocity field.
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Separation profile

Based on the above arguments, all our asymptotic formulae for the derivatives of the separation
profile simplify to integrals over one period. For instance, the separation angle formula (2.25)
becomes

go(to) = - [ 1T Q(s, 0, t) ds] fj' p(s, 0) ds, (2.69)

where we have defined

p(s to) - a(s) + ax(s) - bz(s)I a(r) dr - b(s) (JS a(r) dr 2

p 2(S) p(S) t'O p~r tM .p M

QWslto~t) 1 [ax(s) - bz(s)I _ fS a(r) 0 bx(s) + bx(s) . a(r)I dr
p(to) p(s) ito p(r)

For incompressible flows, this formula further simplifies from (2.47) to

go(to) = - [j(ax(s) + I Tr ax (s))/2ds1 l
0 1

x [az(s) + (ax(s) + I Tr ax(s)/2) I a(r) dr] ds. (2.70)

Periodic bubbles

Chapter 3 contains three periodic examples: a closing bubble with moving saddle-foci, a closing
bubble with moving saddle-saddles and a non-closing bubble with moving saddle-saddles (@
3.4.4).

2.6.3 Quasiperiodic flows

Quasiperiodic flows still display simple time-dependence, but it cannot be studied through
the repeated iteration of a single period-T map. For this reason, quasiperiodic separation
has remained inaccessible to classical dynamical systems methods. Here we show how general
separation criteria translate to simple formulae in the quasiperiodic case.

Assumptions

Let w1 , w2, . .. , w, be m numbers that are rationally independent, i.e., admit no vanishing linear
combination with rational coefficients. We say that the original velocity field (u(x, z, t), w(x, z, t))

is quasiperiodic in time with frequencies w1 , . . . , wm, if we can write

u(x, z, t) = U(x, z, wit, . .. ,Wt)

w(x, z, t) = W(x, z, wit, . . . , t)

where the functions U(x, z, #1,... , qm), and W(x, z, #1,. . . , #r) are 27r-periodic in each of the

arguments #1, ... , Onm-
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Quasiperiodic velocity fields can be Fourier expanded in terms of the angular arguments 0j,
thus we can write

u(x, z, t) = u(x, z, t) + fi(x, z, t),

W (x, z, t) = w(x, z, t) + iGv(x, z, t),

where we define

1 f27r f2 r
u (x, Z, t) = ( 27r)" ... 2-7r U (x, Z, 01 .. ,jm do, . .. dom,(2,,)m J

1 -27 27r
w(x,z,t) = mI... W(x, z,# 1,...,m) d 1 ... dorm,(2r)m jj o

and (Ci(x, z, t), tb(x, z, t)) denotes the bounded oscillatory part of the velocity. Just as in the
periodic case, we perform a decomposition into mean and oscillating parts for the quantities
featured in (2.6)-(2.7), and obtain

wz(7, 0, t) = 0, wxZ(-Y7 0, t) = 0, (2.71)

as the main physical assumptions for our theory. Again, these assumptions ensure the bound-
edness of the density and the density gradient along the wall.

Separation criteria

Following the arguments we gave in the periodic case, we deduce the two separation criteria

uz (7, 0, t).=0(72u~- =Ot -0, (2.72)
p(Y,0,t)

ax(t) - bz(t)I ft a(s) 0 bx(t) + bx(t) - a(s)I ds 0 0.
p(t) to p(s)

Here the second criterion needs to be satisfied for all to > 0.

Separation profile

Quasiperiodic separation profiles obey formulae similar to their periodic counterparts. One
simply takes the periodic formulae and replaces single phase averaging over [0, T] with multi-
phase averaging as defined above. We omit these expressions for brevity.

Quasiperiodic compressible closing bubble

In chapter 3, we give a quasiperiodic example of a closing bubble (§ 3.5).
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2.7 Unsteady flow reattachment

We view reattachment profiles as material lines that shrink to a single boundary point, the

point of reattachment, as t -+ o. Thus, in dynamical systems terms, a reattachment profile is

a time-dependent stable manifold, or repelling material line, as shown in figure 2-3.

z

x

Figure 2-3: Reattachment profile as a time-dependent stable manifold for the point of separa-

tion.

Material lines that emanate from generic boundary points become asymptotically tangent

to the boundary in the t - -oo limit, as shown in figure 2-4. By contrast, all derivatives of

fixed reattachment profiles at z = 0 stay bounded for all past times.

Effective reattachment points can be defined through the formula

JtUZ (-Yef f (t, to), 0, ) s) -0
t' p (7 (t, to), 0, S)'

and they will again converge to actual fixed reattachment points as t -+ -oo.

As for a second necessary criterion for unsteady reattachment, we follow the argument in

appendix A.1 to find that

M ( t ax(s)-bz(s)I _s a(r)Obx(s)+bx(s)a(r)I dr] ds) n =
t--OO fo p(S) to p(r)

for any n normal vector leaving the reattachment point. Note that this criterion is slightly

different as the separation one: we require convergence to +00 in any direction leaving the

point of reattachment. If the separation point attracts particles in one direction and repels

other particles in another direction (which happens for saddle-saddle separation), we have

separation. The reason for this difficulty is that all the general shape of separation: separation

or reattachment, will depend on the strength of the two phenomena.
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z

xy

Figure 2-4: Behavior of wall-bound material lines near a reattachment profile in backward time.

Finding the shape of reattachment profiles is more difficult. The reason is that all material
lines anchored at the reattachment point are attracted to the reattachment profile in backward
time, and hence all admit bounded derivatives at z = 0 as t -+ -oo. The reattachment profile
therefore only becomes a distinguished material line with bounded derivatives in the t - +00
limit. One may, of course, take the formulae for the separation profile derivatives gk(t), change
the upper limit of the improper integrals from -oc to +oo, and obtain formulae for reattachment
profile derivatives. This approach, however, is impractical in applications where future velocity
data is unavailable.

The above difficulty causes an unavoidable delay in reattachment profile calculations. Excep-
tions to the above computational difficulties are time-periodic velocity fields, for which formula
(2.69) remains valid in the case of reattachment.

2.8 Moving separation

Moving separation points are commonly observed under varying flow conditions, such as in-
creasing Reynolds numbers in a flow past a cylinder. Here we only discuss moving separation
along a flat boundary (figure 2-5), because the results extend to general boundaries via the
approach of § 2.2.8.

First, we stress that classical invariant manifolds are inadequate for describing moving
separation: If particles are to separate from the wall along an attracting material line (a classical
unstable manifold), then the point of attachment of the material line on the boundary cannot
move due to the no-slip boundary condition.

The key to understanding moving separation is a recent development in dynamical systems,
the concept of finite-time invariant manifolds (Haller & Poje 1998; Haller 2000, 2001 in 2D). A
finite-time unstable manifold is a material curve that acts as an unstable manifold for a fixed
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Figure 2-5: Moving separation along a no-slip boundary.

point only over a finite time interval i. In more physical terms, a finite-time unstable manifold
is a material line that attracts all nearby fluid particles over I.

When a finite-time unstable manifold loses its attracting nature, another nearby material
line may become attracting. Then the second material line will act as a separation profile for
a while, attracting all nearby material lines, including the one that used to be the separation
curve. Later, the second material line may also lose its attracting property, and give its place to
a nearby third material line that has just become attracting. If this process repeats itself, one
observes a sliding separation point created by attachment points of different material lines, each
of which acts as a finite-time separation profile. Below we propose two algorithms to capture
moving separation profiles.

2.8.1 Analytic approach

As we show in appendix A.4, moving separation in incompressible flows can be treated analyt-
ically as follows. For a present time to, one computes the effective separation point yeff(t, to)
for times t < to. Let the maximal x distance travelled by yeff(t, to) over the interval [t, to] be
denoted by

J(t, to) = max max yef f(t, to) - min 7xef f(t, to), max yyef f(t, to) - min, yeff (t, to).
\ tel' tEl' tW tG1

We can then show the existence of a finite-time sharp separation point close to yeff(t, to) if

J(tto)t max IIu.z(x,O,TF)I dr < r2 -ax , (2.73)
t0 xeI(t to) 2 xEI(t,to) Iluxz(t)(2
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where rK is a constant chosen a priori, and

max Tr uxz (x, 0, t) < 0. (2.74)
xEI(tto)

The supremum t* (to) of the t values satisfying the above inequalities gives a maximal admis-
sible time scale Tm(to) = t*(to) - to over which all the integrals in our earlier fixed separation
formulae should be evaluated to capture moving separation at time to.

2.8.2 Harmonics-based approach

Instead of finding a single time scale Tm for the motion of the effective separation point, one can
alternatively identify several characteristic time scales from the velocity field itself. Assume that
v(x, z, t) has a limited number of dominant Fourier modes, i.e., its components can be written
as

u(x, z, t) = U(x, zWit,. . . , Limt) + qi(x, z, t),
w(x,z,t) = W(x,zwit,.. . , Wmt) + q2(x,z,t),

with the terms qi and q2 being small in norm compared to U and W. Such a decomposition
is obtained by fast-Fourier transforming the velocity components, with the result updated
continuously.

If q1 and q2 indeed remain small, one can view the velocity field as approximately quasi-
periodic, and apply the separation criteria and separation-shape formulae derived in § 2.6.3.
Specifically, one may compute the effective separation point at time to from the criterion

to-2r/wm jto -2r/wi Uz(7ef f (to), 0, WIT1, .. , WmTm)
. . .dr1 ... .d-r = 0,

to it'o P(Y7eff (to), 0, W1, ...., Wmrm)

following the results of § 2.6.3. Applying the same multi-phase averaging used in our ear-
lier separation formulae will yield quasiperiodic separation profiles that approximate the true
separation profile.

2.9 Conclusions

We have described a kinematic theory of three-dimensional unsteady separation that links the
formation of a material spike near a no-slip boundary to the existence of an unstable manifold
for a distinguished point on the boundary. This theory is frame-independent, and only assumes
regularity and mass conservation along the boundary. In particular, the velocity field does
not have to solve the boundary-layer equations or the Navier-Stokes equations: it can be an
arbitrary numerical, experimental, or model field.

The existence of a wall-bound unstable manifold (separation profile) is guaranteed by Haller
(2002) in the two-dimensional case. Here we have extended these criteria in the same mathe-
matically rigorous fashion to three-dimensional, covering separation and reattachment on fixed
boundaries. We have also given an algorithm for computing the shape of the unstable manifold
via a Taylor expansion. This expansion becomes simpler for incompressible flows, for which we
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have obtained a cubic approximation of the separation profile.
While they reveal a frame-independent Lagrangian separation phenomenon, our criteria are

fully Eulerian and hence do not require the advection of particles. In addition, the criteria
only use quantities computed from distributed pressure and skin-friction measurements along
the wall (cf. § 2.4). These features make our kinematic separation theory useful in active flow
control problems.

Being purely kinematic, our analysis does not distinguish between laminar and turbulent
separation. All criteria we have derived involve time averages of Eulerian quantities on the
boundary, and hence are-in principle-computable for turbulent flows. Further work is needed,
however, to assess the computational difficulties for turbulent separation.

There are still some open questions about three-dimensional separation that we will discuss
in chapter 4.
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Chapter 3

Three-dimensional analytical models
for unsteady separation

3.1 Introduction

In this chapter, we test the unsteady separation and reattachment formulae of chapter 2 on
different types of steady and unsteady flows, derived by a method proposed by Perry & Chong
(1986).

This method provides a low-order approximation to particular incompressible separating
solutions of the Navier-Stokes equations. Using different patterns of separation, we build models
of a wide range of closed-separating flows. These flow models allow a detailed comparison
between our theory explained in chapter 2 and actual flow separation displayed by fluid particles.
Some of the flows will be steady, others time-periodic.

We will also explain how one can deduct compressible flow expansions from incompressible
ones, and build a final flow model that we will analyze under quasiperiodic conditions.

The organization of this chapter is as follows. We first recall the method developed by Perry
& Chong to derive flow expansions in @ 3.2. We present some characteristic steady models of
closed separation in § 3.3. Then we develop and analyze a bubble model in § 3.4, which will
experience steady and periodic conditions. We develop a compressible bubble flow in § 3.5, with
quasiperiodic conditions, and an aperiodic model in § 3.6. We finally present our conclusions
in § 3.7.

3.2 Flow expansion

3.2.1 Velocity field

We fix the origin of the (x1, x 2 , X3) coordinate system on the X3 = 0 boundary of the flow. The

1 vl
velocity vector u(x, t), X X2 ER2 x R+, u - U2 ERis sought in the form of an

X3 )(U3
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asymptotic third-order expansion at the origin

3 3 3

U = Ai +( Aijxj + E Aijkxjxk + (: Aijklxjxkxl + 0(4), (3.1)
j=1 j,k=1 j,k,l=1

where 0(4) represents a homogeneous polynomial of degree n > 4. The i, j, k, l indices vary

from 1 to 3. The vector Ai and the symmetric (in all indices except the first one) tensors Aij,
... depend on time when the flow is unsteady. The number of independent coefficients in (3.1)
depends on the order at which we truncate the expansion: For a third-order expansion, we have
sixty independent coefficients.

The basic idea of the Perry-Chong procedure is to force the tensor coefficients Aij, ... to

satisfy the continuity equation and the boundary conditions. Then we substitute the velocity

field into the Navier-Stokes equations to express the pressure gradient, whose regularity gives

additional differential equations for the coefficients. Finally, we select the remaining coefficients

depending on the type of separation we want to observe.

3.2.2 Equations

Continuity equation

We substitute (3.1) into the continuity equation for incompressible flows

0 , (3 .2 )
axi

which yields ten equations for the third-order expansion:

3

E Aj = 0, (3.3)
j=1

2Ajjj + E Ajji = 0, (3.4)

3Aii + E Ajjjj = 0, (3.5)
jii

Aii kI + 2 AkkkI + 2Alllk = 0, (3.6)

where i = 1, 2,3, and i : k : 1.

Boundary conditions

We define a no-slip boundary condition at the wall

Ui (XI, X2, Olt) = 0, (3.7)
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where i = 1, 2, 3. Substituting (3.1) into (3.7), we obtain thirty equations for the coefficients:

Ai = 0, (3.8)

Ail = Ai 2 =0, (3.9)

Ail = Ai12 = Ai22 = 0, (3.10)

Ail, = Ai 1 2 = Ail22 = Ai222 = 0, (3.11)

for all i.

Navier-Stokes equations

The Navier-Stokes equations for incompressible, constant-density flow can be written as

&ui * Bui &P (312)

1t q=1 q x q=1 a9

where i = 1, 2, 3, P = p/p is the kinematic pressure, p is the pressure, p is the fluid density, v
is the kinematic viscosity.

Substituting (3.1) into (3.12) and grouping terms of the same order, we determine Pr, the
r"' derivative of the pressure at the origin. Considering a third-order expansion of the velocity
field, we can only determine the gradient of the pressure at first order.

