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Abstract

Anodic bonding is a common process used in MicroElectroMechanical Systems (MEMS)
device fabrication and packaging. Polycrystalline chemical vapor deposited (CVD) silicon
carbide (SiC) is emerging as a new MEMS device and packaging material because of its
excellent material properties including high strength, hardness, and thermal conductivity.
An alternative, low temperature glass to CVD SiC anodic bonding process is required in
order to prevent gold tin braze stress relaxation. A novel process recipe, requiring a SiC
RMS surface roughness of 45nm, was developed for anodically bonding CVD SiC to
bulk and thin-film, lapped PyrexTM and Hoya SD-2TM glass substrates. The bond quality,
residual curvature, and microstructured interfacial features for CVD SiC anodic bonding
were shown to be comparable to single crystal silicon (Si) anodic bonding. The Plaza
Test specimen, invented by Plaza et al., was used to assess bulk and thin-film, lapped
glass bond quality. A two-part contact/bonding model was used to predict the contact
and bonding of the Plaza Test structures. Surface contact was predicted by a parallel
plate capacitor pull-in model after the voltage was applied, and linear elastic fracture
mechanics (FEA) modeling predicted the toughness or work-of-adhesion of the bonded
surfaces after the formation of a permanent silicon dioxide bond. The role of the voltage,
structure geometry, work of adhesion, and materials used in the model predicted that the
bonding mechanism limited the total number of structures that remained bonded. The
thin-film, lapped glass bond quality improved when increasing the voltage and time. The
calculated, experimental, and modeled thermoelastic curvatures were minimal, indicating
low residual stress between the bonded materials. Finally, microscopy and elemental
analysis showed distinct differences in elemental depletion band(s) of bulk PyrexTM and
Hoya SD-2TM glasses bonded to Si, and in interfacial bonding between PyrexTM and CVD
SiC compared to PyrexT M and Si. More elements in the glass network are identified as
participating in the depletion layer process than identified in previous studies. Overall,
the process recipes, modeling, experimental work, and chemical analysis of glass to
CVD SiC anodic bonding showed that CVD SiC can be bonded successfully and be a
promising packaging material.
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Thesis Advisor: S. Mark Spearing
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Thesis Advisor: Linn Hobbs
Title: Professor of Materials Science and Engineering and Nuclear Engineering
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Title: Professor of Mechanical Engineering

3



[THIS PAGE INTENTIONALLY LEFT BLANK]

4



Acknowledgements

I would like to express my sincere gratitude to the following people for their
guidance, wisdom, and assistance in my dual masters thesis. This thesis
involved an extensive amount of thought, fabrication work, and experimental and
modeling analysis, which could not have been done by myself. I am also grateful
to have been offered a Draper Fellowship. I received the best of both worlds,
MIT and Draper, and the best of two masters in Mechanical Engineering and
Materials Science and Engineering.

I truly appreciated the lengthy insight, edifying discussions, constant supervision,
and challenges from my primary MIT advisors, Profs. Mark Spearing and Linn
Hobbs. I'm very grateful to my MIT reader, Prof. David Parks, who gave me
insight into future modeling analysis. By attending Spearing's group meetings, I
gained a lot of knowledge from other graduate student's research, and their
suggestions and observations were valuable to my own research. I thank Kevin
Turner for all the discussions, patience, and wisdom. I also express thanks to
Hyung-Soo Moon, Dongwon Choi, Christine Tsau, DJ Shim, and Jeremy
Gregory. I'm appreciative to Ivan Lee, and Rob Bernstein for use of their lab
equipment. I'm grateful to Dr. Stefan Schweizer who assisted me with the
arduous TEM prep and analysis. A big thanks to Leslie Regan who always lends
a helping hand and ear to each graduate student.

I truly appreciated my Draper Supervisor's, Ralph Hopkins, constant availability,
knowledge, patience, and confidence in my research. A sincere thank you to all
the Draper technicians and staff who were always catering to my frequent needs
involving fabrication work, equipment/software use, or research discussions: Jeff
Borenstein, Amy Duwel, Bill Sawyer, Mark Mescher, Matt Varghese, Dave
Nokes, Connie Cardoso (my saving grace), Manuela Healy, Bessy Silva,
Katherine Ashton, Isaac Costa, Brian Orrick, Mert Prince, Jim Cousens, Bill
Donovan, Dave Porter, Peter Sebelius, Richard Caruso, and Jim Bickford.
Thank you to the staff who gave me a gift of a Draper window office during my
final months.

Not only did I bond samples, but I also had the pleasure of bonding with my
friends, roommates, and off icemates in order to escape the stresses of class and
research: Sarah, Yabei, Marisa, Cari, Robin, Janelle, Femme Cards, PERG,
Chris, Anne, Aimee, Kevin, Jaime, Nadine, Mimi, Krissa, Matt, Jeb, Kara,
Kyrilian, Gary, Raj, and Dave. I also met many friends along the way training
with the MIT Triathlon Club and for marathons, being on AHEC, and involved
with NMB and Mars Society. I thank COL Young for all his support and funding
of the JPL Mars Mission Robotics Videoconferences. Every evening I came back
to a pleasant dorm, Ashdown: thank you, Terry and Anne, Denise, and Cissy.

I have been blessed with a family, who has been a perpetual support throughout
my life. They deserve the most heartfelt appreciation. My parents (Mama and

5



Daddeo), brother (T J), and sister's (Jessica and Melissa) undying faith, sacrifice, 
soothing spirit, guidance, judgment, and love have built the person I am today. 
My grandparents (Nana, Papa, Omi, and Opa), aunts, uncles, and cousins have 
also given me undying love, support, and encouragement. Each has allowed me 
to keep my "out-of-this-world" dream alive. 

Last, but not least, thank you, Alexis. You have a special place in my heart, and I 
look forward to learning and dreaming with you. 

"Commit to the Lord all you can and your plans will succeed. II Proverb 16:3 

MARS OR BUST ... 

This thesis was prepared by The Charles Stark Draper Laboratory, Inc., under 
Internal Company Sponsored Research Project C301, SOA - System 
Engineering/Program Management. 
Publication of this thesis does not constitute approval by Draper of the findings or 
conclusions contained herein. It is published for the exchange and stimulation of 
ideas. ,r, • /'-\ J "1 

Author 

6 



Table of Contents
Chapter 1 Introduction ..................................................................................................................................................... 13

1.1 Device Packaging................................................................................................................................................... 13
1.2 Device-Attachm ent Process Requirements............................................................................................................. 14
1.3 Review of Underpinning Technologies.................................................................................................................... 15

1.3.1 Anodic Bonding................................................................................................................................................ 15
1.3.2 SiC for M EMS.................................................................................................................................................. 15
1.3.3 Packaging........................................................................................................................................................ 16

1.4 Research O bjectives .............................................................................................................................................. 16
1.5 Thesis O utline ........................................................................................................................................................ 16

Chapter 2 Review of Science and Technology of Anodic Bonding ................................................................................ 19
2.1 Anodic Bonding Bulk G lass to Silicon ..................................................................................................................... 19

2.1.1 Mechanism s..................................................................................................................................................... 19
2.1.2 Strength and Toughness Methods to Characterize Anodic Bond Q uality...................................................... 28
2.1.3 Bond Q uality using the Test Specimen: Plaza Test Mask.............................................................................. 29

2.2 Thin-Film G lass to Silicon Anodic Bonding ............................................................................................................. 32
2.3 SiC Anodic Bonding ............................................................................................................................................... 36
2.4 Device-Attachm ent Process Developm ent.............................................................................................................. 37

Chapter 3 Modeling of Bulk Glass to Silicon and CVD Silicon Carbide.......................................................................... 39
3.1 Materials Modeled .................................................................................................................................................. 39
3.2 Plaza Test Mask Deform ation Model ...................................................................................................................... 41
3.3 Two-Part Bond Model............................................................................................................................................. 44

3.3.1 Contact: Parallel Plate Capacitor Pull-in Model ............................................................................................. 46
3.3.2 Bonding: Linear Elastic Fracture Mechanics (LEFM) Modeling..................................................................... 55
3.3.3 Flow Diagram of Contact and Bonding............................................................................................................. 65

3.4 Curvature Calculations ........................................................................................................................................... 68
3.4.1 Classical Plate Theory ..................................................................................................................................... 69
3.4.2 Curvature Calculation from Classical Plate Theory....................................................................................... 71
3.4.3 Curvature Calculation from Experimental Results ......................................................................................... 78
3.4.4 ANSYSv.6.0 Curvature Modeling ..................................................................................................................... 80

Chapter 4 Anodic Bonding of Bulk Glass to Silicon and CVD Silicon Carbide .............................................................. 83
4.1 Experim ental Procedure ......................................................................................................................................... 83

4.1.1 Process Variables............................................................................................................................................ 85
4.1.2 Anodic Bonding Equipm ent.............................................................................................................................. 86
4.1.3 Contact Angle Measurement............................................................................................................................ 87
4.1.4 Anodic Bonding using CVD SiC ....................................................................................................................... 88
4.1.5 TEM and STEM/XEDS W ork............................................................................................................................ 88

4.2 Results and Discussion .......................................................................................................................................... 89
4.2.1 Hydrophilic versus Hydrophobic Surfaces.................................................................................................... 89
4.2.2 JM Pv.3.1 Experim ental Matrix Results............................................................................................................. 94
4.2.3 Two-Part Bond Model Results.......................................................................................................................... 96
4.2.4 Curvature Values ........................................................................................................................................... 105
4.2.5 TEM and STEM/XEDS Chem ical Results....................................................................................................... 108

Chapter 5 Anodic Bonding of Thin-Film Glass to Silicon and CVD Silicon Carbide..........................................................119
5.1 Experim ental Procedure ....................................................................................................................................... 119

5.1.1 Sputtered PyrexTm  Glass Procedure............................................................................................................... 119
5.1.2 Lapped Glass Procedure ............................................................................................................................... 121

5.2 Results and Discussion ........................................................................................................................................ 123
Chapter 6 Conclusions and Recom mendations for Future W ork.....................................................................................139

6.1 Conclusions.......................................................................................................................................................... 139
6.2 Recom mendations for Future W ork...................................................................................................................... 140

Chapter 7 Appendix........................................................................................................................................................143
7.1 ANSYSv.6.0 input................................................................................................................................................. 143

7



[THIS PAGE INTENTIONALLY LEFT BLANK]

8



List of Figures
Figure 1-1: SiC Packaging of a MEMS Device ................................................................................................................. 13
Figure 2-1: Processes Occurring at the Interface During Anodic Bonding .................................................................... 20
Figure 2-2: Current vs. Time: Pyrex TM  bonded to Si at 1kV, 350"C, 10 m inutes............................................................ 21
Figure 2-3: Albaug h's Model [12] ..................................................................................................................................... 22
Figure 2-4: Glass Network [6] .......................................................................................................................................... 24
Figure 2-5: Hydrophilic Surface Bonds [21]...................................................................................................................... 27
Figure 2-6: Plaza Die Test Mask...................................................................................................................................... 30
Figure 2-7: Plaza Test Structures [26].............................................................................................................................. 30
Figure 2-8: Plaza Test Mask Bonded Sample .................................................................................................................. 31
Figure 2-9: Thin-Film Anodic Bonding Process ................................................................................................................ 33
Figure 2-10: XPS Analysis Sodium [25] ........................................................................................................................... 34
Figure 2-11: XPS Analysis of Oxygen and Silicon [25].................................................................................................. 35
Figure 3-1: Effective Delta TCE of Glass to Si and CVD SiC as a function of temperature. (TCEgas - TCEsu/sic) [28]. 41
Figure 3-2: Schematic of the Pre-Anodic Bond of Die Size Sam ple.............................................................................. 42
Figure 3-3: Schematic of the Post- Anodic Bond of Die Size Sample ........................................................................... 42
Figure 3-4: Side View of Structure Modeled..................................................................................................................... 43
Figure 3-5: Top View of Plaza Test Mask Array in Glass.............................................................................................. 44
Figure 3-6: Force Diagram ............................................................................................................................................... 45
Figure 3-7: Surface Contact............................................................................................................................................. 45
Figure 3-8: Surface Bonding ............................................................................................................................................ 46
Figure 3-9: Spring-Mass Structures of Parallel Plate [1] and Plaza Test structure....................................................... 47
Figure 3-10: Dimensions of Bonded Structure.................................................................................................................. 48
Figure 3-11: PyrexTM Glass Deformation .......................................................................................................................... 49
Figure 3-12: Silicon Deformation...................................................................................................................................... 49
Figure 3-13: Parallel Plate Capacitor [1] versus Anodic Bond Sample.......................................................................... 50
Figure 3-14: Sodium depletion layer thickness in Tempax as a function of the drift time at various temperatures and drift

voltage of 250V [6]................................................................................................................................................... 51
Figure 3-15: Two-port Voltage Controlled Capacitor [1]................................................................................................ 53
Figure 3-16: Voltage Controlled Electrostatic Actuator [1] ............................................................................................. 53
Figure 3-17: Sym metric Front of Structure ....................................................................................................................... 56
Figure 3-18: Crack Closing Dimensions........................................................................................................................... 57
Figure 3-19: Sym metric ANSYS Model of Structure .................................................................................................... 58
Figure 3-20: Two Deformed Interface Nodes (Not drawn to Scale) ............................................................................. 59
Figure 3-21: G versus Crack Length for 600pim Structure ........................................................................................... 62
Figure 3-22: G as a Function of W ................................................................................................................................... 62
Figure 3-23: Acoustic Microscopy Image of Crack Length and Total Area Modeled ..................................................... 63
Figure 3-24: Bonded Structures and their Corresponding Minim um G......................................................................... 64
Figure 3-25: Contact and Bond Model Flow Chart............................................................................................................ 67
Figure 3-26: Bilayer Geometry [34].................................................................................................................................. 70
Figure 3-27: Plate Curvature [35]..................................................................................................................................... 70
Figure 3-28: Die Size Sample Scan ................................................................................................................................. 78
Figure 3-29: Bow Calculation ........................................................................................................................................... 79
Figure 3-30: Bow Geometry ............................................................................................................................................. 80
Figure 3-31: ANSYSv6.0 3-D Bimaterial Dimensions with Boundary Conditions ......................................................... 81
Figure 3-32: Side View of the deflection of PyrexTM glass bonded to silicon at AT=-330'C......................82
Figure 4-1: Schematic of the Anodic Bonder.................................................................................................................... 87
Figure 4-2: Contact Angle ................................................................................................................................................ 88
Figure 4-3: Bonded Sample with Hydrophobic Si Surface ........................................................................................... 92
Figure 4-4: Bonded Sample with Hydrophilic Si Surface ............................................................................................. 93
Figure 4-5: Hydrophilic vs. Hydrophobic P-type Si to Glass Bonding Current .............................................................. 94
Figure 4-6: Acoustic Microscope Image of Bonded vs. Unbonded structures of Exp.1 Part 1 ....................................... 97
Figure 4-7: DEKTAK 3STv.2.12 Surface Scan of Pyrex/Si Bonded Structures............................................................ 98
Figure 4-8: PyrexTM  /Silicon Deformation of 600 Iam W idth Structure............................................................................ 98
Figure 4-9: Fe as a function of W vs. Fk for PyrexTM  and Si (1 kV, go = 0.2ptm etch depth) ................................................. 99
Figure 4-10: F, as a function of etch depth (go) vs. Fk of PyrexTM and Si at 1 kV............................ 101
Figure 4-11: Delta K of PyrexTM/Si as a function of Temperature.................................................................................... 106
Figure 4-12: Delta K of Hoya SD-2TM/Si as a function of Temperature............................................................................ 107
Figure 4-13: Curvature Values from Experiments 1 and 2.............................................................................................. 108
Figure 4-14: TEM Picture of PyrexTM /Si Layer ...................................................... ............. ............... 109
Figure 4-15: TEM Picture of Hoya SD-2TM /Si Layers ..................................................................................................... 110
Figure 4-16: TEM Image of PyrexTM/CVD SiC Interfacial Features................................................................................. 111
Figure 4-17: STEM Picture of PyrexTM /CVD SiC Layer .................................................................................................. 112

9



Figure 4-18: Current - time Profiles for PyrexTM  bonded to Si and CVD SiC ................................................................... 113
Figure 4-19: Ratio of Key Elements of Hoya SD-2 TMto Silicon ....................................................................................... 115
Figure 4-20: Ratio of Key Elements of PyrexTM  Glass to Silicon Part 1 ........................................................................... 116
Figure 4-21: Ratio of Key Elements of PyrexTM Glass to Silicon Part 2........................................................................... 117
Figure 5-1: Anodic Bonding of Sputtered Pyr TM Glass to Silicon................................................................................. 121
Figure 5-2: Anodic Bonding of Lapped Glass to Silicon.................................................................................................. 122
Figure 5-3: Difference of Bonding Bulk Glass to Lapped Glass using Reverse Polarity.................................................. 124
Figure 5-4: Side View of Lapped Sample ....................................................................................................................... 126
Figure 5-5: Image of First PyrexTM-Si Bulk Anodic Bond................................................................................................. 127
Figure 5-6: W aveform of 1st Full W afer Anodic Bond of Si-PyrexTM of Sample 1 ............................................................. 129
Figure 5-7: Image of Die Size Anodic Bond of Sample #1 .............................................................................................. 131
Figure 5-8: Sample #2 Die Size Bond at 3500C, 80V, and 20 min.................................................................................. 133
Figure 5-9: Sample of Si-Lapped PyrexTM to CVD SiC Bonded at 3500C, 80V, and 45 min............................................ 134
Figure 5-10: Sample of Si-Lapped Hoya SD-2TM to Si Bonded at 3500C, 80V, and 20 min............................................. 136

10



List of Tables
Table 1: PyrexTM and Hoya SD- 2TM Glass Composition............................................................................................. 23
Table 2: Modulus of Elasticity and Poisson's Ratio of Materials [26]" ........................................................................... 40
Table 3: Shear Modulus of Materials [27] ......................................................................................................................... 40
Table 4: Minim um Strain Energies as a Function of Deformation .................................................................................. 60
Table 5: Final Calculation of G, Energy Release Rate.................................................................................................. 61
Table 6: Material Tem perature Properties [33] "............................................................................................................... 69
Table 7: Silicon Stiffness Material Constants [37]............................................................................................................. 73
Table 8: Elastic Constants as a Function of Tem perature [37] ...................................................................................... 73
Table 9: Average Biaxial Modulus.................................................................................................................................... 74
Table 10: Effective Alpha for PyrexTM...........................................................76
Table 11: Effective Alpha for Hoya SD- 2TM.....................................................76
Table 12: Effective Alpha for Silicon [26].......................................................................................................................... 76
Table 13: Effective Alpha for CVD SiC ............................................................................................................................. 77
Table 14: Thickness Error Bars ....................................................................................................................................... 77
Table 15: AT Error Bars ................................................................................................................................................... 77
Table 16: Total Sources of Error ...................................................................................................................................... 78
Table 17: JMPv.3.1 Experimental Matrix.......................................................................................................................... 86
Table 18: TEM/STEM Bonding Matrix .............................................................................................................................. 89
Table 19: Contact Angles of Materials.............................................................................................................................. 91
Table 20: Results of JM Pv.3.1 Experim ental Matrix: Exp. 1 Glass to Silicon ................................................................ 95
Table 21: Results of JM Pv.3.1 Experimental Matrix: Exp. 2 Glass to Silicon Carbide................................................... 96
Table 22: Deformation of 600ptm Structures with 0.2pm Etch Depth ........................................................................... 98
Table 23: Table of V, Predicting Contact at Minim um W t versus Minim um W t Bonded ................................................... 100
Table 24: Minim um G Results of Experiments 1 and 2................................................................................................... 103
Table 25: Final Modeling Results of Experiments 1 and 2.............................................................................................. 104
Table 26: Measured Pyrex TM  Com position by XPS [41].................................................................................................. 114
Table 27: Measured Hoya SD-2TM Com position ................................................... ........... ........ ............ 114
Table 28: Etch Rates of Annealed vs. Non-Annealed Sputtered PyrexTM..................................120

11



[THIS PAGE INTENTIONALLY LEFT BLANK]

12



Chapter 1 Introduction

1.1 Device Packaging

Device packaging design is critical to the performance of MEMS

(MicroElectroMechanical Systems) microsensor and microactuator devices. The

device package provides a stable thermal and mechanical environment, and

electrical and hermetic isolation from the external environment [1,2]. A crucial

step in the fabrication of a MEMS device is the method used to attach it to the

package. The device-attachment method must provide high stability, low creep,

low residual stress, and reliable process control.

The system under study is shown in Figure 1-1. The silicon-on-glass MEMS

sensor device is attached to a polycrystalline, chemical vapor deposited (CVD)

silicon carbide (SiC) package. Typically, a gold-tin braze is used to attach the

MEMS device to the CVD SiC packaging. The gold-tin braze yield point is

exceeded during the device-attachment, (packaging process), causing creep

and/or stress relaxation over time. An alternative device-attachment process is

needed to reduce and/or eliminate this gold-tin braze stress relaxation.

Cap

W..Gold-Tin
Braze

Figure 1-1: SiC Packaging of a MEMS Device
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1.2 Device-Attachment Process Requirements

A low-temperature device-attachment process is desirable to implement high-

strength, stable bonds between the MEMS device and its package. Anodic

bonding is a preferred bonding technique, because it is a low temperature

process and produces hermetic and mechanically strong seals [3]. A low

temperature packaging process is advantageous because it avoids potential

degradation of and damage to the MEMS device and circuitry, and minimizes

residual stresses generated by the thermal expansion coefficient (TCE)

difference between the materials [3]. Large residual stresses negatively affect

the performance of the MEMS device. These stresses lead to distortions in the

device output, and in extreme circumstances may cause bond failure.

CVD SiC is emerging as a MEMS packaging material because of its excellent

material properties and close TCE match to common materials such as silicon

(Si), and HOYA SD- 2TM and Pyrex TM (Corning #7740) glasses. Other desirable

SiC properties include high strength, chemical resistance, thermal conductivity,

hardness, and hermeticity, which are all important for use in harsh environments

and in high temperature, power, and frequency devices [4]. Pyrex TM is a

borosilicate glass that has been the most widely used to bond to Si because of its

high sodium content (known to be a significant factor in the anodic bonding

mechanism) and the fact that it has a close TCE to Si. More recently, Hoya SD-

2TM glass has been formulated for Si anodic bonding applications because its

TCE is more closely matched to Si, from room temperature to the bonding

temperature than PyrexT M [5]. HOYA SD- 2TM and Pyrex TM are closely matched

in TCE to Si and to CVD SiC over a wide temperature range, as shown in

Section 3.1.

The overall approach of using CVD SiC anodic bonding to glass as a packaging

solution will benefit the MEMS field significantly. A low stress packaging

process, using the anodic bonding technique and CVD SiC, PyrexTM , and Hoya

SD-2TM glass, should be particularly advantageous to commercial applications

14



such as RF devices, gyroscopes and accelerometers, and precision optical

devices.

1.3 Review of Underpinning Technologies

1.3.1 Anodic Bonding

Anodic bonding involves the bonding of glass or ceramics to Si or metals under

an applied voltage (200-1 000V) and elevated temperature (200-500C) [2]. This

technique has been widely used in the MEMS field to bond a variety of glasses,

metals, alloys, and semiconductor materials [2]. Not only have Hoya SD- 2 TM and

Pyrex T M glasses been bonded to Si, but several other glasses have also been

bonded, such as the borosilicate glass, Corning #7070, Tempax (Schott #8330),

soda lime # 0080, potash soda lead #0120, and aluminosilicate #1720 [2,6].

