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ABSTRACT

This study was intended to contribute to the development of more

rational practical methods for predicting the transient responses of

structures which are subjected to transient and impact loads. Attention

is restricted to the global structural response; local (or stress-wave-

induced) response is not included. The use of higher-order assumed-

displacement finite elements (FE) is investigated to seek more efficient

and accurate strain predictions; these studies were carried out for 2-d

structural deformations typical of beams and curved rings to minimize

cost and labor. These studies were done in conjunction with the use of

various approximations to the nonlinear strain-displacement relations

since large deflections and rotations need to be taken into account.

Transient large-deflection elastic-plastic structural response

predictions are made for these various FE models for impulsively-loaded

beams and a free initially-circular ring, for which high quality experi-

mental measurements of strains and deflections are available. From

comparisons of (a) predictions with each other for the various FE models

investigated and (b) predictions vs. experimental data, it appears to be

more efficient for the same number of degree-of-freedom (DOF) unknowns to

use the simple 4 DOF/node elements rather than fewer of the more sophisticated

8 DOF/node elements although the latter provide a physically superior and

more realistic distribution of strain along the structural span at any given

time instant compared with the use of the 4 DOF/N elements. Comparisons of

measured with predicted transient strain and final deformation of a thin

aluminum beam with both ends clamped and impacted at midspan by a 1-inch

diameter steel sphere show very good agreement.

Extensions to the present analysis to accommodate more general types

of fragments and fragment-impacted structures are discussed briefly.
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SECTION 1

INTRODUCTION

1.1 Background

1.1.1 Safety/Threat Problem

Among the many factors that influence nuclear reactor safety,

none is more important than structural safety and integrity. During its

design lifetime, each of the many critical structural components is subjected

to a history of mechanical, thermal, and other loads, some deliberate and

others accidental. In the present discussion, however, attention shall be

restricted to a small but vital portion of the total environmental conditions

under which structural/operational safety of nuclear powerplants must continue

to be assured -- that is, attack from missiles of various types and sources

[11 .*

Various types of missiles may be generated within one or more of the

parts of nuclear powerplants; included in this category, for example, may be

valves, valve stems, valve bonnets, control rods, drive mechanisms, pipes,

turbine blades, turbine rotor disk fragments, etc. Careful detail design of

many of these items may reduce their probability of occurrence to ignorably

low levels. However, studies by licensing agencies and others may show that

certain of these missiles threats must be assumed to occur during the useful

life of the system. Accordingly, one must provide guaranteed protection

against such missile attack.

Similarly, missiles originating external to a nuclear powerplant may

threaten its safety. Missiles in this category include those produced by a

tornado -- planks, pipes, utility poles, automobiles, and other objects --

each with various possible sizes, masses, and velocities. Also one must

consider the possibility of impact by an aircraft; here again various sizes,

masses, and impact velocities may be involved. In addition, impact of auto-

mobiles, trucks, or other vehicles against the nuclear reactor containment

structure should be either prevented or the containment structure itself

should be designed to provide adequate protection.

Numbers in square brackets [ ] denote references listed at the end of the
text.
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Some of these missiles are nearly rigid, others are shatterable/

splinterable, and others are comparatively crushable. Their geometries,

mass-to-frontal-area ratios, and velocities are very different from military

artillery-type missles for which extensive impact, penetration, and response

data [2-5] have been obtained on a variety of target structures and materials

(metals, reinforced concrete, etc.). Attempted extrapolation of "military"

data to the above types of missile attack involves substantial uncertainties

[3-5]. Therefore, to generate empirical threshold penetration and design

data, an excellently conceived and executed experimental program of impact

of tornado-type missiles (pipes, planks, automobiles, etc.) against reinforced

concrete panels has commenced [6-7]; detailed transient response data for

evaluating theoretical prediction methods will be sought in a later phase of

that program.

Persuasive arguments can be made that missiles such as valve stems,

valve bonnets, etc. can be eliminated as missile threats by proper design

and/or by proper geometric layouts of valves, lines, etc. with respect to

endangered critical items. Similar persuasive arguments are lacking concern-

ing turbine blades, turbine rotor fragments, tornado-generated missiles, air-

craft, and other external vehicles. Hence, protection against this latter

class of missiles should be provided.

1.1.2 Internally-Generated Missiles

With respect to "internally-generated" missiles such as turbine

blades, turbine rotor disks, etc., it is understood that studies by GE,

Westinghouse, and the American Nuclear Society indicate that one must design

against this type of missile attack. The specific threat which must be

assumed in terms of geometry, mass, kinetic energy, etc., is currently under

discussion and study -- draft recommendations are being examined.

On a smaller scale, similar missile attacks occur in aircraft jet

engines. Because of fatigue, faulty seals and/or bearings, foreign object

damage, and other causes, aircraft jet engines exhibit failures of fan blades,

compressor blades and/or disks, turbine blades, and turbine disks. The

lighter less energetic fragments such as a single compressor blade or a single

turbine blade are usually (about 80% of the cases) contained within the engine

casing. However, the much heavier and more energetic rotor rims and rotor

disks always penetrate the casing of present engines. In order to develop

2



structural/mechanical concepts and methods of analysis to provide either

containment of such fragments or to divert them away from critical regions

of structure, fuel lines, etc., and to allow "fragment escape" into harmless

regions, NASA has been sponsoring a program of both experimental research

and theoretical analysis [81.

Under NASA sponsorship, a large spin chamber facility has been con-

structed at the Naval Air Development Center, Phila., Pa. This facility

permits engine rotors of various sizes from very tiny to about a 10-foot

diameter to be rotated at high rpm and to be failed. High speed photographic

equipment is used to view the resulting fragment attack upon and interaction

with various types of candidate containment or deflector structures [9-13].

Transient and permanent strain measurements of the fragment-attacked struc-

ture are also being made currently. These experimental studies have been of

(1) parametric effects and materials screening type and (2) a more detailed

and systematic study of structural response and fragment/structure impact

and interaction in order to provide data for checking prediction methods.

Since mid-1968, the MIT Aeroelastic and Structures Research Laboratory

has been developing for NASA methods for analyzing structural response to

engine rotor fragment attack. The results of those continuing studies are

reported in Refs. 14-22. Both finite-difference and finite-element methods

for predicting the large-deflection, elastic-plastic, transient structural

responses of two-dimensional, variable-thickness containment and/or deflector

rings have been developed and verified to provide accurate predictions when

these structures are subjected to known transient loads. During fragment

attack, the transiently-applied loads or impact-imparted increments of

velocity must be estimated in some rational way -- in this research two

different schemes have been used: (a) the collision force method which makes

use of the load-deflection behavior of the attacking fragment (this scheme

is called the collision force method CFM; Ref. 19) and (2) the collision-

imparted velocity method* (CIVM; Refs. 17,21,22). Both of these methods

have been used to predict the structural response of a containment ring to

impact from a single blade of a T58 turbine rotor as observed in NAPTC tests.

*

Only a preliminary version of this method was used; a more comprehensive
version is currently being explored and evaluated at the MIT-ASRL for problems
of sphere impact on 2-d structures.
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The CIVM scheme has also been employed to predict the response of a contain-

ment ring to attack from a T58 turbine rotor which was caused to fail into

3 equal-size 120-degree sectors. In these calculations, the changing kinetic

energy of each attacking fragment is followed, as is the kinetic, elastic,

and plastic energy in the containment ring.

It is apparent that analyses of this type could be used to make a

rational estimate of the reduction of kinetic energy of powerplant turbine

fragments as they rupture their metal casings and subsequently impact other

containment structure such as reinforced concrete walls and panels. It

should be noted that all of the cited MIT-ASRL calculations and comparisons

have involved metal containment/deflector structures; fragment attack upon

reinforced concrete has not been studied in that effort.

Recently the MIT-ASRL group has succeeded in developing the finite

element method for predicting the large-deflection, elastic-plastic transient

responses [23,24] of qeometrically-stiffened (ring and/or longitudinal

stiffeners) cylindrical and flat panels; this involves general three-dimen-

sional shell deformations. Definitive transient response experiments con-

ducted at MIT provided excellent data for checking the accuracy and reliability

of the prediction method. Excellent theoretical-experimental agreement was

achieved; ring-stiffened impulsively-loaded 6061-T6 aluminum cylindrical

panels were employed. This structural response prediction capability could,

if needed, be coupled with the fragment-impact CIVM analysis to provide a

means for predicting the response of a fragment-impacted structure; as noted

earlier, however, the adequacy of the CIVM model remains to be verified.

1.1.3 Externally-Generated Missiles

As noted earlier, Stevenson [3] has summarized some of the most

recent thinking concerning the assortment of tornado-generated missiles which

must be designed against. Concisely, these are typically:

Object Dimensions Weight Velocity Kinetic Energy (ft-lb)

Wood Plank 4"x12"x12' 200 lb. 250 fps 194,200
Steel Pipe 3"dxlO',Sch.40 78 lb. 200 fps 48,500
Steel Rod l"dx3' 8 lb. 170 fps 3,590
Steel Pipe 6"dx15',Sch.40 285 lb. 160 fps

Steel Pipe 12"dx15',Sch.40 743 lb. 150 fps 260,000
Utility Pole 13.5"dx35' 1490 lb. 180 fps 750,000
Automobile 20 sq.ft. frontal 4000 lb. 75 fps 350,000

4



These impact velocities and ratios of missile weight per unit front missile

area (end-on-impact) contrast sharply* with experimental data used to obtain

empirical estimates [4,5,25,26] of target penetration, perforation, and

spalling of reinforced concrete walls. Current work such as [6,7] should

aid greatly in remedying this deficiency.

1.2 Structural Response Considerations.

Recent papers by Lindermann et al [4], Williamson et al [5], Chelapati

et al [25], Doyle et al [26], Riera [27], Yang et al [28], Gwaltney [291, and

Ferguson [301, summarize current methods for sizing reinforced concrete panels

to resist missile attack. Three modes of behavior are considered: (1) per-

foration, (2) collapse (plastic limit), and (3) cracking. Although most of

the approaches advocated are fairly rational, there are many aspects which

involve very substantial uncertainties. The experimental data base cited

is of very dubious applicability, scope, and resolution. Various analysis

assumptions appear to warrant a more thorough examination and evaluation

against high quality pertinent experimental data before assurance of their

adequacy can be given. Recognizing this deficient state of knowledge,

Stephenson [6,7] and his colleagues under ERDA and EPRI sponsorship are under-

taking an extensive program of missile impact tests against reinforced con-

crete structures.

It should be emphasized that the present investigation is concerned

with structural response, not material or stress-wave response; impact-induced

stress-wave response can be addressed by computer codes such as HEMP[31],

HELP[321, STRIDE[33], and PISCES[34]. Thus, the structural response behavior

and analysis methods of concern apply to impact and structural response

situations in which the structural response mode of deformation rather than

penetration and/or spalling (scabbing) are present. Also, if one postulates

that penetration and/or spalling are to be prevented, it follows that the

structural response mode of deformation will be of dominant interest. First,

however, for a given missile attack, one must design the structure with thick-

ness and appropriate material sufficient to prevent penetration and spalling;

This is the case on either a dimensional or dimensionless basis; dense

projectiles with impact velocities substantially larger than those cited
in the above tabulation provide the data employed.
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designing additionally to avoid excessive structural response should provide

the desired structural integrity.

With respect to the various types of attacking fragments, some are

essentially "non-deformable" (steel rod, rotor disk segment) while others

are "marginally deformable" (thick-wall steel pipes), some are perhaps

shatterable/splinterable (planks and utility poles), and others such as auto-

mobiles and aircraft are (comparatively) readily crushable. Some tentative

means for accounting for missile deformability are included in the cited

method summaries. Rational bounds and uncertainties on the adequacy and

accuracy of these estimates appear to be lacking. Hence, a rather substantial

uncertainty exists concerning whether the resulting structural design is

adequate, inadequate, or grossly overdesigned.

The general purpose of the present research effort is to develop more

rational and accurate methods for predicting the structural responses of

various kinds of powerplant structures which are subjected to impact by (the

previously-cited): (1) internally-generated missiles and (2) externally-

generated missiles. However, since structural responses to internally-

generated missiles are being studied in other efforts [for example, 8-22,

35-38], attention is restricted herein to externally-generated missiles.

Chosen for its versatility and convenience, the finite-element method will

be used to analyze the response of the impacted structure; the present first-

stage in this study is concentrated, therefore, upon developing and verifying

the adequacy of the finite element analyses to provide accurate predictions

of the large-deflection transient response of the structure -- particularly

the transient strains. Further, to eliminate undesirable and burdensome

complexities at this stage, attention will be restricted to isotropic struc-

tural material; after method verification has been achieved, it will be timely

to include more complex material behavior.

For cases in which the attacking missile is essentially "rigid" compared

with the attacked structure, it is planned to use an updated version of the

collision-imparted velocity method [21,22] to predict the missile/structure

impact-interaction response. In the case of deformable missiles, it is

expected that both the attacked structure and the missile will be represented

by suitable finite-element models.

6



1.3 Synopsis of the Present Study

This being the initial phase of the projected study, attention is re-

stricted to developing the finite element analysis to predict transient

strains reliably for large-deflection elastic-plastic structural response,

while minimizing computing costs and related complexities. Accordingly,

only two-dimensional straight and curved beamlike structures have been

analyzed; the deformations of these structures occur essentially in one plane.

In particular, the present work represents a logical extension of work in

[17] to include now (a) a more comprehensive strain-displacement relation,

(b) an improved rigid-body-mode representation, and (c) additional generalized

degrees of freedom in order to obtain a better and/or more efficient strain

description in each finite element. Some illustrative calculations with

some earlier formulations revealed some anomalous behavior and deficiencies

which steps (a), (b), and (c) seek to remedy.

Further, since attention is centered upon the finite-element analysis

adequacy for the deforming structure, predictions are compared with each

other and with experimentally observed transient structural response of an

impulsively-loaded beam (not subjected to impact). This experiment involved

a clamped-ended beam of well-known material and geometric properties subjected

to well-defined uniform impulsive loading applied over a spanwise portion

centered at the midspan of the beam.

Having utilized these studies to select the most promising and efficient

of the finite-element versions studied, an example calculation was carried

out to illustrate the predicted vs. experimental transient response of a

clamped-ended 6061-T651 aluminum beam (nominal: span = 8 in, width = 1.5 in,

thickness = 0.100 in) subjected to "midspan impact" of a steel sphere travel-

ing at about 2900 in/sec. No further predictions of structural response to

missile impact are included in this report; the ongoing effort will take

into account other types of missiles and targets, and these results will be

given in a future report.

Section 2 contains a review of the finite-element (FE) assumed-displace-

ment formulation and solution process for transiently-loaded structures;

this includes the conventional FE formulation, an unconventional FE formula-

tion, and a description of the timewise solution process accounting for large

deflections and elastic-plastic behavior. Section 3 contains a discussion

7



of the formulation of various types of assumed-displacement finite elements

for straight- and cuved-beam type structures. An evaluation of the predic-

tion capabilities and limitations of these elements via comparisons with

each other and with pertinent experimental data is given in Section 4. Also

included in Section 4 is an illustrative preliminary prediction of the

response of a clamped-ended beam subjected to impact by a steel sphere.

Section 5 contains a concise summary of the present study.
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SECTION 2

REVIEW OF FINITE ELEMENT FORMULATION

AND SOLUTION PROCESS

2.1 Introduction

The governing equations of motion for the finite element analysis of a

structural continuum which undergoes transient large-deflection elastic-

plastic behavior are developed most conveniently and systematically on the

basis of a variational formulation. In particular, for the assumed-displace-

ment version of the finite element method, the use of the Principle of Virtual

Work together with D'Alembert's Principle provides an effective and appropriate

framework [17,24,39-42]. References 17, 24, and 39-42 may be consulted for

detailed derivations of various finite-element formulation versions; hence,

only a brief description of the main aspects following [17,24] are repeated

here.

For present purposes, let the deforming continuum be described in the

Lagrangian sense -- all pertinent quantities are defined consistently with

reference to the initial undeformed state. Further, the method of initial

strain [17,43,44] rather than the tangent modulus method [45,46] is employed

to accommodate material elastic-plastic behavior, because of its superior

convenience for transient response problems.

In the following the equations which govern the large-deflection transient

responses of a solid continuum are reviewed concisely following the presenta-

tions in [17,24]. For generality and clarity, the equations are presented in

general three-dimensional tensor form. Indicial notation and the summation

convention associated with vector and tensor analysis are used; index quanti-

ties using Latin miniscules range over the values 1, 2, and 3. Later these

equations are specialized to treat both straight-beam and curved-beam struc-

tures.

The terminology "large deflection" as used here indicates that the lateral

deflections of the structure (beam, panel, etc.) are large compared with the

thickness dimension of the structure; the change of geometry is significant.

Through the strain-displacement relations and the equilibrium equations, the

geometric nonlinearities are introduced into the theory. One should note,

however, that in the present analysis the strains are assumed to be small

compared with unity.

9



Following [17,24], consider a deformed continuum in equilibrium under

the action of body forces, externally-applied surface tractions, and with

arbitrary deformation conditions consistent with the prescribed geometric

boundary conditions. Let this equilibrium configuration be subjected to an

arbitrary and independent set of infinitesimal virtual displacements without

violating the prescribed geometric boundary conditions. The Principle of

Virtual Work states that the virtual work, W, done by the external forces

(body forces and surface tractions), is equal to the virtual work, U, of

the internal stresses, i.e.,

S X W7- 0 (2.1)

where

S = S V (2.1a)i dV

V fB= 3 z b dV ± S X d A (2.lb)

In this equation, S ij is the Kirchhoff stress tensor (based on a unit area

of the undeformed state), B i is the body force (inertia, gravitational,

magnetic, etc.) per unit mass, Ti is the externally-applied surface tractions

(measured per unit area of the undeformed state), Yij is the Lagrangian strain

tensor, the ui are the displacement components, p is the mass density in the

original undeformed state, and only displacement variations (6) are permitted.

All pertinent quantities are described consistently with respect to a curvi-

linear coordinate system (termed Lagrangian coordinates) . Also, the

integrations extend over the entire undeformed volume, V, of the continuum

which is bounded by the undeformed surface (area) A. The boundary surface A

may be divided into a prescribed-surface-traction boundary, A , and a pre-

scribed-displacement boundary A (Fig. 1).

By employing the concept of D'Alembert's Principle, the body forces pB1

may be regarded as consisting of D'Alembert inertia forces (- pu ) and other

body forces pf1 (gravitational, magnetic, etc.). Thus one may write

10



+fOf i + P (2.2)

where (') denotes partial differentiation with respect to time t.

The nonlinear relation between the Lagrangian strain tensor and the

displacement components may be expressed as

2 iz~j + j) + u U(2.3)

where ( ) i denotes covariant differentiation with respect to J using the

metric tensor of the undeformed state. Then, the variation in the strain

tensor associated with the displacement variation about the deformed equili-

brium configuration may be expressed as

a
where 6a is the Kronecker delta.

1

It should be recalled that this basic variational formulation, the

Principle of Virtual Work, holds independently of the material stress-strain

relations and the possible existence of potential functions of the external

forces. Also, it embodies the equation of equilibrium of the continuum

(overall and/or at any generic point):

Si (g + , j + f ,P (2.5)

and the prescribed surface traction boundary condition on A =

js (via + IL~ a) >1j = } (2.6)

where n. is the component of the unit outward normal vector to the undeformed

boundary surface.

In the finite-element-analysis method, the entire domain of the continuum

is subdivided into a finite number of regions called "finite elements" or

"discrete elements", each having a finite number of "nodes" as control points

11



(see Fig. 1). These nodes are usually located at the boundary of each element

but may also be in the interior region of the element. The behavior of the

actual continuum which has an infinite number of degrees of freedom is thereby

described approximately in terms of a finite number of degrees of freedom at

each of the finite number of nodes since the generalized displacements within

each finite element are expressed in terms of (a) such variables called

"generalized degrees of freedom" (q) which are defined at the node points in

conjunction with (b) suitably-selected interpolation functions to describe

the distribution of each quantity throughout the interior of each finite

element. Applying this approach within the framework of the Principle of

Virtual Work and D'Alembert's Principle results in a finite-sized system of

second-order ordinary differential equations. The unknowns in these equa-

tions are the generalized degrees of freedom at each node of the complete

assembled discretized structure (or continuum).

Although many different kinds of finite-element models exist (that is,

displacement, equilibrium, hybrid, mixed, etc., -- see Ref. 47 for example),

the assumed-displacement type of finite-element formulation or model has been

chosen for development to analyze the present class of nonlinear transient

response problems. A parallel study, of course, could be carried out by using

perhaps each of the other types of finite-element models -- and the relative

merits of each could be assessed; such an undertaking, however, is beyond

the intended scope of this study.

In the assumed-displacement-type of finite-element analysis, the general-

ized displacements constitute the primary variables. Hence, one selects

appropriate interpolation functions "anchored to" control-point values which

are the nodal generalized displacements. In choosing appropriate interpola-

tion functions for each finite element to be used in the assembled finite-

element array, one should take into account certain "sufficiency conditions"

which will insure that the finite-element solution will converge to the exact

solution as the continuum is more and more finely subdivided; this matter is

discussed in Subsection 3.3.

Let it be assumed that the continuum or structure being analyzed has

been subdivided conceptually into n finite elements. Then, one may write

Eq. 2.1 as the sum of the contributions from each of the finite elements as

follows:

12



±= (sW)S (2.7)

where for any element n:

(l)- J S j X Vj (2.7a)

(SW) p (-U+ f SdV+ T gu dA (2 7b)

In Eqs. 2.7a and 2.7b, V is the volume of the nth discrete element, and An n
is the portion of the surface area of element n, over which the surface

i
traction T is prescribed. Both V and A pertain to the initial undeformed

- n n
configuration. The summation, , extends over the n elements of the continuum.

If one chooses for each element an assumed displacement field of the

form:

(2.8)

where Ni(J) is an appropriately assumed interpolation function expressed

in the coordinates iJ of a generic point within the element, and {a(t)} repre-

sents a set of undetermined independent parameters which are function of

time only, it follows that the nodal generalized degrees of freedom which

are the nodal generalized displacements, {q} are defined in terms of the

local coordinate system of each element and can be obtained by substituting

the coordinates of the nodal points into Eq. 2.8. Accordingly, one may

write

{So= iX1 {M} (2.9)

If one takes the same number of displacement parameters as the nodal general-

ized displacements, the transformation matrix [GI is a square matrix. By

inverting Eq. 2.9 for {a} and then substituting into Eq. 2.8, one has
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where

[[,)~ (~J) J= 0a-6 (~ J) l [GA -[ (2.10a)

Because N (J) and [G] are a priori chosen functions expressed in the 

coordinate only, they are not subjected to variation; hence,

o = LU J{ J 8 (2.11)

Also, the time derivatives of Eq. 2.10 becomes

it = LLL U 1{ , (2.12)

By using Eqs. 2.3 and 2.10, one may obtain the corresponding strain yij

at any point in the element as a function of position and the nodal general-

ized displacements as follows:

`j= lLiX1{ 4 L 1 Da L-DiJ {i (2.13)

It follows that

6 ";j = in, 1 L31 IDd 9 \i93j, t { (2.14)

a
where D.., D,i' and D are the appropriate associated differential operators

which include both small and large deflection effects and which may be

expressed symbolically in the form*

L Lj D aJ (2.15)I= LL

Explicit examples are given in Section 3.

Explicit examples are given in Section 3.
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Employing Eqs. 2.10 through 2.15, Eqs. 2.7 becomes

ELSqi(fV {DiJ 5} dV +j fDaj LD i SJ JdV{}

nia~U } - { UXbA' +{u}p LU]2 0
h ,ofTij fVI -f iJTia (2.16)

where subscript "b" is used to signify that the {U.i are evaluated along the

element boundaries.

Equation 2.16 is a convenient finite-element form of the Principle of

Virtual Work and D'Alembert's Principle, from which one can write (a) an

unconventional form or (b) a conventional form of the equation of motion;

these forms are presented separately in Subsections 2.2 and 2.3, respectively.

2.2 Unconventional Formulation

Equation 2.16 may be written more compactly as follows representing a

so-called "unconventional formulation":

zI L621(Lm1 { { + -{ f)=o (2.17)

where the following are evaluated for each finite element:

[] = J {U6jpLp dV (2.17a)

{F}=D II Jvm V 91(2.17b)

[h-JVr { LD'J . L ¾ Sj dV (2.17c)

{ Jp i JU;j f dVJ { U T dA "(2.17d)
jV + U T b" An~~~~~~~~~ ~
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Note that {p} and [h] involve stress information throughout the undeformed

volume of each finite element.

Since the element nodal generalized displacements {q} for different

elements are not completely independent, a transformation is required to

relate the element nodal displacements to independent global (or common)

nodal generalized displacements {q*} for the discrete-element assemblage by

f93= [=Jl{iq#? 9(2.18)

The quantity [J] includes the effect of transferring from local coordinates

for each individual element to global reference coordinates for the system

as a whole.