Our expansion has sixty unknowns, and we have forty linear independent equations for the
coefficients. By combining all the equations except the Navier-Stokes, there remain only a few
undetermined coefficients:

A 13 , A 2 3 ,

A 113 , A 2 1 3 , A 1 2 3 , A 2 2 3 , A 3 13 , A 3 2 3 ,

A 113 3 , A 2 133 , A 11 23 , A 2123 , A 12 23 , A 22 23 , A 1133 , A 2 133 , A 1233 , A 2233 , A 1333, A 2 333 ,

and four equations

A3 33  - A11 3 + A 223
2

A3 133  - 2A 1113 + A 2 1232

A32 33  - 2A 2223 + A1 1 232

A3333  - A1133 + A2233
3

All other coefficients in the expansion vanish.
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Thus our velocity field becomes

-i = A 13 x3 + A 11 3XiX 3 + A 12 3x 2X3 + A,1 23 XiX 2 X3

+X (A133 + A1 133 XI + A 1233 x2 + A1 333 x3 ),

U2 = A 23 x3 + A 213 X1X3 + A 22 3x 2X3 + A 2123 XiX 2 X3

+X (A233 + A 2133 x1 + A 2 233 X2 + A 2333 x3 ),

U3 = A 3 13 x1 X3 + A 323 x 2X3  (3.13)

(Au 3 + A 22 3 + 2A 1113 + A 2123  + 2A 2223 + A 11 23  + A11 33 + A 22 33 >
2 2 2 3

Substitution of (3.13) into (3.12) gives the pressure gradient at first order:

OP
09X = -A 13x 3 + v[2A 133 + 2A 1 133Xl + 2A 12 33x 2 + 6AI 333X 3 ],

C-P
= -A 2 3x 3 + v[2A 233 + 2A 2 133 Xi + 2A 22 33x 2 + 6A 2333 x3 ], (3.14)

&X2

OP
= -v [A 113 + A 223 + (2A 1 13 + A2 123 )Xi + (2A 222 3 + A 11 23 )X2

&X3

+2 (A 11 33 + A 2233 ) X3]-

By equating the cross-derivative terms of P at the origin, we obtain:

a ax (0, 0, 0) = 2vA 123 3 = (0, 0, 0) = 2vA2133,

a2 p
= -A 13 + 6vA 1333 = -v(2A, 1 1 3 + A 2 1 23 ),aX1OX3

a2 p
= -A 23 + 6vA 2333 = -v(2A 2223 + A 1123 ),

aX2X3

which implies:

A 1233 = A 2133 , (3.15)

A 1 3  = v(6A 1 333 + 2AI1 13 + A 2 12 3 ), (3.16)

A 23  = v(6A 2333 +2A 22 23 +A 1 23 ). (3.17)

Separation pattern

Some of the coefficients (twelve for the third-order expansion) will be determined by the topo-

logical constraints of the separation pattern. The remaining coefficients are free parameters.

Separation profile

Using the theory developed in chapter 2, we shall locate the separation point -y, write down the

conditions that the flow has to satisfy at separation, and then derive a second-order approxi-
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mation for the separation profile at a time instant to in the form

7 + s 3go(to) + Xzg1 (to) + (X3), (3.18)

where go(to) and gi(to) are two-dimensional vectors.

3.3 Separation with linear skin friction field

We first specify the normal derivative of the velocity at the wall to vary according to the
equation (uaX3

t9U2

C9X3
(3.19)

with

K - k1 (t) k12 (t)
k21 (t) k22 (t) 7'

F f, M
f2 (t)

Changing the matrix K, we can generate different patterns of separation: saddle-sink,
saddle-saddle, or saddle-focus. For instance, K = KI generates a single point of zero shear
stress at the origin. The skin friction field admits a sink or a source in the Xi-x2 plane, as
shown in figure 3-1.

x

/
X2

X,

IX 2

X,

Figure 3-1: Flow emanating from a sink.

Substituting (3.1) into (3.19) yields twelve equations at the third order, with the new para-
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meters defined by the components of K and F:

A 1 3 = fi, A 2 3 = h,
A113 = kn, A 223 = k22,
A 12 3 = k12 , A 2 1 3 = k21,

A11 13 = A 1123 = A 1223 = A 211 3 = A 2123 = A 2223 = 0.

With all the previous equations, the velocity field simplifies to

U=fix3 + k2xix3 + k12 x2 3 + xj(a + A1 133 X1 + A 1233 x2 + X3),±

U2 = f2x3 + k2 1 X1X3 + k22 X2 X3 + X2/( + A 1233 X1 + A2 233x 2 + f2X3),U2~ 23±+v~f

kii + k22 2 A 11 33 + A 2233 3
U3 = 2 X3 3 X3,

(3.20)

with still nine unknown coefficients. These coefficients determine the shape of separation we
wish to study in our model. The coefficients a = A 133 and 3 A 23 3 will determine the direction
of separation.

3.3.1 Analysis of the separation pattern

To simplify our notation, we define x = X
X2 ) , Z = X3, U = (U1, w = U3. A separation

U2

point will be denoted by y = (
72 )

The velocity field (3.20) admits only one point of zero skin friction on the XI-x2 wall,
X -K- 1F. Thus we expect only one separation point for this flow. A necessary

X2 )
condition for separation at y is

lim sup uz(-y, 0, s) ds < oc
t--00 to

in the incompressible case, as shown in (2.43). In our current setting, this condition takes the
form

limsup
t-*-Oo . t 0

F(s) ds + (JK (s) ds Y < 0. (3.21)

The second condition for incompressible separation is given by (2.44) or

+ I Tr uxz(y, 0, s) ds = 00

in the general case, and it simplifies here to

lim [K+t--OO to [
I Tr (K)]

2
(s) ds = O. (3.22)
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By (2.47), the separation slope satisfies

- -urn 4 X u(-Y, 0, s) + - ITr UXZ(Y', S))t-+ - [.1 t 2

Iuzz(, 0, s) + UXZ (Y, 0, s) + I Tr uxz(y, 0, s)J uz(y, 0, r) dr ds,

which simplifies for our velocity field to

go(to) too

-1 - 0

0 . (

L -t 3k11 +k 22to k21

a

03
3k11 +k 22

+ 221

) A1133
A 12 3 3

kjj+3k 22
2 )

k11+3k22

A 123 3
A 223 3

Isto

)(-F) dT]-

(F(r) + K(r)y)

Analyzing the next order of separation

-1

'=-lim [2 j (uxz(-y, 0, s)

x Iuzz(-, 0, s) +

+ I Tr uxz(Y, 0, s)) ds

Uxzz(-, 0, S) + I Truxzz(Y,0, s) go(r)

+ [[uxxz(y, 0, s) + (Tr uxz). (7, 0, s) - I] go] go

+2 (uxz(y, 0, s) + I Tr uxz (, 0, s))

[uzz(y,0, r) +
1I

+ -ITruxz(-y,0,r)I
2 ,

we find that:

g1(to) S--lim [2

X-t ( F

to 3v

I~
to

)

(K + ITrK) (T)dr -1

4A 1 33 +A 22 3 3  A1233
A1233  A 1 13 3 +4A 22 3 3A12333

+ ( A1133
A1233

(3.24)

)
A12 33
A223 3

2k11 + k22go + 2

3k, 2+k2

kll+3k22
2 )9o

To find more details on the tensor term

[[uxxz(Y, 0, s) + (Tr uxz)x (y, 0, s) - I] go] go,

the reader may refer to appendix B.1.
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x 0

ds]

g1(to)

(3.23)

dr (s) ds.

dr] ds,

k12
k1 1 + 2k22 )
(r) dr (s) ds.

(3.25)

x It UXZ(-yOr)



3.3.2 Examples

Steady separation

When the flow is steady, the point of zero skin friction is y = K- 1F for all times, and we
deduce from our criterion that this point is the actual separation point.

The second condition for separation (3.22) at -y is then K+!I Tr (K) : 0, which is equivalent
to

K # 0. (3.26)

The separation slope (3.23) becomes

( 3k1 1 +k 22
go 2kl k1 k2  ) -1 [( ce A 13 A 13 -Y]12 ± A1 233 A 123 3k+2 IL pi I + A1233 A22~33 ,IJ .

Finally, we obtain from formula (3.24) the curvature of the separation profile:

2k 1 1 + k22

1 ( k 2 l

x3kll+k22

k21

k -1 (4A 1 3 3 +A 2 2 33  A1233k2 3 A 13 3 +4A 22 33
kii + 2k22 A1233 A 3a+4sa

k12 ) 1 ( ) +(A 11 33  A 12 33  .
k

1
+3k2 2 ) [ ) A 12 3 3 A 2 2 33 ) )

We conclude from our analysis that these steady separation patterns depend on the eigen-
values of K, and we differentiate three cases which were physically observed:

-a saddle-sink: K has two negative eigenvalues of different magnitude (the case of two

positive eigenvalues corresponds to reattachment, and cannot exist in our model because we
assumed the flow incompressible),

-a saddle-saddle: K has a positive and a negative eigenvalue,
-a saddle-focus (or tornado): K has a complex pair of eigenvalues with negative real parts.

Saddle-sink type steady separation

General case In the steady case and in the base of the eigenvectors of K, we can write the

matrix K - ) with , A2 > 0. In that case, the separation point -y satisfies

y = ( A . (3.29)

Then we deduce the slope of the separation profile

_( 3A2go -~ 1 +1\ (3.30)0 ) a ) + ( A 11 33 A 1 2 3 3  Nf/A 1

1+3A 2 A 1233 A 2 233 f 2/A2

and the curvature of separation
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/ 1 0 4A 1 33 +A 223 3  A1 2 3 3
S 0 1 2A1 23 3  Au 3 +4A99 3 3

21 2 
* 

1 21 13

31+a k+2  A1133  A 1233  f /A1  (3 31)k2 2 A 123 3 A 223 3  f 2 /A 2  (kl A1+3A2 IL

Analysis of saddle-sink type steady separation Let us consider a steady saddle-sink
with A1 = 1, A2 = 2, F = 0, A 1233 = 0, and A 1133 = A 2233 = 6 > 0. Then the steady flow
model (3.20) simplifies to

U1 = -X1X3 + (a + 6x1)x3,
U2 = -2x2x 3 + ( + 6X 2 )X, (3.32)

3 2 26 3
U3 = X3 3X3-

For this particular flow, we obtain go = 2 ( and gi = 4( ; trajectories

emanating from a vicinity of the separation point follow the separation profile

= 2x3 (5+ 3 (0)( + O( ). (3.33)

By releasing particles near the separation point, we verify formula (3.33) in figure 3-2.

Saddl-esnk ow aseparalkng u2=-x.x+ , L=-2 x y+2 ud3/2de-sink low i:-xx(1+ ) 4 -2 xAx+(2+-) V u*3d2 -2/3 x)

2-

2-
2~ 1.6

I st order
14 separation profile
12 Streamlines

0.6- 0.6-

00.5 0.2
1000 0.0 0. .0 0.5

0 -0.2 -O -20. 6 -0.8 1.6 '' 0.2 -0. g4 -0.6 .. 8 1 -0.5
-. - x Point of saddle-sink 2 0 . ,

type separation

Figure 3-2: Predicted and real saddle-sink separation profiles.

In the steady case, the motion of the particles is given by the streamlines, and we see in the
two cases of figure 3-2 that the particles are attracted to a single line, the separation profile,
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which is well approximated by our first and second order computations.
The left image shows the case of 6 = 0, in which case the flow is simple and the slope

is sufficient to approximate the separation profile. The right image shows the case of 6 = 1,
in which case the curvature of the separation profile is also needed to obtain the shape of
separation.

Saddle-saddle type steady separation

General case In the eigenbasis of K, we have K = - Al

the separation point -y satisfies

-f2/A2

- with A, A2 > 0. Then

(3.34)

If A2 , 3A 1 and A2 = A1/3, we deduce the slope of the separation profile

0 [ a ) (A 11 3 3 A 12 33  ( f/A )][A 3 J A 1233 A 2 2 33 )-f 2/A2 J'
( 3A2_

0

and the following order provided that A2 0 2A 1 and A2 0 Al/2 :

- 2 2A 1- A2

S3A 21 A2

0 ( 4A 11 33+A 2 233

A 1-2A 2  A12 33  A

k12 a ) + (A 1 13 3

A_ 232 A 123 3

A 1233
3 3 +4A 22 333 )

A1233  -f2 /A2 J.
A2233 -f2/A2)

Analysis of a saddle-saddle type steady separation Let us consider a saddle-saddle with

A = 4, A2 = 1, F = 0, A 12 33 = 0, and A 1133 = A 22 33 = 6 < 0: under these conditions, the
model velocity field (3.20) takes the form

i =-4x 1 X3 + (a + 6x1 )x3,
(3.37)U2 =X2X3 + (0 + X2)Xz,

U3 3 X 2 _2JX 3
23 =g3 3 23-

For this particular flow, we obtain go = 2 ( 0j )and gi . ( 2 / , with the

corresponding separation profile

) + 2 0 J X
X1 __ ( 231

X2 0
(3.38)02 + )(C) + o(x3).2 + ~3o X3

Following the particles near the separation point, we shall check the validity of formula
(3.38). For instance, the computation shown in figure 3-3 demonstrates the accuracy of the

predicted profile. We observe that the unstable manifold of the separation point divides the

plane of separation x3 = 0, and the particles on each side converge to a separation surface

whose intersection with x3 = 0 is defined by the stable manifold of the saddle.
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SaddW-Budd.e flow _a"ti u ' I~ = 'V-4 'V Snd8sddWe fiow saams u =-4xxx3
2

01st ,rder aati+W n

2nd~~ std ore separationrnieprofile
2 21

1.1.8

1.8- 1.6

1.4- 1.4

1.2- 1.2-

Streamlines
0.8- -0.8-
0.6- 0.8-

0.4 0.4-
0.2 0.2-

0, 1 1

1 0.5 0.5 0.5 .

0 0
-0.5 -0.5 0.5 -0.5

X Point of saddle-saddle X

type separation

Figure 3-3: Approximate and real separation for the saddle-saddle type separation.

The left image in figure 3-3 shows the case of 6 = 0, the right image shows the case of

6 = -1, where again the curvature of the separation profile is needed to obtain a good estimate

for the shape of separation.

Saddle-focus type steady separation

General case In the eigenbasis of K, we have K = -A Cos6

0 sin
0 E [-,7r/2; 7r/2] \ {0}. In that case, the separation point y satisfies

1 ( Cos 0
A - sin 0

- sin0 with A > 0 and
cos0 )

sin 0 ) (fi
cos 0) K f2 (3.39)

Then we deduce the slope of the separation profile

1 ( 2 cos 0
A sin 0

- sin J [K a) + ( A 1 13 3

2 Cos 0 #3 A1233

and the curvature of the profile

1 ( 3cosO
= sin 0

( 2 cos 0
sin 0

-sin 0 - 4A1 13 3 +A 2 2 33  A1233
3 cos J A 123 3  A 3+4A2 2 3 3 )

- sin J [e ) JK A 1 13 3 A123 3 .2 Cos 0 0 A1233 A2233
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Analysis of a simple case of saddle-focus
7r1

such as A = V2 and 0 - -: Thus K = -
4 1

Let us consider the steady saddle-focus flow

and we choose again F = 0, A 123 3 = 0,

and A 1133 = A 22 33 = 6 < 0. Under these conditions, the model velocity field (3.20) takes the
form

U1 -X1X3 + X2X3 + (a + 6 Xi)X3,
(3.42)U2 = -XlX3 - X2X3 + (0 + X2)X3 ,

= 2 _26 X33 - 3 -- g 3-

For this particular flow, we obtain go(to) = -

g6 6g1 = I '1 O(
the separation profile

a

/3

SX
X2

2
-1

1 a and
1 ) ( ,a)

) ;trajectories emanating from a vicinity of the separation point follow

)= X3 (
2 6

51 6
- X3-5 6

1 6
+ X3-

6

By comparing streamlines of this flow and the predicted separation profile at first and second
order, we validate formula (3.43) in figure 3-4.

Sadde-focs ftmw separWng: u,-x+x + -8 x + 4

1.4,

1.2-

Streamlines

0.4,
02,

0.0.

-0...*oo

1 - . Point of sa
X, type separation

Saddle-1aLM flow sparthg: u1.-x %+x +(1-2x ) . -&xix +2- 2) up -4x 3

I A1.8

1.2 1st order
1 separation -,*#

0.8 profile

0.2

d .fc 0 
0.5

ddle-focus .5 . 1 -5

Figure 3-4: Visualization of the separation in the case of saddle-focus.

