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ABSTRACT

This project proposes a method for creating, to the extent
of their predictability, the proper and timely forecasts of the
aquatic ecosystem consequences of electric power system operation.
A procedure is developed and intended for use in quantifying the
ecological sacrifices associated with a number of desirable regional
dispatch schedules. With the use of this technique, associated
with a given reliability level, optimum scheduling schemes can be
used to evaluate optimum dollar cost - environmental impact
pairings.

A prerequisite of the model was that it be flexible enough
for use in the evaluation of aquasystem impacts from either existing
or hypothesized systems, that is, that it could be used either as
an operational tool or as a simulation tool.

Specifically demonstrated is the feasibility of the quantification
of various ecological impacts and its usefulness in effecting com -
patibility between the power generating facilities and the aquatic
ecosystem into which they have been incorporated. The method of
quantification involves a probabilistic systems approach which
includes a due regard for the vagaries of nature. Essentially
calculated is the change in desirability to man of the ecosystem as
influenced by the losses of organisms, such losses being computed
from the probabilistic curves of affected populations convolved with
the probability of impact curves. Predictive techniques are developed
for the avoidance of mortalities due to thermotoxic synergisms.

A discussion of an atmospheric model counterpart is presented
to demonstrate the existence of compatible and consistent atmospheric
quantification procedures.

This project is primarily intended as a state-of-the-art survey
of the research areas contributing to this area with particular
attention paid to the precise input modeling techniques available.
However, a new method is presented for combining these inputs in
a thorough and consistent manner to obtain a meaningful environmental
impact measure.
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1. Introduction

A great problem to develop from this industrial era

is the dilemma between the increasing demands for energy

and the increasing demands that environmental qualities not

be degraded. As the electric power industry assumes an ever

increasing commitment to resolve the energy supply problem

it is subjected to escalating societal pressures to:

(1) generate reliably a sufficient amount of electricity

to meet any demands,

(2) retain or decrease its price rates, and

(3) minimize the impact of its generation efforts

upon the ecosphere.

The solution to this problem will take a long and unremitting

effort from all sectors of society. In the long-term (30

years) program of action must be included, among many other

things, efforts to develop more efficient means of power

generation and more efficient power utilization.2 There

can be no doubt that to reverse the trend of environmental

deterioration a tremendous technological effort will be requirei.

There is, however, another aspect of the solution to

the 'electric power-environment' dilemma which should be

closely coordinated with (and is definitely not meant to be

a replacement for) the technological advances, but is essentially

a separate effort. This is the development of methods

2. A detailed documentation of the course of action required
from technological improvements is contained in a report by
Philip Sporn, reference (1).
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to assure the best possible operation of an imperfect power

generation system. That is, until facilities which are

perfectly compatible with the ecosystem are producing all

of our power there must be a method for assuring that the

imperfect plants are utilized in the least damaging manner.

This effort breaks essentially into two segments. First,
the plants must be sited to take the best advantage of the

site options available. 3 Secondly, the operation of existing
systems must be directed toward those objectives enumerated

at the beginning of this section.

This optimum operation of existing systems is the overall

project being undertaken in the author's Ph.D. thesis, of

which this study is one portion.

1.1 Problem

For a more thorough description of the overall study

of 'optimum operation of existing systems' of which this

research effort is a part, the reader is directed to reference

(4). However, a basic understanding of the interconnections

involved can be gotten from figure 1.1-1 on the next page.

The annual optimum production and maintenance scheduler

of figure 1.1-1 has been developed and is capable of generating

optimum schedules for various dollar costs and environmental

3. This is a problem receiving a great deal of research effort,
see for example reference (2). The author's particular project
is also to be used as a simulation technique for the evaluation
of specifically hypothesized expansion alternatives, as
explained in reference (3).
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impact units.4 A similar output can be gotten from the

existing unit commitment scheduler,5 that is, optimum

schedules can be gotten for any desired mix of dollar costs

and any or all of the relevant environmental measures.

Figure 1.1-2 shows all possible optimum dollar - water

impact pairing consequences.
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impact
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200 400 600

Figure 1.1-2 Range of all dollar - aquatic envirnmental
impact pairings available from optimum schedules.

The problem contended with in this project is the develop-

ment of those aquatic environmental impact units, associated

with the aquasystem ramifications of electric power operation,

mainly the thermal pollution of those facilities.

Not only is there no existing scheme for the quantification

4. Contained in reference (5).

5. Contained in reference (6).

6. From reference (7).
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of such ecological impacts, but it is in fact not known

whether or not it is useful or even meaningful to talk about

such a measure as an ecological impact unit.

1.2 Results

The most marked impression which results from even a

brief study of the dynamics of aquatic ecosystems is the

unusually strong stability they exhibit. Because the aquatic

organisms are linked tightly in a predator-food chain, homeostasis,

any loss of a portion of one species' population results in

the increased availability of its food sources and the decrease

in the number of its predators, making an ideal environment

for the comeback of the depleted species or a replacement

by a more suitably adapted organism.

This inherent stability is particularly evident with

respect to natural7 perturbations, for example temperature.

Stable natural water habitats are known to range from the

-150° ( 40° ) of parts of the Arctic Ocean to 850 0 (1850 F)

of some hot springs. Thus, any long range study of the

ramifications to man of temperature changes in aquatic ecosystems

must disgard any attempts at the measurement of the instabilities

induced in favor of efforts to compile a survey of the

relative desirability to man of the resultant stable habitats.

7. An unnatural stimulus in an aquatic habitat would include
any peculiarly man-made perturbations, such as concentrations
of acetone, sulfuric acid, etc. Unnatural changes, in general,
have singularly significant ramifications because organisms
may not have mechanisms which have evolved for adaptation
to these stimuli.



The conspicuous scarcity of mathematically descriptive

material in all the fields of ecology is apparently based

mainly upon the suspicion, which I feel is well-founded,

that the use of numerical descriptors may overshadow many

of the problems and interrelationships contributing to the

inocedible complexity of the intertwining life processes.

Insofar as these exposed insights of ecologists are also

valuable and useful products of their investigations these

insights are used in this project. That is, quantification

is avoided until the last stage of this assessment, and

any intermediate numbers created are related to physically

significant, and thus measurable and correctable, quantities

or processes.

Quantifying the effect of heat on an aquatic organism

is not a trivial task, due to the number of synergistic

effects which significantly diminish tolerances to thermal

stresses, see figure 1.2-1 on the following page. These

effects are considered in the results of this study, being

included in the form of measurements of water quality (for

unfavorable physical factors and toxins), recognition of the

food chain limiting processes, secondary mortalities (that is,

stressing biological factors) and time variations in sensitivity

( solar and lunar photoperiods).

A number of existing studies have shown that thermal

8. Some mathematical unsophistication can be seen to play a
small role as evidenced by sme lack of sufficient statistical
treatments, few multivariable experiments and insufficient
concern for differentials between perturbed and control systems.
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UNraVORABLE PHYSICAL FACTORS
(Salinity, Oxygen, etc.)

UNFAVORABLE FOOD SUPPLY

-STRESSING BIOLOGICAL FACTORS
(Predation, Parasitism, Crowding, etc.)

TOXINS TOXIC SUBSTANCES

-SOLAR AND LUNAR PHOTOPERIOD

Pigure 1.2-1 Other factors which aggravate an aquatic organism's
tolerance for thermal stress.9

tolerance also is known to vary with the different life stages

of an organism, refer to figure 1.2-2 on the next page. These

effects naturally fall into the portion of the model which

9. Excerpt from reference(8L page 174.

l
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Rate of Change of Temperature- - -

Maximum Temperature - - - - - - - -

Frequency..of Exposure to Maximum Temperature -------------------------

Pigure 1.2-2 Thermal tolerance variation with changes in
life stages.10

considers time variations in sensitivity.

The resultant model developed by this investigation

is contained on the following page, as figure 1.2-, in its

simplified systematic block diagram form. The operations

of the various modules of this representation are defined

and in some cases examples are presented. Particular detail

10. Excerpt from reference (8), page 181.
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Operating
Variables

Environmental
Forecasts ?

Aquasphere
Ramifications

Change of
Desirability
Assessment

Figure 1.2-3 Simplified general systematic representation
of aquasphere impact

is paid to the biological model with a further module breakdown

and exact descriptions of its different functions.

In determining a method for the collection of required

information, an investigation of the study of thermal stress

through an examination of physiological processes was rejected.

The argument for the rejection of this technique included the

fact that the effects on such processes as neural and endocrine

transmissions and cellular and genetic integrity were very

complex time-varying problems, see figure 1.2-4.11 This

problem is further complicated by heat dosage collection,

11. Excerpt from reference (b), page 190.
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mutagenetics, canalization, movement from thermal stress

areas, and acclimation processes.

Thus, the collection of information,and formulation

of models, were based on broad input-output experiments with

no attempt to identify the states internal to the organisms,

and the literature was surveyed with this perspective.

These cause-effect results of heat applications are

primarily a function of exposure duration, that is, more

precisely, total thermal dose, refer to figure 1.2-5. On

the basis of existing predictive models built from input-output

SHOCK

An'~~1lthin Mlnutes

DEATH C HE.AT COMA

[IRECT RESPONSE

Within Hours to Weeks

U
ACCLIMATION (Compensotion, Homeostotic Regulotlon)

U One Life Cycle

NATURAL SELECTION OF BREEDING ADULTS AND GAMETES
r-

U

Many Generations

NEW SPECIES

Pigure 1.2-5 Results of thermal experiences as a function
of duration of exposure. 12

12. Excerpt from reference (8), page 175.

_ . '
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experiments a consistent and complete procedure is developed

for assessing aquatic impacts of power generation, and the

existence of a compatible technique for atmospheric systems

is demonstrated.

1.3 ImSliations

The considerable magnitude of the temporal variances

of impacts to aquatic systems from electric power generation

demonstrates the significant environmental gains which can

be realized from incorporation of ecosystem forecasts within

the power system's operational process.

With a quantifying tool such as that presented here,

and a scheduling algorithm13 tradeoffs can be evaluated

between dollar costs, system reliability levels, and ecological

impact; and the use of hypothesized system additions such as

new generation or abatement equipment can be simulated and

evaluated.

The considerable effort spent in setting the basis for
this environmental model was directed toward the creation of a

solid foundation. Some areas of the modelling will undoubtedly

provoke constructive criticisms and it is intended that these

refinements will be applied to the initial foundation. There

are areas where little data is available and it is hoped that

the availability and apparent usefulness of this model will

manifest the need for research to fill those gaps in the

existing information.

13. Such as is available in reference (6) and reference (7).



2. Consequences of Thermal Loadinas

A very emotionally packed issue in the utility industry-

environmentalist impasse is the thermal enrichment-thermal

pollution argument. Each side has protected its own interests

by sectioning out its best arguments before a legal system,

which then is required to draw lines between issues, lines

which both sides agree are somewhat arbitrary. What is required

is an integrated view of the entire problem.

Thousands of years ago, before man had made a significant

impact upon his environment, the ecosystems around the world,

including water environments, were most probably in very

stable modes, homeostatic. Under those stable conditions

with temperatures wavering about the optimall4 it would be

Just as likely that water temperatures would drop lower than

optimal as rise warmer than optimal. The situation has

changed slightly with time, in particular with deforestation

slowly pushing water temperatures toward upper tolerances,

but the existence of colder than optimal temperatures is

still a common occurrence- especially in northern latitudes.
In fact1 if any generalization can be made about temperature,

which has been called the 'master factor' in aquasystems, it is

that temperature increases escalate productivity 15 in water

14. Optimal temperatures are defined with regard to the entire
organism's energy conversion efficiency as determined from
respiratory, activity and growth measurements.

15. For an example of accelerated fish growths see reference (9)
page 602.
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habitats .16

So the most logical approach to a solution for the

problem of thermal loadings must begin with a complete investigation
of the implications of power plant operation followed by
an assessment of the desirability of the operation associated
ramifications.

2.1 Thermal Waste Prduction and Dissi ation

Both nuclear and fossil-fueled power plants produce heat
in the process of converting fuel to electricity. Limited to
about 60% efficiency by the Second aw of Thermodynamics,

and further reduced to 40% to 30% efficiency by imperfect

production equipment, the waste heat problem can be seen to

be considerable. Although the average efficiency of power

plants has been rising steadily, from 17% in 1930 to 33%

in 1966,17 sizeable gains in efficiency are a thing of the

past. The problem is further complicated by the fact that

the cheapest form of power for the immediate future,

nuclear power, is not only less efficient overall, but

nuclear power further intensifies the thermal pollution

water problem by not sending any considerable amounts of

heat up its stacks, as fossil plants do.18 Figure 2.1-2

displays some of the data relative to this issue.

16. The desirability of the resultant increased populations,
however, may be less than that of the initial situation.

17. For this and further information see reference (10).

18. See, for example, reference (11), page IX-19.
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ENERGY TO: POWER STACK

Average U.S. Plant 33.0% 15.5%

Fossil, current 39.5% 15.0%

Fossil, predicted 42.5% 15.0%
future

Nuclear, current 29.5% 4.5%
(Calvert Cliffs)

Nuclear, predicted 41.5% 3.5%
future, (breeder)

Figure 2.1-2 Table of efficiencies of current and
future fossil and nuclear generating facilities1 9

WATER

51.5%

45.5%

42.5%

66.0%

55.0%

predicted

The outlook for more efficient power 10-20 years from

now includes: magnetohydrodynamics, electrogasdynamics,

thermionic electric power generation, ocean thermal gradient

heat machines, 2 0 tidal energy machines,2 1 aerogenerators

heatd machines,)22
(wind machnes),2 2 geothermal power, fuel cells,2 3 nuclear

stimulation of tight gas sands,23 solar energy plants,24

solar photosynthetic energy,2 5 and farther off in the

future is the potential for hydrogen fusion energy.26

Whereas these techniques are still in the developmental

19. Adapted rom data presented in reference (12), page 248.

20. Reference (13), Appendix 2 describes the possibilities
and lists 28 related references.

21. See reference (14) or reference (13), Appendices 3 and 4
which lists 14 references.

22. Described in reference (13), Appendix 6 with 11 references.

23. See reference (15).

24. Expounded further in reference (13), Appendix 10.

25. Described in reference (16).

26. A latest updating of progress is in reference (17).
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stages, there are facilities which can be built today which

show great promise, if not from an efficiency point of view,

at least from an environmental perspective. One of these

solutions is the floating, off-shore nuclear reactor, one

type pictured below in figure 2.1-3.

/I

. - -.. .4

I
M

L IIII

/
!

W.

M.L.W. O' TN~ML..=0L-W- = 0

27. Pictures are from reference (18), page 45.

Side views:
Moorings Moorings

rS-eUUlj_ M.L.W. = '

Note: M. L.W. = mean low water

Figure 2.1-3 Floating nuclear power plant sited 3 miles
offshore with cable for power transmission27



These offshore reactors will be set approximately

three miles out into the ocean in about 50-60 feet of

water, where ecological experts 28 predict that they will
be beneficial environmentally. In addition these plants
require only about 100 acres of ocean, compared with the
500 acres required for a comparable land site, and apparently 29

these ocean sites can provide power to 40% of the U.S.

population, that being the percentage of the population

living within the 200 mile maximum transmission distance
from these sites.

The actual mechanisms involved in the power production

process are displayed in figure 2.1-4. Heat is transferred
STEAM

IELECT. 2

NSCHARGE
{WARMER)

- - WATER SOURCE - HET 

PFigure 2.1-4 Energy conversion mechanism of a thermal power plant 3 0

28. See reference (18), page 51. The possible change in
nearby beach erosion patterns has not yet been tested, but is
felt not to be a problem.

29. Prom reference (18), originally from (19).

30. Excerpt from reference (20), page 343.
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to the approximately 3 meters3/minute per megawatt31 cooling

water when it passes through the one inch condenser tubes.

The water temperature differential across the condenser

varies considerably depending upon plant type,32 volume of

water used, etc. igure 2.1-5 shows the range of temperature

increases for some purposed nuclear power plants.

ts
10

a:

i
MucoI

:Im

n

J IN V D (0 C 0 N V

O f CY C 
N N t J ON V 

AVERAGE = 19.4F TEMPERATURE RISE (F)
(10.8C)

Pigure 2.1-5 Water temperature differentials through condensers
of 61 purposed nuclear power plants 33

Assume, for the sake of example, that the average of 10.80 0

differential exists during the operation of a particular

power facility. If an organism is small enough to have passed

through the intake screen it is instructive to examine the
temperatures to which it then would be subjected as it passed

31. See reference(21).

32. For a generalized mathematical model for predicting the
heated outflow rates from different operating conditions see
reference (22).

33. Adapted from reference (23).
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through the cooling system. Figure 2.1-6 shows such a

hypothetical temperature history for an entrained organism

as measured with respect to the ambient stream temperature.

m. 

14

U

2

0.O.

-4 O' 4 8 12 16 20 24 28

TIME (min)

Figure 2.1-6 Temperatures an entrained organism would be
experiencing as it passes through the cooling system of a
hypothetical power plant. The dotted line shows the4temperatures
resulting from a plant with a long discharge canal.