Applying Eq. 2.18 to Eq. 2.17 to describe the system in terms of the

independent global generalized displacements {q*}, one obtains:

AL S6j (L i$3+P + hit (2.19)

where

Lim]= X T ] t 4 (2.19a)

r S 3 LJV1' Fi (2.19b)

[Kh1= LJTI thi¶YJ (2.19c)

_j3 rj 2 l A(2.19d)
Performing the summation in Eq. 2.19 and because the {5q*} are independent

and arbitrary, the following unconventional equations of motion are obtained

for the complete assembled discretized structure (or continuum):

[M~ija~jiipi {H0S |=~; (F? (2.20)
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where [M] is the global mass matrix, [H] {q*} represents "forces" associated

with large deflections (nonlinear terms in the strain-displacement relations)

and plastic effects , {P} represents internal elastic forces, plastic forces,

and some plasticity effects associated with the linear terms of the strain-

displacement relations+, and {F} represents the generalized nodal load

vector accounting for externally-applied distributed or concentrated loads

(see Eq. 2.17a). In terms of element information, [M], {P}, [H], and {F},

may be expressed as:

I·
/v ·J

i.2

_Q (2.20a)
e/v{ P--- { '. '' (2.20b)

(2.20c)

{ F } { fz f .nu f 4 (2.20d)

2.3 Conventional Formulation

The conventional form of the equations of motion corresponding to Eq.

2.20 may be obtained by applying Eq. 2.18 to Eq. 2.16 and by replacing the

stress tensor S in Eq. 2.16 by the following expression in terms of the

strains k (via the stress-strain relations and the strain-displacement

relations):

17
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See Ref. 17, page 50.



( kQ

{ LSii{DCA Lcj{8}2 t)
(2.21)

where EijkZ consists of elastic constants and )kg represents the components

of the total plastic strain (or other given initial strain such as thermal

strain, etc.). Applying Eqs. 2.18 and 2.21 to Eq. 2.16 one obtains:

L¾I #A (L[ ]{4* } +± t{ ff [_ fNL fL - {,,)L

(2.22)

where

{ NL LJ7(-J |DLt Lk L9 3 TLA Dc2 L I {qZ]dV

j{L LI)7Lj t C
I NL> I IT

(2.22a)
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Performing the summation and because the variation {6q*} can be indepen-

dent and arbitrary, the following conventional equilibrium equation is

obtained:

WL 5L ML

L i 9 g{ | )iM }ti 3 iF } (2.23)

where [M] is the global mass matrix, [K] is the usual global stiffness

matrix (for :Linear-elastic small deflection behavior), {F} is the generalized

nodal load vector representing externally applied distributed or concentrated

loads, {FN L } represents a "generalized loads" vector arising from large
q

deflections and is a function of quadratic and cubic displacement terms,

{FL} and {F NL are the generalized load vectors due to the presence of
P P

plastic strains and are associated, respectively, with the linear and non-

linear terms of the strain-displacement relations.

Equation 2.23 represents the so-called "conventional" formulation of

the equation of motion for nonlinear responses, where the large deflection

and plastic effects are taken into account through the use of generalized

(or pseudo) loads which are functions of plastic strains and displacement.

2.4 Timewise Solution of the Governing Equations

Given a set of initial conditions {q*} and {q*} at time t=0 and the

proper boundary conditions, one may solve the system of second order differ-

ential equations represented by:

(a) Eq. 2.20: Unconventional Form

or

(b) Eq. 2.23: Conventional Form

in a step-by-step timewise fashion by using an appropriate finite-difference

time operator.

Various timewise integration operators have been devised and can be

divided conveniently into two types; one is of the explicit type (the central

difference operator, for example) and the other is of the implicit type (for

example, the Newmark operator, the Houbolt operator, etc.). If an implicit

operator were used, an iterative solution of the nonlinear dynamic equations

would be necessary, in principle, at each time step. This may require an

excessive amount of computing time and cause the method to become impractical.

However, the use of (a) an extrapolation method, (b) an explicit operator, or
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(c) an implicit operator in conjunction with an explicit operator (predictor-

corrector method) can be used readily. Some of these operators introduce

artificial (false) damping, whereas others do not exhibit this undesirable

feature. Also, almost all of these operators produce a phase-shift error

in the predicted responses and the magnitude of this error depends upon the

size of the time increment, At.

The selection of a suitable time increment size in the direct integra-

tion scheme is governed by (a) the stability criterion -- the condition under

which the exponential error growth will be bounded, and (b) the convergence

requirement -- the closeness of the temporal discretization solution

to the exact differential solution as the timewise discretization mesh

decreases. Although the criteria for stability of each of the commonly used

time integration operators have been established definitively when applied

to a linear dynamic system, no similar assessment is known to have been made

for these methods when applied to nonlinear structural response problems

involving large deflection and inelastic material behavior. Various of

these methods, however, have been applied to such problems -- with At values

guided by the stability and convergence behavior of a corresponding linear

dynamic system as an initial selection; numerical experimentation then sub-

sequently can provide the suitably small At to insure stability and conver-

gence. Numerical experiments involving nonlinear large deflection transient

responses of structures such that increased stiffening from geometric large

deflection effects occurs, have shown that the "critical At" of a condition-

ally stable operator is smaller than for the linear case; further, all of

the operators (thus far studied) which are unconditionally stable for the

linear system become either conditionally stable or at least provide degraded

(grossly inaccurate) solutions for the nonlinear problems if the time step At

is too large [17,24].

Studies reported in Ref. 17 using both the unconventional and the con-

ventional formulation for large-deflection elastic-plastic transient response

problems indicate excellent agreement between predictions from these two

formulations; in those comparisons the conditionally-stable explicit 3-point

central-difference time operator was employed. However, it was noted that

the unconventional formulation is much simplified compared with the conventional
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formulation, and also requires less computer storage and fewer manipulations.

In view of these advantages, it was decided for the purposes of this present

study to employ only the unconventional formulation in conjunction with the

central-difference time operator. Accordingly, the associated timewise

solution process is described in the following.

2.4.1 Solution Process

Equation 2.20 is to be solved at a sequence of instants in time

At apart by employing the following explicit, conditionally-stable, central

difference, finite-difference time operator approximation for the accelera-

tion '- at time t :
m

qIn,, (24, ) 9rm- I 3- o~at)' (2.24a)

where O(At) means that this finite-difference approximation has a trunca-

tion error of order (At)2. Also, one may approximate the velocity &m at

time t by:
m

2 (A t) (2.24b)

At time instant t the equations of motion (Eq. 20) become:
m

M] i j$ 3 ± P Lit HXi i ' 4E _ (2.25)

In Eq. 2.25, all quantities, in general, except [M] change with time. If

the solution of Eq. 2.25 has been obtained for earlier times, one can

compute {q*}m from Eq. 2.25 and then obtain {q*}m+l from Eq. 2.24a.

Assuming that at t=0 the structure is in a known condition {q*}o=0

and {q*} -{a}, for example, one can readily obtain {q*}l at t=mAt for m=l

from the following Taylor series expansion:

{ {I 0 + I4bt+ { j(At)4 (At) (2.26)
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since {F} is prescribed and all other quantities are known.

In the timewise step-by-step solution process involving large-deflec-

tion elastic-plastic transient responses, P} and [H] change with time and

hence must be reevaluated, in general, at each instant in time. These

quantities in turn are composed by assembling the contributions {p*} and
m

[h*] from each finite element; see Eqs. 2.17b, 2.17c, 2.19b, and 2.19c. It

is seen that these quantities involve volume integrals of information involv-

ing the stress state S . In practice, these evaluations are carried out by

appropriate numerical integration -- usually Gaussian quadrature.

At any instant in time t (m=0,1,2,...), one needs to solve Eq. 2.25

for {q*} , which is of the form:
m

[lv] iX (+) 

M]1

{x(t) }
m

{b(t)} is
m

In principle, one

Eq. 2.27 by [M]

b(t)I
on

for M = 01) 2... (2.27)

is a known banded positive definite symmetric

matrix (the mass matrix for the restrained or

unrestrained structure, whichever case is being

treated)

is a vector of unknowns which must be determined

by solving Eq. 2.27

is a known vector (representing all terms except

[M] {q*} in Eq. 2.25)
m

can always form the inverse matrix [M] and pre-multiply

to obtain

[X Il|X )) - I1 )

which results in the solution:

x(t)ce jM b(l (2.28)

since [M-] [M] = [I] where [I] is the unit diagonal matrix. However, it has

been found that independent of the number of time instants at which one wishes

to solve Eq. 2.27 such a procedure is not as efficient as is the Choleski

method [48].
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Briefly, the Choleski method involves factoring the matrix [MI to form

a lower triangular matrix [LI and an upper triangular matrix (which is the

transpose of the former) such that [M] = [L] [L]T where [LIT is the transpose

of [LI. Thus, Eq. 2.27 may be rewritten as

[LILL t)} = Ib(t)1 (2.29)

Next, form an intermediate matrix {y} which is defined as
m

y i [ L ] ix(&t) A (2.30)

From Eqs. 2.29 and 2.30, it follows that

LI iu' tb(t)} (2.31)

At each time instant, one solves Eq. 2.31 for {y}m very readily because [LI

is a lower triangular matrix. One then solves Eq. 2.30 for {x} very rapidly

also by algebraic back-substitution.

The following gives a concise step-by-step description of the typical

problem formulation and solution process.

Starting from a set of given initial conditions at time t = to = 0 on

the generalized displacements ({q*} = {01, for example) and the generalized

velocities {q}1, one can solve Eq. 2.25 for {q*}o at time t and then employ

Eq. 2.26 to compute {q*}l. A slightly different but similar procedure is

then used to advance the solution in successive time increments At. The

process involved in using the finite-element method and the present timewise

solution procedure follows (see the information flow chart of Fig. 2):

Step 1: Construct the mass matrix [m] for each finite element and then

assemble these contributions according to Eq. 2.20a to form the mass

matrix [M] for the complete assembled discretized structure. This

[M] represents the "final" mass matrix if the stucture has none of

of its generalized displacements constrained (that is, held equal to

zero, for example); however, if such constraints exist, one forms

a reduced or constrained mass matrix (and, in fact, a reduced set
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of the equations of motion) by deleting the rows and columns of

[M] associated with those generalized displacements which are

prescribed to be zero.

Next, this constrained mass matrix is factorized to consist of a

lower triangular matrix [L] and an upper triangular matrix [L]

according to the Choleski scheme:

[My LIt\T (2.32)

Since [M] does not change in value with time as the transient

structural response proceeds, one needs to determine [L] and

T
[L] only once -- these quantities need not be re-evaluated

at each time step of the calculation.

Step 2: The prescribed externally-applied transient forces can be

employed to calculate the generalized applied forces {f*}

acting on each discrete element at each time instant t of
m

interest. These, in turn, can be assembled according to Eq.

2.20d to form the assembled applied-loads vector {F*} for the

complete assembled discretized structure.

Step 3: Assuming that at zero time (t = 0), the generalized displace-

ments {q*} = 0, the generalized velocities are nonzero {q*} = {a},

and that nonzero external forces {F*} are present. In this case,
0

Eq. 2.25 becomes

1l iq] = i to = o(2.33)

or

[0 j [ T {9X} =I F (2.33a)

from which one can calculate {q*} by using the earlier-described

Choleski scheme. Then from Eq. 2.26 one obtains
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ti = 2}{(\){ I} + At (2.34)

where

{~L S9i~~iA~ 1' }0 (2.35)

i *'} tO } - prescribed initial generalized

velocities (2.35a)

Also,

f 5J {l i J {At5 }I (2.36)

For this case, however, it has been assumed that {q*} = {}.
0

Thus the displacement configuration {q*}l at time t = t + At

is known.

Step 4: Knowing the generalized nodal displacement increments

q*} {q*}L - {q*} and the generalized nodal displacements

{q*}l at time t, one knows also the unstarred individual

element quantities {Aq}1 and {q}1 via Eq. 2.18. Hence, one

can calculate the strain increment (Ay ij) developed from

time to to t at every Gaussian station (or point) required

over and depthwise through each finite element from Eq. 2.13:

(Anij)l - (Xxj~l - (Y j.

tL ;j2ltq},l·: l DQln··II·3 nj 2 Ul~l{Da L I (2 1 .3)
(2.37)

With a knowledge of (a) the stresses at t = t - At, and (b)

the strain increment (Ayij) 1 one can determine the stress

increments (AS )1 and the stresses (S )1 at time t at each

Gaussian station by using the pertinent elastic-plastic stress-
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strain relations, including the yield condition and flow rule

(this matter is discussed in detail in Subsection 2.4.2).

Step 5: Next, one can calculate {P}1 and [h]1 for each individual

finite element by using Eqs. 2.17b and 2.17c, respectively.

Assembly of this information according to Eqs. 2.20b and 2.20c,

respectively, provides {P}1 and [H] 1. Since the prescribed

generalized force vector {F}1 is available from known {ffl

information, the equation of motion, Eq. 2.25, at time instant

t1 becomes:

[u~jii'}, jF }-~, jFA - L iJ4V { , (2.38)

In the interest of minimizing computer storage and the number of

manipulations, one first forms for each individual element {b }1

({f} - p} - h] {q})l' Then one forms the right-hand side vector

of Eq. 2.38 by

AT. i b .b. b , (2.39)

For clarity of discussion, however, the form of the equation

represented by Eq. 2.38 is used here.

Step 6: Since the right-hand side of Eq. 2.38 is now known, one can

use the Choleski scheme to solve the following equation for the

acceleration {q*}l:

LL]IL]{,- -(F{F - [J{i '}a (2.39a)

Step 7: With {q*} now known, one can calculate the generalized dis-

placement increment {Aq*}2 from Eq. 2.24a as

n, 9}2 i 3, }IE t I+ (2.39b)
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where

~~{ ~} { }2 { ~ihfqL 3,(2.40a)
{1A9 }I = -I {ioj }(2.40b)

Thus, from Eq. 2.40a one has

{q9 j 9 37I5 I + { AX }a(2.41)

The process then proceeds cyclically from Step 4 onwards for as

many time steps as desired.

For the central-difference time operator applied to a system of equa-

tions such as; Eq. 2.20 or Eq. 2.23, it has been shown [49,50] that At must

be less than or equal to 2/w to avoid exponential growth of error (round-
max

off, truncation, gross) where is the largest frequency embedded in the
max

mathematical model of the system. The criterion At < 2/w must be satisfied
max

for a linear dynamic system such as that involving small-displacement linear-

elastic behavior. However, for nonlinear large-displacement elastic or

elastic-plastic behavior, numerical experimentation [17, for example] has

confirmed that a smaller At is usually required to avoid this instability.

As a rough guide one may try At < 0.8(2/w ) as an initial selection; if~~ max
this value is not small enough, the calculation will blow up (overflow)

before many time steps have elapsed -- this behavior will be readily apparent.

In such a case one must choose a smaller time increment At.

2.4.2 Evaluation of Stresses and Plastic Strains

There are two types of common plasticity theories, termed "flow"

and "deformation" [43,51]. The deformation theory of plasticity assumes

that, as in elasticity, there exists a one-to-one correspondence between

stress and strain. The flow theory of plasticity states that there is a

functional relation between the incremental stress and the incremental

strain. Only for proportional loading where the stress ratio remains con-

stant, and for a certain restricted range of loading paths other than
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proportional loading [52] (through the assumption of the possibility of

singularity in the yield surface) does the deformation theory agree with the

flow theory. In order to include the capability to analyze general loading

paths including loading, unloading, and cyclic loading, the "flow-type"

theory will be incorporated into the present analysis.

The behavior of a general elastic-plastic material can be characterized

by the following two ingredients. First, assume the existence of a boundary

(yielding surface) in stress space which defines the elastic domain. Within

the boundary the continuum deforms elastically. Only at the boundary, the

onset of plastic flow (irreversible deformation in a thermodynamic sense) is

possible and no meaning is associated with the region that is beyond the

boundary. Second, one employs a flow rule which describes the behavior of

the material after yielding has started; it gives the relation of plastic

flow (strain increments) to the stress (or stress increment) and the loading

history.

Another basic assumption in the theory of an elastic-plastic continuum

is the introduction of a plastic strain tensor. The plastic strain tensor,

ij is assumed to have the same invariance properties as does the Lagrangian

strain tensor, yij The quantity .ij is related to yij by an elastic strain
e 1) 1J

tensor Yij' in the form [531:

4-ij = .2 + Mu ~~~(2.42)

No kinematic meaning is given to yeij and Y, but only their sum, Y is

related to displacements by Eq. 2.3.

Various yield criteria and flow rules have been suggested for the pre-

dictions of the onset of plastic flow and the relation among plastic flow,

stress, and stress history [43,51]. Among them is the Mises-Hencky yield

criterion and its associated flow rule which usually show close agreement

with experimental observations and yet is mathematically simple. The Mises-

Hencky rules will be adopted in the present analysis.

The Mises-Hencky yield criterion may be interpreted physically as

"yielding begins whenever the distortion energy equals the distortion energy

at yield in simple tension". Thus, hydrostatic pressure, for an isotropic

material, (tension or compression) does not affect the yielding, plastic flow,
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and resultant hardening. Stated otherwise, no plastic work is done by the

hydrostatic component of the applied stress. This implies that there is no

plastic (or irreversible) change in volume. Thus,

(ti) O or 0 (2.43)

Spwhere (yij) is the spherical plastic strain-rate tensor. For an initially

isotropic material, the Mises-Hencky yield function can be written in the

form

' I _3 X (2.44)

where (S S a 

2 (2.44a)

(Si )D is the deviatoric stress tensor of Si in mixed
) j

component form.

a is the yield stress in simple tension.o

The associated flow rule can be expressed as-2 * (5). (sJ (2.45)
where ()DP is the deviatoric plastic strain-rate tensor and X is a real

non-negative scalar quantity.

For certain materials, the yield surface will change in case of con-

tinued straining beyond the initial yield. The change of the yield surface

(called subsequent yield function) that characterizes the strain hardening

(or work hardening) behavior of the material depends on the loading history.

In the present: analysis, the strain-hardening behavior of the material will

be accounted for by using the well-known "mechanical sublayer model" [54,55,

56]. A useful feature of this model is the inclusion of kinematic hardening

and the Bauschinger effect. In this model, the material at any point is con-

ceived of as consisting of "sublayers"; each sublayer behaves as an elastic,
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perfectly-plastic medium, having a common strain and a common elastic modulus

but appropriately different yield stresses. For the sake of the present

report's being self-contained and for the reader's convenience, this model

will be described in detail in Appendix A.

For some engineering materials, the uniaxial stress-strain curve of

dynamic loading tests will usually be different from those of static tests.

The yield stress frequently increases with the increase of strain rate. How-

ever, this strain-rate effect arises in a less understood fashion.

One of the simple methods for approximating the strain-rate effect

and which is in good agreement with experiments on certain types of common

metals and alloys is to assume that the uniaxial stress-strain curve is

affected by strain-rate only by a quasi-steady increase in the yield stress

above the "static" test yield stress and that the elastic deformation is

independent of strain rate. The increase in the yield stress under strain

rate may be expressed in the following simple form [57]:0 = :° ( \1 + D l F )(2.46)

where

a is the static yield stresso

£ is the uniaxial strain rate

D and p are empirically-determined constants for the material

a is the yield stress under £
y

A convenient way to compute the stress increment and/or plastic strain

increment at any station (such as Gaussian, for example) in each element at

time t+ 1, as discussed in Ref. 58 will be presented. Also, because the

"mechanical sublayer material model" is adopted, the only constitutive rela-

tion utilized is that for a homogeneous, initially isotropic, elastic,

perfectly-plastic, strain-rate dependent solid; strain hardening is automati-

cally accommodated by this model which includes kinematic hardening and the

Bauschinger effect.

It is assumed that all stresses and strains are known at time t andm.
that all displacements are known at time t 1. To find the stresses (SI)

m+l
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i
at time t 1, one begins by assuming that the strain increment (Ay.)m+l from

time t to time t+l as calculated by Eq. 2.41, is entirely elastic, and a
m+l

trial (superscript T) value of stress increment is calculated from the follow-

ing relation:

(As -)7 1- 3 '3 1-29 (2.47)

where E is Young's modulus, is Poisson's ratio and 6. is the Kronecker

delta. Hence, the trial stresses at time t+l are given by

~( J )mT w( S.)mt t(2.48)
J ( f =()+ j(V+1

Then a check is performed by substituting this trial value of the stress into

the Mises-Hencky yield function, of Eq. 2.44, to determine whether or not

the trial stress state lies inside of the yield surface. Thus one may write

T T \T fIjk\T \T I z
i =,+ { ( ) +l ( 15 L t 3 ( 3 (2.49)

where a is te appropriately known uniaxial yield stress of a given mechanical
Y

sublayer of the material-behavioral model.
T

If $T < 0, the trial stress state lies within the elastic domain
m+l -

bounded by the yield surface or lies exactly on the yield surface. Therefore,

for this time step there has been no plastic flow and the actual stress incre-

ments did, in fact, arise from wholly-elastic behavior as initially assumed

in the trial examination. Hence, the actual stress (S )m+ is equal to the

trial stress; thus,

ad j ) nt sl nt (2.50)

and the plastic strain state has not changed from the previous time instant:

( /() (2.51)
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T
However, if T > 0, the trial stress state lies outside of the yield

m+l
surface (i.e., in the undefined region). Therefore, the trial assumption

that the entire strain increment is an elastic-strain increment is not valid.

Plastic flow has occurred within this time step and the actual stress state

must lie on the yield surface according to the theory of perfect plasticity;

then the calculation proceeds as follows. The total strain increment may be

decomposed into elastic and plastic components

A( X6Dtnl (Ax +)( + (/\4)m l (2.52)

Since the material is assumed to be incompressible with regard to plasticity

and by the flow rule Eq. 2.45, one has the following relation in finite-

increment form:

(MJ)mt (A )P ( 7) 5Ž (2.53)

where (Ayi)DP is the deviatoric component of the plastic strain increment, AX

is a real non-negative scalar quantity of proportionality and (S.) represents

the deviatoric stress component of an appropriate stress state between time
i D

t and time t+. One may approximate (S.) by using the deviatoric stress
m m+l iD
component of either the stress state at t , (S.) , or the yet to-be-determined

iD m jm
stress state at t +1, (S) +l or any intermediate state between the two such

+l' j m+l.
as the trial stress state, (S )+ adopted in Refs. 58 and 59. For infinitesi-

j m+l
mal incremental changes between two states, these approximation would not

lead to any significant differences of the predictions among one another.

However, for finite (or large) incremental changes, the use of (S.) has been
iDT j

found in Ref. 60 to be more accurate than using (S)m+l for states of two-

dimensional stress. Therefore, the present analysis will employ the relation

(Cn t s tr e (2.53a)

Consequently, the stress increment from time t to t ism m+l
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I + 1k - )_+ -) d S." - t, L\ (2. 54)
1-23 k 

(AS]). 4,- L J )(A :
m W1 41 1+3 .H Yn+ I

and the actual stress at time tm+ is
ma+l

=SJ ) - AS ):: IsI) A+ (s) (S5 A 7 (2.55)3/vrt 3·~

The plastic strain at time t ism+l

t-
c s 2D

(2.56)

The quantity AX and AX*(- AXE/1+V) in Eqs. 2.55 and 2.56 can be determined
i

from the fact that (S +) must satisfy the yield condition:

Z 2
+,-Lt 3 S W41 3 y (2.57)

Substituting Eq. 2.55 into Eq. 2.57 and solving for AX* one obtains the

physically valid value

C
(2.58)

B+ VBZ -A C

A= (sj (S')

B= (S

C-= T
-n +1

) T

t'

I Ls k J> i3 0( )A2

5 
3 ± ( + ( S k k <

(2.58a)
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and the following requirements must be satisfied:

B2 -AC 0O

B+ iB2-Ac > 13±4BKAC> ~~~~~~~ (2.58b)

The preceding discussion has pertained to the use of elastic, perfectly-

plastic rate-independent material whose uniaxial yield stress is a - O,

the static value. If the yield stress is rate dependent, the same procedure

applies except that the yield stress in Eqs. 2.49 and 2.57 is the strain-

rate dependent yield stress. It perhaps should be noted that the strain-

rate dependence relation as expressed by Eq. 2.46 is valid, strictly speak-

ing, only for the uniaxial behavior. To generalize this rate dependence

equation to three-dimensional behavior, various expressions for E have been

proposed [58, for example]. One such suggestion is to replace C by the

second invariant of the deviatoric strain-rate tensor; thus

&~x =IL % 3 ( ( 6k)] (2.59)

where the strain-rate components y are given by = (Ay /At).

During the operation of the solution process for intense loading

problems, instances of larger strain increments can occur which sometimes

may lead to an imaginary (or negative) value of AX; that is, the conditions

of Eq. 2.58b are violated. Since the time-step size for that particular

instance cannot be economically reduced, a subincrement procedure to circum-

vent this difficulty as discussed in Ref. 61 can be and is used. Although

the flow rule is strictly valid only for incremental changes of differential

size, if it is employed during a finite-time increment, then it may also be

used to relate changes which occur over a fraction of that time increment.

Hence, the basic finite-time increment, At, is divided into a number, say L,

of equal subincrements; the size of the subincrements is chosen to be

sufficiently small so that a positive real value of AX for each

subincrement-can be derived successively. The value of the finite-
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i
strain increments (Y )ml as calculated by an equation similar to

Eq. 2.37 during the time interval t to t are also divided into L equal
m m+l

parts, (y') /L. It is assumed that during each subincrement of length

At/L this change in strain is approximately correct. Then, by employing the

previously mentioned procedure, a valid value for AX along with stress incre-

ments and plastic strain increments are calculated for each subinterval, and

in the meanwhile, the stresses and plastic strains are kept updated. The

process is continued until either (a) the information needed at time t is
i+l

calculated or (b) a complex (or negative) AX is encountered. In the latter

case, the process is repeated from time t using a larger value of L. If

the stresses at time t 1 can be derived successfully, the solution procedure

continues with L henceforth set to unity until an imaginary AX is again

encountered.

It perhaps should be noted that the discussion spanning Eq. 2.47 to

Eq. 2.59 applies to any given mechanical sublayer of the material model at

any spanwise or depthwise Gaussian (or checking) station in the structure.