The left image in 3-4 shows the case of 6 = 0, the right image shows the case of 6 = 2. We
analyze in appendix B.2.2 the accuracy of the separation profile.
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3.3.3 Prelirninary conclusion

In conclusion, we have introduced three models of typical separation patterns. We have val-
idated chapter 2's theory with our steady models, and we have brought out the theoretical
difficulties of the saddle-focus separation profile, which requires more consideration.

3.4 Three-dimensional separation bubble

3.4.1 Motivation

The linear skin friction field (3.19) gives a simple yet physically unlikely example. Here we
consider a more relevant example, one that models a three-dimensional pattern observed in
reality: separation on a car as described by Ahmed, Ramm & Faltin (1984) or separation on
wings (Legendre & Werle, by Delery 2001).

3.4.2 Topology of the separation pattern

We specify a skin friction field that mimicks the separation observed in the references cited
above. Let the normal derivative of the velocity on the wall vary according to the equation

UZ = a ) b )2-1 7(3.44)

-c(x1 - fl)(x2 - f2) - d(x 2 - f2)

with parameters a(t), b(t), c(t), d(t) > 0 and with the functions fi(t) and f 2(t).

In this case, the skin friction field has a saddle whose unstable manifold terminates in foci.
There is another saddle behind the foci, as shown in figure 3-5. By changing the value of the
coefficients in (3.44), we can generate different bubble shapes.

For d = 0, the foci degenerate into centers: Then the unstable manifold of the first saddle
forms an ellipsoid-type arc that connects to the other saddle, encircling the two centers. In
practice, such centers are structurally unstable patterns of separation: By adding a small
perturbation to 02, one may destroy the centers and create foci.

t
9
X3

Substituting the shear-stress field (3.44) into (3.1) yields twelve equations up to third order:

(fi 2 + f2)2
A 13 = -1 + - + - , A 23 = -cfif 2 + df2,a b

2fi 2f2
A113 = a2 , A 123  = f2

A 2 13 =cf2, A 223 =-d+cfi,
1 1

A1113=a, A1223= ,

A 1 12 3 = A 2 113 = A 2 2 2 3 = 0, A 2 12 3 = -c.
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Skin-fricton field of the bubble flow u1 =x+x-1, u 2=-X 1X2-X 2 2
3-

1-

-

-2

4 3 2 1 0 1 2 3
xi

Figure 3-5: Skin friction fied of the separation bubble.

With all these relations, the velocity field takes the form

[ = X3 ) 2  ( 2 b )2 -j (3.45)

2x 1 d ((f) 2  +(2 + ca2 -21+x X3ce+ An33x1+ A1233x2 + 6v- a) + a2 X3,

U2 = -X3 (c(Xi - fl)(X2 - f2) + d(X2 - f2))

+ x 2 + A1233Xl + 6I dt (-cfif 2 + df2 )X3 ,

2f + a2 (d - cfi) 2 ca 2 2 A 1 133 + A 2 233 323 = 2+2  2a 2 
X1X3 3 31

with still nine unknown coefficients.
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3.4.3 Analysis of the separation

The above flow admits four points of zero skin friction, thus we a priori expect

separation. The first condition for separation at -y = ( I reads
7 '2)

tto

four points of

uz(-y, 0, s) ds < oc

as shown in (2.43), and is now of the form

( a 2 f b _ I
-C(7 1 - fi)(72 - f2) - d(Y2 - f2) )dcl < oc. (3.46)

The second condition for incompressible separation is (2.44)

lim uxz(, 0, s) + I Tr uxz (7, 0, s) ds = 00

in the general case, and it reads

(71 - fi) (6 - a2 c) - a2d

C = lim 2a2
= i-c(2 

- 2)

which we will analyze for each point individually.
The separation slope satisfies (2.47) or

272 - f2

yi - fi) (2 - 3a 2 c) - 3a 2d
2a 2 )(T) dT =00,

(3.47)

uxz(-, 0, s) + I Tr ux(-y, 0, s)) dsl

uzz(, 0, s) + 1 uxz(, 0, s) + I Tr u,(-y, 0, s) ) it: uz(y, 0, r) drj ds,
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and simplifies for our velocity field to

go(to) = -

x to

Lt'o

(7y - fi) (6 - a2 c) - a2 d

2a 2

-c(Y 2 - f2)

(A 1 13 3

A 1233

(y, - fi) (6 - a2c) - 6

+ 2a 2

-c(7-Y2) 

(

A 12 33 )
A2233 (
2 d 27- 2 - f2

b22C
(1-fl) (2 -3ac)

a + b _

-c(7f1 - fi)(7 2 - f2) - d(7 2 - f2)

2a 2

dr

2 72 - f2

2f) (2 - 3a 2c) - 3a 2 d

2a 2

The separation curvature (2.48) or

= - lim 2 (uxz(7, 0, s) + I Tr uxz(Y, 0, s))

-1
ds]

x UZZ(, 0, s) + uXZZ(7, 0, s) + I Tr uxzz(7, 0, s) g0(T)

+ [[uxxz (-Y, 0, s) + (Tr Uxz)x (, 0, s) -1] go] go

+2 (uxz(7, 0, s) + I Tr uxz(7, 0, s))

ZZ(y,0,r) ± yuz0r)+ ITruxz(7,0,r))
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-1

d-r

(3.48)

- 3a 2 d )
ds.

gi(to)

go(r) drl ds,

+ f

x 
/t



can be written as

(1-fi) (4 -- a2C) - a'd

a
2

-c(72 - 2)

d
~t

ci
4A 11 3 3 +A 2 2 33

+2 (

> ito
+

(
A 12 33 All

2)
(fi>

2

\aJ

I d (-cflf2 + df2 )

A 1233
33 +4A 2 2 33 go +

(71 - fi) (4 - a2c) - a2 d
a 2

0'

13) +
-C(7 - f2)

A 1 1 3 3

A 1233

- fi) (6 - a 2 c) - a2 d

2a 2

-c(7 2 - f2)

272 - f2

- f) (1 -b a2 c) - a2 d

a
2

ca 2 - 2
6 a2

(4 - ca 2
22

a2
2 - 3ca~

a2 go,lgo,2

)
)go]

)

3.4.4 Analysis of specific cases

Steady separation bubble

When the flow is steady, the first condition for separation (3.46) at a separation point -y =

'Y1 )simplifies to

(72-f2
b )

-1I ) (3.50)

This flow admits four points of zero skin friction, i.e., four possible points of separation:

)+ F

a+ F,

-d/c

b 1 -( )2

(3.51)
+ F.
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g1(to) = - nlim 2
t'o

dT)

272 - f2

(7yj - fi) (1 a2 c) - a2 d
a2

A 123 3

A 223 3 -

2Y2 - f2

(71 - fi) (2 - 3a2c) - 3a 2d
2a

2

(3.49)

(s) ds.(r) drl

( a )
-c(-Y1- fi)(Y2-

7 1 
= (

73 = (

0 + F,1

-d/c

-b 1-( )2



Then the second condition for separation (3.47) becomes for each separation point:

C1 = urn
t--oo

C 2 = hm
t--OO

C3 = limt- +-0

C4  = liM
t--OO

/tt 

i ttoI:,

(ca 2
-ad-6
2a 2

ca-3a- J0 ca22a /

- ca2
-ad+6
2a
0

(3c+
cb1 -(.

-d(3c
-cbv1 -

-3cc

a2)

() 
2+ a2)

(d)2

dT - =0o,

2-3ad+2
2a

-- (c+3a2)d)2

-a (c+ 3a 2 )

and these expressions simplify to

(
(

(
c a 2

-ad-6

2a
0

-c2 -ad+6

-a7 (3c +

cb 1 -(

-T (3c +

-cb 1 - (

o
3ca 2 -3 ad-2

20

J

)
)

# 0,

0 -3ca 2-3ad+2
2a

)2 - (c±+3 2 )22) I d

A2 2)2 - (c + 3a 2)

which are always satisfied because the four parameters a, b, c and d are strictly positive.
The separation slope at a separation point -y is

(71 - fi) (6 - a2 c) - a2 d
2a 2

-c72 - 2)

a

/3
\) + A 1133

+ ( A 1233

) -1272 - f2
b2 2) 2(7y - fi) (2 - 3a 2c) - 3a2d

2a 2

A1233
A 2233
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-00,

)
)

dr = 00,

di =00,

(3.52)
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which takes the form

7ca2 -ad-6
- ~ 2a

0

7-ca 2 -ad+6
2a
0

0
3ca 2 -3ad-2

2a

-3c a

3d

cb c( )2

x a ) + ( A 1 13 3

# A1233

3d

-cbx1 -( )2

X Oz + (A1133
13 A1233

-1 + (
2-3ad+2 \ 11 3

2a Oz

2 id )2

d
ca

2 /

A 12 3 3 ' ,

A 2233  /

d

A 12 3 3 ' ,

A 2233

A1133
A1233

A1133
A1233

A1233
A2233 )i JY

A1233
A2233 ) ,

(3.53a)

(3.53b)

(3.53c)

1

(3.53d)

at the four separation points.
Finally the separation curvature takes the form

) 1

( - fi) (4 - a2c) - a2 d

a 2

-c(2 - f2) 2

ca 2 _-2 4A,33+A2233

X 60 2
A 1233

4 -ca 2  2+ 2 2

a 2 - 3ca 2

a 2 90,190,2 )

27'2 - f2
b22 2

-fi)(1- a2c) - a2d
a2

A1233
A, 13 3 +4A 22 3 3

3
)g90

67

1

2
90

4

g1

1 



which becomes

ca
2
-ad-4
a
0

+ (
2

+ (
3

91

+ (
4

0
2ca 2 -2ad-2

a

4A1133+A 22 33
3

A 1233

-ca 2 -ad+4
a

0 -

4A1133+A 2 233
3

A 1233

4d
ca

2

cb - )

4A1133+A 22 33
3

A1233

4d
Ca

2

-cb 1 - (A)2

71 [( ca 2 
- r

6a 2

0

A 1233
A 1 133 +4A 2 2 33  go +

3/

2ca 2
_2ad+2

4 -ca 2 2 2 g, 2

a2 90,1 + 920,2
2 - 3ca2  1

a2 90 ,190 ,2

ca 2 - 2
6a 2

0

A 1233
A1 1 33 +4A 22 33 g +

3 /

2 d2

2d
ca

2 )
-1

[
A 1233

A 1133+4A 22 33  go + 2
3 /

2 2
b a

-1-

[
4A 113 3 +A 2 2 33  A1233

3 A 1 133 +4A 22 33  g +oA1233 3 /

)
4-ca 2 (g2,i)2 +2 2

a2 90, 2 20,2
2 -3ca 2 2

a 2  90 ,190,2

ca2 _2

6a
0

4 -ca2 (g')2 +2 (32

a2 90, 2 20,2
2-3ca2  3

a2  90,190,2

ca 2 - 2

6a2
0

4 -ca2 (g4,i)2 +2 2(g4)2

a2 0 2 0,2
2 - 3ca2  4

a2 90,1 90,2

at the four separation points.
To illustrate the validity of the above formulae, we now compare the predicted separation

profiles and the streamlines in figure 3-6.
We can see a surface of separation: The particles pass on top of the bubble and draw a

bubble shape (for more details on the generation of separation surfaces, refer to appendix B.4).
The predicted profiles appear correct, and they correctly delineate the shape of the bubble. We
analyze the saddle-foci profiles numerically in appendix B.3.

In this example, the flow is given by

= x3 (x2+x 2 -1)+X 50 +10xj-

12
U2 =-X 1 X2 X3 - 2X2X3 + 10X2X3 ,

U3 12 1 2 20 3
43 3 ~ 3 3 3-

(3.55)
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0.1 01
0.09, 0.09

0.06 0.0

0.07 0.07

0.06- 0.06

0.04 0.04

0.03 0.03-
0.02 Streamlines .02
0.01. 0.01.

0, 0,
2 2

-1 -0.6 0 Separation points -1 0.5 0

X2 -, 2 -1

Figure 3-6: Visualization of the accuracy of the computed profiles with respect to the separation
in the steady bubble flow. Left: streamlines passing under the bubble. Right: streamlines
passing over the bubble.

Periodic separation bubble with moving saddle-foci

We now consider a perturbation of the steady bubble: Let us take a, b and c > 0 fixed, F = 0,
and d = e + e cos wt with e, e and w > 0 fixed. Now that we have defined the skin friction field,
we set A 1233 = 0 and A 1 13 3 = A 2 233 = J to obtain the velocity field:

(x1 2 + X2 +2 C ca 2- 2
= X3 (()a b 3)+j6a2 3

U2 = -CX1X2X3 - (e + e cos Wt)x2x3 + x3 (0 + JX2) , (3.56)
e+Ecoswt 2 ca2 -2 2 26 3

U3 = 2 X3 + 2a 2 x3 3 X3-

The first condition (3.46) for separation at y = 71 is
72

lim sup t
sup to \ -C72 - (e + E COS Wt) d'2

- lim sup It - to ( - 1 ) + a bounded term < 00,
t-whic \ -cwt172 - r2 T

which coincides with the steady condition (3.50) (with d replaced by e). Thus there are four

69



points of separation, defined by

Y 3 = (
-a
0 ' 7

-e/c

-b 1 - (,)2 )

72 =

74=(

a
0 )

(3.57)
-e/c

At these points, we express the second condition for separation (3.47): Integrating in back-
ward time, we no longer take the periodic terms and only keep the linear terms, then the
condition reads

C = lim
t-*-oo (
- lim It - to
t-*-o

(71 -fi)(6 - a 2c) - a2e

2a 2

(

-c(2 - 2)

(-1 - fi) (6 - a2 c) - a2e

2a 2

-c(72 - 2)

21_2 - f2
f 2 2 C)(1-fi) (2 - 3ac)

2a 2

2 _Y2 - f2
2 2

(7i - fi) (2 - 3a 2 c)
2a 2

- 3a 2e,

This is again always satisfied because it is of the same form as the steady conditions (3.52).
The separation slope and curvature now do not simplify in the same way as they did in the

steady case. We show (see formula (B.24) in appendix B.5) that the slopes are given by

ca 2 -ad-6
2a
0

-ca
2

- ad+6
2a
0

3d

cb7- (
cb ac ()

0
3ca 2 -3ad-2

2a

0
-3ca 2-- 3ad+2

2a

-( d ()2

d

A1233  ,
A2233 ,

A1233
A2233 /

>1

(3.58a)

(3.58b)

(3.58c)

a

/3
+ ( A 1133

A 1233

- ca

-cb V1 - ( )2-cbc

F A 1 1 3 3

) A1233

A 1233
A 2233 /

2 (d )2

d

A 1233 N)

A 2233 ) 7+

2 1- d

bd(2-3a2
C) I_ ) 2

2ca2

2 (1-d
ac/

bd(2-3a2 c) d )2

2ca
2

The formulae of the curvature (B.25), rather lengthy to write at each separation point, can be

found in appendix B.5.
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- 3a 2 ) = 00.

1
g0

2

3

X 
-

4

sin wtol)
(3.58d)

sinwtol)

+ ( A1133
A1233

+ A123



To check the accuracy of these formulae, we can no longer use the streamlines; instead, we
track particles (from the left to the right). Some slides of the movie we obtain are shown in
figure 3-7. We also show the surface of separation, which the separating particles will follow
(for details, refer to appendix B.4). These particles arrive near the separation bubble, pass by
it, and finally leave the bubble. The bubble does not capture the particles: it releases them
immediately.

Figure 3-7: Some slides of the visualization of separation on a bubble; we showed the skin
friction field, the periodic predicted profiles of separation at second-order, the periodic surfaces
of separation and a few trajectories.