It is not difficult to envision times when a discharge

canal would effect significantly more damage to an organism

entrained in heated effluent for longer time spans.

Once heated water is discharged to the water system

its exact temperature distribution will depend not only on the

physical and meteorological characteristics at the outlet, but

34. Excerpt from reference (24), page 601. The effects of
abrasions and/or noise on entrained organisms have apparently
not been studied in any detail. For a list of some pressure
problems created by entrainment see reference (3), page 85.



also, again, on the type of discharge equipment used. The

complexities and tradeoffs involved are shown by this comparison:

"Two methods are available for discharging. heated effluent: surface

discharge and submerged discharge. A low velocity surface discharge

through an outlet channel has the dvantages of

1. more rapid heat trahsfer to the atmosphere implying there is

.less heat tied up in the water,

-.2.. close proximity to the condensor, minimizing the travel time for

aquatic species caught in the high temperature circulation system,

3.. stratification in all but the shallowest receiving waters,

(Stratification enhaAces the flaow away of hot water and also leaves

bottom regions which are free .of heat meaning less obstructed fish

passage.) ' . ·

'4. less trubulence reducing scour and. other, problems associated with

high velocity Jets, and

, less cost to construct. .

Alternatively, the submerged discharge, either through a single -. . ;..-

discharge pipe or through a diffusing manifold has the advantages of:

1. location away from the plant preventing severe shore or riverbank

,i...i..;: -pollution and minimizing. recirculation of hot water' through

'* -'intakes, Ind .

2. 'better mixing resulting in a more uniform temperature distribution

(articularly in the vertical dimension) with a significantly lower

maximum temperature rise above ambient ater temperatures.35

35. Excerpt from reference (25), pages 2 and 3.
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Current
ATo= 150 F 0.6fps

Qo = 1,000 cfs
7Fo = 6

10 ft

20 ft

Discharge Channel
Cross Section 6°

Figure 2.1-7 Surface temperature and vertical section isotherms
for a surface dscharge.~ u

Current 0.50

0.6 fps 1.00

1.54F

ATo' 15'F
00

= 1,000 cfs

Submerged Diffuser
100 Ports @ 30 ft
D= 1 ft V= 13 fps

0 1,000 ft. .Scale. 
Scale

Shoreline

Horizontal scale

Figure 2.1-8 Surface temperature and vertical section isotherms
for a submerged diffusion. V

·
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For an idealized environment the temperature isotherms

which result from different discharge schemes are shown in

figures 2.1-7 and 2.1-8.36

As mentioned previously a secondary influence on the

temperature gradients in the vicinity of the thermal effluent

is the condition of the atmosphere over the mixing water,

see figure 2.1-9.

H, = Solar Rad. (400-2.800 Btu ft-2dav - 1 )

H = L.W. Atmos. Rad (2400-3 200 Rtu ft-2 dav- 1)

H.hr = L.W. Back Rad. (2.400-3.600 Btu ft- 2 dav- 1)
Lr -- - _ 

H, = Evap. Heat Loss (2.000-8.000 Btu ft- 2 dav- )

H = Cond. Heat Loss. or Gain (-320-+400 Rtu ft- 2 djav- 

H,, = Refl. Solar (40-200 Btu ft- 2 dav- 1 )

Har = Atmos. Refl. (70-120 Btu ft- 2 day- 1 )

Figure 2.1-9 Mechanisms of heat transfer at the surface
of the water body37

36. Adapted from reference (26) page 3. It has also been
noted that in addition to the ideal mechanisms taking place
in the model the discharge designs may effect turbidity at
outflows, causing disorientation in fishes, and causing upwellings
with consequences to planktonic organisms dependent upon
various surface residencies and light intensities, see reference (3)
page 86.

37. From reference (27), finite difference equations are used
to calculate these transfers in reference (28).
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To summarize these predictive tools, heat diffusion

within the sink fluid is predictable from the internal

hydrological parameters, whereas exchange of beat to the

atmosphere and the resultant equilibrium temperature of the

waterbody T can be summarized (using figure 2.1-9) as

T'+ He 21-1Te = d + 21-1

where Td is the air dewpoint

temperature, H the mean daily solar radiation, and K the

surface heat exchange coefficient as shown in figure 2.1-10.

0 2 4 6 B 1U 1 14 lo

WINDSPEED (MPH)

Pigure 2.1-l30hart for surface heat exchange calculation frqe
meteorological parameters ant T s stream surface temperature-

38. Excerpt from rference (3), page 115, see rcference (29).
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As an example of some of the existing techniques for

calculating the near field water temperature gradients from

the Te, equilibrium temperature, consider the case of the

stream as the dissipation mechanism. The simplest of these

computation techniques are presented in table 2.1-1.

Gameson, Gibbs, and Barrett

do_ f 
dt z

where = excess of water temperature
over natural water temperature, °C

f =exchange coefficient, cm/hr
z mean river depth, cm

Velz and Gannon

dT w _ H

dt - 62.4b

Duttweiler

"dT _ 1 x(TET)
- =- I A(TE - T)dt pcz

Edinger and Geyer

P CpUd = _ K(T - E)
fiil

where Tw = water temperature, °F
H = rate of heat loss from water

BTU
surface, ft2 -day

b =river depth, ft

where T = water temperature, °F
= parameter dependent on

atmospheric conditions,
z = hydraulic depth, ft
TE= equilibrium temperature, °F

where T = water temperature, °F
U = mean stream velocity, ft/hr
d = mean stream depth, ft

BTU
K =exchange coefficient, ft2day ° F

E = equilibrium temperature, F
BTU

C '- specific heat water, lb

lbs
P = density of water, ft: 

Table 2.1-1 Some of the simple stream temperature prediction
models39

39. From reference(27, page 150. More sophisticated models can
be found in references (30), (31) and (32), overview in (33).



These are of course highly simplified portrayals of

temperature gradients, and they lose accuracy with increasing

complexity of the physical situation. If these are deemed

inadequate, scale models can be mocked up, or for existing

systems, temperatures can be measured directly, or dies can

be used, or temperatures can be measured using aerial infrared

photographic techniques as is shown in figure 2.1-11.