Such a procedure is applied to every mechanical sublayer of the material

model at that Gaussian station.

During the course of the research reported in Ref. 17, it has been

found that by assuming the material to be strain-rate sensitive and by using

Eqs. 2.46 and 2.59, very good agreement of the transient responses between

predictions and the experiment is observed for beam and ring (planar) problems.

However, a significantly stiffer response compared with experiment has been

predicted for plate and cylindrical panel problems when strain-rate effects

have been included; similar results have been reported in the finite-difference

calculations of Ref. 58. Therefore, the validity of the approximate expression,

Eq. 2.59 for , and the appropriate values of the parameters D and p used in

Eq. 2.46 remain to be determined for the general two-dimensional and three-

dimensional problem.

35



SECTION 3

FORMULATIONS FOR SEVERAL CURVED-BEAM ELEMENTS

3.1 Objectives

The present investigation is concerned with developing finite elements

which are capable of efficiently representing large generalized displace-

ment behavior: large in-plane and lateral displacements as well as large

rotations. Although for computational convenience attention is devoted

principally to structures whose deformations lie essentially in one plane

(2-d ,deformation), it is more effective and instructive to develop the

governing equations for more general structural configurations and behavior.

Then, these relations can be specialized in an orderly sequence of approxima-

tions to describe several categories of deformation behavior for 2-d type

structures. Further, for generality and convenience, this analysis is

developed in general tensor form and, hence, is valid for any coordinate

system or configuration. Later, certain relations are recast into the more-

familiar physical notation.

In structural analysis it is often useful to introduce simplifying but

restrictive assumptions in order to simplify the governing equations.

Accordingly, the Bernoulli-Euler assumptions for beams (that plane cross

sections remain plane and normal to the deflected axis), the Kirchhoff

assumptions for thin plates, and the Love assumptions for thin shells are

very often invoked: (a) normals to the reference surface before deformation

remain normal after deformation, and (b) each material point along the

normal does not change its distance from the reference surface during defor-

mation. The approximate character of the Bernoulli-Euler assumptions for

beams has been pointed out, for example, by Love [62, p. 365], Southwell [63,

p. 46], and Rivello [64, p. 141].

That the Kirchhoff assumptions are not generally satisfied has been

indicated, for instance, by Love [62, pp. 482 and 484] and Fung [65, p. 458].

For small deflections and infinitesimal strain, these assumptions are

reasonably good and self consistent. However, when large displacements

and rotations and small strain occur, the approximate and mutually contra-

dictory character of these assumptions becomes more evident.
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Koiter [66,67,68] replaced the contradictory Love-Kirchhoff assumptions

by the single assumption that: an approximate state of plane stress (T33 

T 31 T32 0) exists in the midsurface of the shell.* This assumption

turns out to be consistent (as proven with mathematical rigor by John [691)

in the linear theory of shells; such a rigorous proof is lacking in the

nonlinear theory. Koiter's assumption is in its consequences [66, p. 15]

equivalent to the usual Love-Kirchhoff assumption.

Since the inclusion of large strains and completely general deformation

behavior would represent a much more extensive and ambitious effort than

presently planned, the present effort is restricted to extending the studies

of Refs. 17 and 24 to include more general nonlinear deformation behavior

while retaining the assumption of (1) small to moderate strain and (2) the

simplifying assumptions of the Bernoulli/Euler/Kirchhoff/Love theories. It

is planned to test "the limits of applicability" of the simplifying assump-

tions by comparing a sequence of predictions with each other and with well-

defined experimental data involving very large deflections, and strains

ranging from small to moderately large.

Accordingly, Subsection 3.2 deals with the strain-displacement rela-

tions; a sequence of such relations including a progressively greater number

of nonlinear terms is defined. Subsection 3.3 is devoted to discussing

various finite-element formulations which utilize these strain-displacement

relations. Finite element property matrices based upon one of the selected

strain-displacement relations and the unconventional finite-element formula-

tion (see Subsections 2.1 and 2.2) are discussed illustratively in Subsec-

tion 3.4.

In contradiction to the original Love-Kirchhoff displacement field (by

which y3 3=0), the normals to the middle surface in a Koiter displacement

f ied undergo an extension given by the expression r33a(z)tio, (z)

he tis

the first invariant of the strains parallel to the middle surface. This

condition ensures a zero value of the transverse normal stress.
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3.2 Nonlinear Strain-Displacement Relations

3.2.1 Brief Historical Background

One of the main topics under investigation in the present study

is the influence (on finite-element predictions of large elastic-plastic

deflections of structures) of nonlinear terms in the bending part of the

strain-displacement relations. With this purpose in mind, the literature

concerning the nonlinear theory of shells (with special emphasis on general

formulations) was surveyed.

The subject of shell theory (to provide a two-dimensional representa-

tion'of an intrinsically three-dimensional phenomenon) is still far from

being exactly solved. Still today it constitutes an active part of

theoretical and applied investigations. As mentioned on page 4 of [70],

the productivity of papers relating to shells and their design, analysis,

and failure has followed an exponential curve since 1886.

Excellent reviews exist about the history and foundations of shell

theory. Among these are: E.E. Sechler [70], Naghdi [71,72], Naghdi and

Nordgren [73], Koiter [74], Sanders [75] and Hildebrand, Reissner, and

Thomas [76], etc.

Quoting Sechler [70, p. 24]: "No longer can one take a material

off the shelf, look up its properties in a handbook, use the latest shell

analysis methods, and emerge with the best shell structure for the job.

Everything is now coupled, and it will be a distinct challenge to find the

simplest engineering solutions to this coupled problem."

To give an idea of what is the state of the art in the general

theory of shells, some quotes from two leading authors in the field may be

useful. In 1962, P.M. Naghdi [71] writes: "In the seventy-four years which

have elapsed since the appearance of Love's work, so far as the foundations

of the theory are concerned, despite extensions, generalizations, re-examina-

tions, and re-derivation of the equations of the linear theory, there are

still unsettled questions." In 1970, W.T. Koiter (Ref. 68, page 193) writes

"Several attempts have already been made to establish a more refined shell

theory in such cases, but we concur in Naghdi's view [71, p.77] that an

adequate solution to this problem has not yet been attained." In the
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same article (Ref. 68, page 194) referring to a justification of the non-

linear theory of shells: "This problem seems to represent a virtually open

issue for future research."

Naghdi, in his extensive work on the fundamental, mathematical theory

of thin shells of 1972, (Ref. 72, p. 587) writes: "In nearly all of the

approximate theories, the underlying kinematic assumptions are

such that the strains are small while the rotation may be large

or moderately large and linear constitutive equations are assumed

to be valid. In general, however, a systematic development of

such approximate theories is not available; and even those few

contributions which have been striven toward a more satisfactory

derivation either employ assumptions which are too special or

else still contain a number of ad hoc approximations."

W.T. Koiter and J.G. Simmonds [77] expressed in 1972: "For example

in nonlinear problems virtually nothing is known concerning

bounds on the errors of shell solutions. The best results to

date, obtained by John, consist of effective error estimates

for the two-dimensional differential equations in the interior

domain in the absence of surface loads, but they say nothing

about the equally important question of boundary conditions."

A major advance in the foundations of the linear theory of thin

elastic shells was achieved in 1965 by F. John [69]. Exploiting modern

developments on the behavior of the solutions of elliptic systems of partial

differential equations, he published a rigorous proof, with concrete estimates

of the errors involved, that the state of stress in the interior domain of

a shell (i.e. at a sufficient distance from the edge of a shell) and in

the absence of surface loads is approximately plane with an approximately

linear distribution through the thickness of the stress parallel to the middle

surface. Koiter in 1959 [66] employed the single physical assumption of

an approximately-plane state of stress in order to justify Love's additive

property of extensional and flexural strain energies. In 1970 Koiter [68]

rigorously established the validity of a consistent version of classical

linear shell theory with his modified Kirchhoff field as an approximation
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to three-dimensional elasticity theory. Unfortunately, the method employed

does not enable one to obtain a similar justification of the nonlinear

theory of thin elastic shells.

The early contributions to nonlinear theory of thin shells were of

a restrictive geometrical nature. Among these: Donell's [78] nonlinear

theory for cylinders published in 1934, Marguerre's [79] nonlinear theory

for shallow shells published in 1938, Mushtari's [80] nonlinear theory for

"quasi-shallow shells" published in English in 1961, and E. Reissner's [81]

nonlinear theory for axisymmetrical shells of revolution under the Kirchhoff

hypothesis published in 1950.

Another approach is the asymptotic approach followed for example, by

Johnson and Reissner [82] in 1959, Reiss [83] in 1960, and Green [84] in

1962. Here, an incomplete set of equations is obtained by an asymptotic

procedure, extended to membrane approximation, inextensional approximation,

boundary layer, etc. As Naghdi points out [72, p. 587]: "The derivations

by asymptotic expansion techniques, at first sight, may appear

to be free from ad hoc assumptions; but, in fact, this is not

the case. The scaling of stresses and displacements is tanta-

mount to a priori special assumptions regarding the transverse
i3

components u* and T , although subsequent developments are

carried out systematically+."

Probably the first work of a general nature was that by Synge and

Chien [85] in 1941, where the intrinsic approach is used. That is to say,

direct reference to displacements is avoided. This theory of shells is

deduced from the three-dimensional theory by means of a series of expansions

in powers of a small thickness parameter.

Galimov [80] published a nonlinear theory for small midsurface strains

where midsurface shear strains are neglected. Green and Adkins [86] published

+The asterisk added to the symbol u3 is used to represent a field defined
over a 3-D body (to distinguish it clearly from fields defined over two-

dimensional manifold); u* = transverse component of displacement and
1= 3

T = transverse component of stress.
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in 1960 a general derivation of a nonlinear membrane theory with nonlinear

constitutive equations, with no approximation for tangential components.

Most of the work done in nonlinear theories of shells invoke small

strain and the Love-Kirchhoff hypothesis or a similar set of assumptions.

For example, see the treatise on nonlinear elasticity by Novozhilov [87]

published in Russian in 1947. The expressions given in this book are for

small strain and Kirchhoff behavior; their approximate character is mani-

fested, for example, in the fact that some of the expressions do not provide

zero values as they should for purely rigid-body motion.

C. Truesdell [88] made a careful review of [87] from which it is

quoted: "Although the author founds all his analysis in the fully

general theory, his main interest is in the case next in order

of generality past the fully linear one, when the extensions

are small, but the displacements and rotations may be large.

The cause of this restriction, on which he lays considerable

emphasis, is his desire to furnish structural engineers with

the basic theories needed for rational solution of their non-

linear elastic problems. Since typical structural material,

such as steel, fail to retain their elastic reversibility

when subjected to extensions as great as 1%, there are

essentially only two such nonlinear problems: (1) elastic

stability, which the author interprets as determining the

smallest load at which Kirchhoff's uniqueness theorem breaks

down, and (2) bending of "flexible" bodies, such as thin rods,

plates and shells."

Also under the assumptions of small strain and Kirchhoff behavior

is the article of Sanders [75] of 1963. Here, a nonlinear strain-displace-

ment relation for large displacements is derived, and then specialized to

the case of small midsurface strain and "moderately small rotations." Its

potential use for stability investigations is suggested. Equations of

equilibrium for large deflections are discussed. A similar discussion for

compatibility equations is omitted. The author remarks that: "Despite the

potential usefulness of a general nonlinear theory, the literature on the
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subject is sparse." Later on, Budiansky [89] in 1968 published an article

where this theory is applied to nonlinear membrane shell theory, and tensor

equations (consistent with Koiter's) of applicability to instability analysis

are translated into classical notation.

Naghdi and Nordgren [73] published in 1963 an article on the nonlinear

theory of elastic shells under the Kirchhoff hypothesis. The tensor expres-

sions given are "exact" under the Kirchhoff hypothesis. A reduction to the

linear theory and a discussion of the use of fully nonlinear constitutive

equations are presented.

Also in 1963, Wainwright [90] published a nonlinear theory of elastic

shells under the assumption of small strain and the Love-Kirchhoff hypothesis,

but where the material response is assumed to be nonlinear. This is then

specialized to membrane theory. Displacements and their gradients considered,

are "small". Power series are used in the strain energy function.

Due to the contradictory character of the Kirchhoff assumption,

Koiter [66] replaced them by the single assumption of an approximate state

of plane stress in the midsurface of the shell. This assumption turns out

to be consistent, and in its consequences is equivalent to the usual

Kirchhoff assumption.

The transverse strain instead of being considered zero, as in the

usual Kirchhoff assumption of no elongation of points along normals, is

assumed to be Y33 = 1 V g GA where V is Poisson's ratio , g is the

contravariant metric tensor in shell space and yak is the strain tensor on

the middle surface. Koiter [67] in 1965 presents an extensive article on

the nonlinear theory of thin elastic shells where the basic assumptions are:

(1) his modified Kirchhoff displacement field and (2) the strains are small

everywhere in the shell. This is simplified to a general theory of "quasi-

shallow shells" which includes the more restricted theory of shallow shells

as a special case. The case of "small finite deflections" is discussed and

some remarks are made on "moderate deflections". His choice for the tensor

of changes of curvature reduces to Sanders' choice for lines-of-curvature

coordinates. The nonlinear strain-displacement relations for large deflec-

tions, in tensor form, are recognized as "extremely complicated".
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Biricikoglu and Kalnins [91] developed in 1971 a theory for large

elastic deformations of shells with the inclusion of transverse normal

strain. They did so, because "A theory of shells which is subjected

to the kinematic constraint that the thickness of the shell

before and after deformation remains the same is not realistic

when large strains are admitted in the deformation process.

To enforce such a constraint, the density of the material

would have to change in a special way during deformation,

and since most materials which are capable of undergoing

large strains, are nearly incompressible, such density

change cannot be admitted." This theory is restricted to cases where

membrane strains are much larger than bending strains.

A fundamentally different approach from the previously-mentioned one

is that in which it is postulated that the shell is a two-dimensional

continuum, subject to certain physical principles analogous to those of

three-dimensional mechanics. This notion was originated by the Cosserat

brothers [92]. This description is elegant and has logical consistency.

Ericksen and Truesdell [93] published in 1958 an "exact theory of stress

and strain in rods and shells" where they adopted this method of description.

They are able to account for transverse shear and strain, and the rotations

associated with stress couples. Constitutive equations were not considered.

Naghdi [72] published in 1972 an exhaustive exposition of shell

theory under this method of description. The lack of comparison, or even

a connection, with three-dimensional theory, of the method of description

originated by the Cosserats, was considered a "virtue" by Sanders [75] in

1963, and a "serious weakness" by Koiter and Simmonds [77] in 1972.

3.2.2 Formulation of the Strain-Displacement Relations

3.2.2.1 Thin Shells

The nonlinear strain-displacement relations for a curved

beam will be derived from the general nonlinear theory of thin shells,

specializing it to, successively, small strain, two-dimensional behavior,

Kirchhoff assumptions, and finally, different assumptions on the magnitude

of the displacements that will lead to a set of strain-displacement relations.
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One cannot avoid the use of tensor calculus when treating the general

theory of thin shells; accordingly,the notation* used here follows closely

that of most books on the subject. The interested reader should refer, for

example, to: McConnell [94], Sokolnikoff [95], Truesdell and Toupin 96],

Ericksen [97], Synge and Schild [98], Green and Zerna [99], Eisenhart [100],

or Willmore [101]. In order to keep the following description reasonably

compact, the reader is assumed to have some familiarity with elementary

differential geometry and tensor calculus.

Only shells with lines-of-curvature coordinates 1 , and G3 (_ )

will be considered. The coordinates 1 and 2 define the midsurface of a

thin shell and measures the distance along an outwardly-directed normal.
-o

Any point p on the undeformed shell is located by the position vector r

to the middle surface and the unit vector normal n to the middle surface in

the form (Fig. 3):

F_(4 O. ) °(4t1 i) · t n +(3.1)

The base vectors associated with the undeformed and deformed shell space

are denoted, respectively, by:*

ji 36 "al a 23 at3- at (3.2a)

where oint G in- Gt 3 =n as i (3.2b)

where point p in the undeformed shell is identified as point P in the de-

formed state; P is located by the position vector R. The base vectors

associated with the undeformed and deformed shell midsurface are denoted by:

Greek indices have values of 1 or 2 while Latin indices have values 1,2,3.
Lower case letters refer to the undeformed configuration, while upper case
letters refer to the deformed configuration. Superscript "o" refers to
the midsurface.
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(3.3a)

(3.3b)

The fundamental metric tensors of the undeformed and deformed shell midsurface

are:

.c,~", ( 11

0 a2z) (3.4a)

A,=A A,
AII ,,0

- Al 0
= t O AZ?2 

The determinants of these arrays are denoted by the symbols a and A:

a= aii A?

A=Antities are

The contravariant metric quantities are

12 .1 0a = a
(3.6a)

AIL =A-oA~~ (3.6b)

_a, °

A,,

(3.4b)

(3.5a)

(3.5b)

2t

a =IIa-

A=
22 1

A 9A1
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The unit normals to the midsurface are given by

The Christoffel symbols are define

6

j 6 - a

(3.7a) A A

ed as:

b ~a 
a g i

The. second fundamental tensors of the surface are:

bo n

e
/3p

(3.9a) B-N (3.9b)

and are symmetric.

In terms of these quantities, one can write the Gauss-Weingarten

relations:

{ 6I 6a ± b nj cx6 b oc 

/I 

(3.10)

(3.11)

(3.12)

where

bs a 7JL
b,= a'c q b -

Since lines-of-curvature coordinates are defined as those for which:
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zA~x-
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aCl = o bz=O

Ib, o. b,, -' I, c1 R z2 ae 

where the R are the radii of curvature, one can express the base vectors

for shell space in terms of the base vectors in the middle surface as

=r br+ b - ( I)

:2= 75at = ji - be a .6 as -Z
I by a 2 3 a 2

.3 -2b ::i

-G =J( atA Air- C BCt Zi!3

,- B ,

(3.13)

.3 (3.14)

The midsurface base vectors and the shell normal to the deformed

midsurface will be described in terms of the midsurface displacements. The

midsurface displacement field in terms of its components vO along the

coordinate axes and its component w along the undeformed normal is

V 3.15)
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A_ -5R
K agla

+ B (Voa
(3.16)

Introducing the Gauss-Weingarten relations, (Eqs. 3.10 and 3.11) this becomes

.i vof(, + v c0 (3.16a)

Or, defining

0'

Cx
+-V o , 0.

(3.17)

one obtains:

Also from Eq.
b- - ,ot1/2

3.7b, namely N = (AlxA2 )/(A) , one obtains:12~~ neotis

1 2

(-o:- _Oa
-0 03 3 2D

-o1 0,1 6 c-O I O2 a I '

e3 ;) ] a

48

Hence,

A
3

0
(3.18)

JL = 4 t
(3.18)
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For small strain of a differential element of area, one can set

(a/A) -1, and then obtain the following expression for N - n:

2 - 2 Oa +

For a curved beam, only coordinates (3.19) and appear; hence,

For a curved beam, only coordinates 5 and 5 appear; hence,

2 _bv 0 2 W } j ___

K ag2 R, < at (3.20)
3 aW + zz V 02

Thus,

2 03(3.21)

2-
where the term 02 n is retained (this term is dropped in the Sanders approxima-

tion for "moderately small rotations" [75]).

Now let the (mutually contradictory) Kirchhoff assumptions be invoked:

(a) Points normal to the undeformed midsurface remain normal after deforma-

tion.

(b) These points do not change their distance from middle surface.

As a consequence of this, 33 and 23=Y32 should be zero. These assumptions

are usually termed in the literature: for beams "Bernoulli-Euler", for

plates "Kirchhoff", and for shells "Love" assumptions (although Love intro-

duced more than one set of assumptions with respect to shells).

49



The displacement field at any point 1 ,2 , in a shell may be written

as follows for a Kirchhoff-type displacement field:

V -t + Oq (3.22)

where, for a curved beam:

-= 02 & O 2

i~-t= O 8-3 
(3.22a)

Observe that this is equivalent to:

W = W ± Ia (3.22b)

V V 3

where is the displacement component of v( 1, ,C) in the n direction and

v is the component in the a2 direction. Expression 3.22b contradicts

assumption (b) of the Kirchhoff hypothesis, since in the case of pure

membrane extension, 0 =0' 0'0 and is seen to depend on

The Green or Lagrangian strain tensor* ymn compares the square of the

lengths of differential line elements in the deformed (dS) and undeformed

(ds) configurations with respect to the undeformed configuration and is

defined to be

X_ ld s ) m (3.23)

For a definition of the concept of the strain tensor, consult, for example,
Truesdell and Toupin [96, p. 255] or Fung [65, p. 91].

50



Expressing the strain tensor in terms of the undeformed base vectors

in a Lagrangian description:

GiQ (3.24)

od n VI V 8·

+ ag'U V

bL aY ] (3.25)

3.2.2.2 Curved Beams

Now the previous results are specialized to the case

of the curved beam whose geometry leads to*;

VjE
- oa = l3

2Z V

_ 2L=
z

= (I +

2 av 0 2

2 Z
aan

- R 2

(unit tangent vector to the centroidal axis)

'. 22

02

RR' 2

Notice that this choice for the radius of curvature R is opposite in sign
to that usually found in tensor books and which was used previously.
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After some tedious algebra one obtains:

(3.27)

where

o2 2 02 ) 2(Z (3.27a)

(3.27b)'22j 1 = ( ) + ( 215 (3.27c)

and where all terms with the common factor C2/R have been neglected; also,
2

), denotes partial differentation with respect to n, since {2 } = 0.

The physical components of these tensor quantities do not trans-

form according to the tensor transformation law and are not components of

tensors; however, they are useful in later parts of the present analysis.

Defining the physical components of strain as:

(3.28)

one obtains in this case

(3.28a)- 22 =
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Expressing the midsurface quantities v 2 ,w,02 and 2 in terms of the physical

components v,w, X, and I:

V= <aZZ Voz 0 W=W

I =4l, 0 2 a v + 

3 _ W v

2 3 R

(extension)

(rotation)

2
Finally (dropping terms multiplied by -), one has

(3.30)

where

x( I+ X) + 2.
(3.30a)

( X)+,?..3{lX ) ( ( )z
As one can see, even in the context of a curved beam, under the

assumptions of small strain and Kirchhoff behavior that the strain-displace-

ment relations become very complicated, and the influence of higher order
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= (by) I-3a8l)(+X)+V (3.30b)

(3.30c)
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terms (as Koiter [66] said) is of doubtful validity and significance when

compared with the errors involved in adopting the Kirchhoff assumptions

made to obtain those terms.

Equation 3.30 represents the most comprehensive nonlinear strain-

displacement relation taken into account in the present study. Note that

the terms (n) represent the complete nonlinear membrane behavior (see,

for example, Ref. 65). For less severe deflections than contemplated in

this study, the term H is usually omitted and K consists of fewer terms.

In the usual version of the linear theory, Eq. 3.30 reduces to

av2 (a )4 ) = X - 43(3.31)

In nonlinear theories, additional terms are included. For example,

the strain-displacement relations of Ref. 17 as well as those of Sanders

[75] for "moderately small rotations" and Koiter [671 for "small finite

deflections" in the case of a beam with the geometry of Eq. 3.26 are

represented by the following subcase of Eq. 3.30 -- identified for convenient

reference herein as (strain-displacement relation) Type A:

c( j, )= [X- -r4j V 2 + (3.32)

Note that only 2 of the 3 membrane terms, 1 of the 3 K terms, and none of

the H terms are retained in this approximation.

In a second version only the missing membrane term is added to Eq.

3.32 -- to define Type B:

Equation (3.33)

Equation 3.30 with all terms retained is identified as Type C and is

repeated here for convenient reference:
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Ej&}4 [X+T2421)2] +

I 2

(3.34)

Next in order to study the importance of certain terms in K retained

in Type C compared with the simpler Type B expression, it is useful to define

and employ two intermediate expressions (Types D and E). Type D is formed

by adding the term (-X a) in K of Eq. 3.33 to obtain:

ax( + |2+ 2 + 4P Ma - (3.35)Type E is formed by adding the term a to the K term of Eq. 3.35 to obtain:

4E (4,)=[ I xz -'] (3.36)
With reference to the more comprehensive Type C expression, Eq. 3.34,

it may be of interest to note that shell theories not restricted to the

Kirchhoff assumption often include terms in 2; such theories include those

of Hildebrand, Reissner, and Thomas [76], Love's "second approximation" [62,

761, and that of Biricikoglu and Kalnins [91].

3.2.2.3 Initially-Flat Beams

For initially-flat beams, strain-displacement relations

Types A through E apply directly since 1/R = 0, and X and take on the

following definitions:
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(3.37a) (3.37b)

Strain-displacement relation Type C is "exact" for arbitrarily large rota-

tions and displacements of initially-flat beams under the Love-Kirchhoff

hypothesis, singe the only neglected terms in Type C were terms with the

common factor
R

In Section 4, the application of strain-displacement relations Types

A through E to an initially-flat clamped-ended beam subjected to severe

impulsive loading such that large elastic-plastic deformations are produced

is discussed. The relative importance of the sequence of added nonlinear

terms is illustrated.

3.2.2.4 Comments

In this subsection some pertinent comments will be made

concerning the scope and/or validity of the nonlinear strain-displacement

relations treated in Subsection 3.2.2.2.

Although most of what has been accomplished in the nonlinear theory

of shells is based upon the Love-Kirchhoff assumptions (as was indicated in

Subsection 3.1), many authors dislike these ad hoc assumptions because of

the fact that they are mutually contradictory.