Several metals, alloys, and semiconductors with similar TCE have been bonded

to these glasses, including, tantalum, titanium, Kovar, Niromet 44, Aluminum, Fe-

Ni-Co alloys, silicon, and gallium arsenide [2].

Bulk glass anodic bonding to Si is a mature technology, but bonding Si to Si

using a thin glass film (thin film anodic bonding) is a less developed process.

The development of a thin film anodic bonding process will enable fabrication of

MEMS devices having negligible residual stress [7]. Section 2.2 describes Si-to-

Si anodic bonding or thin-film glass anodic bonding processes in detail.

1.3.2 SiC for MEMS

SiC technology used in the MEMS field is still under development. There are a

few examples of using SiC in fabrication processes. Micromachined

polycrystalline SiC micromotors have been fabricated using a multilayer

fabrication process. This process uses low temperature deposition and

micromolding techniques to fabricate SiC structural components [8]. Presently,

SOI, silicon-on-insulator technology, is widely used in MEMS fabrication. SiC-on-

insulator or semi-insulating wafers are also used in microwave applications [4].

The "smart cut proceSSTMn is one technique being used to form SiC-on-insulator

15



[4] . Several other techniques have been explored, but all have several

drawbacks such as defects produced from lattice mismatch, when growing

epitaxially SiC on Si, and SiC surface roughness hindering direct bonding [9].

Tong et al. [9] explored an alternative process to develop SiC-on-insulator by

using anodic bonding. Section 2.3 explains this process in detail.

1.3.3 Packaging

The technology of MEMS packaging continues to be an engineering intensive

effort because almost every device requires a custom package development.

The evolution of standard packaging methodologies that can be used for a wide

variety of devices and applications will have a profound effect on the use of

MEMS in systems, for reasons of both improved functionality and reduced

development and production costs.

1.4 Research Objectives

There are three principal objectives of the research carried out for this thesis:

1. To establish a protocol in order to bond bulk and thin film PyrexTM and

HOYA SD-2 TM glass to CVD SiC.

2. To assess bond quality using the Plaza Test Mask [10].

3. To establish whether residual stresses formed after anodic bonding are

consistent with the expected thermoelastic response.

1.5 Thesis Outline

Chapter 2 begins with a review of the anodic bonding literature. This review

presents a summary of the bulk glass anodic bonding mechanism, thin-film (Si-

to-Si) and SiC anodic bonding techniques, and methods used to characterize

anodic bond strength and toughness. There is also a discussion about the Plaza

test specimen that is implemented in this study. Finally, Section 2.4 details the

device-attachment approach, deduced from available literature. Chapter 3

discusses modeling the bonding and bond toughness for bulk glass bonded to Si

16



and CVD SiC. Chapter 4 details experimental procedure, sample preparation,

and process variables, for bonding bulk glass to Si and CVD SiC. This chapter

also presents the results and a discussion of the modeling procedures described

in Chapter 3, as well as the chemical analysis performed on bulk glass samples.

In Chapter 5, two thin-film bonding techniques are discussed and their resulting

bond quality assessed. Finally, Chapter 6 provides an overall conclusion and

recommendations for future work.
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Chapter 2
Review of Science and Technology of Anodic Bonding

2.1 Anodic Bonding Bulk Glass to Silicon

2.1.1 Mechanisms

Since the invention of anodic bonding in 1969 [11], there has been much

research conducted to deduce the mechanisms involved. The following review

describes the likely physical mechanisms, particularly as evidenced in current

changes with time, and the supporting analytical chemical findings of several

researchers.

Anodic bonding is performed by heating a glass and metal (or semiconductor)

sandwich, across which a d. c. voltage is applied. Typically, a glass and p-type

Si are bonded together. The cathode is attached to the glass and the anode to

the Si, so that the Si is at a positive potential with respect to the glass. Figure

2-1 shows a schematic depiction of this electrochemical process [12]. Both

silicon and glass remain relatively stiff during the bonding process, since

temperatures well below the respective melting point of Si and glass transition

temperature are used [12]. This irreversible bonding process produces a

permanent chemical bond at the glass/Si interface involving an intermediary Si0 2

interface layer [3,5,13]. With the application of heat and voltage, two types of

reactions occur in forming this Si0 2 intermediate bond: ion dissociation/

association reactions and interfacial bonding reactions [14]. The elevated

temperature permits ionic conduction within the glass, while the imposed

potential drives the migrating ions of opposite charge towards the interface or

towards the cathode. The glass behaves as an electrolyte at elevated

temperatures because of these mobile ion species. Cations (principally Na)

move through the glass toward the negatively-charged cathode. Since the

cations move toward the cathode, a depletion layer is formed, and the glass

network reconstructs. Therefore, this reconstruction allows for the excess
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anionic oxygen species, under the influence of the electrostatic potential, to move

towards the interface. The space charging of the depletion layer generates an

interfacial electrostatic field. These electrostatic forces pull the glass and Si

surfaces together, and hold them during the formation of a permanent bond. The

contact starts at a single point between the interfaces, spreads over the

remaining area, and allows the diffusion of oxygen anions into the positively

charged Si [13,15]. Bond formation can occur only between surfaces that are

clean and have sufficiently low surface roughness. The surfaces must be clean

because particles will cause unbonded regions and not allow for complete,

physical surface contact. Ko et al. [2] state that the glass and metal RMS surface

roughness should be less than 1 lpm in order for bonding to occur.
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Figure 2-1: Processes Occurring at the Interface During Anodic Bonding
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The progress of anodic bonding process is monitored typically via the current

flowing through the circuit. Albaugh [12,16] modeled the current transient

response, d21/dt 2, of the current (1) vs. time (t) plot in Figure 2-2. Figure 2-3

shows the depletion layer defined as a variable capacitor, and the bulk glass as a

variable series resistor. The model was successfully fitted to the initial

experimental current transient response at short bonding times. Modeling longer

bonding times proved less successful. This was presumed to be because of

leakage across the depletion layer, and because there are several mobile ion

species responsible for current flow [16]. Albaugh [12] determined that the

current decreases quickly at the beginning of the bonding process because of the

initial charging of the depletion layer, and the area under this initial peak gives

information about the amount of charge that is leaving the depletion layer.

E

1.20 -

1.05-

0.90 -

0.75 -

0.60 -

0.45 -

0.30 -

0.15 -

0.00'

0 100 200 300

time(s)

400 500 600

Figure 2-2: Current vs. Time: PyrexTm bonded to Si at 1kV, 3500C, 10 minutes
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Figure 2-3: Albaugh's Model [12]

The current vs. time kinetics are controlled by the imposed bonding conditions,

such as voltage, temperature, environment, and surface chemistry, and Si

doping. The findings of Cozma and Puers [17] indicate that a larger in integrated

current produces a higher bond quality, and faster overall bonding. Higher

voltage, and lower temperature increased the current peak, hence smaller

bonding times were needed [17]. Longer times were needed when using low

voltages, temperatures, and n-type silicon. The low voltages cause the electric

field at the interface to be lower, so that the oxygen anions cannot drift with a

high enough drift velocity and to maintain the high oxidation rate at the bond

front. Lower temperatures do not allow the rapid build-up of space charge at the

interface because of a glass conductivity that decreases exponentially with lower

temperature [17]. Lee et al. [18] discovered that a longer time, in excess of 38

minutes, was needed when bonding n-type Si to PyrexTM glass, compared to the

4 minutes needed to bond p-type Si. Since p-type Si is doped (usually) with

boron, it has extra holes in the Si valence band. Therefore, under a strong

electric field, these can migrate toward the cathode (to the Si surface nearest the

glass). Lee et al. maintain that there is a higher interfacial electrostatic pressure,

which in turn, increases the bonding speed [18]. The bonding environment also

affects the current peak. The current peak increased when bonding in air

compared to in vacuum or an argon environment [17]. However, the

mechanisms are unclear. Oxygen in air possibly participates in the bonding

process, or the heat transfer in a vacuum is poor [17]. Finally, Cozma and Puers

[18] found that hydrophilic Si surfaces, resulting from treatment with a 65%

boiling nitric acid solution, and hydrophobic surfaces, resulting from an HF dip,

22



did not exhibit significantly different current peaks. These results conflict with

results the findings of Lee et al. [19] that a hydrophilic Si surface gave a

distinguishably higher bonding current and bonded area compared to a

hydrophobic Si surface. Lee et al. also performed a chemical analysis that is

described below.

Microscopy and chemical analysis of the surface chemistry and glass

composition has also been used to further elucidate the mechanism of anodic

bonding. The glasses used have amorphous structures composed of many

elements. Pyrex T M glass is a Na-borosilicate glass, while Hoya SD-2TM is a Zn-

aluminosilicate glass. Table 1 shows the glass compositions of PyrexTM and

Hoya SD-2TM glasses. The following recent chemical analyses result have shed

further light on anodic bonding mechanisms.

Table 1: Pyrex TM 1 and Hoya SD-2TM 2 Glass Composition

Glass Compound Si0 2  B203 Na 20 A120 3  MgO ZnO As20 3  Other
trace
elements

Pyrex'T  Mol % 80.6 13 4 2.3 0 0 0 0.1
Na-

borosilicate

HOYA SD-2' m  Mol % 25- 1- 1-5 20- 2-5 10-20 1-5 0
70 5 30

Zn-
aluminosilicate

Recently, Nitzsche et al. [6] discounted the long-standing assumption that only

sodium cations (Na+) participate in the depletion of the glass, and that

correspondingly, oxygen (0) anions from within the glass network diffuse into Si.

These investigators used nuclear magnetic resonance (NMR) and in situ elastic

recoil detection analysis (ERDA) to observe bridging oxygen in glass, and to

identify a combined hydrogen (H) and Na depletion zone. From these

observations, they were able to propose the revised bonding model that is

1 Pyrex Data Sheet, downloaded from the Corning, Inc.
<http://www.corning.com/lightingmaterials/products/index-pyrex.html> accessed August 6, 2002
2 Hoya Corporation, Glass Substrates for Silicon Sensors, CA, USA
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described here. Borosilicate glasses, such as PyrexTM and Tempax (Schott no

8330), are composed of a continuous random network of Si and boron (B) atoms

connected by bridging oxygen atoms. The addition of Na 20 to the glass network

causes the formation of negative potential wells bounded by B atoms or non-

bridging 0 ions (NBOs) (Figure 2-4) [6]. Most of the Na cations reside in these

potential wells, electrostatically bonded to the negatively charged NBOs at room

temperature. Previous authors postulated that thermal excitation moves some of

the sodium ions into the intra-network space and allows them to drift to the

cathode, forming a sodium depletion layer. However, Nitzsche et al., argued that

since there are bridging oxygen atoms in glass, the drift of oxygen anions to the

interface and the formation of a hydrogen depletion layer occur from the

hydrolyzed glass surface, where water molecules from the ambient environment

have diffused into the glass surface, producing hydrolyzed Si-OH: HO-Si bonds

or remaining as molecular water [6].

(-)

Bridging Oxygen Non.-Bridging Oxygen

Figure 2-4: Glass Network [6]

Once the voltage is applied, the first result is that the water in the hydrolyzed

layer dissociates through electrolysis into H' and the hydroxyl group, OH- [6].

The H' moves to the cathode and OH- to the anode (glass/Si) interface. Next,

sodium, potassium (K), calcium (Ca), and possibly aluminum (Al) depletion layers

develop along with a hydrogen depletion layer. Nitzsche et al.'s [6] ERDA

findings for Tempax glass, which has a composition similar to PyrexTM, showed

that Na diffusion leaves a distinguishable depletion layer near the interface[6].

The other alkali metal, K, along with Ca also were also found to contribute to the

depletion layer process. The formation of an Al depletion layer occurred only
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using a temperature of 4000C and voltage of 400V. It is presumed that all these

reactions therefore occur and determine the rate of anodic bonding. In the

amorphous network structure of these glasses, tetrahedral, [AI0 4]- and [B0 4]-,

groups exist. Na is weakly bonded to these tetrahedral groups. Very small

activation energies are required for ion migration between the different bonded

sites [6].

[AI0 4]Na + H+ == [AI0 4]H + Na+
[B0 4]Na + H+ == [B0 4]H + Na+

Once the depletion layer develops, the applied electric field impels OH- towards

the interface. The hydroxyl groups temporarily bond with Si in unstable Si(OH)4

complexes, and which dissociate to form more stable SiO 2 and evolve H20 [6].

This proposed mechanism still supports an electric-field-assisted oxide growth at

the interface [6].

Si + 4[OH]- = Si(OH)4 + 4e-
Si(OH) 4 = SiO 2 +2H 20

The Si-O bonds at the glass-Si interface are covalent and lead to the high

interfacial strength characteristic of anodic bonding. It can be assumed that
TM

Hoya SD-2 , or any other oxide glass is subject to a similar mechanism since

hydrolyzed layers can readily form at glass surfaces from the ambient water

vapor. Hoya SD-2Tm has a glass network similar to that of borosilicate glasses.

In borosilicate glasses, boron is not tetrahedrally-coordinated without sodium

present. Sodium increases the boron coordination and connectivity in the glass

network. In aluminosilicate glasses, aluminum is not tetrahedrally-coordinated

without sodium present, too.

Xing et al. [13] used Transmission Electron Microscopy (TEM) and Electron

Probe Microanalysis (EPMA) to detect more than one depletion layer, just as

Nitzsche et al. [6] found. TEM micrographs were taken of several samples

bonded under an array of different conditions ranging from voltages of 500V or

800V, temperatures of 2500C - 4000C, and bonding durations of 2 -11,400
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seconds. Each of these micrographs showed several distinct bands or layers in

the glass parallel to the glass/silicon bonded interface [13]. Xing et al. [13]

suggested that these bands were possibly depleted of ions, i.e. sodium and even

hydrogen, involved in the bonding mechanism. The regions grew larger as the

bonding time increased, but not all of the pictures showed multiple bands. These

authors, in agreement with Nitzsche et al. [6], suggested some of the bands

might arise from hydrogen piling up in the hydrolyzed glass layer, because H'

cations can occupy the sites of depleted sodium cations. Xing et al. [13]

hypothesized that multiple bands were not found near the interface under all the

different bonding conditions because certain temperatures and bonding times

gave more distinguishable depletion layers. EPMA results showed a depletion of

sodium near the interface and a diffusion of oxygen into the Si. Precipitate-like

defects in the Si were evident in the TEM micrographs. This suggested diffusion

of oxygen into the Si, which is consistent with earlier literature [13].

Visser et al. [20] used energy-dispersive x-ray spectroscopy (EDX) and an

Cameca SX100 electron microprobe to examine the anodic bonding mechanisms

of both PyrexTM and Hoya SD-2 TM glasses. A chemical analysis of the interface

was performed upon reversing the voltage on the anodic bond. Bulk PyrexTM and

Hoya SD- 2 TM glasses were bonded to bulk p-type Si using a temperature of

4000C, 1 000V, and durations of 30 minutes to 1 hour. The voltage was reversed

at these same bonds by making the glass positive and the silicon negative. After

reversing the bonding process using a temperature of 4000C, voltages of 400V or

1 000V, and times of 10 minutes to 1 hour, several defects were produced at the

anodically bonded interface [20]. Since two glasses with different chemical

compositions were bonded, two types of defects were produced. The electron

micropobe scan showed the Na and K concentrations decreased from an

interfacial defect into the bulk PyrexTM glass. When reversing the polarity, the Na

and K fluxes reverse direction and accumulate at the interface, causing defects

which were visible as "brown spots" [20]. The reversed polarity caused a

different phenomenon to occur at the bonded Hoya SD-2 TM / Si interface.
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Debonded areas were formed at the interface from an accumulation of craters

and several brown spots, which caused each sample to break apart easily.

Microprobe scans of the "brown spots" and craters showed that the brown spots

were caused by an accumulation of Na, similar to those observed in Pyrex T M .

The zinc (Zn) concentration was also scanned, but was shown not to participate

in the formation of these defects. However, the Zn concentration was depleted

near the defects, so it was assumed to have been involved in the anodic bonding

mechanism [20].

Finally, the role of the surface chemistry in the sodium depletion layer depth was

analyzed using secondary-ion mass spectroscopy. Lee et al. [19] created

hydrophilic surfaces on PyreXTM and Si wafers by submersion in a solution

comprising ratio of 6parts DI water: 1 part Hydrogen Peroxide: 4 parts

Ammonium Hydroxide at 650C for 5 minutes, and bonded them together using

voltages of 60-300V and temperatures of 200-3000C. The SIMS analysis

showed that the hydrophilic surfaces created deeper sodium depletion layers at

the interface [19]. These results suggest that the hydroxyl groups, -OH, induced

a higher potential and corresponding electrostatic force compared to that

established during the regular anodic bonding process [19]. Figure 2-5

illustrates schematically the supposed role of the hydroxyl groups in bonding

opposing hydrophilic surfaces of two Si wafers.

surface 1 \ /

0\H

H

surface 2 0 0 0

Figure 2-5: Hydrophilic Surface Bonds [21]
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Once the -OH groups form hydrogen bonds, the gap between the materials at the

interface is reduced, causing a higher electric field to pull the materials together

and to form a bond. These results also suggest that hydrophilic surfaces

apparently form deeper depletion layers of sodium ions because there are more

hydrogens available for the oxygen anions to bond to at the interface. The SIMS

analysis provides important, direct evidence that hydrophilic surfaces do

participate actively and are important in the anodic bonding process.

In summary, the literature accounts suggest that anodic bonding involves a

complex combination of mechanisms. Bonding conditions and material choice

greatly influence the exact mechanisms that will occur. Although there are

differences between the materials, the steps of cation migration into the glass,

anion (0-) migration to the interface, followed by the formation of covalent Si-O

bonds, is common to all the postulated mechanisms.

2.1.2 Strength and Toughness Methods to Characterize Anodic Bond
Quality

Two measures of anodic bond quality are mechanical strength and toughness.

Bond strength and toughness have been measured using several test methods:

pressure, tension, shear, bending, and fracture mechanics. These methods were

used to determine the bond strength and bond toughness as a function of

process parameters such as voltage, temperature, and the pretreatment of the

surface [5].

Obermeier [22], together with other authors [5], found that bond strength results

from fracture tests were inaccurate because the values were not repeatable, and

failure occurred in the glass, not at the glass/Si interface. Obermeier [22] used

tensile tests to determine the bond strength using bond conditions similar to

Wallis [11]. Bond strengths of 30-40 MPa were found for bonds made at 900V

and 4500C, compared to the 10.3-20.7 MPa Wallis [11] found using 800V and

5000C. Obermeier's samples failed 100-200km into the glass from the interface,
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so the bond strength values did not give accurate interfacial strength, and reflect

the strength of the glass and the residual stress in the bond.

Another fracture test method, using fracture mechanics, was performed to

quantify interfacial bond toughness. This technique also relied on a destructive

tension test to propagate a crack along the interface. Hurd et al. [23] performed

a linear elastic bimaterial fracture mechanics study of the bonded interface

between the brittle materials, Pyrex TM and Si. The crack was initiated along the

interface using chevron-notched (CN) and straight-through-cracked (STC)

compact tension tests. Hurd et al. [23] measured mode 1, plane-strain, fracture

toughness as a function of temperature under bonding conditions of 1 OOOV and

30 minutes. Even this linear-elastic fracture technique did not give accurate

interface values, because the crack propagated into the more compliant glass.

These values correspond to the fracture toughness at a distance 300-500gm

from the interface for the CN tests, and 150-250gm from the interface for the

STC tests. The CN test specimens yielded reproducible fracture toughness

values of 0.63 to 0.68 MPa-m112 at bonding temperatures in the range of 300-

4500C. The STC specimens yielded fracture toughness values of 0.66-0.75

MPa-m1 2 at the same temperatures.

In summary, bond strength and bond toughness measurements typically do not

produce values characteristic of the interface. In addition, the use of fracture

tests can introduce extraneous influences, such as the effects of the residual

stress and initial flatness variations, in the final measured strength or toughness.

The bond quality using different bonding parameters must be found using

another technique.

2.1.3 Bond Quality using the Test Specimen: Plaza Test Mask

Plaza et al. [10] invented another technique to measure bond quality by

comparing the electrostatic pressure to bond strength. These authors invented

the "Plaza Test Mask" consisting of circles and rectangles of different widths and

etch depths. Figure 2-6 shows an acoustic microscope view of the mask.
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Figure 2-6: Plaza Die Test Mask

The effect of the bonding conditions on the quality of the bonded interface was

measured by calculating the electrostatic pressure needed to form a bond

between two surfaces with a fixed separation. If the structure remains bonded,

then the bond force is assumed to be larger than the elastic restoring force

equivalent to the electrostatic pressure. The bonding of the structures is a

function of the mask variables (width, etch depth), process variables (voltage,

temperature), and geometric and material specific variables such as surface

roughness, ionic mobility, etc. The Ltest and Htest values defined in Figure 2-7, are

the length and etch depth of a particular structure. Chapter 3.2 details the

mechanics governing the bonding of these structures.

Glass

Si

Figure 2-7: Plaza Test Structures [26]

In general, bonding will become more difficult as Htest increases and Ltest

decreases. This same trend was also shown in their experimental work. Higher
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-ampL

applied voltages and temperatures bonded deeper etch depths and narrower

structures.

The following shows Plaza et al.'s measurement of bond quality by reference to

electrostatic pressure. The bond quality was characterized in two steps, first, a

visual inspection of which Plaza Test structures actually bonded, and then a

calculation of the electrostatic pressure determined by the applied voltage and

etch depth. Figure 2-8 shows an acoustic microscope image of bonded and

unbonded Plaza Test structures. The nine dark circles and the seven dark

rectangular structures represent bonded structures, the white contrast unbonded

structures.

Figure 2-8: Plaza Test Mask Bonded Sample

Next, Equation 2.1 was used to calculate the overall electrostatic pressure of all

the structures in Figure 2-8 [10].

= V 2

2 O H 2 (2.1)
test

where V is the applied voltage, E- is the permittivity of free space (8.85e-12

C/Vm) and Htest is the etch depth of the structures. The derivation of Equation

2.1 is made using the model of a parallel plate capacitor in Chapter 3.3.1.
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The rectangular and circular structures of Figure 2-8 were bonded using 1 OOOV

and an etch depth of 0.2pm. Eqn. 2.1 predicts a constant bond quality among all

the structures of Figure 2-8 at those particular bonding conditions represented by

an electrostatic pressure of 11 0.6MPa.

There are several shortcomings in the Plaza et al. analysis.

1. The electrostatic pressure equation is derived from a parallel plate

capacitor model. It is not clear whether this can be applied to the actual bonding

process of the structures, and if electrostatic pressure is a measure of bond

strength.

2. Plaza et al. mentioned that if the value of electrostatic pressure is

calculated, then the effect of the voltage will more accurately determine the bond

quality [10]. The voltage, temperature, time etc. affect the bonding of the overall

Plaza Test structures too.

3. It is not clear if there is a difference in the extent of bonding when the

voltage is applied during bonding and after it is removed.

2.2 Thin-Film Glass to Silicon Anodic Bonding

Thin-film anodic bonding, or Si-to-Si anodic bonding, is an alternative procedure

that has been studied to bond silicon together using an intermediate thin-film

glass layer. Using a very thin glass is advantageous compared to bulk glass

because the difference in TCE between materials is not significant, so the

thermally-induced stress is reduced. It is anticipated that these thin-film anodic

bonds will have less temperature sensitivity [7]. The overall anodic bonding

mechanisms when bonding Si-thin-film glass to Si, forming a Si-thin-film glass-Si

sandwich, is assumed to be similar to bonding bulk glass to Si.
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There are two processes that are used to form this Si- thin-film glass -Si

sandwich structure. A thin-film of PyrexTM glass is deposited by either sputter

deposition or electron-beam evaporation onto Si, and then the opposite side of

the glass is anodically bonded to Si. Figure 2-9 shows the bonding process of

this sandwich.

