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ABSTRACT

A submerged multiport diffuser is an effective device for disposal
of water containing heat or other degradable wastes into a natural body
of water. A high degree of dilution can be obtained and the environmen-
tal impact of concentrated waste can be constrained to a small area.

An analytical and experimental investigation is conducted for the
purpose of developing predictive methods for buoyant discharges from sub-
merged multiport diffusers. The following physical situation is considered:
A multiport diffuser with given length, nozzle spacing and vertical angle -
of nozzles is located on the bottom of a large body of water of uniform
depth. The ambient water is unstratified and may be stagnant or have a
uniform current which runs at an arbitrary angle to the axis of the dif-
fuser. The general case of a diffuser in arbitrary depth of water and
arbitrary buoyancy is treated. However, emphasis is put on the diffuser
in shallow receiving water with low buoyancy, the type used for discharge
of condenser cooling water from thermal power plants.

A multiport diffuser will produce a general three-dimensional
flow field. Yet the predominantly two-dimensional flow which is post-
ulated to exist in the center portion of the three-dimensional diffuser
can be analyzed as a two-dimensional "channel model", that is a diffuser
section bounded by walls of finite length and openings at both ends
into a large reservoir. Matching of the solutions for the four distinct
flow regions which can be discerned in the channel model, namely, a
buoyant jet region, a surface impingement region, an internal hydraulic
jump region and a stratified counterflow region, yields these results:
The near-field zone is stable only for a limited range of jet densimetric
Froude numbers and relative depths. The stability is also dependent on
the jet discharge angle. It is only in this limited range that previous
buoyant jet models assuming an unbounded receiving water are applicable
to predict dilutions. Outside of the parameter range which yields
stable near-field conditions, the diffuser-induced dilutions are essen-
tially determined by the interplay of two factors: frictional effects
in the far-field and the horizontal momentum input of the jet discharge.
Three far-field flow configurations are possible, a counter flow system,
a stagnant wedge system and a vertically fully mixed flow, which is the
extreme case of surface and bottom interaction.

A three-dimensional model for the diffuser—-induced flow field is
developed. Based on equivalency of far-field effects, the predictions
of the two-dimensional channel model can be linked to the three-dimen-
sional diffuser characteristics, Diffusers with an unstable near-field
produce three-dimensional circulations which lead to recirculation at
the diffuser line: effective control of these circulations is possible
through horizontal nozzle orientation.



The diffuser in an ambient cross-current is studied experimentally.
Different extreme regimes of diffuser behaviour can be described. Per-~
formance is dependent on the arrangement of the diffuser axis with res-
pect to the crossflow direction.

Experiments are performed in two set-ups, investigating both two-
dimensional slots and three-dimensional diffusers. Good agreement between
theoretical predictions and experimental results is found.

The results of this study are presented in form of dilution graphs
which can be used for three-dimensional diffuser design or preliminary
design if proper schematization of the ambient geometry is possible.
Design considerations are discussed and examples are given. For more
complicated ambient conditions, hydraulic scale models are necessary.

The results of this study indicate that only undistorted scale models
simulate the correct areal extent of the temperature field and the inter-
action with currents, but are always somewhat conservative in dilution
prediction. The degree of conservatism can be estimated. Distorted
models are less conservative in predicting near-field dilutions, but
exaggerate the extent of the near-field mixing zone.
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FOREWORD

The research contained in this report is part of a continuing

research effort by the Ralph M. Parsons Laboratory for Water Resources

Fag

and dydrodynamics on the engineering aspects of waste heat disposal from
electric power generation by means of submerged multiport diffusers.
Future research activities will be coordinated with the Waste Heat
Management Group in the Energy Laboratory of the Massachusetts Institute
of Technology. The guiding objective of the research program is the
development of predictive models for diffuser discharge which form the
basis of sound engineering design compatible with environmental require-
ments. In addition, site-related studies concerned with optimized dif-
fuser design under specific ambient conditions are conducted.

Previous reports related to submerged diffuser studies are:

"Thermal Diffusion of Condenser Water in a River During Steady and
Unsteady Flows" by Harleman, D. R. F., Hall, L. C. and Curtis, T. G.,
M.I.T. Hydrodynamics Laboratory Technical Report No. 111, September 1968.

"A Study of Submerged Multi-Port Diffusers for Condenser Water Discharge
with Application to the Shoreham Nuclear Power Station'" by Harleman,

b. R, F., Jirka, G. and Stolzenbach, K. D., M.I.T. Parsons Laboratory
for Water Resources and Hydrodynamics Technical Report wo. 139, August
1971.

"Investigation of a Submerged, Slotted Pipe Diffuser for Condenser Water
Discharge from the Canal Plant, Cape Cod Canal" by Harleman, D. R. F.,
Jirka, G., Adams, E. LE. and Watanabe, M., M.I1.T. Parsons Laboratory for
Water Resources and Hydrodynamics Technical Report Wo. 141, October 1971.

"Lxperimental Investigation of Submerged Multiport Diffusers for Conden-
ser Water Discharge with Application to the Northport Electric Generation
Station" by tarleman, D. R. F., Jirka, G. and Evans, D. d., M.I.T. Parsons
Laboratory for Water Resources and Hydrodynamics, Technical Report &o. 165,
February 1973.
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I. INTRODUCTION

In managing the waste water which accrues as a result of man's
domestic and industrial activities different methods of treatment, re-
cycling and disposal are used. The choice of a specific scheme of waste
water management is determined by economic and engineering considerationms,
such as costs and available technology, and by considerations of environ-
mental quality, each scheme having a certain impact on the natural envir-
onment,

In many instances the discharge of water containing heat or other
degradable wastes into a natural body of water is a viable economic and
engineering solution. ''Water quality standards" have been established
to regulate the adverse effects of such discharges on the receiving
water. These standards are based on existing scientific knowledge of
the biological, chemical and physical processes which occur in response
to the waste water discharge. The standards have the objective of pre-
serving or enhancing the use of the natural Qater body for a variety of
human needs.

A common feature of all water quality standards, as set forth by
various legal authorities, is a high dilution requirement: Within a
limited mixing zone the waste water has to be thoroughly mixed with the
receiving water. The purpose of this requirement is to constrain the
impact of concentrated waste water to a small area.

It is against this background that the increasing application of
submerged multiport diffusers as an effective device for disposal of
waste water must be understood. A submerged multiport diffuser is

essentially a pipeline laid on the bottom of the receiving water. The
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waste water is discharged in the form of round turbulent jets through
ports or nozzles which are spaced along the pipeline. The resulting dis-
tribution of concentration of the discharged waste materials within the
receiving water depends on a variety of physical processes. A clear
understanding of these processes is needed so that predictive models can
be developed which form the basis of a sound engineering design.

1.1 Historical Perspective

For several decades many coastal cities have utilized submerged
multiport diffusers for the discharge of municipal sewage water. Note-
worthy aspects of these '"sewage diffusers" are: 1) Water quality stan-
dards dictate dilution requirements in the order of 100 and higher when
sewage water is discharged. As a consequence these diffusers are limited
to fairly deep water (more than 100 feet deep). 2) The buoyancy of the
discharged water is significant. The relative density difference between
sewage water and ocean water is about 2.5%.

Only in very recent years have multiport diffusers found appli-
cation for the discharge of heated condenser cooling water from thermal
power plants. The main impetus has come from the implementation of
stringent temperature standards. Depending on the water quality classi~
fication of the receiving water and on the cooling water temperature rise
dilutions between about 5 and 20 are required within a specified mixing
area. This dilution requirement frequently rules out relatively simple
disposal schemes, such as discharge by means of a surface canal or a
single submerged pipe. On the other hand, multiport diffusers can be
placed in relatively shallow water (considerably less than 100 ft. deep)

and still attain the required dilutions. The economic advantage in
12



keeping the conveyance distance from the shoreline short might be sub-
stantial, in particular in lakes, estuaries or coastal waters with ex;
tended shallow nearshore zones. '"Thermal diffusers'" have these char-
acteristics: 1) They may be located in relatively shallow water. 2) The
buoyancy of the discharged water is low. Relative density differences
are in the order of 0.3% corresponding to a temperature differential of
about 20°F, an average value for thermal power plants.

Due to these essential differences, regarding depth of the re-
ceiving water and buoyancy of the discharge, there is a pronounced
difference in the mechanics of "sewage diffusers" and "thermal diffusers".
Consequently, predictive models which have been established and verified
for the class of "sewage diffusers" fail to give correct predictions
when applied for the class of "thermal diffusers".

1.2 Basic Features of Multiport Diffusers for Buoyant Discharges

The performance characteristics of a multiport diffuser, that is
the distributions of velocities, densities and concentrations which
result when the diffuser is operating, are influenced by many physical
processes. These processes may be conveniently -- yet somewhat loosely
~— divided into two groups.

"Near-field" processes are directly governed by the geometric,
dynamic and buoyant characteristics of the diffuser itself and of the

ambient water in the immediate diffuser vicinity. Significant features

are: Turbulent jet diffusion produces a gradual increase in jet thick-
ness ("jet spreading") and a simultaneous reduction of velocities and

concentrations within the jets through entrainment of ambient water. The

trajectory of the jets is determined by the initial angle and by influence
13



of buoyancy causing a rise towards the surface. Before surfacing the

jet spreading becomes so large that lateral interference between adja-

cent jets forms a two-dimensional jet along the diffuser line. Upon

impingement on the surface of the receiving water the jet is transformed

into a horizontally moving buoyant layer. Stability of this layer is of

crucial importance. Instabilities result in re-entrainment of already

mixed water into the jet diffusion process, In addition to these basic

processes, ambient conditions such as cross—currents and existing natural

density stratification can have a strong effect on the near-field,

"Far-field" processes influence the motion and distribution of
mixed water away from the near-field zone. The mixed water is driven
by its buoyancy against interfacial frictional resistance as density
currents, thus a flow away from the diffuser is generated. Conversely,

a flow toward the diffuser against interfacial and bottom friction is

set up as the turbulent entrainment into the jets acts like a sink for
ambient water. Furthermore the convection of the mixed water by ambient

currents and the diffusion by ambient turbulence and the concentration

reduction through time-dependent decay processes may be important pro-

cesses,

The efficiency of the near-field processes (notably jet mixing)
in reducing the concentrations of the discharged water is dominant over
far-field processes which usually act over a lénger time scale. How-
ever, there is a coupling between near and far-field processes, near-
field processes affecting the far-field and vice versa. Thus in general,
a total prediction of the performance characteristics of a multiport

diffuser must include this coupling.

14



Yet in special cases the coupling effect may be so weak that the
near-field processes may be assumed not to be influenced by the far-field.
Diffusers in deep water with high buoyancy of the discharge ("sewage
diffusers'") fall into this category. These diffusers produce a stable
surface layer which moves away from the diffuser as a density current.
Near-field dilutions are then primarily caused by jet entrainment and
the diffuser can be analyzed as a series of round interacting jets in
infinite water. This analysis is the basis of most existing predictive
models for diffuser discharges.

On the other hand, diffusers in shaliow water with low buoyancy
("thermal diffusers') may not create a stable surface 1ayer.' Subsequent-
ly, already mixed water gets re-entrained into the jets to such a degree
that the increased buoyancy force of the surface layer is sufficient to
overcome the frictional effects iﬁ the far-field. Hence in this case a
composite analysis of near~field and far-field must be undertaken in
developing predictive models.

This contrasting difference between these two types of diffusers
is qualitatively illustrated in Figure 1-1. Examples are shown for ver-
tical and non-vertical discharges without ambient currents. As an ex-
treme case of the non-vertical discharge in shallow water a uni-direc-
tional flow of ambient water toward the diffuser and of mixed water away
from the diffuser is established (see Figure 1-14).

1.3 Objectives of this Study

This investigation is concerned with the development of predictive

methods for buoyant discharges from submerged multiport diffusers. The

following physical situation is considered: A multiport diffuser with
15
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given length, nozzle spacing and vertical angle of.nozzles is located on
the bottom of a large body of water of uniform depth. The ambient water
is unstratified and may be stagnant or have a uniform current which runs
at an arbitrary angle to the axis of the diffuser.

All of the near-field processes but only part of the far-field
précesses (excluding effects of ambient turbulence and decay processes)
are taken into account.

This study addresses the general case of a diffuser in arbitrary
depth of water and arbitrary buoyancy. However, special emphasis is put
on the diffuser in shallow receiving water with low buoyancy, the type
frequently used for discharge of condenser cooling water from thermal
power plants. The study is not concerned with the internal hydraulics
of the diffuser pipe (manifold design problem).

Application of the results of this investigation is anticipated
for various aspects:

* == Economical design §f the diffuser structure.
-- Design fo meet specific water quality requirements.
—- Evaluation of the impact in regions away from the diffuser,
such as the possibility of recirculation into the cooling
water intake of thermal power plants.

-- Design and operation of hydraulic scale models.

1.4 Summary of the Present Work

An analytical and experimental investigation is conducted..
In Chapter 2 a critical review of existing prediction techniques
for multiport diffusers is given.

Chapter 3 presents the theoretical framework for the study of

17



diffusers without ambient crossflow: Recognizing the predominantly two-
dimensional flow pattern which prevails in the centerportion of a dif-
fuser, predictive models are developed for a two-dimensional 'thannel
model", i.e. a diffuser section is bounded laterally by walls of finite
length., This conceptualization allows the analysis of vertical and
longitudinal variations of the diffuser-induced flow field.

Chapter 4 discusses three-dimensional aspects of diffuser dis-
charge. Through a quantitative analysis regarding far-field effects
(frictional resistance in the flow away zone) the length of the twé-
dimensional channel model is linked to the three-dimensional diffuser
length. Thus the theoretical predictions developed for the two-dimen-
sional channel model become applicable to the general three-dimensional
case, Chapter 4 also discusses the control of horizontal circulations
induced by the diffuser action.

The experimental facilities and procedures are described in
Chapter 5. Experiments were performed both on two-dimensional models
("channel models") and three-dimensional models.

In Chapter 6 experiméntal results for diffusers without ambient
crossflow are reported and compared to theoretical predictions.

The effect of a uniform ambient crossflow on diffuser performance
is studied in Chapter 7. This part is mainly experimental; however,
limiting cases of crossflow influence are discussed theoretically.
Diffuser arrangements with the diffuser axis either perpendicular or
parallel to the crossflow direction were tested.

The application of the results to practical problems of diffuser
design and operation of hydraulic scale models is discussed in Chapter 8.

18



II. CRITICAL REVIEW OF PREVIOUS PREDICTIVE MODELS FOR

SUBMERGED MULTIPORT DIFFUSERS

Existing predictiye techniques for the anélysis of submerged
multiport diffusers fall into two restricted groups: First, ﬁﬁozént'jet
models describe the physical processes governing buoyaht jets in an in-
finite body of water. In applying these models it is usually tacitly
(without proof) assumed that the effect of the finite water depth can be
neglected and a stable flow away from the line of surface impingement
exists., There is a large amount of literature on buoyant jets. Only
the most significant contributions are reviewed. Secondly, one-dimen-

sional average models for horizontal diffuser discharge assume full ver-

tical mixing downstream of the diffuser and are valid only for shallow
receiving water.

2.1 Investigations of Buoyant Jets

2,1.1 General Characteristics

Turbulent buoyant jets (also called forced plumes) are examples of
fluid motion with shear-generated free turbulence. Special cases of the
turbulent buoyant jet are the simple non-buoyant jet, driven by the
momentum of fluid discharged into a homogeneous medium, and the simple
plume, emanating from a concentrated source of density deficiency and
driven by buoyancy forces.

Dominating transport processes governing the distribution of flow
quantities are convection by the mean velocities, acceleration in the
direction of the buoyancy force and turbulent diffusion by the irregular

eddy motion within the jet.
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Main properties of the jet flow field and their important impli-
cations on possible methods of analysis are (Abramoyich (1963), Schlich-
ting (1968) ):

1) Gradual spreading of the jet width. The jet width is

small compared to the distance from the source along

the axis of the jet. This allows to make the typical
boundary layer assumptions: Convection by mean trans-
verse velocities can be neglected compared to convection
by mean axial velocities. Diffusion in the axial direc-
tion is small compared to diffusion in the transverse
direction.

2) Self-similarity of the flow. The transverse profiles

of velocity, mass and heat at different axial distances
along the jet are similar to each other. Local jet
quantities can be expressed as a function of centerline
quantities and jet width.

3) Fluctuating turbulent quantities are small compared

to mean centerline quantities.

4) For jets issuing into unconfined regions pressure

gradients are negligible.

If semi-empirical relationships relating the turbulent structure
of the jet to its mean properties (such as the mixing length hypothesis)
are invoked, a similarity solution.to the simplified governing equations
with specified boundary conditions is possible. This is shown by
Schlichting (1968) for simple jets. The solution requires the specifi-~

cation of one experimentally determined constant and yields the function

20



of the similarity profile and gross jet characteristics as a function
of longitudinal distance.

An alternate approach, somewhat more convenient to use, is the a
priori specification of similarity functions. The governing equations
can then be integrated in the transyerse direction, The resulting set
of equations shows only dependence on the axial coordinate. Again, full _
solution requires an experimentally determined coefficient. The coeffi-
cient either refers to the rate of spreading (method first described by
Albertson et.al. (1950) ) or to the rate of entrainment (first described
by Morton et,al. (1956) ), both coefficients being related to each other.
In general, these coefficients are not constants, being different for
single jet and plumes. Usage of the integral technique for buoyant jet

prediction is common to models described in the following sections.

2.1.2 Round Buoyant Jets

The schematics of a round buoyant jet are shown in Figure 2-1.
After an initial zone of flow establishment the jet motion becomes self-
similar. Experimental data show that a Gaussian profile can usually
be well fitted to the observed distribution of velocity, density defi-

ciency and mass:

2
. ) - (P
u(s,r) = uc(s) e (2-1)
. 2
- (%)
o, = p(s,r) = (p -p (8))e - (2-2)
S |
- (<)
c(s,r) = c (e M (2-3)
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Fig. 2-1: Schematics of a Round Buoyant Jet
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where

s,r = axial and transyerse coordinates

(=4
b

axjial yelocity
: ﬁc' = centerline axial velocity

= nominal jet width

Py = ambient density
P = density in the jet
Pe = density in jet centerline
A = spreading ratio between velocity and mass
¢ = concentration of some discharged material
e, = centerline concentration

The spreading ratio A accounts for the fact that experimental observa-
tions show in general stronger lateral diffusion (0 >1) for gealda¥ quan-
tities such as mass or heat than for velocities. With the specification

of the velocity profile a volume flux is determined as

o

Q(s) = 2n fﬁ(s,r) dr = "ﬁcbz (2-4)

(o]

The entrainment concept as formulated by Morton et.al. assumes a
transverse entrainment velocity v_ at the nominal jet boundary b to be

related to the centerline velocity as
v = -au (2-5)

wvhere a is a coefficient of proportionality (entrainment coefficient).