To indicate this contradiction, the derivation of the strain tensor
1

tensor mn for a flat beam (so that R terms do not complicate the picture)

is shown in what follows using Eqs. 3.26 and 3.22 to form the following

quantities:

(2) ( 3I) ( 2)-(o)2 + 2 2)2 )+

_ ..2 [ ()2) ( 2 ] (3.38a)
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(a)at 

( v ) ( 2) = 4 6 2 2 + 02 022
2 2)2 2 22

(3.38b)

Thus employing these quantities and using Eqs. 3.24, 3.25, 3.38a, and 3.38b,

the strains become

-2Z) ±2( )0 2± ( )+
22 3 2 I 2 [ 3 2 +(Z 

2

2 - 2 32 2 2023

= - (G -2 3223 2 \/ = 2 [(It 2)2 2 p 2,23 (3.39)

(G3333)= >2+2(o ) 2 ( 0 c 2
2 2 2 2
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These last two formulas (for 32 and 33) express a contradiction: accord-

ing to the Love-Kirchhoff hypothesis invoked in deriving these expressions,

the transverse normal strain y33 and transverse shear strain Y32=Y23 should

be zero; but, because of the introduction of the nonlinear terms in the

expression, they are not. As a matter of fact, the magnitude of y33 as

computed from the Kirchhoff-type of formulation with nonlinear bending terms

is the same as the membrane part of Y22. This unfortunate contradiction

does not take place in the linear theory of shells; in the case of Sanders'

[75] expression for "moderately small rotations", the contradiction is

small (in that case = 1 (8)2 for a flat beam). As can be seen, the
2-

contradiction comes from the inclusion of the term 2 n in the expression for

the difference between the normals to the deformed and undeformed surfaces

N -n. Still today, authors disagree on what the "best" expression for the

curvature terms should look like.

W.T. Koiter [74] expressed: "Since the theory we have to

deal with is approximate in character, we feel that extreme

rigor in its development is hardly desirable. Extreme rigor

in the analysis of physical problems, we are inclined to

believe, may easily lead to rigor mortis. Likewise, too much

insistence on a systematic approach seems inadvisable to us.

Flexible bodies like thin shells require a flexible approach."

Novozhilov [87, page 197], in his incomplete treatment of nonlinear

elasticity published in Russian in 1947, made strong remarks about the

validity of the Kirchhoff assumption:

"(a) Kirchhoff's hypothesis in the theory of plates and

shells rests on simplifications which result when elonga-

tions and shears are neglected in comparison with rotations

in determining the direction of fibers of the strained body.

Since thin plates and shells are flexible bodies whose angles

of rotation under a deformation ordinarily are large in compari-

son with the elongations and shears, the adoption of this

hypothesis usually introduces only a negligible error into

the calculations. Hence, it is clear that the simplification
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in the theory of plates proposed by Kirchhoff and subsequently

extended by Love to shells, can hardly be called a hypothesis

as is ordinarily done. For, in essence we are dealing with

purely geometric approximations whose error can always be

estimated.

(b) Kirchhoff's "hypothesis" does not include any assumptions

about the properties of the materials of which the plates and

shells are made. Thus, a theory based on this "hypothesis"

can be used with equal effectiveness both for bodies which

obey Hooke's law and for bodies which do not. It is only

important that the basic condition be satisfied, namely,

that the strains be small in comparison with the angles of

rotation."

C. Truesdell [88], in his extensive review of Novozhilov's

replies: "There is some question about the author's distinction

between "geometrical" and "physical" nonlinearity (#34, and

again on p. 197). For example, whether or not the rotations

are large cannot be determined by "geometric considerations"

a priori; the rotations result from loading, and (unless

one is using an inverse method) one cannot know in advance

whether for given loading of a material defined by a given

strain energy function the nonlinear terms in the strain

components will need to be retained or not. True, after

the problem is solved the question becomes purely geometric,

but if we have the exact solution then it is no longer very

important whether we can neglect certain terms or not. The

question of whether certain approximations are valid in

advance is avoided by the author; its treatment would

require a new type of approximation theorem for partial

differential equations."

book [87]

Another point in question is the validity and meaningfulness of

adding nonlinear terms in the bending strain under the Kirchhoff assumption.

About this, Koiter [66] wrote in 1959:
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"Many writers (e.g., 6) retain in their energy expressions,

derived on the basis of the LOVE-KIRCHHOFF assumptions (or

equivalent assumptions) additional terms of the type of some

or all of the terms (2.18) to (2.23) neglected in Love's

expression. Such a supposedly higher approximation is also

implied in the analysis of other writers (e.g., 1,4,9,21),

who develop the theory without direct reference to the strain

energy. On the other hand, it has been pointed out repeatedly

by several writers (e.g., 5,10,12) that such a refinement is

doubtful if the basic Love-Kirchhoff assumptions (which are of

course only approximately valid) are retained.

In fact, the transverse shear stresses, obtained from

equilibrium conditions, are in general of order h/L times

the bending stresses, and neglection of the corresponding

strain energy therefore already implies a relative error of

order h2/L2 . Moreover, the transverse normal stress, in

general, of order h2/L2 or h/R times the bending or direct

stresses, and its neglection in the strain energy density

involves relative errors of the same orders. Hence a refine-

ment of Love's approximation is indeed meaningless, in general,

unless the effects of transverse shear and normal stresses are

taken into account at the same time."

Now, some comments about strain-displacement relations (3-32) through

(3-36) are given. All of these equations were derived under the assumptions:

(a) the problem is two-dimensional.

(b) the beam is thin; the parameter in question is R or L whichever

is larger.

(c) the Love-Kirchhoff hypothesis.

(d) the strains are small everywhere.

Observe that one can write Eq. 3.30 in a form that shows the relative order

of the terms in a more readily perceived fashion as:

h is the half-thickness of the beam, R is the radius of curvature, and L is
the minimum wavelength of the deformation pattern.
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Ec(, )= X((+,X) t+ - I - I + I) ( + 
(3.40)

where one may identify:

Membrane terms:

( 2 ) 2i' (3.40a)
Bending terms:

4 - K \CI (I+ X -~ at aa5X) ( + i: bX )] (3.40b)

The expressions of Sanders [75] for "moderately small rotations" and

Koiter [67] for "small finite deflections" reduce to Eq. 3.32 in the case of

a beam with the specified geometry given by Eq. 3.26. About the range of

validity of his approximation, Sanders [75] wrote:

"Equilibrium equations are derived by making certain simplify-

ing assumptions. In particular the middle surface strains are

assumed small and the rotations are assumed moderately small.

The resulting equations are suitable as a basis for stability

investigations or other problems in which the effects of deforma-

tion on equilibrium cannot be ignored, but in which the rotations

are not too large."

Koiter [67] wrote:

"Small finite deflections (are) characterized by small displacement

gradients and by rotations whose squares do not exceed the middle

surface strains in order of magnitude."

In the version of Eq. 3.33 "Type B", all membrane strain terms are

retained. Usually when all nonlinear terms are retained in the membrane strain

61



expression, the bending strain terms are neglected. Observe that for problems

where the membrane and bending strain are of the same order, it would be

inconsistent to use the "Type B" expression since it implies a neglection of

X in the bending strain term 9(- ) (1+X), and not neglecting X in the
1

membrane strain term X(l+-X).

Type B is kept here as an alternative, because of those problems in

which there is mainly membrane action but bending is not negligible, and to

be able to treat nonlinear membrane problems (under small strain) in a general-

purpose program. Once again, W.T. Koiter [102, page 194] can be quoted (now

about elastic stability for thin shells): "If we restrict ourselves

to fundamental states I in which the bending stresses do not

exceed the membrane stresses in order of magnitude, we may

therefore presumably neglect the nonlinear terms in the changes

of curvature. The restriction implied by this simplification

is not at all serious. We are not aware of any significant

shell buckling problem in which the fundamental state involves

membrane stresses which are small in comparison with the bend-

ing stresses. Moreover, if we restrict our attention to "small

finite deflections" in the sense of [67], the changes of curva-

ture may always be represented by their linear approximation

without any loss in accuracy within the framework of shell

theory."

The nonlinear terms in and C2 are kept in Type C (Eq. 3.34) because

of cases in which bending is important. In those cases it is consistent to

include the term X in the bending expression (- a) (1+X) since one includes
1

X in the membrane part as X(l+-X). And since one knows from the linear theory

that C is comparable to X, one should probably also include 2in
1 1 2 2 is probably smaller

the expression as (- (1+X The term 2 () i probably smaller

but was kept here because it did not represent any major calculating effort.

3.3 Assumed Displacement Field Considerations

3.3.1 Description of Curved-Beam-Element Geometry

In order to represent the initial geometry of an arbitrarily-

curved variable-thickness beam, it is convenient to employ the approximate
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description utilized in Ref. 17 for a curved beam element, as depicted in Fig. 4.
-o

The centroidal axis may be located by a position vector r described by

r °( = +()j Z (a)K (3.41)

where qr is the length coordinate along the centroidal axis measured from node

i where n=O to node i+l where =ni, and Y,Z represent Cartesian global

coordinates of the plane in which the curved beam lies. The unit tangent

vector, a2, to the centroidal axis, and the unit normal vector, n, are

defined as

- d t (3.42)_ ~O

da2
where is the magnitude of the curvature vector d' and the reciprocal of

is known as the radius of curvature, R, taken here as in Ref. 17, positive

when the center of curvature lies in the negative direction of n (which is

identical to the convention followed by Sanders, but opposite in sign to

that usually given in books on tensors).

It is assumed that the slope, , of the centroidal axis, which is the

angle between the unit tangent vector and the y-axis of the local reference

Cartesian coordinate system (y,z) may be approximated with sufficient accuracy

by a quadratic polynomial in as follows:

2(lfl)2bo Abe+ b2< (3.44)

The constants bo0, b1 , and b 2 can be determined from the known initial geometry

of the curved-beam element by requiring (1) the slopes of the idealized

approximated beam element and the actual beam element to have the same slopes

at nodes i and i+l and (2) the ends to be on the y-axis (i.e., z=O at both

ends):
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¢(=- o)= ¢I
(3.45a)

(3.45b)

(3.45c)

Sly) dvj 0 od
-i

one defines R = - (d) . It is assumed that the change in element

between nodes i and i+l is small so that

COS (+6t-#) ; 
SI (tl -X A Q6+1

(3.46a)

(3.46b)

This restricts the slope change within an element to < 15 degrees. The arc

length, i, of the element is approximated to be the same as the length of a

circular arc passing through the nodal points at the slope Ci and i+l; i

is given by

'L=
L (X+1,- ~)

(3.47)

where L. is the length of the chord joining nodes i and i+l and is given by
1

Z- 2 (Y+ y- IL I (iL, (3.48)

One can obtain an idea of the error that the Eq. 3.45c approximation
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entails by considering the case of constant radius of curvature R. In that

case B

J I0 51j ' dXR ,=
0

and so (3.49)

or approximating sin by its power series:

Cel 33I (0- A! + ) do= O (3.50)

Hence, the error term is

J÷ 3 i-; 0 ~~~~dA = aX (3.50a)
This error is very small for small 4. In order to have an error (in the

approximation represented by Eq. 3.45c) of the same magnitude as the restric-

tion (i+l-4i) < 150 in Eq. 3.46b, the limit on would be < 37 . Thus,

the error in the determination of the constants is smaller than that made by

approximating an arbitrary slope by a quadratic polynomial in r.

The constants in the quadratic polynomial for are found to be

0 ,= ; L (3.51a)

b =- 1 (3.51b)

65



(3.51c)

w e 3( ,+ ot)

2- a t

with the radius of curvature of the centroidal axis expressed as

(3.52)
The coordinates Y( ) and Z() are given by

The coordinates Y(nI) and Z(,n) are given by

(3.53a)J os 0 [(t)
0

Z, ±jt

'(l -

where

(3.53b)

Zi (3.53c)

The thickness h of the beam is approximated as being linear in between

nodes; thus

(3.54)h (a v hL (I - ) 4 h VL

where hi and h+l represents the beam thickness at nodes i and i+l, respec-

tively.
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3.3.2 Rigid-Body Modes and Displacement Field "Requirements"

By using successively finer meshes of elements, this sequence

may be expected to provide results which converge to the correct result if

the assumed displacement fields (in each element) satisfy certain criteria.

These criteria have been summarized by Cook [103, page 87-90]:

"The mandatory criteria are as follows:

1. The displacement field within an element must be continuous.

This requirement is so easily satisfied that we need not

mention it again.

2. When nodal d.o.f. are given values corresponding to a state

of constant strain, the displacement field must produce the

constant strain state throughout the element (2,3). In the

case of a thin plate element we might speak of "constant

curvature" instead of "constant strain-"

Two more requirements that elements should satisfy are as follows. As

the mesh of elements is refined, but not necessarily in larger elements:

3. Rigid body modes must be represented. That is, when nodal

d.o.f. are given values corresponding to a state of rigid

body motion, the element must exhibit zero strain and there-

fore zero nodal forces (1).

4. Compatibility must exist between elements; elements must not

overlap or separate. In the case of beam, plate, and shell

elements it is also required that there be no sudden changes

in slope across interelement boundaries (1,2,12).

If Requirement 3 is violated,extraneous nodal forces appear, and

thus the equations of nodal equilibrium are altered. Some successful

shell elements satisfy this requirement only if elements are made

vanishingly small. The elements have been widely used because the

error remains small for the size of element used in practice. Neverthe-

less, other things being equal, better results are obtained when rigid

body modes are included (7).

Requirement 4 is violated by many successful elements (2,5);

however, such elements do satisfy interelement compatibility in the

limit of mesh refinement as each element approaches a state of constant
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strain. Another requirement that an element should satisfy is:

5. The element should have no preferred directions. That is,

under any set of loads having a fixed orientation with

respect to the element, the element response should be

independent of how it and its loads are oriented in global

xy coordinates. "Response" means element strain energy or

element strains in a coordinate system that moves with the

element. Elements that satisfy this requirement will be

called invariant. There is some opinion (3,7) that invariance

is mandatory if convergence to correct results is to be

obtained. In any case it is a quite desirable attribute,

and there is no necessity to violate it."

That the requirement of exact representation of rigid-body motion

need be obtained only in the limit, has been observed, for example, by Oden

[104, p. 1161:

"In their finite-element analysis of plate bending, Bazeley, Cheung,

Irons, and Zienkiewicz [1966] proposed as completeness ("convergence")

criteria that the displacement function be such that "self-straining

due to a rigid body motion of the element" not be permitted and that

the displacement function within each element be such that constant

"strain" and curvature conditions be possible over the element.

Similar requirements were noted earlier by Irons and Draper [1965].

Since the functional involved in their analysis was of class C , their

criteria amount to requiring that constant values of the displacement

function and its first and second partial derivatives be possible over

each element. A proof for polynomial approximations was later furnished

by Arantes e Oliveira [1968]. Theorem 10.7 shows that such constant

values need only be obtained in the limit as [element size] 6-+0. Un-

fortunately, many subsequent writers interpreted criteria proposed by

Bazeley et al. for plates too literally and used the "rigid motion"

and "constant strain" requirements as fundamental conditions for complete-

ness for all finite-element approximations of displacement fields. It

is easily shown, however, that a finite-element approximation of the
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displacement field in an elastic body can be constructed that satisfies

the completeness requirements of Theorem 10.7, and yet does not lead

to either a rigid motion or a constant strain when 6 is finite. This
e

can be seen by regarding the x in Theorem 10.6 as curvilinear coordi-

nates (e.g. cylindrical; then u - constant does not produce rigid.r
motion nor does it necessarily lead to constant strain, while u = a + br

r
may be admissible for a C problem). Such rigid motions and constant

strains need be obtained only in the limit as 6-+0. On the other hand,

Murray [1970] has shown by means of numerical examples that the inclu-

sion of rigid-body motion in elements of finite dimension may signifi-

cantly improve rates of convergence."

Since the rigid-body displacements for curved beam elements are seen

to depend on trigometric functions, it is impossible to represent these

exactly by means of polynomial interpolation. However, they can be approxi-

mated by the polynomial functions and for some degree of mesh refinement

they can be considered as implicitely included. This was noticed numerically,

for example, by Coco [105] in 1969, Petyt and Fleischer [106] in 1971, and

Mebane and Stricklin [107] in 1971. They noticed that the cubic-cubic (in

v and w, respectively) formulation without exact representation of rigid-body

body modes exhibits a marked improvement over the linear in v, cubic in w,

formulation, because of among other factors, the ability of the former to

satisfy rigid-body equilibrium better.

Cantin and Clough [108] in 1968 and Murray [109] in 1970 showed that

linear in v and cubic in w elements with exact representation of rigid-body

motions show a significant improvement in convergence over linear-cubic

elements without exact rigid-body representation when analyzing a cylindrical

shell.

Furthermore, Petyt and Fleischer [106] noted that the cubic-cubic

formulation without exact representation of rigid body modes represented

them with sufficient accuracy (produced zero frequency modes for the examples

executed) for small displacements, and its overall performance was superior

to the linear in v and cubic in w formulation with exact representation of

rigid-body motion.
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Fonder and Clough [110] showed in 1973 that:

"1) When curvilinear coordinates are used and rigid-body modes

not included in the element interpolation functions, polynomials of

equal degree should be used for u, v, w to insure a consistent approxima-

tion of the rigid modes even though all of these displacements may not

be of equal importance in the deformation process.

2) If rigid-body modes can be added without introducing any

incompatibility (as in the case of curved beams) they are more efficient

than degrees of freedom which increase the order of the interpolation

polynomials.

3) The general technique proposed by Cantin 2 0 to add rigid-

body modes to a curved element generally renders the element incompat-

ible. In circular plates, the favorable effect of rigid modes and the

adverse effect of incompatibility are both negligible; in cylindrical

shells, the favorable effects of the rigid modes overshadow the

incompatibility effects; unfortunately the opposite holds true in shells

with nonzero Gaussian curvature. Although no direct experience was

gained with a three-dimensional element, it can be conjectured that a

lack of compatibility over the warped interelement surface of such an

element would be even more detrimental than the incompatibility over

the curved boundary of a thin shell element."

Reference 17 uses as the displacement field a cubic-cubic polynomial

in v and w, with exact (for small displacements) representation of all possible

rigid-body modes. Since it is rather complicated to follow the procedure

(used for example by Cantin [111]) of solving the partial differential equation

obtained by equating to zero the expression for the strain 11 to find the

displacements v and w due to rigid body modes in curved beam elements in the

case of linear strain-displacement relations, and it is extremely complicated

if not impossible in the case of nonlinear strain-displacement relations,

the kinematic approach seems preferable. Also, the former approach may lead

to erroneous expressions for the strain-free modes in the case of shell

theories which give non-zero strains under rigid-body motions.

Following the kinematic approach [112], the rigid-body translations

in the y, z coordinates of the element can be represented by:
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, TRANSLATION

s0~gv 1 -' v, l
(3.55)

where 0 is the angle between the tangent at the point in question and the

semichord, V is the translation in y, and V the translation in z. The

rotation Q about the x axis (out of the plane), can be described by the
x

translations A (in y) and B (in z) as

A = y cos x - z sin Qx -y = -y (l-cos x) -z sin Q
x x x x

B = y sin + z cos -z = -y sin Qx -z (1-cos Q )
x x x

(3.56)

P D ?a

-Y 7 SIV

-Z j ~Iv- (3.57)

Then the rigid-body rotation about x can be expressed as
x

v rcos Sm0)A

LW RliID BODY / -SII 0 COsr 0 J
ROTATION Lx

cos

-S V 

osI I oI

Sl2 L 7 - 7I )- cosl QX}

ty 51s) - cOsp t R!RvI ) SI Ax

tCOS ) (-7 C054I Y 1 1- CoSA 

(3.58)
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Adding up the rigid-body translations and rotations, one obtains the follow-

ing expression for large rigid-body motions:

W LA RE lS- 

RID tBODp

MOTIONS

Sv0 (I2cos+ys 0)

coSX ( sin0 + y coso)
(- ios + y coso) V .59)
(-z co + SI ¢t) 10A LX1( k I

{l-Coslba

When the rigid-body rotation Q is small enough, one can set:
x

S l VI A x )- cosla&? 0

Hence, Eq. 3.59 becomes

fV co os,$) 

W IJSLL L X COS (

RlQD BODY

RoTAT IONS

Observe that for flat elements:

Cos I 5S

-zcos + yslfivo

(-2coS0+y

z sm ty

and the rigid body modes for an initially-flat beam become:

iW LAR61E
BODY I

(FLAT BEAI

0 1 0J IVIx

IOTIO NS I- cos5

,)
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', ) J
cs )J (3.61)

S 1d -y COS,/ = y , (3.62)

(3.63)
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In order to have an invertable A matrix* in the case of initially-flat beams,

one cannot include both the trigonometric functions that represent the rigid-

body modes and the constant and linear terms in the polynomial expansion (since

they are the same for o=0).

Since for initially-straight structures the large rigid-body motions

are automatically included exactly, the difference between the formulation

for small rigid-body motions and that for large rigid-body motions increases

with increasing initial curvature of the element (or deepness of the curved

beam element) but should be expected to be small for elements with small

(shallow) curvatures (one should have in mind that deep curved beams can be

represented by many elements, each of them with small -shallow- curvatures).

3.3.3 Displacement Interpolation Fields

Polynomial interpolation functions are chosen to represent

displacements throughout each element in Ref. 17. It was concluded in Ref.

17 that the use of a cubic polynomial to express both the axial displacement

v and the normal displacement w was superior to choosing a linear polynomial

in v and cubic polynomial in w. For that reason the choice (termed CC --

cubic cubic -- in Ref. 17) was used as one of the FE categories investigated

in the present study. With the inclusion of rigid-body modes represented

"explicitly", this cubic-cubic expansion takes the form:

{ } {V } 0 cos0A swni 8 vi o 0 3 

V w i s"n9 cos 2 o 0 20 Of3

where

,. -(- ZL c () co + ( Y-Y sl ( toc)
B- (Z-Zi ) 51 ( ,f,) + (YY- ) CoS (¢et ) (3.64)

*{w} = [U(n)] [A]- 1 {q}, where [U(n)] is the interpolation displacement field
and {q} the generalized degrees of freedom at the nodes.
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and where 81, 82' .. 8 are parameters which will shortly be expressed in

terms of the eight selected generalized displacements {q} of the element. In

matrix form, Eq. 3.64 becomes*:

{2}r ~ [rLU~~~ 3=l24'~1~~ i(3.65)

2xi 2x bEX

The generalized displacements, termed {q}, are chosen to characterize the

deformation state of the element, and are selected such that there are four

degrees of freedom at each node (i and i+l) of the element (formulation is

identified for convenience as 4 DOF*/node):

I I L = |V W ; ; V;tl wtl (3.66)

where Dw v and X = + w and the displacement field v,w of the beam
DTJ R -5 1 R

under the Kirchhoff hypothesis may be written as

( )V(vt v (v) -t 9 ( ) (3.67)

Observe that under the mutually-contradicting Kirchhoff hypothesis, as

derived from** Eq. 3.22:

(vIA>) 4) ~ V (v~) - t V () ~(3.68)

Corresponding to this assumed displacement field, one finds

Corresponding to this assumed displacement field, one finds

The subscript "4" in U (q) denotes that this quantity is associated with
the 4 DOF/node element.

**

In the case of pure extension with no rotation of the normal, =0, X0,
v=v(q), but w=w+~x, and this last expression contradicts the assumption
of no elongation of the normal; this is because of the small strain

assumption (a/A)1/2 1.
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- L O I - 2Y 3L2 P.

- © o ' R t 222 1 32 2 L 0 0 1 qa a I2

3{A

. {r3 3
Jt YL I '3

=- L,,J f3 3}

~=b * 4-=LO 0 0 I - ?-Loo+ -j 2Ia1-
-LG,,1 iL3}

(3.69)

312 {
IL I P13

(3.70)

The generalized nodal displacements, {q}, and the parameters, {}, of the

assumed displacement field are related by a transformation matrix [Al which

may be obtained by substituting the coordinates of nodes i and i+l into

Equations 3.64, 3.69, and 3.70. Thus,

(3.71)

8xJ 8x8 0xi

With a correct choice of the polynomial displacement interpolation field,

A is a square nonsingular matrix; then one may write:

81 88 8x

Substituting Eq. 3.72 into Eq. 3.64 one obtains:

2~ 2X81 8 8 8 1

(3.72)

(3.73)

75



As one can see from strain-displacement relations Types A through E (Eqs.

3.32-3.36) using the 4 generalized displacements (namely v, w, 4I and X) at

each node of the CC formulation, provides continuity of the membrane strain

only, but the bending part of the strain is discontinuous since a and x

are not employed as generalized displacements at the nodes.

In order to investigate what effects would be encountered if complete

strain continuity were utilized, a formulation with 5 generalized displace-

ments at each node was also studied in conjunction with strain-displacement

relations, Type A through E. In this formulation, 5 generalized displace-

ments: v, w, , X and ax were employed and provide strain continuity for
an

relations Types A, B, and D but not for Types C and E. Furthermore, the

discontinuity in strain arising from the use of strain-displacement relations

Types C and E are expected to be small, since the term ax appears only in

nonlinear terms (namely as C and -2 () ). 
an 2 an

This 5 DOF/node formulation, in order to have a nonsingular [A] matrix,

takes the form (cubic in v and quintic in w)*:

i:v· [ CST -san BS c 28, 0 q 4 5t } (3.74)

2xJ 2 0 iOxI

or concisely,

i W } =[U5 (G) (3.75)

2xl 2X10 Ilot

The generalized displacements are:

{9}- , wit + (3.76)

IOxl

Pertinent quantities associated with the 5 DOF/node element are denoted by
subscript "5"; such quantities shown symbolically in this section are given
in full in Appendix B.
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Further one may write symbolically for this case:

= LGv I (3.77) I
I xlO o 

)1= L Gx 5 J Ip (3.78)

I 10 1Oxl

-a= x -{
lxo 0 Ioxl

Also,

{ = [ A 5] {5 i(3.80)
tl1O -10 xlo loxl

if}= rA5]~' Is (3.81)

lot I 1Ox 10 I10X

i }=[us()[A j' {S(3.82)
2x1 2 XlO loxlo lox

One of the purposes of this study is to see how useful this element really is.