The time-periodic bubble flow takes the form

U1 = X3 (X2+ X 2 - 1) +X2 (50 + 10xi - ,

U2 = -X 2 x3  i + + cos +10X2X3,

4+3coswt 2 2izi 20 3
U3 = 16 2 3

71

too,

an,

0



Periodic separation bubble with moving saddle-saddles

The previous case may seem unconvincing because the separation surface appears steady in
spite of the motion of the saddle-foci separation profiles. This is due to the fact that the stable
manifold of the first saddle-saddle directs the separation surface, and in the previous case, even
if the whole flow is unsteady, the stable manifold of the first saddle-saddle is steady. To obtain
a clearly moving separation surface, we now change the flow to make the saddle-saddles move.

We set a to be periodic, and look at how separation changes: Let us take b, c and d > 0
1 1

fixed, F = 0, and -= I + v cos wt with ao, v and w > 0 fixed. Now that we have defined the
a2 a 2a0

skin friction field, we set A 1233 = 0 and A 1133 = A 2233 = 6 to obtain the velocity field:

U1 = X3 X ( Wt)coswt + (2)21 + x a + x (- --cos wtx3),

U2 = -cXix 2x 3 - dx 2x3 + x3 (0 x2), (3.59)

d 2 C 1 \ 2 26 3
U3 = X + 2 -a2 _ cOSWt XJX3 3 X3-

The first condition for separation at y = 'Y1 is
\ 7Y2 /

- 2 t (y)
1 1 27 2 O

lim sup ao ~ (b )( 2 2  d-

=lirmsup it-tol (ao ) b + a bounded term <oc,
t--+-oo C717'2 - d72

which coincides with the steady condition (with a replaced by ao). Thus, there are four sepa-
ration points defined by

At t i -ao te s ao n

-d/c -d/c (3.60)

73 = -b I1 2 , 4 = b I - )

At these points, we evaluate the second condition for separation, and in the integration we
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only keep the dominant terms:

3 (C - fi) (+ v cos Wt - -

c(72 - f2)

2 b2

(71 - fi) + cos wt _ L

(-y1 - fi) (6 - a 2C) - a2 d

lim It - to 1 - 072j

272 - f2

(71 - fi) (2 - 3a c) - 3a2d
2a2

) '00,

hence is always satisfied because it is of the same form as the steady conditions (3.52).
We show (see formula (B.26) in appendix B.6) that the slopes are given by

aod-6
ao

3ca0-3aod-
2ao

-6 + aoc - aod

2ao
0

-aod+6 0
2aO

0 -3caO23a(
0a

2

sin wtol

A 1 1 3 3

A 1 2 3 3

A 1233
A 2233 -

(3.61a)

( -ca2

+ W
6 - aoc - aod

2ao
0

3d

cb I d )2

aoC

-e(6 - a2c)
ve 2ca2

WC cb F1 --
d

ao

3d
ca 2a0

-cb 1- (d )2
aoc )

2ca 2

-cb I --

)

1133 A1233
Od+2 +3 A1233 A2233 j'

sin wto ,

2 d \
aOc

caocd

-4 2

ca 

a 2cd

0)

-1

a[) + (A1133

0 A1233

(3.61b)

A 12 33
A 2 2 3 3 -

(3.61c)

-1

E( )+ A,133#)3 A1233

sin wtol

A 12 33
A 223 3 Y

(3.61d)

and the formula for the curvature is given in (B.27).
To check the accuracy of these formulae, we look at two cases, which depend on the values

73

lim
(

dT

ca2-
21

2

3
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we give to some parameters. We also set # = 0 to preserve the symmetry of the bubble.

Closing bubble If we set a rather large and 6 positive, we obtain a closing bubble; we give
some slides of the motion of the particles in figure 3-8. We also show the surface of separation,
which the separating particles will follow (for details, refer
arrive near the separation bubble, pass by it, and then leave

to appendix B.4). The particles
the bubble.

Figure 3-8: Separation on a closing bubble.

In this example, the bubble flow is

Ui = X3 X(1 + Cos + -1 + 50+10x 1+Cos X3 ,

U2 = - (X + X2X3 + 10X2X,

220

U3 1 2 1 +Cos 2 20
43 2 10 3 33

74

(3.62)
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0 42.
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90,
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Non-closing bubble If we set a not too large and 6 negative, we obtain a non-closing bubble;
we give some slides of the motion of the particles in figure 3-8. We also show the surface of
separation, which the separating particles will follow (for details, refer to appendix B.4).

The particles arrive near the separation bubble, pass by it, eventually turn around a focus
profile, and quickly leave the bubble. Even if this separation pattern does not have a bubble
shape, we continue to refer to it as a bubble.

iiow
Figure 3-9: Separation on a non-closing bubble.

In this example, the bubble flow is given by

U1 = x3  ( + cos )+ X -1 + X 10 - 2xi - 1

32= z + z23 2 2 3

2 10 6 x=2

U3 = 1-1+ 2  - X 3 +
4 2 10 3

+ cos ' X3 ,10/

(3.63)
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3.5 Quasiperiodic compressible closing bubble

3.5.1 Method

To obtain a compressible bubble, we will use the incompressible formula obtained earlier and
perturb it such that it still satisfies the boundary conditions, and its pressure gradient (obtained
from the Navier-Stokes equations) remains regular; but we will not enforce the continuity
equation this time. A simple way to do so is to change the first term in U3 such that the
bubble flow becomes

U1 = x3 1( f ) x2 ) 2

2 F A 1 d (f2 2 ) ca2 - 21+x3 I+ An133X1 + A1233x 2 + 6v dt a + b + 6a 2 JX3j
U2 = -X3 (c(x1 - fi)(x 2 - f2) + d(x 2 - f2)) (3.64)

+X2 [3 + A 1233 x1 + A 2233 x 2 + I d ( Chif2 + 12) 33 6v cit

fi + f2) X2  ca 2 - 2 2 A 1 1 3 3 + A 2 2 3 3 3
U3 = + 3 + j 2 2 XX3 - 33

We still have to fix the parameters of the flow: For simplicity, we take fi = f2 = A 1233 = 0,
a = 1, b = 1, c = 1, A 1133 = A 2233 = 6= 1, a = 25 and 3 = 0, and we introduce
quasiperiodicity within this flow by setting d = do +E sin(27rt/Ti) sin(27rt/T2) where bo = . and
E =. This unsteadiness is symmetrical and will preserve the saddle-saddles of the bubble,
but will make move the saddle-foci in a quasiperiodic way. The two periods will have to be
set accurately such that the flow attains typical unsteady behavior. Taking Ti = 100s and
T2 = 507rs guaranties this behavior.

Now that we have the analytic compressible velocity field, we can deduce the separation
points and profiles using the concepts developed in chapter 2.

3.5.2 Separation shape

We first determine the density on the wall:

p(x, 0, t) = p(x, 0 0),

thus even if the density will not be constant within the whole flow, it will not depend on time on

the boundary. Moreover, as this flow is not incompressible, we can not apply the incompressible
formulae. We use the compressible ones (2.72).

There are four separation points, defined by

Y1 = ( ' 72 '

-do/c -do/c (3.65)
22J

acac /
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The four separation points are fixed, but we have selected the skin friction
instantaneous zero of skin friction at the saddle-foci move substantially.
behavior in a later computation. The zero skin friction points move in a
while the real separation points remain steady.

We then calculate the slopes:

field such that the
We will show this
quasiperiodic way,

0
2 (ca 2

-1 -doa
a

0
2(ca

2 -1)-doa
a

2(1-c

-1 . (; ) +2(+

)
0 a

27rt . 27t
cos T1 sin T2 (3.66a)

a2 doa 2 (I2 ) + 2J
a

0
2(1-ca2 -doa

a

2-4)do 2
ac b

(d

dQ2C )

) 27rt 2rt1
cos T sin T ,T1 T2 1I

--1

L 2(
0

do a 2--

a

ae

/3

)

acy

do (a2_2)
a2

2-r+ 1r (
2

do(a2-2
a

2

(3.66b)

)
2rrt 2rrt1

cos t sin , (3.66c)
T1 T2

L2 ( )

) 2+r 27r ( 0
do a 2

a
2

27rt . 27rt
cos sin I.

T 1 T 2

(3.66d)

Because of their complexity, we do not evaluate the curvature formulae.

3.5.3 Visualization of separation

We present some slides of the motion of the particles in figure 3-10. We also show the surface
of separation, followed by the separating particles.

The particles arrive near the separation bubble, pass by it, then rotate under the bubble.
Here we see that some particles leave the bubble immediately, while others are trapped for a
while under a bubble shape before leaving it. We refer to this model as a closing-bubble.
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Figure 3-10: Separation under a closing bubble; the flow is compressible and quasiperiodic.

3.6 An example of aperiodic separation

Some of our results could have been predicted from previous work about two-dimensional pe-
riodic separation. We will now develop a single example of aperiodic flow which experiments
steady closed separation. Nobody has never looked at such a case.

3.6.1 Velocity field

We still use a bubble non-closing model, that we simplify a lot: Let us take a, b and c > 0 fixed,
F = 0, and d = e + c cos wt 2 (you will remark that this term will make the flow aperiodic) with

ee and w > 0 fixed. Now that we have defined the skin friction field, we set /3 = 0, A1233 = 0
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and A 113 3 = A 223 3 = 6 to obtain the velocity field:

114 3 , + X3 (a + Jx

U2 = -C3IX 2 X3 - (e + & coswt 2)x 2 x 3 + 612X,

e + E cos Wt 2 2 ca2 -2 2 26 3
2 1 3+ 2a2 X13 313-

Sca2 - 2

(3.67)

For numerical calculation, we will take ao = 1, b = 1, c = 1, e = -, a = 10, 6 = -2, e =
and w = 1 (the time-scale to observe separation is around 100s, and over this time the flow is
well aperiodic).

3.6.2 Analysis of separation

We remark that
t

CO coWT2 dT =G(t) - G(to) is uniformly bounded,

where we do not have an exact value of G but we can calculate

the first condition for separation at -y = (Yi becomes
\ 7Y2 )

a numerical value of G. Then

p)2 + ( L2 - 1

-C71_2 - (e + 6 cos wT 2)72 )dT

+ a bounded termj < 00,

which coincides with the previous steady condition (with d replaced by e). Thus there are four
points of separation, defined by

Yi=(-a
'Y = 0 '

- e/C

S -b - (e)2ac )

2= (

7Y4 = (
a
0'

-e/c

b 1 - (e)2

(3.68)

Thus, even if the flow is aperiodic, the separation points are fixed!
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We show (we omit the calculation for brevity) that the slopes are given by

4

-cb}1 - (e)2

0
ca 2 -3ae-2

2a

a
0 )+ 6] ,

-3ca2 3ae+2 + ) ,
2a

2 eb/

2(1- (e)2)

a -F ( e)2be

-c

e
/a

)
(3.69d)

G(to)1

To check the accuracy of these formulae, we track particles. Some slides of the movie we
obtain are shown in figure 3-11. We also represent the surface of separation (in green), which
the separating particles will follow. These particles arrive near the separation bubble and pass
over it: this is a non-closing bubble. You will remark that this time, we do not know the slope

analytically but only numerically.

3.7 Conclusion

We have applied the Perry-Chong procedure to 3D flows, which has given us relevant examples
of separating flows. We have explored a wide range of possible cases of 3D separation and

drawn the most typical shapes of separation. We have also developed some relevant models of

a 3D bubble that we have analyzed under steady and unsteady conditions. Finally, we proved

the accuracy of the 3D theory of separation developed in chapter 2, and also showed its limits.
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Figure 3-11: Separation over the aperiodic non-closing
separation is fixed!

bubble. Even if the flow is aperiodic,
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Chapter 4

Open problems in the
three-dimensional theory

4.1 Introduction

There are some aspects of three-dimensional separation that we have not analyzed. We will
here discuss these aspects, as well as ways to study them.

The organization of this chapter is as follows: we discuss effective separation in § 4.2,
separation line in § 4.3, the separation surface in § 4.4 and present our conclusions in § 4.5.

4.2 Effective separation points

Strictly speaking, we have not proved the existence of a point satisfying the concept of effective
separation (2.21). Doing so would be an important step for further analysis: Firstly, it would
make the theory more complete. Secondly, behind this proof is an efficient way to obtain
moving separation points, as in the 2D theory (Haller 2002). But so far, this proof has defied
our attempts.

4.3 Separation line

4.3.1 Introduction

As shown in figure 4-1, some separation patterns can create separation surfaces: we have given
examples of such surfaces (for example in the saddle-saddle case or in the bubble case) in chapter
3. These surfaces are often created by several separation points, but sometimes they are due to
open separation. We will determine the formulae giving the intersection between the wall and
such surfaces, which we call the separation line. We also explain how to determine the shape
of the separation surface.

4.3.2 Incompressible equation

The first step is to derive a formula for the separation line, i.e., the curve along which the
separation surface attaches to the z = 0 boundary.

83



z
Separation surface

Separation
profile

Separation
line

Separation
Wall point

x

Figure 4-1: Separation surface.

Equation

Ax
Writing A = A ) for better readibility, we write the equations for particle motion as

= zAx(x, y, zt),
= zAY(x, y, z, t), (4.1)

S= zB(x,y,z,t).

Here (Ax, AY) (x, y, 0, t) is the instantaneous skin friction field. We seek the separation surface
locally in the form y = p(x, z, t).

The intersection of the surface of separation with the wall is called the separation line, and
can locally be written as y = s(x) on the wall. Then p = s on the wall, and we can write the
separation surface as

p(x, z, t) = y = s(x) + zq(x, z, t).

We can describe any point of the surface of separation with the coordinates x and z:

(4.2)

M(x, z, t)= ( x

s(x) + zq(x,z,t)
z ) x

s(x)
0 ) 0

+ z q(X, 0, t) + O(Z2).

At a point (x, s(x), 0) on the wall, 2 = q(x, 0, t) will represent the direction where this

point is attracted out from the wall. The points on either side of the separation line will be

repelled from the surface of separation in backward time, while this one will remain in the
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surface. Thus the vector in the surface will remain uniformly bounded.
Differentiating (4.2) with respect to time:

y = is'(x) + q(x, z, t) + z(iq,(x, z, t) + qz(x, z, t) + qt(x, z, t)), (4.3)

and using (4.1) to replace the time derivatives:

zAv = zAxs' + zBq+ z2 Axqx + z 2 Bqz + zqt,

we obtain an equation valid everywhere in the flow:

z(AV - A's' - Bq - zAxq- zBqz - qt) = 0.

Thus for z > 0, we have

AY - Axs' - Bq - zAqx -zBqz -t = 0, (4.4)

and, by continuity, this equation is also valid in z = 0.
When the flow is incompressible, the continuity equation implies that C = 0 on the wall.

Then setting z = 0 yields

qt(x, 0, t) = A (x, s(x), 0, t) - Ax(x, s(x), 0, t)s'(x). (4.5)

Then, by integrating (4.5) in time, we obtain an expression for q:

q(x, 0, t) = q(x, 0, to) + / [AY (x, s (x), 0, s) - Ax(x, s(x), 0, s) s'(x)] ds.
-t

Because q must remain uniformly bounded in backward time, we finally obtain the formula

lim sup t [A(x, s(x), 0, t) - s'(x)Ax(x, s(x), 0, t)] dt < oc (4.6)
to----o Jto

for the separation line y = s(x).

Necessary condition

The previous formula is not sufficient to determine the separation line among all functions
satisfying (4.6), thus we need another condition. We believe that the separation line is an
averaged skin friction line that attracts nearby averaged skin friction trajectories.

4.3.3 Special cases

Steady flows

In the steady case, the equation (4.6) simplifies to

s' (x) = AY(x, s(x)) (4.7)
Ax (x, s (x))'
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and could have also been determined by considering that along the separation line (or any other

skin friction line) s'(x) , provided that Ax(x, s(x)) : 0. If it vanishes, we
Ox Ot o8x Ax'

can reparametrize the separation line in y rather than x. If both Ax and AY vanish, we are at
a zero skin friction point, where we can apply the separation profile theory.