A: 41000 ft3/sec flow

River

100 K Effluent Discharge I I AT < DL

DL-l IC T

Mile IIII I-3C AT
0 01 0,2 03 04 0 m 3 -C AT

~~~I-~ ~ ~ ~ ~ ~~~~ -'C ZI 3-IT

0 .4 0.8 m 8-16-C AT.
km

B: 80000 ft3/sec flow

100 K Effluent Discharge =1 AT < DLT

M DL-PC AT

MILD I -6C AT

E 6 -12C AT

C: 110000 ft3/sec flow

Figure 2.1-11 River isotherms at three different $treamflow
levels as measured by aerial infrared photography 0

40. Excerpt from reference (9), page 595.
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These techniques are, of course, not limited to temperature

prediction in streams4 nor to specific dissipation mechanisms42

but this is in many ways the most critical case.

The legal restrictions concerning limitations of allowable

heat discharges vary from state to state. 43 The standards

of the state of New York are based on the Federal Water

Pollution Control Administration guidelines 44 and are paraphrased

here because they are more or less typical: 45

41, See for example reference (34) for other site-type models,
or an overview, reference (35), of some of the latest lake
temperature models, an estuarine temperature model summary
is given in reference (36), reference (37) deals with
reservoir temperature predictive techniques, and reference (38)
with a case study of ocean tidal influences on temperature
patterns. The raising and depletion of reservoirs of pumped
hydro storage units have environmental impacts peculiar to
that type of facility, some of these problems are discussed
in reference (39). A description of some of the computer
programs available for the prediction of temperature patterns
is contained in Appendix K of reference (40). A program
also exists, reference (41),which when given power plant and
site characteristics and pollution abatement equipment used,
not only predicts whether or not specific temperature
standards will be met, but it also computes associated
capital and operating costs.

42. There are obviously numerous other discharge methods,
such as surface jets, modelled e.g. in ref. (42) or (43).
Some of the most comprehensive discussions of discharge
techniques and their effects can be found in reference (44)
and reference (45).

43. Foreign countries tend to set simpler, somewhat more relaxed
standards, such as the straight 280 0 limit enforced in parts
of Germany, see reference (46).

44. See references (47) and (48) for the guidelines of this
organization which is now called Environmental Protection Agency
Water Quality Office.

45. Some of the legal problems inherent in the definition of
a "mixing zone" are discussed in reference (49).
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-streams: a passageway allowing for half the stream
flow must be provided and the mixing temperature may not
exceed 300 C 860 F) or 2.80 0 (50 P) beyond the ambient
temperature

-lakes: a 1.70 0 (30 P) maximum differential is allowable
outside as area equivalent to a 300 foot diameter circle

-estuaries: same as for streams except that only a
0.80 (1.50 ) rise is allowable

-coastal locations: only qualitative recommendations
are made.

If environmental considerations are to be ignored except

to the extent that they are included in the legal quantities

then it would be possible to terminate this project at this

point. Any exceeding of the existing legal standards could

be granted extravagant environmental costs so as to force
other, nonviolating plants to take over the load. However,

sentiment is gaining quickly for new, more adaptive controls

to overcome some of the limitations46 of current statutes

Efforts have been made to include within the laws both the

direct and indirect effects of temperature discharges upon

aquatic organisms.47 The process of adapting laws to be

consistent with scientific knowledge is currently in a painful

growing process of refinement-challenges-relaxation-refinement

46. Reference(50), page 17 presents the need for flexible
udgement decisions rather than legislation. See referencest51), (52) and (53) for arguments concerning the need for
better legislation, and how that end is being pursued. It
has not even been quite clear in the past which bodies of
legislation held jurisdiction over the relatively new "thermal
pollution" problem, see-reference (54).

47. See reference (55).
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etc. 48

The only clue as to what policies may eventually result

comes from the observation that all those concerned appear

to favor standards or controls which reflect most accurately

the requirements of the particular water habitat in question.

The following sections of this chapter relate to the development

of those particular requirements.

48. An example of this entire process is the case of the thermal
pollution legal actions concerning Lake Michigan. An initial
refinement was made to the current legislative policies
to limit temperature increases to 0.60 0 (reference 56)--
a challenge was then entered by the utilities (reference 57)--
a relaxation of the suggested increase resulted (reference 58)
along with an expression of openness to flexibility (reference 59)--
and an entirely new refinement has been presented (reference 60)
which is of such a nature as to insure that a challenge will
be made.



2.2 General Observations about Auatic Ecosystems and TemDerature

Very few general observations exist concerning the

consequences of thermal loadings on aquatic ecosystems.

The reason for this rarity arises from the fact that the

biologists and ecologists who are qualified to make such

generalizations are also cognizant of the incredible complexity

of the problem.

As an indication of the complexity of the problem's

interrelationships consider the flow of food and heat energies

in a typical stream ecosystem, figure 2.2-1. The arrows
EMIGRATION

Figure 2.2-1 Pattern of energy flow in a typical aquatic
ecosystem 9

49. Modified slightly from what appears in reference (61)
in that carnivores are also subject to succumbing to the
actions of some of the microorganisms, viz. disease.



within the boxes show the increase or depletion of populations

which occur in the presence of further thermal loadings.

The few rudimentary general studies which have been

generated were motivated toward the development of predictive

models for calculating the ecological effects of proposed

power plants.50 Some of this work, aimed in particular

at the effects of entraining organisms in cooling systems,

has been collected by Dr. Charles . Coutant, who has also

been a leading figure in generating mental inertia in this

field:

"If there is a seasonal period of critical high
temperatures, power operators should be able to conduct
periodic checks of temperature and exposure time for
critical species . . . and adjust plant operation accordingly.
It is astonishing that such a simple technique has not
found wide use. The responsibility probably lies partly
with ecologists, who have not clearly explained (or
recognized?) the predictive utility of their quantitative
data and then made those data readily available to the
right people. To date, there is no single document that
serves as an adequate handbook of thermal-resistance
data. Such a text is sorely needed."51

Research on the effects of heated effluents in and

beyond the mixing zone is presented by J. A. Mihursky, et al

in reference (62). Based on a number of studies documented

in source (62) the investigators generated a thermal-biotic

predictive model for an estuarine system, see figure 2.2-2.

The solid line represents the loss of species due to emigration

50. Fortunately, the biologists making these studies have
apparently been unbiased by emotional courtroom battles, and
thus their research as a whole can be considered relatively
unbiased with respect to the heated utility-conservationist
arguments.

51. Excerpt from referonce (24).
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THERMAL-BIOTIC PREDICTIVE MODEL

for an ESTUARINE SYSTEM

70 75 80 85 90 95 100 105 V1

TEMPERATURE *F

Figure 2.2-2 General model of the health of an entire estuarine
system as represented by species diversity (in summer conditions)5 2

or thermal mortalities. The dot-dashed line refers to the

number of species existing in those thermally distressing

situations which induce for them unnatural physiological

conditions, or unusual susceptibility to predators, parasites

or diseases.

An extension of complexity of this summer model is necessary

to incorporate the seasonal variability in the tolerance of

the various species. This incorporation is effected in

figure 2.2-3.by demonstrating the range between the most

tolerant species (upper diagonal line) and the least tolerant

species. The coordinates of this graph are the existing

(upstream or predicted) ambient temperature as the abscissa

52. From reference (62), page 351.
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Figure 2.2-3 Lethal temperature tolerances for 50% of a
species, LD50, for the most tolerant and the least tolerant
organisms and the maximum allowable temperature elevation
(X.A.T.E.) resulting in no appreciable thermal effects,
oompared with the 1968 Maryland laws.53

and the differential temperature addition as the ordinate.
This model indicates that most of the time the 1968

Maryland law is overconservative, except during the summer

when the law allows slicing into the diversity of species.

This species diversity,5 4 or biotic index,
i i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

53. Exoerpt from reference (62), page 352.

54. Another example of the application of species diversitg
to the thermal discharge problem can be found in ref. (6x) & (64).
Reference (65) enumerates the deficiencies of this measure and
introduces a correcting concept of "evenness, a variance-type
measure of the richness and stability of a system. Reference (66)
has a more mathematical treatment of this variance measure.
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has been frequently used as a kind of measure of the 'health'

of an aquatic ecosystem. For example, a water habitat supporting

only catfish, bullheads, a couple varieties of invertibrate

herbivores, and two or three hot water blue-green algaes

would be considered inferior to a system with a large selection

of game fish, shellfish, etc. Although the small diversity
system may very well be out-producing the larger, it may

contain no commercially or recreationally valuable fishes,
and may have large algal mats, foul looking and smelling,

unswimmable water. Thus, species diversity can be considered

a measure, albeit crude, of the total of all the conditions

of the aquasphere which affect man and his activities 5 This

relatively coarse detector, unfortunately, is limited in its
validity to the measurement of extreme variations. It is

thus necessary to proceed with a survey of the effects of

thermal increases on a breakdown of the subsections of the

aquasystemn56

55. Reference (67) describes the development of a species
diversity mechanism based on actual data collected from a
power plant site. Another study concerned with community
structure, reference (68), involves a systematic approach
to the study of effects of temperature and sewage combinations
in an estuary.

56. Some other mathematical models which might be helpful
in predicting biological effects of temperature changes
can be found in reference (69). The most recent work on
this particular project can be found in reference (70),
which has apparently assisted regulatory agencies in
establishing new standards, and has assisted utilities
in finding better operating strategies.



2.3 Direct. Termal ImPact on shes

Insofar as fish generally constitute the sector of the

aquatic ecosphere of major importance to commercial and re-

creational interests, most of the thermal stress research

has been directed toward the welfare of this group.57 The

characteristics of the data and the influencing factors are

essentially the same for most organisms and so a detailed

study of fish problems can be applied to other life forms,

of course with the appropriate seasonal and temperature

shifts .
Fishes are poikilothermic animals, that is, their

body temperatures rarely differ by more than 10 from that

of their environment.58 Thus, water temperatures suitable to

the internal tissue functionalities of fish are necessities.

However, any attempt to generalize thermal behavior patterns
through the study of cell physiology, that is, thermal limiting

processes 59 in the nucleoplasm, cytoplasm or cell wall integrity,

seems doomed to fruitlessness. Thermal tolerance is known

57. A bibliography of 1220 papers on thermal pollution,
most of them concerningfish, is contained in reference (71).
A review of 263 of the latest research. efforts in this field
is contained in reference (72), with a new review available
annually in the same Journal; and for 1972 reference (73)
has a list of available temperature effects studies for
species and their stages of reproduction, embryonic devel-
opment, larval development, morphological aberrations,
distributions and thermal tolerances.

58. See reference (74).

59. That is, thermal disruptions of the mechanical, chemical
osmotic or electrical workings of the cell.

-43-
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ORGANISM THERMOSTABILITY (NON-BREEDING)

Very Flexible Resistance

Acclmotion to Daily and Seasonal Cycles

X

ORGANISM THERMOSTABILITY (BREED!N:

Flexible Resistance

Accllmotion to Geogrophic Locollty

(HEAT SYNERGISMS 

PROTEIN THERMOSTABILITY
Very Conservative Resistance

(No Acclimation, Determined by Primary Protein Structure)

TISSUE THERMOSTABILI T

Conservotive Resistance

CELL THERMOSTABILITY
Conservative Resistance

Figure 2.3-1 Effects g heat on different major components
of an aquatic organism

to be influenced to a certain extent by acclimations of

muscular structures6 0 and metabolic systems,6 1 by hormonal

62 63
variations6 2 and digestive system processes. Thermal

variations are also known to influence the nervous system

and the functioning of the reproductive system. For a schematic

of the flexibility of various organism parts to variations

in temperature see figure 2.3-1.

60. The effect of structural size to thermal tolerance is
documented in reference (75).

61. See reference (76).

62. The effects on lethal temperatures of sex, day length,
season and other hormonal variations have been presented in
references (77); (78); (75) and (79); and (80) respectively.

63. Variation of diet, references (81) and (82) and water
quality, references (83), (84) and (85) have profound effects
on thermal tolerance -levels.

64. Reference (8), page 180.



The clinching argument against the use of cell physiology

or even fundamental body function generalities comes from the

information that certain rotifers can exist at -267° 0 (448 ° p)

and African midge larvum can withstand 1020 0 (2150 ) temperatures6 5

Cells with basically the same structure have thus withstood an

incredible 3690 C (6630 ) range. With the possibility of

cell or function generalities discarded, the study of thermal

tolerances necessarily becomes an input-output survey for the

various species of concern, without regard for internal states 66

Even the most rudimentary initial studies of the limits

of thermal tolerances recognized the existence of differences

between the requirements for the satisfactory functioning of

developmental processes as opposed to reproductive processes,

see figure 2.3-2.

A number of schemes have been created for determining

the temperature tolerances of different fishes. One obvious

and very accurate method involves the inspection of the geographic

distribution of a species, and thus the associated temperature

preferences. Another method involves the netting of species

65. See reference (86), pages 1 and 2.

66. Even within species apparently identical in all respects
except geographic origin, different lethal temperatures ref. 87)
have been recorded. This is apparently a documented case
either of canalization, i.e. the setting of certain body
parameters in youth according to the environment, or of
mutagenetics, i.e. the evolution of a different race of the
same species to better adapt to a situation.
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F: Growth of catfish, gar, white or yellow bass, spotted bass,
buffalo, carpsucker, threadfin shad, and gizzard shad.

F: Growth of largemouth bass, drum, bluegill, and crappie.

F: Growth of pike, perch, walleye, smallmouth bass, and sauger.

F: Spawning and egg development of catfish, buffalo, threadfin
shad and gizzard shad.

F: Spawning and egg development of largemouth bass, white, yellow
and spotted bass.

F: Growth or migration routes of salmonides and for egg development
of perch and smallmouth bass.

F: Spawning and egg development of salmon and trout (other than
lake trout)

F: Spawning and egg development of lake trout, walleye, northern
pike, sauger, and Atlantic salmon.

Figure 2.3-2 Maximum temperature recommendations deemed to
be compatible wigh the functioning of the species and their
associated biotauf

at the various thermal gradients created at existing thermal

discharge outfalls. 68 These field experiments are superior69

to laboratory investigations both in use of realistic water

quality, and natural habitats, and in the availability of

escapes from thermal stress areas for motile organisms,

67. The source for this material is reference (88).

68. An experiment of this type is represented in reference (89).

69. The superiority of field experiments over laboratory
simulations was made clearly evident when early aquaria experiments
resulted in predictions that natural temperature ranges should
have extirpated some thriving species (reference (9), page 592).
Obviously, adaptation is not as effective in artificial environs.

i.



extrications not being available to animals in screen areas or

aquaria studies7.0

Laboratory investigations of temperature preferendum have

revealed that variation in previous acclimation temperatures

w
30

. 25

r0

W

tO
10 20 30 40

ACCLIMATION TEMPERATURE

Figure 2.3-3 Thermal preferences of various species of fish
in relation to temperature f previous acclimation (eight
different species )71

results in a variation of the eventual preferred temperature,

as is shown in figure 2.3-3.

This recognition that seasonally varying ambient temperatures

meant seasonal variation in acclimation temperatures,and thus

variations in thermal tolerances, brought about predictive

70. Some empirical equations for the prediction of hot and
cold temperatures that fish would avoid, depending on
available light, fish length and salinity are given in
reference (90).

71. The source of the research done on these curves is
reference (91). Other preference research is in references
(90), (92), (93), and (47).
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models such as figure 2.3-4. It is crucial to note that as

32

24

k 16

w
0.

I-
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JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC

Figure 2.3-4 Seasonal cycle of temperature in the Columbia
River and the increase cau-sed by cooling water differential
of 10.8° C superimposed on the variable tolerance of a fish
species72

in almost all studies this is a "one-shot" type of experiment

with no account given to any influence except variation in

acclimation temperature. As previously mentioned further

influences exist that are seasonally varying, among these are

length of day effects, and variable tolerances due to size

and time of life differences. These, and other as yet unexplained

but clearly seasonal effects, all tend to define more sharply

the highly seasonal nature of the dangerous operating period.

The fact that the uvenile chinook salmon are most abundant

from April to August73 in the operating region represented

by figure 2.3-4 can now be used to create a population probability

curve relevant to this site.

72. This graph was created for use in source (24), page 602.

73. Reference (20), page 349.
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The probability t fish of species s' will be lost because

of operation in interval k is thus7 4

fs(k) = Ps(k) e (k) 23-1

where ps(k) is the affected

population probability curve for species 's' at the site and in

interval k, and e(k) represents;.the effective mortality

probability due to the operation of the facility.7 5 This

equation 23-1 is obviously an oversimplification, and is

presented only to demonstrate the predictive utility inherent

in even this very crude quantification effort. It is strange

that such a simple technique has not appeared in the literature.

Oombining the recognition of acclimation temperature

influences and the previously known thermal tolerance variations

at various stages of life resulted in the development of a

more elaborate data presentation scheme, see figure 2.3-5.

The outside polygon represents the temperatures at which

the average fish will die (LD50); the inner polygon representing

the temperature limitations for a thriving, reproducing community.

This polygon of thermal tolerance can vary considerably

from one species to another, see figure 2.3-6. One might

despair at being forced to maintain an aquasystem within the

74. The symbol represents the convolution operator.

75. The mortality rate of organisms at temperatures around
the lethal dose for 50%, LD 0, falls nicely in a normal
distribution, see reference; 94) and (5 ), with a standard
deviation of approximately 10 C (1.50 F), see reference(20),
page 350.
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Figure 2.3-5 Representation of the effects of acclimation
temperature on 1) lethal temperature, 2) tolerable temperatures,
and 3) productive temperatures for young sockeye salmon76
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Figure 2.3-6 Temperature tolerances for a temperate species
(Menidia) and an Antarctic species (Trematomus) 
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small, tight range tolerable to the two species of figure

2.3-6. Fortunately, these two particular species are not

found in the same habitat, in fact they are found at quite

different latitudes. Fortunately, species found in the

same general area can be expected to have generally the

same temperature tolerances, see figure 2.3-7.

.v

0

E
a
q-

a-JM
.1

10 20 30 40 50 60 70 80

Degrees of latitude (N or S)

Figure 2.3-7 For natural acclimation temperatures, upper
and lower temperature requirements gr embryonic and adult
species found in various latitudes.

76. Prom reference (96), which also documents one of the few
studies on predators' efficiency at hunting in heated water.

77. rom ref. (97) originally from references (98) and (99).

78. This graph taken from reference (97) with the original
data appearing in a number of other sources.



The introduction of time varying ambient river temperatures,

i.e. acclimation temperatures, as well as life stage variations,

results in the seasonal implications of the above model,

see figure 2.3-6.

The most serious drawback to the use of these predictive

models is the fact that thermal death is a function not only

of temperature but of duration of exposure as well. An

example of the lethal temperature medians for 100 minute

and 1000 minute exposures at one particular time of the year

for the various fish species is displayed in figure 2.3-9

So one can conceive of a plot like that of figure 2.3-5

but which also includes a time axis. Such a plot has been

computed and is given in figure 2.3-10, where time is the