It has the advantage of providing strain continuity when one uses strain

displacement relations Types A, B, and E, and also provides a better descrip-

tion of the strain inducing modes, since now the polynomial displacement

interpolation function consists of a cubic polynomial in v and a quintic

polynomial in w giving a better representation of the rotation term and the

bending term (- ). Also, the fact of having more degrees of freedom per

element should result in permitting the use of a coarser mesh of finite
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elements for a given prediction accuracy. One can also anticipate some

disadvantages: (1) the higher order polynomial may cause the element to be

"too flexible" and (2) [A] matrix, now will become more ill-conditioned for

inversion since the determinant of A will be significantly smaller than the
1

terms in [A], especially, in the case of straight beams, with = 0, andR
this may cause numerical troubles in computing the stiffness matrix.

Going one step further, one may consider the use of 6 DOF/node, where

continuity ofX is also guaranteed thereby insuring complete strain continuity

also in strain-displacement relations Types C and E. For this case, one can

assume displacement polynomials quintic in both v and w as follows:

iv| coo sjAs B. e 3 1 Q 4

w 6sn cost B2 0 o 0 0 5 0 (3.83)

2 2xl1 12xl

or more concisely

i X [U 6 &) ] {I &(3.83a)
2xl 2 x12 12x 

The appropriate generalized displacements are:

Sr 2Xt I T
VZ+ W ~t-t Y ~tst 1. V1an )1 \ d jL1 (3.84)

Similarly for the 6 DOF/node, one may write

x = G L 12 ' (3.85)

Ixl 12X1
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X=L L Ix6 i( (3.86)

( ) -LGCV,~, lj1 ( i { }(3.87)
Ixl 12XI

PI =X L-~ ~~~G (X>E)6s, ~ 1(3.88)

aq - 2, 2X1

Also,

{3I= [A i3 (3. 89a)

ITJ 1Y\.2 12)l

| nj WA·T' 6si j(3.89b)
12C2 l2y

E1; I ) b t2 6(<)2 0A44 13 }3.89c)
,2X 2 x12 12X12 12X1

This formulation has the advantages of providing continuity of strain no matter

which of the nonlinear strain-displacement relations is used. It also provides

continuity of the first derivative of the membrane strain c = X(1 2X)+ 2

Also it is generally known that a polynomial description of the same order

for both v and w provide a better description than one for which the polynomial

for v is of lower order than that for w*; accordingly, the displacement inter-

polation formulation employed is quintic-quintic. Another advantage of the

6 DOF/node formulation is that one can use the same number of Gaussian

See Subsection 3.3.2.
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integration points to evaluate {p} and [h] exactly for both the cubic-quintic

and the quintic-quintic cases since the highest polynomial degree appearing

in {p} and [h] is the same in both cases. Among the disadvantages are: (a)

the matrix [A] becomes even more ill-conditioned for inversion, (b) the elements

may tend to become "too flexible" under a 5th order interpolation polynomial

in both v and w, (c) the computation becomes somewhat more complicated with

such a high number of degrees of freedom per node. Part of the advantages

associated with simple descriptions for each finite element are lost.

Some additional observations concerning the use of higher order finite

elements may be noted: to quote Cook [103, page 174]

"Such "higher order" elements are usually quite accurate, but

have two significant disadvantages. First, where adjacent

elements have different thicknesses or different elastic

properties, or where stiffeners are attached, curvatures and

twist change abruptly across interelement boundaries. There-

fore, continuity of these higher order nodal d.o.f. must not be

enforced; instead, the extra freedoms should be viewed as internal

d.o.f. and should be removed by condensation before assembly of

elements. Second, boundary conditions involving the higher

order d.o.f. may not be obvious and are often cumbersome as,

for example, along curved boundaries, in shell problems where

in-plane displacements and their derivatives may also be used

as nodal freedoms, and if adjacent elements are not coplanar.

In summary, we may conclude that higher order d.o.f. make the

finite element method awkward in application to problems for

which it is usually best suited -- for problems involving

thickness changes, stiffness, mixtures of different element

types, and members meeting at angles. Abel and Desai (2)

have compared several plate elements on the basis of accuracy

versus computational expense. It is worth noting that when

judged in this way, the higher order elements mentioned above

may be surpassed by simpler elements."

It should be noted, however, that all of these appraisals are made in the
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context of linear-elastic, small-displacement behavior whereas nonlinear

large-displacement behavior is of principal interest in the present study;

hence, the observations in Ref. 103 may need to be modified for the present

class of problems.

Also, it should be noted that after the formulations in this subsection

were carried out and explored Refs. 113, 114, and 115 by Dawe were discovered.

Dawe [113,114] investigated various arch (curved beam) finite elements to

analyze the following small displacement, elastic problems:

h 1
1. A deep clamped arch carrying a central point load ( = and

R 17
R -22 were considered).
R 272

2. The same deep clamped arch but with the central point load

replaced by a uniform normal pressure; here extensive results
h 1

were obtained only for the case - = 
R 272

3. A pinched ring problem.

4. A shallow clamped arch carrying a point load, and subtending an
h300 h h 1

angle of C- - and 105 were considered).
R 66 R 1051

Some of the assumed-displacement finite elements considered were:

(a) a cubic in u and cubic in w element, with degrees of freedom u, w,
du dw

and . (Called CC element).

(b) a cubic in u and quintic in w element, with degrees of freedom

du dw d 2

u, w, d' and- (Dawe calls it a QC element).
ds ds 2

ds

(c) a quintic in u and cubic in w element, with degrees of freedom

du dw du
u, w, d' and (Dawe calls it a CQ element).

ds as 2
ds

(d) a quintic in u and quintic in w element, with degrees of freedom

du dw d u d2w
U1 W, and

ds' ds' ds2 2'
ds ds

Among Dawe's findings are:

(1) Calculations based on cubic (u), quintic (w) elements and cubic
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(u), cubic (w) elements show that the force distributions for

these models exhibit some waviness in all considered applications

and this becomes very pronounced in some deep thin arch problems

where the waviness is many times greater than the true magnitude

of the force.

(2) No significant improvement in accuracy is achieved by increasing

the order of the normal deflection component (w) from cubic to

quintic if the tangential component (u) is not similarly increased.

It seems even more efficient to increase the order of the tangen-

tial component (u) rather than the normal one (w) when treating

thin sections.

(3) The finite element model which successfully deals with both thick

and thin deep arches is the quintic-quintic model. The bending

moment distributions obtained by using the quintic-quintic model

are much more accurate than those based on the other models. It

also exhibits very rapid convergence.

(4) There is still some waviness in the force distribution obtained

using the quintic-quintic model in deep, thin, nearly inexten-

sional applications, but such waviness is small.

As will be seen later, these findings for small-displacement linear-elastic

conditions are consistent with the present study in which highly nonlinear

large-displacement elastic-plastic transient response conditions are of

principal interest.

Going one step further, one may consider the use of more DOF/node. The

next step could be a 7 DOF/nole element, where continuity of the rate of change

of the change of curvature ( i) is also guaranteed, thereby insuring complete

an
strain continuity in all the nonlinear strain displacement relations considered

(A thru E), as with the 6 DOF/node element, plus continuity of the first rate

of change of the strain, in strain displacement relations A, B and D.

For this case, one assumes displacement polynomials quintic in v and

7th degree in w: Z 3 4 5

LwJso siv 0 i0 Y6}09 00a
tw J --"~ cost B O go O O 4 5 O O e 1IP 1 390a)

14x1
2Xx
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or more concisely

The appropriate generalized displacements are

The appropriate generalized displacements are

L V; X - Z ( -

Vitl WAfix

(aX 

(- *)
(aX) C

eV4 T (3.90c)

aZ 7 itla12l, ,,:,

Similarly for the 7 DOF/node, one may write

1) = LG v i A
( IX4

= LGx
1X14

.1

i4,1

14xl

(3.90f)

Ixjj

(3.90g)

I 'jj 14

I x 14 fI xi

Also,

(3.90i)

q4'
j4Xj 14x 4 141

144 I !

-7 (, lA,1 1x
ZX14 4,i N14X
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14{>
14 xl

(3.90b)

(3.90d)

(3.90e)

C a2 _eV _ (3.90h)

(3.90j)

(3.90k)

Y1
76 q2. .

L

-6v
zi�
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Since it was previously shown that a polynomial description of the same

order for both v and w provide a better description than one for which that

is not so; it was considered appropriate to investigate an 8 DOF/node element

right after the 6 DOF/node. This 8 DOF/node element has t e added feature

of continuity of the second rate of change of extension (a X), thereby insuring

an
complete continuity of strain and its first rate of change in all the nonlinear

strain displacement relations considered (A thru E), plus continuity of the

second rate of change of the membrane strain ( 1n)=X 2 + 1 2
o 2 2

One assumes displacement polynomials of the 7th degree both in v and w:

Y JtL-s cOS~ B2 0 o O 3 )0 4 5 ji J (3.91a)
2xl 2x16 X1

or more concisely:

I = }8A (3.91b)
2XK1 2x6 16X1

The appropriate generalized displacements are:

{q>Lvt w; NS ( (x 2 (z)L

V~~t• [ WŽ2\f /3l -a il tl-3 t ( ' (3 91 )
(3.91c)

where

(3.91d)

~ _~ ylG, jCP 16X1'~

K 16 16xl

(-V Alp)= tG 6X,>) 8 1 l 2 }(3.91f)

I 16 16 xI
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a 1= LG (Xt) J8 {i } (3.91g)

8X = (A x,)8} (3.91i)

x1\6 16l

Also,

{q}= rA8 {P} (3.91k)

{: ff}= [,A, 1 t }(3.911)
16-1 16X16 16 1

3 = [uc ()] A8] 19 (3.91m)

Finally, it may be worth summarizing the physical significance of the
Finally, it may be worth summarizing the physical significance of the

different degrees of freedom chosen at the element nodes:

DOF related to*

v in-plane displacement

w out-of-plane displacement

;= V rotation
= n R

(If the beam rotates an angle 0, i = sine

in absence of strain)

;v w
x + extension

anj R

(If the beam rotates an angle 0, X = cos0-l

in absence of strain)

If the strain is nonzero X is the membrane

strain in the linear theory, and hence X is

related to the axial force for small displace-

ments (P EAX).
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DOF

(- a) = ~)r]2 + a )

aX _ a 2v a Wan n a 2 aa RaX=av a _

(- a2)=_ a3w + a2 ()
a)2 a rl 

a2X = a3v + a2 ()
an2 an3 an R

related to*

change of curvature

Related to the moment, for small displacements,

(M EI ).
an

rate of change of extension

For small displacements this is related to

the axial pressure (P a (E AX ) )

rate of change of the change of curvature

Related, for small displacements, to the shear

force (Q (EI 

second rate of change of extension

3.4 Finite Element Property Matrices

In this subsection curved-beam finite element property matrices based

upon the unconventional assumed-displacement variational formulation of

Subsections 2.1 and 2.2 are illustrated for only one of the strain-displace-

ment relations defined in Subsection 3.2.2, for generality, conciseness, and

avoiding unnecessary repetition; chosen for use is Eq. 3.34 (Type C) which

includes the other discussed relations as special cases. The finite element

property matrices [m], {p}, [h], and {f} defined by Eqs. 2.17a-2.17d are

displayed here in symbolic form without regard to any specific one of the

three assumed displacement fields defined in Subsection 3.3.3; all finite

Observe that sine and X cosO-l for nonzero strain, and that for large

displacements and rotations EI is not completely and uniquely related to

the moment, that a (EI a-) is not completely and uniquely related to the shear
a9n arn

force, and that X and its derivatives are not completely and uniquely related

to the membrane strain and its derivatives.
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element matrices including the three types of selected assumed-displacement

fields are given in full in Appendix B.

3.4.1 Strain-Displacement Expressions and

For convenient reference the Type C

is repeated here:

C( 4)=(vleo )+ tK(j) 

Strain Increments

strain-displacement

where

C()= X( I + X)+ 2

X(12=- (I 4 X)

3{ a v
X =

W v

R

As in Section 2, let the midsurface displacement field v,w within the

element be denoted by u and expressed in terms of suitable interpolation

functions U(n) as:

(3.98)
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(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)
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Hence, the generalized nodal displacements {q} and the parameters {(t)} are

related by substituting the nodal coordinates for nodes i and i+l into Eq.

3.98 to obtain

Hence,

(3.100)

Accordingly, Eqs. 3.98 and 3.100 yield

{i LL (v)][/Wj {i g }(3.101)

One can then express the strain quantities C o(), K(), and H(q) of

Eq. 3.92 in terms of the {q} and the assumed displacement field to obtain

C- (B BI1 )LB, J i -+LA iB, LB2 i.|K (3.102)

h= ( I±Lc1i1 )LB j i5 3v i lA {4 (3.103)

a=1~ Ll B3} LB3> &A) B+J LB41 (3.104)

where

{ 1}- l 1 J = { W (3.105)
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L,i=L~ ~ -J R

io~~l=R $ I

(3 .106a)

(3106b) LBi a) = Y

L B3 J = - a

LB 4 LB,iJ

(3.106c) LB3 

(3.106d) LB4 {, I

-4)vAA,_=- CSJ1 2q

_DC

(3.106g)

(3.106h)

and, since

p4
A 

Eu 1] [A> {9}
(3.107a)

(3.107b)

It is useful to express E£, K, and H in terms of the generalized dis-
placements q} by using Eq. 3.93 thru 3.95 and defining convenient matrices

D. as follows:
1

J- LBj LLc() [AY-
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L3j A X (3.106e)

(3. 106f)

BB i ^_ LBZJ [U(q) A' q iq



Thus, one may write*

LD L G J LA ]-' (3.109a)

L I L w [AH (3.109b)

LD 3 J L( acv I [ (3.109c)

L L AA (3.109d)

LDtJ I zX

LD3I{ =- au

LD41 -{9} 

(3.109e)

(3.109f)

(3.109g)

(3.109h)

Accordingly, one obtains

Co =1+ ' LsI Di)LD qS t
2 L~ i {I D LD2 iJ } -3. 10)

+ Li D4 LD4i{ (3. 112)

Matrices LGJ were defined in Subsection 3.3.3.
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In the process of transient-response solution, it is necessary to

evaluate the strain increment, A from time instant t to time t . This
m+L m m+l

strain increment is related to both the displacement and the displacement

increment by

(3.113)

A e .l

where the associated incremental quantities are

AXw, = x
+1! M+1

A tl 
= m+i

A ( aim )W" C
A( aX

A I,,, - t+1 - o

(3.114a)

(3.114b)

IXM

- Ym

and
A t

(3.114c)

(3.114d)

(3.114e)

(3.114f)
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Hence, the "incremental strain" quantities in Eq. 3.113 become

Aco ( +x I AXw+I) AxIm

+I Z1 Mi

+ (- )

+ (Y tl-2 A O1 )htt (3.115)

A( a Xtl
(3.116)

Afmi EW(

t+ 
- I2A (,,

hax
2) wi/bl

Expressed in matrix form in terms of the generalized displacements and their

increments, these strain increment quantities become

· Oel'=l ( + L3MtjID - LAtll D )LDlJ II .3

+ (Li ID2 2 - ±A+ J i}) DLD 21 { qm
(3.118)
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A

I

(3.117)

AXM+I 4
-ti

Cu~v
Dq M+1, d(- A

/dX

+ 6 - 3( Oll
2r I A 2 ?X ,- A



ANt= I tLIl ml IDi L svlA g),} L ) AJ{/lm,

+ (Lm.m1l { 4I - LAstlJ iD ) L A I,%{A }

+ L i i {D3 3 LDIJ l+,} L DLDJ m (3 .ll9)

AJ{,l (L S§J { Di- LqJID 3 ) L4 { A I-

+ (L+J{'D+}-L9A J {T4I}') L 4 i{Ac:9 't (3.120)

The terms of higher order of the form L + +1] {Dj} LDkj {Aqm+l} could be

dropped for a sufficiently small time increment step (or sufficiently small

Aq), but are retained for subsequent study.

3.4.2 Mass Matrix

To be consistent with the assumption of Kirchhoff behavior*, the

consistent mass matrix of the finite element including both rotary () and

translational effects (v,w) may be obtained from the expression for the

kinetic energy KE, as follows:

v, , ,uJJ s ( ' (3.121)
2z +(2; 2 ) 2(PI d

Kirchhoff displacement field: v = v - , = w; see comment on Eq. 3.68 in
Subsection 3.3.3.
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where (l+)dn* is the line element, h(q) is the thickness of the beam,b(S,n) is

the width and p is the mass per unit volume of the undeformed body, and

the integrations are performed over the undeformed volume. For a beam (ring)

of uniform width b, one may write,

I- 2
0

re

B ()= obh

L' r yi j1 13d3v d

hz)(

I 2, -

12R(l)
I O

h0 I 0
h 2() hz-

In ) __ n -I IAtKrLJ 2 I

(3.123)

Depending on the ratio of the thickness h to the radius of curvature R of

the beam, and the assumed strain displacement relations, one may or may not

keep the off-diagonal terms involving R

One may express v,w, and 1 in terms of the {q}:

Ip L UaDJ j i q [N (L)] {9} (3.124)

where

(3.125)
L) [XT()] [Af]-

[116, p.29] or Sokolnikoff [95].
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Applying Eq. 3.124 to Eq. 3.122, one obtains:

KE= ± L J L]i { (3.126)

where

where=j[ [NT] [( [() do (3.127)
0

where the consistent mass matrix [ml of the element is symmetric and positive

definite.

Mass matrices may be formed in various ways, with two widely used

categories: consistent and lumped. Widespread experience with these

categories may be summarized by quoting Cook [103, page 239 and 240]:

"When shape functions [N] are identical to those used in

formulating the element stiffness matrix, [m] is called the

consistent mass matrix. It is always positive definite.

Alternatively, simpler forms of N] may be used in computing

[m]. The simplest mass matrix is that obtained by placing

point masses m. at the displacement d.o.f. The latter form
1

of [m] is called a lumped mass matrix.

The lumped mass matrix is a diagonal matrix. The consistent

mass matrix is fully populated and more time consuming to

generate. There are computational advantages if mass matrices

are diagonal instead of full, as we will see below. However,

if the lumped mass approximation is crude, many elements may

be needed to obtain sufficiently accurate results. Thus, we

have the question: can we say which type of mass matrix is

generally to be preferred? The answer appears to be "no".

Use of lumped masses usually tends to lower natural frequencies,

while the excess stiffness present in a mesh of compatible

elements tend to raise them. Thus, the two opposite tendencies
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tend to cancel, and for a given mesh size lumped masses may

give more accurate results than a consistent formulation."

3.4.3 Generalized Nodal-Force Matrices for the Unconventional Formula-

tion

The equivalent generalized nodal forces which correspond to or

represent the externally-applied loading can be obtained by placing the

assumed displacement field into the expression for the variation of the

work of the externally-applied loading:

SWT=4J(Fv (t) v+F () +(t) S) ld (3.128)

0

where F (t)= Fv(t) t Fw() is the applied time varying

force per unit length

(3.129a)

ll(t) J4(t) a 8is the applied-time varying

moment per unit length

(3.129b)

Substituting the assumed displacement function into Eq. 3.128 in terms of

{q} one obtains:

S= i L i {{} (3.130)

where the generalized nodal force matrix {f} for the element is given by

f 1 [ Fw (I4 em) SE (3.131)0 ivi~F
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The equivalent nodal forces associated with the internal axial stress

a. are represented by the terms {p} and [hi {q} in the unconventional assumed-

displacement variational formulation (see Eqs. 2.16 and 2.17), and may be

identified by writing the following expression for the variation 6U of the

internal strain energy in the element:

SU Jff Sge dv d V io±S 2 J42 Sidv (3.13 2 )

V", V;

First performing the integration on ddC over the cross section of the

curved beam at any station, the following convenient stress-related

quantities L, M, and I may be identified:

Ac-s AC-S (3.133)

Ac-s

Introducing these quantities into Eq. 3.132, one obtains

±sUS T(.i )6A Yi1i°ISi jd (.134)
0

oSince , , and H are given by Eqs. 3.110, 3.111, and 3.112, respectively,
in terms of the generalized displacements, the variations 6E , 6K, and H

become:

SC0=LsJ{ i3 ( LI] DJ ) + LJ D )LDJi (3.135)
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Qk L J{ 3}(ji L i q ) +L5 iDI D 3 ij 1 t

Lq1 ji D4 L21 { + L 81 DZ}L D41i ~ (3.136)

2 6{= L sq4 tD3} LD31 } + L8jI{D4 LD4 1 (3.137)

where only generalized-displacement variations are permitted. Applying

Eqs. 3.135-3.137 to Eq. 3.134, one finds:

6U= Lql ('{pr + Vh1{9i) (3.138)

where

{ 3 j[D} (L+R) + {D3 NI 'A (3.139)

lC C(DI L,J + { }j LD ) (L+ -)

+ 4 fD}LD3 J + D3JLD1J + I 2 LD4 + ID4LD21J)1T

+ ({A4 LD41 t lD3 LD3l) I (3.140)

In practice, the integrations along n and those over the cross section for

L, M, and I are evaluated numerically by Gaussian quadrature. These

evaluations are discussed further in Section 4.
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3.4.4 Comments on the Conventional Formulation

As noted in Subsection 2.3, one can derive the conventional

formulation from the unconventional formulation explained in Subsections 2.2

and 3.4.3 by replacing via the stress-strain and strain-displacement rela-

tions. Accordingly, only the terms {p} and [h] {q} of the unconventional

formulation are affected -- the element matrices [m] and {f} are unchanged.

Hence, although the unconventional formulation is used almost exclusively

in the studies discussed in Section 4, it is useful to see the much greater

complexity that would result if one were to use the conventional formulation.

Accordingly, the stress-strain relation given by Eq. 2.21 becomes

for the present "uniaxial strain and stress conditions":

r= E(6 -E ) (3.141)

where and are, respectively, the uniaxial stress and the total strain,

and is the plastic part of the strain. One can perhaps visualize

sufficiently the large number of terms resulting from forming {p} and [h]

{q} by substituting the following expressions for L, M, and I in Eq. 3.139

for {p} and in Eq. 3.140 for [hi:

L =JJ dJ d = j E -P) ded=

=JA (3.142)
Altoj' +E x+ 2L EC3Ž -E 46P5d3d_ (3.143)

0 + E E2
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-E -E i iPA t =

MI L[E E0 t0 i E EF4MA E 2rldES (3.l14 4)

A

Terms crossed out (X) vanish since the reference axis of the curved beam is

assumed to be the centroidal axis of bending. Underlined terms (X) vanish

if a ring of uniform width b is used, but not otherwise. Next, noting the

expressions for E , K, and H in terms of the {q} from Eqs. 3.110, 3.111,

3.112, and using these to carry out the multiplications indicated in Eq.

3.139 and 3.140, one can readily appreciate the great number of terms which

result from forming p} and [h] {q} to provide the conventional-formulation

terms. Thus, it is apparent that the unconventional formulation will often

be more convenient and efficient for the analyst.

For present purposes it suffices to note that (see Ref. 17, page 50)

for the conventional formulation:

A8Us L r ([k ijn {4i}P o r \la(3.l45)

Also, for the unconventional formulation

SLL= L~Sl (ir t Ih1{igj~) (3.146)

where it can be shown that
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NL [ (3.147)

[L u=i fiAfN j ] Pf (3.148)

In turn, {fNL} {fNL} + {,,fNL} and consists of large deflection (NL:
q q q

nonlinear) equivalent force contributions from both {p} and h] {q}. In

the above expressions:

[k] = usual element stiffness matrix

{f NL = generalized force arising from internal forces associated with
q

the nonlinear terms of the strain-displacement relations

{fL = generalized plastic force terms associated with the plastic
P

strains and the linear terms of the strain-displacement

relation

{fNL = generalized plastic force terms associated with the plastic
P

strains and the nonlinear terms of the strain-displacement

relation

Finally, one can readily show that the element stiffness matrix for

the curved beam element may be evaluated by, assuming that (l+r/R) 1:

[kl=JJJ (E{IDjb Lh E { D13 LT31)d&dtdy (3.149)

For a curved beam of uniform width b, this becomes

[kn | (E b D,}L ~lDJ 2 Eb L ) JVLtd (3.150)
0
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where h = h(n). This stiffness matrix will be of interest later in connec-

tion with determining the highest natural frequency embedded in the finite-

element model of a given structure; this frequency is of interest since it

is related to the largest time increment size At allowed in the transient

solution process when the central-difference time operator is employed.
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SECTION 4

EVALUATION AND DISCUSSION

4.1 Objectives and Scope

In this section the finite element formulations presented in Sections 2

and 3 are employed to examine their features and consequences by comparing

predictions with each other for example impulsively-loaded structures under-

going large-deflection, elastic-plastic transient structural response. Highly

nonlinear geometric and material behavior are involved. The main example

problem chosen for illustration and evaluation purposes is an impulsively-

loaded aluminum beam with both ends clamped; high quality experimental data

are also available for this case and are used for theoretical-experimental

comparisons. Also, a free initially-circular impulsively-loaded thin ring

is analyzed. The principal matter under scrutiny concerns the performance

of the finite-element models for highly nonlinear geometric and material

behavior.