Time-periodic flows

When the skin friction field is periodic in time, AY - s'Ax is periodic too, thus requiring the
integral of this function to be bounded is equivalent to requiring its mean to be zero. Then
(4.6) simplifies to

AY(x, s(x),.) - s'(x)Ax(x, s(x),.) = 0, (4.8)

where h refers to the temporal mean of h. We thus obtain

S, AY(x, s(x),.)
Ax (x, s (x),.)

which is satisfied by any trajectory of the skin friction field.

More generally, we can reparametrize these trajectories and show that X ( x satisfies

the autonomous equation
X' = -r;(X, .)

along separation lines.

4.3.4 Quasi-periodic flows

We obtain the same type of formulae as in the periodic case, except that simple averaging is
replaced by multi-frequency averaging.

4.4 Separation surface

We now have formulae for separation lines; understanding separation surfaces will require new
ideas. An additional challenge will be the visualization of these surfaces.

4.5 Conclusions

Even if the analysis of three-dimensional closed separation is completed and validated, some
difficulties remain: there are still these fully three-dimensional phenomena of effective separation
and separation surface which have to be fully analyzed and understood.
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Conclusion

In this thesis, we analyzed flow separation from a kinematic point of view. Despite the com-
plexity of the analysis, the results we obtained are simple and physically appealing.

We first verified the two-dimensional theory of Haller (2002) on an unsteady example: sep-
aration over a pitching airfoil. We have shown how the theory predicts the location and the
shape of separation.

After a brief review of the prior work on three-dimensional separation, we extended the
kinematic separation theory of Haller (2002) to three-dimensional flows with closed separation.
We then introduced model expansions of the Navier-Stokes equations and validated the three-
dimensional theory on these models. The three-dimensional models we derived are of interest
in their own right.

Finally, we outlined the theoretical difficulties in identifying fully three-dimensional phe-
nomena, such as separation lines and surfaces.

Future work on 3D separation should involve the analysis of separation surfaces, the control
of separation, and the use of separation theory in improving the aerodynamical performance of
vehicles such as cars and airplanes.
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Appendix A

Proofs of the 3D theory

A.1 Slope formula

After substituting formula (2.16) for g(s) in (2.24), we obtain

g1() = 1g(to)p 2 (t) + P2 (t) p(s, to) + Q(s, to, t)go (to) - (bx (s) - go (to)) go (to)1
gik) 2 p(to) ito LPPo 2~so)oQ -p(to)d,

with p(s, to) and Q(s, to, t) defined in (2.26):

p(s to) = az(s) + ax(s) - bz(s)I f8 a(r) dr - b,(s) J a(r) dr 2

p2 (s) p(s) Jt0 p(r) d0( pCr) 

Q(stot) = 1 [ax(s) - bz(s)I _ f a(r) & bx(s) + b(s) - a(r)I dr]
p(to) p( S) t PHT

with the diadic product [a 0 bx];j = (a)i (bx)j.
We first observe that for material lines emanating from the separation point (-y, 0) with

slopes differing from the slope of the separation profile, Igi (to) I will tend to infinity as t -+ -oc.
In other words, for any small vector e : 0, we have

lim p (s, to) + Q (s, to, t) [go(to) + e] - bx(s) - (go(to( go) (to) + e) d 00.

On the separation profile itself, however, gi(t) remains bounded, i.e.,

lim sup j [p(s, to) + Q(s, to, t)go(to) - (bx(s) . go(to)) go(to) dr < 00. (A.1)
t--00 'o P 2(to)

Comparing these two expressions we obtain that

lim j4 [Q(s, to, t) - bx(s) - (go(to) + E) I + go(to) 0 bx(s)~ e ds = 00. (A.2)t--00 o Pe p2(to I
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By assumptions (2.6)-(2.7), we can write

hrn sup j' b(s) - (go(to) + e) I + go(to) 0 bx(s) ds < 2 go(to)I + E' limsup f4 , s)ds <0o,
t-_oo tO p2 (to) p2 (to) t--(o to

(A.3)
therefore (A.2) simplifies to

lim j Q(s, to, t)e ds = oC, (A.4)ta--0 to

which holds for all nonzero e. Equivalently, we have

lim ft [ax(s) - bz(s)I _ f a(r) 0 bx(s) + br(s) - a(r)I dr ds = 00, (A.5)
t--oo t p(S) t p(r)

as claimed in the necessary separation condition (2.20).
To prove formula (2.25), observe that (A.4) is equivalent to

lim Q(s, to, t) ds e =(A.6)

for all nonzero vector e ER 2 . Based on this, we want to argue that the matrix

K(t, to) = Q (s, to, t) ds

is invertible for large enough t.
Suppose the contrary. Then, for arbitrary large t, the kernel of K(t, to) is nonempty. Let

e*(t) E ker K(t, to) n SI, where S' denotes the unit circle in R 2 . Any sequence of times

{tn}0 , lim tn = -00,n 17 n~-.+oo

then gives rise to a bounded infinite sequence of vectors {W(tn)}_ 1 , which has a convergent

subsequence {E*(t)}OO1 with

lim e*(tnk) = E*, E S,
k-+oo

by the compactness of S1. Then,

F ~ tn k 1 to [ I t ? c Q1S' t0 lim Q(s, to,nk) ds e*(tnk) = liM Q 7(s, to,tnk) ds 007
k--+oo to Ik-++0 toI

which contradicts (A.6). Thus K(t, to) is invertible for large enough t. Also note that, by (A.4),

IK(t, to)e12 = (e, KT (t, to)K(t, to)e) - oo, t - -00,
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for all e EIR 2 with IJE = 1. Then an argument similar to the above implies

lim Amin [KT (t, to)K(t, to)] = 00,

where Amin [ATA] denotes the smallest eigenvalue of the symmetric matrix ATA.
Next we want to argue that

lim |fK1 (t, to)1 = 0.

(A.7)

(A.8)

Select e E R 2 - {O}, and let
i(t) = K-1 (t,to)e.

Then

le12 = (K(t, to)iY(t), K(t, to)i(t)) = (9(t), KT(t, to)K(t, to)9(t)) > Amin(KT (t, to)K(t, to)) Ig(t) 2

thus (A.7) implies

lim 1 (t)j < jej limt-0t-*-oo i.Amin(KT(t, to)K(t, to))

Because e was arbitrary, the expression (A.9) establishes (A.8).

= 0. (A.9)

Observe that (A.3) simplifies the boundedness condition (A.1) to

lim sup [p(s, to) + Q(s, to, t)go(to)] ds < 0o.
t-+-oo ,to

Then the vector

q(t) = [p(s, to) + Q(s, to, t)go(to)] ds

is uniformly bounded for all t < to, thus there exists Co > 0 such that

jq(t) < Co, t < to.

Multiplication by K-1(to, t) gives

ItJto

-1
Q (s, to, t) ds] q(t) = j t Q(, to, t) dT]

St/p(s, to)
Jto

which in turn leads to

-1 Jt d
tp(s, to) ds +go(to) = - Q(to, t)

to
dT]

u:Q(s, to, t) ds
0 1

Note that

ds] q(t) < lim |0 K- 1 (t, to)I jq(t)l Cot-+-00 lim |K-1(t, to)1 = 0
t-+-oo
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by (A.8), thus (A.10) implies (2.25).

A.2 Incompressible orders of separation

Computing the O(z, z, z3) terms in the incompressible separation equation (2.41) leads to the
set of equations

gi (ax - c) go + az, (A.11)

92 =azz + 2 (axz - czI) go + [(ax,, - 2cx - I) go] go + 2 (ax - 2cl) gj, (A. 12)

3= azzz + 3 [axzz - czzl] go + [(axxxgo - 3cxxgo -I) go] go (A.13)

+3 [(axxz - 2cxz - I) go] go + 6 [(axx - 3cx -I) go] gi + 6 (axz - 2czI) gi + 3 (ax - 3cI) g2.

We note the following incompressibility relations derived from (2.40):

Trax + 2c = 0, Tr axz + 3cz = 0, (Tr ax)x + 2cx = 0,

(r ax)xx + 2cxx = 0, (Tr axz)x + 3cxz = 0, Tr axzz + 4czz = 0,

(Tr ax)xxx + 2cxxx = 0, (Tr axz)xx + 3cxxz = 0, (Tr axzz)x + 4cxzz = 0, Tr axzzz + 5czzz = 0.

(A.14)

We first integrate equation (A.11), then substitute formula (2.42) and use the first equation

in (A.14) to obtain

gi(t) = gi(to) + 4 az() + ax(T) + Trax(T) go(to)

+ ax(T) + I Trax() a(s) ds dT (A.15)

for the first order term in the expansion for the incompressible separation profile. Because

g1(t) remains bounded in backward time at a fixed separation point, we can use the argument
of appendix A.1 to derive (2.47) from (A.15). The expression (2.47) can also be obtained by
setting b(T) = 0 and bz(T) = c(r) in its compressible counterpart (2.25).

Next we integrate (A.12) and observe that the boundedness of g2(t) implies the boundedness
of the integral

j [azz(I) + 2 Eaxz(r) + ITr axz(T) go + [[axx(r) + (Tr ax(T))x -x1 go(r)] go(T)

+2 [ax(r) + I Tr ax(T)] gi(r)] dT (A.16)

for all t < to. Invoking the arguments of appendix A.1, then substituting (A.15) and using

(A.14) leads to the curvature of separation (2.48).

We now integrate (A.13) and use the incompressibility conditions in (A.14) to find that the
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integral

S[azzz + 3 [axzz + I Tr axzz go + axxxgo + -(Tr ax)xxgo - I 90 go

+3 [(axxz + 2(Tr axz)x - 1 go go + 6 [(axx + 3(Tr ax)x -I go gi

+6 axz + Tr axzI g, + 3 ax + Tr axI g 2 (T) dT (A.17)

must be bounded for all t < to. Proceeding again as above, we use this boundedness to obtain
(2.49).

A.3 Sharp separation

Here we prove a sufficient criterion for fixed sharp separation in incompressible flows under
conditions (2.52), (2.53a) and (2.53b). Beyond these conditions, we assume that the velocity
field as well as its first and second derivatives remain uniformly bounded for all times at the
separation point. We will establish the existence of a unique material line that acts as an
unstable manifold for the separation point (-y, 0) .

We start by fixing y and introducing the time-dependent coordinate change

q = x - y - z (go(t) + zgi(t)), (A.18)

with go(t) and gi(t) satisfying (2.42) and (A.15). Note that this change of coordinates trans-
forms the x = -y coordinate axis into the new q = 0 axis that has a quadratic tangency with
the candidate unstable manifold (separation profile) for all times. We obtain

e = x - go - zAo - 2zigi - zii
= zax(t)q + mi(q, z, gk, t)z3 + m2(q, Z, gk, t)zq 2 + m3(q, z, gk, t)z2 q,

= z 2C(y+zgo+zg+q,z,t)

= z 2 [c(t) + zm 4 (q, z, g, t) + q - m 5 (q, z, g, t) , (A.19)

as new equations of motion for fluid particles, with appropriate smooth functions m, and with
gk referring to go and gi. The O(z) and O(z 2) terms in the 4 equation vanish precisely because
we chose go(t) and g1 (t) in our coordinate transformation to satisfy equations (2.42) and (A.15).
Most importantly, go (t) and gi(t) remain bounded because -y is a fixed separation point; as a
result, all terms in the 4 equation remain bounded for all times.

We define the "flower-cone"

Q = {(q, z)I j|qjj' < z, 0 z <},

where a and 0 are positive constants to be selected below (figure A-1).
By our boundedness assumption on the velocity field, we can select a large enough constant
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1/a 39

Figure A-1: The definition of the flower-cone Q.

K > 0 such that

| mi (q, Z, gk, 0) 1 5 K, (q, z) E Q, t E R. (A.20)

Let us consider now the z = boundary of the flower-cone Q. Along this boundary, we
have

Zlz=3 = /2 [c(t) + /3m4 (q, /, g, t) + q m 5 (q, /, gk, t)]

> #2 [C(t) - K (0 + /3c)] > 0,

provided that

c(t) > K (0 + 13c),

or, equivalently,

ZZ (-y, 0, t) > 2K (0 + 8a) . (A.21)

Therefore, solutions intersecting the z = 3 boundary of Q leave Q immediately if the inequality
(A.21) holds for all times (figure A-2).

Next, we consider the q = z1/"eio boundary of the flower-cone Q, where we define e20 -

os 0 thus we have

eI q=z1/eiO= z 1+1/a ax(t)e" + m 1 (q, z, g, t)z 3 + m2(q, z, gi9, t) z 1+2 /a Ci20 + m3(q, z, gk, t)z2+1/aeiO

< zi+1/a [I axII + K (#2-1/a + /1/a + ,

(A.22)

Zjq=z1/oeo = z2 [c(t) + zm4(q, z, gk, t) + zl/aeio - m5 (q, z, g, t)

;> z2 [C(t) - K (,3 + 00)] ,
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z

Figure A-2: Fluid particles entering and leaving the flower-cone Q.

and we want the flow to enter the flower-cone on this surface, which amounts to requiring

ZIq=z1/.e'o > ae qjl -14q=azeio Il for any 0.

Provided that

c(t) - K ( + 0') > a [|iaxfI + K (02-1/a + 01/a + 1))]

or, equivalently,

wZZ(y, 0, t) > 2a [|laxII + K (02-1/a + 01/a + 2/3 + Oa (A.23)

the above entry is satisfied.
Both (A.21) and (A.23) hold if we have

wZZ(7,0,t) > max (2K(0 + 011) ,2a [M + K (32-1/a + + 21 +O

where we used the fact that Tr a, = -wzz(y, 0, t) by incompressibility. By conditions (2.53a),
we can satisfy this last inequality by choosing the a and 3 parameters of the cone Q so that

max (2K (3 +

A possible choice is

13') , 2a [M + K (02-1/a + #1/ + 2 + Oa )D)< Co.

/3=min CO M M
( 5K'4K' T'K
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K
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for which we conclude that solutions intersecting the ||qJJ' = z boundary of the flower-cone Q
enter Q immediately by the estimates (A.22) (cf. figure A-2).

Based on the above observations, we conclude that under conditions (A.21) and (A.23), the
extended equations of particle motion

zax(t)q + m 1 (q, z, gk, t)Z + m2(q, Z, gk, t)zq2 + m3(q, z, g, t)z2 q,
z 2 [c(t) + zm 4 (q, Z, gk, t) + q -m 5 (q, Z, gk, t)]

t=1 (A.25)

have the following properties on the closed set Q = Q x R:

1. The set of initial particle positions (qo, zo, to) that immediately leave Q in backward time
is given by W m = {(q, z, t) E Q > / ; z > 0, |ql'a = z}. Let us remark that the origin
does not belong to this set.

2. If We" denotes the set of initial conditions (qo, zo, to) that eventually leave Q in backward
time, then Wim is a relatively closed subset of We". (This is because a sequence within
Wim converges to a point outside Wim, then that point is necessarily at q = z = 0,
which is not in We". Therefore, all Cauchy sequences in Wim that converge to a point
in We" necessarily have their limit points in W"m . By definition, this means that W"m is
relatively closed in W".)

These two properties, by definition, make Q a backward-time Wasewsky set for the extended
system (A.25) (cf. Hale 1980). As a result, the Wasewsky principle holds for Q: The map
F: We" -+ Wim that maps initial positions in Q to the point where they leave Q in backward
time, is continuous.