With this assumption the change in volume flux follows as

23



QL om o (2-6)
ds c

Using the profile assumptions (2-1), (2-2) and (2-3), integrated conser-
vation equations for the vertical and horizontal momentum and for mass
can be written,

Solution to the system of ordinary differential equations with
initial discharge conditions yields the shape of the jet trajectory and
values of ﬁc’ Per Ce and b along the trajectory.

This approach forms the basis of many buoyant jet theories since
Morton et. al. (1956). The theories, however, differ on specific assump-
tions regarding the entrainment coefficient o . Examination of experi-
mental data shows that o is clearly a function of the local buoyant
characteristics of the jet which can be expressed in an average fashion

by a local Froude number FL

l’EC
Fo= 172 (2-7)
o0

C

b
o 24

The value of o is dependent on the form of the similarity profile.
For Gaussian profiles as specified above, data by Albertson et.al. (1950)

suggest for the simple jet (FL—>w)

a = 0.057 (2-8)
and data by Rouse et.al. (1952) for the plume (FL small)
o = 0,082 (2-9)
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Buoyant jets tend to the condition of a simple plume far away from
the source when the initial momentum becomes small in comparison to the
buoyancy induced momentum., Accordingly, Morton (1959) and Fan and
Brooks (1966) assumed & = 0,082 constant throughout the jet. For jets
with substantial initial momentum a certain error is inherent.

Using the integrated energy conservation equation Fox (1970)

showed that the dependence of the entrainment coefficient on FL as

()
a = u+02

1 2
FL

(2-10)

for the case of vertical discharge (eo = 90°). For non-vertical dis-

charge Hirst (1971) extended Fox's argument to show

@, ()
a = oy + 5~ sing (2-11)

L

where 6 is the local angle of the jet trajectory. In both Equations
(2-10) and (2-11) ay can be determined from the simple jet (FLe-w) from

Equation (2-8) and o, is found as a unique function of the spreading

2
ratio A,

Buoyant jet models based on the integral technique but with spec-
ification of a coefficient of the spreading rate were developed by
Abraham (1963). Similar to the entrainment coefficient the spreading
rate is found to be variable in buoyant jets, approaching a constant
value for the limiting cases of simple jet and plume. In the analysis
of the vertically discharged buoyant jet Abraham assumed a constant rate

of spreading. For the case of a horizontally discharged jet the gpread-

ing rate was postulated to be related to the local jet angle, and not to
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the local buoyant characteristics as is physically more reasonable.
Solution graphs for round buoyant jets discharged at yvarious
angles 96 hayve been published by Fan and Brooks (1969), Abraham (1963)
énd others. In all these models some adjustment is made for the initial
zone of flow establishment. From the practical standpoint there is
little variation between the predictions of various models, typical
variations in centerline dilutions for example being less than 20%, well
below the scatter of usual experimental data (see Fan (1967) ). The
choice of a particular model is thus determined by the correctness of
the presentation of the physical processes and by the applicability to
varying design problems, such as discharge into stratified ambients. In
this respect an integral model with entrainment coefficients as given
by Fox seems to be most satisfying.

2.1.3 Slot Buoyant Jets

Figure 2-2 shows the two-dimensional flow pattern for a buoyant
jet issuing from a slot with width B and vertical angle eo. After the
initial zone of flow establishment the following similarity profiles fit

well to experimental data:

. n 2
. _ -(‘E)
u(s,n) = uc(s) e (2-12)
n 2
- (;5*)
P = Pls,m) = (p, - pc(S)) e ' (2-13)
n 2
- (5)
c(s,n) = cc(s) e . Ab (2-14)
where s,n = axial and transverse coordinates.
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Fig. 2-2: Schematics of a Slot Buoyant Jet
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The volume flux in the axial direction is then

(s o]

q(s) =f u(s,n) dn = fn_ ﬁcb (2-15)

The entrainment velocity at the jet boundaries is assumed as

v, = t ou, (2-16)

similar to the round jet. Thus the continuity equation is

a9 _ % (2-17)

After formulation of the other conservation equation solutions
proceed analogously to the round buoyant jet. The dependence of the
entrainment coefficient on the buoyant characteristics of the jet is

indicated by experimental data. For the simple jet o is found as

a = 0.069 (2-18)

(Albertson et. al. (1950) ) and for the plume

a = 0.16 (2-19)

(Rouse et.al. (1952) ).

An analysis with a constant o was first carried out by Lee and
Emmons (1962) and later by Fan and Brooks (1969).

An an improvement, dependence on the local Froude number was proposed
for the vertical buoyant jet by Fox (1970) in a relationship analogous to

Equation (2-10) but with different values for o and oy

Abraham (1963) treated the slot buoyant jet (vertical and hori-
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zontal discharge) in a fashion similar to the round buoyant jet as des-
cribed above.

Less experimental data is ayailable on slot buoyant jets. Ceder-
wall (1971) gives a comparison of experimental values with the theories
by Abraham and Fan and Brooks. Reasonable agreement is found.

2.1.4 Lateral Interference of Round Buoyant Jets

In a submerged multiport diffuser the round buoyant jets issuing
with velocity Uo from nozzles with diameter D and spaced at a distance
¢ gradually begin to interact with each other a certain distance away
from the discharge. In a transition zone the typical similarity pro-
files of the series of round jets are modified to two-dimensional jet
profiles. From then on the discharge behaves like a slot buoyant jet.
This process is indicated in Figure 2-3, Mathematical analysis along
the above outlined procedures is impossible as the assumption of self-
similarity is not valid in the transition zone. Hence some approximate
assumptions are usually made in the analytical treatment.

The flow field of the multiport diffuser can be compared to that
of an "equivalent slot diffuser". By requiring the same discharge per
unit diffuser length and the same momentum flux per unit length a width
B of the equivalent slot diffuser can be related to the dimensions of

the multiport diffuser by

(2-20)

o
n
.>£?
=N

A common criterion regarding the merging between round jets to

two-dimensional jets is to assume transition when
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b o= Y2 (2-21)

The nominal jet width b (as defined by Eq. 2-1) is only a char-
acteristic measure of the trzansverse jet dimension, namely the distance
‘where the jet velocity becomes 1l/e of the centerline velocity. Thus the
assumption of Equation (2-21) cannot be supported by physical arguments,
but only on intuitive grounds, reasoning that when the velocity profiles
overlap to such a degree the lateral entrainment is largely inhibited.
Using the assumptions of Equation 2-19 Cederwall (1971) carried out a
comparison between the average dilutions produced by a multiport diffuser
and by its equivalent slot diffuser at the distance of interference of
the multiport diffuser. He used experimentally determined relationships
for the volume flux and rate of spreading published by Albertson et.al.
on the simple jet and by Rouse et.al., on the plume. Cederwall found
for the simple non-buoyant jet:

dilution of the multiport diffuser
dilution of the equivalent slot diffuser

0.95 (2=22)
and for the buoyant plume:

R = 0.78 (2-23)

In view of the uncertainty involyed these values of R should only
be interpreted on an order of magnitude basis, indicating practically
similar dilution characteristiés fbr slot jets and interfering round jets.

Another comparison can be made as follows. Koh and Fan (1970)

proposed a transition criterion as when the entrainment rate into the
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round jets becomes equal to that the equivalent slot jet. They remarked
that this assumption yielded essentially the same result as the assump-
tion of Equation (2-21). Their criterion was applied by Shirazi and
Davis (1972) to compute multiport diffuser characteristics for a variety
of conditions regarding jet angle 0,0 relative spacing ¢/D and the dy-

namics of the discharge given by the Froude number

U
0

Fn = 173 (2-24)

P a—p (¢} gD

Pa

as a function of the dimensionless vertical distance z/D. The dilutions

of a slot jet with discharge Froude number

— (2-25)

are calculated by the same numerical method as used by Shirazi and Davis
using their values for the coefficients g and Ae Centerline dilutions
Sc are plotted as a function of the dimensionless vertical distance z/B
and Fs in Figure 2-4 for the case of horizontal discharge. This can be
compared to Shirazi and Davis' results by using the definition of the

equivalent slot width (Eq. 2-40) namely

z _ z 4 2-26
B D Db ( )
and
1/2
- 48
Fe P (HD (2-27)
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Values converted in this fashion for points after the transition

zone and for the range of %£/D = 10, 2Q and 30 and of Fn = 10, 3Q and 100

are shown in Figure 2-4, In general, Shirazi and Davis' results show no

variability with 2/D and haye the same functional dépendence on z/B and

Fs as the results for the slot jet., However, there is a systematic under-

estimation of dilution, this of course being a specific consequence of

the adopted criterion for transitiom.

Thus, until experimental evidence to the contrary becomes avail-

able -- and this question can only be settled experimentally -- it

suffices for all practical purposes to assume that the flow field char-

acteristics of a multiport diffuser are equally presented by its equiv-

alent slot diffuser.

A frequently used diffuser geometry is discharge through ports

or nozzles issuing into alternating directions from the common manifold

pipe (see Figure 2-5). With this arrangement a complicated flow pattern

SIDE
VIEW

TOP
VIEW

Fig. 2-5; Multiport Diffusep with Alternating Ports in Deep Water
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evolves. The jets at both sides interfere laterally and rise upward
under the influence of buoyancy. Only a limited amount of ambient water
can penetrate into the region between the rising two-~dimensional jets

as the area between the jets before lateral interference is restricted.
As the turbulent entrainment at the inner jet boundaries acts like a
suction mechanism, a low pressure area is created between the jets. Con-
sequently, the jets are gradual}y bent over until merging over the diffuser
line. This case was extensively studied in a series of experiments by
Liseth (1971). Averaged values of centerline dilutions measured at
different levels z/% were presented in graphical form. Liseth's study
also yielded an approximate expression for the location z of merging

above the diffuser -

u
2]

zmll (2-28)

As the discharge by means of alternating horizontal buoyant jets does not
introduce any initial momentum in the vertical direction, the flow above
the line of merging can be compared to the flow in the buoyant plume.

The relationship for the centerline density deficiency Apc in the buoyant

plume is given by Rouse et.al. (1952) as

2
2.6 paW
= - - 2 2-2
Apc pa pc g Z3 ( 9)

1/3

in which w is the flux of weight deficiency emanating from the line source.

For the discharge from the slot w can be expressed as

w = Ao gUB (2-30)
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where Apo =0, " 0, is the initial density deficiency. Using the defini-

a
tion of Ehe slot Froude numbeyx Fs (Eq. (2-25)) Eq. (2-29) can be trans-

formed to give the centerline dilution SC

2/3

S = —> = .39 z/B FS" (2-31)

In Figure 2-6 this relationship is compared to a series of data points
for z/9 = 8, 20 and 80 taken from Liseth's best-fit curves. The data
points were converted using the relationships between multiport diffusers
and equivalent slot diffusers. Data points for which zm/2< Fn were ex-
cluded. There is good agreement, again indicating that local details of
the discharge geometry, such as nozzle spacing, have indeed a negligible
influence on the ovérall characteristies of multiport diffusers.

2.1.5 Effect of the Free Surface

The density discontinuity at the air-water interface acts as an
effective barrier to the upward motion of the buoyant jet. Depending
on the kinetic energy of the jet only a small surface rise will occur,

As a consequence the jet will spread laterally along the surface in a
layer of a certain thickness.

As all the buoyant jet theories discussed in the preceding presume
discharge into an unconfined environment, the presence of the free sur-
face is usually accounted for by assuming effective entrainment into the
jets up to the lower edge of the surface layer. In the absence of an
analytical model for the estimation of the surface layer thickness, exper-
imental values reported by Abraham (1963) are often used. For the slot

buoyant jet (after lateral interaction) Abraham gives the layer thickness
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to be equal to about 1/4 of the length of the jet trajectory.

2,1.6 Effect of Ambient Dquity Stratification

Stable density stratification —- that is decreasing density with
elevation due to variations in temperature and salinity -- is a common
occurrence, in particular for deep water outfalls in oceans and lakes.
Under such conditions the jet can reach an equilibrium level and spreads
laterally in the form of an internal current when its density becomes
equal to the ambient density. Prediction of this phenomenon is important.
Jet theories for discharge into linearly stratified ambients are all
based on the entrainment concept (Morton et.al. (1956), Fan (1967), Fox
(1970) ). These methods have also been adapted for arbitrarily stratified
stable environments (Ditmars (1969), Shirazi and Davis (1972) ).

2.1.7 Effect of Crossflow

A single round buoyant jet discharged into a crossflow u_ gets de-
flected into the direction of the crossflow. The deflection is affected

by two force mechanisms acting on the jet, a pressure drag force

F, = C,. — 2b (2-32)

where Cpis a drag coefficient and a force F, resulting from the rate of

loss of ambient momentum due to entrainment of ambient fluid into the jet

F, = p,u, (21bv) (2-33)

Characteristic feature of jets in cross flow is a significant distortion
of the usually symmetric jet profiles to horse-shoe like shapes with a

strong wake region., The entrainment concept was modified by Fan (1967)
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to

ve = o |8~ 5 (2-34)

where the term lﬁa _-ECI denotes the magnitude of the vector difference
between ambient velocity and jet velocity to account for the effect of
crossflow velocity on the entrainment mechanism (shearing action). Values
for o when still retaining the assumption of Gaussian profiles are con-
siderably larger than in the stagnant case, indicating the increased
dilution efficiency in the presence of a crossflow.

No analytical models have yet been advanced for the deflection of
a series of interacting round jets as in the multiport diffuser or for
a slot diffuser. The deflecting mechanism is highly complicated in these
cases with eddying and re-entrainment in the wake zone behind the jet as
has been observed experimentally by Cederwall (1971). The assumption of
self-similarity is not valid any longer.

2.2 One-Dimensional Average Models for Horizontal Diffuser Discharge

into Shallow Water

A severe example of the inadequacy of buoyant jet models developed
on the assumption of an unbounded receiving water is given by the hori—_
- zontal (or near horizontal) diffuser discharge into shallow water. In
this case strong surface and bottom interaction causes a vertically fully
mixed concentration field downstream of fhe discharge as illustrated in
Figure 1-1d. Making use of this fully mixed condition the problgm can
be analyzed in a gross fashion.

2.2,1 The Two-Dimensional Channel Case

With the rationale to examine the approximately two-dimensional
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flow field which persists in the center portion of a diffuser line
Harleman et.al. (1971) studied the following configuration; An array of
diffuser nozzles is put between vertical walls of finite length 2L. The
channel thus formed is placed in a large basin as shown in Figure 2-7.
The jet discharge sets up a current of magnitude u through the
entrainment process. Ambient water is accelerated from zero velocity
outside in the basin (far field) to velocity u in the channel. Inside

the channel the current experiences a head loss expressed as usual as

u
m

rk P

against frictional resistance, where Lk is the sum of head loss
coefficients describing the channel geometry. Upon leaving the channel
at the downstream end the velocity head umz/Zg is dissipated. Hence the

total head loss is

2
u

AH = (1 + Ik) E—‘é‘— (2-35)

In steady state the pressure force caused by this head loss is balanced
by the momentum flux of the jet discharge. Thus a one-~dimensional momen-
tum equation (per unit channel width) can be written between sections 1

and 2 of Figure 2-7 as
oy lm L 0 gAﬁH (2-36)
L m

The dilution S in the fully mixed flow away is simply given by the volume

flux ratio

s = "’];z; (2-37)
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If the approximations po/gm %1, §/8-1 * 1 (large dilutions) and the
definition for the equivalent slot diffuser, Eq. (2-20) are introduced,
the dilution can be expressed as

1/2

1 H
2 3 ) (2-38)

§ =
a+mx) /2

The striking features of this equation are the independence on the Froude
number of the discharge and on the local diffuser geometry, i.e. nozzle
spacing, The validity is of course restricted to the fully mixed condi-
tion.

Satisfactory agreement with experimental results was found.

2.2.2 The Three-Dimensional Case

The three-dimensional aspects of horizontal diffuser discharge
in shallow water with or without the presence of an ambient current u,
were studied by Adams (1972). He observed in the absence of confining
walls (as in the previous case) a contraction of the flow downstream of
the diffuser line as indicated in Figure 2-8. Using a scaling argument
Adams neglected local frictional dissipation and made a one-dimensional
inviscid analysis similar to that used for ideal propeller theory (Prandtl
(1952) ) to arrive at an estimation of the induced average dilution S
downstream of the diffuser. Referring to Figure 2-8 the flow is accel-
erated from a section 1 far behind the diffuser to u, 2 u, at the dif-»
fuser line.

After passing over the diffuser line and being mixed with the
jet discharge the flow field continues to contract due to its inertia

until section 4 where the specific head returns to its original value H.
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The theory does not treat the region beyond section 4 in which the flow
gradually will return to its original yelocity u through viscous dissi-
pation of the excess velocity head (uﬁév uza)/Zg.

Applying Bernoulli's theorem between sections 1 and 2 and sec-

tions 3 and 4 yields the head change across the diffuser

- -1 - -
Moo= g (w, - w0 (2-39)

The pressure force thus produced is balanced by the momentum flux of the

diffuser which consists of n nozzles with spacing £, so that, using
Da:pozpm ’

2 Dzn
4

Pa Ub

o |-

= pagAH H (2-40)

as in the two-dimensional channel case. Another momentum equation can

be written for the control volume between sections 1 and 4

2
2 2 D q _ 2
paua ,£1H + ano A n = pau4 £4H (2-41)

For large dilutions

u 2.0 % w28 (2-42)
so that

S z — (2-43)
Solving the equations and using the equivalent slot jet concept the
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dilution is

2

. u u 1/2

1 a B 11fa i L:
5=3 UOB+2 10U B t23% (2-44)

0
For stagnant receiving water, u, = 0, Eq. (2-44) reduces to
1/2

R . -

§ = 5 (2 3 ) (2-45)

For the case when the crossflow is very large Eq. (2-44) becomes

(2-46)

w

[
[
oFo
o |

indicating proportional mixing with the oncoming flow. The contraction

c. of the flow between the diffuser and section 4 is found to be

£, 1.1 Y
CC = -r—;Q‘— = -—2- + E— E— (2-47)
4
which reduces to
1
CC = ‘i— (2-48)

in the case of zero ambient flow.