Since comparisons of predictions with pertinent high-quality experimental

data provide the "final" evaluation of any prediction method, appropriate

experimental data are employed herein and are described briefly in Subsection

4.2 for convenient reference.

Various analysis features are discussed in Subsections 4.3 through 4.5.

The effects of including nonlinear bending terms (as well as nonlinear mem-

brane terms) in the strain-displacement relations are discussed in Subsection

4.3. The effects upon the accuracy of evaluating various volume integrals

numerically by employing various numbers of Gaussian stations in each element

are described in Subsection 4.4. In Subsection 4.5, the effects upon the

predicted spatial distributions and time histories of strains and displace-

ments for the example beam problem are examined; comparisons are made also

with experimental results for impulsively loaded beams. Subsection 4.5 also

includes predictions versus experimental results for the free ring cited

earlier.

To illustrate structural response to fragment impact, example calcula-

tions involving one finite element model are shown in Subsection 4.6
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for an aluminum beam with clamped ends subjected to impact at its midspan by

a one-inch diameter steel sphere.

Finally, a summarized assessment of these comparisons is given in Sub-

section 4.7.

4.2 Experimental Beam Responses to Impulse Loading and Impact

A definitive evaluation of transient structural response prediction

methods requires finally that predictions be compared with well-defined experi-

mental transient response data. Well-defined experimental data of this type

are reported in Ref. 117 for impulsively-loaded and for steel-sphere-impacted

6061-T651 aluminum beams with both ends integrally clamped; specimens CB-1

through CB-4 were loaded impulsively while specimens CB-8 through CB-18 were

subjected to steel sphere impact. Some of these data are repeated here for

convenient reference since theoretical-experimental comparisons will be shown

in later subsections of Section 4, and will pertain principally to specimen

CB-1 with some attention also to specimens CB-4 and CB-18.

The nominal dimensions of the beam specimens (see Fig. 5) are: span

8.00 inch, width 1.50 inch, and thickness 0.100 inch; the actual dimensions

are given in Table 1. Figure 6 indicates clamped beam model nomenclature

and descriptive coordinates. Spanwise oriented strain gages were installed

at the midwidth station (y=0) at various spanwise locations on the lower (L

or loaded) surface and on the upper (U or non-loaded) surface; these locations

and the resulting permanent strains indicated by all surviving strain gages

on specimens CB-1, CB-4, CB-13, and CB-18 are given in Table 2.

The test schematic for the impulsively-loaded beams is shown in Fig. 7.

Sheet explosive (HE) of known dimensions and weight, centered at midspan, and

covering the entire width of the beam was employed. The sheet HE was separated

from the aluminum beam specimen by a suitable layer of polyurethane foam buffer

to prevent stress-wave-induced spalling of the beam specimen. The result is

that the beam experiences essentially a uniform initial velocity in the

HE-covered region. For specimens CB-1 and CB-4 the pertinent data are:
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HE-Covered Imparted Imparted
Spanwise Length Velocity Kinetic Energy

Specimen x(in) (in/sec) (in-lb)

CB-1 1.80 6657 1542

CB-4 1.80 10,589 3930

Transient strains were recorded via oscilloscopes and oscilloscope cameras;

the recorded transient strains for specimens CB-1 and CB-4 are shown in

Figs. 8 and 9, respectively. The "strain value" shown is actually the

"uncorrected" relative elongation E in the spanwise (x) direction. For
x

sufficiently large values, the following nonlinear correction must be applied

to obtain correct values E (tension is +; compression is -):

GF Ex (4.1)

Xc GF E
where

GF = gage factor of the strain gage (2.06 + 1%)

E = reading in the oscilloscope picture; units of in/in.x

Figure 10 shows a test schematic for the impact tests. Examples of

post-test impacted specimens are given in Fig. 11 for specimens CB-12 and

CB-13. Transient strains recorded for specimens CB-13 and CB-18 are given in

Figs. 12 and 13, respectively; the measured permanent strains are given in

Table 2. For these two typical specimens, the weight of the 1-inch diameter

impacting sphere and its initial impact velocity are:

Weight of Initial
Steel Sphere Impact Velocity

Specimen (grams) (in/sec)

CB-13 66.738 2490

CB-18 66.810 2794
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Model CB-13 experienced a moderate amount of permanent deformation while

specimen CB-18 exhibited large permanent deformation. Permanent deformation

data reported in Ref. 117 are indicated later where needed in this report.

Of principal interest for comparison with predictions are the transient

and permanent strain data. Secondary comparisons will be made with the

observed permanent deflection results.

4.3 Effects of Nonlinear Strain-Displacement Terms

4.3.1 General Considerations

To be discussed in this subsection are the effects upon transient

response predictions of including certain nonlinear membrane and bending

terms in (a) calculations of strain, (b) incremental strain computations,

and (c) the evaluation of generalized forces arising from nonlinear geometric

(and material property) effects when applied to 2-d beam and ring structures

which undergo transient large displacements and rotations. In assessing the

effects of these nonlinear terms, particular attention is given to the pre-

dicted strains because strains are both a more sensitive and a more important

indicator of the worth and necessity of including such terms than are the

displacements themselves.

As discussed in Subsection 3.2.2.2, several strain-displacement relations

identified as Types A, B, and C were investigated; also, two nonlinear versions

intermediate between Types B and C were studied and are identified as Types D

and E. for convenient reference, these relations are shown concisely in the

following for large-displacement, small-strain conditions:
Membrane Bending

Line Nonlinear nlinear Nonlinear

E + + 2L L
I -,L

Type A

Ip-
Type B

!
Type D I

Type E

Type C (4.2)
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where X = + is the "extension" and = is the "rotation"; note
an R atrl R

that if a beam has zero midsurface strain* (o=0) and rotates by an angle 8,

4 = sinO, and X = -1 + cosO since X = 1'l+2£ cose-1 and = I+2E sinO.
0 o

The effects of these various types of strain-displacement relations

clearly must depend upon the severity and type of structural deformations

present. Two types of illustrative situations were employed in assessing

these effects and, hence, that assessment validity is restricted accordingly.

These two problem types studied include (1) impulsively-loaded beams CB-1 and

CB-4 with clamped ends -- see Subsection 4.2 -- and (2) a free thin circular

ring subjected to severe impulse loading on a 120-degree sector of its

exterior [118,119]. The beam structures undergo significant membrane strain-

ing and some bending but the rotations and spanwise strain gradients are not

large over most of the structure. On the other hand, the impulsively-loaded

free ring experiences severe rotations and bending in certain regions but

the membrane strains are small over most of the ring except in the peripheral

region spanned by the impulsive loading for a short time following the

impulsively-applied loading. Each of these two categories of problems is

discussed separately in the following.

4.3.2 Impulsively-Loaded Beam Model

Transient response calculations were carried out for beam model CB-1

by using various of the cited types of strain displacement relations. However,

for the more-severely loaded CB-4 specimen, only the "complete nonlinear"

Type C strain-displacement relation was used. Hence, the following discussion

and comparisons will pertain to the CB-1 case.

Beam specimen CB-1 was modeled by 10 finite elements per beam half span,

with 5 DOF/N CQ elements. At midspan (x=O) symmetry was imposed, while at

the clamped end (x=4.00 in.) ideally-clamped conditions were applied. To

represent the mechanical behavior of the 6061-T651 aluminum material, its

unaxial stress-strain curve was approximated by piecewise-linear segments via

the mechanical sublayer model with the following stress-strain (,C) pairs;

41,000 psi, .0041 in/in; 45,000 psi, .012 in/in; and 53,000 psi, .10 in/in.

For present purposes the material was assumed to be strain-rate insensitive;

hence, the material was represented as behaving in an elastic, strain hardening

*_
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(EL-SH) fashion. Impulsively-applied uniform upward loading over a 1.80-in

region centered at midspan was assumed to produce a uniform initial velocity

of 6657 in/sec. Predicted transient extensional strains on the lower (L) or

loaded surface and/or on the upper (U) or nonloaded surface are shown in

various figures for the various spanwise stations (x) indicated in the follow-

ing:

Dominant
Station, x Surface Strain Type

(in) U or L B or M Figure

0 U and L B and M 14a

1.40 U and L B and M 14b

2.20 U and L M 14c

3.00 U and L M 14d

3.80 U and L B and M 14e

Indicated here is the dominant type of strain behavior: bending (B) or

membrane (M). That membrane behavior is dominant at stations x=2.20 and

3.00 in may be seen readily from Figs. 14c and 14d. Similarly, the

important presence of both bending (B) and membrane (M) behavior at x=3.80

in may be appreciated by inspecting Fig. 14e; the mean between these two

curves represents the membrane part of the strain and the extent to which

each trace deviates from this mean curve represents the severity of the

bending contribution to the strain.

An inspection of the strain predictions in Figs. 14c and 14d

which include dominantly membrane behavior shows that the effects of using

strain-displacement relation Types A, B, or C is very small; however, the

least comprehensive relation (Type A) shows poorer agreement with the "best"

relation (Type C) than does B with C.

At spanwise locations where both membrane and bending behavior are

significant (x=0, 1.40 and 3.80 in -- see Figs. 14a, 14b, and 14e), these

two types of behavior relative to each other change as time progresses.

At station x=3.80 in, for example, which is near the clamped edge, membrane

behavior dominates for about the first 150 microseconds; from t=150 to
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about 350 microseconds, the strain is significantly of the bending type

although the membrane strain has also increased importantly; and thereafter,

both bending and membrane behavior are very significant. Note that beyond

about 300 microseconds (as the rotations become larger and the membrane

strain remains large), the Type A and Type B predictions differ markedly

indicating that the parameter X is playing an important role; however, the

nonlinear bending terms in Type C contribute in a "compensatory fashion"

such that the more reliable Type C predictions turn out to compare favorably

with the "relatively crude" Type A predictions.

In the clamped beam example, the membrane effects dominate only after

considerable changes of curvature have already taken place, and significant

amounts of both bending and stretching effects are present in the beam.

Where membrane effects are predominant, the nonlinear membrane term 1 X

prevails over the nonlinear change of curvature terms (since C @ and a n
are small there). The portions of the clamped beam where stretching behavior

is most important is the region extending from some distance from the loaded

region to some distance from the clamp. The nonlinear change of curvature

terms are important at places that experience considerable bending; that is,

near the clamps, in the impulsively-loaded region, and just beyond the

edges of the impulsively-loaded region.

A considerable degree of mutual cancelling effect is observed between

the nonlinear terms. Although in some instances the results obtained from

strain-displacement relations Types A and C look very similar, this is some-

times the result of this mutual cancelling, as was observed from comparisons

between the predictions obtained by using relations A, B, D, E, and C; for

brevity and conciseness reasons, however, these "D and E results" are

not shown here. As expected, the effect of the nonlinear terms (appearing

in relations B, DL, E and C) becomes significant after considerable displace-

ments have occurred; for the clamped beam CB-1 example, this time is about

300 sec. The central deflection and maximum rotation at that time (about

7.25 times the beam thickness and 17 , respectively) are close to the maximum
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deflection and rotation experienced by the beam (about 7.5 times the beam

thickness and 21 , respectively).

At the center of the beam (where the peak deflection takes place) the
1 2

membrane term X becomes significant at an earlier time than do the non-

linear bending terms, and although the effects of these nonlinear curvature

terms eventually become as important, the peak strain takes place at an early

time in the structural response (70 sec.) when there is practically no

difference between strain-displacement relations Types B, C, D, and E.

Finally, shown in Fig. 15 are comparisons between predictions of the

midspan vertical deflection versus time for the Type A, B, and C strain-

displacement relations for beam model CB-1. It is seen that this displace-

ment information appears to be relatively insensitive to the type of strain-

displacement relation used, whereas strain comparisons exhibit more pronounced

differences.

From these (of many) example comparisons, it is clear that for general

applications involving a time-varying mixture of membrane (both extensional

and rotational action) and bending behavior, the more comprehensive Type C

strain-displacement relation should be employed.

4.3.3 Impulsively-Loaded Free Circular Ring

A free initially-circular 6061-T6 aluminum ring of 2.937-in midsurface

radius, 0.124-in thickness, and 1.195-in width was loaded impulsively uniformly

over a 120-degree sector (centered at =0 ) of its exterior, resulting in an

initial inward velocity of 6853 in/sec for that loaded region. The static

uniaxial stress-strain behavior of this material was approximated in a piece-

wise linear fashion with the following stress-strain pairs employed in the

mechanical-sublayer model: (,o) = 42,800 psi, .004076 in/in and 58,219 psi,

0.20 in/in; the material was assumed to be strain-rate sensitive, with strain-

rate constants D and p taken to be D=6500 sec and p=4. The mass per unit

volume was taken to be .0002526 (lb-sec )/in4

For economy and convenience reasons, advantage was taken of symmetry;

hence, the half ring was modeled by 18 uniform-length CC 4 DOF/N elements.

Strain-displacement relations A and C each were used. In the timewise

solution process, a time increment of 0.6 microseconds was employed.
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For the initial conditions of this problem, it is evident that bending

behavior will be dominant throughout the time history of the transient

response in all portions of the ring except for the impulsively-loaded

sector. In that sector, the ring will experience mainly compressive membrane

strain for a short period of time following the impulsive loading, thereafter,

the strain changes that occur will be mainly induced by bending. In a region

just beyond the edge of the impulsive-loading zone (and near 0=1800), the

ring will undergo very severe changes of curvature and bending strains, and

rotations. Elsewhere, the strains produced will be principally of bending/

rotation character. It is expected, therefore, that the very restricted

Type A strain-displacement relation (with linear bending terms and including

only the more important one of the two nonlinear membrane terms) may result

in reasonable predictions in portions of the ring experiencing relatively

small changes of curvature, but to provide less reliable predictions else-

where. On the other hand, the Type C strain-displacement relation should

provide superior predictions in all.portions of the ring.

To illustrate the cited types of behavior, the circumferential strains

predicted as a function of time are shown at both the inner surface and the

outer surface at the following representative locations:

Dominant
Location Strain Type
8 (deg.) B or M Figure

15 M 16a

85 B 16b

155 B 16c

175 B 16d

As seen from Fig. 16a for location =150 (in the impulsively-loaded

region), at very early times the strains are of the membrane compression

type; later, appreciable bending contributions are evident. At this

location, the Type A and the Type C predictions are in reasonably close

agreement throughout the transient response.
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Representative of severe bending regions are the strain time histories

for 0=85© as shown in Fig. 16b. The Type A and Type C predictions agree well

only for about the first 200 microseconds, and then exhibit increasing dif-

ferences until about 1200 microseconds which is near the peak-response time.

Thereafter, a near-constant but significant disparity remains. This agrees

with the previously-indicated expected behavior.

Location =155° involves an insignificant amount of membrane straining

but does experience some bending action although the rotations are small.

Hence, one would expect to see only minor differences between the Type A and

Type C predictions at this location. This is confirmed by the plots given

in Fig. 16c, where it is seen that these strains do not exceed 1 per cent.

Figure 16d for location 8=175© indicates similar predominant bending

behavior; here the inner surface experiences tension while the outer surface

is in compression since "inward" deflection occurs in that region; only at

the inner surface beyond about 1200 microseconds do the Type A and Type C

predictions differ significantly.

To supplement the above information, it is instructive to examine the

circumferential distribution of outer-surface and inner-surface strain at a

fixed instant of time -- here selected as 1500 microseconds to display the

near-maximum strain condition -- as shown in Fig. 17. Note that for the

4 DOF/N calculations the Type A and Type C predictions are in fairly

close agreement except for the circumferential region 700 < < 900 which

lies just beyond the edge of the impulsively-loaded zone where very severe

bending and rotations occur. Shown also for convenient comparison are strain

predictions obtained by using 8 of the 8 DOF/N elements and the Type C strain-

displacement relation; element node locations used were =0, 30, 50, 70, 90,

110, 135, 160 and 180 degrees.

Finally, shown in Fig. 18 are time histories of the midsurface separation

between locations =0 and 0=180 degrees as a function of time for the Type A

and the Type C calculation when 18 4 DOF/N CC elements are used to model the

half ring. These predictions are seen to be in good agreement with each

other until nearly peak deformation (minimum separation) has occurred. There-

after, the disparity increases as the influence of the nonlinear terms neglected

in Type A manifest themselves in the Type C result through their contribution

to the nonlinear equivalent load terms associated with large deflections and

plastic behavior.
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Here again, the general advisability of using the more comprehensive

Type C strain-displacement relation is evident.

4.3.4 Summary Comments

For the clamped-beam type of problem examined, it was observed that the

nonlinear term of principal importance in the strain-displacement relation is
1 2
2 . Accordingly, the use of the Type A relation results in good displace-

ment and strain predictions over all regions of the beam except near the

clamped end where significant rotations occur at "late" times. To accommodate

the behavior in this latter region, use of the Type C relation is recommended.

In the second illustrative example (the impulsively-loaded free ring) of

numerous types of applicable structural/loading behavior accommodated, it was

found that significantly different transient strains are predicted in certain

severe-bending regions of the ring when the "complete" Type C rather than the

Type A strain-displacement relation was used.

Hence, for general use it is recommended that the Type C strain-displacement

relation be used in conjunction with any of the finite elements noted in this

study: 4, 5, 6 or 8 DOF/N. Later discussions will center upon the comparative

performances of these elements.

4.4 Effects of the Number of Gaussian Stations

The evaluation of finite-element property matrices for the present class

of beam and ring (2-d) problems is carried out in practice by the numerical

evaluation of volume integrals, except for the contributions to the loading

vector f} arising from prescribed loading applied to the external surfaces

of the element. In the present study of the behavior of higher-order elements,

the unconventional finite element formulation is employed. It should be

recalled, however, that the conventional formulation differs only from the

former in terms of how one expresses the variation U of the work of the

internal forces; all other finite-element-property matrices are identical

between these two formulations (see Eq. 2.17 and 2.22 for the unconventional

and the conventional formulation, respectively; note that the individual

element properties are cited, respectively, in Eqs. 2.17a-2.17d and in Eq. 2.22a).

For convenient reference, the expressions for 6U for these two formula-

tions are repeated here:
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Unconventional Formulation

L J (Of } [ h] j } (4.3)

Conventional Formulation

where [k] represents the usual stiffness matrix for small-deflection, linear-

elastic behavior. It has been shown [17] that

{~} [f &J } { IL} f{L} (45)

Lh{% > {/bL Ie } {f }(4.6)
where

{f iV J = f{ J + {< }(4}7)
Thus, the correspondence between these two formulations is evident. The only

two additional finite element matrices needed are the mass matrix [m] given by

Eq. 2.17a and the prescribed applied-loads vector {f} given by Eq. 2.17d.

In evaluating the element property matrices for the present class of 2-d

structures, one performs volume integrations to evaluate all of these matrices

except for {f} which involves (usually) integrations only over a surface area.

For the unconventional formulation, it is seen from Eq. 2.17b and 2.17c for

{p} and [h], respectively, that one must integrate the product of the stress

Sij times quantities that vary with the spanwise location along the element.

Hence, since S ij varies with both the spanwise and the depthwise location

within the element, one must select a suitably large number of numerical

integration stations (a) through the depth and (b) along the span of an

element in order to achieve an accurate evaluation. Because the stress S i
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varies with both space and time during a typical transient response problem,

it is somewhat more convenient for present illustrative/discussion purposes

to examine the numerical-integration accuracy question by considering only a

few of the element-property matrices as expressed in conventional form; that

is, [m], [k]. and {fNL} as given for the present Bernoulli-Euler beam
q

behavior by:

L m j JuJf{ }& Lui 'dV (2.17a)

T
-- [N(). [B()] N(. )] 3127)

0

and for (+C/R) 1:

[] = } : D t' ~ fD E LD J V (from 2.22a)

= I (E {D, } t D, +E 52 D3 D3 Jad7 (3.149)

=5I Eb d )+ IDEt h hDcj E 1) {D33 i k L D(3.150)

Note that Eqs. 3.127 and 3.150 pertain to a beam or ring of uniform width b.

Also,

f{NLJ 1Sf } E [LJ[ .JdV

-Pt~iLD;J EL~ [ f,1 }tL~ JvI {(4.8)

where Eq. 4.8 is obtained for Eq. 2.22a. For the present Bernoulli-Euler

beam/ring type of finite-element analysis, Eqs. 3.127, 3.150,and 4.8 involve
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integrand quantities which depend only upon the spanwise location n. Hence,

since the displacement field within the element is herein expressed in terms

of polynomials "anchored to" the nodal generalized displacements, it is seen

that each integrand, in turn, is representable in terms of polynomials in n,

the degrees of these polynomials depending upon the degree of the polynomial

selected (and appearing in N(n) -- see Eqs. 3.66-3.73, 3.107a-3.112, and 3.150,

for example). Since n-station Gaussian integration (quadrature) is exact for

polynomials of degree 2n-1 or less, one can assess each of the quantities [m],

[k], and {fNL} to determine the number of spanwise Gaussian stations requiredq
to produce exact evaluations of each of these quantities for each of the higher-

order elements considered in this study; 4, 5, 6, 7, and 8 DOF/node; that assess-

ment is given in Table 3 for both straight-beam and curved-beam elements of

constant width b and thickness h when the Type C strain-displacement relation is

used, ignoring any trigonometric terms in the assumed displacement field.

To illustrate the "accuracy" sensitivity of [m] and [k] to the number of

Gaussian quadrature stations employed, beam CB-1 was modeled with (a) ten

4 DOF/N elements, (b) ten 5 DOF/N elements, and (c) four 8 DOF/N elements,

all per half span. The resulting maximum natural frequency w of each
max

mathematical model was determined for each of these cases when each of several

numbers of Gaussian stations was used. Shown in Table 4 for each of the model-

ings (a), (b), and (c) are the number of spanwise Gaussian stations: (1)

actually used, (2) needed for an exact [m], (3) needed for an exact [k], and

the resulting value for 2/w . In each case 2/w reaches a value thatmax max
does not change as the number of spanwise Gaussian stations used is increased;

that experimentally-determined value for each is: 4 for 4 DOF/N, 4 for 5 DOF/N

and 8 for 8 DOF/N modeling; this wm type result depends essentially uponmax
the polynomial degree used for v. This assessment involves a combination of

both [m] and [k] accuracies.

Shown also in Table 4 are the imparted nodal velocities required to

represent a given total kinetic energy of 770.8 in-lb. This computation

shows that once [m] has been evaluated exactly, no change in the cited

imparted velocities occurs as the number of spanwise Gaussian stations is

increased; this indication of the number of Gaussian stations needed is

essentially: (a) 4 for 4 DOF/N, (b) 5 for 5 DOF/N and (c) 6 for 8 DOF/N

modeling.
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The above assessment applies to small-deflection linear-elastic

behavior. However, when large deflections are present, the {f N L } force terms
q

can contribute. The importance of their contribution to the transient

structural response depends nonlinearly upon both the prescribed force {f}

and the magnitude of the deflections. Although, in principle, the large

number of Gaussian stations cited in Table 3 as being needed for an exact

evaluation of {f NL} would be required, fewer spanwise Gaussian stations are
q NL

needed typically in practice for a satisfactory evaluation of {f NL}. For
q

example, studies in Ref. 17 involving the use of 4 DOF/N elements and the

Type A strain-displacement relation revealed that 3 spanwise Gaussian stations

suffice to produce "converged" large transient displacements of impulsively-

loaded beams and rings. A more elaborate evaluation of the needed number of

spanwise Gaussian stations would be required in the (unlikely) event that

the following combination of conditions is encountered: (a) that the element

size be large enough so that the highest-order polynomial terms become of

major importance and (b) that the largest order nonlinear strain terms (i.e.,

quartic in strain) become of dominant importance in the full expression for

the equations of motion:

n adJ(i][ J +Ial I -ff } e mt eal)= (4 9)

In addition to evaluating f I, one must evaluate {f } and {f NLI which
q P P

are generalized loads arising from plastic straining throughout the volume of

the element and associated with, respectively, the linear and nonlinear terms

of the strain-displacement relations. These plastic strains vary both depth-

wise and spanwise throughout the element and change, in general, as the

transient response proceeds. Therefore, in practice, numerical experimenta-

tion is the most satisfactory means of determining the number of Gaussian

stations needed to provide a converged prediction of large-deflection, elastic-

plastic transient deformations of transiently- or impulsively-loaded structures.

Studies reported in Refs. 58 and 118 on finite-difference analyses of

this type of transient structural response show that the number of depthwise

Gaussian stations needed to produce accurate evaluations of stress resultants
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is 4; numbers of stations used in those studies included 2, 3, 4, 5, 6, 8 and

10. No significant differences were noted when more than 4 depthwise Gaussian

stations were used. Similarly, finite-element studies reported in Fig. 25 of

Ref. 17 for large-deflection, elastic-plastic transient responses of impulsively-

loaded beams wherein the finite element properties were evaluated by Gaussian

quadrature with 2, 3, 4, and 5 depthwise stations at each of 3 spanwise Gaussian

stations also revealed that 4 depthwise Gaussian stations were adequate to

produce converged results. Therefore, in the present studies, 4 depthwise

Gaussian stations were employed for all calculations, but the number of span-

wise Gaussian stations was varied to assess finite-element property evaluation

convergence and accuracy for the 4, 5, and 8 DOF/N elements discussed herein.