amount of time taken to make the change in temperature for

these particular bluegills (from reference 100). The

upper slice, or regression plane, demonstrates the maximum

exposure rates before thermal deaths, the lower slice

treating the problem of cold shock, with the following

equations:79

(ult) = 20.9 + 0.62(at) + 0.46(ttti)' -23-2
(lit) = -6.93 +0.58(at) - .016(tttd) 23-3

where (ult) = upper lethal

temperature, (lit) = lower lethal temperature, (at) =

acclimatization temperature, (ttti) and (tttd) are the total

times for accomplishment of temperature increase and decrease.

79. Equations taken from reference (100), page 1288.

I 
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Figure 2.3-10 Three dimensional representation of the rail
of temperature tolerance changes with time for bluegillso=

Since the thermal deaths, rather than the cold shocks,

have been the more commonly recognized fish kill problem

more refined data has been tabulated for the prediction

of this problem. Singling out the thermal death aspect,

there is a slightly more sophisticated model which does

not address the question of how long a time span must a

temperature change be made over in order to be survivable'

(which is the problem contended with in figure 2.3-10)

but it addresses the question of 'how long can a particular

temperature be survived?' This more exact, but slightly

more complicated, mechanism follows closely the dose

methodologies of pharmacy and radiology and it appears to

be quite accurate for prediction of 'heat' doses tolerable

before there are any thermal mortalities.

82. See reference (100) for the original presentation.
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The type of ..mechanism,presented in figure 2.3-11 uses

this accurate8 3 dose methodology, and is much better suited

than figure 2.3-10 for predicting thermal mortalities for

fish either entrained in the cooling system, or near outflows.
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Figure 2.3-11 Lethal temperatures for 50% of a species acclimged
to various temperatures,as a function of duration of exposure

In mathematical form,for use in predicting duration-temperature

mortalities these curves may be expressed as

TLD50 = .22 TA - .72 ln t + 25.4 23-4

for 26.6 > TA > 5

where TD 50 is the lethal temperature in 00 for 50% of a

population acclimated at TA °C nd exposed for t minutes.

A TD 50 does not exist if the value computed is less than 26.6 C.

Equation 23-4 represents a very sophisticated and accurate

83. See reference (94).

84. Adapted from reference(i02), for a more complete description
see reference (24), page 605.
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model for the prediction of direct lethal temperature doses.
However, direct mortalities are not the only effect of thermal
shocks to fish. There is an indirect mortality evident due
to the increased susceptibility to predation in sublethally

shocked fish.85 The relative vulnerability of these fish to

predation has been demonstrated to be significant at doses

10% to 20% below those required for visible signs of loss of

equilibrium, which were in turn 25% to 50% below lethal doses,

__ ~, ..... ~ e .A _
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K 28
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26

1 10 100

TIME IMIN)

Pigure 2.3-12 Doses associated with three types of effects
resulting frome thermal shock on 150 0 acclimated Juvenile
rainbow troutU6

Linear semilog models for predicting thermal deaths and

equilibrium losses are unfortunately limited in their accuracy

to small temperature bands. A model which has proven to be

much more accurate, and which is the best presently available

85. See reference(103).

86. Excerpt from reference (9, page 6079 where d is the ratio
of shocked fish eaten to control fishes eaten.
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is a fitting of the information with cubic curves, see

figure 2.3-13.
10 000

.-

z 1000
-C
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"o
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. . .~

25 26 27 28 29 30 - 31 32

TEMPERATURE (C)

Figure 2.3-13 Cubic models for fish equilibrium loss and
lethal doses including variance gasures (95% confidence
is about two standard deviations) 

This type of information, though, must receive careful

treatment before it can be used in a quantification of impact.

It is possible that increased susceptibility to predation

may not reduce a species' population, if the numbers consumed

by the predators remains constant. Even if greater consumption

results, it is therefore probable that the predator species

will increase in size and/or in number, and it is in fact

these carnivores which are usually the most desirable of all

the species.88

87. Excerpt from reference (9), page 604. Generally, a
decrease in temperature of 20 0 below the lethal temperature
results in no losses, either from predation, or from fluke,
highly sensitive individuals, substantiated in (104) to (108).

88. An example of a temperature change significantly affecting
predator-prey interactions (coho-sockeye) is in ref. (109).
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Unfortunately, for these best available models little

data is available. Some transformation of the less sophisti-

cated data89 is possible, but a thorough understanding of

the model from which this data has come is necessary so

as to recognize the limits of that data's meaningfulness.

There are, of course, other so-called 'indirect'

lethalities caused by thermal loadings, these occuring via

the mechanisms of parasitic diseases and food stock limit-

ations, and these will be discussed in sections 3.1 and

2.5, respectively. However, leaving behind for the moment

any lethal effects, temperature also effects the general

activity of fish, see figure 2.3-14.

t

I- C-

TEMPERATURE -

Figure 2.3-14 General effect of temperature upon the
activity of fish 9

89. Tables of some of this 'less sophisticated' data, including
maximum temperatures, minimum temperatures, optimum temp.
ranges, maximum temperature changes, all for various life
stages and acclimation temperatures can be found in
references (13), (47), (73), (110), (97) and (107).

90. From reference (111), page 206.



-59-

The consequences of the temperature versus activity

plot presented in figure 2.3-14 are quite apparent.

There is a point on this curve which then represents

maximum activity, but to translate this into more tangible

terms the graph of figure 2.3-14 must be broken down into

the very specific types of activity which summed together

to make this composite index. Such a breakdown is represented

in figure 2.3-15.
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Figure 2.3-15 Relative performances of various sockeye
salmon activities at different acclimation temperatures91

The "optimum" temperature is then found by examining the

various factors and their importance. The coincidence of

several maximum performances at a single "optimum" temperature

is testimony to the evolutionary fine tuning of the species

to its environment.

These growth rate measures cannot really be made

91. Prom reference (112).
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independent of knowledge of food availability. In fact,

a graph of growth rate versus temperature at different

food availability levels, as shown in figure 2.3-16,

can be made up from input-output type of experiments

without requiring information on swimming speed, digestion

rate, etc. These plots are ideal for predicting productivity.

*

f

i

4I
b.

TEMPERATURE - C

Figure 2.3-16 Growth rates of migrating anadromous fish
as a function of temperature and food availability9 3

93. From reference (113), with subsequent efforts to take
advantage of controlling the environment to realize optimal
growth rates being presented in reference (114).
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Treated thus far has been the effect of temperature

on fish lives and on fish productivity, however, there are

many other temperature related fish problems. Many of these

are peculiar to particular sites, and will not be discussed

here,94 but some are quite general and will be mentioned

briefly, such as temperature-salinity95 effects on fishes.

94. For example, overfishing due to attraction of game
fish and game fishermen to heated effluents, small mixing
fields that nevertheless block the upstream migration of
anadromous fish (see ref. (115)), higher metabolic rates
and subsequent fuel depletion due to higher temperatures on
upstream migrations during fastings (see reference (116)).

95. Salinity is measured in o/oo, i.e. parts per thousand,
and generally varies from 320/o near the Arctic to 380/00o
near the rain forests at the equator (as would be expected
considering the amount of water that dissolves minerals and
then runs off the land), see reference (117), page 31.
There are many exceptions to this range, in particular,
near icebergs and near rivers ocean salinities may drop
below 20o/oo and in semi-trapped secondary seas, such as the
Red Sea, salinities can be as high as 41o0/oo, see reference
(118), page 688. Most marine species are distributed
naturally in the more typical ranges of salinity, as is
shown in the accompanying plot from reference (119), page 824.
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The concern over temperature-salinity effects upon fish

functions stems not only from the temperature side of the

problem, but also from the increased salinity which surrounds

ocean sited power plants. With wet cooling towers, or

cooling ponds at ocean sites, a great deal of pure water

is lost to the air via evaporation, increasing the salt

content of the surrounding waters. Whereas waste heat has

many, see figure 2.1-6, mechanisms for going to the atmosphere

and dispersing in water, 'waste salt' obviously cannot

disperse into the air and thus only the dilution mechanism

can keep the concentration down. After years of operation

gradients of salinity will build up around the outlet, and

these increases in salinity can have profound impacts upon

the local aquatic life, see e.g. figure 2.3-17.

U

11W

I-

SALINITY (/oo)

Figure 2.3-17 Percentage hatching of the eggs of a particular
species 0nglish sole) as a function of temperature and
salinity

96. From reference (120), originally based on data presented
in reference (121).
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2.4 Shellfish PoDulations within Thermal Plumes

Shellfish is a term used to describe the various aquatic

species of the mollusca and arthropod invertebrates. These

include, among others, oysters, clams, mussels, scallops,

snails, and crustaceans such as shrimp, crabs, crawfish and

lobsters; a very desirable group both as food and as stabilizers

of aquasystems.

The magnitude of the effects of thermal effluents on

these shellfish populations is reduced due to the fact that

most of these organisms are benthic, i.e. live on or very

near the floor of the waterbody, whereas the warmer water

being less dense rises to the surface of the waterbody.

This condition is in many instances97 unfortunate insofar as

most shellfish, particularly ocean dwellers, thrive and are

more productive in warmer habitats, where food availability

is not the limiting factor.

Oonsider for example the growth of a clam species in

figure 2.4-1. Those points well within the bell-shaped

curve are restricted by limiting factors other than temperature,

such as food. The average yearly temperatures at these

American and European sites is well below the 210°C (70°F)

97. A incident of destructive effects does exist and is well
known. This is the case of the Mya genus of clams in the
Chesapeake Bay. Extensive mortalities of this soft shelled
mollusk have been attributed to excess heat ever since 1965.
This condition might almost have been expected insofar as the
Mya is a strictly northern genus and was at the very limits
of its heat tolerance as far south as it was in the Chesapeake
estuarine system (see reference (3), page 141 or reference (62)
page 351).
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Figure 2.4-1 Relationship between temperature and rate
of shell growth of a species of clam at two sites98

for optimum growth of these clams, and thus, thermal

effluents could be quite beneficial to the extent that

they were able to raise these.bottom temperatures.

The heating of ocean shorelines is still significant

enough to have prompted plans, and in some cases operations

already exist, for oyster beds (in New York, Delaware and

on the Gulf Ooast99 ), and shrimp (in Texas) and lobster

production (in Maine).

98. Prom reference (107), originally in reference (122).
99. See reference (86), page 6.
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The major obstacles in these operations appear to be

water quality, 00 i.e. control of the use of anti-foulants,

anti-corrosives and the presence of dissolved copper;

increasing the amount of available food; 10 1 the unpredict-

ability of species' dependence upon warmth from effluents

(and their subsequent possible losses at shutdowns102 ); and

the possibility of unusually great sensitivity to temperature

at critical times of the year. One example of this critical

time is breeding time for which there is evidence of very

specific temperature requirements for the spawning of

olluscs,103 oysters,104 and crab.10 5 Obviously, temperature

increases at this time could be avoided by scheduling

power plant maintenance then. This is another example

of the need for the use of plant operation criteria which

include awareness of specific ecosystem problems.

Because many valuable shellfish live exclusively

in salt water, the problem of increased salinity of waste

water must be considered in combination with the temperature

increases. These temperature-salinity requirements can be

100. Refer to source (123).

101. See reference (124).

102. One such loss of fish due to cold shock is documented
in reference (125) and others possibly due to shutdown are
described in references (126) and (127).

103. See reference (128).

104. Refer to reference (129).

105. Described in reference (130).
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Figure 2.4-3 Percentage mortalities of megalops larvae of
blue crabs under different temperature-salinity conditions
(from reference (119), originally from reference (131)).
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quite different for different stages of development and

different species. Figure 2.4-2 represents the length of

time for larval development of a species of crab, while

figure 2.4-3 shows the mortality rates of one larval stage

of a different crab species. Here again the best temperature

for development of these embryonic shellfish is well above

ambient temperatures (3000 is nearly 90°F which is well above

usual ocean temperatures).

A better known, and more valuable (currently $2.85/lb.)

shellfish, the American lobster has been much studied

under many different water conditions. One study, figure

2.4-4, shows an incredible tolerance to wide ranges of

.4I

28
24
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12

8
4

Figure 2.4-4 Boundaries of lethal condit gos of temperature,
salinity and dissolved oxygen for lobster

106. From reference (120), originally in reference (132).
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temperature, salinity and dissolved oxygen.107 Of course,

there can be a significant difference between what is

tolerable to a species and what is within limits of

productivity. Figure 2.4-5 represents the temperature

tolerance in terms of acclimation temperatures, and also

,thereon superimposed shows the rate of activity of the

lobster measured in terms of its walking rate. For the
~ Ii I ' ! I 'I I I ' ' ' ' ! ! I 1III
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Figure 2.4-5 Thermal tolerances and walking rates of
the American lobster 1 0 8

107. Dissolved oxygen generally varies in ocean water
from about 4 to 6 ml/l, see reference (117), page 31.

108. From reference (120), based on reference (133).
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lobster this walking rate is an excellent overall measure

of activity. Because of the small,drifting material upon

which the lobster feeds, the amount of area it covers

is nearly proportional to the amount of food the lobster

intakes. Thus, the walking rate is a good indication

of growth rate. In addition, this walking rate is a

good measure of the 'catchability' of the lobster, 109

because it is proportional to the probability that they

will come across a lobster trap.

Beneficial aspects of thermal enrichment to shellfish

must of course, be included in the final assessment of the

desirability of operating procedures, as should any other

beneficial results from aquatic farming.

2.5 Disturbance of Food Chains

"The natural foods of a fish probably will not be
affected if the fish itself is not affected. This may
be a controversial point, but is a matter of deducing
that organisms that live together naturally have a
somewhat similar environment in their evolutionary
history and consequently have similar tolerances." 10

As a generalization this statement is apparently valid,1 11

however, there are numerous specific cases of food limitations

which show a careful examination of this problem is in fact needed.

109. See reference (133).

110. Excerpt from reference (134), page 12.

111. For a statement of opinion on the relative insensitivity
of invertebrates see reference (135), page 5.
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Food obviously means different things to different

species. To carnivores, or tertiary consumers, food means

secondary consumers. Secondary consumers use primary consumers

as-food and they in turn eat the primary producers, such

as algae. Generally, algae is a source of food for some

non-carnivorous fish, but the topic of algae growth will be

covered in section 2.6. Considered here will be the main

source of food for those non-carnivorous fisl2specifically

the invertebrate herbivore population or zooplankton.

-Although the availability of zooplanktonl13populations

seem to vary greatly with temperature and can be a major

factor in indirect thermal effects on desirable fish, relatively
few temperature studies have been performed on these species.

Fortunately, many of the observations made concerning fishes

seem to be, in essence, applicable to zooplankton populations.

There is apparently a mechanical destruction of many

zooplankton species entrained in cooling system waters

which makes collection and counting of outflow carcasses

unreconcilable with the inflow-outflow statistics. A means

of circumventing this difficulty for the observation of

temperature effects on these herbivore invertebrates has

been the collection of population samples above and below

power plants on rivers, see figure 2.5-1. High reproduction

.112. Only food for non-carnivorous fish is considered here,
for carnivores eat other fish and their populations and
problems have already been treated.

113. Meroplankton can be treated within this zooplankton grouping.
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Figure 2.5-1 Zooplank M and water temperatures around a
power plant on a river

rates in the warmed, mixed river accounts for the increases

in populations ust upstream and downstream from the heated

outflow. The deficiencies in the immediate area of the

outfall must thus be balanced against the increased productivity

in the neighborhood of the facility.

These "one-shot" studies are not as informative as research

efforts which address themselves to the seasonal variation

characteristics inherent in this problem, see figure 2.5-2.

Thus, if thermal tolerances are the limiting factor for a

particular zooplankton species of major value in the biocoenosis,

114. See reference (136).
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Figure 2.5-2 Annual cyclic variations in zooplankton and

phytoplankton populations 15

that is, the interlocked community of organisms, the seasonal

population curves and temperature resistance ranges can be

used to develop a predictive tool.

It is possible, although apparently unlikely, that

primary food availability could be a limiting factor to

important species of zooplankton. If this is the case these

populations can be predicted using measures of primary food

availability and grazing rates of zooplankton, see figure 2.5-3.

In the vicinity of the heat source there are possible

ramifications associated with the accumulation of algal

forms, particularly those which are normally grazed upon

by some of these zooplankton herbivores. The studies

of this phenomenons and the availability of primary food)

are presented in the following section.

115. Excerpt from reference (137).
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2.6 Alsal Successions

The importance of algae blooms extends beyond their

effect as a possible limiting factor in the food-consumer

homeostasis. In the presence of the proper nutrients and

within specific temperature bands, algal communities can

116.Prom reference(138), page 13.
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become so overabundant as to form large mats and putrefy

the water. 11 7 These algae blooms are predictablell 8from inform-

ation on light availability, water quality, turbidity and
temperatures!19As is shown in figure 2.5-2 the accumulation

of phytoplankton is a very seasonal problem. Great populations

are most likely to build up in the spring before the herbivore

-populations arise to devour the enormous supply.. Thus,

although temperature is probably most important in the

prediction of algae populations, there are a number of

other important factors. Some of the seasonal factors,

such as the herbivore populations, can be seen to be at

work in the graph of figure 2.6-1.

In addition to the complexity of influences,

prediction of algal populations can be further complicated

by the great variety of species. Even at a single

location 1 20 the variety of algae with different food

value, composition, characteristics, eutrophication potential,

etc., may be substantial, as is demonstrated in the temperature

performances of various species in figure 2.6-2.

117. See reference (88) for some nutrient requirements of
algae.

118. A cyclomorphic phenomenon exists for some phytoplankton
but it is rare and to a certain extent predictable.

119. An extensive treatment of the correlation of algae
and light is contained in reference (139) or (140).

120. Some algae temperature acclimations are described in (141).

121. From reference (140), originally in (142).

122. rom reference (38).
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11 12 1 2 3 4 5 6 7 8 9 10 11

Month

Figure 2.6-1 Seasonal variations in populations
brown and green algae in relation to temperature
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Figure 2.6-2 Percent volume of various algae populations
versus temperature 122
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One might despair at the tremendous variety of algal species,

however, for the sake of a predictive model algae can be

grouped neatly into three catagories; diatoms, green and

blue-green. Once a sample of the water quality12 3and available

populations have been analyzed, a much simplified diagram

of population shifts may be determinable, see figure 2.6-3.