Assume now that all initial conditions with zo 0 0 eventually leave Q in backward time.
This would imply that

Wev = {(q, z, t) E Q I z > 0},

but we will prove that this is impossible.
Let us consider now the z = 0 boundary of the time-dependent flower-cone Q that we call

DO: For a fixed time, D3 is a disc of the z = /3 surface, which is topologically a closed set.
Every point of D, has to leave the cone in backward time, thus F(DO) C W"m . As Do is closed
and F is a continuous function (thus has to transform a closed set into a closed set), F(D) is
closed. But Wim is not closed: the origin is a limit of a series of points of Wim but does not
belong to Wim. Then there is at least one point which belongs to W"m , but does not belong to
F (DOl).

Let us call this point r = (qo, zo, to): necessarily, zo > 0. In forward time, the trajectory
leaving from r enters the cone and cannot leave it on Wim. We now show that the z coordinate
grows and has to go beyond 3 in finite time: along this trajectory, we have

(t) = z 2 [c(t) + zm 4 (q, z, g, t) + q - m5 (q, z, gk, t)] , (A.26)
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whose integration gives

z(t) = zo . (A.27)
1 + z [C [c(r) + z(7)m 4 (q, Z, g, r) + q(r) - m5(q, Z, g, T)] dT

This equation holds for t < to while the trajectory we consider stays in Q (in forward times).
Then within the flower-cone, we have

z(t) > zo zo
O - zo [c(T) - K(O + 0')] d-r 1-zo J [co - ] dr

zo
1 - zoEQ(t - to)'

and necessarily the relation z(t) 3 cannot hold when t -+ to + 2. Thus this trajectory hasCo zo
to leave the cone, and hence must intersect the disc Do, which is impossible.

We therefore conclude that We" 0 Q, i.e., there is a nonempty set of initial fluid particle
positions W' that stays in Q for all backward times. By definition, W' is an invariant set
and is necessarily smooth in t because it is composed of fluid trajectories that are smooth in t.

Next we want to argue that all solutions in W' tend to q = z = 0 in backward time.
Consider a specific initial position (gio, zo, To) c Wo, and denote the trajectory emanating from
this initial position by (q(t), z(t), t). Along this trajectory, the equation (A.27) holds for all
t < to, because the trajectory we consider stays in Q for all backward times. Then (A.27) and

(A.24) lead to the estimate

z(t) < zo < zo

1+ zo f [c(r) - K(O+0")] di 1+zo jo [co - Km] dT
ZO zo

1+ zo to fa & 2+ zo (to - t)'

allowing us to conclude that
lim z(t) = 0.

t-+-oo

In other words, trajectories that never leave Q in backward time will necessarily converge to
the z = 0 boundary of the cone Q. By the definition of Q, however, this convergence in the z
direction implies

lim q(t) = 0.
t--oo

We therefore conclude that all trajectories in W' converge to z = q = 0 in backward
time, thus W' is an unstable manifold for (-y, 0). Any material curve in this manifold admits
bounded and unique z derivatives according to formulae (2.47)-(2.49), therefore the unstable
manifold is unique up to terms of order O(z 3 ).

The same argument applies when higher-order terms of the candidate separation profile
(2.46) are included in the initial coordinate change (A.18), leading to a unique unstable manifold
up to terms of order O(zn). Here n is arbitrary integer that can be as large as the degree of
differentiability of the original velocity field.

Given the existence of the separation profile, we only need to argue that the separation is
indeed sharp along this profile. To prove sharp separation, it is enough to establish that the
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z coordinate of fluid particles in the separation profile W' grows monotonically for all times
as long as the particles are in a vicinity of the boundary. Note that W' has been constructed
as a material line whose z < 3 portion is fully contained in the cone Q. For all fluid particles
that lie in the separation profile as well as in the {0 < z < 3} neighborhood of the boundary,
equation (A.19) and (A.24) yield the estimate

i(t) = z 2 [c(t) + zm 4 (q, z, g, t) + q - m5 (q, z, k, t)]

Sz2 - K(O +,80') > z .

Therefore, the z coordinate of fluid particles in W' grows monotonically in the {o < z < 0}
neighborhood of the boundary, resulting in sharp separation.

A.4 Moving separation

Here we show that for general incompressible flows, (2.73) gives a sufficient condition for finite-
time sharp separation close to the moving effective separation point 'Yeff(t, to). We shall show
this by arguing that if -yrff(t, to) moves slowly enough over a finite time interval [to - Tm, to],
then any point (-y, 0) close enough to yeff (t, to) behaves as a separation point over that time
interval. From this argument, we obtain a whole set of points that can be considered finite-time
separation points. The size of this set, however, tends to zero rapidly as the admissible time
scale Tm increases. As a result, in numerical calculations we obtain a separation point that is
unique for practical purposes.

We start by selecting a boundary point (^y, 0) and introducing a time-dependent coordinate
change

q = x - y - z#(t),

with #(t) and 0(t) to be defined below. We obtain the transformed velocity field

el = xC - z#O - z

= z(a - ) + zaxq + z 2 [(ax - cI) + az]

+ (liz 3 + Z2 12 - q + 13zq 2) (14 + nui)
= z 2 C(y + q+ z#, z, t)
= z 2 [c(t) + (15 z + 16q) - (14 + n20)] , (A.28)

with appropriate smooth functions h2(q, z, O, t). These functions are typically not globally
bounded in 4, thus they will grow unbounded if 4 grows unbounded in time.

If we select the function 0(t) to be the solution of

= a, (A.29)

then the O(z) term in the 4 equation of (A.28) vanishes. By our assumptions, the O(zq)
term remains bounded regardless of the choice of 4. If y were a fixed separation point, then the

solution 0(t) of (A.29) would remain bounded for all times, and hence the O(z 3 , zq 2, z 2 q) terms
in the 4 equation would also remain bounded for all times. But -y is not a fixed separation
point in our current setting, and hence the O(z3 zq 2 , z2 q) terms in the 4 equation will typically
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grow unbounded in time
To control the above-mentioned growth of nonlinear terms in (A.28), we select

-Y = ef f (t, to) + A (t, to) = 'Yx,eff (t, to) + AX(t, to)

\ 7y,ef f (t, to) + AY (t, to)

with 'Yeff(t, to) denoting an effective separation point. In that case, any solution of the first
equation in (A.29) can be written as

(t) = (to) + OA (-, 0, T) d
-tt

= #(to) + J A(x,ej f(t, to) + AZX(t, to), Yyef f(t, to) + AY (t, to), 0, T) dw.

Applying two consecutive times the one-dimensional mean-value theorem yields

A(}x,ej f(t, to) + AZx(t, to), yy,ef f(t, to) + AY (t, to), 0, T)

= A(Y,eff(t, to), Yy,e(7(t, to) + Ay (t, to), 0, r) + Ax(-*(T), 7,,ef f(t, to) + AY (t, to), 0, -)AX(t, to)

= A (-X, ef (t, to), yye f(t , to), 0, r) + Ay (x, ef (t, to), Y*(T), 0, r)Ay (t, to)

+ Ax ( * (N) 7X,,"-f (t,7 to) + A Y (t, to), 0, -F)'AX(t, to),I

for some -y* and -y*, respectively between yx and 7x,ef f(t, to), and -y, and 7y,eff(t, to).
The integration of this expression over [to, t] gives the expression

t4(t) =4(to) + Ax(t, to) juzz(7*(r), 'Yy,eff (t, to) + Ay (t, to), 0, r) dT
to

+AY (t, to) Uyz(x,ef f(t, to), -* (r), 0, T) dr.

Let I'(t, to) denote the x interval covered by the moving separation point -Yeff(s, to) while
s varies over the time interval [t, to]. We define I(t, to) as the smallest rectangle containing
I'(t, to), and we denote the length of I(t, to) by 6(t, to). If we select y from the interval I(t, to),
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then for any t < to, we have the estimate

4~(~(to) + Ax (tto)] UXz(7*(T), Yyef f (t, to) + Ay(t, to), 0, T) dT

+AY(t, to) j Uyz(Yx,eff (t, to), 7y (T), 0, T) dT

1 4(to) I + IAX (t, to)I j uZ(7(T), 7y,ef f (t, to) + Ay (t, to), 0, T) dT

+ JAY (t, to)I Uyz(Yx,ef f (t, to), 7* (T), 0, T) dT

tt< 1k(to)i + (IzX(t~to)I + IAY(t'to)) jmax uxz(xI,,)dT

< 4#(to)f + V\ 2IA(t, to)112 max uxz(x, 0, T) d
o xEI(t,to)

< J4(to)I +(t,to)vI 2 max uxz(x, 0,r)dT . (A.30)
0J XEI(t,tO)

As in appendix A.3, we now define the flower-cone

Q = {(q, z)I I|qJ' < z, 0 < z <},

where a and / are positive constants to be selected below. Modifying the functions 1j, nr, #
smoothly outside a time interval [to - Tm, to] with Tm to be determined below , we can select

a constant K > 0 such that the modified functions satisfy

Jlg (q, z,#, t)j, Ink (q, z, 0, t)# 01< K, (q, z) E Q, t E R.

Along the z = 3 boundary, we now have

lz= 3 2 [c(t) + (15z + 16q) - (17 + n2()]

;> #2 [c(t) - 2K 2 (0 + /1/0) > 0,

provided that

c(t) > 2K 2 (/ + 01/a)

or, equivalently,

wZ (y, 0, t) > 4K 2 (/ + C1/a) . (A.31)

Therefore, solutions intersecting the z = / boundary of Q leave Q immediately if the inequality

(A.31) holds for all times.
Next, we consider the q - zl/aeo boundary of the flower-cone Q, where we use e'O
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cos 0
sin 0)

Iq z1/aCeiO = Z 1+1/a [ax(t)eio + z'-1/' [(ax - cI) k + az1

+ (1iz2-1/a + z2- e2i + 13 zI/aei20) (14 + n?1)]

< zi+1/a [|ax(t)h| + z'~'/' [(ax - cI) 0 + az] + 2K 2 (02- 1/a + 0 + /31/a)

ZIq=zi/acio = z 2 [c(t) + (15z + 16 zI/aeio) - (14 + n20] > z 2 [c(t) - 2K 2 (0 + 01/a)

and we want the flow to enter the flower-cone on this surface, which requires

Zlq=azeiO > a| qjl O-1|41q=azeo for any 0.

Provided that

az zl+1/a [naxt + #1~1/a [(ax - ci) # + az1 + 2K 2 (02-1/a + 13 + /31/)]

< z 2 [c(t) - 2K 2 (3 + 01/a)

which simplifies to

a [Iax(t)I| + 0'-1/a [(ax - cI) -+ az] + 2K 2 [a32-1/a + (1 + a) (3 + 31/a)] < c(t), (A.32)

the above entry condition is satisfied.

We first select the coefficient a < 1 such that

(2-2 + 2 (to)l + (r, + 1) ItIW ) ozlax(t)I < c(t),

with , to be a selected positive constant in our system. For this fixed a > 0, we can always
select an appropriately small 1 > / > 0 such that the previous inequalities hold, provided that

(ax - cI) 0 + az < 2 1#(to)I + (r- + 1) IIUZZ(tI) h1ax(t)I ,(A.33)

2K 2 [a32-1/a + (1 + a) (/ + 31/a)] < 11ax(t)I.

The condition in (A.33) holds if we require

ax(t) + TrIa(t) 1 I (to) + 6(tto)V It max uxz(x,O, r)dr + ||az(t)I
2 2 ) +XEI(tto)

< (2j0(to~+(r,+1) FuXZz(t) II ) N x(l
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where we used the incompressibility relation Tr ax + 2c = 0. Using the relation

Tr ax(t)
2 < I1ax(t)II

the condition holds if we require

6(t, to) max IIUXz(X, 0, -) Id < vK max |Iuzz(t)I (A.34)
t XEI(tto) 2 xcI(t,to) I|uxz(t)l(

The choice of K will be very important: Selecting a small , will guarantee a great accuracy but
will enforce the separation point to move fast. Typically, we select K = 1.

We must also have
max Tr uxz(x, 0, t) < 0. (A.35)

xEI(t,to)

With this last conclusion, the rest of our argument is identical to that of appendix A.3.
Following that argument, we obtain that -y is a fixed sharp separation point for the modified
system that admits all the uniform bounds that we have assumed. As a result, the original
unmodified system also admits sharp finite-time separation at -y as long as it agrees with the
modified system.
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Appendix B

Proofs for the flow expansions

B.1 Tensor term of the curvature

As

UZ U1,3 y
U2,3)

Uxxz

UXz= U1,13
U2,13

U1, 13 U1,23

U2,13 U2,23 )

U1,23
U2,23

the tensor term (3.25) can be rewritten

( 2 U1

09X 1 X3

a
2

U,

OX219X3
X3

&2 0 3 ) i=1,2

a( (
+ ITr

Xi \, \~

02 U

09X10X23

02U,

aX2 0X3 i1,2 go

We first write the matrix

UxxzgO U1,11390,1 + U1,12 3 90,2
U2,11390,1 + U2 ,12 3 90,2

U1,12390,1 + U1,22390,2

U2,12390,1 + U2,22390,2

and we deduce the vector

UXXz 80 ( U1,113 (go,1) 2 + 2u,,12390,190,2 + 11,223 (90,2) 2

g2,113 (90,1)2 + 2U2,12390,190,2 + U2,223 (90,2) (B.1)

We also have

Tr uxz = U1,13 + U2,23,

which yields the vector

(Tr UXZ) = ( U,113 + U2,123
U1,123 + U2,223

Taking the scalar product with go, we obtain

(Tr Uxz)x g 0 = (U1,113 + U2,123) 90,1 + (U1,123 + U2,223) 90,2,
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which is also equal to Tr(uxxzgo).
Then we obtain

( = U,113 + U2,123) (go,1)2 + (U1,123 + U2,223) 90,190,2 ,
(Tr uXZ)- go] go ~ (U1,113 + U2,123) 90,190,2 + (U1,123 + U2,223) (90,2)2 (B.2)

and summing the contributions, we obtain

[(uxxz + (Tr uxz)X I) go] go (B.3)

(2ui,113 + U2,123) (go,1)2 + (3u1,123 + U2,223) go,1go,2 + +u1,223 (go,2)2

U 2 , 1 1 3 (go,1)2 + (u 1 ,1 1 3 + 3U2,123) go,190,2 + (u1,123 + 2U2,223) (90,2)2 -

In the first case, the skin friction field is linear, which implies that this term vanishes. But
in the case of the bubble, this term will be nonzero.

B.2 A word on the saddle-focus profile

In chapter 3, we showed that the predicted profile of separation at a saddle-focus approximates
the true profile poorly. As it turns out, the radius of convergence for a Taylor-series expansion
of the profile can be zero or small, which prevents a good approximation of the separation shape
unless we compute higher-order terms.

B.2.1 Numerical method to calculate the orders of separation

We present here a method which allows, for any steady flow whose velocity is analytically known
near the separation point, to numerically calculate all the orders of separation.

This method only works for the steady case, and cannot be directly extended to the unsteady
case. We find an algorithm which allows to obtain recurrently all the orders of separation.

Analysis of a non-analytic saddle-focus

Let us consider the steady saddle-focus flow such as K = (1 0 (thus corresponding to

the case when A =1 and 0= -), F = 0, A 1 2 3 3 = 0, and A 1 1 3 3 = A 2 2 3 3 = 6 < 0: under these
2

conditions, the model velocity field (3.20) takes the form

U1 = X2 x 3 + (a + 6xi)x3,

U2 = -X 1 X3 + (+ 6X 2 )X3, (B.4)
26 3

U3 = 3 X3

For this particular flow, we obtain go(to) = - and gi = - ; trajectories
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emanating from a vicinity of the separation point follow the separation profile

X356 -
= -X3 3 5e + O(x3). (B.5)

X2 1 X356 )3
3

By comparing streamlines of this flow and the predicted separation profile at first and second
order, we validate formula (B.5) in figure B-1.