1. Thin-film Glass Depostion thin-film glass
onto silicon dioxide

I SiO 2 layer

silicon

2. A nod c Bonding to Silicon

silicon

anodic
bond

silicon

Figure 2-9: Thin-Film Anodic Bonding Process

Sputter deposition is a well-known process invented in 1972 by Brooks and

Donovan [7]. Since the layer of sputtered PyrexTM is very thin (20nm-2000nm)

and the composition of sputtered PyrexTM yields a lower dielectric constant, lower

voltages are used, along with a silicon dioxide (Si0 2) layer [5,7]. The Si0 2 layer

further increases the dielectric strength, so the sputtered glass layer will not

break down.

A radio frequency (RF) sputtering system is used to sputter thin glass layers from

a PyrexTM glass plate target onto Si wafers. Since the sputtered glass film

carries a high residual stress from deposition, annealing it at 5500C in a nitrogen
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environment ensures stress relief [7]. Jakobsen et al. [5] noted that RF sputter

deposition required long times (greater than 14 minutes [24]) to ensure a glass

layer with a suitable composition for anodic bonding. In general, the composition

of this sputtered layer does not compare to that of the bulk PyrexTM glass

composition. Figure 2-10 and Figure 2-11 compare the X-ray photoelectron

spectroscopy (XPS) analysis of the sodium, oxygen, and silicon concentrations in

sputtered PyrexTM glass, before and after the nitrogen (N2) anneal, to a bulk

sample and to Corning data. After the N2 anneal, the sputtered PyrexTM layer of

glass is slightly more Si rich and more depleted in Na (0.3% vs. 0.4% before the

anneal) [25]. However, these values are much lower than for bulk Pyrex TM (1.6 to

2.3%) [25]. It is known that sodium plays a crucial role in the anodic bonding

mechanism, so sputtered PyrexTM layers may not be so reliable for anodic

bonding.

5 .
El Sput. Pyrex No Anneal

O Sput. Pyrex N2 Anneal

0M Pyrex Lot# 121297

0 0 Corning Data
3 -

2.3

2 - 1.6

0

0.4 0.3

0
Sodium

Figure 2-10: XPS Analysis Sodium [25]

34



65 - 63.4 63.3 64.4 64.3 E Sput. Pyrex Lot #2, No Anneal

60 - 0 Sput. Pyrex Lot #2, N2 Anneal

55 - E3lPyrex Lot# 121297
50 0 Corning Data

S45 -
40

~35 3528.7 29 27.0 2.
". 30 24.
. 25 -

) 20
E 15 -
010 -

5

0
Oxygen Silicon

Figure 2-11: XPS Analysis of Oxygen and Silicon [25]

Many authors have found varying results bonding sputtered PyrexTM layers.

Jakobsen et. al [5] summarized that some authors found that thin sputtered

layers of 20 nm thickness using 1 OV had bonded, while others found that layers

thinner than 500nm did not bond. Hanneborg et al. [7] successfully bonded 2.0

pm of sputtered PyrexT M on Si to another Si wafer, using 300 nm of SiO 2, 4000C,

200V, and 10 minutes. Given the large number of variables, such as

temperature, voltage, time, annealing conditions, composition of sputtered glass,

and thickness of SiO 2, involved in this process, it is not surprising that results

vary considerably.

A more recent, and probably more promising, technique to bond Si to Si via a

thin-film glass layer relies on evaporated glass [5]. The authors [5] noted that this

deposition technique is three times faster than sputter deposition. Higher

deposition rates yielded thicker glass layers at shorter times and compositions

with higher breakdown voltages. Evaporated PyrexTM glass layers on Si also

yielded higher concentrations of sodium ions (secondary ion counts: evaporated

glass > 105 a.u. versus sputtered glass < 104 a.u.) [24]. Similar to the sputtered

glass process, these evaporated layers also required an intermediate oxide layer
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and an anneal to relieve process-induced stress. Choi et al. [24] found that

evaporated PyrexTM glass layers thicker than 1.5pm exhibit a lower surface

roughness similar to bulk and sputtered glass, which was adequate for Si

bonding with voltages of 35-1 OOV, and temperatures of 1350C - 2400C. Since

this technique has been recently developed, Jakobsen et al. [5] cautioned that it

is still evolving, and much more analysis needs be performed in order to give

repeatable results.

2.3 SiC Anodic Bonding

As mentioned before, several materials have been successfully bonded together

using the anodic bonding process. Tong et al. [9] have begun the exploration of

anodic bonding SiC for use in fabricating silicon carbide on insulator (SiCOI).

Recently, Di Cioccio et al. [4] developed a SiCOI technique using the "Smart Cut

ProcessTM." Di Cioccio et al. [4] demonstrated successful direct bonding of a

hydrogen-implanted SiC wafer to a silicon wafer. They found it necessary to

ensure that both wafers had polished, hydrophilic deposited oxide layers. Once

direct bonding was complete, a high temperature anneal (1100 C) was

performed to split-off the implanted hydrogen layer from the bulk SiC [9]. Tong et

al. [9] developed a more reliable and simple SiC-on-insulator technique using

anodic bonding instead of direct bonding. They found that the anodic bonding of

SiC wafers to glass was more advantageous because surface roughness, a

hydrophilic surface, and silicon dioxide layers had less effect on the bonding [9].

A technique was developed to fabricate a thin layer of single crystal 6H-SiC on

high temperature (8000C) glass. The ultimate purpose of their process

development was to obtain a thin layer of SiC, which could subsequently be used

as a substrate for the epitaxial growth of gallium nitride used for GaN-based light-

emitting diodes and lasers [9].

SiC bulk wafers of 240pm thickness were H2+ ion implanted. The ions

penetrated to a peak depth at 0.5Rm, and then the SiC wafers were annealed at

8000C for 0.5 hours. Once the ion implantation and annealing steps were
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complete, the wafers were anodically bonded to the high temperature glass at

5600C using voltages of 800-1000V. Finally, the SiC layers bonded to the glass

were split from the bulk SiC wafer using a thermal anneal treatment at 7600C.

These authors studied the annealing temperatures after implantation, and the

anodic bonding process. A successful method was found to create a thin SiC

layer/glass sandwich that did not have a bond with cracks or defected layers, nor

suffered plastic deformation in the glass which affected the final SiC surface

roughness.

2.4 Device-Attachment Process Development

This literature review has provided information regarding the different facets of

anodic bonding and suggests more areas to explore. The following thesis

objectives result from specific findings of this review that were selected for

application to the device-attachment process development.

There is relatively little prior work on anodic bonding of SiC to glass. Tong et al.

[9] anodically bonded single-crystal SiC to high temperature glass, but this is not

relevant to MEMS applications. Packaging MEMS devices using a bulk SiC-glass

process requires a lower anodic bonding temperature than in Tong et al.'s work,

since other low melting temperature metals are used in the MEMS fabrication

process. An innovative, low-temperature technique of anodically bonding bulk

and thin-film Pyrex TM and HOYA SD-2TM glasses to a new material,

polycrystalline CVD SiC, is developed using appropriate bonding conditions. The

anodic bonding of glass to p-type Si is used as a reference for the anodic

bonding of bulk glass and thin-film glass to polycrystalline, CVD SiC. P-type Si is

used, because Lee et al. [18] found that it results in a faster bonding process.

The anodic bonding of bulk glass to p-type Si and CVD SiC is characterized in

several ways using the "Plaza Test Mask" specimen, and control samples without

the mask. Different bonding conditions are used in order to determine the extent

of the Plaza Test structure bonding. A two-part model is explored to analyze the

bonding of the Plaza Test structures and determine the overall bond toughness,
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both while the voltage is applied and when it is removed. Hydrophilic surfaces

are used in order to determine an increase in bonded structure area and bonding

current. The role of residual stress in the bonding process is investigated.

Curvature values of the bonded control samples are calculated using plate theory

and finite element analysis, measured experimentally, and compared with

literature values of the TCE for the bonding materials.

The mechanism occurring in the bulk glass when bonding to Si and CVD SiC is

characterized using a high-resolution nanostructural and nanochemical analysis.

Transmission Electron Microscopy (TEM) and Scanning Transmission Electron

Microscopy (STEM)/ X-ray energy dispersive spectroscopy (XEDS) are used to

analyze both PyrexTM and Hoya SD-2TM glasses. The objectives of the TEM part

of the study are to find depletion layers at the Pyrex T M/Si interface as Xing et al.

[13] found, and observe if Hoya SD-2 TM exhibits this trend. The STEM analysis

chemically analyzes the depletion layers in both glasses to see which elements

are depleted during bonding. Nitzsche et al. [6] performed a detailed chemical

analysis on TempaxTM glass which is very similar in composition to Pyrex TM

glass, but not Hoya SD- 2 TM glass. The mechanism, occurring in Hoya SD- 2TM

glass, was chemically analyzed by Visser et al. [20], but only in cases in which

the polarity was reversed at the anodic bond. The STEM study shows the

elemental depletion affect during the regular anodic bonding process. Both TEM

and STEM are used to study the mechanism when bonding PyrexTM to this new

polycrystalline, CVD SiC material.

Finally, the experimental procedure of bonding thin-film anodic bonding of

sputtered glass is performed, since sputter deposition is a well-established

technique. The bond quality of thin-film glass to p-type Si and CVD SiC is

determined using the bulk glass approach along with acoustic microscopy.
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Chapter 3
Modeling of Bulk Glass to Silicon and CVD Silicon
Carbide

This chapter describes the models used in the remainder of this thesis: the Plaza

Test Mask deformation model, the two-part bonding model, and models for

characterizing toughness, and residual curvature resulting from bonding bulk

glass to Si and CVD SiC.

3.1 Materials Modeled

There are four materials modeled in this study: PyrexTM, Hoya SD-2TM, p-type Si

and polycrystalline CVD SiC. The two glasses, p-type Si, and polycrystalline

CVD SiC, are assumed to be linear elastic and isotropic. Silicon is a single

crystalline cubic material with anisotropic material properties. The p-type Si has

the (100) plane normal to the bonding surface. The material properties of Si are

isotropic in this plane, and more specifically, the biaxial modulus, [E/(1-u)](1oo), is

constant, as shown in Equation 3.1, and independent of orientation or direction

[1]. This justifies the use of isotropic elastic properties for both materials.

E ) 1(3.1)
1-) (100) SII+SI 2

Using values, E(loo)=130.2 GPa, u(1oo)=0.279, and compliance constants,

S1 1=6.04e-12/Pa and S12=15.6e-12/Pa [1, 26], the isotropic relationship (3.1) is

satisfied.

The silicon carbide used is a polycrystalline, free-standing, monolithic, bulk

material fabricated using Morton's chemical vapor deposition process3 . This

polycrystalline material also has isotropic material properties4. Since there is no

experimental shear modulus established, it was found using Equation 3.2 [1]:

3 Morton Advanced Materials, CVD Silicon Carbide, MA, USA
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2(1+ v)

using values, E = 466 GPa and u= 0.215. Table 2 and Table 3 show material

property data for all the materials, which are taken from the company material

data sheets.

Table 2: Modulus of Elasticity and Poisson's Ratio of Materials [26]6,7,8

Material E, Modulus of -, Poisson's Ratio
Elasticity (GPa)

PyrexM0.2
HOYA SD-2M 86.8 0.244
p-type Si 130.2 0.279
(1004)
CVD SiC 466 0.21

Table 3: Shear Modulus of Materials [27] 9,10,11

Material Shear Modulus, p (GPa)
Pyrex' m  26.2
HOYA SD-2 M  34.9
P-type Si 79.0
CVD SiC 192.56

(3.2)

The materials modeled have similar TCE's over the bonding temperature range.

Figure 3-1 shows the effective ATCE between PyrexTm and HOYA SD-2TM

glasses, Si, and CVD SiC from 200C to 3501C.

5,6,11 Morton Advanced Materials, CVD Silicon Carbide, MA, USA.

79 Pyrex Data Sheet, downloaded from the Corning, Inc.
<http://www.corning.com/lightingmaterials/products/index-pyrex.html> accessed August 6, 2002
8,10 Hoya Corporation, Glass Substrates for Silicon Sensors, CA, USA
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Figure 3-1: Effective Delta TCE of Glass to Si and CVD SiC as a function of temperature.
(TCEglass - TCEsi/sic) [28]

3.2 Plaza Test Mask Deformation Model

The pull-down mechanism of the Plaza Test structure is defined in two ways.

The first, necessary mechanism is the elastic deformation of the Si and the glass

substrate in order to overcome the etch depth. A side view of the Plaza Test

structure array and etch profile is shown in Figure 3-2. Once both materials are

in contact, the second mechanism is the diffusion of oxygen anions towards the

Si to form an SiO 2 bond. Figure 3-3 shows bonded structures after the anodic

bonding operation. This mechanism is also assumed to occur when bonding with

CVD SiC. Once the materials elastically deform and come into contact, diffusion

of oxygen into the SiC lattice occurs to form Si0 2 with the available Si.

12 Morton Advanced Materials, CVD Silicon Carbide, MA, USA
13 Pyrex Data Sheet, downloaded from the Corning, Inc.
<http://www.corning.com/ightingmaterials/products/index-pyrex.html> accessed August 6, 2002
14 Hoya Corporation, Glass Substrates for Silicon Sensors, CA, USA
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Figure 3-2: Schematic of the Pre-Anodic Bond of Die Size Sample

An individual Plaza Test structure is shown in Figure 3-4. The dimensions shown

in this figure are defined as the height of the glass (H1)=762 m, the height of the

Si (H2 )=508 jm and SiC (H2)=470 pim, the total variable width of the etched

structure (Wt)=600 to 20 pim, the overall width of the structure (W0 )=1 600 jm to

1020 jm, and the length of the structure (L)= 8500 pim. The etch depth, go, in

the glass is either 0.2 or 0.4 jm. Figure 3-5, a top view of the Plaza Test Mask

array, shows the distance of 500 pim between each Plaza Test structure. The

similar magnitudes of W0, H1, and H2 imply that the structure must be modeled

explicitly as three dimensional and cannot be approximated as a beam or a plate.

The ANSYSv.6.0 finite element analysis (FEA) package was used to perform the

modeling analysis. Due to the thickness of the structure in the z direction, 8-

node plane strain deformation was assumed in the modeling. Two-dimensional

modeling was used. Elastic material behavior was assumed throughout.
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Figure 3-4: Side View of Structure Modeled
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Figure 3-5: Top View of Plaza Test Mask Array in Glass

3.3 Two-Part Bond Model

The following analysis describes the two-part bonding model of the Plaza Test

structures. The overall model requires elastic deformation as the principal

mechanism to adhere the surfaces. The first part occurs when the applied

voltage brings the two surfaces into contact. The second part occurs, when

interdiffusion and chemical bonding (SiO 2 ) form a permanent bond. The

structures remain permanently bonded when the bond strength exceeds the

elastic restoring force, or in a fracture mechanics approach, the bond toughness

exceeds the strain energy release rate.

Figure 3-6 shows a simple diagram which displays the forces involved when the

materials contact and when they bond. The spring force represents the elastic

response of the surrounding material that resists bonding, the electrostatic force

represents the voltage-induced force during bonding, and the bond force

represents the bond strength after bonding.
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Figure 3-6: Force Diagram

Figure 3-7 shows the contacting of the material surfaces. At equilibrium, when

the net force is equal to zero, the point of contact occurs when the electrostatic

force equals the opposing spring force. A parallel plate capacitor pull-in model

predicts which structures contact when the voltage is applied.

t --- Wtv=1*1
- T 300"C;

FE FK

Figure 3-7: Surface Contact

Figure 3-8 shows the permanent bonding of the surfaces when the voltage is off.

At equilibrium, when the net force is equal to zero, the point of bonding occurs

when the bond strength equals the elastic restoring force. Linear elastic fracture

mechanics is used to predict whether the two surfaces remain bonded, given a

certain toughness of the interface.
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Figure 3-8: Surface Bonding

3.3.1 Contact: Parallel Plate Capacitor Pull-in Model

In order to model the structure contacting mechanism in terms of a parallel plate

capacitor, an equivalent stiffness and capacitance are calculated. The parallel

plate deforms rigidly in order to pull-in or contact, whereas, the actual structures

exhibit a more complex deformation. However, the principal contact mechanism

of the structure surfaces is at the middle of the structure width where the

deformation is most like a parallel plate. Once the center regions of the two

surfaces are in contact, the contact front spreads outward towards the edges.

A double-spring mass structure models the contacting surfaces of the Plaza Test

structures. Figure 3-9 shows the difference between a simple parallel plate and

the more complex double-spring mass system. This double-spring mass

structure is an idealization of a Plaza Test structure. Figure 3-9 shows the spring

forces which represent each material of the system: Spring force 1, Fk1, is due to

the glass and spring force 2, Fk2, is due to the Si or CVD SiC. The springs are in

series. The electrostatic force is the force caused by the electric field across the

gap and pulls the materials to contact. The materials move distances

represented as gl,2 across the etch depth, go.

The stiffness values of the glasses, Si, and CVD SiC are found using

ANSYSV.6.0. Since the springs of Figure 3-9 are in series, the equivalent spring

stiffness, keq, is calculated using Equation 3.3 :
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k =k 1k2  (3.3)
eq k+ k2

where k1 is the stiffness constant of the glass and k2 is the stiffness constant of

the Si or CVD SiC.

_______________ixed " fixed

Fk eqFkl ki

Fe:

/ / / /fixed.

IF e Tetch deplh

Single Spring-Mass:
Parallel Plate Capacitor Fk2

k2

fixed

Double Spring-Mass:
Raza Test Structure

Figure 3-9: Spring-Mass Structures of Parallel Plate [1] and Plaza Test structure

Figure 3-10 shows the dimensions of a bimaterial structure system modeled in

ANSYSv.6.0. The x and y directions are assumed to be fixed on each side of

the structure. It is assumed that the 500jm surfaces on each side of the etch

depth are not fixed, but contact in order to simulate the bonding process. It is

also assumed that the top and bottom glass and Si/CVD SiC surfaces without the

fixed boundary conditions are traction free. The etch depth is defined as the total

variable width, Wt, of each structure. The distance between each Plaza test

structure is 500 pm and the etch depth, go, in the glass is 0.2 ptm. The

ANSYSv.6.0 input can be found in Appendix 7.1. The following procedure
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describes the ANSYSv6.0 modeling in order to calculate the stiffness, ki,2 , of

each material in the bonded glass to Si system.

Glass

etch depth.

5,00pm 2x W~t

S11 CVD SIC

Figure 3-10: Dimensions of Bonded Structure

Similar pressure values are fixed on the nodes of both surfaces: the glass

surface in the etched region, and the Si surface on the opposite side. Each

surface deforms to a displacement such that the sums of the displacements

equals the whole etch depth. Figure 3-11 and Figure 3-12 show the ANSYSv.6.0

output of the two components (not drawn to scale and shown separately for

clarity) of Figure 3-10. Figure 3-11 shows the deflection contour maps of

Pyrex TM glass, and Figure 3-12 shows the corresponding deflection of the Si.

Each material deforms a peak distance, i.e. PyrexTM deforms 116nm in Figure

3-11 and Si deforms 84nm in Figure 3-12. Once the total central displacements

of each surface, 116nm+84nm, equals the etch depth, 200nm, the force is

calculated from the pressure. Different pressure values are used to calculate a
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delta force divided by a delta central displacement of each material in order to

obtain each material's k constant. The same program is used to model the

bonding of glass with CVD SiC.

16nm
Figure 3-11: PyrexTM Glass Deformation

84nm

Figure 3-12: Silicon Deformation

Similar pressures are applied to the material interfaces at the etch depth. Each

force from an applied pressure is found using:

F = PA (3.4)
where the area is equal to the variable width of the structure and the length of the

etched structure, 8.5 mm. Once each force, F, is calculated, the stiffness

constant, k, is found using:

(3.5)-AF
Ag
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where Ag is the difference in peak displacement of each material from the

ANSYSV.6.0 calculation at a particular force, F.

Once the k1,2 constants and keq are calculated, the Plaza Test structure system is

equated to a parallel plate capacitor (Figure 3-9) with a the spring force [1]:

Fk = k, ( go ) (3.6)

where go is the etch depth at zero applied voltage, and g is the displacement of

the materials.

Next, the structure is related to the parallel plate capacitor, and the electrostatic

force is calculated. Figure 3-13 shows the electrical components of the sample

compared to a parallel plate capacitor. The electrical components of the sample

are defined: R1 is the glass resistance, R2 is the Si resistance, C1 is the

depletion layer capacitance of the glass, and C2 is the capacitance of the etched

gap. The anodic bond sample has two capacitors, C1and C2, in series and two

resistors, R1and R2. An equivalent capacitor must be found in order to model the

anodic bonding circuit as a parallel plate capacitor.

I
C .

Parallel Plate Capacitor

Glass

Cl

C Bn Sme

R2
Silsic

Anod 1C Bond Sample

depletion
layerWW

Figure 3-13: Parallel Plate Capacitor [1] versus Anodic Bond Sample
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Thus, C1, the capacitance of the depletion layer, is found using:

C1 = C" (3.7)
W

where Eo is the permittivity of free space, 8.85 e-12 C/ V m, Fpyex is the dielectric

constant for PyrexTM glass,10 C/ V m [29], A is area of the depletion layer, and w

is the thickness of the depletion layer. The depletion layer thickness, w, varies

according to the applied bonding conditions. Figure 3-14 shows a graph of the

sodium depletion layer thickness versus bonding time of the TempaxTM glass

(which has a similar composition to PyrexTM) [6]. The bonding temperature and

time increase as does the depletion layer thickness. Figure 3-14 indicates that

using a voltage of 250V, bonding temperatures of 210-2801C, and a bonding time

of 10 minutes should, at least, produce a sodium depletion layer of 0.7pm [6]. It

is assumed that using higher temperatures of 300-3500C and voltages of 500V

and 1 kV, and a bonding time of 10 minutes, the depletion layer will be greater

than 0.7pm and closer to 1pm. The sodium depletion layer thickness and

dielectric constant are also assumed to be similar for Hoya SD-2TM glass.

70 42

5 .

-~ A-

00 j

100 /60 ________1

Drift In c, ~r.in

Figure 3-14: Sodium depletion layer thickness in Tempax as a function of the drift time at
various temperatures and drift voltage of 250V [6]

C2, the capacitance of the etched gap, is found using:
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e A
C , 0 (3.8)

9 0

where A and Eo are equal to the values in Eqn. 3.7, and go is the etch depth of 0.2

lim.

The equivalent capacitance, Ceq, is found and equated to C2 using the following

assumptions. Since the variables, A and E- are equivalent in Eqns. 3.6 and 3.7,

the difference between C1 and C2 is C1 = 10/w and C2 = 1/go. The depletion layer

thickness, w, varies from 0.2 pm to approximately 1 gm, and go of Equation 3.8 is

approximately 0.2 gm. Therefore, C1 to C2 is C1 = 2 -+ 10 C2. When substituting

this relation in Equation 3.9, the equivalent capacitor, Ceq, is approximately equal

to C2:

C 3 2 -1- -- 1 C2 = C (3.9)eq C + C2 3 11

Since Ceq is equal to the capacitance of the etch depth or gap between the

materials, the double spring mass system is comparable to the parallel plate

capacitance. Therefore, the anodic bond sample can be modeled using a single

capacitor, and the electric force or pressure established at the interface by the

pull-in voltage can be derived. The following section presents the derivation of

the electrostatic force and pull-in voltage.