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Figure 2.6- 3 Temperature effects on changes in algal groups1 24

And fortunately a quite accurate generalization can be made

concerning the desirability of the different algal groups.

As food sources the diatoms, and to a lesser extent the green

123. Water quality determines to a great extent whether or not
certain algal forms will accumulate. Some studies have shown
that algae populations actually decrease in certain waters as
temperature rises, see reference (143). Heated discharges have
even been considered as a means of checking overgrowths of algal
flora at some sites.

124. From reference (1-44).
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algaes, are almostl25 universally more suitable as food for

higher organisms. On the other hand, blue-green algae are

usually poor food and can sometimes even be toxic to herbivores26

To see which group of algae is responsible for the

possible buildup of stifling mats is also an important consideration.

This huge accumulation of algae, and thus putridity, is a

natural end state in the eutrophication, or maturing process,

of water bodies. For aesthetic, recreational and commercial

reasons, however, man has intervened in this natural process

to make dying water bodies usable.127 The acceleration of

this eutrophication process is thus deemed undesirable. The

algal forms which contribute to this eutrophication are those

which consume nitrogen and fix them into nutrients. These

nitrogen fixing, nutrient producing algae are generall128

easily identifiable by heterocysts, which look like large holes,

in their structures. The maJoz329 families of these nutrient

125. A particular species which is an exception to this
principle is treated in reference (145).

126. See reference 146).

127. For example, the blue harbor of Green Bay, Wisconsin was
given that name by the first settlers because they found the
bay clogged with green algae. A nearby clear lake at one time
was badly stagnant and still bares the Indian name for "stinking
waters.'

128. Minor exceptions are reported in references(147) and (148).

129. Three nitrogen fixing microorganisms have been discovered,
reference(149) as well as one nitrogen fixing non-planktonic
organism, reference(1S50). So nutrient buildup can not always
be attributed to algal populations, even if it is known to
be produced by some organism with-. the ecosystem.
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producers are two of the several orders of the blue-green

algae.

Any study of the potential for significant putrification

from algal groups can and must be quantitative, and should

be coordinated with the collection of data on background

sources of nutrients, such as fertilizer runoff.

2.7 anlo.r Psh K9ll Incdents

Having covered the thermobiology of the major components

of the predator-food chain, i.e. fish, shellfish, zooplankton

and algal groups, it is now necessary to consider what minor

organisms may have a significant influence on the problem,

minor being worms and insects (outside of their zooplankton

type stage) and microorganisms. Rather than go into each of

these groups in laborious detail, a survey will be presented

of fish kill incidents and in this way it can be seen if

any of these minor groups is in fact causing a significant

problem.

A detailed study of fish kill incidents is also worthwhile

from the standpoint of recognizing and,if possible,avoiding

the substantial intangible economic effects of such occurrences.

For example, fish kills were in part responsible for tipping to

the unlikely side the "$36,000 adventive trout fishing" versus

"$6,500,000 cooling tower" controversy on the Connecticut

River.13 0

130. See reference (86), page 4.
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Because there is so much publicity given to fish

kills, one might think that they are a common occurrence,

especially those caused by power plants. And when graphs

of losses are presented they are usually in an alarming

looking, cumulative plot, such as is shown in figure 2.7-1.

Actually, however, there were 22.8 million fish killed in

1970, and of these only .058 million were estimated to be

caused by power plants.13'
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Figure 2.7-1 Cumulative number of estimated fish killed,
beginning in 1960 2
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131. This and other data on this subject in reference (151).

132. From reference (151), page 100.



2.7.1 Intake Imninement

The three critical components of environmental concern

at the intake of the power plant are the intake configuration

and positioning, the intake screening mechanism and the

preparatory treatment given the intaken water.

Water treatment depends directly upon its intended use.13 3

Boiler water makeup undergoes the most rigorous treatment,

including ion exchange procedures. Not so rigorous, but still

involving the loss of nearly all entrained organisms, is the

preparation of water for cooling towers. Once-through cooling

water requires ust a cursory settling time and the addition

of some anti-fouling and anti-corrosion chemicals. Ecological

losses incurred during these procedures are readily quantifiable.

Intakes may be single-leveled,or fixed or variable

multi-leveled and depending upon their positioning will have

a profound effect on the types and quantities of entrained

134 
organisms1. This (as well as the intake screen) is an

engineering problem which should be optimized at the construction

planning stage.

Some poor intake screen designs are responsible for

major fish kill problems. Because of the colonialistic

characteristics of fish they are likely to be lost in great

numbers once they start becoming impinged upon intake screens.

133. Descriptions of different preparatory procedures for
intake water is contained in reference (88).

134. Depth has also been shown to slightly affect the tolerance
of a fish with respect to thermal stress, see reference (i52),
page 26, extensive pressure studies are contained in (153)&(154).



The Indian Point reactors have apparently been plagued by

this type of fish kill, and the solution seems to be an

engineering problem. Travelling screen designs have been

used at some facilities to solve this problem, see figure 2.7.1.

Figure 2.7.1 Travelling screen for the prevention of
impingement of fish at intakes13 5

Obviously, the size of an intake screen of this type must

be calculated to allow slow enough current through it so

that injury is not prominent before fish are deposited back

into the stream.

Bubble screens and other devices have been tested and it

appears that fish kills due to impingement will in the future

not dictate significant environmental impacts upon various

operating schemes, although if this is an existing problem

it can be easily considered.

135.From reference(155), page 234.

- - -_
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2.7.2 Entrainment in Cooling Sstems
Direct thermal deaths,or indirect deaths caused by food

chain disruptions,are not likely to be of the magnitude of

major fish kills. This in no way is meant to imply that these

should not be accounted, and the methods of the earlier

sections of this chapter deal with the formulation of these

"probability of affected population" convolved with "probability

of impact" methods. This technique is equally appropriately

used in the prediction and operation of the system to avoid

major biological incidents resultant from entrainment damage.

2.7.3 Discharge Canal Traps

Perhaps the best understood and most toughly documented

fish kill incidents result from the unfortunate designs of

discharge canals.

Figure 2.1-6 has shown how discharge canals can add

considerably to duration of thermal stress upon entrained
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Figure 2.7.3-1 Comparison of temperature versus travel time
along the centerline o the effluent plumes for surface and
submerged diachargesl3

136. Excerpt from reference (3), page 112.
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organisms. Also the use of submerged diffusers, generally

being farther from power plants, can result in similar extended

excursions in hot water, as is shown in figure 2.7.3-1.

These are not, however, the causes of major kills,

which are instead due to faulty discharge designs that create

traps, see figure 2.7.3-2. Attracted by the warmth and

Figure 2.7.3-2 Type of discharge canal trap that causes
major fish kills

abundance of thriving food the fish swim up the discharge

canals when the power plants are shut off. Upon later startup

the canal becomes lethally hot and the pond soon also is

intolerable.

Despite the apparent predictability of these poor designs,

such as at a Pennsylvania power plant which used an old river

bed as an extension to the middle of its discharge canal,137

these problems are fairly common causes of major fish kills.

Other incidents have occurred on Cape Cod Canal in 1968,

Hudson River, 38 and in Great Britian.3 9

137. See reference(156) for more details.

138. Refer to reference (157).

139. See reference (158).
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Outflow screens, screened discharge canal walls at

ponds, or outfalls, where possible, are some potential solutions

for this discharge trap situation which is primarily an

engineering problem.

2.7.4 Thermotoxic S vnergisms

In mixing zones and nearby thermally loaded waters

fish kills due to thermal stress are rare occurrences because

being motile organisms fish tend to seek out food sources

in thermally pleasant surroundings. Fish will not stay

unaware in thermally stressing situations, and when given

an entire range have been known to be particular in their

temperature choice to within 0.030 C.

Problems do arise, however, when there is no escape from

the heat, and this is primarily an engineering problem with

respect to the size or flow of the water body adjacent to

a generating facility. Sessile, i.e. relatively stationary,

organisms are also not capable of escape, but since these

animals are benthic (i.e. on the floor) they are subjected to

very little heat, and thus massive kills are rare. However,

any organism very near to their limits of thermal tolerance,

especially noticeable from geographic distribution studies,

which is in the mixing area or nearby will very likely by lost.

This is a problem which can and should be included in the

plant licensing bioassay, and must be considered a fixed

ecological loss associated with that particular site selection.

To conclude this survey of fish kills, there is one last
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type of extreme biological incident which does occur in and

adjacent to the mixing zones. This is a phenomon which will

here be called the thermotoxic synergism: the possibility of

a lethal situation resulting from combined non-lethal thermal

140
stresses and non-lethal chemical or microorganism concentrations.

There are several types of these thermotoxic synergisms.

Thermal stress and chemical concentrations may be directly

lethal to an organism, or may cause the organism to make

unsatisfiable food or nutrient demands of his environment,

thus causing indirect mortalities. Also, these synergisms

may be in the form of increased susceptibility of an organism

to bacterial or virulent concentrations when under thermal

stress, or they could involve the accelerated growth of

pathogens at higher temperatures, see figure 2.7.4.
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Figure 2.7.4 Temperature influence on marine bacteria growthl4 1

140. For example, a 10°C temperature incrSase doubles the
toxic effect of potassium cyanide and an 8 C temperature
increase triples the toxic effect of O-xylene, see further
examples in reference (159).

141. Originally in reference 160), after data in reference
(161).
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And finally, chemical and microorganism combinations

along with sublethal thermal stress may cause mortalities.142

The thermotoxic problem is not as complicated as it

might at first appear to be; some simplifications are possible.

Instances of research143 indicating insignificant differences

in susceptibility, of fish in and out of thermal stress, to

certain diseases, indicates that there may also be only a few

troublesome combinations among the other types of thermotoxic

combinations. Some of the troublesome bacterial-temperature

combinations have already been listed1. 4 Further research

has shown that the thermotoxic problem may exist only at

certain predictable times of the year.4 5

Prevention of mortalities caused by thermotoxic synergisms

would require several steps. First, the very thorough water

quality test used for plant licensing procedures must be

142. Microbial compositions of an ecosystem also change with
temperature, and some of this little researched area is
covered in reference (162).

143. See references (163), (164), (165), and (9) page 609.
Some cases have been demonstrated, see e.g. reference (166),
that show disease control mechanisms are more active at higher
temperatures, but the reverse a ppears to be generally the case,
see e.g. references (167), (168), (169) page 48. Another case
of increased virulence of fish pathogens at higher temperatures
is described in reference (170).

144. See ref. (171) page 152, also refs. (172) to (176).
Saprophytic bacteria, living on preformed organic matter,
refer 22 to 2800, while parasitic prefer about 370C,
(reference (47), page 47). Also to be considered is the
desirability of different bacteria, which can range from
deadly pathogenics to stream purifying or organically necessary.

145. Ref. (177) indicates the seasonal variations of antibody
production and immune responses, ref. (178) discusses seasonal
variation in bacterial growth which has more or less an
independence to temperature.
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studied for thermotoxic danger levels. Second, spot checks

of water quality (discussed in section 3.1) must be collected

periodically (preferably both upstream and downstream) to

help anticipate problems. Finally, either a governmental

agency, or the utility, should collect information on inadvertant

spillages from all the industries on the waterbody, for use

in determining emergency situations. If these steps are carried

out, production scheduling and generation unit commitment

can be coordinated with the quantified predictions of mortalities

due to thermotoxic synergisms-, and major fish kills averted

(equation 31-1 proposes a method for such a quantification)

An example of an as yet unsolved fish kill incident is

presented on the following page1.46 Although this incident

would seem to be clearly a case of thermotoxic mortalities,

apparently no effort has been made to ascribe the cause to the

combination of some of the stresses. One could speculate

that the three steps previously mentioned might have prevented

this episode, or at the very least the nuclear plant could

have been spared the incident. if it had not operated during

that week of incredibly poor water quality.

The operation of the power plant itself may result in

some loading of the water bodies with chemicals (as pointed out

in the following article). Apparently, on Long Island, chemicals

used during plant maintenance are discharged directly to the

waterbody and when plants begin operating some large fish

146. Excerpt from reference (179), page 84.
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Conn. N-plant fish kill lil ked
By John Peterson .
Globe Correspondent

WATERFORD, Coi
Water discharge fro
nuclear reactor has
labeled as the tent
cause for a fish kil
this southeastern
necticut community.
there is debate about
possible causes.

Scientists working
Northeast Utilities v
operates t h e Mill
Point nuclear power
plex where thousanc
fish began dying a
ago, attributed the mc
ity to a shock syndror

They said gradual
perature changes do
affect most fish but
quick 23-degree diff,
of water discharge
the plant's steam
densers caused stress
ditions for the men?
species which succu
throughout the week.

Estimates of the 
toll by the Connecticu
partment of Environm
Protection (DTP) stc
after the second day c
kill with at least 1
to 15,000, affecting onl
menhaden species
fish still dying at a
rate, spokesmen for
agency said, "in exce
10,000."

Northeast officials
late this week they

kills are reported

working on the design of
a large netlike device
which will keep fish out of

an.- the region.
been a The kill was the second
ative for the species in south-

eastern Connecticut in a
C on- month. Last fall officialsCon-

But estimated millions died in
the Thames River in near-
by New London. State offi-

for cials said the apparent
rh.ich cause was a lack of oxygen,

stone but a positive conclusion
corn- could only be drawn after
is, of years of study.

week Samples of the fish taken
)rtal- by Northeast were ana-
ne lyzed by Dr. Richard

te Wike of the University of
Rhode Island.

not Acording to Wilke, the
ethe quick rise in temperature

erence near the plant was too

from much too soon. Massive
con- hemorhage was found in
con- the menhaden gills, liver,

laden and body cavities of the
mbed analyzed samples.

Wilke also said he found
death evidence of bacteria iso-
t De- lated in the kidney and
rental liver tissue which might
)pped produce a poisonous toxin,
,f the but those tests would take
0,000 weeks to complete.
y the Theodore B. Bampton,
With chief of the DEP's Preser-
rapid vation and Conservation

the Division, said preliminary
tss of findings by his section con-

cur with Wilke's.
said Local ecologists and

were marine biologists who took

(although these have

water samples at the onset
of the kill, however, pri-
vately refute the tenta-
tive cause.

One of theme, Dr. Rob-
ert DeSanto, a zoology
profesor at Connecticut
College and president of
the Thames Science Cen-
ter, said he flatly dis-
agrees.

DeSanto and some of his
students said they found
acetone, or some closely
related substance in water
samples they took Mon-
day.

Before and after the an-
nouncement of the Rhode
Island tests, DeSanto said
he believed the fish died
of a chemical pollutant.

The stage of construc-
tion on a second atomic
plant adjacent to the exist-
ing unit suggests the use
of that chemical which
DeSanto said was used
mostly as a cleansing agent.

The area of the kill is
slightly more than a mile
away from the scene of a
assive oil spill Mar. 21.

In that incident more
than 80,000 gallons of
highly toxic home fuel oil
were spewed throughout
the region, claiming many
lower forms of marine life.

Scientists are still asses-
sing its damage. However,
at this point, state officials
do not think the spill and
the fish kill are linked.

apparently not been
documented).

The constant use of anti-fouling chemicals such as
chlorine may effect some mortalities due to thermotoxic
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aynergisms. There are experiments being conducted to test

the relative effectiveness of, and impact associated with,

replacing these chemicals with periodic backwashes of

hQtter (1000 additional) water. Constant use of corrosion

inhibitors, such as hexavalent chromium, is also known

to be lethal in combination with heat.147 These constant

small toxin concentrations in effluents undoubtedly affect,

some fish, but probably are not responsible for any major

fish kills.

147. River water mixed with 4% of the normally heated,
corrosion inhibited effluent right from the outlet
resulted in some mortalities, see reference (180).
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3. Oeratina Considerations

The essential and obvious environmental consequences

of operating generators must be the thermal related mortalities.

Elements for the prediction of these consequences are developed

in chapter 2 and quantified in chapter 4. The periodic

sampling of water quality required for the modelling of these

inputs, as well as the operating consequences on the environment

from other than thermal problems are stressed in this chapter.

3.1 Water Quality and Radiation

Sampling of water quality is an essential input to even

the crudest modelling of aquatic ecological impacts.

Pirst, nutrient concentrations and availability of

foods must be quantified. These will then enable predictions

of eutrophication, algae, herbivore and carnivore population

growths, and desirability of various temperature levels for

optimal beneficial productivity in the aquasphere. There

are obvious chemical tests for the determination of nutrient

levels, as well as some simpler transparency148 and color

tests which can be automated. These simple color and clarity

tests can be useful, but chemical tests, especially for the

nitrogens: organic, ammonia, nitrate, nitrite, and phosphoruses:

total and soluble, would be much better measures of the

nutrient level.149

A controversial water quality topic is whether or not

148. See for example refereice (181).

149. See for this opinion reference (182).
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measures of dissolved oxygen, DO, and biochemical oxygen

demands, BOD, are useful. The problem of thermal pollution

is often presented as the following argument:

as temperature increases the ability of water to hold
oxygen is decreased, BUT as temperature increases the
activity of aquatic organisms increases and thus their
needed for dissolved oxygen increases.

Elaborate methods for computing DO and BOD levels are available150

including some partial differential equation models for

optimizing DO levels around power plants.1 51 The need for

DO is definitely a real need in fish,52 but the consideration

of this parameter in the case of thermal pollution is not

necessary1,5 3 except in waterbodies with very extremely

deficient dissolved oxygen levels (for example cooling ponds,

or areas full of sludge). This should be a consideration of

the siting of a facility, and probably need never be considered

150. See, e.g. for energy balance techniques reference (183),
stochastic filtering methods applied (184), BOD curves (185),
state estimation (186), forecasting techniques (187), simulations
(188) and DO strategies in the presence of other pollutants (189).

151. Contained in reference (190). 

152. See for example,reference (191) ~ b

153. The argument follows the course ,
that within the temperature range of °
interest DO concentration changes
little, also, poikilotherms have w
evolved a metabolically regulated
system which demands almost identical
quantities of DO within its temper- TEMPERATURE
ature range of existence, see refer- Figure 3.1-1 Metabolic rates
ence (192) and refer to the curves at various temperatures for
of metabolic rates in the adjacent polar (a) and tropic (b)
Figure 3.1-1. animals (from reference 192).



further.
At sites where dissolved oxygen should be considered

arethereja complexity of factors which must then be examined.

Obviously, the cooling water during its turbulent mixing

and air entrapping ourney will add oxygen to the water,154

and this can make a particularly important difference if

the intake structure is arranged to take in the cold,

oxygen-short, bottom water. An addition of dissolved

oxygen will also occur if a warming effluent reduces the

ice cover of a waterbody. Increased levels of dissolved

oxygen are not always beneficial, for example, if the

appropriate nutrients and algae are present, dissolved

oxygen can lead to speeded up eutrophication. 1 55

A third water quality consideration requires that