Saddefm se p watig: u,-W(1=40 sadftfocus flow 1 'rig:u wWo1 (1-2x 1 4 ~ u4'

1.8 1.8

S1st order
separation

1.2, 1.2,

11 Streamlines 1 profile
0.4 0.8

0.8-

0.4,0'4

0.5 1 0.5 1

0 - .- 0.5 0 " -- 0.5
0 0

Point of saddle-focus
X2 X type separation

Figure B-1: Predicted and real saddle-focus separation profiles.

In the steady case, the motion of the particles is given by the streamlines, and we see in

the two cases of figure B-1 that all the particles of the wall are attracted to a single line, the

separation profile, which is approximated by our first and second order approximations.

The left image represents the case of 6 = -1/2, then the high-order terms are negligible and

the slope and curvature are sufficient to approximate the shape of separation. The right image

represents the case of 6 = -2, then the curvature of the separation profile is not sufficient to

obtain the real shape of separation.

The low-order saddle-focus profile is not as accurate as the saddle-sink or saddle-saddle

profiles. We will show that the following orders of separation grow unbounded, and this prevents

a good approximation of the separation profile, unless we compute a large number of separation

orders. Moreover, we will show that this separation profile turns out not to be analytic.
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Numerical orders of separation

Let us explain our algorithm on a specific case, the steady focus case (B.4): the differential
equations that the particles of the flow have to satisfy are

£1 £23(a3l) 2 (B.6)XI = x2X3 + (a + 6Xi)X 3 (.6

£2 = -X1X3 + (0 + JX2)x , (B.7)
2 3 

(B.8)

and the separation profile is (B.5) at second order.

Time-scale We see in (B.8) that X3 has a simple dependence on time that can be integrated
X1 El

directly. Let us take the initial conditions at X2 = ( close to the origin, in which

(X3 E3
case (B.8) implies that

63

3

Then we define the natural new time-scale by setting

i = X3, (B.9)

which implies that for i = 1, 2 we have

. xi _xi 0X3 ,26_

Ot 0X3 at z 3

Differential equations With this new time-scale, the system of differential equation becomes

3 x2 + (a + 6x1 )i
£1 -xi= 26 j2

3 -XI + (0 + 6x 2 )t
£2 = 22 . (B.1)

In the steady case, the separation profile corresponds to the streamline emanating from the
separation point, then searching the first orders of separation is the same thing as looking at
the solution of this system expanded at a certain order in power series. One can expand the
C' solutions of (B.10) in Taylor series at any order: considering the kth order, we can write

k

x1 I n Zy +±(ik+1),
n=o

k

n=O
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We replace these expansions in (B.10) and we obtain the system

k+1 ~ k k k k+1

Z(n -1)ynn - Yz. + -6ZyniI + O(k+l)
n=1 n=o n=1 .

k+1 ^ k k+1 1
Z(n - 1)zn ii - - - +yn O + 6+ 0 zn-ih] + Q(Ek+). (B.11)
n=1 Ln=O n=1 i

We now have to equate all the terms of this expansion to determine the separation profile.

Verification on the first terms We write the separation profile in the form

(2) X3 1 gX2 n= n 3 + O(jk+1),

and replacing X3 with t in this expression, we expect for n > 1

Ya-I. (B.12)

Taking the constant terms of (B.11) yields yo = 0 and z 0 = 0, which we expected.

Then the linear terms of (B.11) yields yi = / and zi = -a, corresponding to the slope of
separation determined in (B.5).

The quadratic terms of (B.11) give Y2 = 6a and z 2 = 53 , corresponding to the
33

curvature of separation determined in (B.5).

Thus this method gives the correct orders of separation, at least for the first terms.

Practical algorithm Taking the terms corresponding to P' when 2 < n < k yields the
system of equations

n + )Yn-I = Zn

1 3
n + Zn- 1 = - - yn,

which is true for any k. Thus this implies when n > 3:

Yn {26 )2( 2 _ Y-2yn =4

Z 6 - 2 (n2 ( Zn-2
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Then we have when n > 2

n3= - (n +)2 2 - n (n - 1) g .-2. (B.13)

Knowing the first two orders of separation, we can now recursively calculate all the orders.

Growing orders of separation Expression (B.13) shows that the orders of separation in-
crease fast, which implies that the successive derivatives of the flow at the separation point
become important. This will prevent a good approximation of the separation profile by only
a few terms. We see on figure B-2 the profiles computed at different orders: Each number
corresponds to the order up to which the separation profile is expanded, from the first to the
sixth. Apparently, the shape of separation is not better predicted with more terms. In reality
it is better predicted, but the convergence is slow, and the predicted profile diverges fast from
the real shape of separation.

Saddle-focus flow separating: u 1=x +(1-2x ,) s V, u2=- 1 Y(2-2x2) s, u3=4x03

2,

1.81

1.8,

1.4,

1.2,

10

0.81

0.6-
0.41
0.2B

0.5
0..5

-0.5 .5

Figure B-2: Saddle-focus separation profiles at different orders.

B.2.2 Analyticity

Non-analyticity of the previous case

As we are about to show, the previous profile can not be predicted well because it is not analytic.
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Writing the infinite power series

n>O

X2 =E n

n>O

which is true at least at the separation point, we seek the radius of convergence of this series,
which corresponds to the radius of the disc around the separation point where this infinite
expansion remains valid. We substitute these expansions into (B.10) to obtain

3(n - 1)yn-I
n>1

E(n - 1)Zn-I
n>1

3 ~
2 LZnti + 't + ynY l

n>O n>1

3
= [- yn~n±I3 +Zn-tn1

n>O n>1

Equating each term at the nth power, we obtain the system of equations valid for n> 2

n - Yn-1

+ I n)
(n + 1)~i

yn = - (2 2

Zn = - 2

which implies when n > 3:

3
-Zn,

3
+ Yn,

( 2 - Yn-2,

(2 -_ Zn-2-

Then we have

lim Yn
nAOo Yn-2

lim Zn
n-Zoo 2

00,

00,

and by D'Alembert's rule, the radius of convergence of the sequence is zero.
As the radius of convergence vanishes, the separation profile is never equal (except at the

separation point) to its infinite power series, and this is going to prevent a good approximation
of the real separation profile by finite truncations.
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Comparison with another case

Apparently, the separation profile is not always analytic. But is it ever? Let us analyze a
particular example, the flow given in (3.42): using the equivalent change of time-scale t = X3
and writing

X1

X2 ) = E GZl
n>O

with Gn = n
SZn

we have the equation

znGnP-1 
(i2

n>O

- 23P)
11(z~ -1

then we deduce the equation in Gn for n large enough:

(n - 1) Gn-1 - (n - 2) Gn- 2 (2
that we rewrite

u G - (n - 1) G-1 + (ns-y2)+ Gn-2=0

The above equations give the system

-Yn + Zn =

-Yn - Zn =

Looking for the limits of Yn

Yn-1
and Zn , we find that

Zn-

lim yn =
naoc Yn-1 26'

lim =
n..oo ZnI

3
26,

23
thus D'Alembert's rule implies that the radius of convergence is equal to 26

As this flow is analytic, we will see that the following orders of separation will tend to come
closer to the real separation, as shown in figure B-3. The profiles computed at different orders

(each number corresponds to the order up to which the separation profile is expanded) always
give a better approximation of the real separation.
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n>0 13 ) Gni ) 2 ,

n>O

_iGn + JGn-2,

(B.14)

-2) +1 Yn-2,

-2) +1 Zn-2-

(n - 1)yn_1 - (n

(n - 1)zn_1 - (n



Saddle-focus flow separaUng: u1=x x3+xy +(1-2x1) , u2=x 1 3x "+(2-2x 2) x, U3  -4xV3

2-

1.8 4
1.6

1.4

1.2

0.8

0.6

0.4,
0.2

0.51
0 0.5

-0.5 -0.5

-12- X,

Figure B-3: Saddle-focus separation profiles at increasing orders.

General case

Considering the general equation (3.20), we once again perform the change of time-scale i= X3
and write the power series in Go, then we deduce the equation in G, for n large enough:

k11 + k22  1) 1 -__ +__A2233_ A11 3 3  A123 3-- (n -1)Gn-1 A 1133  A 2233 (n - 2) Gn- 2 = KGn + A 1 3 3  A 233  Gn-2
2 3 A1233 A2233

that we rewrite

KGn + 2 (n -1) Gn-1 + Tr3 (n -2) + A Gn-2 = 0, (B. 15)

with Tr K = kil + k2 2 and A = A1 133 A1 233
(A1233 A2233 )

Defining R = the radius of convergence of the power sequence, we can analyze the different
cases when K is invertible.

When Tr K = 0 and A = 0, the solution is a polynomial, R = oo.

When TrK = 0, A A 0 and TrA = 0, then " ~ Z" - constants, thus 0 < R < oo.
Yn-2 Zn-2

When Tr K = 0 and Tr A , 0 (first case analyzed), then Yn ~ Zfl n or n2 , which
Yn-2 Zn-2

implies that R = 0.
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When Tr K #0 and A = 0, then Yn ~ zn ~ n or n2 , which implies that R = 0.
When rK #0 A #0and n-2 Znn 2

When Tr K #0, A 7 0 and Tr A = 0, then once again Y" Z ~ n or n2, which
Yn--2 Zn-2

implies that R 0.
Finally, when Tr K : 0 and Tr A : 0, we cannot directly determine the radius if conver-

gence, but we still can see that it is finite: 0 < R < 00.

Conclusion

We have generalized these two examples and shown that the radius of convergence depends on
the values of the parameters of the flow. Thus, in steady flows, we can determine the radius;
and if it vanishes, the separation profile determined by the theory is not analytic, and is likely
not to fit the real separation.

B.3 Steady saddle-foci of the bubble

B.3.1 Saddle-foci profile

We have already experienced some problems with saddle-foci profiles. If the saddle-saddle profile
still seems accurate and draws well the bubble shape, once again we wonder if the saddle-foci
profiles of the bubble at second order accurately fit the real separation. Thus we would like to
numerically calculate the following orders of separation.

B.3.2 Change of variables

We re-center the differential equations around the saddle-foci. For example, let us consider
(-d/c

F = 0, and look at the first saddle-focus y3 = 2  : setting
-b 1-(d)

X1 = 7 +3 1sr+
X2 3+ (B.16)

X3 =(3,

we re-center the equations (3.45) around the separation point to obtain the new differential
system
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2d 1  (1I
=(3 a2 + a

+ ([a

2 = (3 (

- A 11 33 -
C

-bc 1 -

2 2 1 - (Td)2(2
b

A 1233 b 1- +

(1 + C(12 )

(2)2
S\bJ

I
A11 33 (1 + A 1233 ( 2 + ca2 - 2

(B.17)

3 - A 1233 - - A 223 3b 1 d
C F1(c

cda2  2d\
2ca2 ca2 - 22a2

+ A 1233 ( 1 + A2233(2

A1 13 3 + A 2 2 3 3 (

3 ~3-

Then we apply the usual change of time-scale t = (3, expand (1 and (2 in [-series, and
with the previous notations we obtain the equation in y, and zr, the Taylor terms of the series
of (1 and (2:

( d( ~2
cda2 - 2d

2ca2 2+a2  ZYnPI

n=O

A11 33 + A2233
+ (jik+1)

2d k

ca 2 Z Yni +
n=O

1 2 1( 2

n=O

d (d
oz- A 1 1 3 3 - - A 1233 b 1(

C (a

nZnI- 1 ( - cda2 - 2d

2ca 2 J

(- _)2

b n=o

k

+ A1133 yn
n=o

ca 2 - 2 YnI+

Zn t +

n + A 12 3 3

(k 2]

n=O

n=o
+"ca2 + 2

A11 33 + A 2233 ) + O(jk+1)
3(

(B. 18)

-bc 1 (d) 2
k k

+ C yn jnEZ

n=O n=O

Zn")

k k 1
A 12 33 E yni + A 2 2 3 3  z: z .tj

n=o n=O
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B.3.3 First terms

Linear term

Looking at the linear term in (B.18), which corresponds to the first nonzero term in t, yields

2d 1 )2
ca2YO + 2YO

2 () zo + (zo)2= 0,bT2

-b 
d

Fb 1- - C yo + yozo = 0.

) is a solution of this equation, and is the one we expect, but it is not the

only one: there are also YO
ZO )

Y+ o 1 - ( )2

Sa
the three other separation points.

0

2b}1 - (d )2
( yo
,O (d

C b}1~ -()2ac )and

, which correspond to the three other separation profiles of

Here, we only consider the first saddle-focus.

Quadratic term

Looking at the quadratic term in (B.18), which corresponds to the second nonzero term in t,
yields

ca 2 - 2 \)
+ -2a2 YO

2d 2 2 1 - ( j 2
ca2Y' + a2Y01 - b

1 + d 1-d\ ~213Y0+A 2 z,
+ zoz, + a - A 1133 - - A 12 33b I - + A133YO + A1233ZO,

+ ca 2 2YO =bc 1 - y1

d (dN 2

+3 - A 1233 - - A 2233 b 1- - + A1233yo + A 22 33zo.
C ac
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Using the previous condition

(d

2

-cda 2 + 6d
+ 2ca2 \)

( YO -implies

2 1-( )2 d / 1 3 b1 (d\ 2

Y1+ b zi = a - A 1 133 - - A1233b d-

(d
-bc d y1 +

cda2 2d zi ) -- A1233 d
- 2ca2 / C

- A22 33b 1 d

corresponding to

3d
ca 2

-bc 1 a- ()2

a ) + ( A 1 13 3

13) A 1233

2/-()2
b

ca2 ,
A1233 )
A2233 -

thus to the slope equation (3.53c).

Cubic term

Looking at the cubic term in (B.18), which corresponds to the third nonzero term in t, yields

A 1133 + A 2233 )
3

+ 2Y2 d
(2

1 222
Y1 b Z2 + g z2

cda2 - 2d)
2ca2

+ [A1133Y1 + A 123 3z1 +

A 1133 + A 2233 )
3

- (bc 1 ( Y2 + cCY1zI [A 1233y 1 + A 2233 zi] .
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Rearranging the equations, we have

2 2d +2d
2ca2 ±

-bc 1 - ( )

2 1-( )2
b

22d
22ca2

A11 33 + A 1 133 + A 2233
3

A 1233

(

ca2 -22 1 1 2

+ Ca2 -2

2a2 -) c yi

which is the same equation as (3.54c).

Any term

If we now consider any order n > 4 of the expansion, we have the equation

(n - 1) y_1 (d
2

2d 1
ca2yn-1 + 

cda2 - 2d)

2ca2

ca2 - 2 n-2

+ 22-

n-2 2 1 - ( )21
YiYn-1-I b n-1 +

i=b1

A 1 1 33 + A 2 2 3 3 (n - 2) Yn-2

3

n-2

Sziz-l-i + A113 3 yn-2 + A 1233 zn- 2 ,

ca2 - 2 n-2.

2a2 i n- -

A1 133 + A 2233

3 (n
- 2) Zn-2 (B.19)

= bC d ( ) 2 Y - n -2= bc ac yn_1 - C yizn-1-i + A1233Yn-2 + A 2 233 zn- 2 ,

which allows to recurrently calculate the different orders of separation.

B.3.4 Conclusion

It appears on our images that the second order separation profile draws well the shape of

separation and is accurate enough. We still have a numerical model that we can use in case we

would like higher accuracy.

B.4 Separation surfaces

B.4.1 Complicated shape of the attracting surfaces

On the left of figure 3-6, we see that particles near the separation points are first attracted to

the separation points, then are attracted near the plane x2 = 0. They come closer and closer
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to this plane, rotating, and they finally leave it in a line which attracts all the particles away
from the bubble.