The anodic bonding mechanism is related to a parallel plate capacitor that is

charged using a voltage source. There is work done on the system represented

by potential energy, W, when the parallel plates move a distance, g. The

potential energy is defined as the force between the parallel plates, F, which is

created by the charges, +Q and -Q, multiplied by the distance the plates move,

g. This parallel plate system is modeled using a two-port capacitor, shown in

Figure 3-15, since the potential energy is a function of two variables: an electrical

variable, charge, Q, and a mechanical variable, displacement, g [1].
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Figure 3-15: Two-port Voltage Controlled Capacitor [1]

The two-port capacitive system represents an electrostatic actuator by attaching

the movable plate to a spring. The distance the spring, k, moves is defined as z.

This voltage controlled, electrostatic actuator is modeled in Figure 3-16.

I

0-

4--

.+ ...........

r F 1I/k

Figure 3-16: Voltage Controlled Electrostatic Actuator [1]

The electrical co-energy, W*, defines the system because controlling the voltage

does not have an effect on controlling the charge [1]. Therefore, the parallel

plate capacitor is a non-linear element. Equation 3.10 is the co-energy of the

system defined in mechanical and electrical terms using V as the voltage found

across the capacitor, and g as the distance the parallel plate moves [1].

W*(V,g)= QV-W(Q,g) (3.10)

Taking the derivative of the co-energy differential equation, Equation 3.11, shows

how it is related to both mechanical and electrical systems [1].

dW *(V, g) = QdV - Fdg (3.11)

Equation 3.11 is differentiated to find the electrostatic force, Fe defined in

Equation 3.12.
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FW* (V,g) !EAV 2 eAV 2  (3.12)

g _ 2g- 2g

where A is the area of the variable structure width and the structure length,

8.5mm. Fe is a function of the equivalent capacitance:

eAV 2  V 2
F, = 2g 2 eq 2 (3.13)

Equation 3.12 can be arranged to find the electrostatic pressure, Pe shown in

Equation 3.14. Plaza et al. [10] related the Pe defined in Equation 3.12 to the

bonding or unbonding of the Plaza Test structures. Equation 3.14 shows the

displacement of the parallel plate, g, and the voltage between the plate, V, are

functions of the electrostatic pressure that pulls the plates together.

F eV2
e -= (3.14)

Since both Fk and Fe have been derived, the net force on the upper plate is:

Fne =-F+Fk (3.15)

The pull-in voltage, Vpi, calculated to model the Plaza Test surface contact, is the

voltage when the stability of static equilibrium is lost, and the materials contact

each other. The derivative of Eqn. 3.15 with respect to g is taken at equilibrium,

Fnet = zero. Eqns. 3.6, 3.12, and 3.15 are combined, to examine how Fnet varies

with a change in gap, g + 8g. The pull-in voltage is derived to be:

3
K g
K-q(.V i e (3.16)
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The pull-in voltage, Vpj, and etch depth, g0, of Eqn. 3.16 are normalized before

graphing the electrostatic force against the spring force: the applied voltage,

Vapplied, to Vpi , and the change in displacement, g, of the plate to its original

position, g.. Eqns. 3.17 and 3.18 show this normalization.

V
V - applied

v. (3.17)

(3.18)

After this normalization, the spring and electrostatic forces are plotted using

Equation 3.19. The left side of Equation 3.19 is related to the normalized

electrostatic force, and the right side is related to the normalized spring force.

Both sides of the equation are plotted in order to find when the electrostatic force

is larger than the spring force indicating contact between the surfaces.

1 V 2
-( ) = (3.19)

2 (i-g)2

3.3.2 Bonding: Linear Elastic Fracture Mechanics (LEFM) Modeling

The purpose of the modeling presented in this section is to determine the strain

energy that must be supplied to bring the surfaces into contact. LEFM and

ANSYSv.6.0 modeling is used to predict the energy release rate of each

structure width. This strain energy can then be equated to the bonding energy

after SiO 2 bond formation in order to determine whether the surfaces remain

bonded. The surfaces of a structure at a particular width remain bonded when

the toughness or work of adhesion, which is a function of the bonding conditions,

exceeds the energy release rate. The actual toughness of the structures is

determined experimentally.
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Modeling the whole Plaza Test structure is arduous and time consuming, so a

simple, symmetric model is used. Figure 3-17 shows the 2-D dimensions for half

of the structure shown in Figure 3-4. The same heights and etch depths are H1=

762 pm, H2= 508 pm, and go=0.2 or 0.4 gm. Now, W is half of the total variable

width, Wt, so W = 300 to 10 gm.

Glass

H1

W I

500 Lm

H2

Si/sic

Figure 3-17: Symmetric Front of Structure

The bonding of two materials together is modeled as a crack closing. It is

assumed that mode 1 fracture (the bonding process when the surfaces coming

together at matched displacements are parallel to the crack plane) is the

dominant mode. The bonding begins in the middle of the structure and extends

to the side. Half of the bonded interface of glass to Si is shown in Figure 3-18

where B is the bond width, a is the crack length, and L is the length of the

structure.
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Figure 3-18: Crack Closing Dimensions

The energy release rate, G, defined in Equation 3.20 [30], is the rate of change in

potential energy, Wp, as the bond area, dA, increases.

dW

G=dA (3.20)

The change in potential energy, Wp, is defined in Equation 3.21 [30].

W = U - Wf (3.21)

where U is the stored elastic strain energy, and Wf is the work done by external

forces. Since this bonding system under consideration is displacement

controlled, the work done by external forces, Wf, is zero. The position of the

nodes along the interface of the materials is fixed and the forces are allowed to

slowly bring the materials together. Therefore, in this bonding system, the strain

energy release rate, G, is the rate of change of strain energy with increase in

bond area:

GdU
G= dA (3.22)

where dA is defined as the area of the bond width, B, and length of the structure,

L, and dU is the change in strain energy.

The total strain energy of the system is modeled using ANSYSv.6.0 in order to

calculate the strain energy release rate. A symmetric 2-D model of the

rectangular structure is built. The dimensions of the model are shown in Figure
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3-17 and Figure 3-19. The boundary conditions are established. The left side is

bounded by zero displacement in both the x and y directions. It is assumed that

the right side is bounded by zero displacement in the x direction since it is a

symmetric structure. It is also assumed that the top and bottom glass and

Si/CVD SiC surfaces without the fixed boundary conditions are traction free.

Nodes are established on the material surfaces along the interface.

-Wl

I* 762ptm

in glass at
the inetrface W

ssgl etch

ra e
Sic~i orS 9508 tm

500pm

Figure 3-19: Symmetric ANSYS Model of Structure

An ANSYSv.6.0 input, listed in Appendix 7.1, was developed to pull down the

nodes along the interfaces at different distances adding up to the total etch

depth, go, ie. 0.2 gm. The glass is pulled a distance of gi, and the Si or CVD SiC

is pulled a distance of g2 where gi + g2 = go. Initially, the two center nodes on

each material interface are pulled together, as shown in Figure 3-20, because of

the singularity associated with only one pulled node on each interface. The

strain energies, U, of all the elements are imported into Microsoft ExcelTm and

summed in order to find the total strain energy of the system for that particular

deformed material distances. The process of pulling down a two pairs of nodes

(on each surface) different distances, and the summation of the strain energy is

repeated iteratively until the minimum energy configuration of the displaced
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surfaces is obtained. Once the minimum strain energy, Umin, is found, the next

three pairs of nodes (on each surface) are pulled down which includes the first

two nodes and a third node on both interfaces. This continues on from the

middle of the structure to the edges. The crack length, a, in Figure 3-20,

corresponds to the unbonded part of the interface where the nodes are not pulled

together. At a=0, the crack length is zero because the width, W, is totally bonded

and all the nodes are pulled together.

.~h c~tw d . azO ......

Figure 3-20: Two Deformed Interface Nodes (Not drawn to Scale)

Table 4 shows, in bold, the minimum U, Umin, found by pulling down the nodes

different distances to a total etch depth of 0.2 gm on a W=300gm (symmetric for

a 600gm width structure) Pyrex TM and Si system.
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Table 4: Minimum Strain Energies as a Function of Deformation

W = 300pm Symmetric for Wt= 600pm width (25 micron interface node spacing)
Deformation Distance of Nodes (um)
PyrexTM nodes, g1 0.130 0.125 0.118 0.100
Si nodes, g2  0.070 0.075 0.082 0.100
Finding Minimum Strain Energy, Urni

(J)

# nodes pulled

2 (start bond) 1.4595E-04 1.4557E-04 1.4669E-04 1.5279E-04
3 1.7730E-04 1.7657E-04 1.7745E-04 1.8335E-04
4 2.0357E-04 2.0251 E-04 2.0315E-04 2.0871 E-04
5 2.2801 E-04 2.2665E-04 2.2705E-04 2.3221 E-04
6 2.5232E-04 2.5067E-04 2.5085E-04 2.5561 E-04
7 2.7779E-04 2.7587E-04 2.7584E-04 2.8021 E-04
8 3.0579E-04 3.0360E-04 3.0338E-04 3.0737E-04
9 3.3813E-04 3.3568E-04 3.3530E-04 3.3894E-04

10 3.7796E-04 3.7525E-04 3.7476E-04 3.7804E-04
11 4.3233E-04 4.2936E-04 4.2881 E-04 4.3173E-04
12 5.261 OE-04 5.2286E-0 5.2241 E-04 5.2482E-04

13 (full bond) 1.3598E-03 1.3564E-03 1.3592E-03 1.3587E-03

The strain energy release rate, G, is calculated by dividing the difference in strain

energy, AU, in units of J/m, by the bond length, AB, in units of meters, m. AU is

found by subtracting Umin of two bonded nodes from three bonded nodes etc. in

Table 4. The values of AU are put into Table 5 for further calculation of G. AB is

the change in bond length of the nodes pulled together for that particular AU, i.e.

if two nodes at 25gm apart on each interface are pulled, AB equals a bonded

distance of 50gm. Crack length, a, of Figure 3-20 is found by subtracting AB

from the width, W=300 lam. The crack length does not have to be multiplied by

the structure length, 8.5 mm, because this 2D plot has strain energies that have

a strain energy ,U, per unit thickness or length, L, of the structure. It is

normalized by dividing a, by W. This is used to plot G vs. a normalized crack

length, a/W, so all the different widths can be plotted on the same graph. Table 5

shows the final calculation of the strain energy release rate, G.
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Table 5: Final Calculation of G, Energy Release Rate

# nodes U A U A B a a/W G
pulled Strain Energy bond length crack length

() (A J) (M) (M) W=300pm (J/m 2)
2 1.4557E-04
3 1.77E-04 3.1OE-05 5.00E-05 2.50E-04 0.833 0.620
4 2.03E-04 2.59E-05 7.50E-05 2.25E-04 0.750 0.346
5 2.27E-04 2.41 E-05 1.OOE-04 2.OOE-04 0.667 0.241
6 2.51E-04 2.40E-05 1.25E-04 1.75E-04 0.583 0.192
7 2.76E-04 2.52E-05 1.50E-04 1.50E-04 0.500 0.168
8 3.03E-04 2.75E-05 1.75E-04 1.25E-04 0.417 .157
9 3.35E-04 3.19E-05 2.OOE-04 1.OOE-04 0.333 0.160
10 3.75E-04 3.95E-05 2.25E-04 7.50E-05 0.250 0.175
11 4.29E-04 5.41E-05 2.50E-04 5.OOE-05 .167 .216
12 5.22E-04 9.36E-05 2.75E-04 2.50E-05 0.083 0.340

13 1.36E-03 8.34E-04 3.OOE-04 P.OOE+00 0 2.780

Figure 3-21 shows the plot of G versus normalized crack length, a/W. These are

values for G as the bond forms along the interface. At a/W = 0, there is a full

bond and no crack. As a/W > 0, the crack length increases and the bond area

decreases. At a/W = 0, G, is at its highest value and as a/W increases the

structure becomes more compliant, so G decreases. There is a distinct minimum

in the G versus a/W response. Initially at a/W = 1, the structure begins to bond.

At this point a crack can easily debond the structure. It becomes harder to

debond as G decreases to a minimum around a/W = 0.5. It slowly begins to

become easier to debond again as a/W < 0.5. At a/W = 0, the structure is fully

bonded and a crack can easily debond it because the driving force, G, is high.

The value of G at this point should tend to be an infinitely large value since it is at

the edge of the structure and very rigid, but the mesh is not sufficiently fine in that

area to accurately capture this behavior. It is not understood why G begins to

increase again when a/W> 0.5, but an obvious reason could be that this is not a

simple beam or plate model.
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Figure 3-21: G versus Crack Length for 600pm Structure

For each part of the experiment, an arbitrary number of the bonded widths were

modeled and plotted on the same graph. Figure 3-22 shows a magnified view of

the increasing G trend as W decreases. As W decreases, the structure's stiffness

increases resulting in bonds that are easier to crack.

3.00

2.00 -

cmJ

1.00 -

0.00
0 0.1 0.2 0.3 0.4 0.5

a/W

0.6 0.7 0.8 0.9

Figure 3-22: G as a Function of W

Each structure bonds at a minimum G, Gmin. Gmin defines the overall toughness

or work of adhesion of the bonded structures on the Plaza Test Mask sample.
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Once all the bonded structures are plotted, G min is found experimentally by

measuring the unbonded length on each structure using an optical microscope

and its measurement grid. Figure 3-23 shows the area modeled, and the thin

white line around it signifies the unbonded part of the structure defined as the

crack length, a. Figure 3-23 is an acoustic microscopy image using a

SonoscanTM microscope of the top view of a 600pm width structure. This figure

also shows a magnified top view of the crack length where W is the structure

width, and a is the crack length. A schematic of a side view is also shown in

Figure 3-23 for better viewing of the crack length, a, and variable width, W.

Ww
W

Glass

crack length, a a

Top View Side View
Figure 3-23: Acoustic Microscopy Image of Crack Length and Total Area Modeled

The unbonded length or crack length was found, divided by the width of the

structure, W, and then plotted on the a/W x-axis of Figure 3-22 in order to find the

approximate minimum strain energy release rate, Gmin. The crack length value

on the x-axis was used to find the approximate Gmin value by drawing an arrow

up from the measured crack length to the curve corresponding to the width being

measured. The black arrows of Figure 3-24 indicate the positions of the bond

front and its corresponding Gmin for each structure's width. Since bond

toughness is a function of the bonding conditions, each structure on the Plaza
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sample has a constant Gmin value indicating the overall anodic bond

of a particular experiment.

1 1

Test M

toughn

3.50

3.00

2.50

N2 .00-

01.50-

1.00-

0.50

0.00

eriment Measuremeni

W=150gm
(Wf=300gm)

W=250gm
(Wf=500gm)

(W=600gm)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a/W

Figure 3-24: Bonded Structures and their Corresponding Minimum G

The bimaterial stress intensity factor, K, or fracture toughness values are

calculated in order to compare to literature results. K and Gmin are related in the

following analysis and a crucial assumption [31].

The calculation of the stress intensity factor, K, assumes the materials are

linearly elastic, homogeneous, and isotropic above and below the actual

interface, and the overall system deformation is plane strain. Wan and Suo [31]

take these assumptions, summarize interfacial fracture mechanics, and find an

Irwin-type relation for K and Gmin.

K2

lmin E- * 1 2 (3.23)
E cosh ITE

E* is found using Equation 3.24 where both E1 and E2 are the plane strain tensile

modulus for each material:
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2 1 1
- = -=- + -(3.24)

E El E2

The plane strain tensile modulus is:

E -v (3.25)1- V

where g is the shear modulus and i is the Poisson's ratio.

Equation 3.26 is used to find F of Equation 3.23. The oscillatory index, E, takes

into account different pathological behaviors in linear elasticity solutions for

interfacial cracks:

1 i-g#
'F -In (3.26)2;T 1+,8

A Dundurs elastic mismatch parameter defines s in Equation 3.27:

1 (1- 2v2 2 - (I- 2v I

2 (1- v 2 )/#2 + (1 - v1 (3.27)

where p1 and g2 are the shear moduli of each material and o1 and l 2 are the

Poisson's ratios of each material.

Rearranging Equation 3.23 in order to determine K is shown in Equation 3.28:

K = £Gin E cosh 2 ffE (3.28)

3.3.3 Flow Diagram of Contact and Bonding

Figure 3-25 shows a flow diagram for the two-part bonding model with inputs of

the materials, Plaza Test structure geometry, applied voltage, and work of

adhesion. Contact or pull-in is predicted to occur at the point of unstable

equilibrium if the electrostatic force, Fe, (established from the applied voltage)
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exceeds the elastic spring force, Fk. Since Fe brings the surfaces together,

elastic strain energy is stored in the materials keeping them in contact. LEFM

and ANSYSv.6.0 modeling were used to determine the strain energy release rate

as a function of structure width needed to bring the surfaces into contact.

Bonding occurs if the strain energy needed for contact exceeds the bonding

energy from the interdiffusion and permanent SiO 2 bond formation processes.

The input of a work of adhesion or strain energy release rate is used to predict

the toughness of the bonded structures.
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Input:
Materials, Plaza Test Structure Geometry, Applied Voltage, Work of Adhesion

Contact: (Figure 3-7)

Double Spring Voltage
Mass Controlled

Structure Model. Anodic
Model: Bond Circuit:

Figure 3-9&10 Figure 3-13

Find kl,2 using
ANSYSv.6.0: Find Ceq:

Eqns.3.4 & 3.5 Eqns. 3.6-8

Find keq:
Eqn. 3.3 Find Voltage

controlled
electrostatic

Find Spring force Feq:

Force: Fk Eqn. 3.12
Ecin. 3.6

Find Fnet:
Eqn. 3.15

Find Pull-in
Voltage as a

function of keq
and normalize.:

Eqn. 3.16-18

Plot Eqn. 3.19:
Fk vs. Fe

Function of

Surface
Contacting

Ye~s TNo

Bond: (Figure 3-8)

Symmetric Bonded Structure:
Fig. 3-17

Iterative process of nodal
deformation to find Umin:

Figs. 3-19&20
Table 4

Calculate G:
Table 5

Plot G vs. a/W:
Fig.3-22

Surface
Bonding

Yes No

Experimentally Find:
Toughness

Fig. 3-23 & 3-24

Figure 3-25: Contact and Bond Model Flow Chart
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3.4 Curvature Calculations

The characterization of residual curvatures developed in MEMS sensor

elements, as a consequence of thermal processing during anodic bonding, is the

objective of this study. The thermoelastic curvatures are important to analyze in

order to understand the magnitudes resulting from the different bonding

parameters. In particular, it is desired to understand whether curvature is entirely

due to thermal expansion mismatch between the materials being bonded, or

whether other process related effects play a role. After bonding, the sample

cools down to room temperature. When the sample cools from the bonding

temperature to room temperature, a curvature results between the materials

because of their thermal mismatch (ATCE or Aox). The curvature was calculated

from classical plate theory and ANSYSv.6.0 modeling, and measured

experimentally using the TencorTM machine. Plate theory error bars and

Tencorm measurement scatter were calculated.

The temperatures used during bonding are 3001C and 3500C, which are far

below the glass transition, melting, and sublimation temperatures shown in Table

6. Table 6 shows that the glass transition, melting, and sublimation temperatures

are higher than the bonding temperatures. According to Ashby, bulk creep

occurs at a range of 0.3-0.5 of the melting temperature, Tm [32]. This indicates

that creep will occur in Si at a minimum temperature of 4260C (since the melting

temperature is 14200C [33]), which is still higher than the bonding temperatures.

Since CVD SiC is a very hard and stiff material with high strength at elevated

temperatures, it only experiences sublimation at 27000C.15

1s Morton Advanced Materials, CVD Silicon Carbide, MA, USA
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Table 6: Material Temperature Properties [33] 16,17,18

Material Glass Transition Melting Sublimation
Temperature (IC) Temperature (0C) Tem erature (00

Pyrex"M 552 N/A N/A
Hoya SD-2TM 721 N/A N/A
Si N/A 1420 N/A
CVD SiC N/A N/A 2700

3.4.1 Classical Plate Theory

Classical plate theory, a small deformation analysis, is used in order to study

stress and deformations in multi-layered plates. Small deformation elasticity

theory is used to determine how the stresses and curvature evolve from the

strain mismatch in each layer of the multi-layer systems. In the present case,

these bonded specimens are assumed to be bilayer plates with isotropic in-plane

elastic properties and a thermoelastic strain mismatch. The layer thickness, the

biaxial moduli, thermal coefficients of expansion, and lengths define the material

properties and the rectangular geometry of the bilayer shown in Figure 3-26.

The composite plate has uniform thickness and uniform temperature. Initially,

the bi-layer is flat without curvature and is stress free at an initial room

temperature. Figure 3-27 shows that this bilayer at room temperature is a flat

plate without any internal stresses. Once the temperature is increased to the

bonding temperature, the bilayer is bonded, and then cooled down again to room

temperature. Once this bilayer is bonded, the difference in thermal coefficient of

expansion (TCE) produces a bow defining a curvature, shown in , Figure 3-27,

because of delta T (AT). These calculations are used since the bow resulting

from the difference in TCE is related to curvature.

Since Lx and Ly are much larger than the total thickness, [34], i.e.:

16 Morton Advanced Materials, CVD Silicon Carbide, MA, USA
17 Pyrex Data Sheet, downloaded from the Corning, Inc.
<http://www.corning.com/lightingmaterials/products/index-pyrex.html> accessed August 6, 2002
1 Hoya Corporation, Glass Substrates for Silicon Sensors, CA, USA
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(Lx>>h1+h 2 ; Ly>>h1 +h2)

where Lx and Ly are the lengths in the x and y direction and hi and h2 are the

thickness in the top, 1, and bottom, 2, layer, there is a state of equal biaxial

stress of the principal stresses and strains in the plate [34].

Yxx=ayy and Exx=Eyy

flat plate

KXy 0

sphere

KJXy

Figure 3-27: Plate Curvature [35]

The entire bilayer (apart from the free edges) exhibits a uniform, biaxial

thermoelastic strain. This strain is a result of an in-plane normal strain, E, that

comes from the uniform stretch or contraction of the layers, and a strain gradient

caused by the curvature, K, of the layers. Through the thickness of each layer,
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the stress variation is linear. There is a maximum stress at the interface, and a

difference in stress value between layers.

3.4.2 Curvature Calculation from Classical Plate Theory

The following derivation of curvature from plate theory is found in [341. The plate

theory error bars of this calculation are also included.

Equation 3.29 shows that the total biaxial strain state in the x and y principal

directions occurs from E0, the uniform expansion or contraction, and kz, as a

function of thickness, from bending:

Exx(Z) = Eyy(Z) = E(Z) = E, + KZ (3.29)

The biaxial strain contributes to the two principal stresses found in each layer as

a function of thickness:

uTxx,1 (z) = ayy,1(z) = a1 (z) = E_1 { E(z) - [ a1(z) AT]} (3.30)

Jxx,2(z) = ayy,2(Z) = u2(z) = E_2 { E(Z) - [ a2(Z) AT]} (3.31)

where E_1 = {E1(z) / (1- m1(z) )) and E_2 = {E 2 (z) / (1- 02(z) )} are the biaxial

modulus, E1 and E2 are the elastic Young's modulus, m1 and 02 are Poisson's

ratio, x1 and U2 are the thermal coefficient of expansion of each material. AT is

the difference of temperature from room temperature, 200C, and bonding

temperature, 3000C or 3500C. AT is negative since the final temperature is room

temperature after the sample cools. The net force and moment, resulting from

the principal stresses, cause an external reaction force and moment found using

these equilibrium equations:

force: Jh_ 2 (z)dz + 1 a (z )dz = 0 (3.32)

moment: J-h 2 a 2 z(z)dz + Jol 1 iz(z)dz = 0 (3.33)

The in-plane normal strain, E0, is derived from 3.29-3.33. It is dependent on

geometry, change in temperature, thermal coefficient of expansion, Poisson's

ratio, and elastic moduli of each layer:
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E = AT Xa + Ya + Z(4h2 a +4h2 a +3hh[a+a 2  (3.34)

where X = E_1 2 h1
4, Y = E_22 h24, Z = E_1E_2hh 2, and D = A + B +

C(4h1
2+6h 1 h 2+4h 2

2)].