It is illuminating to compare Eq. (2-42) with Eq. (2-38) for
the two-dimensional channel case making the similar assumption of neg-
lecting friction inside the channel (Ik = 0), namely

s = (2—‘1)1/2 (2-49)
- @l |

Thus the predicted dilution capacity of the three-dimensional case is

one half of the two-dimensional channel. The difference is attributable
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to the contraction which occurs in the former case which causes more
velocity head to be dissipated in the region beyond.

Despite the approximations involyed —- no bottom friction, no
diffusion at the boundary of the current -- Adams found satisfactory
agreement with experimentally determined average dilutions in a section
downstream from the discharge (see Chapter 7).

2.3 Appraisal of Previous Knowledge About the Characteristics

of a Multiport Diffuser

The objective of predictive models for multiport diffusers is the
determination of velocities and concentration distributions induced by
the diffuser discharge. The review of existing prediction techniques has
shown two constrasting limiting cases of diffuser discharge: discharge
in practically unconfined deep water in form of buoyant jets and discharge
into fairly shallow water with extreme boundary interaction resulting in
a uniformly mixed current. This striking difference in the resultant
behavior immediately suggests questions regarding the diffuser performance
in the intermediate range (confined receiving water) and the applicability
of such "simple" models as discussed in the reﬁiew -- simple in the sense
that they consider only one dominating physical process.

Detailed observations regarding the degree of established phys-
ical understanding can be summarized;

A. Areas of Adequate Understanding

In these problem areas understanding has been achieyed to

such a point that fairly reliable predictions can be made.

46



1) Buoyant Jets in Deep Water

The different theories for round and slot buoyant jets hayve
been largely verified in laboratory experiments. Predic-
tions between models do not vary appreciably although
various assumptions regarding the jet characteristics have
been made. Choice of a particular model should be based

on the physical "correctness" of these assumptions and

on the applicability to different situations. In this
respect an integral analysis with variable entrainment
coefficients depending on the local buoyant characteristics
seems to be preferable.

2) Interferénce of Round Buoyant Jets

The lateral interference of the round buoyant jets issuing
from a multiport diffuser to form a two-dimensional jet
has not yet been studied experimentally. However, reason-
able assumptions regarding a transition criterion in the
analytical treatment can be made. Comparisons show that
the flow field produced by a multiport diffuser is similar
to that one produced by an "equivalent slot diffuser".
Hence for mathematical convenience tﬁis concept should be
retained. The same argument pertains to the merging of
jets above the diffuser line in the case of alternatingly
discharging nozzles as studied by Liseth.

3) Horizontal Diffusexs in Shallow Water

Horizontal diffusers discharging into fairly shallow water

produce full vertical mixing due to strong boundary inter-
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actions, Predictions of average dilutions downstream of
the discharge line can be made using Adams' experimen-
tally validated relationship.

B. Areas of Insufficient Knowledge

1) Effect of a Vertically Confined Flow Region

This is the general case of a diffuser discharge. Solution
of this problem requires the assessment of:

a) The effect of the free surface. Prediction of the
thickness of the surface impingement layer as a
function of jet parameters. This defines the upper
level up to which effective entrainment takes place
into the jet.

b) The stability of the surface layer, The flow spread-
ing from the line of impingement can be unstable.
Hence water can be re-entrained into the jet region.

¢) The flow away from the diffuser line in the form
of a density current.

d) The effect of bottom interaction. Jets discharged
horizontally and close to the bottom can become
attached to the bottom.

Solution of this general problem will encompass the

limiting cases of discharge in fairly deep and fairly

shallow water. Hence, criteria of applicability of

the "simple" models reported above can be presented.

2) Three-Dimensional Behavior

As exemplified by the case of horizontal diffuser discharge
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into shallow recgiving water which produces a flow away
with significant contraction . thus reducing dilﬁtion,
three~dimensional aspgcts of the diffuser flow field
are extremely important. N

3) Effect of Crossflow

The effect of crossflow has only been investigated for
the single round jet. No quantitative information on
interacting diffuser jets or slot jets is available.

In general the three-~dimensional diffuser induced flow
field is superposed on, but also modified by, the
ambient flow field. The overall layout of the diffuser
axis with respect to the ambient current direction is

an important factor, as shown by experimental investiga-
tions reported by Harleman, et.al. (1971).

All these problem areas are addressed in the following

chapters of this study.
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II1. THEORETICAL FRAMEWORK: TWO~-DIMENSIONAL CHANNEL MODEL

3.1 Basic Approach

The review of the preceding chapter showed the limitations of
existing theories for the prediction of multiport diffuser behavior.
Analytical models are available only for the extreme cases of (1) buoyant
jets in deep water, neglecting the dynamic effects caused by the free
surface, and (2) discharge into shallow water with strong boundary inter-
action resulting in a vertically mixed current. No mathematical models
have been developed for the intermediate range in which boundary effects
are important and no criteria of applicability for the existing models
have been derived. The present study attemptsto fulfill this need.

The complexity of the general three-dimensional problem of multi-
port diffuser discharge is such that no single analytical description
(a single set of governing equations with the appropriate boundary con-
ditions) of the fluid flow can be solved by available methods. Hence,
the following approach is undertaken in the development of a predictive
model:

1) The theoretical treatment is limited to the diffuser-

induced steady-state flow field without the presence
of an ambient cross flow.

2) A two-dimensional "channel model" simulates the pre-

dominantly two-dimensional flow field which is pe¢stulated
to exist in the center portion of a three-dimensional
diffuser. This is illustrated ‘in Figure 3-1 for the

case of a stable flow away zone. The two-dimensional
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channel model assumes a diffuser section bounded later—_

ally by walls of finite length, 2L. This conceptualiza-

tion allows the analysis of the yertical and longitudinal
variation of the diffuser-induced flow field.

3)_Through a quantitative analysis regarding far-field effects

(frictional resistance of the flow away zone) the length,
2L, of the two-dimensional channel model is linked to

the length of the three-dimensional diffuser, ZLD. In

this manner theoretical predictions of the two-dimensional
channel model become applicable to the general three-dimen-
sional case.

4) The interaction of the diffuser induced flow with a cross

flow in the receiving water body is studied experimentally.
In this chapter the theoretical framework for the treatment of
. the flow distribution in the two-dimensional '"channel model" is developed.
The diffuser discharge exhibits several distinct flow regions. Analyti-
cal treatment of each of these regimes becomes possible by introducing
approximations to the governing equations of fluid motion.

Matching of the solutions at the boundaries of the various regions
results in an overall prediction of the two-dimensional channel flow
field. In Chapter 4 the quantitative comparison between the flow fields
in the two-dimensional "channel model"™ and the general three-dimensional
case is made.

In Chapter 6, the theoretical model predictions are compared with

experimental results. Experiments were performed both for the two-dimen-
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sional channel model and the"three—dimensional casé.

In Chapter 7, the modification of the diffuser-induced flow field
through the effects of ambient cross flow is studied experimentally.
For the purpose of establishing scaling relationships the analytical
treatment is directed toward the discharge of heated water. This is moti-
vated by the fact that thermal diffusers located in shallow water, with
low buoyancy of the discharge, typically are strongly influenced by the
finite depth of the receiving water body.

3.2 Problem Definition: Two~Dimensional Channel Model

Referring to Figure 3-2 the following problem is considered: The
steady-state discharge of heated water with temperature To and velocity
Uo through a slot with width B and vertical orientation 60 into a channel
of uniform depth H, unit width and length 2L. The height hS of the slot

opening above the bottom is small compared to the total depth,

hS/H << 1 (3-1)

The channel opens at both ends into a large reservoir.

The rationale for studying this model is provided by:

a) In the mathematical treatment a multiport diffuser can
be represented by an equivalent slot diffuser as dis-
cussed in the previous chapter (Eq. (2-20)).

b) The channel model approximatés the predominantly two—
dimensional flow field which is postulated to exist
in the center portion of a three-dimensional diffuser

as shown in Figure 3-1. It will be shown later that
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under certain conditions, namely instability of the
flow away, the diffuser discharge does not exhihit
this predominantly two-dimensional region. Howeyer;v
through yariation of the horizontal nozzle orienta=-
tion it is possible to control the three—dimensional
flow so as to approximate the two-dimensional behavior.
In the interest of achieving high dilutions this con-
trol is desirable, These three-dimensional aspects of
diffuser discharge are treated in more detail in
Chapters 4 and 6,

3.3 Solution Method

For thé problem defined, the governing equations of fluid motion

and heat conservation are written under the following assumptions:

1) The flow field is two-dimensional in the vertical
or xz-plane., No lateral variations with y occur.

2) The flow is turbulent, but steady in the mean. Local.
flow quantities are composed of a mean and a fluctuating
component.

3) Molecular transport processes for momentum, mass and
heat are neglected in comparison to tramsport by the
fluctuating eddy velocities.

4) The Boussinesq approximation is applied. Density devia-
tions Ap from the ambient density Pa introduced by the
diffuser discharge are small compared to the local den-
sity o (x,2)

—A-9-<< 1 (3-2)

p
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Hence p is approximatgd by Pa in all terms excgpt.the
~ gravitational (buoyant) terms. Furthermore the mass
conservation equation is replaced by the equation of
incompressibility.
5) In the heat conservation equation, the heat production
due to viscous dissipation is neglected in comparison
with the heat added by the heated discharge.
With these approximations, the time-averaged equations of motion

and heat conservation are

Ju ow
—3; + rri 0 (3=3)
3u + Su _ _9p _ w'z - du'w’ (3-4)
Pa U 3x Pa¥ Bz % Pa ox ~ Pa "oz
w + 3w _3p + - du'w' aw,Z (3-5)
Pa " 3x T Pa¥ Bz 3z © P87 P2 Tox a 9z
3T oT du'T’ w'T'
U 3% + Yz ox 0z (3-6)
in which
x,z = Cartesian coordinates, with z upwards against
the gravity force
u,w = mean velocities in x,z directions
u',w' = velocity fluctuations
p = mean local density
Py = constant ambieﬁt density
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p = mean pressure

T = mean temperature

T' = temperature fluctuation
and the bar denotes the time-averaged turbulent transfer terms.
A linearized equation of state relates density and temperature

p = b, [1-8(T-TY] (3-7)

where B is the coefficient of thermal expansion. The simultaneous solu-
tion of Equations (3-3) to (3-7) with given boundary conditions deter-
mines the flow and temperature field. No such general solution is poss—
ible by present analytical techniques.

However, inspection of actual diffuser performance -- as can be
made in a laboratory experiment -- indicates that the flow field is
actually made up of several regions with distinct hydrodynamic proper-
ties. By making use of these properties, additional approximations to
the governing equations can be introduced. This enables solutions to be
obtained by analytical or simple numerical methods within these regions.
By matching these solﬁtions, an overall description of the flow-field
can be given.

The observed vertical structure of the flow field for a diffuser
discharge within the two—éimensional channel is indicated in Figure 3-3
for the case of a stable near—field zone without re—gntrainment. Four
flow regions can be discerned in this general case:

1) Buoyant Jet Region: Forced by its initial momentum and

under the action of gravity, the two-dimensional slot
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jet rises towards the surface entraining ambient water.

2) Surface Impingement Region; The presence of the free

surface, with its density discontinuity, diverts the
impinging jet in the horizontal directionms.

3) Hydraulic Jump Region: An abrupt transition between the

high velocity flow in the surface impingement region to
lower velocities in the flow away zone is provided by
an internal hydraulic jump.

4) Stratified Counterflow Region: A counterflow system is

set up as a buoyancy-driven current in the upper layer

and an entrainment-induced current in the lower layer.
Region 1, 2 and 3 constitute the near-field zone; region 4 and the water
body outside the channel, the far-field zone. Surface heat loss to the
atmosphere is only important in the far-field zone due to the areal res-
triction of the near-field.

The analytical treatments for these four dominant flow regions

are given in the following sections.

3.4 Dominant Flow Regions

3.4.1 Buovyant Jet Region

3.4.,1.1 Approximations and Governing Equations

The definition of a local coordinate system s, n with velo-

city components u, V is convenient for the upward curyed jet trajectory,

as shown in Figure 3-4.

In terms of this coordinate system the governing Equations (3-3)
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Fig. 3-4: Definition Diagram for Buoyant Jet Region
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to (3-6) can be transformed

e f‘Z‘ =0 (3-8)

§5 é%’ + Pa5 §%~= ¥‘§£-+ pgsing - o BEE—.- Pa 33237 (3-9)

R T S R TL

a o9s fa¥ on an PBCOSE ~ py 98 Pa sn (3-10)

B R ‘BZ.T—" B:ZZT—' (3-11)
with 6 = angle between s and x axes.

From jet observations the following approximations are inferred:

1) The flow phenomenon is predominantly in the longitudinal

direction,

-]-3-<<]_
s

(3-12)

By continuity it follows that induced velocities in the

lateral direction are small

g e

<<l (3—13)

This boundary-layer approximation allows the neglect of
certain terms in the governing equations which are found
to be of secondary importance by a straightforward scaling

procedure using Equations (3-12) and (3-13).
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2)

The pressure outside the jet proper is hydrostatic, Py

and satisfies
— - pa g = 0 (3-14)

Consequently, the pressure in the jet itself can be

written as
P = p *tp, (3-15)

where P, is a reduced pressure, namely the pressure

disturbance due to jet motion.

The two components of Eq. (3-14) in s, r are

Noting that

Bph
38 pa gsinB = 0
(3~16)
ﬁ—pgcose=0
an a
P = p, + Ap (3-17)

where Ap 1is the density deficiency due to the temperature anomaly

AT =T =~ Ta » pressure and gravitational terms in the momentum

equations (3-9) and (3-10) can be simplified as

and

ap
-2 - -—F -
e + pgsinb s + Ap g sin 6 (3-18)
o Pr o a 0
- + pgcos b = - e + Ap g cos (3-19)
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Experimental observations have shown that the pressure deviation P,
is practically negligible in the absence of boundaries. In the
diffuser problem boundaries are given by the bottom and the free surface.

Thus in making the approximation

p, = 0 (3-20)

it is implied that the jet stays clear of the bottom (as jet attach-
ment) and that the effect of the free surface where the pressure
deviation is documented by the surface hump (see Fig. 3-3) is limited
to the jet impingement region. This is diécussed in more detail in the
consideration of the jet impingemént region,

The simplified governing equations for the buoyant slot jet are,

using the continuity equation in the transformation of the convective

terms,

L (3-21)

2, AW Mo, o . 20
5 = oo & oin = (3-22)

wia?
o-+%ﬂgco;e-§—}£‘-’— (3-23)

a
JUAT VAT 39T |

% t o " " “om (3-24)

The lateral momentum equation (3-23) is replaced by the horizontal

momentum equation, a linear combination of (3-22) and (3-23),
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~2 ~a ~ g~ ~ g~
ou duv on'v' v'v'
( 35 ¥ 3a )cos © - Sa cos 6 + 3n sin 6 (3-25)

which relates directly to the boundary condition of horizontal momentum
flux at the slot opening as is shown below. The further solution
procedure uses the entrainment concept proposed by Morton et al. (1956).
A variable entraimment coefficient dependent on the local buoyant
characteristics of the jet is assumed of the form Eq. (2-11). The
method of obtaining this dependence follows the procedure used by Fox
(1970) for vertical round and slot jets and by Hirst (1971) for non-
vertical round jets. For this purpose a simplified energy equation
describing the flux of mechanical energy in the longitudinal direction

with velocity u 1is found from Eq. (3-22) as

~2 ~ : ~ g~
~ ou ~ Juv Ao - _ = su'v'
u o + u P + o, g usin 6 u = (3-26)
or by virtue of the continuity equation
A B Ly, B g o g 20V (3-27)
9s on p. g on

Based on experimental evidence the following similarity functions

are specified for u and T

u(s,n) = Ec(s)e (3-28)

AT(s,n) = ATc(s)e (3-29)
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in which A 1is a dispersion ratio between momentum and heat or mass.
The profile for Ap Vis related to (3-29) by the equation of state,
thus

2

-(3%)
Ap(s,n) = Apc(s)e (3-30)

u , T , Ap_ are centerline values.
c c

These functions are introduced into Eqs. (3-21), (3-22), (3-24)
and (3-25) and the equations are integrated in the normal direction n .

If the boundary conditions

a'v’ 0

SAE as n + + @ (3-31)
T > 0

v + ¥ v,

AT + 0

are noted, the resulting ordinary differential equatioms are,

2

d = =(3) .

! / i, e da] - 2%, =0 (3-32)

n)z
d . .
Y | f ui e b dn] = + f égs. g sin © (3-33)
o ("')2
e Ab dn
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2
[ _Z(P.)
{ f ﬁi cos O e b

dn] = 0 (3-34)

gl

2
- ~a+ 50
L] §, o1 e A dn] = 0 (3-35)

&~

The normal velocities at the jet boundary, Gé , 1i.e. the "entrainment
velocity' is assumed to be related to the characteristic jet velocity
u

c

|6e| = au (3-36)

This constitutes the entrainment concept by Morton et al, After

evaluation of the integrals the equations become

continuity:

%; (ﬁc b) = —&-. aﬁc (3‘37)

7B
axial momentum:
Ap

d ~2 c

5 (U, b)) = /2 o g Ab sin 6 (3-38)
horizontal momentum:

d ,~2

F (uc b cos 6) = 0 (3-39)
heat conservation:

9 @ AT b) = 0 (3-40)

ds c c

or alternatively instead of (3-40)
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conservation of density deficiency:
d ~ ‘
ds (uc Apc b) = 0 (3-41)

3.4.1.2 Dependence of the Entrainment on

Local Jet Characteristics

Experimentally deduced values for a as reported in the
previous chapters, Eqs. (2-18) and (2-19) show the dependence of a with
the buoyant jet characteristics. This dependence can be examined using

the energy equation (3-27) following Fox's approach for the vertical jet.