On the right, we see the particles passing on top of the bubble, then they rotate, come back
near the attracting surface in the plane X2 = 0, and leave it following the same attracting line.

B.4.2 Theory

The analysis and creation of this surface are explained in chapter 4.

B.4.3 Steady bubble

In the steady case, the separation line satisfies the differential equation

( B(x, s(x))
s'(x) = ~,sx) (B.20)A (x, s (x))'

and joins the saddle-saddle, thus the point 0 , when t -+ -oo, to a saddle-focus, say the

( -d /c
point -d\2 ,when t -+ +oo.

bU 1
-(d)a

Formula (B.20) is local and allows obtaining the entire separation line by part. Indeed,
we see that the trajectory joining the saddle-saddle to the saddle-focus will wind round the
saddle-focus, which implies we can no longer define a bijection between x1 and X2 near this
point . Locally, s satisfies

-cxis - ds (B.21)(X,)2+(8) 2 (.1
+a- 1

but we can not integrate directly this nonlinear differential equation.

Analytic solution

When we look at the trajectory connecting the saddle to the foci, we see that it leaves in the
direction X2. Thus we expect X2 to vary faster than xi + a, and we can begin with solving the

equation (B.21) when )-1 < 2: then

' s(cx1 +d) _ cx1+d

which integrates to

s 2(xl) xic2 c x +d )2 +C + d )2
~ -c + dx) -da = x1+- +- -a+-),

2 2 2 2 C 2 C

thus we obtain the equation of an ellipse

)2C2
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Then we can draw this ellipse and check how well it fits the real separation line.

Numerical solution

In the general case, we cannot solve (B.21) analytically, but we can still solve it numerically, as
shown in figure B-4. Here we compare the shape of the separation line (we solve this equation
by part, changing the sense of variation of x1 each time s' vanishes: the separation line turns
around the focus) with its approximation analytically obtained and the simple shape of an
ellipse going from the saddle-saddle to each saddle-focus. Even if an ellipse is a simple analytic
shape, it is a good approximation which fits well the true separation line .

Steady separatrix and comparison with an ellipse (a=b=c=1. d=0.5)

-0.5 -

-0.7

-1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
X2

Figure B-4: Numerical separation line and comparison with ellipse shapes.

B.4.4 Periodic bubble

The equation of the separation line writes

B(x, s(x),.) - s'(x)A(x, s(x),.) = 0, (B.22)

where h refers to the temporal mean of h. When the coefficients a, b, c and d are periodic, we
replace them by their mean value to obtain

s' = ____

X1

x 1 S - i S

+2 s - 1
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Focus Focus

Ellipse linking the saddle to the focus

Separatrix

I

(B.23)
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This equation has already been analyzed in the steady case.

B.5 Periodic moving saddle-foci

B.5.1 Periodic slope

If we look at the slope in a separation point y of (3.57), we have

i 0( a 2 f b 2
-c(71 - f1)(Y2 - 2) - d(Y2 - 2) )dr= ( 0

E(-Y2 ) (sin wt -

then

1 - fi) (6 - a2 c) - a 2d

2a 2

-c(72 -- f2)

(
272 - f2

b22C
(,- fi) (2 - 3a 2c)

2a 2

dra ) 2+(b 2 I

-fl)(72 -f2) - d( 2 - f2) 

-2 2 (sin wt - sin wto)

((Yi - fi) (2 - 3a 2c) - 3a 2d) E(72 2 (sin wt
2a W

A 1233

A 2 233 -

-sin wto)

- a2c) - a2d
2a 2

-C(72 - f2)

71 - fi) 72 2)

/30 )+ ( A 1 13 3

A 1233

( 1 - fi
2

b

2Y2 - f2
b2

(2 - 3a 2c)
2a 2

-1I dr]
- d(72 - 2 )

A1233
A2233

- 3a 2 d

ds

2- f2) 2 sin wto
wb2

- 3a2 C) - 3a 2e)Eb 2 M sin wto

+ terms in cos wt, sin wt and cos 2wt.
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sin wto) )

( 2

x

- 3a 2d )

thus

A 1 1 3 3

A 12 33

x (
-(t- to)

0, ) +
S-f)(6

((- 1 - fi) (2



Taking the limit t -- -oc, we only keep the linear terms of this vector and of the matrix

[i (71j - fi) (6 - a2c) - a2 d 2 Y2 - f2

S2a2 b2 2
Ito ~(cf) - fi) (2 - 3a2c)

L -c(2 -M2) 2a 2

we eliminate the periodic terms in the slope formula to finally get

go(to) - tio

x (t -to)[

(t - to)

(a
13 )
( - f) (6 - a2 c) - a2e

2a 2

-C(_Y2 - M2

( A 1 1 3 3

+ A 1233

A 1233
A 2233

2 - f2

('1 - fi) (2 - 3a 2c) - 3a 2e
2a 2 )dT

2(Y2 - f2) 2 sinwto
wb2  sin - 2

((-y - fi) (2 - 3a 2c) - 3a 2e) 2 -Mw
2a2w

-1-

sinwto

-- (7 (- -

(a

/3) +

fi) (6 - a2 c) - a2 C

2a 2

-c(Y 2 - f2)

A 1 1 3 3
A 12 33

A 1233
A 2233

3a 2e

272 - f2
b2 

2C
(Yi - fi) (2 - 3a 2 c) -

2a 2

(B.24)

2(72- f2) 2 sinwto
wb 2  sin - 2

((7 - fi) (2 - 3a 2c) - 3a 2e) 2a sin wto

I-
We remark that when 72 - f2 = 0, the periodic terms disappear, thus there will not be any

periodic terms in the saddle-saddle separation points.

B.5.2 Periodic curvature

In the same way, we can analyze the terms of the curvature formula: we first have

71 - fi) (6 - a2 c) - a2d
2a 2

-c(72 - 2)

)+ A 11 33

+ A 1233

A 12 33

A 22 33

272 - f2

(yi - fi) (2 - 3a 2c) - 3a 2 d
2a 2

(Y+r(

) go (S)

2E - f2)2 sinws
wb 2  2 E (7 2  )

- fi) (2 - 3a 2 c) - 3a 2a2 w sin ws
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which implies

/a ) A+ ( A,11 123
.0o _ A1233 A223

(71 -- fi) (6 - a2 c) - a2 d

+ 2a 2

-c(Y2 - f2)

(

3

3 /

272 - f2

(7i - fi) (2 - 3a 2c) - 3a 2d
2a

2

f 2 s-i2  f2)2 b2 -snw

((1-fi) (2 - 3a 2c) - 3a 2 Eb2 -f2 sin ws )
)go0(s)1

ds

2 2  (cos WT - cos Wto)

- fi) (2 - 3a2c) (-Y2  (Cos W - Cos to)2aw (W sw-cowo

Then in the following term

(71 - fi) (4 - a2 c) - a2 d

tO 2 
a 2

-C(72 - M2)

ft [()+ ( A 1133 A 1

Ito K/)± A1233 A 2(1 - fi) (6 - a2 c) - a2 d

+ 2a 2

-c(2 - 2)

=2 J
-to

1
0

(7i - f) (4 - a2 c) - a2 e
a

2

-c(Y2 - 2)

0
2 )COSrWT x Y

\(7 1 -fi)

27Y2 - f2
b2

fi) (1 -a2c)
a2

233 )
233

2'2 - f2
b2 2C

(i -- fi) (2 - 3a 2 c)
2a

2

2 - f2

- fi) (1- a2C) - a2e
b2

2 a2
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we only keep the dominant terms

(y7 - fi) (4 - a2c) - a2e

2(t - to) a 2

-c(2 - f2)

x ( 2 - f2) 2
wb2 Cos Wto

2 (' -

- (71 - fi) (2 - 3a 2 c) 2a2w cos Wto

1
0

)
272 - f2

b2

i) (1 - a2c) - a2e
a

2

E(72- f2)
2

wb 2

(bi - fi) (2 - 3a 2c) 2 -
2a W

We also have to analyze the nonlinear term

to
gTgo dt,

with the tensor T defined by

4 - ca 2

a2
g07go ( 2 2 2

(0,1) + - (g,2)2
2 - 3ca2

a 2 gO,1gO,2

and we can decompose go as

go = gs + g sincwto =
S

90 1

90,2
)+( P9j sin wt 0.

90,2
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Thus we have

.1: goTgo dt

4 - ca 2  2 2 s
a2 (g0,1 + gefi sin coto)2 + g (g0"2 + g0S2 sin wto) 2

2-3ca 2  + 90)

a 2 (g 1 + g, sin wto) (g 2 + g9 2 sin wto)

4 - ca2 (g )2 2 2 
a2 (g0 1 ) 2(g0 2)

a 2-3ca 2 S

a 2 90, 1 0 ,2

+ sin 2 wto

(t to) (

4 - ca 2  
P) 2 + 2(g

a 2( - 3cag

a2 g001g0 2

4ca2 
(g1) 2 (g,2

2-3ca 2 p

a2 g0 ,1g 0 ,2

8 - 2ca 2 9 9pI+4 gS2/ 2 P0101+gg3KS
+ sin Wto a2 20

a2 (90,190,2 + g0,1g0,2)

12) ) dt

2)

( - -2ca 2  P 4 S Pcos wt - cos wto a2c2 g01g0, + Pg202

W 2 - 3 ca2 SP + )

a2 (0,190,2 + g90,g90,2)

4 - ca2 (gp,)2 + 2 )2

(t -to sin 2wt - sin 2wto a2 2 0) (g2
2 4 a 2 -3ca2 0,

a2 90,190,2

123

t

0

tto



Finally, we can write the curvature, keeping only the linear terms

-1

-lim 2(t - to)
-+ Oc

(
(71 - fi) (4 - a 2c) - a2 e

a
2

-c(72 - f2)

ca 2 - 2

6a
2

0 )
4A 11 33 +A 22 33  A1233

A1233 A 11 3 3+4A 22 33

+(t - to) (
4

+t to

+ 2 (t - to)

)
4 - ca2 ( 2 + 2

2 - 3ca2 S
a2 90,190,2

2 7 2 - f22

- bfi) ( a2c)
a 2

go dt

- ca2 gp 2 +2 gp)2
2 (g1) + (go, 2)
a2 - 3ca2P

a2  90,190,2

(71 - fi) (4 - a2 c) - a2 e
a

2

-c(Y 2 - 2)

)
)

b2 2

b a2 C)

- (-Y2 ~ f2) 2

wb 2  Coswto

-(71 - fi) (2 - 3a 2a Wto

-(t - to) ( 2 2 - f2)2

wb
2

( - fi) (2 - 3a2C) f2)
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which simplifies to the still complicated formula

- f) (4 - a 2 c) - a 2 e

a 2

-c(72 - f2)

ca 2 -2

6a 2

0

4 a2

) 4AI1 33 +A2233

1
2 72 ~ f2

2 2

1- fi) (1- ac) - aea2
A1233 A11

2+ (gjj2) 2

[2

x 2

2)
2E f2) 2

wb 2

(7y - fi) (2 - 3a2C) 2

(-1 - fi) (4 - a2 c) - a2 e

a
2

-c(Y2 - 2)

E -2 f2)
2

-2 b2

- (7y1 - fi) (2 - 3a 2a 2 w Cos

(

)
A 1233  S
33+4A 2233  9 0

3

4 - ca 2 (gp)2 + 2 (gp )2

2 - 3ca2 P

a2 90,1 90,2

)
27'2 - f2

b2

2 (71 fi) (1- a 2c) - a 2 ea2

)cos Wto

)

Once again, when Y2 = f2, gi does not depend on time. Only the profiles of the saddle-foci
will move.

B.6 Periodic moving saddle-saddles

B.6.1 Periodic slope

If we look at the slope in a separation point y of (3.60), we have

( ) b - fi 2_

-C(7 1 - fi)(7 2 - f2) - d(7 2 - f2) )dr= V(71 W fi) (sin wt - sin wto)

0
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+2
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1 -fi)(6-a 2c) -a 2 d

2a 2

-c(7Y2 - f2)

a( )

2

+ b

272 - f2
b2

('i -- fi) (2 - 3a 2c) - 3a 2 d
2a

2

- I
'Nj d

0 -c(X 1 - fi)(72 - f 2 ) - d(7 2 -f2)

(7y, - fi) (6 - a2 c) - a2d v(7 1 - fi) (sin wt -
2a2 V(Y i

C(- 2)V(' - fi) (sinwt - sin wto)

(7y, - fi) (6 - a2 c) - a2 d

2a
2

-c(72 - 2)

a ) 2 +()b 
2

-C(71l - fl)(72 - 2) - d(7 2 -

[( a
/3) A 1 1 3 3

A 1 2 3 3

27Y2 - f2
b2 2) 2('i -- fi) (2 - 3a 2c) - 3a 2d

2a
2

2)

A 1233
A 2 233 /1

)
dr ds

(-y - fi) (6 - a c) - a2d v(- 1

2a2

-c(72 - 2 ) V(1 - fi)
W

- fl)f sin wto

sin wto

+ terms in cos wt, sin wt and cos 2wt.

Taking the limit t -+ -oc, we only keep the dominant terms of this vector and of the

matrix

K( (i
to

2 72 - f2

2f) (2 - 3a 2c) - 3a 2d
2a

2 )]--1
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J
(

)

thus

r

sin wto)

to .
) +a

/3

A 1133
A 1233( A 1233

A 2233

+ (
-s(

.Jto 
\

= (t - to)
I

- fi) (6 - a2 c) - a2 d
2a

2

-c(72 - 2)



we eliminate the periodic terms in the slope formula to finally get

go(to) -lim

x (t - to)

(t - to)

(a

/3 )

(71j - fi) (6 - a2C) -- ajd
2a2

-c(2 - 2)

+ (A11 33
A 1233

A 1233
A 2 2 3 3 'K

272 - f2
b2

(71 - fi) (2 - 3aoc) - 3ad
2a2

-1I

dT

- fi) (6- a c) - a2d v(71 - fi)0 0 sin wto
2aoj

-c(7 2 - f2)v( - fi) sinwtoW
-1

2Y2 - f2

(71 - fi) (2 - 3a2c) - 3ajd

2a/

(m1 - fi) (6 - a'c) - a'd v(m

2a2

-c(2- f2)v(71 - fi)
_Cb2 f2) W

(B.26)

-fi) sin wto

sin wto

B.6.2 Periodic curvature

In the same way, we can analyze the terms of the curvature formula: we first have

(71 - fi) (6 - a2 c) - a2d

2a 2

-c(Y2 - 2)

) ( A 1 1 33

+ A 1 2 3 3

A 1233
A 2233

2 72 - f2

( 1 - fi) (2 - 3a2c) - 3a 2 d
2a

2

3 (3 1 - fi)

/ --c(72 -
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71 - fl) c + d) v(1-Y-

2 W s

-f2) v(1-fi) sin ws

- fi) sin s)
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which implies

a ) + ( A 11 3 3  A 12 3 3

/ + A 1233  A 223 3

- fi) (6 - a2c) - a2 d
2a 2

-c(2- f2)t 0

(

b2

(71 - fi) (2 - 3a 2c) - 3a 2d

2a 2
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Then in the following term
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272 - f2

('1 - fi) (2 - 3a 2c) - 3a2d
2a 2

)
)

2 -2 - f2
2
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2
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ao 2 W 7
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we only keep the linear terms

(71y- f1) (4 - a'c) - a'd

a 22(t - to) a0

-c(2 - f2)

3 (-y,- fi) +(-y, - fi) c +
ao 2
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We also have to analyze the term

2Y2 - f2
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a 2
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Decomposing go as
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we have
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t c (gsi + gefi sin cjto)2 +
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Finally, we can write the curvature, keeping only the dominant terms
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which simplifies to the still complicated formula
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