Finally, the KpnateTheory, plate theory curvature, is derived:

K Plate _Theory' £ h ) (335)
Pae_ T Dery 6h~h h + h 2 )(.5

where E = E_1E_2 (a1 - 2)AT.

Equation 3.35 is dependent on Aa, the biaxial moduli (E1 , E2), thickness (h1 , h2)

and AT. The average material properties, Aa and biaxial moduli (E1), are used to

calculate curvature because the sample cools down from the bonded

temperature to room temperature. The following calculations show how the

average Aa (defined as effective a) and biaxial moduli (E1) are calculated as a

function of temperature.

First, the average Si biaxial modulus is calculated. The Si modulus of elasticity is

dependent of crystal plane and direction, so the stress and strain in tensor form

are related in Eqn. 3.36 [1]. The stress, Ga is equal to summation of the stiffness

coefficients, Cab, and strain, Eb. The constants, a and b, refer to the x and y

axes or directions.

a abEb (3.36)
b

After inverting Eqn. 3.36, Eqn. 3.37 shows how Eb is equivalent to the summation

of the compliance coefficients, Sab, and Ga [1]. The compliance coefficients, S,

are equivalent to C-.
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a S ab b (3.37)

Si is a cubic, symmetric material, so instead of having 21 independent, Cab

components, this material has three. The stiffness coefficients are shown in

matrix form [1]:

C =

C11
C12
C12
0
0
0

C12
C11
C12
0
0
0

C12
C12
C11
0
0
0

0
0
0
C44
0
0

0
0
0
0
C44
0

0
0
0
0
0
C44

These stiffness coefficients, Cab, are temperature dependent. Table 7 shows the

temperature dependent stiffness factors used to calculate C1, C12, and C44 at a

specific AT. In order to calculate these stiffness factors at each bonding

temperature, AT is positive, since it is calculated by the difference between the

bonding temperature (the final temperature) and the room temperature, 200C (the

room temperature). These calculated values are found in Table 8.

Table 7: Silicon Stiffness Material Constants [37]

Elastic Material Properties Stiffness Constants
Elastic Stiffness at room temperature Ci = 165.6 GPa

and atmospheric pressure C12 = 63.9 GPa
C44= 79.5GPa

Temperature Dependence of the elastic dC/dT = -9.4e-5 K1

stiffness Factors dC 12/dT = -9.8e-5 K1

dC 44/dT = -8.3e-5 K1

Table 8: Elastic Constants as a Function of Temperature [37]

AT (0C) C (G~a) C12 (GPa) C44 (GPa)
80 164.4 63.44 78.98
130 163.6 63.13 78.65
180 162.8 62.81 78.32
230 162.1 62.50 77.99
265 161.5 62.28 77.76
280 161.3 62.19 77.66
330 160.5 61.87 77.33
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Once C11, C12, and C44 are calculated in Table 8, each constant is inserted into a

6x6 matrix, and put into a Matlab v.6 .1TM program. The Matlab v.6.1 TM program,

shown below, inverts this C matrix into an S matrix at AT from 200C to 100C.

C1 = 1.644e11;
C12 = 6.344e10;
C44= 7.898e10;
C100=[ C11C12C120 0 0;C12 C11C12 0 0 0; C12C12C11 0 0 0;0 0 0 C440 0;0 0 0 0C44
0;0 0 0 0 0C44];
Sjoo=inv(Coo)

The S matrix is calculated in order to find the S1 and S12 values as a function of

temperature. Equation 3.1 uses 51 and S12 to calculate the biaxial modulus.

Table 9 shows the value at each bonded temperature, and the average from the

bonded temperature to room temperature. The CVD SiC and glass biaxial

moduli are also included in Table 9. The values of the CVD SiC elastic modulus

are taken from the manufacturer's data at certain temperatures, and then curve-

fitted to obtain the values for the range of temperatures of interest. The

calculated biaxial modulus for both PyrexTM and HOYA SD- 2 TM glasses were

calculated since the specific values have not been determined at each

temperature. The glass biaxial modulus decreases as temperature increases.

The biaxial modulus decreases approximately 1 % per 100C [38]. Each

material's average biaxial modulus at the bonding temperatures, 3000C and

3500C, is used to calculate curvature.

Table 9: Average Biaxial Modulus

Biaxial Modulus Average (GPa)

Temp © PyrexTM HOYA SD-2TMSi CVD SiC
20 79.500 114.81 180.51 589.87
100 78.710 113.67 178.89 584.81
150 78.310 113.09 177.94 581.65
200 77.910 112.52 177.30 578.48
250 77.510 111.94 176.68 576.14
300 77.120 111.37 175.44 573.78
350 76.720 110.80 174.83 571.79
avg_300 78.177 112.90 177.79 580.79
avg_350 77.969 112.60 177.37 579.66
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Next, the effective (x, is calculated using Eqn. 3.38. Equation 3.38 is defined

using AT as the difference between the bonding temperature and room

temperature, and the difference in expansion (AL) from the initial length (L.) to

the length at the specific temperature (L). It calculates the average TCE at each

bonding temperature. This calculation assumes that the room temperature is

200C.

AL

L
a= AT (3.38)

The Si thermal coefficient of expansion is determined using Equation 3.39 from

[28], valid for 120<T<1 500K. Table 12 shows the Si effective U calculations.

a = 3.725e - 6[1 - exp(-5.88e - 3(T - 124))]+ 5.548e - 10 * T = within ±.2e -6 (3.39)

The effective cc for Hoya SD- 2 TM and CVD SiC is found using a fit curve from

manufacturer's data. According to Corning's Datasheet, the effective TCE for

Pyrex TM, Corning #7740, is constant at 3.25 ppm/C. Table 10, Table 11, and

Table 13 show the effective values of x for these materials.

Now, the plate theory error bars, KPiateTheory(+) and KPlateTheory(-) are calculated

from sources of error estimated in the effective values of a, manufacturer's

thickness data, h1 and h2, and bonding temperature. The Si (x calculation, Eqn.

3.39, has an error within +/-0.2 ppm/C [28]. In order to be consistent, it is

assumed that the error is the same for Pyrex TM , Hoya SD-2 TM, and CVD SiC.

Table 10, Table 11, Table 12, and Table 13 show the estimated error in the

effective values of x for each material.
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Table 10: Effective Alpha for

Effective Alpha from
200C (ppm/ 0C)
Temp. ( C rexTM Error (+0.2) Error (-0.2)
20 3.250 3.450 3.050
50 3.250 3.450 3.050
100 3.250 3.450 3.050
150 3.250 3.450 3.050
200 3.250 3.450 3.050
250 3.250 3.450 3.050
285 3.250 3.450 3.050
300 3.250 3.450 3.050
350 3.250 3.450 3.050

Table 11: Effective Alpha for Hoya SD-2TM 20

Effective Alpha from
200C (ppm/0C)
Temp. (0C) Hoya SD-2TM Error (+0.2) Error (-0.2)
20 2.260 2.460 2.060
50 2.400 2.600 2.200
100 2.607 2.807 2.407
150 2.787 2.987 2.587
200 2.923 3.123 2.723
250 3.059 3.259 2.859
285 3.154 3.354 2.954
300 3.194 3.394 2.994
350 3.298 3.498 3.098

Table 12: Effective Alpha for Silicon [26]

Effective Alpha from
200C (ppm/C)
Temp. (0C) Si Error (+0.2) Error (-0.2)
20 2.510 2.710 2.310
50 2.633 2.833 2.433
100 2.811 3.011 2.611
150 2.961 3.161 2.761
200 3.088 3.288 2.888
250 3.196 3.396 2.996
285 3.263 3.463 3.063
300 3.290 3.490 3.090
350 3.371 3.571 3.171

19 Pyrex Data Sheet, downloaded from the Corning, Inc.
<hftp://www.corning.com/lightingmaterials/products/index-pyrex.html> accessed August 6, 2002
20 Hoya Corporation, Glass Substrates for Silicon Sensors, CA, USA
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Table 13: Effective Alpha for CVD SiC21

Effective Alpha from
200C (ppm/0C)
Temp. (C) CVD SiC Error (+0.2) Error (-0.2
20 .373 2.573 2.173
50 .506 2.706 2.306
100 2.713 2.913 2.513
150 2.901 3.101 2.701
200 3.068 3.268 2.868
250 3.215 3.415 3.015
285 3.314 3.514 3.114
300 3.345 3.545 3.145
350 3.462 3.662 3.262

The manufacturer's quoted thickness error is shown in Table 14.

Table 14: Thickness Error Bars 22,23,24,25

Thickness Error Bars (pm)
Material Thickness (+ Error Bar) (- Error Bar)

Of Material
Pyrex 762 787 737
Hoya SD-2 762 812 712
P-type Si 508 533 483
CVD SiC 470 495 445

AT error is shown in Table 15. Since the bonds were performed in an open

bonder, the principal sources of error are from the difference in temperature

reading on the temperature monitor, and the actual temperature on the bonding

stage. A Type-K thermocouple was used to measure the actual temperature on

the bonding stage. The difference in temperature is 130C.

Table 15: AT Error Bars

Error (0C) AT at 3000C A T at 3500C
Positive Error Bar (+13) 293 343
Negative Error Bar -13) 267 317

21 Morton Advanced Materials, CVD Silicon Carbide, MA, USA.
22 Pyrex Manufacturer's Data: Bullen Ultrasonics, Inc., Eaton, OH.
23 Hoya Manufacturer's Data: Hoya Corporation USA, San Jose, CA.
24 Silicon Manufacturer's Data: Si-Tech, Inc., Topsfield, MA.
2 Accumet Engineering Corporation, Lapped and Polished Ceramic, Hudson, MA USA.
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Table 16 shows an overview of the sources of error found to calculate the error

bars.

Table 16: Total Sources of Error

Material Property Error bar (+) Error bar (-)
TCE, a: Pyrex T M , HOYA SD-2TM, Si, +0.2 ppm/0 C -0.2 ppm/ 0C
CVD SiC
Thickness, h: Manufacturer thickness
Pyrex +25 um - 25 urn
HOYA +50um -50um
Si +25um -25um
AT, Temperature difference during + 130C - 130C
bonding

3.4.3 Curvature Calculation from Experimental Results

The Ktencor, curvature, value is determined from the TencorTM scan. The scans

give a deflection measurement, and then Ktenoor is calculated using the bow and

curvature formulas. The following shows a procedure of how Ktencor, curvature, is

calculated.

The TencorTM machine is used to find the deflection. The laser scans the sample

in the x-direction. The dimensions of the sample are Lx = 1.8 cm x Ly=1.2 cm.

Since it is in a state of equal biaxial stress and strain, the scan direction is

arbitrary. The scan length in the x-direction is approximately 1.28 cm. Figure

3-28 shows the die sample and scan.

I

De Sample
Figure 3-28: Die Size Sample Scan
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The bow is related to a parabolic curve shown in Figure 3-29 and defined as:

bow= y = Px2
(3.40)

At small values of the bow, the hemispherical curve from the deflection reading

and parabolic curve are very similar in order for the relation and calculation to

work [39]. The variable P in Equation 3.40 is the deflection measured by the

TencorTM. The x 2 variable in same equation is the radius or ratio of half the die

length to half the scan length defined in Equation 3.41.

die length

2 2

f(x)= y =Ax2
die scan

.....

1J2

scan _ length 2

2

(3.41)

bow

.. .. ...

Figure 3-29: Bow Calculation

Once the bow is calculated, the radius of curvature, p, is found using Equation

3.42 [40]. See Figure 3-30.

(3.42)

where w = scan length (1.28cm) and y = bow (Equation 3.40).
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Figure 3-30: Bow Geometry

Finally, the curvature is calculated using Equation 3.43 [40].

K Tencor = (3.43)

where p is the radius of curvature of Equation 3.42.

The experimental curvature scatter is found from multiple sample deflection

readings using the TencorTM. These scatter readings show the cumulative error

from the bonding process and TencorTM analysis.

3.4.4 ANSYSv.6.0 Curvature Modeling

ANSYSv6.0 modeling is performed in the following section because the bonded

glass to Si/CVD SiC sample has a low aspect ratio, and the assumptions of plate

theory break down. The calculation of the equal-biaxial stress state in a plate is

dependent on Lx or Ly >> h1 + h2 [34]. The sample has an aspect ratio of 10

because Lx or Ly is approximately ten times greater than the total thickness:

12,000pm (Ly) or 18,000gm (Lx) >> 1270gm (total thickness). The low aspect

ratio of this bilayer plate is modeled in order to compare the ANSYSv.6.0

curvature predictions, KANSYS, to the calculated ones, KplateTheory.

The ANSYSv.6.0 input listing is located in Appendix 7.1. This program finds the

deflection of the bonded sample of glass to Si/CVD SiC. A 3-D bimaterial model,
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using a 3-D 20-Node Structural Solid elements (SOLID95), was built, shown

Figure 3-31, using the actual dimensions of the die size sample. The length of

the sample is 18 mm, the width is 12mm, PyrexTM or Hoya SD- 2TM glass has a

thickness of 762gm, and the Si has a thickness of 508gm. The top node on each

of the four corners of the bimaterial is fixed in either the x, y, or z directions.

Figure 3-31 shows the fixed boundary conditions on each node. A thermal load,

AT, is applied to the structure. The output calculates the prediction of peak

deflection in the y-direction.

156p

Figure 3-31: ANSYSv6.0 3-D Bimaterial Dimensions with Boundary Conditions

Figure 3-32 shows a deflected plate from the thermal load, AT=-330, and

effective Aa between PyrexTM and Si. The effective a as a function of AT, elastic

modulus, and Poisson's ratio, used as material properties in the model, are found

in Table 2, and Table 10 - Table 13. The peak deflection from the fixed nodes on

each edge is used to calculate the radius of curvature. For example, Figure

3-32 shows that 1.90gm is the peak deflection of the PyrexTM/Si bimaterial from

each fixed node at zero deflection on the edges. This peak deflection value

along with the bimaterial length (18mm) is used in Equation 3.42 to calculate the

radius of curvature. Finally, the curvature is calculated using Equation 3.43.
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Figure 3-32: Side View of the deflection of PyrexTm glass bonded to silicon at AT=-330*C
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Chapter 4
Anodic Bonding of Bulk Glass to Silicon and CVD
Silicon Carbide

The following chapter details the bulk glass to Si and CVD SiC experimental

procedure, process variables, and bonding equipment, microscopy analysis, and

the bonding results and discussion in the context of the modeling of Chapter 3.

4.1 Experimental Procedure

All the materials were prepared in a Class 100 clean room.

First, a contact angle experiment was performed to test how well the hydrophilic

and hydrophobic surfaces were established onto glass, Si, and CVD SiC.

Hydrophobic and hydrophilic surfaces were created on Si and CVD SiC die size

pieces after the pieces were cleaned using a 10 minute Piranha dip with a 3:1

concentration of H2 SO 4 :H 20 2 at 1200C, 3 minute DI wash, and N2 gun dry. The

hydrophobic surface was applied using a standard procedure of a 10 minute

Piranha dip, 3 minute DI rinse, 1 minute 1:1 H20:BHF dip, 3 minute DI rinse, and

a N2 gun dry. A hydrophilic surface was created using a hydrophilic solution of

6:1:4, DI water: H2 0 2 : NH 40H at 60 0C for 5 minutes [19]. The contact angles

were measured on each material surface using a goniometer. The results from

this contact angle experiment along with all the other variables of the experiment

were added as variables in a matrix using a design of experiments software

program, JMPv.3.1.

Second, the Plaza Test Mask and control samples used for modeling were

prepared. Bulk PyrexTM and Hoya SD-2TM 4-inch glass wafers with 30 mil

thickness, and Si 4-inch wafers with 20 mil thickness were labeled and cleaned

using a 20 minute 3:1 (H2 SO 4 :H 2 0 2 ) Piranha. A standard photolithography

procedure was used to develop the Plaza Test Mask onto the glass wafers. The

structures were etched into the glass because CVD SiC is very hard and etching

into the material would be extremely time consuming. A 7:1 BHF solution was
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used to etch bulk PyrexTM wafers at an etch rate of 24nm/min, and a 20:1

NH 4F:HF solution was used to etch bulk Hoya wafers at an etch rate of

100nm/min. The glass wafers were etched down to 0.2pm and 0.4pm. The etch

depths of the Plaza Test structures were measured using the DEKTAK

3STv.2.12. After measuring the 0.2pm etch depth target, HOYA SD-2TM

underetched depths ranged from 0.18pm-0.2pm whereas PyrexTM resulted in

overetched depths of 0.2pm-0.25pm. The photoresist was stripped and the glass

wafers were cleaned using a 5 minute acetone dip, 2 minute IPA (isopropanol)

wash, 5 minute DI wash, 5 minute Piranha, and 5 minute DI wash. The 20 die

size Plaza Test Mask pieces on the glass wafer were diced into 20 1.8 cm x 1.2

cm samples using a Disco diamond blade dicing saw. Unetched glass die pieces

were also cut into 1.8 cm x 1.2 cm control pieces for the curvature experiments.

Finally, 1.8 cm x 1.2 cm die size Si pieces were cut from the wafers.

The CVD SiC die size samples were prepared differently. The CVD SiC wafers

at a thickness of 475 gm were fabricated using chemical vapor deposition at

Rohm and Haas. Ferro-Ceramic Grinding Inc. diced the wafers samples into 1.8

cm x 1.2 cm. Accumet Engineering Corporation lapped and polished the CVD

SiC to a specific surface roughness needed for bonding. The new thickness of

CVD SiC was approximately 470pm. These samples were cleaned using the

Rohm Haas cleaning procedure: lint free cloth wipe, IPA-soaked lint free cloth

wipe, 5 minute DI water with 2% Micro at 1200C dip, 5 minute DI water soak at

1200C, 90 second 1:1:1 HF:HNO 3: DI water soak at room temperature, 5 minute

DI overflow rinse, 5 minute DI water ultrasonic at 1200C, 5 minute DI overflow

rinse, and N2 gun dry.

Once the glass, Si, and CVD SiC samples were prepared for bonding, they were

taken into an open lab where the anodic bonding equipment was located. In this

lab, the hydrophilic and hydrophobic surfaces were applied onto the Si and CVD

SiC samples under a hood. Once the samples were taken out of the hydrophilic

dip, they were dried using a N2 gun, and taken directly to the anodic bonder to
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bond with the glass samples. The Si or CVD SiC piece was placed first onto the

hot plate of the anodic bonder which was connected to the anode, and then the

glass piece was placed on top of the Si. The cathode was placed on top of the

glass piece of the glass- Si pair. Temperatures of 300 or 3500C, voltages of 500

or 1 000V, and a time of 10 minutes along with other variables of the JMPv.3.1

Experimental Matrix were the bonding parameters/conditions used. The

JMPv.3.1 Experimental Matrix included several different parts defining the

bonding conditions of particular experiments. Once the Plaza Test Mask

samples were bonded, each was visually inspected in order to see how many

structures of the array bonded. The number bonded was documented for the

bond toughness analysis. A Zeiss KS 300 3.0 Microscope was used to measure

the unbonded sides or crack lengths of each bonded structure.

A separate experiment to determine the difference between bonding a Plaza Test

Mask with a hydrophobic versus hydrophilic Si surface was performed.

Experiment 1 Part #7 of the JMPv.3.1 Matrix bonded Hoya SD- 2TM to a

hydrophilic Si surface at 1 OOOV and 3500C for 10 minutes. Another test was

performed using the same bonding parameters as Experiment 1 Part #7, but

using a hydrophobic Si surface. The bonded area was micro-imaged using an

acoustic microscope, C-Mode Scanning Acoustic Microscope (C-SAMTM)

(trademark of SonoscanT M ) with a 230 MHz center frequency transducer and a

0.25" focal length.

The bonding of the control samples used for the curvature experiment depended

on which Plaza Test samples of the JMPV.3.1 Experimental matrix had

successful bonded rectangular structures. The control samples were bonded

using the same equipment and procedure as for the Plaza Test Mask samples.

Once the samples were cooled to room temperature, they were taken to the

TencorT machine for analysis.

4.1.1 Process Variables

85



Anodic bonding involves several parameters that affect the quality of the bond.

The applied voltage, bonding temperature, thickness of glass, bonding time, and

pretreatment of surface all influence the bond quality of bonding Pyrexrm and

Hoya SD-2TM glasses to Si and CVD SiC. Therefore, all these different variables

are included in this study. A Design of Experiments software program, JMP v.3.1

was used to narrow down the overall 32-part matrix into an 8-part experimental

matrix, Table 17. This matrix defines the conditions of bulk glass to Si and CVD

SiC bonding.

Table 17: JMPv.3.1 Experimental Matrix

Experiment # Bulk Glass Si Surface Glass Voltage Temp. Time
Part samples Dip Etch (V) (0c) (min.)

Depth
(pm)

1 3 Pyrex IM Hydrophobic 0.2 1000 350 10
1 control 3 Pyrex Hydrophobic No etch 1000 350 10
2 3 Pyrex Hydrophobic 0.4 500 300 10
2 control 3 Pyrex Hydrophobic No etch 500 300 10
3 3 P rex Hydrophilic 0.2 500 300 10
3 control 3 Pyrex Hydrophilic No etch 500 300 10
4 3 Pyrex 'M Hydrophilic 0.4 1000 350 10
4 control 3 Pyrex Hydrophilic No etch 1000 350 10
5 3 HOYA SD-2 Hydrophobic 0.2 500 350 10
5 control 3 HOYA SD-2 M  Hydrophobic No etch 500 350 10
6 3 HOYA SD-2'M  Hydrophobic 0.4 1000 300 10
6 control 3 HOYA SD-2'M  Hydrophobic No etch 1000 300 10
7 3 HOYA SD-2'M  Hydrophilic 0.2 1000 300 10
7 control 3 HOYA SD-2'M  Hydrophilic No etch 1000 300 10
8 3 HOYA SD-2'M  Hydrophilic 0.4 500 350 10
8 control 3 HOYA SD-2'M  Hydrophilic No etch 500 350 10

4.1.2 Anodic Bonding Equipment

The Anodic Bonder, open to the ambient environment, is shown in Figure 4-1.

This schematic shows how the voltage and temperature are applied to the

sample during the bonding period. The bonder consists of a 100 Watt D.C.

American High Voltage supply, and K-type thermocouple temperature source. A

resistor box is connected to the bonding equipment in series which is linked to

the Labview program in the computer monitoring the change in sample current

with respect to time. The change in voltage of a selected resistor, i.e. 2 Ohms in
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Figure 4-1, from the resistor box is monitored and converted to give a current

versus time output on the computer.
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Figure 4-1: Schematic of the Anodic Bonder

4.1.3 Contact Angle Measurement

The contact angle of hydrophilic and hydrophobic surfaces is determined to

quantify the degree of hydrophilic and hydrophobic surfaces on Pyrex TM, HOYA

SD-2TM, Si, and CVD SiC. Figure 4-2 shows the contact angle between the

water and the material surface. A drop of water was placed on the surface of

each material and then the angle was measured by the goniometer.
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Figure 4-2: Contact Angle

4.1.4 Anodic Bonding using CVD SiC

A WYKOTM instrument, measured the average RMS surface roughness of the

CVD SiC samples at 169nm. References state that anodic bonding is successful

using materials with an average RMS surface roughness of less than 1 gm [2].