To demonstrate the effect of the number of spanwise Gaussian stations

employed, the following cases were studied for beam specimen CB-1 (4 depth-

wise Gaussian stations were used in all cases):

Element No. of Elems. Type of Strain- No. of Spanwise
DOF/N per Half Span Displ. Relation Gaussian Stations*

4 10 D m, 4, 5

4 20 C m, 4

5 10 D 3, 4, 51 , 6, 7

8 4 C 5, 6, E , 9

The following illustrations of the resulting transient upper-surface strains

and midspan-deflection responses are shown here to demonstrate the sensi-

tivities of the predictions to the number of spanwise Gaussian stations employed.

For all of these calculations, the unconventional finite-element formulation

and the central-difference timewise finite-difference operator were used.

The number in the box 0 indicates what is judged to be an adequate number

for "converged behavior" in this CB-1 clamped beam example.
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Case (DOF/N; No. Elems
per Half)

No. of Spanwise Gaussian
Stations

£ vs. t at the second node

£ vs. t at x = 1.40 in

E vs. t at x = 3.80 in

s vs. span at t = 600 sec

Midspan Defl. vs. t

Fiaure where Data Appear

4; 10 5; 10 8; 4

3, 4, 5 3, 4, 5, 6, 7 5, 6, 7, 9

19a 20a 21a

19b 20b 21b

19c 20c 21c

19d 20d 21d*

19e 20e 21e
,~. . , .,

For the 4 DOF/N, 10 element per half span modeling, Figs. 19a-19e

illustrate that 3 spanwise Gaussian stations (3G) suffice to produce con-

verged strain and deflection predictions. It is seen that the 3G is closer

to the 5G than is the 4G prediction for this case. Accordingly, one might

elect to require 5 spanwise Gaussian stations to be conservative; however,

3 or more would probably be adequate for most practical purposes. Note in

Fig. 19d where the spanwise distribution of upper-surface strain is shown

at t=600 microseconds that the number of spanwise Gaussian stations employed

has an especially pronounced effect upon the strain at nodal locations, but

locations within the element remote from the nodal stations are less

sensitively affected.

The effects of a wider range of spanwise Gaussian stations are shown in

Figs. 20a-20e for the 5 DOF/N, 10 element per half span modeling of beam

model CB-1. It is seen that the transient response predicted when too few

(3, for example) Gaussian stations are used is in serious disagreement with

the converged result. For this case the number of spanwise Gaussian stations

judged required to produce converged predictions of strain and (midspan) dis-

placement is 5 and 3, respectively. Here also, Fig. 20d demonstrates the

sensitivity of nodal strains to the number of spanwise Gaussian stations

employed.

For the 8 DOF/N, 4 element per half span modeling, Figs. 21a-21e provide

similar demonstrations for this higher order element. Trends similar to those

noted for the other two types of elements are evident. For this 8 DOF/N

element/structure modeling, it is judged that the number of spanwise Gaussian

stations needed to produce converged predictions of strain and (midspan) dis-

placement is 7 and 5, respectively.

At 450 microseconds.
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In all of these cases, it is seen that deflection predictions are much

less sensitive than are the strains to the number of spanwise Gaussian

stations employed in each element.

It should be noted that it may be advantageous to use more spanwise

Gaussian stations than the minimum amount necessary for satisfactory inte-

gration of the even-numbered DOF/N elements (namely 4, 6, and 8 DOF/N). The

reason for this is that the maximum frequency of the structure decreases
max

just before attaining the converged value. Since smaller w permits the
max

use of larger time increment sizes (At), the added computation time associated

with more spanwise Gaussian stations (and therefore with more exact integation)

may be balanced by the smaller computing time associated with a larger At. This

interesting effect is not important in the odd-numbered DOF/N finite elements

(5 DOF/N and 7 DOF/N), since only the in-plane displacement v affects the

maximum natural frequency. Hence for these elements, w (dependent on the
max

lower order v polynomial) has already converged before the element property

matrices (dependent on the higher order w polynomial) have converged.

4.5 Comparisons of Various Higher Order Elements

Having examined the effects of (a) using various strain-displacement

relations and (b) employing various number of spanwise Gaussian integration

stations for evaluating finite element property matrices, it is useful next

to compare the performances of the various finite elements discussed here.

For these comparisons the comprehensive Type C strain-displacement relation

is used in all cases. Predictions from example calculations are included

for clamped beam specimens CB-1 and CB-4 and for free-ring specimen F15;

all are impulsively-loaded 2-d structures.

4.5.1 Impulsively-Loaded Beam Models

For beam specimen CB-1, prediction comparisons are shown for the

following modelings, where EL-SH material behavior is assumed:

Elements
No. Spanwise

No. Per Gaussian

DOF/N Half Span Stations

4 20 4

5 16 5

6 13 5

8 10 7
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The combinations of the DOF/N and the number of elements per half span

provide roughly a comparable number of generalized-displacement unknowns

amongst these cases.

For convenient reference, the following reminder is given of the no,

generalized-displacement quantities employed for each of these elements:

dal

V VV 3' Y, T'd~ /
aX I /;[ X 

4 DOF/N

5 OF/N

5 DOF/N

I

6 DOF/N

8 DOF/N

An examination of these "nodal control quantities" in conjunction with the

Type C strain-displacement relation shown in Eq. 4.2 will serve one to

recall that all of these elements exhibit continuity of membrane strain

at the nodes but continuity of (a) the bending strain, (b) the spanwise

derivative of the membrane strain, and (c) the spanwise derivative of the

bending strain are accommodated differently as the following summarized

tabulation indicates:

Polynomial* in Continuity in Continuity in

DOF Membrane Bending
per Derivative
Node v w Strain First Second Strain First Deriv.

3 L C No No No No No

4 C C Yes No No No No

5 C Q Yes No No No No

6 Q Q Yes Yes No Yes No

7 Q 7th Yes Yes No Yes No

8 7th 7th Yes Yes Yes Yes Yes

cubic, Q: quintic (or fifth degree).
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The comparative character of the strains predicted by these various

elements, perhaps, is demonstrated most conveniently by the spanwise

distribution of the upper (non-loaded) surface spanwise strain at a "typical"

instant in time -- here taken at 300 microseconds for beam model CB-1.

These comparisons are shown in the following figures:

Figure Comparison: DOF/N (No. of Elems/Half-Span)

22 4(20) vs. 5(16)

23 5(16) vs. 6(13)

24 6(13) vs. 8(10)

25 4(20) vs. 8(10)

From Fig. 22, nodal strain discontinuity evident for the 4 DOF/N element

has been remedied by the 5 DOF/N element but the lack of strain gradient

continuity in the latter is seen to result in "cuspiness" at many nodal

stations. The 6 DOF/N element accommodates (over the 5 DOF/N element)

continuity of membrane strain gradient and continuity of bending strain, and

these consequences are evident in Fig. 23; however, some cuspiness remains

in regions of severe bending strain. This latter cuspiness is removed by

the use of the 8 DOF/N element which additionally provides continuity in

the spanwise derivative of the bending strain as well as continuity of the

spanwise second derivative of the membrane strain; this effect is evident

in Fig. 24. Finally, Fig. 25 contrasts the strain distribution predicted

by using the lowest-order 4 DOF/N elements with that for the highest-order

8 DOF/N elements included in this study. The latter provides the physically

expected continuities in both strain and strain gradients.

Since in transient structural response problems the strain at any given

location in the structure may vary appreciably with time, it is useful to

examine the time history of strain for the present CB-1 beam example at

various spanwise locations. To provide a convenient composite comparison,

predictions obtained by using the DOF/N (No. Elem.) combinations 4(20) and

8(10) for beam material behavior EL-SH and EL-SH-SR (where D=6500 sec.

and p=4) are presented as follows:
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Strain Location
Span, x Surface Experimental

Figure (in) U or L Data [117]

26 0 U --

27 1.40 U X

28 2.20 U X

29 2.20 L X

30 3.00 U X

31 3.80 U X

32 3.80 L X

Note that the predictions for the 4 DOF/N modeling are in good agreement

with those for the 8 DOF/N modeling at spanwise locations (x=2.20 and

3.00 in) where membrane behavior is dominant throughout the response; both

of these predictions are in reasonable agreement with experimental measure-

ments (of the relative elongation). Since the relative elongations are

small (less than about 2 to 3 per cent), no distinction has been made here

between the computed extensional strain ( of Eq. 4.2) and the measured

relative elongation. At x=1.40 in where both bending and membrane strains

are significant, the predictions disagree by only a small amount at times

when bending behavior is dominant. Note in Figs. 31 and 32 that these two

strain predictions deviate from each other at station x=3.80 in, probably

because of the presence of a significant amount of bending that occurs;

although the measured strains are small here, neither prediction compares

very well with the measurement.

Shown in Figs. 33 and 34 for, respectively, EL-SH and EL-SH-SR material

behavior, are predictions of the midspan deflection w as a function of time

for the four modelings: 4(20), 5(16), 6(13), and 8(10). Within each

figure these three predictions differ little from each other; displacement

time history information is a less sensitive indicator of the effects of

using different types of finite elements than is strain. Comparing Fig. 33

with Fig. 34, it is seen that the inclusion of only this very small degree

of strain-rate sensitivity results in a larger effect than does the use

of these four types of elements for the CB-1 beam example. Incidentally,

the computer runs for the results shown in Fig. 34 were carried out for
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the "same amount" of computer time on the IBM 370/168 system at the MIT

Information Processing Center; the cases, the At values, and the response

duration computed are

comparison aspect:

shown as follows to provide a rough idea of this

At Used Response

(jsec) Duration (sec)

0.25 920

0.25 880

0.20 780

0.15 450

Job Run
Time (min)

8.45

9.45

9.45

9.44

Finally, Fig. 35 shows permanent deflection as a function of spanwise

location, comparing measurements and 4(20) predictions for EL-SH and EL-SH-SR

behavior. Note that both predictions are in good qualitative agreement with

experiment, with the EL-SH-SR result being in closest agreement with measure-

ments.

For the more severely loaded beam specimen CB-4, EL-SH-SR calculations

using strain-displacement relation Type C and two FE modelings (a) 4(20)

and (b) 8(10) have been carried out. Comparisons of predicted strains with

each other and with experimental measurements are included as follows:

Strain Location '

Span, x Surface

(in) U or L

0

1.40

2.20

3.00

3.80

U and L

U and L

U

U

U and L

Experiment
Gage No. [117]

G2

G7

G4

G5 and G13

Because the measured relative elongations E approach 6 per cent in some

cases, they have been corrected to form E according to Eq. 4.1; further
xc

these values have been converted to correspond to the extensional strain 

given by Eq. 4.2 by applying the relation:
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Elem
Type

4 DOF/N

5 DOF/N

6 DOF/N

8 DOF/N

No. of

Elem/Half

20

16

13

10

Total
DOF

84

85

84

88

DOF

Unknowns

79

80

79

83

Figure

36

37

38

39

40
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Figures 36-40 represent £ vs. time. Except at station x=3.80 in, both

predictions are in reasonably good agreement with each other and with experi-

ment. Near the clamped edge, the simpler 4 DOF/N modeling provides a strain

prediction which is closer to the experimental result than that given by the

"more sophisticated" 8 DOF/N element. Some of the factors which may be

responsible for this state of affairs may include the following. An examina-

tion of the quantities appearing in the strain-displacement relations reveals

that the degree of the polynomials involved (for a straight beam) are:

2 1 2 a a 2

Term: x 1 2 1 aX X a) ax ()2 (. )2

4 DOF/N 2nd 4th 4th 1st 3rd 3rd 2nd 2nd
CC

8 DOF/N 6th 12th 12th 5th 11th 11th 10th 10th

7th7th 7th I
MEMBRANE BENDING

It is evident that the 4 DOF/N CC element involves polynomials of substan-

tially lower order for the strain representation than does the 8 DOF/N 7th

7th element, particularly for bending. Thus, the use of two CC elements in

a spanwise region represented by only one 7th 7th element could lead to

different overall behavior. This is especially true when the region in

question involves high levels of nonlinearity, such as near the clamped end

for the CB-4 beam problem. Further, near the clamped end, an examination

of specimen CB-4 reveals the important presence of transverse shear strain

in a narrow spanwise zone extending entirely across the width of the beam;

this behavior (1) is not taken into account in the FE models employed

and (2) could act to "alleviate" the bending behavior which otherwise would

exist adjacent to an ideally-clamped Bernoulli-Euler edge. These factors

contribute to a plausible explanation of the noted discrepancies. Time and

fund restrictions, however, have prevented a more thorough study of this

matter; hence, it remains for future study to delineate the full set of

reasons for this "discrepancy".
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Shown in Fig. 41 are the 4(20) and 8(10) predictions for the transient

midspan deflection of beam model CB-4; the Type C strain-displacement rela-

tion and EL-SH-SR conditions were assumed. These predictions agree very

well with each other. For these same conditions: (1) the spanwise distribu-

tions of upper-surface strain are shown in Fig. 42a at t=300 microseconds

and (b) the measured vs. the predicted (4 DOF/N, 20 ELEM/HALF) spanwise

distribution of the permanent deflection are given in Fig. 42b, where

excellent theoretical-experimental agreement is observed. Note in Fig. 42a

that an appreciable difference exists between the 4(20) and 8(10) strain

predictions over most of the span of the beam at the 300 microsecond time

instant; also observe the usual nodal strain discontinuity for the 4(20)

calculation, but the improved continuity behavior for the 8(10) prediction.

Finally, at the midspan location (x=0) the exhibited 8(10) prediction is

one for which the following symmetry conditions were imposed: v = = X
2

= 0; these are believed to be the "proper" symmetry conditions. A
a2

calculation was carried out in which the entire beam was modeled by 8 DOF/N

elements; the resulting transient strain distributions and time histories

agreed exactly with the calculation just described, thereby confirming the

validity of the symmetry conditions employed at x=0.

An examination of the predicted transient strains revealed the influence

of constraining the higher order derivatives

a__X = 2v a (w) 0 and a3 w a2 () 0 to be confined within a
aq an2 +T) R a2 3 2 R

distance of about 0.15 in from midspan, and are essentially negligible

beyond this location. At midspan (where these symmetry conditions are

imposed), the prediction for the 8(10) modeling with only v = = 0 imposed,

strongly resembles the 4(20) prediction. The higher-order derivative X

has a strong influence on the highest frequency of the structure. For

example, for a mesh of 4 unequal 8 DOF/N elements per half beam (CB-1),

one finds:

126



Symmetry Condition Imposed Highest Frequency
at Midspan (x=0) of Model (rad/sec.)

v = = 0 0.63571 x 107

2v = W = a~ W=0 0.63571 x 107an

7
v = = a = 0 0.4430 x 10

WHOLE BEAM (8 of 8 DOF/N) 0.4431 x 10

It is apparent that setting the higher order derivative X = 0 as a symmetry

condition would enable one to use a larger At when the central-difference

timewise operator is employed.

4.5.2 Impulsively-Loaded Free Circular Ring

The impulsively-loaded free initially-circular thin ring discussed in

Subsection 4.3.3 was analyzed by using 18 uniform 4 DOF/N elements and 8

elements of the 8 DOF/N type with nodes at =0, 30, 50, 70, 90, 110, 135,

160, and 180 degrees for the half ring, taking advantage of symmetry; these

FE modelings provide a comparable number of generalized displacement unknowns.

The symmetry conditions used were (a) v = 0 = O for the 4(18) and (b)

v = = = = 0 for the 8(8) FE modeling. The aluminum ring material

was assumed to behave in an EL-SH-SR fashion, with the strain rate constants

taken to be D=6500 sec 1and p=4. In both of these calculations the Type C

strain-displacement relation was used.

Shown in Fig. 43a are experimentally-measured and predicted inside-

surface strain histories at =870 20' and 920 30' for this impulsively-

loaded free ring. At each location both predictions are in reasonably

good agreement with each other but exceed the measured values substantially.

Much better theoretical-experimental agreement is observed for outer-surface

circumferential strains at =860 10' and 920 30' as shown in Fig. 43b. On

the outside surface at =1760 where "reversed bending" leads to compression

strain, Fig. 43c shows fairly good qualitative and quantitative agreement

between predictions and experiment. Included in Fig. 43c are the 4(18) and

8(8) predictions for the inside-surface circumferential strain at this same
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8=1760 location; this figure illustrates the existence of essentially pure

bending. Hence, the present predictions are seen to be in reasonable agree-

ment with measurements at outer-surface location; however, predictions tend

to overestimate the inner-surface strains* Unfortunately time and fund

limitations have prevented a more extensive set of modelings and calculations

to illuminate further the various factors contributing to these discrepancies.

Figure 44 shows the predicted and photographically-measured time

histories of the separation between the midplanes of -stations 0 and 1800

of the free impulsively-loaded ring for both calculations; these predictions

are in very good agreement with each other and with experiment. Here

again one finds better theoretical-experimental agreement for deflection

than for strains.

Finally, the following summarizes the computing time for these two

cases (a At of 0.6 microsecond was used in each case):

Response
Elem No. of Total DOF No. of Gauss. Sta. Duration Job Run
Type Elem/Half DOF Unknowns Depth. Span. (lsec) Time (min)

4 DOF/N 18 76 72 4 4 2700 9.41

8 DOF/N 8 72 64 4 7 2700 12.44

4.5.3 Comments

For the beam and ring examples studied, comparisons of the performances

of the 4, 5, 6, and 8 DOF/N elements on the basis of roughly an equal number

of unknown generalized displacements and essentially the Typc C strain-dis-

placement relation reveals no significant superiority amongst these elements

for this type of nonlinear large-deflection, elastic-plastic transient

response problem. The 8 DOF/N element exhibits much more plausible spanwise

(or circumferential) distributions of strain at any time instant than those

provided by these other elements. Hence, in general, more realistic strain

predictions are expected when the 8 DOF/N element is employed. However,

if one uses the (simplest) 4 DOF/N element and computes nodal-average strain,

it appears that strain values and distributions of sufficient accuracy for

most engineering purposes would be obtained.

At those locations where measurements have been made successfully.
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Near a clamped boundary 4 DOF/N modeling leads to plausible values

and distributions of strain, and reasonably good agreement with experiment.

On the other hand, the "more comprehensive" 8 DOF/N element results in

seemingly excessive strain values in this region (see Figs. 25, 32, 40,

and 42a, for example). Further study is required to explain this behavior

and to carry out remedial measures.

Hence, for the standpoints of accuracy, cost, and efficiency, it appears

advisable to employ the 4 DOF/N element as just described in conjunction

with the Type C strain-displacement relation, in general, for analyzing the

present types of large-deflection, elastic-plastic 2-d transient structural

response problems.

4.6 Structural Response to Impact

As noted in Subsection 4.2, an assessment of the accuracy and adequacy

of a method for predicting the transient structural response of a structure

which is subjected to fragment impact is accomplished most effectively and

reliably by comparing predictions with pertinent high-quality experimental

transient strain and deflection response data. Accordingly, such use is

made of the experimental data cited in Subsection 4.2 for clamped aluminum

beam specimen CB-18 subjected to impact by a 1-inch diameter steel sphere

having an initial impact velocity of 2794 in/sec.

A computer code CIVM-JET 4B developed at the MIT Aeroelastic and

Structures Research Laboratory [120] combines (1) a finite-element struc-

tural analysis capability for 2-d structures experiencing large-deflection

elastic-plastic transient structural response with (2) an approximate

impact-interaction analysis utilizing momentum and energy conservation

principles to predict structural response to impact by "rigid" missiles

or fragments. A timewise step-by-step solution procedure in small increments

of time is employed. If impact occurs at some point on the structure during

the small time increment At, an appropriate region of the structure near that

impact point is assumed to be affected by that "instantaneous impact process",

thereby experiencing an impact-induced increment in its velocity components

and, accordingly, the impacting fragment suffers a decrease in its velocity.

The analysis provides for treating the local impact process as being (a)

perfectly-elastic, (b) perfectly-inelastic, of (c) intermediate between
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(a) and (b), as preselected by the analyst. The reader is invited to consult

Ref. 120 for the various analysis features and computer code capabilities.

For present illustrative purposes, the results from two calculations

for the CB-18 sphere-beam impact example are presented here. Both calcula-

tions involve the use of 43 equal-length 4 DOF/N elements to represent the

entire span of the beam. In one case the Type B strain-displacement rela-

tion (used in the current version of CIVM-JET 4B) was employed; in the other

calculation, the code was modified to use the Type C strain-displacement

relation. In both cases the local impact was assumed to be perfectly

elastic; the geometric properties, material uniaxial stress-strain (,C)

properties, and mass density of the beam used in these calculations were:

Span, L = 8.000 in 1 1C1 : 41,000 psi, .0041 in/in

Width, w = 1.498 in O2,22: 45,000 psi, .012 in/in

Thickness, h = 0.097 in C3 , 3: 53,000 psi, .100 in/in

Mass per unit volume, p = 0.25384 x 10- 3 (lb-sec2)/in4

Beam material mechanical behavior was assumed to be either (a) EL-SH or

(b) EL-SH-SR with D=6500 sec and p=4. In all cases, a time increment

size At of 0.5 microsecond was used.

An examination of steel-sphere-impacted beam specimen CB-18 reveals

that except near (beyond about 0.75 in from) the midspan lower-surface

impact point (x=O), the beam underwent essentially two-dimensional deforma-

tion. Hence, since the CIVM-JET 4B analysis and code pertains strictly to

2-d structural behavior, meaningful theoretical experimental comparisons

can be made only for the 2-d structural response region: 0.8 < x < 4.00.

Accordingly, predicted and measured strain time histories are shown as

follows:

Location Mechanical
Figure Span, x Surface Strain Gage Strain-Displ Behavior

(in) U or L No. Rel. Type EL-SH EL-SH-SR

45a 1.50 U and L G5, G12 B X X

45b 1.20 U G4 B X X

45c 0.6 U G3* B X X

45d 0 U -- B X X

Involves 3-d structural deformation behavior.
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Spanwise strains for both the upper and the lower surface are shown in

Fig. 45a for station x=1.50 in; the mean value represents the membrane

contribution and the deviation from the mean identifies the bending con-

tribution to the strain. At early times 0 < t < 170 microseconds, bending

dominates; during 170 < t < 350 sec, almost pure membrane strain exists;

and after about 350 sec, membrane behavior dominates but a significant

amount of bending-induced strain is present. Note that the EL-SH and the

EL-SH-SR predictions exhibit slightly different time histories, with the

EL-SH case predicting somewhat larger peak strain values. Also, with

respect to the peak strain values: (1) the EL-SH prediction is in better

agreement with experiment than is the EL-SH-SR prediction for the lower-

surface location, whereas (2) on the upper surface, the EL-SH-SR prediction

agrees better with experiment than does the EL-SH prediction. Note that

these theoretical strains are those given by Eq. 4.2; the experimentally-

measured relative elongation data were corrected and converted to this

same basis, as described in Subsection 4.5.1.

Predictions of upper-surface strains at stations x=1.20 and 0.6 in are

compared with measurements in Figs. 45b and 45c, respectively. At station

x=1.20 in where 2-d structural response occurs, the predictions are in

fairly good agreement with experiment, with the EL-SH results being in

better qualitative and quantitative agreement. At station x=0.6 in the

structural behavior shows signs of 3-d rather than essentially 2-d deforma-

tion; hence, one observes a poorer theoretical-experimental correlation

but, again, the EL-SH prediction provides the better correlation.

Finally, as a matter of curiosity, the predicted upper-surface strains

are shown in Fig. 45d for midspan station x=0. The predictions, of course,

apply strictly to 2-d structural response, whereas the actual response

(not measured successfully) is strongly of 3-d character. Here the pre-

dicted peak strains reach about 16 per cent for the EL-SH calculation and

about 13 per cent for the EL-SH-SR case.

Shown in Figs. 45e, 45f, and 45g for the EL-SH calculation are the time

histories of the beam-support reactions: moment My, vertical force F , and

horizontal force F at x = 4.00 in. These support reactions are shown withx

expanded time scales in Figs. 45h, 45i, and 45j. Note that F is nearly

zero until about 18 sec after initial impact and then becomes and remains
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to the right (positive) thereafter. On the other hand both F and M remain
z y

essentially zero until about 30 sec after initial impact. Thereafter F
z

oscillates rapidly during about the next 100 sec; relatively slow oscillations

occur subsequently. The support reaction moment M exhibits an oscillatory

behavior similar to that of F
z

Shown in Fig. 46, are EL-SH and EL-SH-SR predictions of the lateral

displacement w as a function of time at spanwise station x=1.0 in where

2-d structural response occurs. Also indicated is the measured permanent

deflection at this station; both calculations agree rather well with the

experimentally-determined value of .60 in. At later times, the predicted

deflection oscillates slightly about mean values of .63+.02 in and .58+.03

in for the EL-SH and the EL-SH-SR case, respectively.

In the second category of these predictions, the Type C rather than

the Type B strain-displacement relation formerly used was applied; only

the EL-SH condition was used. Compared in Figs. 47a, 47b, 47c, and 47d

are the "Type B" and "Type C" predictions of upper surface strain at,

respectively, spanwise stations x=3.9, 1.5, 0.6, and 0 in. Only at stations

x=3.9 in and x=0 in where severe bending occurs does one observe notable

differences between these two predictions. Since sufficiently severe steel-

sphere impact produces rupture of the beam at the midspan-impact location,

one may choose to employ the Type C strain-displacement relation as afford-

ing "improved predictions" for the general case.
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SECTION 5

SUMMARY, CONCLUSIONS, AND COMMENTS

5.1 Summary

The present study was intended to contribute to the development of

more rational practical methods for predicting the responses of structures

which are subjected to intense transient and impact loads. Accordingly,

interest centered upon the use of the finite-element (FE) method in a quest

to predict strains accurately since these quantities are of primary interest

in many cases wherein incipient failure associated with structural response

is of concern. In order to predict strains accurately, the use of higher-

order assumed displacement elements was expected to be useful since such

elements can approximate spatially-varying strains more accurately on an

element-by-element basis than can lower-order elements. However, no informa-

tion was found concerning the utility and efficiency of employing higher-

order vs. lower-order elements when applied to large-deflection, elastic-

plastic transient response problems. Hence, higher-order elements were

explored for 2-d rather than 3-d structural response to minimize cost and

labor. Further, for similar reasons only initially-isotropic materials

were taken into account; more complex material mechanical behavior could

be accommodated later when warranted.