cultures be taken to test for existence of certain infectious

microorganisms, including, possiblyj coliform bacteria

(which in itself is not harmful, but is an indicator of

the presence of very harmful pathogens).

Other variables of interest are sediment rates, and

concentrations of suspended and dissolved solids,1 56

alkalinities, chlorides and mineral substances. Increases

in temperature can beneficially effect the cleaning of

muddy rivers,1 57 because sediment rates, or settling

154. See reference (11), page IX-24.

155. See reference (193).

156. Copper losses from corrosion of heat exchange surfaces have
had a significant impact on nearby shellfish, see ref. (194).

157. See page 14 of reference (47).
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velocities, are inversely proportional to the water viscosity,

and water density. And, although density changes very

little with temperature (about 1% for 1000°F), the viscosity

decreases about 1% for every 1°F temperature increase.1 58

As for the problem of dissolved solids, obviously, hotter

water dissolves more minerals, and it evaporates faster,

further increasing mineral concentrations, such as salinity)

which can increase significantly the corrosion of bridges,

ships and other structures. However, not all thermal-

chemical combinations are bad, e.g. chlorine disinfects

much faster at higher temperatures,1 59 and thus an intensive

study of total chemical impact must include positive and

negative factors of effects near the plant, as well as

those displaced downstream.160

Water quality changes occurring because of damming

of water in a reservoir16 1 is still a little understood

problem, but there are indications1 62 that such impoundment

has significant effect on reducing turbidity, lowering

dissolved solid concentrations, and reducing seasonal

158. See reference (195).

159. See reference (195).

160. Downstream aggravations are unfortunately quite
typical, particularly because temperature naturally increases
downstream thus displacing some possible consequences.

161. A complex model of chemical transfers in an estuarine
benthal system is contained in reference (196).

162. See reference (197).
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temperature changes. 63

Some of the toxins which affect water quality are arsenicals,

alkylbenzene sulfonates, alkylate sulfonates, carbamate,

chlorinated hydrocarbons, fluorides, phenols, sulfides,

cyanides, ammonias, defoliants, detergents, algicides, fungicides,

herbicides, insecticides and pesticides. Lethal levels of.

these toxinJ 64 have been developed for fish (in general).

For example, consider the pesticides in Table 3.1-1

Organochloride pesticides
Aldrin 0.04 DDT 0.6
BHC 2.0 Dieldrin 0.3
Ohlordane 2.0 Endosulfan 0.2
Endrin 0.2 Methoxychlor4.0
Heptachlor 0.2 Perthane 3.0
Lindane 0.2 TDE 3.0

Toxaphene 3.0

Organophosphorous pesticides
Coumaphos 2.0 Naled 3.0
Dursban 3.0 Parathion 1 .0
Fenthion 0.03 Ronnel 5.0

Table 3.1-1 Example of 48 hour median lethal doses, LD
for fish, of some common pesticide toxins as measured
micrograms per literl

The synergistic effect4 6 f these toxins have long been

recognized, and the very conservative formula for the consideration

of these effects has been proposed:

163. Water quality changes in estuaries, in terms of salinity,
temperature, bio-chemical oxygen demand, and dissolved oxygen
is the topic of the estuarine modeling effort in ref. (198).

164. See reference (88), or for a more detailed analysis (199).

165. The heightened sensitivity of aquatic organisms to
toxins when temperatures increase, as well as the increases
in toxins caused by temperature increases are discussed
in reference (200).
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1 +2 + t 1 31-1

L1 L2 Ln Lt

where Ci is the measure of concentration
of toxic material and Li is the respective toxic limit, and
where there seems to be no reason why a similar term for

temperature could not be introduced, i.e. the dose t over the

limit Lt. Of course, ideally, rather than Just adding these

expected values, measures of variance should also be manipulated

(this then provides the precise probabilistic treatment if the

curves are Gaussian, i.e. normal, distributions).

It would be unreasonable to make frequent measurements

of all these suggested parameters. A number of these water

quality variables are monitored by governmental agencies,

and many of the rest can be measured once, i.e. before plant

construction, or perhaps annually. An information service

on emergency situations, e.g. inadvertent spillages upstream,

could provide the bulk of this data required for quantifying

thermotoxic environmental impacts due to plant operation.

A certain number of automatic monitoring devices are

available if it is felt they are required. These include

measures of magnetic flow, total oxygen demand, total organic

carbon, dissolved oxygen, oxidation reduction potential,

temperature, pH and conductivity. 66

The most complicated problem to be dealt with in water

quality concerns the study of barely detectable, harmful,

166. From reference (201), page 33.
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trace materials, of which some organisms are capable of

accumulating levels greatly in excess of their concentrations

in the environment. 16 7 Existing concentrations of such

metals as manganese, copper, nickel, zinc and lead evidently

are significantly reducing productivity of some ecosystems.16 8

Those and other metals such as mercury, cadmium and arsenic

have accumulated concentrations in some marine organisms 6 9

which have caused concern, and in some cases illnesses, to man

because of their use as foods.

Detrimental radiation effects of normal reactor

operation to surrounding aquatic life has not been observed,

even in highly polluting early reactor models.1 70 Even

though these organisms live directly in the water from

reactor effluents they are lower forms of life than man,

and thus are much less sensitive to radioactivity. 171 A

graph of the approximate tolerances of different animals

is presented 'on the following page in figure 3.1-2 And

there is considerable evidence to support the claim that

waterbound radioactive wastes from nuclear reactors will

not cause harmful problems to man.173 Background radiations

167. For example, reference (202) documents 90Sr in bones of
perch at concentrations up to 3,500 that of the radioactive
wastewater in which they lived.

168. See reference (203).
169. For some current data o these concentrations see ref.
(204), or ref. (205) for radioactive concentration factors.

170. Reference (3), page 185.
171. Radiosensitivity is apparently proportional to the
amount of DNA in the nucleus of the animals cells.

173. See for example reference (208) or reference (180).
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102 103 104 105 106

Roentgens
Figure 3.1-2 Relative radiation tol nce of different
aquatic organisms in relation to man',

in nature far exceed those of reactors under normal operating

conditions,174 and "in actuality, the reactor designs in

many cases are such that even in the event of loss of

coolant accidents, the dose to the surrounding population

would be no greater than those permitted during normal

operation." 17 5

The numerous pathways available for the transfer of

radiation to man via the aquasystem are shown on the following

page in figure 3.1-3. The problem of determining impact

to man is further complicated by the fact that the different

172. From reference (206) originally in reference (207).

174. See reference (3), page 181.

175. Excerpt from reference (3), page 213.
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Figure 3.1-3 Aq ic critical exposure pathways of radioactive
materials to man

radionuclides tend to follow different, but characteristic,
paths through the aquasphere. Some, e.g. the insolubles,

tend to dilute and disperse by the mechanisms of currents,

turbulence, isotope dilution and biological transport.

Other isotopes tend to be concentrated, either in the biota

or through various physical or chemical processes.177

Adding together the highest possible dosages to man from

all the possible pathways, and including also all airborne

pathways, results in numbers such as those given in figure

3.1-4 for a 210 megawatt boiling water reactor.17 8

In terms of possible genetic mutations due to public

exposure to radiation, it has been estimated that the per

capita dose from radiation for medical purposes (100 mrem/yr)

is ten thousand times that from nuclear facilities

176. Adapted from reference (3), page 180.

177. For example, adsorption, ion exchange, coprecipitation,
flocculation or sedimentatior.

178. Reference (3), page 197.
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Oritical
Organ Nuclides

Fraction
of Radiation

Dose Protection
mrem/yr Guidelines

External whole body

Thyroid

Bone

Gastro-intestinal
Internal whole body

gaseous fsionproducs
1311

89Sr,90Sr
58o,60Co,14 0Ba

134C, 13 7 CS,3 H

Figure 3.1-4 Estimated total dose rate to critical organs

(0.01 mrem/yr).179 These figures are

in that populations around facilities

to 1 mrem/yr - and people right next

to 10 mrem/yr. However, figure 3.1-5

Source of Radiation

slightly misleading

might receive closer

to reactors upwards

shows how insignificant

Radiation Units
per Year

Natural radiation 100-125
Medical irradiation 50-100
Upper limit of permissible occupational

exposure 5,000
Maximum permissible exposure to any

rhember of the public from all sources
other than natural and medical irra-
diation 500

Limit to average public exposure 170
Upper limit of exposure for the maximum'

exposed individual in the vicinity of
power re,"!tors 5-10

Figure 3.1-5 Population radiation dose from all sources18 0

even these figures are compared to other radiation sources.

The rationale behind the radiation concern, and

179. From reference (259), for more information see (199).

180. From reference (3), page 212.
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C

Dow

Figure 3.1-6 Types of dose curves, (A) conventional dose
threshold curve, (B) linear response curve1 0

extremely strict standards, lies in the curves in figure

3.1-6. There are theoretical, experimental and epidemiological

evidences which possibly support the contention that

radiation follows the linear curve, thus whatever radiation

is added will add proportional effects. And thus, the

nuclear safety research will continue, and the radiation

standards for nuclear power plants will continue to

tighten to be as strict as is practicable until there

is evidence against the linear curve. Such evidence may

never come, however, because these levils are so far

below significant experimental radiation levels (100,000

mrem/yr) as to make statistical studies inconclusive. 181

180. From reference (3), page 212.

181. Some of the other problems of radioactive waste,
such as eventual disposal of collected materials and
the release of radioactivity at refueling and reprocessing
of used fuels are discussed in references (209), (210)
and (211), or for a very thorough treatment of biological
effects of radiation see refebence (206) or reference (199),
Chapter 11.
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3.2 Water Cooling Mechanisms182

Considering cooling towers as the panacea for the ecological

impacts from nuclear power plants is a quite erroneous, but

unfortunately fairly common, concept, especially among those

with intense water systems interestst83

Most cooling towers are not only immensely large18tut

involve a certain amount of complex equipment which is vulnerable

to the elements, see figures 3.2-1 and 3.2-2.185 This combination

Air out

Water fli:1IŽ
In ;'l ' Pack ng

Water l Packing

Water tWater i inout c~ ~ 

PACKED Water
ATMOSPHERIC TOWER SPRAY POND Out MECHANICAL-DRAFT

TOWER
Figure 3.2-1. Schematics of some water cooling mechanismsl8 6

182. For an extensive overview of this topic consult
reference (45), Chapters12 and 13.

183. Even if the only consequence of the cooling tower
is the release of heat to the atmosphere, the impact of
this heat is not inconsequential. Reference (260), page
41 predicts a 5 to 7°F temperature rise in 20 years for
the Los Angeles Basin, and temperature can have a significant
impact on the incidence of human health problems see ref. (212).

184. Theaesthetic appeal of some of the natural draft
hyperbolic cooling towers, 500 feet high and 400 feet in
diameter, is also a consideration.

185. From reference (3), page 118.

186. From reference (213), page 45.
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results in a considerable cost, well over $4.00 per

kilowatt, which can be considered to be their primary

disadvantage. Although prices will vary significantly

for different sites and different plants, the results

given in figure 3.2-3 are representative. Some of the

Type of Cooling System

(Presh Water Systems)

Incremental Capital Incremental Power
Cost Associated with Costs due to fuel,
Cooling, in $/KW operating, capital

charges, mills/hr

Fosil Fuel
Cooling Pond

Wet Tower Mech. Draft

Wet Tower Natural Draft

Dry Tower Mech. Draft

Dry Tower Natural Draft

Nuclear Puel

Cooling Pond

Wet Tower Mech. Draft

Wet Tower Natural Draft

Dry Tower Mech. Draft

Dry Tower Nat-;ral Draft

Pigure ~25-3 Incremental costs
cooling'V

2.6
5.8

8.0

25.1

29.3

.08

.14

.18

.81

.99

3.9 .07

6.5 .12

8.6 .18

35.8 .98

44.0 1.06

above those of once-through

factors which can effect these costs are land prices,

power plant size, fuel costs, water quality and cost,

capital charges, climatic conditions at site, local labor

187. Costs adapted from average of six sources listed in
reference (11) page IX-37, additional tables can be found
in reference (214), page 415, references (215), (216),
(217) and additional information is available in ref. (47).

__



costs (labor accounting for nearly 40% of the total tower

cost.188), load factors, etc.1 8 9

Wet cooling towers and other evaporative cooling

mechanisms such as cooling ponds1 90 use up a considerable

amount of water, as much as one million gallons per hour,1 91

which could be a considerable portion of a small stream.

The chloride, sodium, sulphate, and other dissolved solids

will naturally increase in concentration at each recycling,

and may be hazardous when eventually discarded. Oceanside

sites have additional problems contending with the hundreds

of tons of blowdown salt, and this cannot always be dumped

directly into the ocean because some aquatic organisms

are particularly sensitive to changes in salinity.

Essentially all organisms in this million gallons

per hour of makeup water will be lost, which at some sites

could be far more significant ecologically than once-through

cooling.

Potential effects to the weather in the vicinity

from the larg3 thermal and humid emissions of cooling

towers may includej92

188. See reference (218), page Sll. 1 1

189. Another comparative table can be found in (218), p. S-16.

190..' A cooling canal, with approximately 168 miles of
accumulated length, has been built as one type of cooling
'pond,'see reference (219), but in general.not enough land
is available for this solution (12,000 acres at Turkey
Point in Plorida).

191. See reference (220).

192. A further description is in ref. (221) or (218), p. S-24.
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1. increased rainfall for a considerable distance
downwind

2. clouds most of the time downwind19 3

3. in unstable weather, severe thunderstorms or
even tornadoes may be induced

4. fog and ice in the vicinity of the tower194

5. increased winds, in fact it has been estimated
that a 2000 megawatt nuclear plant with dry cooling
towers might induce a 20 mile an hour wind at mile
radius from the towerJ9 5

Another cooling tower problem is noise pollution.

The concern over noise pollution is further increased due

to the high cost of after-the-fact sound attenuation,

making it essential to formulate a noise pollution predictor

so that these sensitive problems may be avoided in the

planning stage. The first step in building a predictor

involves the definition of an acceptable noise level for

the tower, depending upon existing typical background

noises. The curves in figure 3.2-4 on the following page

represent the levels of noise for the various areas that

might be within earshot of the tower. Obviously, trees,

buildings or other obstructions, and wind conditions

(directions and speeds), will effect these criteria, and

on-the-site measurements should definitely be taken,

193. Models to simulate the extent and shape of plumes
from cooling towers for prediction and prevention of possible
problems are considered in reference (222).

194. See references(223) and (224).

195. A full description of this prediction is contained in
reference (225) on page 93.
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Condition Curve no.

Nighttime. rura ................ '................1
Daytime, rural' ................................. 2
Nighttime, suburban* ........................ 2
Daytime, suburban* .......................... 3
Nighttime. urban .............................. 3
Daytime, urban: ............................... 4
Nighttime, business area ................... 4
Daytime, business area ..................... 5
Nighttime, industrial area .................. 5
Daytime, industrial area .................... 6
Within 300 ft of A ............................... 4
Within 300 ft of B ............................... 5
Within 300 ft of C . ........................ 7
300 to 1000 ft from A ......................... 3
300 to 1000 ft from B ......................... 4
300 to 1000 ft from C ........ 6.............6
1000 to 2000 ft from A .................... 2
1000 to 2000 ft trom B ....... ............. 3
1000 to 2000 t from C .............. .... 5
2000 to 4000 ft from A .................. 
2000 to 4000 It from B ... ........ ..2
2000 to 4000 t m C ............... 4

No l!,,laby tIaffil of concern
A : Ifvh'Wllettle~lltl i.'lt tIatcOctave bond center frequency, Hz H -- Ci.ltl, la .hl It.lfic
G - ctlntlunus hl(,ivy toI ttCl

Figure 3.2-4 Tyigal outdoor noises measured in sound
pressure levels 9

but these curves do present informative approximate guidelines.

The extent to which the noises predicted from the cooling

towers rise above these background levels, will be the

extent to which the towers will be heard. Sound attenuation

possibilities for the towers include, depending upon the

severity and frequencies of the problem, "centrifugal

fans instead of propeller fans, fans with two-speed motors

to cut loads at critical times (if possible), barrier walls,

discharge baffles, acoustically-lined plenums,97 and tower

discharge directed away from noise-sensitive neighbors."196

196. Reference (218), page S-23.

197. A plenum is an enclosed space in which the pressure
of the air is greater than that of the outside atmosphere.

90
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Cooling towers are not only considerable noise

polluters,198 but they may greatly change the makeup water

chemistry19 9 and add to the water considerable amounts

of fungicides, algicides, chromates (specifically Na2OrO4

which may be in concentrations of 200 ppm20 0 ), and many

other chemicals used in fouling and corrosion control.

These and the other air problems are considered in

the atmospheric counterpart to this study, reference (212),

specifically: chemical discharges to ambient air (affecting

odor and chemical properties of air quality), salt discharged

from cooling towers (affecting people, plants and property

resources), radionuclides discharged to ambient air (both

from the points of external contact and ingestion by humans,

other animals and plants), fogging and icing (affecting

ground, air and water transportation as well as plants),

combination of airborne water vapor with SO2 to form

201
sulfuric acid aerosol, and the ambient noise problems.

It does seem obvious that if a cooling mechanism is

available in a system that its schedule of operation

must be considered both from economic and ecological grounds.

198. Noise pollution is further discussed in reference (226).

199. Specifically, 002, suspended solids are removed, ammonia
converts to nitrate, air is inserted, and generally pH and
hardness are changed-see reference (227).

200. See reference (3), page 127.

201. Part of this list was orginally given in reference
(228).
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3.3 Other Conseauences

Some of these other operating consequences might

include some of the rewards for the beneficial uses of

the discharged heat. Por example, thermal effluents

could be used to help alleviate some of the natural,

relatively common, cold spell fish kills such as those

which occur in the Gulf of Mexico.202 Or, for example,

coastal plants could pump their effluent miles offshore

and release it near the bottom, thus driving nutrients

up to the surface, increasing plankton and fish productions.

"It is estimated that large scale operations of this

upwelling process could have a significant effect on

the world fish protein supply."2 02 Some other general

societal benefits could be in the form of warmed beaches,

ice free navigable rivers, etc.

Any beneficial uses which can be translated directly

into dollar profits, such as aquaculture, irrigation,

radiator heating, etc. must be introduced into the dollar

operating costs and not in the beneficial environmental

impacts. Working examples of some profitable ventures

203
include pumping effluents through greenhouses, or

through irrigation ditches for frost protection or to

202. See reference (11), page IX-42.

203. See reference (229) for a description of an operating
example.
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extend growing seasons.0 Articles on fish cultivation,

including catfish farming, optimum egg temperatures via

thermal discharges, and general articles on mariculture,

agriculture, and silvaculture (tree farming) are contained

in reference (230). These direct dollar costs of plant

operation might also include various detrimental effects,

such as decreased efficiency of the downstream plants

which are forced to use warmer water.

Obviously, it is necessary to make this clear distinction

between dollar costs and ecological impacts if any

meaningful tradeoffs are to be explored.

204. See reference (231) or reference (232) for a working
example of these agricultural uses. Reference (233)
contains 77 references which deal with this and related
issues.
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4. Quantifcation Prcedure

From talks with both ecologists and biologists, and

from reading the related literature, it is easy to deduce the

tremendous respect held for the complexities and uncertainties

of nature. To immediately wrap up the entire thermal pollution

problem in a computer program and let it turn out a quantity

would cause considerable suspicion, and it would probably

be very well-founded suspicion. So what must be created

is a logical, systematic procedure which does not depart from

the real world at any state, thus being verifiable and correctable,

and which eventually results in an evaluation of social

benefits.

There are numerous benefits from this type of formalization

of envir6onmntal impacts, in particular the benefits from

quantitative impact figures which can be used in the entire

power plant operation decision-making process.

"ormal analysis stimulates insightful thinking about