In the present work bonding CVD SiC to bulk glass did not occur using

temperatures of 3000C and 3500C, and voltages of 500V and 1000V. Since the

temperatures and voltages needed to be kept low and consistent to the

parameters normally used during anodic bonding, the surface roughness was

investigated. The CVD SiC samples were outsourced to Accumet Engineering

Corporation for polishing. The polished CVD SiC average RMS surface

roughness was measured again using the WYKOTM. The lower RMS surface

roughness, 45nm, resulted in successful bonding. A wide range of voltages,

200-1 000V and low temperatures of 3000C and 3500C were used, and

successfully bonded flat, unetched PyrexTM and Hoya SD- 2 TM glass to CVD SiC.

The Plaza Test Mask was etched into the glass (using the same procedure as in

Section 4.1), and bonded to the CVD SiC using the JMPV.3.1 Experimental

Matrix.

4.1.5 TEM and STEM/XEDS Work

Transmission electron microscopy (TEM) was performed on the control samples

in order to observe depletion layers present in the PyrexTM and Hoya SD-2 TM

when bonded to p-type Si and CVD SiC. Scanning transmission electron
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microscopy and X-ray energy-dispersive spectroscopy (STEM/XEDS)

microanalysis chemically analyzed these layers. Table 18 shows the arbitrary

bonding parameters used to bond Pyrexrm and Hoya SD- 2 TM glass to Si and

CVD SiC.

Table 18: TEM/STEM Bonding Matrix

Interface Voltage (V) Temp. (0C) Time (min.)
Pyrex"M / Si 1000 350C 20
Hoya SD-2 M / Si 1000 350C 20
Pyrex'M / CVD SiC 1000 350C 20

Samples for each part of the experiment were bonded, cooled, and cut into 18

mm x 2 mm pieces. Each cross-section was ground to an approximate 100 gm

thickness, diced into a smaller piece, and cemented to a copper grid. The

samples cemented to the copper grid were ion-beam thinned to electron

transparency using the cold stage of the GATAN DuoMill 600 DIF with beam

accelerating voltage of 6kV, beam glancing angle of 150, and sample rotating

360 .

The thinned samples were examined in a JEOL 2000 FX microscope. Each

sample was observed at 200-kV, 10-100 kX magnification, using bright-field, Si

dark-field, glass dark-field, Si weak-beam imaging conditions. Thicknesses of

the depletion layers were measured by reference to the scale bar appearing on

the negatives, and were subject to +/- 5% error.

A UHV dedicated VG HB603 STEM was used, operating at 250kV. The

depletion layers were measured again using the scale bar on the computer

monitor, and the X-ray counts of the different elements characteristic of each

glass were collected along a scan through the interface and into the bulk of the

glass.

4.2 Results and Discussion

4.2.1 Hydrophilic versus Hydrophobic Surfaces
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There were two objectives for analysis of the hydrophilic and hydrophobic

surfaces. First, the contact angle experiment gave results on how well

hydrophobic and hydrophilic surfaces can be created on Si and CVD SiC. The

hydrophilic surface contact angles determined how many available Si bonds

there were on the native oxide, Si0 2 , surface for -OH groups to bond. It was of

interest to examine how well a native oxide forms on CVD SiC. Available Si

bonds are crucial for anodic bonding because they form bonds with the oxygen

anions. Second, anodic bonds were made to determine if using hydrophilic

versus hydrophobic Si surfaces made a difference in the current versus time

output, and the area bonded.

The different trials taken in order to establish hydrophobic and hydrophilic

surfaces on the materials are shown in Table 19. The 1:1 H20:BHF dip in Trial 1

did not create a hydrophobic glass surface because BHF etches the glass, and

keeps it naturally hydrophilic with almost complete wetting angles. In Trial 2,

isopropanol established a hydrophobic glass surface, but there were still many

particles left on the glass which made the surface unsuitable for anodic bonding.

Therefore, the hydrophilic glass dip was eliminated from the JMPv.3.1

Experimental matrix. The results of Table 19 also show that very hydrophilic

surfaces were established on p-type Si. The 1:1 H20:BHF dip also established a

very hydrophobic surface. This proves that a native oxide is evident on the Si

surface. However, there is no significant difference between the contact angle

values of the hydrophobic versus hydrophilic CVD SiC surfaces in each trial.

There is a difference in surface roughness between the first and second trial

which might affect the contact angle. The second trial had samples with a lower

surface roughness. The lower surface roughness did not dramatically distinguish

between the hydrophobic surface contact angle of 240, and hydrophilic surface,

contact angle of 210. The goniometer error of +/- 3o proves that the difference

between the hydrophilic and hydrophobic surfaces is minimal. A native oxide

must not readily form on the CVD SiC surfaces because there are not many

available Si bonds on the surface due to the strength of the Si-C bonds.

90



Therefore, the hydrophilic and hydrophobic CVD SiC dips are also eliminated

from the JMPv.3.1 Experimental matrix.

Table 19: Contact Angles of Materials

Material Hydrophobic Material Hydrophilic
Sample 1 dipped surface Sample 2 dipped surface

Avg. Contact Avg. Contact Avg. Contact Avg. Contact
angle Trial 1 (0) angle Trial 2 (0) angle Trial 1(0) angle Trial 2(0)

XTM

Sample 1 5 43 Sample 2 6 5
HOYA 1S-27
Sample 1 5 47 Sample 2 7 8
P-type 8S_ __ _ __ _

Sample 1 |70 |88 Sample 2 5 8
CVD SiC___ ___

Sample 1 141 24 Sample 2 40 21
Error of (0): +/-3

The second part of this analysis shows the relative area bonded using hydrophilic

Si versus hydrophobic Si of Experiment 1 Part #7. A SonoscanTm acoustic

microscope imaged each bonded sample. Visually, there is no difference in

bonded structure area achieved by using a hydrophilic versus hydrophobic Si

surfaces. These results contradict Lee et al.'s findings [19]. Figure 4-3 shows the

bonded sample with a hydrophobic Si surface. Figure 4-4 shows the bonded

sample with a hydrophilic Si surface. One very noticeable change, is the

difference in number of bonded structures from how the original samples of

Experiment 1 Part #7 bonded. The minimum width of this new test is 160gm

instead of the 200gm found in the first experiment. It is unusual to bond with the

same voltage and temperature, and get a different number of bonded structures.

However, the two-part bond model results in Section 4.2.3 explain why this could

occur.
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Figure 4-3: Bonded Sample with Hydrophobic Si Surface
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Figure 4-4: Bonded Sample with Hydrophilic Si Surface
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Finally, the current versus time of hydrophobic versus hydrophilic experiments is

compared to the results of both Lee et al. [19] and Cozma and Puers [17]. Figure

4-5 shows the results when bonding with the Plaza Test Mask. Bonding with

hydrophilic versus hydrophobic p-type Si surface did not make a difference in the

total area bonded or current versus time. These results support Cozma and

Puers [17] findings because there is no significant difference in bonding current.
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Figure 4-5: Hydrophilic vs. Hydrophobic P-type Si to Glass Bonding Current

There is not a distinct difference between bonded area and there is not a

significant difference in bonding current because the applied voltage is the

dominant mechanism and the surface energy is a secondary factor. A chemical

analysis on the bonded interface and depletion layers would give a more detailed

understanding if a hydrophilic surface aids in the anodic bonding mechanism.

4.2.2 JMPv.3.1 Experimental Matrix Results

The results of Experiment 1 bonding glass to Si and Experiment 2 bonding glass

to CVD SiC are shown in Table 20 and Table 21. The minimum bonded width

was determined when all the structures fully bond in the array to a minimum
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width structure. Only successful bonding occurred using etch depths of 0.2gm.

The parts that had partial to no bonded structures were not counted and defined

as "no bond." From these results JMPv.3.1 could not predict reasonable

minimum bonded widths for each part of the total thirty-two part array based on

all the different variables. Since there were only three successful parts out of the

original eight of Table 20 and one out of eight in Table 21, there was not enough

data to define a reasonable response.

Table 20: Results of JMPv.3.1 Experimental Matrix: Exp. 1 Glass to Silicon
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Exp. 1 Sample Bulk Si Glass Volt. Temp. Time Minimum
Part # Glass Surface Etch (V) (0c) (min.) Bonded

Dip Depth (pm)
(pm)

1 3 Pyrex IM Hydrophobic 0.2 1000 350 10 250

2 3 Pyrex 'm Hydrophobic 0.4 500 300 10 No bond

3 3 Pyrex IM Hydrophilic 0.2 500 300 10 No bond

4 3 Pyrex IM Hydrophilic 0.4 1000 350 10 No bond

5 3 Hoya Hydrophobic 0.2 500 350 10 300
SD-2TM

6 3 Hoya Hydrophobic 0.4 1000 300 10 No bond
I SD- 2TM

7 3 Hoya Hydrophilic 0.2 1000 300 10 200
SD-2TM

8 3 Hoya Hydrophilic 0.4 500 350 10 No bond
SD- 2TM



Table 21: Results of JMPv.3.1 Experimental Matrix: Exp. 2 Glass to Silicon Carbide

Exp. 2 Sample Bulk Glass Volt. Temp. Time Minimum
Part # Glass Etch (V) (0C) (min.) Bonded

Depth (pm)
(pm) -

1 3 Pyrexi'- 0.2 1000 350 10 500

2 3 Pyrex 'm 0.4 500 300 10 No bond

3 3 Pyrex 0' 0.2 500 300 10 No bond

4 3 Pyrex '0 0.4 1000 350 10 No bond

5 3 Hoya 0.2 500 350 10 No bond
SD- 2TM

6 3 Hoya 0.4 1000 300 10 No bond
SD- 2TM

7 3 Hoya 0.2 1000 300 10 No bond
SD- 2TM

8 3 Hoya 0.4 500 350 10 No bond
SD- 2TM I II_1_

4.2.3 Two-Part Bond Model Results

The objectives of determining the principal Plaza Test Mask bonding mechanism,
and applying it to the two-part bond model were accomplished. First, a

discussion of the bonding mechanism is presented, and then the two-part

contact/bonding model results.

The Plaza Test structures show evidence of elastic deformation during bonding.

The following experimental and modeling results of the glass surface deformation

demonstrate the pull-down nature of the bonded glass to Si and CVD SiC

structures. The DEKTAK 3STv.2.12 profilometer scanned the top glass surface

of the bonded structures on the die size sample, Figure 4-6 of Experiment 1 Part

1. Figure 4-7 shows a typical DEKTAK 3STv.2.12 scan, not drawn to scale, over

the deformed 600jlm and 500gm PyrexTM/Si surface. As shown in Figure 3-5

and Figure 3-10, 500gm separates each structure on the die size sample. The

500gm distance between the structures is arbitrarily defined as the reference

plane, whereas the 600gm and 500 m structures deform -40nm below the

reference level indicating pull-down. The ANSYSv.6.0 modeling described in

Section 3.3.1 also showed a clear glass surface deformation of the bonded
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structure. Figure 4-8 shows a deformation contour plot of the PyrexTM glass

bonded to Si. The Si material is not shown for clearer imaging. The applied

constant pressure on each material surface caused the materials to deform a

certain distance. Once the correct applied constant pressure placed on both

interfaces allowed the materials to deform to fill the etch depth distance, 200nm,

the glass surface deformation was found. The peak deformation on the PyrexTM

glass surface of Figure 4-8 is 71 nm. Both experimental and modeling peak

deformation results are compared in Table 22. Table 22 summarizes the

PyrexTM and Hoya SD-2 TM glass surface pull-down of a 600gm etched structure

bonded to either Si or CVD SiC. The ANSYSv.6.0 modeling and DEKTAK

3STv.2.12 scans do not account for the initial bow or error. The model results

and experimental measurements are in broad agreement, suggesting that all the

deformation is elastic, as modeled. However, the ANSYSv.6.0 surface

deformation predictions (Table 22) could be closer in value to the experimental

results. Assuming a fixed x and y boundary conditions on each side of the

structure (Figure 4-8) is incorrect. If the x boundary condition was a constant

value on at least one side of the structure (allowing for transverse strain) and the

other side was fixed, and both sides were free in the y-direction (allowing for axial

strain), then there would be smaller difference in surface deformation after

bonding.

A 4 T:E S TM- 0 Bn

Figure 4-6: Acoustic Microscope Image of Bonded vs. Unbonded structures of Exp.1 Part 1
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Figure 4-7: DEKTAK 3STv.2.12 Surface Scan of Pyrex/Si Bonded Structures
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Figure 4-8: Pyrex Tm /Silicon Deformation of 600 sm Width Structure

Table 22: Deformation of 600pm Structures with 0.2pm Etch Depth

Bonded Materials DEKTAK Experimental FEA Predictions (nm)
Measurements (nm)

Pyrex'm/Si -40 -71
Pyrex'M/CVD SiC -25 -62
HOYA SD-2 'M/Si -10 -45

Since elastic deformation is the principal mechanism, the use of the parallel plate

capacitor pull-in model to predict contact, and linear elastic fracture mechanics to

predict toughness is justified. The parallel plate capacitor model results indicate
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that contact occurs when Fe exceeds the F at a distance in the etch depth, and

Vn (Vappired/Vpi) is greater than 0.67. Stability is lost when the surfaces are

moving at a distance in the etch depth and Fe>Fk. Figure 4-9 shows a magnified

view of Fe as a function of width, W, versus F for PyrexTM to Si at 1 kV and 0.2gm

etch depth. This plot shows that all structures contact from W= 600gm down to

40gm. At W=600-80gm, contact occurs initially because the electrostatic force

dominates at 1-g/go=0 when g= go=0.2gm. As g < go=0.2gm, the surfaces are

moving and closing the etch depth. At W =40gm, the surfaces are still predicted

to contact since instability occurs when,1-g/go >.5.

5

Wf=100ptm

4- Wf=250g Vf=1.57

Vr=2.48

3- stability lost W1=80gm
Vn=1.38

0

2-

Wt=40gm

Vn=0.98
1-

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

distance surfaces move (1 -g/go)

Figure 4-9: F. as a function of W vs. Fk for PyrexTm and Si (1 kV, go = 0.2 1m etch depth)

After modeling different material systems and voltages, instability (Fe>Fk) at a

specific width and distance in the etch depth, occurred when the ratio was

greater than 0.67. Vpi is a function of go, W, and keq, so as the width decreases,

Vn at a constant Vappiied also decreases. This is important because it shows the

resistance of contact as a function of materials, geometry, and applied voltage.
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The contact predictions are compared to the structures that remained bonded to

a minimum width in Table 20 and Table 21. Table 23 shows which widths at

g0=0.2gm are predicted to contact and which widths actually bond. Many widths

predicted to contact, also bond. Therefore, the surface/ bonding energy provided

by Vapplied exceeded the strain energy. Other widths predicted to contact down to

a minimum bonded structure do not bond at the same minimum width because

the strain energy was higher than the bonding energy.

Table 23: Table of Vn Predicting Contact at Minimum Wt versus Minimum Wt Bonded

Material Voltage (V) Vn at 600tm Minimum Wt Vn at Minimum Wt
Surface for Contact Minimum Wt Bonded
System ([ m) for Contact (!Im)

Pyrex M  1000 4.32 40 0.98 250
and Si 500 2.17 80 0.70 No bond
go = 0.2 gm
Hoya SD-2' m  1000 3.79 40 0.89 200
and Si 500 1.90 200 0.99 350
go = 0.2 gm
Pyrex'M  1000 3.58 40 0.85 500
and SiC 500 1.79 100 0.67 No bond
go = 0.2 gm I IIII

The strain energy also exceeded the bonding energy of the 0.4prm etch depth

structures. None bonded in Table 20 and Table 21. However, the surfaces were

predicted to contact. Fk is normalized in Figure 4-10 to show the difference in Fe

as a function of go. Fe exceeds Fk indicating instability and predicting contact for

the PyrexT M to Si 600gm structure at 0.4gm and 1 kV. The Vn ratio also indicates

contact will occur since it is greater than 0.67 for each go.
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Figure 4-10: F. as a function of etch depth (g.) vs. Fk of PyrexTM and Si at 1kV

The Gmin and K toughness values of the bonded structures were experimentally

determined, calculated, and compared to literature results based on the

boundary condition assumptions used in the model. First, the model was

assumed to be constrained in the x- and y- directions on the opposite side to the

symmetry line, and constrained in the x-direction on the symmetry line. These

constraints did not allow rigid motion in these directions, which would result from

bonding. There would have been some uniform transverse and axial strain.

Therefore, the y-direction should be free on both sides of the model, and one

side should be fixed in the x-direction and the other side should allow for a

constant x-displacement. Second, modeling the nodal deformation or assuming

boundary conditions along the 500gm surfaces between the etched structures

when the voltage is applied and when it is off is uncertain and must be studied.

This model assumed these surfaces were in contact, but in fact could be bonded

before the structure bonds. However, constraining these 500gm surfaces to

simulate a bond would not allow them to deform from the effect of the structure

bonding or when the voltage is removed. Third, mode 1 fracture (or tensile

opening or closing simulating bonding) was assumed as the dominant mode. In

fact, the bonding is capable of mixed mode resulting from both mode 1 and mode
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2 (or in-plane sliding of the bonding surfaces) since it is a bimaterial model and

there is a difference of material properties at the interface. Mixed mode bonding

would result in two stress intensity factors, one for each mode (tensile and

shear). It could be possible that mode 2 has a significantly smaller effect than

mode 1. However, the overall results in Tables 24 and 25 of the bonded glass to

Si and CVD SiC, 600 and 500gm structures are promising. There is not a

significant difference in toughness values. This trend is evident because the

sides of the etched structures are very rigid and prevent the bond front from

proceeding. However, this proves the anodic bond between glass and CVD SiC

is comparable to glass to Si. Therefore, anodic bonding glass to CVD SiC is

advantageous and is a reliable process.

The Gmin values in Table 24 did not fully define the bond toughness as a function

of bonding conditions. The Gmin values between the structures vary significantly.

For example, The 600gm bonded structure of Exp. 1 Part 1 has a Gmin value of

0.28 J/m 2 differing from the 250gm structure Gmin of 1.00 J/m 2 . Table 25 shows

the scatter between measured crack lengths on the minimum bonded structures.

The difference in Gmin values between all the structures in Table 24 is greater

than the scatter. However, the measured crack lengths between each

experimental part in Tables 24 and 25 clearly indicate a possible reason of why

the ANSYSv.6.0 toughness predictions are not constant. The measured crack

lengths between the structures do not vary significantly between each part. All

the structures of Experiment 1 Part 1 have an average crack length of 73gm

compared to an average 98gm of Experiment 1 Part 5. It seems that the

ANSYSv.6.0 mesh is not fine enough at the edge of the etched region, so

accurate strain energy release rate values in that area could not be calculated.

Even though the toughness is not constant, the ANSYSv.6.0 results are similar to

literature results, assuming mode 1 fracture (bonding). The fracture toughness,

K, calculated from Gmin, in Table 25 are compared to Hurd et al.'s data [23].

Exp. 1 Part 1 is related to the straight-thru-crack (STC) results of Hurd et al. [23]

102



because similar conditions, 1 kV, 3500C, and bonding materials (PyrexTM glass

to Si) were used. The only differences were time, and the STC results were not

interfacial values. The STC K value at 3500C was 0.680 MPa-m112 [23],

compared to the average K of 0.330 MPa- M112 calculated from Gmin. The

average K value of this study is lower than the value found by Hurd et al. [23], so

elastic deformation may not be the primary mechanism and diffusion may have a

larger role in the bonding mechanism than expected. However, both values are

on the same order of magnitude, so the calculated toughness values of this study

are reasonable.

Table 24: Minimum G Results of Experiments 1 and 2

Measured
Crack

Experiment Part Wt W Length, a a/ W
(gm) (gm) (gm) Gmin (J/m2)

Experiment 1 Part 1 600 300 37.50 0.125 0.28
500 250 38.97 0.156 0.35
300 150 34.56 0.230 0.75
250 125 34.56 0.276 1.00

Experiment 1 Part 5 600 300 46.32 0.154 0.27
500 250 54.41 0.218 0.33
300 150 49.26 0.328 0.81

Experiment 1 Part 7 600 300 41.94 0.140 0.30
500 250 39.71 0.159 0.42
300 150 36.03 0.240 0.90
250 125 39.71 0.318 1.19
200 100 38.97 0.390 1.67

Experiment 2 Part 1 600 300 52.21 0.174 0.29
500 250 54.41 0.218 0.37
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Table 25: Final Modeling Results of Experiments 1 and 2

Experiment minimum minimum Measured a/ W Min G K
bond bond Crack

Wt W Length, a

Part (pm) (pm) (m) (J/m 2) MPa*SQRT(m)
Exp 1 Prt 1
Sample 1 250 125 32.35 0.259 1.10 0.341
Sample 2 250 125 34.56 0.276 1.00 0.325
Sample 3 250 125 35.29 0.282 0.99 0.324
Exp 1 Prt 5 _ 1
Sample 1 300 150 45.59 0.304 0.84 0.334
Sample 2 300 150 46.32 0.309 0.82 0.330
Sample 3 300 150 49.26 0.328 0.81 0.328
Exp 1 Prt 7
Sample 1 200 100 38.24 0.382 1.69 0.474
Sample 2 200 100 38.97 0.390 1.67 0.472
Sample 3 200 100 41.18 0.412 1.71 0.477
Exp 2 Prt 1
Sample 1 500 250 54.41 0.218 0.37 0.216
Sample 2 500 250 56.62 0.226 0.36 0.213
Sample 3 500 250 68.38 0.274 0.34 0.206

Overall, bonding (as opposed to contacting)

structures were predicted to contact, but did

results from the bonding model indicate that

is the limiting step because several

not bond. However, the toughness

the inconsistent bonding energies

per bonded structure on the array, suggests that a unique value of the interfacial

work of adhesion is not sufficient to characterize the bonding process. No

definitive explanation can be given, but the following reasons could explain why

this is evident.

1. The mesh near the edge of the structure width should be very fine. This

could lead to more constant G values.

2. Nodes along the surfaces of the materials are pulled into each other in

order to simulate bonding. However, this ANSYSv.6.0 modeling process
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may not relate to the anodic bond formation between the surfaces since

there should be mixed mode bonding. Materials in this study do not bond

to the ends of the whole structure, but they were modeled this way. The

local force between the middle nodes is larger than the forces out toward

the etch depth edges.

3. It is unclear what role diffusion plays during depletion layer formation and

chemical bonding. However, it is likely that this plays some role in

defining the effective toughness of the bonds.

4. Voltage may also have a significant role not only in contact, but keeping

the materials bonded. The parts of the bond front at a specific width may

move back to a minimum energy position once the voltage is removed.

Voltage could also be the reason why only partial areas of the structures

bonded.

4.2.4 Curvature Values

The curvature experiments had the objectives of proving that all the deformation

during bonding was thermoelastic. The following results are shown in two parts.

First, the TencorTM analysis proves thermoelastic deformation. Two samples of

PyrexTM and Hoya SD- 2 TM glasses were bonded to Si at approximately 300'C,

and 100OV. The initial deflection measurement was made at room temperature

using the TencorM machine. The samples were heated to temperatures, 100C,

1500C, 2500C, and 2850C. The deflection was measured and curvature

calculated at each elevated temperature. The curvature change (AK) , is

calculated from the difference of curvature at each temperature to the curvature

at room temperature. Figure 4-11 and Figure 4-12 show the calculated and

experimental values of the curvature change as a function of temperature for

both PyrexTM and Hoya SD- 2TM glasses. The curvature change goes to zero as

the temperature increases to the bonding temperature, 3000C. This proves
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PyrexTM and Hoya SD- 2Tm bonded to Si elastically deform since the sample had

no curvature during bonding at 3000C. Therefore, 3000C is the stress free

bonding temperature. The curves are non-linear because of the ATCE between

the materials. Since CVD SiC is a brittle material like Si, it will also exhibit linear

elastic deformation.
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Figure 4-12: Delta K of Hoya SD-2Tm/Si as a function of Temperature

Second, the curvature values of each experiment calculated from plate theory,

ANSYSv.6.0 modeling, and the Tencor measurements are shown in Figure 4-13.