To integrate this equation it is assumed that the stress u'v' 1is
distributed in a similarity profile f£(n/b) and related to the center-

line velocity Ec

~g ~2:, M
u'v' = ucf( 5 ) (3-42)

There is experimental support to this assumption (Mih and Hoopes
(1972)) but the accuracy of the data does not allow specification of f .
With (3-42) and the other similarity profiles the energy equation (3-27)

is integrated to

2

4 o -3@m? “ do_ -+ 370
EE—[ ‘i u e dn] = 2 J£ —a;-g ucsin 8 e dn

' (3-43)

ad 2

~3 -(a/b)” d_
-2 -i u, e an f (n/b) dn
and after evaluation

&b /A3 = 2 ——gu bsin@-2u I (3-44)

1+ l
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where

co 2
1= [ @)L ) an (3-45)
Noting the identity
d_ 3 «d =2,y _ 2 d o
§§'<“c b) = 2 u, E;-(uc b) - U (uc b) (3f46)

Equation (3-44) can be transformed using the axial momentum Eq. (3-38)

to

Ap
d -~ c 1 A
“"ds(“cb)'z_pagb—~ V2 -3

u, 1+

+2\/—§—G I
m e

When this equation is compared with the continuity Eq. (3.37) the

2 sin 6]

(3-47)

entrainment coefficient a 1is expressed as

a = /3 1 + [ﬁ-'\Fz—:_sm 0] VA (3-48)
1+ F

if a local densimetric Froude number is defined

I

| il

u
C
F fp, 172 (3-49)
(—gh)
Pa

Equation (3-48) is similar to Fox's equation except for the factor

sin 6 . The expression (3-48) consists of two parts

@ = a, +0,() sin6) (3-50)

%

r‘""~|.-
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showing a constant @, , as first postulated by Morton et al (1956),
modified by a function which depends on the buoyant jet characteristics,
E, A , and the jet geometry, sin 06 . This dependence is further

explored.

For the simple non-buoyant momentum jet a reduces to

a = al = /31 as FL > ® (3-51)

As the lack of specification of a similarity profile for u'v' does
not allow evaluation of the integral I , oy is determined from

experimental data for the momentum jet

o = 0.069 (3-52)

by Albertson et al (1950) which value has been well substantiated by
other investigatioms,

For distances far from the discharge point all buoyant jets.
tend to the condition of a pure vertically rising plume. This
asymptotic case is characterized by a constant densimetric Froude
F

L number as is shown below.

The change in the local densimetric Froude number FL along

the jet trajectory s 1is from Eq. (3-49)

dF
L 1 1 1 d ~2 d ~ l d ~
& - 0 i‘ﬁ:i'[ ﬁ:’i; (u; b) - g5 (ub) - Bp_ ds (uc Apcb)]

(3-53)
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after some manipulation. Using Eqs. (3-37), (3-38) and (3-40) this

becomes
dF Ap
= = Ry —11 /2 ——Eg)\bsine-z'—-a?fc] (3-54)
ib 3 fa /T
c c
or in a simpler, implicit form
dF
L 1 A1 2 a 1
Era R r[;i"‘ ™ X sin@ (3-53)
For the vertically rising plume sin 6 = 1 .
The necessary conditions for an asymptotic value FL are
dF
L N
a—s—- = 0 as FL = FL
and
dFL R
3= >0 if F < F (3-56)
dFL R
P < 0 if FL > FL
These conditions are satisfied for
. RS VISR V).
s () () (3-57)

A

vhere O is the entrainment coefficient and )X the spreading ratio
of the simple plume. If the Froude number of the discharge is less
than ﬁL , then the jet will be accelerated and will monotonically
approach the plume condition. Convection phenomena over line fires
belong in this group. Of direct interest im the submerged diffuser

case is discharge with large Froude numbers FL > FL where the flow
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becomes gradually decelerated until the balance between buoyancy and
shear forces which is typical of the plume is reached. This behavior
and the existence of the asymptotic value was first described by Lee
and Emmons (1962), referring to the two cases as restrained and impelled
sources, respectively.

In the vertically rising buoyant plume condition the equation

for the entrainment (3-50) should be satisfied by a s A , and §L

from Eq. (3-57) with sin 6 = 1 , thus

o = 0.069 + [vV2 -‘\/ 3 > V2 a (3-58)
| 1+ A

The only extensive experimental investigation regarding plume

behavior was made by Rouse et al (1952) on buoyancy sources from line
fires. Measurements of velocity and temperature were taken at distances
above the source such that the influence of an initial deviation

Fi ¢ ﬁL can be neglected and true plume values are approached. However,

their data fitting procedure which yielded the frequently used values

A

@ = 0.160 and A = 0.89 (3-59)

implied linear spreading from the source, a eondition which is
violated when the initial F, ¢ ﬁL . The values (3-59) do not

satisfy Eq. (3-58). Abraham (1963) re-examined Rouse et al.'s data
and found that in the regién above the source where there is effective

plume behavior the values

~

@ = 0.130 and A = 1.24 (3-60)

describe the distributions much better. A spreading ratio A > 1 is
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also consistent with observations on other free turbulent phenomena.
Introducing ; = 1.24 1into Eq. (3-58) yields a = 0.128. This good
agreement for o must be judged somewhat fortuitous since it is

based only on a single set of experiments, but seems to support the
validity of the functional dependence of a on the buoyant jet
characteristics expressed by Eq. (3-48). With these values the magnitude
of local Froude number for a simple plume is ﬁL = 3,48.

The spreading ratio A also shows some variation with jet
buoyancy as indicated by experiments. A variation between A = 1.41
for the simple momentum jet (Reichardt (1942)) and A =1.24 for the
plume (3-60) is observed. However, as the second term in the entrain-
ment relationship is important only for plume-like behavior a constant
A=3X=1.24 is assumed throughout the jet domain.

With these data, the following quantitative form is proposed for

the entrainment relationship (3-50) in a slot buoyant jet

a = 0.069 + [3.11 - 2.39 sin 6] —%_ (3-61a)
F
L
and a constant spreading ratio
A = 1.24 (3-61b)

3.4,1.3 Initial Conditions: Zone of Flow Establishment
The governing equations (3-37) to (3-41) do not adequately
describe the zone of flow establishment in which a transition between
the uniform slot exit velocity Uo and the velocity distribution in
the general flow region takes place as seen in Fig. 3-5. Therefore
for the specification of initial conditions some approximate steps are

taken:
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1) The initial conditions are specified at the end of the zone
of flow establishment and are related to the slot discharge conditions
by conservation equations.

2) The effect of buoyancy in the zone of establishment is
neglected.

Requiring constant momentum flux in the axial direction one obtains

2
«© =2(n/b)
2 ~2 =.‘/1 2 _
us B -_o{ i e dn 7 U b, (3-62)

c

2
b, = \/;B (3-63)

The volume flux at the end of the zone follows then

thus

@

2
] © /D) g o Fub = /7 ous (3-64)
— co o0 (o]

which is in close agreement on experimentally derived relationships

for the zone of establishment by Albertson et al (1950)

e

UB
o

= 1+ 0.080 —;— (3-65)
evaluated for the length of the zone s = 5.2 B as

q = 1.42 UOB (3-66)
in which % = volume flux.

Finally, conservation of density deficiency requires

- -(1 + 1/32) (n/b)?
UB 8o, = _.{. u°c Apco e dn (3-67)
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and with (3-62)

c > Ap° (3-68)
o A

Ap

as the initial condition at the end of the zomne.

In the further treatment, the extent s/B = 5.2 of the zomne
of establishment will be neglected as the region of interest s/B
is considerably larger.

3.4.1.4 Solution of the Equations

The complete statement of the heated buoyant jet problgm is

summarized as follows:

d -~ 2 -~
— (ub) = <= au (3-69)
ds [+ /—“ c
bp
d_ (g2 = —c -
5 (¥ b) = V2 pagkbsine (3-70)
d .2 '
i (uc bcos 6) = 0 | (3-71)
4 @ 2 b) = 0 (3-72)
ds *'¢ ¢
including geometric relations describing the jet trajectory
%E = cos 0 . (3-73)
£ = sine (3-74)
with
o = 0,069 + [3.11 - 2.39 sin 0] —%-' (3-75)
F
and L
A o= 1,24 (3-76)
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The centerline temperature rise ATc above the ambient temperature is

related to Apc by the equation of state

S § -
ATc = 3 Apc (3-77)
The initial conditions are
u = U,
¢ \
b = 0
bo, = Bo_ &at s =0 (3-78)
[o]
6 = eo
/
x = 0
y = 0

which are given at the end of the zone of flow establishment and are
related to the slot exit conditions by Egqs. (3-63) and (3-68).

Solution of the equations is not possible in closed analytical
form. However, the initial value problem is readily integrated by
numerical methods. A fourth order Runge-~Kutta integration technique
is used. The buoyant jet discharge is governed by the following

dimensionless parameters determined from the slot exit conditions:

U
densimetric Froude number Fs = —2 (3-79)
Bp
o
pa
angle of discharge 0 (3-80)
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If in addition the distance s is scaledby B

dimensionless distance %- (3-81)

the buoyant jet properties, namely veiocity, density deficiency, width

and trajectory, are functionally dependent as
l~1c c b x z s
[ "l;" A E ’ E s .B- s e] = f{ E ’ F > 6 ] (3"82)

An important resulting parameter is the jet centerline dilution
Sc which determines the decrease in density deficiency (or temperature)

with respect to the discharge

Apo AT0
SC = -A—E: = AT (3-83)

and with respect to the end of zone of flow establishment

Ao
s, = =2\ (3-84)
c Apc

1+ 22

by ‘virtue of Eq. (3-68).
An average dilution S 1is defined as the ratio of flow at any

distance s to the discharge at the slot.

o
_ __;L u dn g, b /T
S =—%w3 — % T3B (3-85)
o o
Mass conservation gives the relation
S = § 1+ (3-86)
c AZ
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A comparison between theoretical predictions for centerline dilution
Sc without surface effects using a variable entrainment coefficient as
proposed in Eq. (3-75) versus using a constant entraimment coefficient
(Fan and Brooks (1969), a = 0.16) is given in Fig. 3-6 for a vertical
and in Fig. 3-7 for a horizontal jet discharge. Limited experimental
data are also included.
For the vertical discharge both predictions are about equal in
the low Froude number range. Fan and Brooks' prediction is, however,
too high for large Fs (due to the chosen value of o), while the
predictions of this study approach Albertsen et al.'s (1950) experimentally

verified result for the average dilution S in non-buoyant jets

S = 0.62 V/s/B (3-87)

which can be converted to

- A 2z -
Sc 0.62 B + 5.2 (3-88)

1+ A%

by virtue of Eq. (3-86) and taking account of the proper initial
condition at the end of the zone of flow establishment. Some measure-
ments of Sc were made in the experimental part of this study (éee
Chapter 5) and the agreement is better with the theoretical prediction
of this study.

For the horizontal discharge this study predicts somewhat higher
dilutions for low Fs . The strong slope of Fan and Brook's solution
for high Fs is again due to the constant value of o . Experimental

data are reported by Cederwell (1971) and are limited to the very low
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Fs range. All data lie between the predictions of both investigatioms,

the agreement being somewhat closer with Fan and Brooks' solution.

3.4.2 Surface Impinggﬁent Region

3.4.2.1) General Solution

The buoyant jet region is bounded by the surface
impingement region in which an abrupt transition between the jet flow,
with a strong vertical component, ‘to a horizontal spreading motion
occurs. Discussion of the jet impingement at the surface also has
some relevance to the buoyant jeﬁ fegionrin particular with regard to
the previous assumption of negligible reduced pressure P, -

The main features of the 1ﬁpingement are indicated in Fig. 3-8.
The momentum of the jet sets up a surface hump n in conjunction with
a pressure deviation Pr decreaéing in the vertical direction. This
pressure gradient causes a stagnation of the vertical flow accompanied
by a horizontal spreading in both directionms.

The buoyant jet impingement is a complex flow phenomenon. Thus
no attempt is made to solve for flow properties inside the region.
Rather, a control volume apbroach is taken which yields a description
of the horizontal spreading layers after impingement. The thickness
of the spreading layers determines the elevation (H = hi) to which
effective jet entrainment occufs and the dynamic characteristics are
decisive for the stability of the flow away zone.

Referring to Fig. 3-8, a control volume is defined by section 1
with the incoming jet flow, by sections a, b with the horizontal
spreading motion and by the free surface. The flow is described by a

set of simplified spatially averaged equations:
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Schematics of Surface Impingement Region
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Energy equations:

=2 u, 2
uy 1a ,
Pa 7g Api z = p, e Apa z + Pa hLa (3-89)
— 2
5y L —
Pa 3g ~ b5z = P73 -Apbz+pahLb - (3-90)
Horizontal momentum equation:
ad H H
~2 2 2
f p u, cos 6, dn + f p u; dz = f p. u; dz _
- a i i H=h a 1-b H_hl a 1a (3-91)
L a
Continuity:
fw IH ' IH _
u, dn = u, dz + u, dz (3-92)
- 1 H-h 1b H-h la

1, 1,

where hLa s hLb = energy losses in the impingement process. This
formulation includes some of the assumptions made in the treatment of
the buoyant jet region, notably the Boussinesq approximation. Further-
more, these assumptions are inherent:

a) The distribution of the pressure deviation P, ¢ The
vertical extent of the pressure influence is limited. Experiments
by Cola (1966) and Murota and Muraoka (1967) on vertical non-
buoyant jets show that the pressure influence is negligible
below 2z/H < 0.75. Thus the pressure p, is neglected at

section i as a first approximation. The horizontal extent
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of the pressure influence is related to the jet width bi .
Sections a and b are assumed to be located outside this
zone,

b) Entrainment in the spreading process is negligible.
Solution of these equations requires the specification of
velocity and density profiles for all sections as well as
expressions for the energy losses. Hence the following
additional assumptions are introduced:

c) Velocity and density distributions at section i
are represented by the Gaussian profiles Eqs. (3-28) and
(3-30) typical of the buoyant jet region. Distributions at
sections a and b are dependent on the buoyant characteris-
tics of the impinging jet. Cola and Murota and Muraoka found
the velocity distribution for non-buoyant jets to be
essentially jet-like. For buoyant jets, however, the
buoyancy in the spreading layer exerts a stabilizing effect
on the flow which suppresses the jet diffusion in the
vertical direction. Velocity and density profiles can be
reasonably approximated by a rectangular profile. This can
be seen in Fig. 3-9. Photograph (Fig. 3-9a) shows the dye
traces obtained from an instantaneous dye injection by means
of a probe which had holes spaced at 1" intervals. Due to
the diffusion of the injected dye, the probe cannot be used
for quantitative determination of velocities. However, the
photograph shows the qualitative velocity distribution,
namely a strong approximately uniform flow in the upper 5 in.

of the depth and a weak counterflow to the left in the lower
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Grid Size

2 in. x 4 in.

a) Dye Traces From Instantaneous Injection Showing

Velocity Distribution

X=-6 in. X=+6in.

224

20¢

T,=65.8°F
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14+ | o
66 67 °F 66 67 °F

b) Temperature Profiles at Sections a and b
Fig. 3-9: Observed Velocity and Temperature (Density)
Distributions for Vertical Buoyant Jet

(FS = 31, H/B = 416)
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portion caused by the jet entrainment. Similarly, the
observed temperature distributions after impingement are
approximately uniform except for typical turbulent fluctua-
tions. (The experimental set-up is described in detail

in Chapter 5.) Thus the velocity and density distributions

are in section a

u, (z) = u
1a , 1a
H - h1 < z<H (3-93)
a
Apa(z) = Apa
and in section b
ulb(z) =y
a
H-h, < z<H (3-94)

lb

Apb (z) = 8oy

A consequence of the uniformly mixed distributions

in the spreading layers is

Bp, = bp, = Ys”p‘.l’ (3-95)

d) The energy losses due to secondary circulations in
the impingement process are related to the velocity head at

section i as

Ei
i
h = k -
La La 2g
_— (3-96)
~2
Yy
h = k. ==
Lb Lb 2g
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where kL ’ kLb are head loss coefficients which are dependent
a _

on the angle and curvature of the flow bending and can be

approximated by experimentally determined head loss coefficients

for flows in smooth pipe bends (for example, Ito (1960)).

With the assumed similarity profiles the sectionally averaged

quantities in the energy equation can be defined as:

and

* .3 2
~2 f Gi dn ﬁc
..i = _];_ - = l'_.. i (’3_97)
2g 2 = 2% 5
f ui dn
«00

I Api ﬁi dn
L - A A
o2 _ CREREE V=2 @) G-99)

-0
2 2 T
S M S S (3-99)
g g ’ 2g g :
by hlb
Bpz = fp_(H --2—" 3 Bpz = o (H - —>) (3-100)
h, = —2__ b (3-101)
N 2
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The Eqs. (3-89) to (3-92) become, after consideration of Eq. (3-95)

<2 2
(N 1 Ap
R - s i re B s
a & V3 1+ A
) 2
u u h
(1-k, ) e 0 S . - ! '\/ A a (3-103)
L 2% &3 2g Pa 1+ 2

;2 b'\dﬁi— cos 0 + 2 h = 2 h (3-104)
c, 21V 2 i“11b“11

i b

(3-105)

= h + u h
i la la 1b 1b

h and u h

] ]

1a 1a lb 1b
as a function of jet conditions at section i , that is

These 4 equations determine the 4 unknowns u

§, .8, ,b = f(z=H-h) (3-106)

as obtained from the solution of the buoyant jet equations (3-69) to
(3-76). As no closed form solutions to the buoyant jet equations

are possible, the algebraic equations (3-102) to (3-105) of the surface
impingement can be simplified by substituting a linear approximation
of Eqs. (3-106) in the range of =z where the layer depth is expected.
The algebra equations are then easily solvable by simple numerical

techniques, such as the Newton-Raphson method.
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3.4.2.2 Special Cases

Valuable insight on the relative importance of the terms
in Eqs. (3-102) to (3-104) is gained by considering the vertical dis-
charge case for both the simple momentum jet and the simple plume.
The flow pattern is then symmetric Uy =y o=y, h1 = hlb = hi R

a b a
kL = kLb = kL and the equations reduce to
a ,

a2 2
c u Ap
i 1 1 ci
1 - kl..) 5y T = 3, \/ (3-107)
& /3 g 1+ 22
uci by /T= 2 u; hy (3-108)
and by substitution
~2 ~2
u u 2 Ap
c c Thb ‘e h
A -k) i 1 _ i i_ i A i (3-109)
2 2 2 P 2 2
g /3 g 4 z] a 1+
a) Vertical Momentum Jet (Apc = 0): Eq. (3-109) becomes
i
b
i/ 3
hi = 2 1= kL (3-110)

The jet width b, 1is obtained from the solution of the buoyant jet

i
equations. From Eq. (3-70) one obtains

#p = v? B\/.i: | (3-111)
c o T

by considering the initial condition (3-63). Substitution into
Eq. (3-69) yields (s = z)

db

e a (3-112)

;1|£~
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and integrated

az (3-113)

if the initial width bo is neglected for large z , b >> bo .