the interactions of various parts of the problem and the
interrelationships between the problem and proposed
alternatives. It forces an explicit consideration of
the entire problem, and this process can be a catalyst
for generating new alternatives to be considered, and
helps pinpoint where additional information is needed
for decision making purposes. This facilitates the
gathering, compiling, and organizing of the data in a
form useful to the decision maker. In addition, decision
analysis can help promote more efficient interaction
among group members working on a problem. Discussion
can be raised above the level of ust mentioning pros
and cons of each alternative, and the substantive issues
of balancing pros and cons can be attacked."20 5

205. Excerpt from reference (234), page 9.

-
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4.1 General Systematic Representation

To approach the problem from a systems analysis point

: of view means essentially the formulation of the problem as

an input-output system, see figure 4.1-1.

Figure 4.1-1 General approach of systems analytic techniques

Translating into this form the problem of assessing impact

to water systems from electric power generation has been

hypothesized, see figure 4.1-2. 20 6 Here the block diagram

shows a feedback mechanism207 resulting from a study of

performance measures eventually changing operating procedures.

For the purpose of this study consider the somewhat similar

block diagram in figure 4.1-3.

206. See reference(134), page 4.

207. Such a feedback mechanism is in fact inherent in an
operating scheme which has been developed specifically for
using this impact quantifier, see reference (5).
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The operating variables in figure 4.1-3 include the

time interval selected for study, operation modes such as

base loaded or cycling, thermal outputs, and cooling tower

or cooling pond operation possibilities. These quantities

are input to the physical model. The time interval (to key

seasonal variations) and makeup water requirements (i.e. total

loss of organisms) go directly to the mortality assessments

in the biological model.

Forecasts of environmental factors include river temperatures,

river flows, turbulence, stratification, ambient water quality

measures and relevant weather information.

The physical model then predicts, as best it canthe

probabilistic space-time temperature distributions which

might be expected during the interval of concern (an hour or

a week) for the different modes of operation as compared

with non-operation. Some of these results feed directly

into the aquasphere ramifications, e.g. consumption of water

(i.e. hydrological budgets), water quality changes, raising

or lowering of ground water levels, ad the purely physical

aesthetic considerations such as heating of beaches, etc.

So as not to become distracted from this quick overview

of the solution procedure,the complex biological model will

be treated in the next section. It will generate probabilistic

loss of population curves for the several critical species of

that particular time period.

Assessing aquasphere rarifications amounts to a determination

of the disconcerting changes or imbalances of species' populations.
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This stage of the formulation converts an essentially dynamic

process into something which can be measured in a static way.

What must thus be performed is an assessment of the future

ramifications inherent in the different modes of operation

compared with the non-operation of the facility.20 8 It is

only in this differential sense that meaningful measures

can be gotten. One must essentially know what is in fact

desirable so this differential ramification assessment can

be quickly performed and well directed toward the next module

of the analysis. Basically, a measure of any resultant change

in the 'health' of the community must be assessed, this

including a general assessment of the critical species'

abnormal doses and immunity buildups. Any residual temperature

increases must be assessed. Contribution to the long range

extirpation of commercially or recreationally valuable species

must be assessed in view of the speed with which they might

reestablish themselves. And finally, the effects of operating

modes on the long range aesthetic values inherent in the

ecosystem must be measured, for example, additions or subtractions

from eutrophication or putrification processes caused by

changes in nutrient budgets.

Calculation of social benefits or relative desirabilities

associated with the different operating modes is discussed in

section 4.3.

208. As an example see reference(235).

II I
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4.2 Physical and Blological Models and Example

The work on a physical model can either follow the lines

of predictive techniques described in section 2.1 or, for

existing plants, can be collected in a probabilistic manner

from experiments using dyes or from several infrared aerial

photographic records of water temperatures.

The biological model can be formulated from the various

components described in the bulk of chapter 2. The coordination

of these predictive models is depicted in figure 4.2-1.

interval of time

water temperature
versus space Bioassay
distributions, of

turbidity, Critical Species
water quality

Determine Critical Processes

I I I
affected in entrainment limited

or near in cooling food
mixing zone system resources

J I IL

primary and
secondary mortalities

OR
population
increases

Figure 4.2-1 Block diagram of biological model

Probability Assessment
of Population Affected

convolved with
Probability of Impact

for different
operating procedures

Determine
Supplies of

Food Produced
C-E

!
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The bioassay of critical species is generally available

from the licensing formalities required for new power plants.

Consider, as an example, the information available concerning

critical speciest sensitivity to toxins in the water. Licensing

forms require the assessment:

Total chemical effect on aquatic biota should be estimated.
Biota in dilution water should be considered in calculations
if applicable as well as biota affected by discharge.
Supporting documentation should include reference to
applicable standards, chemicals discharged, and their
lethality for the aquatic populations affected. 209

Por the species which are critically affected by plant

operation, and this would include depletion or increases in

game fish, large prodliotions or declines in algal populations,

etc., there will be specific operation processes causing these

changes. These processes might include direct entrainment

in cooling systems, effects of being in or around the mixing

area,n t limitations of food sources.

With these limiting processes defined, the predictive

techniques of chapter 2 can be used to create probabilistic

estimates of population depletions or increases.

As an example of this procedure consider the simple

case where there is only a single critically affected species

at any time of the year, then treatments of two or more

210
species is a trivial extension. Suppose for a hypothetical

209. From Table 3, article 3.2 of reference (228).

210. Occasionally the figure 10% arises in the literature as
a general sampling measurement error for aquatic species, see
e.g. reference(20), page 348, and thus this may be a possible
level at which a species depleted or increased by this number
could be considered to be critically affected.
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power plant the affected species are represented in table 4.2-1.

January possible premature hatching of eggs
of species X

February no species critical

March food and warmth increasing growth of
fish X

April food and warmth increasing growth of
fish X

May entrainment of fingerlings of fish X

June algal accumulations

July algal accumulations

August entrainment of migrating fish Y

September no species critical

October spawning of fish 

November eggs of fish X colder than optimal

December eggs of fish X colder than optimal

Table 4.2-1 Example of most significant consequences of
operating at various times of the yearli1

Of course, at some times, for example May, the consequences

of plant operation might be insignificantly smaller than at

other times, say August. That is to say, the magnitudes of

benefits or detriments over the year can be expected to change

greatly.

To follow this example in table 4.2-1 ,consider the

211. According to reference (107), reference (236),which
the author has been unable to obtain, uses the bioassay to
plot the temperature requirements of the various species
and their life stages over the course of the year. WThen
these curves are superimposed it becomes clear which are
the critical species at each time of the year.
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operation of the facility in August21 2when the critical

species is fish Y and the critical process is entrainment

in the cooling system. rom the convolution of the probability

of affected population with the probability of impact, the

probability of different levels of mortalities of this species

can be determined. Because in this example this is the only

species affected by plant operation in August then this

extent of population loss alone is carried to the assessment

of aquasphere ramifications, see figure 4.1-3. Suppose there

is no predicted rise in 's foodstocks and no starving of

its predators, then the loss to society of this number of

fish Y, perhaps affecting slightly commercial and recreational

fishing, is the total environmental impact associated with

plant operation in August. This calculation of loss, or

benefit, to society is contained in the next section.

Now that the method for connecting together the

physical and biological quantifiers has been outlined,

examples will be presented of some existing quantifiers

which have very specific tasks.

A vast number of studies have been preformed to

contribute to the finding of an index of water quality.

Although temperature is not usually included in these

indices, thermal pollution will definitely affect their

values. The indices will change to show the obvious

212. Quantification of impacts over weekly or even hourly
discrete time intervals would require essentially the same
process. It is all a matter of initially determining the
cycles of the ecosystem, even within the course of a day.
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thermal effects in water quality, such as decreasing

amounts of dissolved gases - but they also show subtle

changes, such as increased microbial biochemical reactions

(doubling with 1000 increases).

It has long been realized that the water's use must

be reflected in the factors influencing its quality index.

For example, water acceptable for drinking may not be

acceptable for irrigation (too much dissolved copper, for

example), and water acceptable for irrigation may have

a bad odor or taste and thus would be unacceptable for

drinking. Besides being use oriented, these indices must

also take on such difficult tasks as reflecting external

diseconomics, that is, social costs borne by persons

other than the polluters.

As more analysis is concentrated on obtaining measures

of water quality, the indices are becoming more complex,

e.g. the U.S. Public Health Service in 1946 had only

7 items to be considered in measuring drinkability of

water, in 1962 this grew to 21 items, 50 items in 1968,

213and current revisions promise more.

In 1970, the National Sanitation Foundation collected

a panel of 74 experts in water quality, and the WQI

(Water Quality Index) was developed. Included in the

index are the categories:

213. See reference (237), page 389.
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dissolved oxygen temperature
fecal ooliforms turbidity
pH total solids
5-day BOD toxic elements
nitrate pesticides
phosphate

Threshold requirements were developed for toxic

elements and pesticides, otherwise each variable, q,

contributed to the WQI via a weighting factor, wi, as in

the equation:

WQI = ~ wiqi 42-1WQI C Wi~i 42-1
i=1

where the qi are chosen on the

basis of the quality curves developed by the experts,

see figure 4.2-2.
*AA
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0
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0 10 20 30 40 50 60 70 80 90 100
TURBIDITY (UNITS)

Figure 4.2-2 Mean qualities and 80% confidence lights from
panel of experts on two water quality parameters

214. From (238), page 176.
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Of course, of specific importance to this study is

the curve developed for the rating of temperature, see

figure 4.2-3.

90

80

70

- 60

0 50

40

30

20

10

-5 0 5 10 15 20
DEPARTURE FROM EQUILIBRIUM TEMPERATURE (C)

Figure 4.2-3 Mean and 80% confidence limits for the
value2of the temperature parameter in the water quality
index D

Further work has been done on the field evaluations

of these parameter values, and on the development of

specific use oriented water quality indices, parameters of

which are shown on the following page in Table 4.2-2.

The temperature curve of figure 4.2-3 is really

Just a crude method of incorporating within the WQI a

measure of the effect to the biological community of

thermal increases. There are, however, measures specifically

215. Reference (238), page 180.

-- ~ ~ i i 
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Fish and Wildlife Public Water Supply
Water Quality Index Water Quality Index

Dissolved oxygen Dissolved oxygen
Nitrate Nitrate
Turbidity Turbidity
pH pH
Temperature Fluoride
Phosphate Hardness
Ammonia Fecal coliforms
Phenols Phenols
Dissolved solids Dissolved solids

Chloride
Alkalinity
Oolor
Sulfate

Table 4.2-2 Index parameters used fit determining water
quality for two specific water uses 6

designed for calculating the 'health' of these perturbed

aquasystems. Most of these measures are glorifications

of the species diversity measures described in section

2.2. Perhaps the most accurate of these species diversity

measures gives not only a measure of compositional richness

= - _ (ni/n) log2 (ni/n) 42-2

but also a measure of the

dominance of one or more species

a -x
r = 42-3

dmax dmin

where

dmax = (1/n) [log2 n - s log 2 (n/s)! ] 42-4

dmin = (1/n) {log 2 log2 [n-(s-1)] } 42-5

216. Reference (238), page 179.
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and n is the total number of individuals collected of

the s different species, ni the number of the ith speciesl17
A biological index which does not rely solely on

such a species diversity measure is presented in figure 4.2-4.
· fETilOD OF DETERMINING STRE AM CONDITION

Stream Condition Results

Healthy Groups 4. 6. and 7 each contain more
than 30 percent of number of species
found in that group at 9 typical

CLSSIFIlCATION OF ORG;ANISMS INTO (ROUPIS "healthy" stations.

Group Organisms Semihealthv (a) Either or both Groups 6 and 7 less
than 30 percent. and Group I or 2

1 The. blue-green algae, certain green less than 100 percent. or
algae, and certain rotifers (b) Either (;roup 6 or 7 less than 3I0 per-

cent, and (;roups 1, 2, and 4
2 Oligochaetes. leeches, and pulmonate 100 pertent or more. or Group 4

snails contains exceptionally la lge number
S Protozoa of individuals.

4 Diatomsredalgaandmostgreenalgae Polluted (a) Either or both (;roups 6 and 7 are
absent, -and. Groups I and 2 50

5 All rotifers not in Group 1, clams, pros- percent or more. or
obranch snails, and tricladid worms (b) (;roups 6 and 7 both present but less

6 All insects and crustacea than 50 peicent and Groups I and 2
100 percent or more.

7 All fish
Very polluted (a) (;roup 6 and 7 both absent and

Group 4 less than 30 percent. or
(b) Either (;roup 6 or 7 is present and

(;roup I or 2 less han 50 percent.

Figure 4.2-4 Biological measure of stream conditions21 8

Examples of each of the four possible stream conditions

tovgiven on the following page in figure 4.2-5

There are some obvious problems with the criteria

developed in this model, e.g. there can be no absolute

cutoffs between conditions. Also, a problem which is

not immediately apparent, but is still a quite serious

drawback, is the duplication of classifications for certain

217. See reference (239), page 478.

218. From reference (240), originally in reference (241).
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28
34

.1
1 2 3 4 5 6

Polluted station
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6
n
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{3

Very polluted station

2

1 4 
1 2 3 4 5 6 7

Semi-healthy station

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Group Group

Figure 4.2-5 Examples of different stream conditions
and their classifications according to the "biological
measure of stream conditions "

situations. Consider, for example, a station with percentages

of x = 40%, x2 = 40%, x4 = 60%, 6 = 60% and x7 = 60%.

This station would be classified as 'healthy,' since x4,

x6 and x7 are over 60%, but also 'very polluted' in that

at least one of 6 and x7 is nonzero and x 1 or x2 is less

than 50%.

To alleviate these problems2 19 a plot was made of the

four different conditions in the space of the percentages

219. It is also possible rather than a 1.0 rating for a
species being found or not, to rate the species say somewhere
between - and 1 depending on its prevalence and
desirability.
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present of the different species classifications. After

shaping these plots to make them internally consistent,

and smoothing the boundaries, an equation for the health,

H, of the community was fitted to the plots. With x4 as

the percentage of class 4 present, and with xl, X2, x6 and

x7 representing the percentages of their classes, define

A = [3/4 min(x1 ,x2 ) + 1/4 ave(xl,x 2 ) 42-6

B = [3/4 min(x6,x7) + 1/4 ave (x6,7)] 42-7

then the health, H, of the

community is

logO1 0 = 10 (A-50)(IA-501)(x4+20)2(B) + 2 42-8

The scale for converting H into health labels is

0 = very polluted, 1 = polluted, 2 = semi-healthy, and

3 = healthy. The use of this equation on the four examples

presented in figure 4.2-5, rates the healthy station as

3.188, semi-healthy as 2.277, polluted as 1.299 and very

polluted as 0.159.

Although this equation 42-8 may be useful, its primary

purpose is to demonstrate that complex pieces of biological

understanding can be transformed into meaningful, highly

usable tools.

This perhaps is a good place to include an illustrative

example of the quantification procedure. Any resemblance

of this example to a real situation is coincidental,

and in cases where indicative historical data was not

available, best guesses were used (as must be the procedure

in any quantification of impacts).
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This example deals with a large 1000 megawatt nuclear

power plant on a typical22 0 northwestern U.S. river.

The river width is 600 feet, depth 20 feet, velocity

1 foot per second, and the total flow rate about 11,000

cubic feet per second.

Power plants generally use 0.8 to 1.5 cubic feet

of water per second for each megawatt of generating capacity,

and since this is a nuclear facility the 1.5 figure is

used. Thus, the condenser cooling flow is 1500 cubic

feet per second. The temperature differential across

the condenser is assumed to be 150F. Using a suggested2 2 1

formula, the downstream length to a 5°F differential is

5800 feet.

10 7.5 5 2.5 0
temperature increase

Figure 4.2-6 River isotherms downstream from the power
plant (example)

The temperature history of the cooling water, and

thus the temperatures experienced by entrained organisms is

recorded in figure 4.2-7, where temperature history out of

the cooling system is measured down the centerline of the plume.

220. Data for this typical stream is from reference (242).

221. From reference (243) suggested in reference (242).
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temperature
increase
in OF 15

10

5

A

"^AcAeso - -A

Ohr 1 hr 2 hr 3 hr

Figure 4.2-7 Time course of temperature changes of cooling
water (example)

The discharge mechanism is on the surface of the

stream, and thus there is no appreciable change in the

bottom temperature (see figure 2.1-7). Sothis eliminates

the effects on benthic organisms, rooted aquatic plants,

incubating fish eggs and reproductive temperature requirements.

The ambient river temperature is given in figure

4.2-8, along with the plot of the maximum temperature
temp. i
°F lethal temperature

92 for entrained salmon variance

62

52

. -- ,
5/

I -' temDerature
42 - I
32

J F M A M J J A S 0 N D
months

Figure 4.2-8 River temperature, condenser water temperature,
and lethal temperature of uvenile salmon (example)2

222. For an example of the computation of the variances
given here consult the computation in ref. (107) page 19.

. . I:]]l/I..-- -- #!1.]

4
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of the entrained water, and the lethal temperatures for

the most sensitive of the species in the area, with the

variances computed.

Now to the computation of the actual thermal deaths.

There are assumed to be no other species in the area

having lethal temperatures as low-.as the salmon's, or

within 50°F of the salmon, so all other species are assumed

to be out of reach of the lethal temperature effects.

There will not be any salmon deaths due to swimming through

the mixing zone because these temperatures will never reach

lethal levels. For those salmon entrained in the intake

water, the probability of mortalities can now be computed

from the mean and variances of the lethal temperatures in

figure 4.2-8. Thus from figure 4.2-8 these probabilities

become: week Dercentage week percentage
26 2% 34 45%
27 5% 35 40o%
28 15% 36 35%
29 34% 37 38%
30 50% 38 30%
31 50% 39 20%
32 52% 40 .15%
33 55% 41 2%

Figure 4.2-9 Probability entrained salmon will be killed
(example)

The only salmon which will pass through the intake

screen are uveniles, and the distribution of these

in the area of the power plant is shown in figure 4.2-10

on the following page.

The multiplication of the curves in 4.2-9 and 4.2-10

together week by week, and then multiplying each of these
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10

5.

0 

percent o all
LJuvenile salmon
in plant area

I~r A

| ~ ~ ~ i ,I' 
15 20 25 30 weeks

into year

PFigure 4.2-10 Percent of total yearly uvenile population
in the area of the power plant(example)

figures by 13.6% which is the probability of being in

the intake water2 23 yields figure 4.2-11.

week 26 27 28 29 30 31 32

percentage .024% .048% .143% .277% .272% .204% .071%

Figure 4.2-11 Percentage of the generation of Juvenile
salmon population lost by direct thermal deaths caused by
plant operation in given weeks(example)

There are no cold shock deaths, because (see figure

2.3-5) even if the fish were acclimated to the minimum

entrainment temperature (550°) the shock back to the

ambient water temperature (400F) would not kill any.

Assuming salmon will avoid 75°F temperatures in their

upstream migration, and since there is always a 2.50°F

increased temperature path available (see figure 4.2-6)

plus the maximum 72°F ambient river temperature, the salmon

migration will not be thermally blocked.

223. This is a straight 1,500/11,000 calculation and
excludes effects such as (1) fish, for some reason, spending