The Ktencor error bar range does not fall within KPateTheory(+) and (-) bars because

Ktencor not only carries the error from the bonding operation, but also error from

the laser scans. The accumulation of sodium at the top of the die size samples

made it difficult for the laser to read the actual curvature. Bonded PyrexTM to Si

at -330'C showed the largest range of Ktencor values because there was the

largest amount of sodium oxide on the top of the PyrexTM glass. The low aspect

ratio of the plate theory calculation did not affect the difference in KANSYS

curvature predictions using the actual bimaterial dimensions. KANSYS values fall

within the KPIateTheory error bars.

The overall difference in the KplateTheory, Ktencor, and KANSYS values between all the

experiments is minimal. It shows that all the materials have a similar ATCE at

the low bonding temperatures, so the residual stress is minimal. More

specifically, the curvature values of PyrexTM to Si at AT=-330 0C (Exp. 1 Part 1)

compared to PyrexTM to CVD SiC at AT=-3300C (Exp. 2 Part 1) are comparable,

and indicate no significant difference. This proves that bonding CVD SiC to glass

is very promising. Using CVD SiC as a packaging material bonded to these

glasses will induce a minimal amount of residual stress. Therefore, the amount

of relaxation, and long-term degradation and instability in MEMS devices will be

minimized versus current packaging techniques.

107



90 -

80-

70-

60 - 3 KANSYS

0 KTencor

E50 X KPIateTheory(+)
4X KelateTheory

X KPIateTheory(-)

=30 -0

20-

10-

0
Pyrex & Si Hoya & Si Hoya & Si Pyrex &
Delta T= Delta T= Delta T= SiC Delta

-330 -330 -280 T=-330
Experiment Part

Figure 4-13: Curvature Values from Experiments 1 and 2

4.2.5 TEM and STEM/XEDS Chemical Results

The two main objectives in analyzing the anodically bonded interface and

depletion layers were achieved. Using TEM, sample cross sections were ion-

beam thinned to electron transparency and imaged with 200keV electrons to look

for contrast evidence of depletion layer(s) in the glass and determine the

composition of the glass/Si or CVD SiC interface. Using STEM/XEDS, a

chemical analysis of the glass depletion layers was completed by scanning the

sample with an electron beam and measuring X-ray emission from each element

present.

All TEM images showed evidence of a layer of different mass density or

scattering power near the interface of Pyrex TM /Si and Hoya SD-2 TM /Si. Each

depletion layer shown on the micrograph is defined by a darkline inserted for

clarity. Xing et al. [13] recently found multiple layers in Pyrex TM /Si interfaces,

but only one was observed in this PyreXTM study. Two layers were found near

the Hoya SD-2TM/Si interface. These layers are shown in Figure 4-14 and Figure
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4-15. The 1 gm width of the layer found in the PyrexTM near the glass/Si interface

is approximately three times larger than the 290nm layer width found in the Hoya

SD-2 TM near the glass/Si interface. A second, smaller, layer found in the Hoya

SD-2 TM near the glass/Si interface was approximately 60nm wide. These

Pyrex TM /Si and Hoya SD-2 TM /Si anodically bonded interfaces were highly

planar with no evident nanoscale voids or defects. The glass layer, found

immediately adjacent and parallel to the glass/Si anodic bonded interface, was

less electron-dense. The decrease in electron scattering can be attributed to

sodium depletion in Pyrex TM and to zinc or magnesium depletion in Hoya SD 2 TM.

Figure 4-14: TEM Picture of PyrexTMISi Layer
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60 nm

Figure 4-15: TEM Picture of Hoya SD-2TM/Si Layers

TEM was also used to look at the Pyrex TM /CVD SiC interface. The features of

the Pyrex TM /CVD SiC interface, Figure 4-16, are different from features of the

Pyrex TM/Si interface, Figure 4-14 . The PyreX TM /CVD SiC interface is very

irregular. These interfacial features suggest that oxidation occurred at the

interface during bonding.
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CVD SIC
Figure 4-16: TEM Image of PyrexTM/CVD SiC Interfacial Features

Figure 4-17 from the STEM analysis also shows evidence of a depletion layer at

the Pyrex TM /CVD SiC interface. The width of the depletion layer near the

PyrexTM /CVD SiC interface was larger (1.25pm) than the one that formed near

the PyrexTM /Si interface, (1.0pum). These observations suggests that a different

type of phenomenon is involved in bonding glass to CVD SiC compared to Si.

There was no difference in contact angles on a hydrophilic versus hydrophobic

CVD SiC surface. This may imply that the native oxide on the CVD SiC surface

does not provide enough available Si bonds to establish these surfaces. If there

are insufficient Si bonds available, then the oxygen anions at the interface,

established during the anodic bonding process, may not have many Si atoms to

bond to. The bonding mechanism may compensate for this unavailability by

establishing a larger depletion layer.
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Figure 4-17: STEM Picture of PyrexTM /CVD SiC Layer

Plots of current vs. time show differences in bonding current behavior between

Pyrex TM bonding to Si and PyrexTM bonding to SiC. Albaugh [12] related the area

under the initial current peak to the amount of charge that leaves the depletion

layer. If this relationship is assumed, then Figure 4-18 suggests that the rate of

current change in bonding these materials at 1 OOOV, 3500C, and 20 minutes can

be related to the depletion layer width in Figure 4-14 and Figure 4-17.

The area under the current vs. time plot, Figure 4-18, is larger for PyrexTM/CVD

SiC than for PyrexTM/Si; therefore, more charge must be leaving the depletion

layer during the bonding of PyrexTM to SiC. Since more charge is leaving, the
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depletion layer in the PyrexTM glass should be larger when bonding to SiC. The

TEM and STEM pictures, Figure 4-14 and Figure 4-17, show that this is the case.

The depletion layer width of PyrexTM/Si is approximately 1 pm, which is smaller

than the approximate 1.25pm depletion layer width of Pyrex TM/CVD SiC. These

data suggest that the current profile and the depletion layer are related. More

charge must be diffusing into the CVD SiC lattice in order to form the bond,

creating a larger depletion layer.
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Figure 4-18: Current - time Profiles for PyrexTM bonded to Si and CVD SiC

The STEM/ XEDS chemical analysis provides evidence for chemical depletion

being associated with the observed layers of lower electron scattering. The

HOYA SD 2TM glass bonded to Si exhibits two distinct depletion layers, while the

PyrexTM bonded to Si shows only one band. Depletion of different elements

integral to the glass were followed. Tables 26 and 27 show the composition of

the Pyrex TM borosilicate glass and HOYA SD 2TM Zn-aluminosilicate glass.
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Table 26: Measured PyrexTM Composition by XPS [41]

Compound Pyrex' ( Mol %)
SiO 2  80.8
B203  12.0
Na 2O 4.2
A120 3  2.0
K20 0.6
MgO 0.2
CaO 0.2

Table 27: Measured Hoya SD-2T Composition 26

Compound Hoya SD-2'm ( Mol %)
Si0 2  25-70
B203  1-5
Na 20 1-5
A120 3  20-30
MgO 2-5
ZnO 10-20
As20 3 1-5

In the chemical analysis STEM data, each element has been ratioed to Si, e.g.

sodium/silicon (Na/Si), on the ordinate. The x-axis shows the distance in

micrometers scanned, which was established from the number of pixels scanned.

The ordinate shows the counts associated with the X-ray emission from the

element measured.

Figure 4-19 shows the depletion behavior in the HOYA SD2 TM glass sample

corresponding to Figure 4-15. The STEM/XEDS scan began in the Si and

reached the Si/HOYA SD 2 TM interface at 66nm. There is a large percentage

change in the magnesium (Mg) content in the Si before reaching the Si/glass

interface; therefore Mg is soluble in Si. From the Si/glass interface into the glass,

there are several distinct elemental depletion regions. The first 60nm depletion

layer is likely the depletion of Mg and aluminum (Al). The second depletion layer

of Figure 4-15 has a width 290nm. Figure 4-19 shows this second depletion

layer approximately begins at 130nm and ends at 420nm. The STEM/XEDS scan

of this second depletion layer shows a real depletion of several elements: Mg,

Na, and zinc (Zn). Al decreases monotonically within the second depletion layer

until it becomes constant, along with the other elements, in the bulk glass. From
26 Hoya Corporation, Glass Substrates for Silicon Sensors, CA, USA
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420nm to the end of the scan, the elemental concentrations reach their constant

values in the bulk glass. These results are unlike Visser et al.'s [20] findings.

Visser et al. [20] found the only participants in the anodic bonding mechanism

with HOYA SD 2TM and Si were Na and Zn.
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Figure 4-19: Ratio of Key Elements of Hoya SD-2 TMo Silicon

Figure 4-14 shows a distinct depletion layer reaching from the Si/ PyrexTM

interface into the bulk glass. The STEM/XEDS analysis in Figure 4-20 and

Figure 4-21 also reveal a layer depleted of several elements. The depletion layer

is depleted of Al, Mg, and Na, as shown in Figure 4-20. The slopes of the Al, Mg,

and Na X-ray signals over this layer are initially, steep, and then modestly

increase into the bulk glass, indicating depletion. Figure 4-21 also shows a very

likely depletion of potassium (K) and Ca (calcium) over the 1 gm depletion layer

for the same reason. Na should have a very distinct depletion in PyrexT M , as

Visser et. al [20] found, but the detection of it using STEM/XEDS analysis is

difficult, since the electron beam easily redistributes it. The K depletion agrees

with Visser et al. [20], as they also found that Na and K ions play an important

role in the anodic bonding mechanism. The depletion of Al, K, and Ca agrees
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with Nitzsche et al.'s [6] results in Tempax TM glass, which has a very similar

composition to PyrexTM . Overall, this study of the PyrexTM depletion layer shows

that several elements, Al, Mg, Na, K, and Ca, participate in the depletion

mechanism, and some have more distinguishable depletion layers than others.
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Figure 4-20: Ratio of Key Elements of PyrexTM Glass to Silicon Part 1
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Figure 4-21: Ratio of Key Elements of PyrexTm Glass to Silicon Part 2

These TEM/STEM analyses show that HOYA SD 2 TM exhibits a distinct difference

in anodic bonding mechanism compared to Pyrex TM glass. STEM/XEDS also

shows a difference in interfacial bonding and depletion layer width between the

Pyrex TM bonded to Si and CVD SiC. In each glass, many more elements create

depletion layers than previously found by other authors. The diffusion of several

elements is significant within the network of the amorphous glass composed of

many different compounds. Once the voltage is applied, several cation species

diffuse toward the cathode creating depletion layers in the network. The network

reconstructs because of the depletion of these diffusing elements. The oxygen

anions in the network probably diffuse toward the interface and seek to bond with

the positively charged Si or CVD SiC surface. It is believed that the oxygen will

bond to any available Si dangling bonds of native oxide established on the Si or

CVD SiC surface. Since the local neutrality around the sodium, magnesium, or

aluminum cations in PyrexTM glass is disturbed because of their diffusion to the

negatively charged cathode, the network most likely seeks stability in the
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reconstruction process by allowing the oxygen to move toward positively charged

Si or CVD SiC surfaces.

Overall, this study demonstrates the reason why chemical analysis needs to be

performed in order to understand the modeling of the anodic bonding

mechanism. It indicates a significant amount of information about the nature of

the glass and interface during the bonding mechanism.
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Chapter 5
Anodic Bonding of Thin-Film Glass to Silicon and CVD
Silicon Carbide

This chapter details the thin-film fabrication and bonding procedures of sputtered

PyrexTM and lapped glass, and bond quality from acoustic microscope images.

5.1 Experimental Procedure

The sputtered PyrexT M and the lapped glass samples were prepared in a Class

100 cleanroom. Both samples were bonded in the open lab using the same

anodic bonding equipment as bulk glass anodic bonding. The following

experimental procedures describe the sputtered and lapped thin-film glass

processes.

5.1.1 Sputtered PyrexTM Glass Procedure

First, the sputtered glass samples were prepared. Sputtering HOYA SD-2 TM

glass is a non-standard process, so it was difficult to sputter, and too risky to

explore. Therefore, sputtered PyrexTM glass was used for this study. Glass

thickness, and bonding voltages and temperatures were used as process monitor

variables.

4" double-sided polished p-type, Si wafers with 20 mil thickness were cleaned in

a 20 minute Piranha immersion, and spin-dried. A 500nm +/- 50nm thermal

oxide layer was grown at 1100 C on both sides of the Si wafer. A Shipley 1822

resist was coated on one side of the Si wafer, in order to etch the oxide on the

backside with a Buffered HF (BHF) dip. The resist was stripped using a 7 minute

1:1 H2SO4 :H 20 2 dip. The single-sided oxide, p-type Si wafers were outsourced

to Thin Film Concepts for sputter deposition. Approximately, 1.5 pm of PyrexTM

glass was sputtered on top of the oxide. The sputtered PyrexTM glass wafers

from Thin Film Concepts were annealed at 5500C for 2 hours in a nitrogen

environment and cleaned. A photolithography step using the Plaza Test Mask,
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similar to the bulk glass procedure, was performed. The Plaza test structures on

the sputtered PyrexTM were etched using a 7:1 BHF dip. The etch rates of non-

annealed and annealed sputtered PyrexTM versus bulk PyrexTM glass were

explored since the sputtering process and the annealing step affect the final

glass composition. The DEKTAK 3STv.2.12 measured the distance etched at

different times in order to obtain the target (0.2gm) etch depth. Since the

annealed sputtered Pyrex TM has a higher etch rate, as shown in Table 28, a

shorter etch time was required. This new etch rate was used to etch the 0.2gm

depth.

Table 28: Etch Rates of Annealed vs. Non-Annealed Sputtered PyrexTM

Sample Time Distance Etch Rate
(min) (g) min)

Non-annealed Sputtered 7 1.563 0.223
Pyrex TM

Annealed Sputtered 7 0.237 0.034
PyrexTM _ _m 0 .2_0.024

Bulk PyrexM 8.33

Finally, the sputtered glass wafers were diced into 18mm x 12mm die size

samples, and anodically bonded to another Si sample following the same

bonding procedure as for the bulk glass. The Si-sputtered PyrexTM glass piece

was placed on top of a bulk p-type Si sample on the anodic bonder. Figure 5-1

shows a side view of a fabricated thin-film sputtered Pyrex TM glass sample being

anodically bonded to p-type Si.
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Figure 5-1: Anodic Bonding of Sputtered Pyrex TM Glass to Silicon

A table of bonding conditions was not established until samples bonded

successfully. Several tests were performed at lower voltages, 30-100V,

temperature of 3500C, and a time of 10 minutes, but bonding Si/sputtered

PyrexTM to Si was not successful over the entire die.

5.1.2 Lapped Glass Procedure

Next, lapped glass anodic bonding was explored because a thin-layer of glass

can be produced by lapping it. This process was advantageous because both

Pyrex TM and Hoya SD-2TM glasses could be lapped. The following procedure

describes the detailed fabrication process. A drop gauge measured the

thickness at the center, top, and bottom of each bulk 4" 30 mil Pyrex TM, and 20

mil Hoya SD-2 TM and p-type Si wafers. Both glass and p-type Si wafers were

cleaned using the standard pre-anodic full wafer bond procedure. A 30 second

1:1 Piranha solution, DI rinse, IPA spray, DI rinse, and N2 dry cleaned the glass

wafers, and a 10 minute 1:1 Piranha solution, DI rinse, 1 minute 1:1 HF:H 20, DI

rinse, and N2 dry cleaned the Si wafers. Using the EV501 Wafer Bonder, glass

to Si wafers were anodically bonded for 1 hour in a N2 vacuum at 3000C and

970V. The bonded wafer pairs were cooled, and outsourced to Valley Design for
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lapping. The bonded wafer pair was mounted, the bow squeezed out, and the top

PyrexTM and Hoya SD-2 TM glass wafers were polished or lapped to a final

thickness. A drop gauge measured the lapped glass thickness at different areas

on the wafer. PyrexTM glass was lapped to approximately 10 pm +/- 5 pim, and

Hoya SD-2 TM glass was lapped to approximately 20gm +/- 10 gm. The lapped

glass underwent a photolithography step using the Plaza Test Mask, similar to

the bulk and sputtered glass procedures. A 7:1 BHF dip etched the lapped

PyrexTM, and a 20:1 NH 4F:HF dip etched the lapped HOYA SD- 2 TM. The etch

depths were measured using the DEKTAK 3STv.2.12. The lapped glass had

similar etch rates as the bulk glass. Finally, the lapped glass wafers and Si

wafers were diced and applied to the anodic bonder using the same bonding

procedure as for the bulk glass. Figure 5-2 shows a side view of a fabricated Si-

lapped glass sample being anodically bonded to p-type Si.
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Figure 5-2: Anodic Bonding of Lapped Glass to Silicon

A table of bonding conditions was not established until the lapped glass-Si

successfully bonded to another bulk Si piece using different voltages 30-1 OOV,

and a constant 3500C and 10 minutes. These bonding results were successful.
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Both the time and voltage was increased in order to see if the partially bonded

areas of the Plaza Test structures increased. The bonded Si-lapped glass to Si

and CVD SiC samples were outsourced to SonoscanTM for the acoustic

microscopy bond quality assessment. A C-Mode Scanning Acoustic Microscope,

C-SAMTM, with a 230 MHz center frequency transducer and 0.25" focal length

was used to image the samples

5.2 Results and Discussion

Sputtered Pyrex T M glass did not bond to p-type Si at 1 00V, 3500C, and 10

minutes. The applied voltage was too high and caused dielectric breakdown. A

lower voltage of 20V using 3500C and 10 minutes was applied to the sample, but

bonding still did not occur. Bonding was unsuccessful because most of the

voltage was, most likely, being distributed on the Si0 2 layer instead of the

sputtered Pyrex T M . Therefore, the Si0 2 needed to be shorted by sputtering a

gold layer on the Si- Si0 2 -sputtered Pyrex T M . Unfortunately, the samples still

did not bond to Si at 20V-50V, 3500C, 10 - 20 minutes. The sputtered Pyrex T M

glass was probably depleted of the essential elements, i.e. sodium, or the voltage

was still breaking down the glass. Therefore, sputtered Pyrex T M glass was

considered too risky to bond, so the lapped glass process was explored. Thin-

film evaporated glass was not attempted because of the dearth of resources and

experimentation performed in this new area.

The lapped glass process has several advantages: a Si0 2 layer was not needed,

the final glass composition had etch rates comparable to bulk glass, and both

PyrexTm and HOYA SD-2 TM glasses were lapped into a thin layer on Si. The

target thickness was 10 gm because it needed to be larger than the depletion

layer thickness, and the lapping procedure produced a non-uniform surface. Full

wafer glass to Si anodic bonds were achieved using 3000C, so this lower

temperature would not significantly change the near interface region of the final

lapped glass thickness. Voltage and time varied with temperature fixed at 3500C.

3500C (versus 3000C) was chosen as the die size bonding temperature because
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a higher temperature allowed for better bond quality. Samples successfully

bonded at these conditions. It should be noted that bonding the other side of the

glass a second time can cause detrimental effects at the bonded interface.

Figure 5-3 shows the difference of the three cases: regular bulk glass to Si

anodic bonding, Visser et al.'s [20] reverse polarity anodic bonding, and the

lapped glass to Si anodic bond. Visser et al. [20] discovered that reversing the

polarity (Si is negatively charged and the glass is positively charged) caused

debonding and defects at the bulk glass/Si interface. Part 2 of Figure 5-3 shows

the effect of reverse polarity on the bonded interface. The cations, such as Na+,

move back to the interface bond, accumulate, and can cause debonding. Part 3

of Figure 5-3 shows what could occur when bonding lapped glass a second time.

The cations, such as Na+, could move to the initial bulk bonded interface,

accumulate, and cause debonding.

1. A nodic Bonding Mech anism of
Bulk Glass to Si

2. Possible Anodic Bonding
Mechanism of Reverse Polarity
(Visser et. al.)

Bulk Si

l a p p e d 1 , 02

+ + + +

Bulk Si

I
36

Ist Bulk
Anodic
Bond

2nd Die-Size
Anodic Bond

Lapped Glass
Thin-Film Bonding
of 2dDie-Size
Anodic Bond

Figure 5-3: Difference of Bonding Bulk Glass to Lapped Glass using Reverse Polarity

An acoustic microscope was used to obtain the bond quality of the Plaza Test

structures in order to determine if the second anodic bond caused debonding of

124

(

Glass 2~ t~a

Bulk Si

Bulk Si

+02-+ + 02-+
Glass1I N+~ .



the initial bulk anodic bond. The following describes the acoustic microscopy

analysis.

A full description of the procedures was dictated by [42]. A summary is provided

here. The sample receives pulses of ultrasound generated from the acoustic

microscope's transducer. The pulses of ultrasound travel through the coupling

medium (distilled water), and into the sample. Some of the ultrasound is

reflected back to the sending transducer and some is transmitted further into the

part when reaching a boundary or interface between two materials. If the

ultrasound encounters an air gap (void), all of the ultrasound is reflected back to

the sending transducer. The A-Scan images show the reflected signals or

echoes from the entire part. The distance between the echoes is related to the

material thickness by the ultrasonic velocity in that material. As the transducer

scans over the part, the electronic gate can be set to collect only the echoes from

a particular interface/depth in the sample which allows for level-specific images

to be created. The darker areas on the images show bonds, and the bright

white, irregular areas show voids or unbonded areas.

The difference in material properties between glass and Si is small, so they have

a similar acoustic impedance (Z). Silicon has an acoustic impedance of

approximately 20 Ns/m3 , glass has a value of approximately 15, and air = 0. At

the interface with another material, the difference between the acoustic

impedances affects the reflected echo signal: Z1 is the acoustic impedance of the

first material at an interface and Z2 is the acoustic impedance of the second

material. The reflected echo, R, is calculated in Equation 5.1.

(Z2 - Z1 )
R = ( - )(5.1)

(Z2+Z

The calculated reflection coefficient R from echoes reflected at interfaces using

these materials is:

silicon to glass: (15-20) /(15 +20) = -0.14
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glass to silicon:
silicon to air:

(20 - 15) / (20 + 15) = +0.14
(0 - 20) / (0 + 20) = - 1.0

Positive reflection coefficient R values indicates a positive echo when the central

peak appears above the center line, whereas negative reflection coefficient R

values indicates a negative echo when the central peak will appear below the

center time axis [42]. So, the change in amplitude of the echo from a bonded to

disbonded interfacial region is very distinct on the acoustic image.

Two acoustic images through the Si and CVD SiC surfaces of the lapped glass

sandwich were taken: the image through the Si of the first bulk anodic bond at

970V, 3000C, and 1 hour, and the image through the Si or CVD SiC of the

second die size anodic bond using different bonding conditions. A side view of

the lapped sample, Figure 5-4, indicates where each bond is defined, and when

the etched Plaza Test Mask is bonded.

14 Full Wafer
4Anodic Bond

2nd Die Size
Anodic Bond
with etched
Plaza Test
Mask

Figure 5-4: Side View of Lapped Sample

The lapped PyrexTM glass-Si bonded interface of the first full wafer anodic bond

was imaged on a die size sample before bonding the opposite side of the glass

to bulk Si. Figure 5-5 shows the scan through the Si. There are no bonded

structures at this interface during the first bulk wafer bond to Si, so discrete voids

126

lapped
glass

Si

Sil CVD SIC



are not present in this acoustic image. Therefore, this interface bond is a uniform

and complete bond. The bright color gray indicates that an amplified echo was

used to show tiny details of the bonded interface. The fringes on the borders

indicate possible transducer interaction with the materials [42].