Hence at z = H - hi

a(H - hi) (3-114)

Y o (3-115)

For the momentum jet o = 0.069, and kL is estimated from Ito's
(1960) data as ko~ 0.2 for a 90° bend and a wide range of
curvatures. The variation of h1/H with kL is seen in the

following table:

k, = 0 0.2 0.4

b) Plume: The constancy of the local densimetric Froude
number FL = §L has been shown in Section 3.4.1.2. This fact, in
combination with the constant buoyancy flux Eq. (3-72), implies
that the jet centerline velocity ﬁc is also constant in the

convective plane plume. Thus Eq. (3-69) can be simplified to

db

o - 2 3 (3-116)
v
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and integrated for z = H -~ hi

a(H - hy) (3-117)

| nd
TS

again neglecting the initial width. After substitution and rearrang-

ing using the value of F (Eq. (3-57)) Eq. (3-109) becomes

L

(3-118)

With kL = 0,2, @ =0.128 and A = 1.24 the equation is evaluated
as
hi
i - 0.149 (3-119)
The second term on the right side of Eq. (3-118) expresses the

effect of buoyancy on the thickness. If this term is neglected

= = 0,159 (3-120)

exhibiting only weak sensitivity.

Thus calculations for both the vertical momentum jet and the
plume show that the thickness of the spreading layer is about 1/6 of
the total depth H and the jet entrainment region can be assumed to
extend to this z2levation. Preliminary evidence of this result can be
seen in Fig. 3.9. The result somewhat violates the assumption of
neglecting the pressure deviation P, at section i made in the

preceding sections. However, the error introduced appears to be small.
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3.4.2.3 Vertical Flow Distribution Prior to the

Hydraulic Jump

After the combined evaluation of the buoyant jet and the
impingement regions, the vertical flow distribution can be determined.
With reference to Fig. 3-10, at both Sections a and b, a counterflow
system is present with flow in the upper layer away from the line of

impingement and flow in the lower layer towards jet entrainment

I

q.JAﬁg l
Fig. 3-10: Schematic of Vertical Flow Distribution

Prior to Internal Hydraulic Jump.

Initial and surface layer volume fluxes per unit channel width are
q = U B (3-121)

9 =Yy h (3-122)

Ty
respectively. The average dilution is by definition

qQ, +t+gq
1, ",

%
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and the total entrainment flow qq follows as

q, = (s - l)q0 = qza + qzb (3-123)

The magnitude of 1, and qzb is obtained by considering a
horizontal momentum :quation between a and b . Writing this
equation notice can be made of the fact that the horizontal jet dis-
charge momentum is actually conserved within the buoyant jet region
and the impingement region (Eq. (3-104)). Thus a momentum equation
can be written for the lower layer alone excluding these regionms.
With the assumptions of hydrostatic pressure and uniform velocity

distribution this is simply

2 2
q2 qzb
a _ — (3-124)
Z, g
Substitution of Eq. (3-123) gives
G-1aq,
qz =
a 1+ /&, Th,
4, 2,
(3-125)
(5-1)4q
q2 =
b 1+ /h, 78,

Gross densimetric Froude numbers for upper and lower layers
are important variables affecting the stability in the subsequent
internal hydraulic jump region and are defined as (omitting the second

subscript)
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9

1 (= gh)/2
a
q
F, = 2 372
(2gn)
a

(3-126)

(3-127)

in which Ap = ZE; the uniform density deficiency in the upper layer.

Indications of the magnitude of these Froude numbers are drawn

from the special cases considered earlier.

jet,
Fl ’F2+eo
For the plume,
P, = [2¢1 + A% 1}/4 5 (L
1
h1 3/2
F2 = Fl(g)

For the vertical momentum

(3-128)

3/2

-1)

(3-129)

following a similar procedure to that used in the derivation of

Eq. (3-118), with A = 1.24, a = 0.128 and hy/H = 0.149 (Eq. (3-119)),

one gets

Fl -

Fz = 0.19

2.63

(3-130)

For vertical buoyant jets Eq. (3-130) gives the lower bounds on the

Froude numbers.
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3.4.3 Internal Hydraulic Jump Region

3.4.3.1) General Solution

The internal hydraulic jump region provides the transition
between the flow conditions at the end of the surface impingement
region and the flow away into the far field. The region is analyzed
as an internal hydraulic jump in a two-layered counterflow.

The definition diagram, Fig. 3-11, shows the upétteam and down-

Fig. 3-11: Definition Diagram: Internal Hydraulic Jump.

stream conditions of the internal hydraulic jump. These conditions
are referred to as conjugate to each other, that is they represent
two flow states which are dynamically possible with regard to the
governing momentum equation. The abrupt change of flow states in the
jump is associated with considerable energy losses and possible
entrainment at the interface.

An approximate analysis of the jump can be made by applying the
momentum conservation principle to both flow layers between the up-

and downstream sections. The analysis assumes hydrostatic pressure
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distribution and uniform velocities at both sections. Furthermore the
entrainment in the jump is neglected as are the interfacial and bottom
shear, All these assumptions are consistent with those made in the
analysis of simple one-layered jumps.

The momentum equation is first given for the control volume

comprising the lower layer as

2,1 1 1.2
Pa 93¢ By " h; ) =hyh,(p, -~ Ap)g + 3 h; p, 8

+ 3 (b +h])(h) - h)(p, - Mg (3-131)

e - 1,2

in which the mean head acting over the jump section is approximated by

%-(h1 + hi) . For the upper layer it follows

(Py - 80) "i(%{'tl._l"%hf (0, = 80)8 - 3 (hy +hY)
(hy = hy)(p, - 4p)g (3-132)
1.,2
- 3 by (p, - bp)g

If free surface Froude numbers are defined in the usual form

2
F*z = —_q..l_.
1 . 13
1 (3-133)
2
%2 1,
F = PRSI
2 3
g h2
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Equations (3~131) and (3-132) can be rewritten as

*2 2

1 ] L 1] -
i R 1 i Bl U p oath (3-134)
h, (h + hJ) h,
hi  2F 2h2(h' h! - h
L + 1 -t (3-135)
1 -————Aﬂ hihl(h, + hj) ——-p—A-P-hl
a a

This derivation was first given by Yih and Guha (1955). These authors
also discussed the possible solutions for hi/h1 and hi/h2 . In
general, there are 9 roots to the above equations, out of which only
4 are positive and thus physically meaningful. These 4 roots are
given by the intersection of two parabolic branches of the equations
as illustrated in Fig. 3-12a. The energy content (specific head) for
each of the 4 conjugate states can be evaluated. It is found (Yih
(1965)) that the 4 solutions have different specific heads as indicated
in Fig. 3-12a with 1 for the condition with highest energy. A jump
can only occur from a state of higher energy to one of lower energy.
For the internal jump state 3 is the given upstream state and state 4
is the conjugate state with lower energy. This follows from the fact
that in the internal jump the lower layer decreases, and the upper
layer increases its thickness. Only states 3 and 4 satisfy this
requirement.

Under certain conditions there is no conjugate state to the
given state (3) as shown in Fig. 3-12b. The physical implication of

this fact is discussed in the sequel.
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h hs
2 h2
~— 3
4 — 3
2
— \ / l' \ h
' h, 1
a) /a1 b) /é1

Fig. 3-12: Solution graph for the momentum equations
a) General case with 4 conjugate states,
b) Case with only 2 conjugate states, no
internal jump possible.

3.4.3.2 Solution for Jumps with Low Velocities and
Low Buoyancy

Yih's solution, Eqs. (3-134) and (3-135), give the jump

conditions as a function of 4 parameters

h * * p..
-t F L, 2R (3-136)

’1»55
=1h55

Pt
N

h2 a

In the problem of interest, namely, diffuser discharge, both free
surface Froude numbers and relative density differences are small.

Hence an asymptotic solution is attempted of the form
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1/2
X * Ap
Fi» Fp * 0 ) Py F,/( b, )
y while finite (3-137)
' 1/2
L F,o= Fo/(22)
Pa ‘ 2 2 Pa

h h
= . = = £[ = Fl’F2] (3-138)

Equations (3-134) and (3-135) are transformed into linearly
dependent equations in which this limiting process can be made validly.

For this purpose
= 1 - = ' - -
Ah1 h1 hl . Ah2 h2 h] (3-139)

are defined and the expressions for AhZ/Ah1 obtained from Eq.
(3-134) and (3-135) are equated to give

hi hi h! h! p - A4p

2 2 2 2 a
[=—=(—=+1)-2FK{ =(—=+1) - 2F,] = 4( ——
hl h1 1l h2 h2 2 pa

2 2
JFy Fy
(3-140)

A second equation is obtained by taking the inverse of Eq. (3~134) and
again forming the expression for AhZ/Ah1 which is then equated with

the AhzlAh1 from Eq. (3-135), thus

h! h' h!
1,1 2
] ] - ( "+1) (_"1)
h o 2 2 By "By h, h,
[=(—=+1)-2F]1=-2F - - T — (3-141)
h, 'h 1 1 h =& h h
1 M 2 , 12 1 1
R, (5, *D (g7 -1
2 M2 1
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The expression (P, - Ap)/pa in Eq. (3-140) can be approximated to
unity. A simple equation for hi/h1 can then be formed by substituting

the value of h'2/h2 from Eq. (3-140) into (3-141), namely

2
h! h 2 2 F
(Z-nd-321 =21+ £ (3-142)
1 2 2F1
FTROH]
no (g v D
1 1

The deviation introduced by substituting the asymptotic solution for
hi/hl Eq. (3-142) to the true solution Eqs. (3-134) and (3-135) is
negligible. For AD/Oa = 0,05 which is considerably higher than
density differences in practical diffuser applications (e.g., see
Section 1.1) the error is about 1%. Thus Eq. (3-142) describes the
dynamics of an internal hydraulic jump with low velocities and low
density differences.

Important information regarding the existence of a hydraulic
jump can be derived from Eq. (3-142). A critical state is defined as
one which is conjugate to itself, that is hi/hl =1, With this

value the equation gives the critical condition

2 2
F1 + F2 1 (3-143)

In analogy to free surface flow supercritical flow is characterized

by

Fi + Fg > 1 ‘(3-144)
and subcritical flow by

Fi + Fg < 1 (3-145)
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A hydraulic jump can only occur from supercritical to subecritical
flow as the energy content is lower for the latter and energy is
dissipated in the jump. That the upstream condition in the problem

considered is indeed supercritical is demonstrated by substituting
the values of densimetric Froude numbers qu. (3-130), which as
plume conditions represent lower bounds for buoyant jets: Condition
(3~144) is satisfied. A jump will occur which changes this super-
critical state to the subcritical state érevailing in the stratified
counterflow region.

For certain combinations of F1 , F2 and hllh2 , however,
Eq. (3-142) does not give a conjugate subcritical downstream section
with lower energy (see Fig. 3-12b).
The physical implication of the non-existence of a solution is

a hydrodynamically unstable condition. The excess energy is dissipated
by turbulent diffusion over the whole region, leading to re-entrainment
of already mixed water, into the jet region, as depicted in Fig. 3-13.
A vertical region is thus formed in the near field zone. In steady
state this diffusion and re-entrainment process will act to such a
degree that outside the mixing region the critical relation (3-143)
is obtained. In other words, through decrease in kinetic energy and
increase in buoyancy the supercritical state, after jet impingement,
is transformed into the limiting case of a subcritical state, a critical
state. The critical state is then a starting condition for the
subsequent stratified counterflow region which is characterized by

subcritical flow as the next section will show.
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Critical Section

Fig. 3-13: Non-existence of an internal hydraulic jump:
Turbulent diffusion and re-entrainment.

3.4.4 Stratified Counterflow Region

3.4.4.1 Approximations and Governing Equations

The governing equations for slowly varying stratified counter-
flow in the far-field, with heat dissipation to the atmosphere, are
developed. Figure 3-14 defines the problem of a two-layered fluid
flow with a fairly distinct density change Ap = B AT across the
interface defined as the elevation of the zero horizontal velocity
point. The fl&w is predominantly horizontal, the thickness of the
upper and lower layer is hl and h2 s respectively.

Under these circumstances the governing equations (3-3) to
(3-6) can be simplified, neglecting vertical accelerations and
longitudinal turbulent transport terms, to

du/dx + Jw/dz = O (3-146)
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z - HEAT LOSS
- t 1
A /
g h1 u AS,.
INTERFACE
: -
VELOCITY DENSITY X
Fig. 3-14: Stratified flow definitions.
du o % > Bu ]
Paugg * PV 33 3 T Padz € 37) (3-147)
0 = -%P- + og (3-148)
z
T oT 9 oT
U'a—x- + Va—z -a-z"(l(z-s—z-) (3—;“09)

where

e, = Vertical eddy diffusion coefficient for momentum

Kz = Vertical eddy diffusion coefficient for mass or
heat

and the turbulent transfer terms have been written in diffusion

analogy as

du
9z
7T - ok, 3 (3-130)



The further analysis makes use of the distinctly layered flow structure:
The flow-field is divided into two layers which are coupled through
kinematic , dynamic and heat flux conditions at the interface.

Similarity profiles for horizontal velocity and temperature are defined
for each layer so that the equations can be integrated vertically.

a) Kinematic boundary conditions are specified as:

B(h1 + h2)
surface U, T T W at z = hl + h2
th
interface u R =Wy at z = hl (3-151)
bottom w = 0 at z =20

The interface condition (3-151b)assumes that there is no mean flow
across the interface, hence the volume flux in each layer is constant.
This assumption does not allow for entrainment. The salient features
of the entrainment process as discussed earlier are the existence of a
zone of fluid flow with high turbulent intensity as compared to the
surrounding fluid. Turbulence at the zone boundary leads to incorpora-
tion of ambient fluid into the active zone. No such active zone exists
in the case of stratified counterflow: both layers move as density
currents and have approximately equal turbulent characteristics.
Furthermore, even if such an active layer would prevail, the existence
of a stable density stratification greatly reduces the entrainment at
the boundary. Experimental studies by Ellison and Turner (1959) show

that for bulk Richardson numbers

Ri > 0.85 (3-152)
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vertical entrainment practically ceases, where Ri is defined and

related to a Froude number F by

iA5£ gh
\'/ F

with h = depth of turbulent layér

V = layer velocity

The stratified counterflow rggime of interest in this study is
subcritical as will be shown below, hence condition (3-145) is
applicable and simultaneously condition (3-152) is satisfied.

Zero entrainment, however, does not rule out transport of mass
by fluctuating velocities across the interface, that is, interfacial
mixing.

b) Dynamic boundary conditions are given as:

o - a—u— =
surface: Tg Pa €, 3z 0 _
p = 0 z= h1 + h2 (3-154)
. - du -
interface: T Pa €2 32z z h2
bottom: T, = p € QE- z=0
b . a z 0z

i

to the mean flow quantities.

where Tg o T, and Tb are shear stresses which are later related

¢) Heat flux conditions: The flux of heat, Uy ; from the
free surface to the atmosphere, which is induced by theselevated water
temperature, can be considered in a simple concept by (Edinger and Geyer
(1965)):
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-p cp K(Ts - Te) (3-155)

of

in which ¢ = specific heat

Kk = heat exchange coefficient

T = water surface temperature = T(z = h1 + h2)

T = equilibrium temperature

Both factors Te and K are dependent on meteorological parameters,
which determine the transfer processes across the water surface. Te

is defined as the water temperature at which there would be no net heat
flux across the surface. In general, Te is not equal to the ambient
temperature Ta (without heat input), only on a long term average.

The remaining heat flux conditions are:

. q. = T - h.
interface: qu o] cp Kz 3z z h2
(3-156)
. - T =
bottom: qu (o] cp Kz 3z z 0
d) Both velocity and temperature are approximated to be
uniform in each layer and are averaged by
q hyth,
1 1
upper layer: L W e v [ u dz
1 1 h2
S
pp=mns ] pa
1 h2
(3-157)
CONT 'D.
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q 2
lower layer: u, = EZ- = %—- ] u dz
2 2 0
(3-157)
1 fhz
Py = p dz
2 h, §

Using these profile assumptions and boundary conditions, Eqs. (3-146)
to (3-149) can be transformed into ordinary differential equations for

each layer. The hydrostatic equation (3-148) is integrated to
P = p1 g(h1 + h2 - z) (3~158)

which can be substituted into the momentum equation (3-147) to give

2 o0 oh oh
du”  duw g - ) 2% 1. 2
ox + oz Pa [(hl + h2 2) ox + p1(8x + ox )]
(3-159)
] ou
* e & 5)

also making use of the continuity equation (3-146). Equation (3-159)

is integrated in the 2z direction over the upper layer.

h,+h h,+h 2
1 2 1 72 dp, h oh oh
du duw - -2 1 1 _ g 1,2
hf ox dz + i oz dz p 9x 2 o pl( ox + ox )h
2 : 2 a a _
hy+h, (3-160)
+ (e 22-)
z 02 h2

The left hand side is integrated, using Leibniz's rule on the first

integral, to
hy+h, a(h, + h.)
9 f 2d - 2 ———l————z—-+ u2 +uw -u,w
5§'h ucz-ug ox i 9x 88 it
2
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and after use of the kinematic conditions (3-151) only the first term,

3 2
ey (ul hl), remains. Finally, Eq. (3-160) becomes, using q, = ulh1
2 d dh, dh T
B W SR W IO NP B S (3-161)
hi dx pa dx pa dx dx pa g h1

The heat conservation equation for the upper layer is integrated, after

substitution of the continuity equation, to

hy+h, h +h, hy+h,

ul 4, + | WL gz = (x L)
ox 0z 2 0z

h, h, h,

(3-162)

a; - q

_ s M
b, <

Again making use of the Leibmiz rule and the kinematic conditions leads

to

9 %1 K
= = @ e (T, = T) - ————ee (3-163)
h, dx P, cp h1 1 e pa cp h1

In an analogous manner equations for the lower layer are found as

dh dp, h dh

“gh, f"%‘&?l'hl“’la}l +E1"£2‘ '%""pz?ﬁ:'z')
(3-164)
(1, - 1)
A 8h
and
q, dT L
% =% - o c: i (3-165)
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Equations (3-161), (3-163), (3-164) and (3-165) are the general
equations describing the motion and temperature distribution of non-
entraining stratified flow with heat dissipation to the atmosphere.
Dependent variables are the mean flow properties hl,h2 and Tl’ Tz ’
which require statement of boundary conditions at some position x .

Ty T

relations.

and q; - can be related to the mean flow properties by empirical
i

The solution of this set of equations is not readily achieved.

Thus in the following section the equations are simplified by appropriate

scaling procedures for the flow area in the diffuser vicinity.

3.4.4.2) Simplified Equations, Neglecting Surface Heat

Loss and Interfacial Mixing

It can be shown that under typical diffuser design condi-
tions surface heat loss and interfacial mixing can be neglected for the
stratified flow region in the diffuser vicinity, as the time scale for
these processes is considerably larger than that for the convective
transport. For this purpose, Equation (3-163) will be scaled and
typical prototype magnitudes for the scaling parameters are inserted
to compare the relative importance of the terms.