more time near the intake, or more likely (2) fish avoiding
the intake with the same pressure sensors that help fish
avoid the suctions of waterfalls.
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The indirect effects will now be considered. Again

limiting the treatment in this example to salmon -

indirectly salmon would be affected by changes in populations

of their major food source, zooplankton. Since salmon

generally fast going upstream and feed when they are

Juveniles coming downstream, we are again concerned only

with the Juvenile salmon. Although figure 2.5-1 shows

a loss of a good deal of zooplankton in the vicinity of

'the thermal outlet, these temperatures are much higher

than those contended with in this example. Figure 2.5-3

shows that zooplankton in the temperature range of this

example can be expected to more than double in number

with a 15°FP temperature increase.

This 15°F increase will be realized in full by only

the entrained zooplankton, and here it is assumed that

10% of all entrained zooplankton are lost due to mechanical

destruction from pressure changes which take place.

Using an overall average of 2F increase over the 15 miles

downstream fom the outflow this would mean an approximate

increase by 20% of the zooplankton concentrations for

that 15 miles. This 20% increase is plotted against that

of the ambient river concentrations in figure 4.2-12 on

the following page.

Using the graph in figure 2.3-16 of the growth rates

as a function of food availability and temperatures,

and using the seasonal temperature graph of the river
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% A r n',rvt 4 "1.-+
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Figure 4.2-12 Seasonal variations in zooplankton availabilties
to salmon in the river with and without the influence of the
thermal effluent (example)

(plus the 2F in the influenced area) yields figure 4.2-13

which shows the increase in weight of the influenced

salmon at the different times of the year (using a one

day travelling time through the 15 mile influenced area).

percent
% increase in
salmon weights

.30 .

0

0

A M J J A S
months

Figure 4.2-13 Percent increase of individual salmon
weights due to increased food availability because of
plant operation(example)

Multiplying this increase by the percent of the

total uvenile salmon population in the area during these

weeks yields the total increase in weight of the entire

generation of Juvenile salmon. This data is thus summarized

A-
v

A

I
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Percent of entire salmon
population lost by thermal
shock if plant operates

Percent Rain in weight
of entire salmon popu-
lation if plant operates

15 .000
; 16 .000

17 .000-.18 ... . .· ..000
19 .000

20 .000
-21 . .000
22 .000

:23 .000
24 .000

25 .000
-.26. O024
27 .o48

:28. .143
29 .277

30 .272
31 .204
32 , .071

Table 4.2-3 Summary of
at various weeks in the

.001

.002

.004

.005

.008

.012
.014
.016
.020
.021

.020

.018
.011
.008
.005

.003

.002

.001

all consequences of plant operation
year(example )

in table 4.2-3 which shows the total exact ecological

implication associated with operating the power plant

in these weeks. Thus for this example on a purely ecological

basis, using the total weight of the salmon population

as one possible indicator of desirability, it would be

best to perform the five weeks of annual plant nuclear

refueling and maintenance,starting in week 28. Of course,

total weight may not be a good way of combining these two

different consequences, in fact, they may be best kept as

separate dimensions in a multi-dimensional environmental

impact vector. A discussion of the collection and handling

of these changes-in the aqua'ystem so they will reflect

proper measures of desirability is discussed next.

Week
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4.3 Measure of Desirability

Once the ramifications to the aquasystem have been

computed, it is necessary to make an assessment of the

relative desirabilities of these possible consequences.

For example, if the operation of a proposed power plant

would increase fish production, but would also induce

foul smelling algal mats every July and August, then it

is not clear whether the overall environmental effect

would be positive or negative. A study must then be made

of the relative importance of the fortunes and burdens

that these changes would impose on the users of the water,

e.g. municipal and industrial water suppliers, recreational

users, commercial fishing, and aesthetic consequences.

Ideally, one would like to be able to set down one

single measure of environmental impact, such as an "ecological

impact unit."22 4 And to enhance the usefulness of this

e.i.u. it would be convenient to set its value at approximately

that ecological impact that 'man' would be willing to pay

#1.00 to avert, so a direct cost-benefits analysis could

be made. Unfortunately there is no clear-cut way of obtaining

this e.i.u. measure 225 Even if one were able to put up

224. "Ecological" is used rather than "environmental"
because it is precisely the effect upon-the living community,
in particular man, which is of interest, not the effect on
the surroundings, i.e. environs. The term "impact" is used
instead of "quality" to emphasize the fact that this is a
measure of differences in quality, not a measure of quality
itself.

225. For a verbal discussion see reference (244).
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such a proposal for the voters to decide exactly how much

they would pay to avert a problem, the results of such an

election, it is generally acknowledged, would be relatively

worthless, for a number of reasons:

(1) the average man does not have the proper knowledge
to make present, or predict future, quality udgements
on such an intricate complex issue as the balance of
an ecosystem,

(2) he has no realization of the health or financial
implications to himself of the problems which might
face minorities such as water suppliers or commercial
fishermen,

and there are a multitude of

largely unconscious reasons theorized22 6 to explain man's

apathy toward the environmental crisis, some are:

(3) the fact that pollution is usually relatively
undetectable immediately around, but can clearly be
seen over distant cities or in unused waterways, and
thus it becomes a force against 'them' unconsciously
including rivals,

(4) the unconscious feeling that we individually
can not possibly make changes in a worldwide problem,
and thus we will selfishly let others make the sacrifices,

(5) the unconscious desire to ensure that in our
eventual dying we will have little or nothing to lose,

and (6) the unconscious defiant refusal to give up those
ecologically offensive components making up our high
standard of living, e.g. colored (and thus not biode-
gradable) paper products or our cherished automobile.

226. For those familiar with psychoanalytic terminology
these unconscious 'reasons' fall into the catagory of ego
defenses against anxieties, at the paranoid, depressive
and Oedipal developmental levels. For a more thorough
discussion of this topic refer to the source for much
of this material reference (245).
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So, since the problem of assessing the desirability

of ecological changes can apparently not be left safely

to a public referendum, where then can the solution be

found? The hope for the best possible solution undoubtedly

lies in being able to present all of the consequences and

ramifications as lucidly as possible to policy makers,

planners and concerned citizens, so that they can conduct

meaningful discussions among themselves of the tradeoffs

available among the alternatives. In the following text

are some of the existing tools useful for simplifying and

making understandable this complex environmental information

for presentation to a panel or forum containing people

of diverse interests and fields of knowledge.

Initially it should be made quite clear that there are

other problems besides thermal pollution which will contribute

to the aquatic impact resulting from power plant operation:

Depleted stream levels due to water losses, raising or lowering

ground water levels, effects of chemical discharges on people

and the recreational usability of the waterbody, chemical

and radionuclide contamination of ground water, radionuclide

discharge to the water body, and effects on flood and erosion

control. These are effects which have been carefully studied

and quantified in licensing formalities.22 7

Some methods for sorting, interpreting and quantifying

these impactsresulting both from thermal pollution and the

227. See reference (228), pages 9-10.
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MUNICIPAL INDUSTRIAL
hATER SUPPLY Consume urchase Price I Associated Costs 

aesthetics . ,/Aduse
reAd us tedrduto

Chemical Cost Producton

Unit Cost of
atme t Annual Benefit

AESTHETIC BENEFITS
Consumers 1 Economic Value of

Behavior Resnonse
aesthetics … 

Perceptual T .
va.ter Qual i ty IExposure ---- tude ehior Annual Benefit

interpretation '

Figure 4.3-1 Diagrams for benefit evaluation of quality
(or impacts) of aquatic systems o

secondary problems have been formulated, see figure 4.3-1.

This is thus a method for quantifying the losses and gains

which accrue from changes in numbers and varieties of aquatic

organisms and such other hydrologic factors as are deemed

environmental, rather than dollar operating cost, factors.

As an example of the calculation of impact consequences

consider the ramifications to municipal and industrial water

supplies, which must include; water losses induced, water

228. See reference (246), page 845.

l
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Figure 4.3-2 Graphing the impact benefits versus different
pollutant levels, that is, extents of operation 2 29

table changes and water made more or less usable by chemical

additions, or'especially through accelerated eutrophication.

Methodologies for the calculations of these and the other

impacts diagrammed in figure 4.3-1 are the subject of

reference (246).

The collections of all these computations and value

Judgements can then be made in graphic form as presented

in figure 4.3-2. Extent of plant operation would be the

parameter that would be associated with the pollution index.

229. From reference (247), page 671. There would be no
reason why such a display must be restricted to cover an
annual time interval, or why it couldn't display nonlinear
curves of water quality, salmon lost, algal mats, etc.
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This graph should also include the commercial and aesthetic

benefits. The concept of such a graph is, however, meaningful

although it could hardly be hoped that such curves would be

linear. 230

This presented technique appears to be the most appropriate

method for use in quantifying desirability of different

ecological impacts. 31 Another scheme exists, see figure 4.3-3,

and is well known but is not adaptable for the meaningful

quantification of operation associated differential impacts.

It is, however, a very useful method for "flagging" certain

deficiencies while in the planning stage. As an example

of this method's inability to measure operating impacts

note that it would be considered beneficial to operate

a system which covered the lake with algal blooms, -5,

and filled the water with toxic substances, -5, but made

up for these by filling the lake with productive plant

species, +16;

These existing models are relatively naive in that

they perform only additive combinations of various factors.

The need for more sophisticated models is great, and thus

230. A practical method for evaluating recreational benefits
has been developed and is receiving wide usage, reference (248).

231. Other possibilities of some slightly different approaches
can be found in references (249) and (250); reference (251)
is a review of the use in this field of the latest evaluative
tools. Another example of such a 'dollar versus environmental;
quality' graph can be found in reference (252), and another,
more general evaluative effort is described reference (253),
but the method can unfortunately only be used for spotting
different possible impacts.
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232. See reference (254).
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in time, the extensive ongoing research efforts will certainly
bring about refinements including synergistic and antagonistic
combinations, and single models flexible enough for

considering the particular areas of stress associated

with specific water systems and the particular uses required

for that water.
On the broader level there is some research directed

at the assignment of weightings of the importance of various

air pollution problems relative to the various water pollution

problems. Some of this highly speculative work has focused

attention on various environmental stresses based on their
persistence, range of territory affected, and the complexity

of their complications.233 For example, table 4.3-1 lists

some relative weightings of water pollution and air pollution

problems for the present time and for a projected (unspecified)

future time.

Although there will obviously be disagreements about

the relative weightings given certain of these problems,

this actual effort of collecting speculations from a group
of individuals with broad and comprehensive understandings

and interests is a praiseworthy first step in building
some perspective on the inevitable problem of assigning

relative weightings to air and water impact problems.

For in the power system scheduling or simulating procedure

even if these impacts are kept as separate dimensions,

233. This research is reviewed in reference (255).
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water Pollution Present Future
pesticides 140 30
waterborne industrial wastes 48 84
organic sewage 24 48
radioactive waste storage 20 40
tritium and 5 krypton 16 120
waste heat 5 72

Air Pollution

oarbon dioxide 75 75
sulfur dioxide 72 72
suspended particulate matter 72 90
oxides of nitrogen 24 42
photochemical oxidants 12 18
hydrocarbons in air 10 18
carbon monoxide 9 12

Table 4.3-1 Relative weightings B present and future
air and water pollution problems2

and indeed even if these themselves are divided into
dimensions representing various specific impact problems,

there will undoubtedly have to be some time when a decision

has to be made and one particular operating point chosen.

This choice then implies a whole set of criteria, tradeoffs

and combinations between the various environmental consequence

commodities. And even if this decision is made by a panel

with constituents from the various interest groups, expert

recommendations such as are given in table 4.3-1 of the

possible relative weightings between different environmental

problems can still be of great help.

234. See reference (255) from rhich this material was
obtained.
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5. Coordination with Atmospheric Model

The usefulness of an environmental impact model for

water systems will depend to a great extent upon the existence

of a compatible air systems model. Work is underway on a

model to develop pollutant concentrations downwind from

power plants2 35 and it is instructive to see how this effort

will be useful in the total atmospheric model.

Ideally, the atmospheric model should be symmetric to

the aquaspheric model, so the results and tradeoffs can be

mixed meaningfully.

To use the same systems approach diagrammed in figure 4.1-1

the appropriate atmospheric model becomes that of figure 5.-1
r

Figure 5.-1
impact

General systematic representation of atmospheric

235. This work is being further refined at MIT and at
Environmental Research and Technology, Lexington, Mass.

Atmosphere
Ramifications

Change of
Desirability
Assessment
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The careful definition of the functions of each of these

modules has been developed, see reference (212), so here

only a cursory overview will be given to demonstrate the

viability of this scheme, and thus no attempt will be made

here to document the arguments.

The operating variables will include the time intervals

selected, operation modes such as base loaded or cycling,

and air pollutant outputs including S02, NOx, particulates,

radionuclides, heat and moisture. These quantities are

input to the physical model. The time interval (to key the

seasonal variations, i.e. indoor and outdoor activities,

agriculture and livestock seasonal variations) will go

directly to the biological model.

Forecasts of environmental factors include air temperatures,

wind speeds, mixing heights (i.e. turbulence or stratification)

and ambient air quality measures for the assessment of

differences due to plant operation.

The physical model then predicts as best it can the

probabilistic space-time distributions which might be expected

for the different pollutants during the interval of concern

(an hour or a week) for the different modes of operation,

as compared with non-operation. Some of these results feed

directly into the atmospheric ramifications, e.g. effects of

air quality changes on structures (estimated as 100 million

per year on steel alone236), fabrics (800 million/year236),

236. See reference (256).



eto; and the purely physical aesthetic considerations such as
237odor and look. of air, etc. 37

The biological model must include plants and animals,

particularly agriculture and livestock ($500 million per year

loss due to air pollution236 ) as well as a model of man.

The mechanism for determining impact is the same as that in

the water model: probability a population is affected convolved

with the probability of impact. In the case of man the model

for impact can be represented as in figure 5.-2.

Pollutant concentration
at a given distance in
a certain direction

Jtranslated to

Impact potential at a
given distance in a
certain direction

dconvolved with

Population density and
probabilistic 'health'
measure at given distance
in a certain direction

Figure 5.-2 Assessing atmospheric impact to man

The probabilistic loss curves. will show populations at various

stages of disability and the impact caused by the operation

of the plant, see figure 5.-3.

237. This, however, may not be a significantly large problem
considering the results of a May 1969 Gallup poll for the
National Wildlife Federation which showed only 14% of the
people would agree to a 2.00 increase in monthly utility
bills earmarked to stop pollution by electric power plants.
This is apparently more an indication of aesthetic value
insofar as most people are probably not aware of the health,
particularly respiratory, complications inherent in air
pollution.



-145-

E

*_ v

0 

a
I

adjustment down

Impairment scale

Impairment increase : with aging
As residual of illness
From excessive

environmental stress

Figure 5.-3 Various stages of disability in man due to
atmospheric pollution increases238

Attempts have already been made at defining tb different

stages of disability due to air pollution, see table 5.-1.

Stage 0 No measurable effect
Stage I Awareness of pollution at a level sufficient to lead individuals

to change residence or place of employment
Stage 2 Reversible alteration in physiological functions
Stage 3 Untoward symptoms of bodily dysfunction
Stage 4 Irreversible alteration in vital physiological functions
Stage 5 Chronic disease
Stage 6 Acute sickness or death in debilitated persons
Stage 7 Acute sickness or death in healthy persons

Table 5.-1 Different discrete stages of human health with
respect to air pollution exposures2 39

238. Excerpt from reference (257) page 160.

239. Adapted from reference (258).
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Assessing atmospheric ramifications amounts to a quantification

of future effects inherent in current operation procedures.

A common speculation is that man may be transformed via

mutagenetics, however, there are more tangible assessments

required of this module. Basically, a measure of any resulting

changes to the health of the members of the community must

be assessed, specifically the buildup of doses within man

that may have long term effects on his decreased immunity to

respiratory diseases.
Oaloulation of social benefits, or relative desirability,

associated with different operating modes is a field fraught

with difficulties. The problem is, however, being vigorously

tackled from a number of angles, and it is a problem which

man has apparently become determined to resolve.
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accoolimation an adaptation to a specific temperature or
stress, perhaps experimentally induced, a
relatively rapid process with respect to nature's
changes

acclimatization the very slow naturally occurring adaptation
to a specific temperature

adventive

aestivation

anadromous

benthic

biocoenosis

canalization

colonialism

cyclomorphosis

diapause

entrainment

epilimnion

eurythermal

eutrophic

extirpation

organisms that have been artificially introduced
into an environment

inactivity or dormancy during relatively
hot periods

going up river to spawn

refering to plants or animals which are primarily
restricted to the bottom of a water body

plants and animals of an ecosystem

where genetically identical adults in the
same environment differ because of different
early experiences

gregarious tendencies of a species

the cyclic series of gradual changes in
characteristics of a species occurring during
successive generations

period of suspended development due to decreased
metabolism or inactivity

inclusion in the water which goes through the
condenser cooling system

the upper stratified layer of a water body,
usually at a nearly even temperature through
its depth
organisms which can live over a broad range
of temperatures

an environment flourishing with nutrients

a complete abolishment of a community, generally
effected by the existence of an intolerable
situation
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homeostatic

hypolimnion

incipient

littoral

motile

mutagene tics

oligotrophic

planktonic

poikilotherms

sessile

speciation

stenothermal

synergism

thermocline

thermotoxic

zooplankton

the tendency of a system to return to its
former stable or static condition

the lower stratified layer of a water body
usually of a nearly constant temperature all
year long

first stage of observability

shallow portions of a aterbody, usually
from shoreline to a point 200 meters depth

capable of moving, generally restricted to use
for organisms which can propel themselves away
from stressing situations

mutation of the genetic composition

an environment with a deficiency of nutrients

any organism at the mercy of winds and currents

3 any animal whose body temperature remains close
to that of its environment

not moveable, fixed, sedentary

process of the formation of a new species
through the mechanisms of evolution

organisms which are narrowly restrictive in
their tolerance to temperature changes

situation where a oint action is greater than
the sum of individual actions

the middle stratified layer of a water body
containing the main portion of the temperature
change from the floor to the surface

combining of thermal stress and concentrations
of harmful chemicals and/or microorganisms

planktonic animals
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