.. G .... C. .

Figure 5-5: Image of First Pyrex T M -Si Bulk Anodic Bond

The first Si- lapped PyrexTM-Si samples were bonded at 50V and 1 OOV, at 3500C

and 10 minutes. Both Si sides of the sample were A-scanned. From these

scanned images, the results shown in Figure 5-6 of the 50V-350OC-10 minute

sample, showed a clearer image of the partially bonded Plaza Test structures.

Figure 5-6 shows an A-scan through the Si of the first, full wafer anodic bond. A

waveform was applied to this first anodic bond in order to distinguish between

unbonded and bonded regions, and to examine if reverse polarity affected the

first anodic bond. The waveform, shown in Figure 5-6, is labeled in three parts:

#1 shows the echo reflected from the center, irregular area of this sample, #2

shows the echo reflected from a bonded structure, and #3 shows a echo

reflected from a void or unbonded region. Figure 5-6 also shows a small change

in echo shape between the bonded and disbonded areas of this sample. The

disbonded area at #3 has a "V" shape formed from a small positive lobe on either

side of a larger negative center peak [42]. The bonded areas are clearly shown
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by the dark areas of the rectangular structures. The bonded area by #2 and

throughout the bottom of the axis of Figure 5-6 has a "W" shape formed by two

large negative peaks and a large positive peak joining them together [42]. The

two negative peaks forming the "W" are possibly from the difference between the

top and bottom of the bonded rectangular structures. The irregular area of #1

and throughout the axis of the sample is different because it does not have a

clear "V" or 'W" echo shape. It has an in-between shape consisting of a higher

center positive peak, and a smaller negative echo in the bonded structure [42].

This odd-shaped echo could have formed for one possible reason. The

interfaces between the bulk Si- lapped glass- bulk Si are separated by a very thin

1 Olum glass layer, and the thickness is uneven from the lapping process.

Therefore, the two echoes reflecting from both interfaces, each defined by a

width in time, are very close together and interfere by overlapping as a single

echo [42].
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Figure 5-7 shows an image of the second die size anodic bond of the same

sample #1 (shown in Figure 5-6). Bonded versus unbonded structure regions

are still distinguishable. The same areas of unbonded features are also shown in

Figure 5-6. There cannot be straight-through holes of these unbonded features

in the lapped glass between interfaces. This proves that since the glass layer is

so thin, it is difficult to tell if this first full anodic bond of Figure 5-6 is debonding

because of the applied bonding conditions used to form the second die size

bond.
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Figure 5-7: Image of Die Size Anodic Bond of Sample #1

Since acoustic microscopy was unsuccessful in determining if the second anodic

bond affected the first full wafer anodic bond, the effect of the bonding conditions

on the second die size bond quality were studied. Therefore, only images of the

second die size anodic bond are shown.

Several more samples were bonded under conditions ranging from 30-100V, 10-

20 minutes, and 3500C in order to observe an increase in bonded structure area.
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The sample bonded at 3500C, 80V, and 20 minutes gave clear acoustic imaging

results without showing an irregular echo encompassing a significant portion of

the die. Figure 5-8 shows that the bonded area of the structures increased when

a longer time of 20 minutes and higher voltage of 80V was used for bonding.

The darker gray areas could have formed because of the change in material

composition or density. The elemental composition of the glass is most likely

changing since certain elements are depleted in the anodic bonding mechanism.

When the voltage and temperature are applied, the cations in the lapped glass

involved in the mechanism, i.e. Na+, could be moving and changing the density of

the glass.
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Figure 5-8: Sample #2 Die Size Bond at 3500C, 80V, and 20 min.

The 3 rd sample bonded at 3500C, 80V, and 45 minutes produced discouraging

results because the acoustic image showed several irregular echoes. It was

difficult to determine if the bonded area of the structures increased with longer

bonding time.

Finally, CVD SiC was bonded to Si-lapped PyrexTM. Since 3500C and 80V gave

the most promising results for the bonding of Si and PyrexTM , these same

bonding conditions were used. Experiments using 20 minutes and 45 minutes

were repeated and the 45 minute bonding condition resulted in an increased area
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of bonded structure. The bond quality assessment of Si-lapped PyrexTM to CVD

SiC gave more promising results because irregular echoes did not form. Figure

5-9 shows that there is also a distinct, darker color found between the structures.

This again, could be due to a change in density of the glass resulting from a

compositional change of the elements due to the voltage and temperature.

Figure 5-9: Sample of Si-Lapped PyrexTM to CVD SiC Bonded at 3500C, 80V, and 45 min
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Bonding Si- lapped Hoya SD- 2 TM to Si and CVD SiC was also successful. The

following figures show the acoustic images from this analysis. Si- lapped Hoya

SD-2TM was bonded to Si at 3500C, 80V, and 20 minutes. Figure 5-10 shows

irregular echoes occurring, but there is still partial bonding of the structures.

Bonding Si- lapped Hoya SD- 2 TM to CVD SiC at 3500C/80V/ 20 proved

unsuccessful because the sample broke before it was imaged. Another sample

bonded at 3500C, 80V, and 45 minutes was imaged, but the acoustic microscopy

image was very unclear.
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Figure 5-10: Sample of Si-Lapped Hoya SD-2TM to Si Bonded at 3500C, 80V, and 20 min

Overall, the acoustic microscopy analysis did not provide a reliable measure of

bond quality as a function of the reverse voltage on the double-bonded

specimens. However, the second die size bond quality of the Plaza Test

structures was successful. These experiments demonstrated that an increase in

time and voltage increased the bonded area. The mechanism behind this

improvement is unclear. One possible reason could be an increase in diffusion
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at the interface. The bonding of the structures is also very random, since areas

of the structures bond at different locations. This could also occur because of

diffusion, and/or the effect of the bonding conditions of the second die size bond.

137



[THIS PAGE INTENTIONALLY LEFT BLANK]

138



Chapter 6
Conclusions and Recommendations for Future Work

6.1 Conclusions

This thesis has examined the process technology, materials, science, and

mechanics of anodic bonding. Each examination area has produced several key

conclusions.

1. Hydrophilic and hydrophobic surfaces on the Si and CVD SiC

bonded to glass were not found to be a significant factor in the

anodic bonding process because there was no difference in

bonded structures and current versus time.

2. A new, low temperature process was established to bond bulk and

lapped Hoya SD 2TM and Pyrex TM to SiC which has never been

done prior to this work. It was found that the SiC RMS surface

roughness of less than 45nm is required for a successful process.

3. A two-part model for bonding the Plaza Test structures was

developed and tested. The Plaza Test structures showed evidence

of elastic deformation during bonding. The overall model was

found to be capable of reasonably predicting which structures

contact and bond. More structures were predicted to contact, but

did not remain bonded when the voltage and temperature were

removed. Therefore, the bonding mechanism is the limiting factor

to which structures remain bonded on the Plaza Test sample.

Finally, the bond toughness was not correctly predicted using

ANSYSv.6.0, so refinement to the overall model is necessary.

4. Microscopy and chemical analyses confirmed the depletion of

multiple species. It was found that the diffusion of a particular

species is a function of the composition of the glass.
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5. The induced thermoelastic residual stress was tested and found to

be minimal between the glass to Si and CVD SiC, which is very

advantageous for device performance.

6. Si-sputtered Pyrex thin-film glass did not bond successfully to Si or

CVD SiC because of the change in composition of the sputtered

glass versus bulk glass, or the applied voltage broke down the thin

film. Si- lapped Pyrex TM and Hoya SD-2 TM glasses were fabricated

and successfully bonded to Si and CVD SiC. The acoustic

microscopy results did not give reliable bond quality results

because of the very thin-layer used and the limits of the

microscope.

From all these key tests and results, it is shown that anodically bonding CVD SiC

to glass is as advantageous as bonding Si to glass and represents a promising

packaging technology.

6.2 Recommendations for Future Work

The anodic bonding mechanism is complex, and future work is needed to fully

understand how two surfaces form a bond. Si to Si anodic bonding using thin-

film glass is also very advantageous, but it is a new process, and bond quality

analysis must be explored before it can be considered reliable. The following

recommendations outline the approach needed for future experimental and

modeling work.

The bonding model must be refined. A full electrostatic and elastic model should

replace the parallel plate capacitor. Both elastic deformation and diffusion need

to be coupled in the model. The role of voltage, temperature, time, surface

chemistry, etch depth, and roughness must be studied during contact and

bonding. A fine nodal mesh around the etch depth in the finite element analysis

will give more accurate toughness values near the edge of the width. Since the

experimental crack lengths are all similar, they would probably converge to a
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similar toughness value. As noted in Section 4.2.3, the boundary conditions on

the overall model should be changed. The fixed x- and y- boundary conditions

on each side of the model prevents rigid motion that should result from the

interfacial bonding of the structures. Therefore, the y-direction must be left

unconstrained on both sides, and the x-direction can be constrained on one side

and the other side must have a constant value in order to account for the

transverse strain effect. The boundary conditions of the 500km nodal surfaces

on the sides of the Plaza Test structure must be analyzed in order to predict how

these will deform when the voltage is applied during bonding and when it is

removed. Mode 1 (tensile) bonding was assumed, but mixed mode, including

mode II (shear) bonding, should be accounted for in the modeling analysis since

a bimaterial is bonded at the interface.

The toughness calculations do not determine the overall quality of the bond, so

other shock, hermeticity, vibration tests etc. must be done. Not only will

toughness values help better understand the anodic bonding process, but also

chemical analysis. Since the TEM and STEM/XEDS images and analysis gave

successful results, it is recommended these techniques be used to study the role

of surface chemistry. SIMS (Secondary Ion Mass Spectrometry) is also

recommended to give an even more sensitive depth profiling of the molecular

structure and depletion layer(s). This analysis would determine if hydrophilic

surfaces increase bond toughness. Future STEM/XEDS work will require better

TEM samples more uniformly thin across the CVD SiC to glass interface, so that

chemical analysis can be more reliable and compared for glass bonded to Si.

Potential delamination of the lapped glass interface can occur. Another analysis

technique must be used to distinguish the two interface bonds. Acoustic

microscopy using fourier analysis as a function of frequency instead of time could

possibly decipher the differences between the echoes from each interface in the

frequency, not time, domain. However, devoting more time and experimentation

to e-beam deposition anodic bonding should be pursued and characterized using
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the Plaza Test Mask and different bonding conditions because it is a more

promising method.

Finally, bulk glass-to-SiC anodic bonding must be put into practice for actual

MEMS devices.
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Chapter 7 Appendix

7.1 ANSYSv.6.0 input

!*Sibond.mac
!* This program finds the stiffness,k,
!*constant of bonded glass to Si. A 2-D
!*model of the front view of a Plaza Test
!*Mask Structure with the etch depth is
!*built. The same pressure is applied to
!*the glass surface on the etch depth and
!*the Si surface on the opposite to
!*simulate bonding. The deformation of
!*each surface simulating bonded is
!*added to see if it equals the etch depth.
!*lf it does, then the force is calculated
!*from the pressure, and divided by the
!*deformation of each material to get each
!*material's k constant. The same program
!*is used to bond glass with CVD SiC, but
!*with different dimensions.
/PREP7
multipro,'start',8
*cset,1,3,ht,'Enter Rectangle Height',762e-6
*cset,4,6,etch,'Enter Etch Depth',.2e-6
*cset,7,9,lenl,'Enter Middle Rectangle
Length',600e-6
*cset,10,12,len2,'Enter Side Rectangle
Length',500e-6
*cset,13,15,Siht,'Enter Si Height',508e-6
*cset,16,18,Young,'Enter Youngs
Modulous',86.8e9
*cset,19,21,poiss,'Enter Poisson's Ratio',.244
*cset,22,24,press,'Enter Pressure (positive is
ok)',1e6
*cset,61,62,'Enter at your own risk!!!!!'
multipro,'end'
!* Geometry
RECTNG,0,len2,0,ht,
RECTNG,len2,len2+len 1,etch,ht-etch,
RECTNG,len2+Ienl,2*len2+lenl,0,ht,
RECTNG,0,2*len2+lenl,-Siht,0,
!* Structure
/NOPR
/PMETH,OFF,O
KEYW,PRSET,1
KEYW,PRSTRUC,1
KEYW,PRTHERM,0
KEYW,PRFLUID,0
KEYW,PRMULTI,O
1*
FLST,2,4,5,ORDE,2

FITEM,2,1
FITEM,2,-4
AGLUE,P51X
!* Plane Strain
ET,1,PLANE82
1*

KEYOPT,1,3,2
KEYOPT,1,5,0
KEYOPT,1,6,0
!* Material Properties
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,Young
MPDATA,PRXY,1,,poiss
!*

MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,2,,130e9
MPDATA,PRXY,2,,.279
!* Mesh: Line Spacing
FLST,5,18,4,ORDE,6
FITEM,5,1
FITEM,5,3
FITEM,5,-11
FITEM,5,13
FITEM,5,17
FITEM,5,-23
CM,_Y,LINE
LSEL, ,, ,P51X
CM,_Y1,LINE
CMSEL,,_Y
!*

LESIZE,_Y1,30e-6, ,,,,, 1
1*

LPLOT
TYPE, 1
MAT, 1
REAL,
ESYS, 0
SECNUM,
!*

MSHAPE,0,2D
MSHKEY,0
!*

FLST,5,3,5,ORDE,3
FITEM,5,2
FITEM,5,5
FITEM,5,7
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CM,_Y,AREA
ASEL, , , ,P51X
CM,_Y1,AREA
CHKMSH,'AREA'
CMSEL,S,_Y
1*

AMESH,_Y1
!*
CMDELE,-Yl
CMDELE,_Y1
CMDELE,_Y2
!*

TYPE, 1
MAT, 2
REAL,
ESYS,
SECNUM,

0

CM,_Y,AREA
ASEL,,,, 6
CM,_Y1,AREA
CHKMSH,'AREA'
CMSEL,S,_Y
1*

AMESH,_Y1
1*
CMDELE,_Yl
CMDELE,_Y1
CMDELE,_Y2

/UI,MESH,OFF
!* Boundary Conditions
FLST,2,4,4,ORDE,4
FITEM,2,4
FITEM,2,1 0

FITEM,2,19
FITEM,2,21
1*

DL,P51X, ,ALL,O
!*

FLST,2,1,4,ORDE,1
FITEM,2,5
!* Apply Pressure Load
SFL,P51X,PRES,-1*abs(press),
FLST,2,1,4,ORDE,1
FITEM,2,20
!*

SFL,P51X,PRES,-1*abs(press),

FINISH
/SOLU
/STATUS,SOLU
SOLVE
FINISH
/POST1
/EFACE,1
AVPRIN,O,,
!* Output Plots
PLNSOL,U,Y,2,
/WAIT, 5
ASEL,S,MAT,,1
ALLSEL,BELOW,AREA
/REPLOT
/WAIT,5
ASEL,S,MAT,,2
ALLSEL,BELOW,AREA
/REPLOT
/WAIT,5
!* End of Program

!*SE_1_1_600_1_2_bond.mac
!* This program finds the strain
!* energies of the all the nodes of
!* bonded glass to
!* Si. A 2-D symmetric model of the front
!*view of a Plaza Test structure with the
!*etch depth is built. The nodes on each
!*glass and Si surface of the etch depth
!*are pulled at different distances to
!*equal the etch depth distance. The
!*nodal deformation simulates bonding.
!*Different distances of the material's
!*nodes are pulled. The total strain energy
!* of all the nodes of each particular
!*distance is summed. The lowest value
!*of the summed total strain energy is
!*used at that particular distance to
!*calculate the energy release rate, G.
!*This program is an example for
!*deforming 2 nodes on the glass and Si

!*of a symmetric 300 micron Plaza Test
!*structure. The same program is used
!* to bond glass with CVD Si carbide, but
!* with different dimensions.
/PREP7
/NOPR
/PMETH,OFF,0
KEYWPRSET,1
KEYWPRSTRUC,1
KEYWPRTHERM,0
KEYW,PRFLUID,0
KEYW,PRMULTI,0
/GO
!* Geometry
RECTNG,0,500e-6,0,762e-6,
RECTNG,500e-6,800e-6,.2e-6,762e-6,
/REPLOT
RECTNG,0,500e-6,0,-508e-6,
RECTNG,500e-6,800e-6,0,-0.000508,
FLST,2,4,5,ORDE,2
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FITEM,2,1
FITEM,2,-4
AGLUE,P51X
!* Plane Strain
ET,1,PLANE82
1*

KEYOPT,1,3,2
KEYOPT,1,5,0
KEYOPT,1,6,0
!* Material Properties
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,63.6e9
MPDATA,PRXY,1,,.2
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,2,,130.2e9
MPDATA,PRXY,2,,.279
!* Mesh: Line Spacing
FLST,5,7,4,ORDE,6
FITEM,5,1
FITEM,5,3
FITEM,5,5
FITEM,5,9
FITEM,5,20
FITEM,5,-22
CM,_YLINE
LSEL,, , ,P51X
CM,_Y1 LINE
CMSEL,,_Y
1*

LESIZE,_Y1,25e-6, , , ,1
1*

FLST,5,1,4,ORDE,1
FITEM,5,23
CM,_YLINE
LSEL,, , ,P51X
CM,_Y1,LINE
CMSEL,,_Y
1*

LESIZE,_Y1,.2e-6 , .,,1
1*

FLST,5,3,4,ORDE,3
FITEM,5,4
FITEM,5,6
FITEM,5,19
CM,_YLINE
LSEL,, , ,P51X
CM,_Y1,LINE
CMSEL,,_Y

LESIZE,_Yl,10e-6 , ,,,,, ,1

FLST,5,3,4,ORDE,3
FITEM,5,14
FITEM,5,17

FITEM,5,-18
CM,_Y,LINE
LSEL, , , ,P51X
CM,_Y1,LINE
CMSEL,,_Y
!*
LESIZE,Y'1,10e-006, ,, ,, , ,

TYPE, 1
MAT, 1
REAL,
ESYS,
SECNUM,

0

MSHAPE,0,2D
MSHKEY,0
!*

FLST,5,2,5,ORDE,2
FITEM,5,6
FITEM,5,8
CM,_Y,AREA
ASEL, ,, ,P51X
CM,_Y1,AREA
CHKMSH,'AREA'
CMSEL,S,_Y
!*

AMESH,_Y1
!*
CMDELE,_Y
CMDELE,_Y1
CMDELE,_Y2
!*

TYPE, 1
MAT, 2
REAL,
ESYS,
SECNUM,
!*

0

FLST,5,2,5,ORDE,2
FITEM,5,5
FITEM,5,7
CM,_Y,AREA
ASEL, ,, ,P51X
CM,_Y1,AREA
CHKMSH,'AREA'
CMSEL,S,_Y
!*

AMESH,_Y1
1*
CMDELE,_Y
CMDELE,_Y1
CMDELE,_Y2
!*

/UI,MESH,OFF
!* Boundary Conditions
FLST,2,2,4,ORDE,2
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FITEM,2,4
FITEM,2,17
DL,P51X, ,SYMM
FLST,2,2,4,ORDE,2
FITEM,2,4
FITEM,2,17
1*

/GO
DL,P51X, ,ALL,0
FLST,2,2,4,ORDE,2
FITEM,2,6
FITEM,2,14
DL,P51X, ,SYMM
FLST,2,2,4,ORDE,2
FITEM,2,6
FITEM,2,14
1*

/GO
DL,P51X, ,UX,0
FLST,2,1,1,ORDE,1
FITEM,2,2
!* Specific Interfacial Nodal Deformation
/GO
D,P51X, ,-.125e-6, .,,UY ,..,,
FLST,2,1,1,ORDE,1

!* plate-bending.mac
!* This program finds the deflection of
!* the bonded die-size sample of glass
!* to Silicon. A 3-D model is built with the
!* dimensions of the rectangular die
* size sample and fixed at a node on

!*each side of the bonded rectangular
!*piece. A delta temperature is applied to
!* the structure in order to find the
!*curvature.
/PREP7
!*

!*Define 3-D elements
ET,1,SOLID95
1*
!*Define material properties
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,63.6e9
MPDATA,PRXY,1,,.2
MPTEMP,,,,,,,,
MPTEMP,1,0
UIMP,1,REFT,,,
MPDE,ALPX,1
MPDE,ALPY,1
MPDE,ALPZ,1
MPDATA,ALPX,1,,3.25e-6
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,2,,130e9

FITEM,2,12736
!*

/GO
D,P51X, ,.075e-006, , , ,UY, ,.,.

FINISH
/SOLU
/STATUS,SOLU
SOLVE
FINISH
/POST1
AVPRIN,0, ,
!* Get Nodal Strain Energy Values
!* and write to .txt file.
PLESOL,SENE, ,2,
*DIM,sarrayarray,4742,
*DO,i,1,4742,1
*GETthe s energy, ELEM,i,SENE
s-array(i)=the-s-energy
*ENDDO
*CFOPEN, S_E_1_1_600_12, xIs
*VWRITE, s-array(1)

(E15.9)
*CFCLOSE
!* End of Program

MPDATA,PRXY,2,,.279
MPTEMP,,,,,,,,
MPTEMP,1 ,0
UIMP,2,REFT,,,
MPDE,ALPX,2
MPDE,ALPY,2
MPDE,ALPZ,2
MPDATA,ALPX,2,,3.3712e-6
!*Define each layer geometry of bimaterial
BLOCK,0, 1 8e-3,0,508e-6,0,12e-3,
BLOCK,0,0.01 8,0.000508,1270e-6,0,0.012,
!*Glue volumes together
FLST,2,2,6,ORDE,2
FITEM,2,1
FITEM,2,-2
VGLUE,P51X
!*Define thickness element edge length
FLST,5,8,4,ORDE,6
FITEM,5,1
FITEM,5,3
FITEM,5,6
FITEM,5,8
FITEM,5,25
FITEM,5,-28
CM,_ Y,LINE
LSEL,, , ,P51X
CM,Y1 ,LINE
CMSEL,,_Y
!*
LESIZE,_Y1,150e-6, ,,3,,,1
1*

146



!*Mesh each material
TYPE, 1
MAT, 1
REAL,
ESYS, 0
SECNUM,
!*

SMRT,6
SMRT,7
SM RT,2
CM,_YVOLU
VSEL,,,, 3
CM,_Y1,VOLU
CHKMSH,'VOLU'
CMSEL,S,_Y
1*
VSWEEP,_Y1
1*
CMDELE,_Y
CMDELE,_Y1
CMDELE,_Y2
1*

TYPE, 1
MAT, 2
REAL,
ESYS,
SECNUM,

CMDELE,_Y
CMDELE,_Y1
CMDELE,_Y2

/UI,MESH,OFF
!*Define boundary conditions on
!*each top corner of the plate
FLST,2,1,3,ORDE,1
FITEM,2,16
!*

/GO
DK,P51X, ,0, ,0,ALL, ,,,,,
FLST,2,1,3,ORDE,1
FITEM,2,9
!*

/GO
DK,P51X, ,0, ,,UX,UY, ,,,,
FLST,2,1,3,ORDE,1
FITEM,2,15

/GO
DK,P51X, ,0, ,0,UY, ,,,,,
TUNIF,-330,
FINISH
/SOLU
/STATUS,SOLU
SOLVE
FINISH
/POST1
/EFACE,1
AVPRIN,0,,
!*

!*Print out of deflection contour map in
!*Y direction
PLNSOL,U,Y,2,
!* End of Program

0

CM,_YVOLU
VSEL,,,, 1
CM,_Y1,VOLU
CHKMSH,'VOLU'
CMSEL,S,_Y

VSWEEP,_Y1
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