Dimensionless variables (with asterisks) are defined byv

x¢ = x/L
h* = h,/H (3-166)
AT* = AT/AT

o
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in which
L = channel length
H = water depth
U = typical induced velocity

ATo = typical surface temperature difference

The interfacial heat flux term is substituted from Eq. (3-156a)

and approximated as

(3-167)

Substituting the variables (3-166) into the heat transport equation
one obtains, dividing by UATOIL

K

- (5 TOAT* - (GE T AT (3-168)
a p

dAT* ~
dx*

u*

Characteristic magnitudes for the scaling parameters in prototype

conditions for a thermal diffuser are:

L = 1000 ft. (In Chapter 4 the channel length L is
shown to be related to the characteristic horizontal
diffuser dimension, its half length LD as
L LD).

H = 30 ft

U = 0.1ft

AT = 5°F
s

kK = 150 BTU/°F, ft, day

K = 1()-4 ftz/sec. The vertical eddy diffusion is strongly

inhibited by the density stratification. Koh and Fan
(1970) compiled available data and fitted an empirical
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relation which is an inverse function of the density
gradient. The density gradient at the interface was
approximated as in Eq. (3-167), but is in fact much
higher.

Further:

3
Pa cp = 62 BTU/ft

With these values the expressions in parentheses are calculated to be
of the magnitude ~0.01 for the surface heat loss and ~0.03 for inter-
facial mixing. Consequently, these transfer processes become only

important for larger distances L and can be neglected in the channel

problem considered. Thus, the heat equation is simplified to

— = 0 (3-169)

Hence the problem reduces to the well-known equations for the stratified

flow with constant densities, first derived by Schijf and Schénfeld

(1953):
2
__;qlh ;‘.‘l . ::1 + :hz y 4 —1 = | (3-171)
23._. EEE. = El. f&l. + any - (Ti _ Tb) (3-172)
g hg dx Py dx dx Qa g hz
with
pz = pa .
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With the definition of free surface Froude numbers (3-133) these

equations can be transformed to

1-12
4 ( b 2+ Bl‘ )
dh, P, 8h, P 8 1 2
dx T T Bp _ g2 _ 22 22 (3-173)
e 1l 2 172
a
T 1 *2
’ L (l-F*2)+—T—i—(l-+_f_f_l_)
dh p_ g h 1 p g ' h b
2.2 2 - > 2 (3-174)
dx Ap _ *2 k2 *7_%2 -
o ~F ~Fy +EF

2 %2
o %2 Ty B F
F o+ ( + )
d Py 8 By Pp &8 Nhy h,
R I VR R BN X (3-175)
Fa 1 2 172

Considering Fig. 3-15 the total depth is written as

h, + h2 = H+n

where H 1is the still water depth and n the disturbance. From
hydrostatic considerations and also by inspection of Eqs. (3-175) and
(3-174)

dh
an - A 2 . *2% _
-0 —P-Oa = F o == (3-176)
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Fig. 3-15: Depth relationships in stratified flow

%
Thus for Ap/pa <<1, F 2

<< 1 the change in surface elevation is small
compared to the interfacial depth change dhzldx . Consequently, as

a first approximation dhzldx can be calculated by assuming

h1 + h2 = const. = H (3-177)

The solution for hl(x), hz(x) thus obtained can then be used to
evaluate the surface disturbance n(x) . Knowledge of n which is
caused by frictional forces is important in the analysis of diffuser
discharges which introduce horizontal momentum which is balanced by
frictional forces.

Then substituting Eq. (3-177) into Eq. (3-173) which is

subtracted from Eq. (3-174) one obtains

1 b . 4 (L 1
dh Aplp.; p. gh p. g H-h h
2 a a 2 a 2 2 178
ax 2 2 (3-178)
1-F - F
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*
where Fl,rz are densimetric Froude numbers and Ap/p , F 2 have been
neglected with respect to unity. At this point bottom and interfacial

stresses are expressed in terms of mean flow parameters as

£
b = ‘%"a uy |uyl

(3-179)

1
Ty = g Pa (v - up) Juy - uy

or
f q, 2
o 2
T, = "8 Pa (,—1;) sign (q,)
(3-180)
f i, 9, 2
= —gpa.(ﬁz-g—z-) sign (9, - 4,)

Substitution into Eq. (3-178) gives

f f q
o .2 2 H 2 H 2
) - 3 Fp sign(qy)) + 5 F; E—‘(l - (- 1) sign(q;- 9,)

[« -]

This equation is put into non-dimensional form by

X, H),H, = (x, hl,hz)/H (3-182)

Constant densimetric Froude numbers based on the total depth are de-

fined as

F = F. H

- W

2 2
1M 1

(3-183)

NW
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V

A flow ratio is given by

9
Q = = (3-184)
42
Hence
2 2 2 3
FIH = FZH Q/(1 - HZ) (3-185)
For counterflow, always
sign(q; - q,) Ny

Using these definitions the counterflow equation is written

2 3 2
dn, i Foy £,(1 -H) + £1QH, -~ (1 - Hy)] e ) (3187
ax 8 3 3 sign {q, -

2 . 2 3 3
FoulQ” Hy + (1-H,)"] - Hy(1-H,)
and can be integrated in inverted form

H,(X,) 2 2.3 3 3 3

J2020 o FoIQT By + (1-8,)7] - H,(1-H,)

X,-X, = | 5 3 5— sign(q,) d H, (3-188)
(X)) F £ (Q-H)" + £(QH, - (1-H)]

Equation (3-188) has been given in a slightly different form by Rigter
(1970). The general form of the solution is given in Fig. 3-16 for sign
(qz) = - 1 and consists of 3 branches which are divided by critical
sections, where the slope of the interface goes to infinity. The
critical relation is obtained by setting the denominator in Eq. (3-187)
equal to O,

2 2.3 3 3 3
FZH[Q HZ + (1 - Hz) J H2 (l-Hz) = 0 (3-189)
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The solution to this critical equation is plotted in Fig. 3-17 as
a function of F,, and |Q] . Suberitical flow is only possible if

oy < — 1 (3-190)
1+ /[

In this case there exist two critical section Hé and H; . A
critical section delineates the transition between subcritizal and super-
critical flow states and can be explained by energy considerations. In
general, a critical section is given by abrupt changes in flow geometry.
The channel ending in a large reservoir (see Fig. 3-2) is such a
situation. In addition, a critical section can form the end of a local
mixing region in case of ‘an unstable internal hydraulic jump force, as
discussed in Section 3.4.3.2. The length of the subcritical flow zone
L: between two critical sections is found by evaluating the integral
(3-188) with limits Hé and H; . This integration was carried out
by Rigter (1970) numerizally for ghe parameter range. Analytical

solutions for special cases of Q are given in Section 3.4.4.4.

3.4.4.3 Head Loss in Stratified Flow

The change in total depth H¥n relates to the head loss
incurred by the motion against shear forces at the bottom and interface.
As commented in the preceding section the depth change is calculated by
solving Eq. (3-175) with the flow field obtained through the constant
depth approximation (3-177). One can write

d(nH) _ dn d(hy +hy) 4y

dh2 dh2 dx dh

(3-191)
2
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and substituting Eq. (3-175) and the inverted Eq. (3-174)

* *

Flz FZ2 F;z
TbT+Ti(T+T)

dn 2 1 2

dn, *2 (3-192)
2 l_F*Z 1 1+ Fl
TR, Ty (e Y TR )
2 1 2

* *
Dividing both sides by Ap/pa and neglecting F 2, F22

denominator yields the equation for the normalized depth change

<< 1 1in the

n 5. R
BE, Yl YR
d ( n ) 2 1 2 (3-193)
dh dp/p 1 1 1
2 a -Tb]’:‘-"l"l’i(h——‘i'ﬁ—)
2 1 2
Using the shear stress definitions and non~dimensionalizing
as before, with
%
n = n/H (3-194)
in addition, one obtains
d n' 2 2, 1
a () T " fm @ (rTE)
2 a 2
(3-195)
3 3
2 1 1
Q (3= ) - (5)
l1-H H
+ F2 2 2
2H f 1 1—H2
;, T ® HUC) +
i 2
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This equation can be integrated between the same limits as Eq. (3-188)

X
to give the head change 3695— 2 and in particular the head change
a 'X *
over the critical length L: , 1 Za%%—— » can be found. Integra-
a

tion has to be numerical, except in special cases, as discussed in the
following section.

3.4.4.4 Special Cases

Direct integrations of the interface Eq. (3~188) and the
head loss Eq. (3-195) can be given for special values of Q . All
these cases have strong significance in buoyant discharge problems.

a) Q=0: stagnant surface wedge

Equation (3-188) reduces to

(3-196)
H,(X,) . Fg (1-1.) - B3(1-H.)
% = L 2 2 sign(q,)dh
2 1 H (X)) F2 £,Q-1,) + £, 27
271 2H °
Integration gives (Bata (1957))
g4
-x, = —B8_ | 2, A 3 AQH) 2
Lot Tz etiRtT N
o 2H
+ [A(1+A)2 - F§H]H2 + A[(1+A)3 (3-197)
H, (X)
2 2
- FZH] fn(l + A - Hz) sign (qZ)
H, (x)
1
fi
in which A = e
o
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*
The intrusion lengthof the wedge, Lss , upstream from a critical

section is found by taking the limits

HZ(O) = 0 (3-198)

* 2/3
HZ(Lss) = FZH

There is zero depth change over the length of the intrusion as is

evident from Eq. (3-195)

*

33%5“ = 0 (3-199)

a

b) Q*= : stagnant bottom wedge

In this case F2H = 0 as well, so that it is advantageous

to rewrite Eq. (3-188) in terms of FlH :

(3-200)
‘ 2 .3 .1 3 3 3
Hz(xz) . FlH[Hz +'QT (1-H2) ] - H2(1-H2)
Xp-% = - 2 1 3 i 7 sign (q))dH,
H, (X, ) FIH £, =5 (1-H)" + £, [H, - & (1-H,)]
Q
with Q + «
(3-201)
2 3
Hy(X,) . Fj Hy - Hy(1 - H,)
X, =% = -/ 2 £ sign (q;)di,
H, (X)) Fln i
or integrated
(3-202)
X, - X, = - 8 (F2-1)§+H3,§u4+£ HZ(X2)31 (q,)
2" % 2 ¢ 1, 2 27% 2775 fu,(x)) gnidy
L4
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*

The length of the wedge intrusiom, Ls , upstream from critical
b

section is found by taking the limits

Hz(O) = 0

*
) = 1- /3 (3-203)
b g’
This expression for the intrusion length was given by Schijf and
Schonfeld (1953). The total head change over the intrusion length

is after similar modification of Eq. (3-195)

1-2/3
m” { L 2 1 2 _h
- (- F, —— + ——z ) dHi, (3-204)
bolog, L (1--32)3 L (1-u2)3 2
and
m* 2,1
olo, " + FIH (-;573 - 1) (3-205)
L
¢c) Q=-1: equal counterflow
In this case Eq. (3-188) is given by (F, = F, = F,)
iy " B
(3-206)
Hz(xz) 8 Fg(ag - (1-H2)3) - Hg(l-H2)3
% =/ 2 3 sign (1)) di,
Hz(xl) FH fo(l-Hz) + fi
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which can be integrated to

8

2
fo Fﬂ

+ (1+4a”) (1)) + (-a + a’

1

1 4 3 3
-7 (1-H)" + (1-8,)" - 5 (1#,)

2

- a* (3-207)

(a~+(1—H2)2

-1

+ (
6a2 1

2a

- (a3

-a + 332 + a4

+( -

/3 a¥3

-1

2(1-H,) - a

a’3

£, 1/3
in which a = (A )1’3 = (-gi )
(o]

The length of the subcritical flow section, Lc

ting the solutions of the critical equation

3 3 2,3
Hz (1 - Hz ) FH(HZ
[ [ [ C

(at1-H,)% - 3a(1-,)

- ) ta [a® + (18] +

a3
a

2
H Fy )

H,(x,)

(X))

, is found by substitu-

+(1-u, ) =0 (3-208)

as limits into Eq. (3-207). Closed form integration of the depth

change is also possible, but is omitted here, as it is not needed in

the further analysis. Inspection of Eq. (3-208) which is plotted as

the curve IQI = 1 in Fig. 3-16 shows that equal counterflow can only
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exist 1f

Fh < 0.25 (3-209)
For the limiting value Fh = 0,25 it is found that Hl = H2 and
- c c

L =0.
c

3.5 Matching of Solutions

In the preceding section the four flow regions which can be
discerned in the flow field induced by a multiport diffuser discharge
were analyzed. Governing equations were developed which took account
of the distinct hydrodynamic properties of each region and solutions
were given or outlined. The solutions for each region can be matched
to provide an overall prediction of the diffuser induced flow field.
In this way important criteria regarding the near-field stability of
diffuser discharge will be deduced. Furthermore,in case of instabili-
ties with resulting jet re-entraimment,predictions on diffuser
performance will be developed.

This synthesis is done in Section 3.6 for the case of
discharges with no net horizontal momentum (symmetric flow field) and
in Section 3.7 for the moré complex case of discharges with horizontal
momentum.

3.5.1 Governing Non-dimensional Parameters

By dimensional analysis of the problem variables as defined
in Fig. 3-2 and by inspection of the governing equations and their
boundary conditions derived for each flow region the steady-state flow
and temperature field is written as

AT

u
( ﬁo, K'F;) f(Fs, eo, H/B, L/H, fo, f (3-210)
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and
AT
[+

T (3-211)

is the dilution at any point. This formulation assumes fully
turbulent jet flow, hence independence of the jet Reynolds number

of the slot
R =~ (3-212)

where | = kinematic viscosity
and neglects heat loss to the atmosphere. Furthermore, the bottom
shear stress coefficient in the flow away region is assumed to be in

the turbulent flow range of the form

kS
£ o= £(R,, =) (3-213)

° LY
(White-Colebrook relation) in which

Uy By

Ry = v = Jower layer Reynolds number

Rh = hydraulic radius

ké = absolute bottom roughness

and the interfacial shear stress coefficient is related by Eq. (3-197b)

f, = Af . (3-214)

The ratio A can be assumed constant over a wide range of practical
flow conditions, as is shown later. Through inspection of Eq. (3-188)
it 1s found that f and L/H can be combined to a far field

parameter
¢ = fo L/H (3-215)
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So that, finally the problem of the diffuser induced flow and
temperature field (without ambient cross flow) is defined by these
dimensionless parameters:

Near-field parameters: F = glot densimetric Froude
number

® = vertical angle of discharge
H/B = relative water depth

Far-field parameter: ]

and Eq. (3-210) is reduced to:

~
cle

AT
BT, ) = f£(F, 6, H/B, @) (3-216)

The discussion of theoretical and experimental results is given for

these parameters. The range of interest is

F
s

eo = 90° (Section 3.6)

10 to 1,000

< 90° (Section 3.7)
H/B = 50 to 5,000

¢ = 0.1 to 1.0

which conforms to practical diffuser applications, as is shown in
examples given in Chapter 5.

In the presentation of results, emphasis will be laid on
the gross properties of diffuser discharges. In particular, the
average non-dimensional surface temperature rise, or inversely the
average surface dilution are chosen as the main descriptive parameters

of the temperature field. The equivalent slot concept (Fs’ H/B) is

126



used throughout in describing the multiport diffuser mechanics, based

on the discussion in Chapter 2.

3.6 Theoretical Predictions: Diffusers With No Net

Horizont al Momentum

Vertical discharge or discharge with nozzles pointing in alterna-
ting directions have no net horizontal momentum and thus will produce
a flow field which is symmetrical to the diffuser axis.

3.6.1 The Near-Field Zone

The numerical integration of the buoyant jet equations
(3-69) to (3-76) with initial conditions (3-78) is carried out for
60 = 90° and various values of Fs . The integration yields jet
properties as a function of vertical distance z/B . As an example
the centerline dilution Sc along the jet path was shown in Fig. 3-6.
The effect of the presence of the free surface is considered by solving
the impingement equation (3-109). In the solution the energy loss
coefficient kL is taken as 0.2 throughout. The solution gives values
for the thickness of the impingement layer hi/H as shown in Fig. 3-18.
The densimetric Froude number Fl of the spreading layer after impinge-
ment is calculated from Eq. (3-126) and also included in Fig. 3-18.
The graph indicates the asymptotic values for the plume in the high H/B,
low F_ range, namely hi/H = 0,149 and F, = 2.63 (Eqs. (3-120) and
(3-129)). For the less buoyant range (large Fs ) the value
hi/H = 0.167 ~ 1/6 obtained from the solution of the momentum jet
(Eq. (3-115)) is approached, although at low H/B there is a slight
deviation to the fact that Eq. (3-115) assumes negligible slot width B

compared to the depth H . For low H/B , high Fs the spreading layer
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Froude number F1 becomes very large.

With given impingement layer thickness, the average surface
dilution Ss is calculated. Ss is by virtue of the uniform mixing in
the impingement process equal to the average jet dilution at the lower

edge of the impingeﬁent region

Sy = S(z=H - hy) (3-217)

Values of Ss are shown in Fig. 3-19.

With the given conditions prior to the internal hydraulic jump
the jump equation (3-142) is evaluated giving solutions for the
conjugate depth hi/H , as indicated in Fig. 3-19. For high H/B ,
low Fs the conjugate depth approaches one-half of the total depth,
hi/H ~ 0.5. Proceeding toward the low H/B , high F_ range hi/H
increases until hi/H =1 - hl/H , beyond which there is no positive
solution to Eq. (3-142) possible (see Fig. 3-12b). This indicates
the absence of a stable subcritical conjugate condition and re-entrain-
ment into the jet region will occur, forming a local mixing zone. The

transition is described by

Fu = 0.20 (3-218)

where FH is the average of F and Fz (Eq. (3-183)) and

Ly B
characterizes the dynamic characteristics of the counterflow system.
In terms of discharge parameters Fs, H/B it can be deduced from the
graph that

4/3

H/B = 1.84 Fg (3-219)

gives the criterion between stable and unstable near-field conditioms.

(See Fig. 3-20.) In consequence, dilution predictions Sg for the
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unstable parameter domain (drawn as dashed lines in Fig. 3-19) which
are obtained as direct buoyant jet solutions, only accounting for

the surface impingement, are in fact not applicable. Rather, dilutioms
in the unstable parameter domain are dependent on the dynamic conditions
in the far field zone.

3.6.2 The Far-Field Zone

3.6.2.1 Interaction with near-field

The flow away from the near field zone forms a subcritical
stratified counterflow region. The possibilities of interaction with
the near-field zone are indicated in Fig. 3-20.