In view of these considerations, the finite-element formulation (based

upon the Principle of Virtual Work and D'Alembert's Principle) and the

solution process was reviewed, noting the features of both the unconventional

and the conventional formulation. When a higher nonlinear strain-displacement

relation is used for problems of this type, the unconventional formulation

is much more convenient and efficient than is the conventional formulation

and, accordingly, was used. Further, since it was desired that the analysis

apply to ductile as well as brittle materials, large deflections and rota-

tions can occur and must be taken into account properly in the strain-

displacement relations (which are highly nonlinear). Hence, appropriate

strain-displacement relations were examined in Subsection 3.2 for various

simple structural configurations. Next, appropriate geometric approximations
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for simple shapes and assumed displacement fields for a succession of higher-

order elements: 4, 5, 6, and 8 DOF/node were investigated, providing for

both rigid-body and deformation displacements. The consequent finite element

property matrices were determined.

For computational efficiency, storage, and convenience, the present

calculations utilize the unconventional formulation and the timewise central-

difference operator. Accordingly, the time increment size At required to

prevent calculation instability is approximately 0.8 (2/w max ), where w ismax max
the maximum natural vibration frequency of the mathematical model of the

system. It appears that for a given FE modeling, typically the use of a

At small enough to avoid calculation instability provides essentially a con-

verged result in the sense that the use of a smaller At results in essentially

the same predicted transient response. However, when At is too large, a

self-evident calculation blow-up occurs. While larger At values may be used

with various of the common "unconditionally stable" timewise finite-difference

operators, one must resort to numerical experimentation to insure that the

chosen At will provide a converged transient response solution.

For highly nonlinear transient structural response problems of the

present type, one can assess the accuracy and adequacy of proposed prediction

methods only by comparing predictions with reliable experimental transient

strain data for appropriate well-defined experiments. Accordingly, experi-

mental data for impulsively-loaded (a) initially-flat aluminum beams (CB-1

and CB-4) with clamped ends [117] and (b) free initially-circular ring

[118,119] were employed to assess the various higher-order elements con-

sidered. For these cases, the effects of using various successively-more-

comprehensive approximations for the strain-displacement relations were

studied (Type A being the simplest and Type C the most comprehensive).

Type A is adequate for "gentle" nonlinear response but Type C is needed

when severe deflections and rotations occur; these studies are given in

Subsection 4.3.

Since some of the finite element property matrices depend upon the

stress state throughout the volume of the element and this state changes

as the transient response proceeds, it is necessary to evaluate these

properties by performing certain volume integrals at a succession of times
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At apart during the transient-response solution process. This integration

is done numerically by Gaussian quadrature. The accuracies of such evalua-

tions (for the present 2-d type structures) depend upon the number of depth-

wise and spanwise Gaussian stations employed. Accordingly, this matter was

investigated for each type of finite element studied (see Subsection 4.4).

Having established the necessary number of Gaussian integration stations

for each type of element and the desirability of employing the Type C strain-

displacement relation (Eq. 3.34 or Eq. 4.2), transient response calculations

were carried out. These predictions were compared with each other and with

experimental transient strain and permanent defleciton data for both the

beam and the ring models.

To illustrate an application to impact-induced structural response,

two calculations (one using the Type B and one using the Type C strain-

displacement relation) were carried out by using the CIVM-JET 4B computer

code of Ref. 120; in both calculations the 8-inch span beam was modeled by

43 uniform 4 DOF/N elements. The predictions were compared with measured

transient strain and permanent deflection data [1171.

5.2 Conclusions

Based upon currently available information, including the present study,

the following conclusions concerning the use of assumed-displacement finite

elements for predicting Bernoulli-Euler large-deflection elastic-plastic

transient structural responses of 2-d structures may be stated:

1. For general application, the Type C strain-displacement (Eq. 4.2)

should be used.

2. From the standpoints of accuracy, efficiency, and cost, it is

preferable to use the 4 DOF/N element (in conjunction with nodal

averaging of strain) rather than, for example, the 8 DOF/N element

despite its superior strain-representing ability; implied is the

use of many 4 DOF/N vs. fewer 8 DOF/N elements such that one has

a comparable number of unknown generalized displacements to be

determined during the transient response analysis. Although

these comparisons and observations were made by using the timewise

central difference operator, similar qualitative comparisons are
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expected should one elect to use a less restrictive (regarding

At size) timewise finite-difference operator such as, for example,

that of Houbolt [17, for example] or Park [121]; however, direct

calculations to explore this matter are recommended.

3. Large differences in strain distribution between the 4 DOF/N and

the 8 DOF/N elements were found only at the boundaries and the

loaded regions of the beam and ring specimens. At the clamp of

impulsively-loaded beams CB-1 and CB-4, the 4 DOF/N element

produces results that are closer to the experiment. At the

impulsively-loaded regions of beams CB-1 and CB-4 and of the

free circular ring, there is no experimental strain information

available for comparison with the 4 DOF/N and 8 DOF/N element

predictions.

4. The use of the 8 DOF/N element in conjunction with the Type C

strain-displacement relation provides physically realistic and

superior spatial distributions of strain at each time instant

compared with those from the lower-order elements. This element

prevents the physically unrealistic strain and strain-gradient

discontinuities found with various of the lower order elements.

5. Considering only the simplest (4 DOF/N) and the most comprehensive

(8 DOF/N) element examined in the present study, the following

summarizes the recommended number of spanwise and/or depthwise

Gaussian stations needed within an element for an accurate overall

evaluation, based mainly upon a study of transient strain predic-

tions:
No. of Gaussian Stations

4 DOF/N 8 DOF/N

Depth. Spanwise Depth. Spanwise

4 3 4 7

6. The 5 DOF/N element (quintic in w and cubic in v) was shown to be

less accurate with respect strain predictions than the 4 DOF/N,

6 DOF/N, and 8 DOF/N elements. This is due to: (a) the 5 DOF/N

element enforces continuity of bending strain for strain-displace-

ment relations Types A, B, and D, without enforcing continuity of

the (membrane and bending) strain gradients; this results in cusps

at the nodes, that produce very inaccurate strain distribution,
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and (b) the ncrmal component of displacement (w) is of higher

order than the tangential component; for large displacements and

rotations (and for an accurate representation of rigid body modes)

both components of deflection should be represented by polynomials

of the same order.

7. Application of the 4 DOF/N element'via the CIVM-JET 4B analysis

and code of Ref. 120 to analyze beam response to steel-sphere

impact (beam model CB-18) provides fairly good agreement between

predicted and measured transient strain at beam spanwise stations

where 2-d structural response applies. In these calculations,

the steel sphere was treated as being non-deformable; a modified

impact-interaction analysis would be required if the attacking

missile were comparatively deformable.

5.3 Comments

Appropriate methods for predicting the structural response of

structures subjected to impact by fragments depends upon the mechanical

behavior or type of material in both the structure and the attacking

fragment. For either hard or crushable-rigid missiles striking ductile

isotropic metallic targets, one must accommodate in the analysis large

deflections and large strains if one seeks to predict the structural

response up to and including rupture of the material. The present analysis

includes arbitrarily large deflections but only small to moderate strains;

also transverse shear deformation is neglected. It is advisable, therefore,

to pursue the inclusion of these two aspects in future analysis developments.

If the target consists of complex anisotropic material such as reinforced

concrete or structural composites, one need account generally for much smaller

deflections than in the former case but the mechanical behavior properties and

failure behavior are much more complex. Recent studies contributing to achiev-

ing a better understanding of the responses of reinforced concrete, metallic,

and composite structural panels subjected to impact by various types of missiles

are reported in Refs. 122-129. Work on measurement and characterization of the

constitutive relations for reinforced concrete is described in Ref. 130, while

Ref. 131 reports recent finite element structural analysis developments accommo-

dating a complex but useful descriptive model of reinforced-concrete mechanical

behavior. The continuation of the Refs. 123, 129, 130, 131 category of studies

promises to produce valuable improvements in both understanding and in pre-

diction capabilities in the near future.
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PRE-TEST DIMENSIONS OF THE 6061-T651 BEAM SPECIMENS
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TABLE 4

INFLUENCE OF THE NUMBER OF SPANWISE GAUSSIAN STATIONS ON THE MAXIMUM
NATURAL FREQUENCY AND REQUIRED NODAL VELOCITIES TO PRODUCE
A GIVEN INITIAL KINETIC ENERGY FOR BEAM MODEL CB-1 WHEN

MODELED BY 4 DOF/N, 5 DOF/N, and 8 DOF/N ELEMENTS

No. of Spanwise Gaussian Stations Computed Results
2

Used Needed for Needed for X Nodal Velocity to
Exact [ml Exact [k] Produce (KE)o
Integration Integration (Isec) = 770.8 in-lb

(in/sec)

10 Equal Elements per Half Span: 4 DOF/N, (C,C;v,w)

5 4 3 0.622001 6 2 9 4 .1 3 a

4 4 3 0.622001 6 2 9 4 .1 3a

3 4 3 0.520353 6299.23 a

2 4 3 1.126926 --

10 Equal Elements per Half Span: 5 DOF/N, (C,Q;v,w)

7 6 4 0.622001 6218.59 a

6 6 4 0.622001 6218.59 a

5 6 4 0.622001 6218.77 a

4 6 4 0.622001 6215.84 a

3 6 4 0.520353 6248.15 a

4 Elements per Half Span*: 8 DOF/N, (7th,7th;v,w)

9 8 7 0.458108 6921.52 b

8 8 7 0.458108 6 9 2 1 .5 2b

7 8 7 0.451270 6921.53 b

6 8 7 0.372488 6921.42

5 8 7 0.226864 6922.58 b

a: This is velocity at the last "loaded node" (node 3); at nodes 1
and 2 velocity is 6656.79 in/sec. Node 1 is at midspan (x=O).

b: Velocity applied to all loaded nodes (i.e. nodes 1 and 2).

* Element nodes located at x=0, 0.6, 1.2, 3.2, and 4.0 in;
model CB-1.
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Input Data: Structure Geometry;
Material Properties; Initial,and

Boundary ConditionS; External Forces
as Functions of Space and Time;

Structural Discretization.

Form the Mass Matrix for the Entire 
Structure, [M], by Assembling the

Element Mass Matrix ml.
Impose B.C. on [I].Then, Factorize

[M] into L [LIT
- . , _ _,~~

m(Time Cycle Index) = O
Evaluate the Generalized
Nodal Force {F*}t by

o
Assembling the Element
Nodal Forces {f}t

Evaluate {Aq*}t and {q*}tl
1 

mIm+II = +1

Evaluate (i j ) t

f

(sij)

Evaluate

4 Evaluate {P}t and ( {qhit t {q
I]~ t~m m mI· J 

tm 

. -

Evaluate ({F*} - {P} - [H]{q*})t
m

and {q*}t
m+l

Is m Equal to Prescribed Number of Total Time Cycles?
'!

I es

IStop

No -

(a) Unconventional Formulation

FIG. 2 FLOW CHART FOR SOLUTION PROCESS OF STRUCTURAL LARGE-
DEFLECTION ELASTIC-PLASTIC TRANSIENT RESPONSES
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m(Time Cycle Index) = 0

Evaluate {Aq*} and {q*}
t to
1 1

| = m + 1 

Evaluate the Generalized
Nodal Force {F*}t by

0
Assembling the Element

Nodal Force {f}
t

Evaluate (Ay ij ) t

I

Evaluate

Evaluate

(Sij
(S ] )t

t
m

(yPj)
m

Evaluate {fNL}t {f}t and {fL}t
m m m

Evaluate ( {F*} + F*qN L + {F* L } {F*NL}

~I~ ~PP m
=Form Product K] q*}t

m

Evaluate {Aq*}t and {q*}t
m+l m+l

L
Is m Equal to Prescribed Number of Total Time Cycles? _ No

Yes

Stop (b) Conventional Formulation

FIG. 2 CONCLUDED
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Input Data: Structure Geometry;
Material Properties;Initial ana

Boundary Conditions; External Forces
as Functions of Space and Time;

Structural Discretization.

Form the Mass Matrix for the Entire
Structure [M], by Assembling the

Element Mass Matrix [m].
Impose B.C. on [MI. Then Factorize

[M] into [L][L]T .

Form the Stiffness Matrix [K] for
the Entire Structure by Assembling
the Element Stiffness Matrix [k].

l

I _,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

l

L; 

I ~---



/

/ 
/

/

C > IN
O Pr

U

rlzWo
m

0

W u
zrr

Z 
0.

! I
IN

s-)

a)0

Q:E

0

rd

co
E-1z
Wz

U)

IH
C)

9

soW

-1
0E

U

(%4

m

0
H
44.

155

nAP

Atcl /



Se pel B0ldy11 1p /er e/ Bd,,'a

(b) Undeformed and Deformed Volume Element

FIG. 3 CONTINUED

156

4 2

l



KIRCHHOFF / X- I/

POINT p MOV

/ POINT P LIE

TO THE DEFO

AND DISTANC

SHI

v(E, 2, 

REFERENCE
SURFACE

ES TO POINT P.

S ALONG N, THE NORMAL

RMED REFERENCE SURFACE,

E op IS THE SAME AS OP.

) = v ,) + (N-n)

ENCE
7% -1

(c) Kirchhoff Displacement Field Diagram

FIG. 3 CONCLUDED
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)E NUMBER

K

FIG. 4 NOMENCLATURE FOR GEOtETRY,COORDINATES,AND DISPLACE.MENTS OF
A CURVED-BEAM FINITE ELEMENT
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A

I .050 SLIT

1.50=BEAM WIDTH

i .050 SLIT

_. _._ . ~~

LOWER-SURFACE VIEW
INTEGRAL
SUPPORT COLLAR

I I
.50 I I

I i
I1R BEAM REGION .100

K 18_ _ iA-I
SIDE VIEW

UPPER-SURFACE VIEW

FOR MODELS CB-1,-2,-3,AND -4

FOR MODELS CB-8,-9,...,-18

! LOWER SURFACE

A=12.00 IN
B=3.50 IN

A=13.00 IN
B=2.55 IN

FIG. 5 NOMINAL DIMENSIONS FOR THE 6061-T651 ALUMINUM CLAMPED-BEAM MODELS
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ABSCISSA: TIME, 50 SEC/DIV
ORDINATE: UNCORRECTED RELATIVE

ELONGATION E IN PER CENT
x

+ = TENSION (UP)
- = COMPRESSION (DOWN)

V: TIME = 0

GAGE 1

E : 3%/DIVx

GAGE 2

E : 2%/DIVx

GAGE 4

E : 2%/DIV
x

GAGE 8

E
x: 2%/DIV

FIG. 8 UNCORRECTED TRANSIENT STRAIN RECORDS FOR IMPULSIVELY-LOADED 6061-T651
BEAM MODEL CB-1 WITH CLAMPED ENDS
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ABSCISSA: TIME, 100 ISEC/DIV
ORDINATE: UNCORRECTED RELATIVE

ELONGATION E IN PER CENT
x

+ = TENSION (U))

- = COMPRESSION (DOWN)
V: TIME = 0

GAGE 3

E : 2%/DIVx

GAGE 11

E : 2%/DIVx

GAGE 5

E : 2%/DIVx

GAGE 13

E : 3%/DIVx

FIG. 8 CONCLUDED (CB-1)
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ABSCISSA: TIME, 50 SEC/DIV
ORDINATE: UNCORRECTED RELATIVE

ELONGATION E IN PER CENTx
+ = TENSION (UP)

- = COMPRESSION (DOWN)
V: TIME = 0

GAGE 2

E : 2%/DIVx

GAGE 7

E : 2%/DIVx

GAGE 4

E : 2%/DIV
x

GAGE 8

E : 2%/DIVx

FIG. 9 UNCORRECTED TRANSIENT STRAIN RECORDS FOR IMPULSIVELY-LOADED 6061-T651
BEAM MODEL CB-4 WITH CLAMPED ENDS
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ABSCISSA: TIME, 100 SEC/DIV
ORDINATE: UNCORRECTED RELATIVE

ELONGATION E IN PER CENT
x

+ = TENSION (UP)
- = COMPRESSION (DOWN)

V: TItE = 0

GAGE 3

E : 2%/DIV
x

GAGE 11
E : 2%/DIV

x

GAGE 5

E : 2%/DIVx

GAGE 13

E : 2%/DIVx

FIG. 9 CONCLUDED (CB-4)

165

G3+ T-

Gil -

G5

G13



U7

0

W
m

U)

HE--uC)

166

U)

0 U)

wU)
0
U)0

Hu
U)
0

U)

z
FiZ

a

H

H

U)

Hz

L)

EHIoI9

Q0

H

Ui

07

l

EUU)

o

H

U)

E

E-

H
ic)



LOWER
SURFACE
VIEW

UPPER
SURFACE
VIEW
(INTO
CAVITY)

FIG. 11 POST-TEST VIEWS OF STEEL-SPHERE-IMPACTED BEAM SPECIMENS CB-12 AND
CB-13 (NOMINAL IMPACT VELOCITY: 2500 IN/SEC)
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SIDE
VIEW

FIG. 11 CONCLUDED
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ABSCISSA: TIME, 50 SEC/DIV

ORDINATE: UNCORRECTED RELATIVE
ELONGATION E IN PER CENTx

+ = TENSION
- = COMPRESSION

V: INSTANT OF IMPACT

GAGE 8
E : 0.5%/DIV

x

GAGE 2

E : 0.5%/DIVx

I I I I I I I I

GAGE 3

E : 1%/DIV
x

GAGE 9

E : 1%/DIVx

FIG. 12 UNCORRECTED TRANSIENT STRAIN RECORDS FOR STEEL-SPHERE IMPACTED
6061-T651 ALUMINUM BEAM MODEL CB-13
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ABSCISSA: TIME
ORDINATE: UNCORRECTED RELATIVE

ELONGATION E IN PER CENT
x

+ = TENSION
- = COMPRESSION

V: INSTANT OF IMPACT

GAGE 5

E : 1.5%/DIV
x
100 SEC/DIV

GAGE 12

E : 1%/DIV
x
100 ISEC/DIV

GAGE 1

E : 3%/DIV
x

50 JSEC/DIV

GAGE 7

E : 1%/DIV
x

50 SEC/DIV

FIG. 12 CONCLUDED (CB-13)
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TIME
UNCORRECTED RELATIVE
ELONGATION E IN PER CENT

x
+ = TENSION
- = COMPRESSION

V: INSTANT OF IMPACT

GAGE 3

E : 1%/DIV
x
50 USEC/DIV

GAGE 9

E : 1%/DIVx
50 SEC/DIV

GAGE 10

E : 2%/DIVx
100 SEC/DIV

Gage 4
E : 2%/DIVx
100 SEC/DIV

FIG. 13 UNCORRECTED TRANSIENT STRAIN RECORDS FOR STEEL-SPHERE IMPACTED
6061-T651 ALUMINUM BEAM MODEL CB-18
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ABSCISSA: TIME, 100 SEC/DIV
ORDINATE: UNCORRECTED RELATIVE

ELONGATION E IN PER CENT
x

+ = TENSION
- = COMPRESSION

V: INSTANT OF IMPACT

GAGE 5

E : 2%/DIVx

GAGE 12

E : 2%/DIV
x

FIG. 13 CONCLUDED (CB-18)
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APPENDIX A

DESCRIPTION OF THE MECHANICAL-SUBLAYER MODEL FOR STRAIN-HARDENING,
STRAIN-RATE-SENSITIVE MATERIAL BEHAVIOR

As discussed in Subsection 2.4.2, the yield surface of certain materials

will change in case of continued straining beyond the initial yield. The

change of the yield surface that characterizes the strain-hardening behavior

of the material depends on the loading history. In the present analysis,

the strain hardening behavior of the material is accounted for by using the

"mechanical sublayer model" (Ref. 54, 55, and 56). In order that the present

report be reasonably self-contained, the mechanical sublayer model is

described in this appendix.

In the mechanical sublayer model, the uniaxial tension (or compression)

test stress-strain curve of the material is first approximated by (n+l)

piecewise-linear segments which are defined at coordinates [(Ok, k), k = 1,

2, ... n], as depicted in Fig. A.la. Next, the material is envisioned as

consisting, at any point in the material, of n equally-strained "sublayers"

of elastic perfectly-plastic material, with each sublayer having the same

elastic modulus E, but an appropriately different yield stress (see Fig. A.lb).

For example, the yield stress of the kth sublayer is

oa = E E = ,2 ., (A.1)

Then, the stress value, k, associated with the kth sublayer can be defined

uniquely by the strain history and the value of strain and strain-rate

present at that point. Taken collectively with an appropriate weighting

factor Ck for each sublayer, the stress, , at that point corresponding to

strain may be expressed as

-= L C i(E) (A.2)

where the weighting factor Ck for the kth sublayer may readily be confirmed

to be

~C~ E- (A.3)
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where

E ==2-- - E = (A.3a)__ E , *= X (42)3),.an) nH (A.3a)

The elastic perfectly-plastic and linear strain-hardening constitutive rela-

tion may be treated as special cases. In the case of elastic perfectly-

plastic behavior, there is only one sublayer, and in the case of linear

strain-hardening material there are two sublayers and the yield limit of the

second sublayer is taken sufficiently high so that the deformation in that

sublayer remains elastic.

From the computational point of view, the use of the mechanical sub-

layer model is very convenient to analyze problems with general loading

paths including loading, unloading, reloading, and cyclic loading. Its

features include the "kinematic hardening rule" which takes the Bauschinger

effect into account (see Fig. A.lc). Also, this mechanical sublayer model

may readily accommodate the strain-rate effect. Figure A.2a illustrates

schematically the uniaxial stress-strain behavior for a strain-rate dependent,

elastic, perfectly-plastic material whose rate dependence is described by

Eq. 2.46, / 

r (I · D(2.46)
while Fig. A.2b depicts the corresponding behavior for a strain-hardening

material which is represented by the mechanical sublayer model, each sub-

layer of which has the same values for the strain-rate constants D and p.

For this special type of rate-dependent strain-hardening material, the

stress-strain curve at a given strain rate is simply a constant magnifica-

tion of the static stress-strain curves along rays emanating from the origin.

One may generalize this uniaxial behavior to the two- or three-dimensional

stress case by adopting, for example, the Mises-Hencky yield condition, Eq. 2.44,

and flow rule, Eq. 2.45, and applying them to each sublayer of the mechanical

sublayer model. The strain-rate dependence may also be generalized by assuming

that the of the one-dimensional case may be replaced by the second invariant

of the deviatoric strain-rate tensor as defined by
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2

, 2 ' 6(A.4)
In terms of the finite increments Ay of strain determined in each

timewise calculation step of the present procedure, the "replacement "

given by Eq. A.4 becomes:

F I [ 3 X Z ( (A.5)A t n -
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APPENDIX B

DEFINITION OF FINITE ELEMENT MATRICES INDICATED

SYMBOLICALLY IN THE TEXT

Included in this appendix are the matrices [U(n)], [A], L D , LD2J ,

2x16 16x16 1x16 1x16

LD 3 , and LD 4 I indicated symbolically in Subsection 3.4 for a Bernoulli-

1x16 1x16

Euler curved beam element, in conjunction with the use of the Type C strain-

displacement relation as given, for example, by Eq. 3.92. The indicated

sizes of these matrices apply to the 8 DOF/N element; for conciseness, the

corresponding matrices for the 7, 6, 5, and 4 DOF/N elements are indicated

by self-evident "partition-deletion guidelines" in each of the matrices

given in the following (see Eqs. 3.92-3.112):

zUxI)] = SCoS Sin B o I 1 1 76 7

X16 in cos 2 ° 3' ( 710 ° 

(B.1)where B1 and B2 are given by Eq. 3.64.

I XJ6 I X I It

IGX tI~ O O I(- _ (l / :2t 3t I I
I§l J Sl tt<9 (-49t l G I 2-

LD2 #- IGl, ,, ( 2;
l x16 ]-,It It xI7

IX6 X l /I Xl6

IG1 ° 312 i3 t I
4I? a 1 ao Lr d + #7a0 , (B.3)";a a--, , ~r
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j

JfA]-'
I, x IC

2
I aw.- ; 2 + --z; RI

0o 00 - ao+~

2 37 1 / 4,
I

127 2O 1-6I II -

30s 42 -z 5

a

f dT 3 57

?w ao
5 /" , a) ;r

aZ
-w

'? 'It II()+'?0~ a2 (B .5

(B.5)

-/3a
-I 3-

In the above, it is useful to recall that R = -
R 3 '

A] I A, A2
IAx I6 / x 8 / x 8

where
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In order to determine [A] for the 7, 6, 5, and 4 DOF/N elements, delete

the following rows and columns from Eq. B.6:

DOF/N Delete Rows and Columns

7 8,16

6 7,8,15,16

5 6,7,8,14,15,16

4 5,6,7,8,13,14,15,16

Matrix [A1] is given on page 254 and matrix [A2] is given on page 255.
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