A) Stable near-field: 1In direct analogy to free surface hydraulic

jumps, two conditions are possible depending on the backwater effects in
the far-field which are determined by the control section (critical flow)
of the channel end.

a) A normal internal jump is given when conjugate

depth hi is larger than the depth h

the counterflow solution.

1 determined from
s

b) A submerged internal jump is given in the other case.

Some re-entrainment of already mixed water into the jet region
will occur until a condition is established in steady-state
such that the increased buoyancy in the far-field will decrease

L .
the depth hl until h1 = hl .

S S

B) Unstable near-field: As no subcritical conjugate state exists

in this case, local mixing and re-entrainment into the jet region takes
place to a degree such that a critical section is established at the end
of the local mixing zone as the limiting case of a subcritical flow
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condition. Stratified counterflow will then occur over the length,
Lc , bounded by two critical sections. The length of the local mixing
zone, Lm , 18 estimated as

L = 2.5 H (3-220)
from experiments made in this study which are in good agreement with
Iamandi and Rouse's (1969) observations on circulation patterns
induced by nonbuoyant jets in narrow channels. Consideration of Lm
may be significant in the solution for short channels, for long
channels, however, it may be neglected in comparison to Lc .

For the vertical diffuser discharge the effect of the far-field
is considered by assuming an equal countgrflow system. This is a good
approximation for large dilutions, for which the entrainment flow is
about equal to the flow-away of mixed water. The closed form solution
for the position of the interface, Eq. (3-207), is applicable. The
validity of Eq. (3-207) is restricted to subcritical flow, F, < 0.25 .
For the case of stable near-field FH is known from the solution of
the near-field (FH XF, =F h3/H3) and the depth of the interface

1H 171

h1 at the distance L from the channel end is of interest. For the
s
case of an unstable near-field the value of FH = FH for which the
c

length of the subcritical section, L. > is equal to L (neglecting Lm)
is of interest. The overall dilution Ss (outside the local mixing

zone) is then determined from

11 - 95 S¢
HHYZ - [aeg e )ass e v

(3-221)
¢ (olp) g H 12
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as F 2/3
3 (<, % (3-222)

The far-field effect (friction and channel length) is given by the
single parameter ¢ = f° L/H if A = fi/fo is assumed constant.

3.6.2.2 Interfacial friction factor

While the boundary friction factor fo can usually be
estimated with good reliability as a function of Reynolds number and
boundary roughness, there is a scarcity of data on the magnitude of
the interfacial friction coefficient fi in turbulent flows, in
particular, in the high Reynolds number range. In addition, investiga-
tions indicate a certain dependence on the densimetric Froude numbers
(Fl, F2) of the layer flow (Lofquist (1960)). For density underflows,
such as under a stagnant surface wedge, the ratio A = fi/fo is about
0.43 (Harleman (1961)). For lock exchange flows, which resemble the
equal counterflow situation, Abraham and Eysink (1971) gave fi as
drawn in Fig. 3-21. For large values of the lower layer Reynolds number
a constant value of fi is approached. For comparison the smooth
wall friction relation for fo is included in Fig. 3-21. In the

5

Reynolds number range 5 X 102 to 10 A =0.4 to 0.5 can be assumed.

Based on this limited evidence A 1is taken as

£y
A= 2= 0 (3-223)
o

in all theoretical predictions given in this study.

3.6.2.3 Solution graphs - Surface dilution

Solution graphs giving the value of the surface

dilution Ss (outside the local mixing region in case of an unstable

134



10 I 1 I I | 1 ! I ] | 1 1 T 1
Laminar asymptote

163; 1 1 1 ||3 1 L | 1 1 L1
10 2 4 6 810 2 4 6 810 2 4 ¢ 810°

R= 2"hs
Va

Fig. 3-21: Variation of interfacial stress coefficient £y
with Reynolds numbers (Abraham and Eysink (1971)).

near-field) as a function of Fs , H/B and ¢ = fo %— are developed
as follows:
a) For the stable near-field condition (Fig. 3-20 A-1)
Ss is taken directly from the jet solution taking account of
the impingement layer thickness. Thus the possibility of a
submerged internal jump (Fig. 3-20 A-2) is not considered in
the theoretical solutions, as this condition only beéomes
important for large values of ¢ .
b) For the unstable near-field condition (Fig. 3-20B)

the Froude number F of the equal counterflow system for

H
c

which the length of the subcritical section is equal to the
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channel length is calculated first. The value is FH as

a function of ¢ (with A = 0.5) is plotted in Fig. 3i22.

The dilutions §, for any combination of Foo» H/B are

then obtained from Eq. (3-222).

Examples of solution graphs within the practical range are
given for weak far-field effects, ¢ = 0.1 in Fig. 3-23, and strong
far-field effects, ¢ = 1.0 in Fig. 3-24. Comparison shows the decrease
in dilutions for larger ¢ . Furthermore, while for ¢ = 0.1 the
lines for equal Ss for both near- and far-field approximately meet
each other at the criterion line, there is a noticeable lack of
matching for ¢ = 1.0, This indicates the submerged internal jump
condition which is negligible for ¢ = 0.1 but which would provide for
a smooth transition of equal dilution lines for @ = 1.0. This behavior
can be seen by inspecting Fig. 3-22. As mentioned above the criterion
line is characterized by FH ¥ 0.20 which is smaller than FH (¢ = 0.1)
= 0,22 so that no back water effects leading to a submerged jﬁmp should
be expected.

The important influence of near-field instabilities in combination
with far-field effects is obvious when comparing dilution predictions
of Fig. 3-19 and Figs. 3-23 and 3-24.

Schematic illustration of the diffuser discharge, such as
Fig. 3-20, showed a vertical diffuser discharge (6o = 90°). However,
the applicability of the two-dimensional slot representation with
90 = 90° is pointed out also for diffusers with nozzles in alternating

directions along the diffuser line. For the stable near-field case this

can be inferred directly from the discussion of Liseth's (1970)
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Fig., 3-23: Surface Dilution SS as a Function of Fs’ H/B.

Vertical Diffuser, Weak Far-Field Effects
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experimental result, as shown in Fig. 2-6. For the unstable near-
field a local mixing zone is created which suppresses details of the

jet discharge flow pattern (see Fig. 3-25). Dilution is determined

z|

N 77
=Xy

-—’_’

SRR ST ST RN TSTTK
— 2L - »

-
-

Fig. 3-25: Local behavior of diffuser discharge with

alternating nozzles, unstable near-field.

merely by the interplay of far-field effects and buoyancy supply from
the near-field zone, exactly as in the case of vertically discharging
jets. The equivalent slot concept is thus applicable.

3.7 Theoretical Predictions: Diffusers with Net Horizontal Momentum

Diffusers with non-vertical nozzles pointing in the same
direction (uni-directional discharge) can produce a variety of flow
conditions which are somewhat more complicated to analyze than the
previously discussed symmetric flow field generated by diffusers with
no net horizontal momentum. Presentation of results is limited to

6, = 45° and Oo = 0° (horizontal discharge).
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3.7.1 Near-Field Zone

The analysis of the buoyant jet region and the surface
impingement is analogous to the previous section. A hydraulic jump
occurs on both sides of the line of impingement, however, the jump at
the right (section a in Fig. 3-8) becomes unstable earlier with
increasing Fs or decreasing H/B . Furthermore, the stability is
strongly dependent on the angle of discharge, 6, . Figure 3-26 shows
the criterion line delineating the stable and unstable near-field
conditions for various 6o . The average thickness of the impinge-
ment layer hi/H within the stable range is again found to be about
1/6 for all 60 . Outside the stable range hi/H is rapidly increasing
for increasing F_ and decreasing H/B . Yet the thickness in this
range 1s not as important, as the near-field zone will be engulfed in a
local mixing region due to the unstable jump condition.

3.7.2 Far-Field Zone

3.7.2.1 Possible flow conditions

The possible flow conditions in the far-field and the
interaction with the near-field are indicated in Fig. 3-27.

A) Stable near-field

a) A normal internal jump and

b) a submerged internal jump are similar to the vertical

discharge case.

B) Unstable near-field

Instabilities and jet re-entraimment lead to the formatiom of

the local mixing zone. However, the conditions of the flow-away from
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3) Supercritical System

Fig., 3-27: Possible Flow Conditions for Discharges with Net

Horizontal Momentum ("'C'Denotes a Critical Section)
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this mixing zone are affected by the strength of the horizontal jet

momentum, which causes a net flow in one direction. Depending on the
horizontal momentum 3 cases can be distinguished.

a) A Subcritical Counterflow System is given for weak

horizontal momentum, somewhat similar to the vertical discharge
case but with non-equal flows (Q ¥ - 1) in each layer. The

existence criterion for this type of flow is (Eq. (3-190))

F, < 1 (3-224)

a 2
(1 + i)

b) A Stagnant Wedge System is set up for larger horizontal

momentum, Interfacial friction prevents motion of water against
the direction of the jet discharge. Stagnant surface and bottom
wedges are formed. For the upstream flow section the criterion

is (@ = 0)

F, <1 (3-225)
2y

and similarly for the downstream section Flﬂ <1,

c) A Supercritical System results for still larger

horizontal momentum, expelling the stagnant wedges. The densi-

metric Froude number of the flow is simply

Fh >1 (3-226)

This extreme flow system resulting in full vertical mixing
is the case studied by Harleman et al. (1971) for horizontal

discharge (cos 60 = 1) and is described by Eq. (2-38) which for
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the purpose of introducing the far-field parameter ¢ and
the angle 80 rewritten as
1 i 1/2

s = (2 = cos 6 ) (3-227)
s (1 +o/)l/2 B °

For the analytical treatment of unstable near-field conditions
it is necessary to consider the total head changes, 11 , due to
friction in the far-field. n is indicated schematically in Fig. 3-27.
The head change AH causes a pressure differential across the diffuser
mixing zone which in steady state is balanced by the horizontal
momentum of the diffuser. The equation for the head change n in
stratified flow was developed earlier (Eq. 3-195) and solutions for
the wedge cases were given in paragraph 3.4.4.4.

3.7.2.2 Solution method

The counterflow system (Fig. 3-2 Bl) is the most general form

of the flow distribution in case of an unstable near-field. The flow
system is made up of two counterflow regions bounded by critical
sections. 1Its properties are described by the following 8 variables
(subscripts a and b refer to conditions down- and upstream,
respectively):

$,9, 9, 49, » 949, ,N_,Nn ,H
s 1a lb Za 2b a b

Given parameters are Fo» H/B, ¢ and Go .
The variables are determined by the simultaneous solution of the

following system of non-linear algebraic equations: (The equations are
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all written in explicit, symbolic form to suggest the iterative

solution method)

1)

2)

3)

4)

5)

6)

Ss = q1 +

q2a = qla/Qa (F1H , ®)

a

where Qa(F , ) denotes the explicit form of the

1H

a
interface Eq. (3-188) evaluated between 0 and L .

(SS - 1) = q2

q
2b a

q = q, Q (F, , 9)
1 2, b 2Hb

where Qb(FZ » ?) 1is the explicit form of Eq. (3-188)

Hb

evaluated between ~L and O .

AH/H 2 H H 2

—— = (F =+ F w4+ S F cos 6
Ap/pa 1Hb H h2 ZHb h2 s s (H/B)Z
% %
N Fiﬂ 2, )
a 2c Ha 2c
a a

which is a horizontal momentum equation obtained by taking
a control volume between the two critical sections bounding

the local mixing zone. The critical depths h2 s h are
c c
implicitly known from the solution of the a b

interface equations

b/H n/H 1.2 ©
Bofo, = Bolo,F2, > P * 31w
2 * Hy B, 2
b
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The first term is the head loss equation (3-195) evaluated
between -L and 0O and the second term accounts for the
loss of the velocity head in the channel and due to

dissipation outside the channel.

na/H . Au/H "b/H

D Zo7e, = Bole, ~ Toln,

. na/H
) qla = q28 Q (—-—-—Ap,pa)

n_/d
where Qa( 3375 ) is the implicit form of an equation for the
a

a-region similar to 6).

A Gauss-Seidel iteration method was used. In the given arrangement
of equations 1) to 8), specification of initial values for S, and

Q1 is needed. Convergence to a stable value for Ss is fast, taking
a

only 5 to 10 iterations depending on the initial guess.

In the above formulation the length of the mixing zone was
neglected with respect to the channel length. Derivation of the
horizontal momentum equation assumed hydrostatic conditions at the
end of the mixing zone which is consistent with assumptions made for
the stratified flow regions.

The stagnant wedge system (Fig. 3-27 B2) is described by a similar,

but simpler system of equations.

3.7.2.3 Solution Graphs - Surface Dilution

Solution graphs giving surface dilutions Ss for both the

stable and unstable near-field range are given for weak and strong far-
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field effects for 60 = 45° (Fig. 3-28, ¢ = 0.1 and Fig. 3-29,

¢ = 1.0) and for & = 0° (Fig. 3-30, ¢ = 0.1 and Fig. 3-31,

® = 1.0). In all graphs three transition lines are included:

1) the criterion between stable and unstable near-field conditionms,
2) the transition between the counterflow system and the stagnant
wedge system is given when the wedge length is just equal to the
channel length, and 3) the transition between the wedge system and
supercritical flow, given when FH = 1 , Based on the solution in

the supercritical case Eq. (3-227) this transition can be given as

2 cos 0O
H/B = Fl'/3 —_—0 (3-228)
s [}
1l + —2-

In the supercritical case the dilution Ss is independent of
Fs and the flow is fully mixed vertically. The dilution is a minimum
at the point of maximum wedge intrusion length. Similar to the
vertical discharge case, the matching at the transition between stable
and unstable near-field dilution predictions will be smoothed out
through the submerged internal jump regime which is not considered in
the prediction.
3.8 Summary

The mechanics of a submerged diffuser were analyzed in a two-
dimensional '"channel model”. The channel model consists of a diffuser
section bounded by channel walls of finite length and opening at both
ends into a large reservoir. The rationale for the channel model is

to simulate the predominantly two-dimensional flow which is postulated
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to exist in the center portion of a three-dimensional diffuser dis-
charge. The multiport arrangement was represented by the equivalent slot
concept , preserving the dynamic characteristics of the jet discharge.

In analyzing the two-dimensional flow field emphasis was laid
on a detailed treatment of the four distinct flow regions which can be
discerned in the general case. The objective was to obtain an overall
description of the flow field by matching of the solutions for the
individual regions. The four flow regions are: the buoyant jet region,
the surface impingement region, the internal hydraulic jump region and
the stratified counterflow region.

The buoyant jet region was analyzed using the entrainment concept

proposed by Morton et al. (1956). A relationship for the entrainment
coefficient (Eq. (3-48)), which depends on the local buoyant characteris-
tics of the jet was deduced for jets with arbitrary discharge angle in a
fashion similar to Fox's (1970) solution for the vertical jet. It was
shown that all buoyant jets tend to an asymptotic case, the plume, which
is characterized by a constant local densimetric Froude number, Eq. (3-57).
The value of the entrainment coefficient (Eq. (3-48)) in this asymptotic
case agrees well with Abraham's (1963) evaluation of Rouse et al.'s (1952)
experimental data.

Important aspects of the analysis of the surface impingement region

were the inclusion of an energy loss and a buoyancy term in the energy
equation. It was found that the vertical flow distribution in the section
after impingement is always distinguished by densimetrically supercritical

flow conditions leading to a subsequent internal hydraulic jump.
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The internal hydraulic jump region is described by a set of

equations first derived by Yih and Guha (1955), which in general is
dependent on the density ratio between the two layers and the free
surface Froude numbers. As the problem of interest is characterized
by small density differences and small free surface Froude numbers, an
asymptotic solution for finite densimetric Froude numbers was derived
giving a simple equation (3-142) for the conjugate jump condition.

The equations for a non-entraining stratified counterflow region

with surface heat loss and interfacial mixing were developed. Scaling
showed that for practical conditions of channel length scales the
surface heat transfer processes can be neglected, so that the equations
reduce to the classical Schijf and Schonfeld (1953) equations for
stratified flow. The solution for the position of the interface, Eq.
(3-188), is obtained assuming constant total depth as a first approxima-
tion, which again implies small density differences and free surface
Froude numbers. With the given interface position, the change of the
total head caused by frictional effects in the flow system was derived,
Eq. (3-195). Analytical solutions for the interface and total head
equations were given.

The diffuser problem is governed by four dimensionless parameters :
Fs’ H/B and 90 are near-field parameters, ¢ = fo L/H 1is a far-field
parameter.

Matching of the solutions for the flow regions yields the following

important results: stability of the near-field zone is given only for a

limited range of low Fs , high H/B . Furthermore, the range decreases

for decreasing (more horizontal) 60 (Fig. 3-25). It 1is only in this
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limited range that the buoyant jet models in an unbounded receiving

water (discussed in Chapter 2) are applicable to predict dilutions. It
is found that in this range the thickness of the surface impingement
layer which has to be accounted for in dilution predictions is about
1/6 of the water depth. The flow-away in the far-field has little
effect on near-field dilution (except for large ¢ 1leading to a sub-
merged internal jump) and thus can be neglected for dilution predictioms.
Outside the stable near-field range the diluted water is
continuously re-entrained into the jet region forming a local mixing
zone. This re-entrainment leads to a build-up of buoyancy of the near-
field water until in steady state an equilibrium is reached which is

essentially determined by the interplay of two factors: frictional effects

in the far-field, represented by ¢ , and the horizontal momentum input

of the jet discharge, represented by Bo .
For diffusers with no net horizontal momentum (6O = 90°) the far-

field flow is given by an equal counterflow system between two critical

sections, one at the edge of the local mixing zone, one at the channel
end.
For diffusers with net horizontal momentum (6o < 90°) there are

3 possible far-field flow configurations: a counterflow system, a

stagnant wedge system or supercritical flow. The supercritical flow case

with resulting full vertical mixing downstream is the extreme case of
surface and bottom interaction described by Harleman et al. (1971) and
reviewed in Chapter 2. In the analysis of each of these conditions the
horizontal momentum of the discharge is balanced by the depth change

across the mixing zone resulting from far-field effects.
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Composite surface dilution graphs describing both the near- and
far-field range were presented.

The utility of the two-dimensional channel model in the study
of the diffuser induced flow field is obvious:

(1) It provided necessary criteria giving the range

of applicability for buoyant jet models to predict dilutions

for diffuser discharge in finite depth.

(2) It gave insight into the vertical and longitudinal
variations of the flow field.
(3) It demonstrated that it is necessary to describe

the dynamics of the total flow field, and not merely the jet

region, to give dilution predictions outside the stable near-

field range.

However, as the underlying objective of this study is prediction
of the three-dimensional diffuser flow field it will be necessary to
provide some linkage between the far-field effects present in the two-
dimensional channel model and the far-field effects present in the three-
dimensional case. In particular, based on the requirement of equivalency
of the far-field effects a relationship between the characteristic
horizontal length scales, the two-dimensional channel length and the three-
dimensional diffuser length, has to be developed. This linkage is
provided in analytical fashion in Chapter 4 and comparisons with

experimental results are given in Chapter 6.

156



IV. THREE-DIMENSIONAL ASPECTS OF THE DIFFUSER INDUCED FLOW FIELD

A multiport diffuser line of length, ZLD, placed in a large body
of water of uniform depth, H, will generate a three-~dimensional flow
pattern. In the preceding chapter a two—dimensional channel model was
formulated simulating the predominantly two-dimensional flow field which
is postulated to exist in the center portion of the diffuser line (Fig.
- 3-1). Depending on discharge conditions it was found that a stable or
unstable near-field condition persists. For the stable near-field, the
diffuser-induced dilution is primarily governed by jet entrainment. How-
ever, for unstable near-field conditions, the dilution is influenced by
far-field effects relating to the total resistance in the flow-away of
mixed water from the near-field. As the objective of this study is dilu-
tion prediction in the general three-dimensional case, this chapter dis-
cusses the important three-dimensional aspects of the diffuser-induced
flow field and their relation to the two-dimensional channel model:
1) A simplified model of the three-dimensional flow field is
developed and the far-field effects are evaluated. Based
on equivalency of far-field effects, the channel length
of the corresponding two-dimensional model is related to
the length of the three-dimensional diffuser, In this
way predictions for the three-dimensional application may
be given through the corresponding two-dimensional channel
model.

ii) In addition to vertical circulations (such as in the
stratified counterflow system), the diffuser is capable

of producing circulations in the horizontal plane. The
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existence of these circulations which ultimately lead

to re-entrainment of mixed water is related to near-field
instabilities. The control of these circulatioms through
orientation of the diffuser nozzles in the horizontal
plane is discussed.

4,1 Relating the Two-Dimensional Channel Model to the Three-

Dimensional Flow Field

A quantitative relationship is given only for diffuser discharge
with no net horizontal momentum and zero cross flow, Diffusers with net
horizontal momentum are discussed qualitatively and experimental results
are given,

4.1.1 Diffusers with No Net Horizontal Momentum

4.1.1.1 Equivalency Requirements

Figure 4-1 shows the vertical circulation and the horizon-
tal flow pattern in the lower layer postulated for a diffuser with no net
horizontal momentum. The horizontal flow pattern in the upper layer is
similar with reversed directions. The three-dimensional situation and
the two-dimensional channel model conceptualization are shown. In both
cases the flow is set up by the entrainment demand and the buoyancy supply
within the near-field zone. For comparison of the dilution characteris-
tics of both systems it is required that the near-field parameters Fs’
H/B are the same. Furthermore, the same friction coefficients fo and
fi = Af0 are given.

The objective of the comparison is to determine the channel length

L so that the same dilution is obtained from the two-dimensional channel

model as from the three-dimensional case. To obtain the same dilutions
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two requirements have to hold:

1) Kinematic Requirement

The dilution for the two-dimensional case is

2

s. = Jal .

_ (4-1)
2-D q, 2 q°/2
where |q|= 9 = -9, is the flow in each layer (large dilutions)
u = layer velocity u averaged over total depth H.
u is constant throughout the channel,
u=1u_ . (4-2)

Cc

The dilution for the three-dimensional case is

R L R 1 -3)

3-D qO/Z qo/2

where 9, is the normal (x) component of the flow vector d*= (qx’qy)
d

evaluated at the diffuser x 20, - LD<y<LD

uy is the normal component of the velocity vector averaged over
the total depth 3 = (ﬁ,;) at the diffuser.

The magnitude of 3'decreases away from the diffuser line.

The kinematic requirement for equivalent dilution follows

5, =6, (4-4)

2) Dynamic Requirement

Discharge with stable near-field conditions is little affected by
far-field effects and thus will behave similarly in both cases. Dis-

charges with unstable near-field conditions depend strongly on the far-
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field.

For the two-dimensional channel model dilution is uniquely con-
trolled by the balance of far-field friction and buoyancy in the near-
field region, expressed by the equal counterflow Equation (3-207) which
is plotted in Figure 3-22 (A = 0.5). The functional relation is given

as

) (4-5)

where FH is the densimetric Froude number of the counterflow system
c

(Eq. 3-221). By virtue of the dilution relationship, Eq. (3-222), this

equation is written as

L
f T - fz(S ) (4-6)

o) 2-D

and furthermore, multiplying both sides by GZ/Sg

-2
fo L e
h =—= = = = f (S, ) (4-7)
f2—D 4 H 2g 3'72-D
where hf is a head loss expression for the two-dimensional channel
2-D
flow. By virtue of the constancy of Gc’ (Eq. (4-2)), he , is equiv-
2-D

alent to the integration over the flow domain

Le £, Gcz
h = - —— dx (4-8)
f2_D 4H 2g

The strongly two~dimensional character of the three-dimensional
flow field in the vicinity of the diffuser centerportion is noted. Ex-

cept for distances far from the diffuser line, the vertical counterflow
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resembles that of the two~dimensional model. Therefore a functional
relationship for the balance of far-field friction and buoyancy is hypo-

thesized, similar to Eq. (4-7),

h = f_ (S ) (4-9)
f3—D 3 ""3-D
where hf is the integration over the flow path from the diffuser to
3-D
infinity. In particular, by integration along the x-axis
T FEy=0)
h, = =2 BT g (4~10)
f3—D 4H 2g

To evaluate the integral a description of the flow field (u,v) is neces-

sary.
The dynamic requirement for equivalent dilution (SZ-D = SB—D) is
the equality of far-field frictional effects
h = h (4-11)
f2—D f3-D

4,1.1.2 Model for the Three-Dimensional Flow Distribution

Evaluation of the three-dimensional far-field effects, Eq.

(4-10), requires specification of the flow distribution. A simplified
flow model is given describing the horizontal motioﬁ in each fluid layer.
Density changes due to heat dissipation or interfacial mixing are neg-
lected in view of the fact that the model application is primarily
focused on the two-~dimensional behavior in the diffuser vicinity; the
heat loss scaling performed in paragraph 3.4.4.2 applies then as well.

The flow is gradually varying and two-dimensional in the horizon-

tal plane. The equations of motion are written for the lower layer. The
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flow velocities u, v are averaged over the total depth, H.

a = -
-~ 5y = © , (4-12)
~Ju _, = 3u 1 3p BT
U TV T "o x o H (4-13)
a a

-3V, =3V 1 ap %%
R R A (4-14)

x y P, 3y pH

where ;zx’ ;zy are total stress terms for both interfacial and bottom

friction, written as

1
oo {Fni
oo|rhit

o ulul , T =

2y Pa v|v| (4-15)

ZX

where f is the total friction coefficient. The relative importance of

the terms in the momentum equations is determined by scaling:

(u*,v*) = (u,v)/u
(x*,y*) = (x,y)/LD (4-16)
p* = p/paﬁd2

The diffuser length is chosen as the characteristic length scale
of the problem as the local flow field in the diffuser vicinity is of
interest. The x-momentum equation may be written in dimensionless form,

su.bstituting-r_xz from Eq. (4-15) as

= L
du du* ap* £ D
S =Rl = R -l iy i (4-17)



Typical prototype values are chosen as in paragraph 3.4.4.2, LD=1000 ft,
H = 30 ft. and f is taken as 0.03. The bracketed term is evaluated as
~0.1 indicating that the flow field is governed by pressure and inertial
forces. Thus neglecting the frictional term as a first approximation,

the flow field can be determined assuming inviscid conditions (potential

flow). With the calculated flow field the frictional term, hf , can
3-D

then be evaluated.

The potential flow formulation is

2

VP =0 (4-18)
with

-5 _3

ax > 3y
and the boundary condition at the diffuser line

3¢ -

x - T Yy x>+ 0

- LD<y<LD (4-19)

+u x>- 0

The problem is solved in the complex plane (Figure 4-2). A com—

plex potential W is defined as

W=4¢+41iVy (4-20)

The complex potential due to a point sink at g is
= -2 - -
W=--- log (z-7) (4-21)
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Diffuser line

Fig. 4-2: Complex.§olution Domain

Superposition of point sinks along the diffuser line leads to a line

sink
iLD
)
W = - 5y log (z-0) dt (4-22)

and after integration

Y
m (z+iLD)(z+iLD)
W= - log =iy " 2 1LD> (4-23)
(z—iLD) D
s

The streamlines y are given by the imaginary part of W and are plotted
in Figure 4-3 for half the flow field exhibiting the two-dimensional
character in the centerportion. The complex velocities G, v are obtained

by differentiation

m
%g-— u - iv = 7§'LD tan T fa - -% (4-24)
D
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Fig. 4-3: Streamlines for One Quadrant of the Flow Field
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The flow distribution at the diffuser line is given as

0 L 2

m .
(- 10, _ = Ly tan™t [H - 1‘-] (4-25)
D
—iLD<Y<iLD

Using the boundary condition for the normal velocity Gd gives

2uy
° "p
The velocity along the x-axis is now given as
. 2u
~%ﬂ = u = -4 tan“1 fi-— U (4=27)
] m D

The head loss integral, Eq. (5-10), for the three-~dimensional

flow field can be evaluated as

o f 2u 2

o 1 d -1 x T
h, = = 3= |— (tan " — - %) dx (4-28)

£2 0 jo Wi 2g | 7w L, "2

or with x = gLD
= 2
f u 2 00 2

- o d (2) ( -1 'n)
h =-—= > |=] L tan £ - 7| dg (4-29>

f3-D 4H 2g 1r Dfo 2

The value of the definite integral in Eq. (4-29) is given by Gradshteyn

and Ryshik (1965) as l-log 2 so that

2
£ Edz
hf = T EE?' (0.884) LD (4-30)
3-D
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2 rt ;
The integral.(%} -I. (tan L £ - %)2 dg 1is computed numerically and
o

plotted in Figure 4-4. The shape of the function indicates that the

hT [~ 0o8g4q— — — — — -—
3-D -
-2
£ W
4H 2g 5
| ] i
1 2 3 4 x 5
Lo.

Fig. 4-4: Cumulatiye Head Loss; h , Along the Flow Path,.x/LD

f3p

major influence of the far-field effects is indeed restricted to the
diffuser vicinity where the strongly two-dimensional flow character
with reasonably high velocities persists. At 5 diffuser half-lengths
the asymptotic value is approached to within 10%.

Invoking the kinematic and dynamic requirements for equivalency
of diffuser-induced dilutions, by equating Equations (4-8) and (4-30)

and substituting Eq. (4-4), it is found that
L = 0.884 Ly (4-31)

gives the length of the corresponding two-dimensional channel model.

For practical purposes Eq. (4-31) can be approximated as
L =L (4-32)
For a diffuser with no net horizontal momentum, the channel length of

the corresponding two-dimensional channel should be taken about equal to
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the length of the three-dimensional diffuser.

4,1.2 Diffusers with Net Horizontal Momentum

Kinematic and dynamic requirements for equivalency of diffuser-
induced dilutions can be derived in a manner similar to Equations (4-4)
and (4-11). The evaluation of the three-dimensional head loss equation,
hf3—n (Eq. (4-10) ), requires specification of the horizontal velocity
distribution (u,v). In developing a model for (u,v) the horizontal mo-
mentum input of the diffuser (ed<90°) has to be included as a boundary
condition. 1In the complex plane this can be accomplished by integrating
a dipole distribution along the diffuser line. The resulting flow field
will be that of two vortices centered at both diffuser ends. However,
the total discharge over the diffuser line is found to be infinite for
this simple model. This is nonrealistic in terms of the kinematic re-
quirement. Therefore, a more intricate model must be developed to des-
cribe the three-dimensional flow field.

In this study it is assumed that the relation, L= L, developed

D?
for the diffuser with no net horizontal momentum is also approximately
correct for the diffuser with net horizontal momentum. This assumption
is appropriate for the case of a diffuser with a resulting counterflow
system (Figure 3-27Bl) which strongly resembles the equal counterflow
system of the diffuser with no net horizontal momentum. The assumption
is more hypothetical for discharges with full vertical mixing (Fig.

3-27B3) and essentially has to be substantiated by experimental evidence.

4.2 Diffuser Induced Horizontal Circulations

Diffuser discharges, even with no net horizontal momentum, are

under certain conditions, capable of producing significant horizontal
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circulations. These circulations are defined as currents which ultim-
ately lead to recirculation of already mixed water into the diffuser
line. Diffusers with stable near-field conditions do not produce such
circulations, as a stable vertically stratified flow system is set up.
The existence of horizontal circulations is intimately related to near-
field instabilities. The generation mechanism for these circulations
is discussed in a qualitative fashion. Control of the circulations can
be achieved through specific orientation of the diffuser nozzles in the
horizontal plane. Such control is desirable from practical considera-
tions to prevent recirculation and maximize diffuser efficiency.

4,2,.1, Diffuser with No Net Horizontal Momentum

4.2.1.1 Generating Mechanism

The velocity distribution at the diffuser line is given
from the horizontal flow model for the lower layer by Eq. (4-25) with

Eq. (4-26) substituted

2 , 1+y/L
3 - iv - -4 ji _1D _ = -
(u - 1v)x=0 = [2 log 15/ 2] (4-33)
-iL_<y<iL D
DA}

The velocity is thus made up of a normal component, u,, accounting for

d
the entrainment into the diffuser line and a tangential component, ;d
Uy 1+y/LD

vy = - log—l-:;/—q)- (4-34)

The horizontal component is zero at the diffuser center and infinitely
high at the diffuser ends. Such a sweeping motion from the diffuser

end to its center is present as can be seen in Figure 4-3. The
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existence of this current in the lower layer has been observed by
Liseth (1970) and causes some inward bending of the jets issuing from
the nozzles at the diffuser end., The motion is of no further concern
for stable near-field conditionms.

For unstable near-field conditions, however, the motion results
in the generation of a strong horizontal eddying motion unless some con~
trol is invoked. The mechanism for this somewhat unexpected phenomenon
(there is no net horizontal momentum!) is explained as follows, refer-
ring to Figure 4-5: Assume a flow particle is entrained into the ver-
tical jet near the diffuser end. The particle is carried upward in
the jet and deflected due to surface impingement. As the near-field
zone is dynamically unstable the flow particle is carried again into
the lower layer while being swept inward along the diffuser line. The
particle gets re-entrained into the jets. The Lagrangian path of the
particle is indicated. The total effect of the behavior is that all
the repeatedly entrained diluted flow is transported towards the dif-
fuser center from which it departs in the form of a vertically fully
mixed strong current along the x-axis. By continuity the total approach
flow along the y-axis is a similar strong current of ambient water. A
horizontal circulation is generated which ultimately leads to recircula-
tion and unsteady concentration build-up effects.

The close connection of the generating mechanism to the stability
of the near-field zone is important. The vertically fully mixed flow-
away at Section B-B (Fig. 4~5) does not agree with the vertically strat-

ified flow in the diffuser center portion as indicated on Fig. 4-1. 1In

fact, this postulated vertically stratified flow condition (which also

171



PLAN VIEW

flow away

) ﬂ vertically fully mixed
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reentrainment in unstable
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B-B | vertically
fully mixed
:;_é flow - away

Fig. 4-5: Three-Dimensional Flow Field for Diffuser with

Unstable Near-Field Zome (No Control)
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forms the basis of the two-dimensional channel model conceptualization)
requires control of the three~dimensional flow field. This control can
be achieved through orientation of the diffuser nozzles in the horizon-
tal plane and is desirable in view of the prevention of the repeated
re-entrainment.

4,2.1,2 Control Methods

The objective of the control is the prevention of repeat-
ed entrainment within the unstable near-field zone (local mixing zome).
This is achieved by opposing the inward current within the local mixing
zone through orientation of the jet nozzles in the horizontal plane.
The momentum of the inward flow is balanced by the momentum of the jet
discharge. This stagnation of the inward flow within the local mixing
zone, however, does not imply zero tangential flow at the edge of the
local mixing zone. The flow outside the mixing zone will behave as
predicted by the simple layer model and indicated in Figure 4-3. Con-
trol through nozzle orientation merely guarantees zero inward velocity
within the local mixing zone and provides the proper starting condi-
tions at the edge of the mixing zone for the establishment of a verti-
cally stratified flow system outside.

The local angle g(y) (see Fig. 4-3) under which the horizontal
entrainment flow is entering the diffuser line is

l+y/LD

cot g(y) = log 57, (4-35)
D .

"
Q-‘:' ‘04 1

To counteract this entrainment flow within the local mixing zone the

individual nozzles of the alternating diffuser are directed against the
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entrainment flow. The variation of the horizontal nozzle orientation

along the diffuser line is then

_ 1+y/
g(y) = cot 1 ( -Tlr' log _17-}711%5 ) (4-36)

Local details of a diffuser section with alternating nozzles are shown
in Figure 4-6. The vertical nozzle angle is 8.+ Efficient counteract-
ing of the entrainment flow within the local mixing zone is only poss-

ible if the momentum flux of a nozzle discharge acting over the width

(3 /’ ’\2ﬂsinP

7y, 0,6,

Fig. 4-6: Plan View of Diffuser.Section; Alternating Nozzles with

Vertical Angle 90

29sing is higher than the momentum of the entrainment flow. Obviously,
no control is possible if 8, = 90° (vertical discharge). There is a

maximum angle eo up to which control is possible. The momentum flux
max
of the entrainment flow over a diffuser length Ay is
u

- - d _
Am = 0% B ( sing ) &y ; (4-37)

The momentum flux of the nozzle discharge is, over the diffuser length
29, (see Fig. 4-6)
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n Po Uo 4

sing cos eo (4-38)

and using the equivalent slot definition, Eq. (2-20) and also pa:po

1
o sing

_ 2
m = pa Ub B cos ¢

- L | (4-39)

The spacing ¢ is considered a differential length of the total diffuser,

thus Ay~2 and Am~mn

2
o= o U B cos o, sing Ay (4-40)
To make a control possible
u 2
m. o B 54 51 ' (4-41)
- -2 H o
fm ug

With the definition (Eq. (4-3) and q, = UoB one can write
T cos 8, >1 (4-42)

In the parameter range for the unstable near—-field SS is given

by Eq. (3-222) which is substituted into Eq. (4-42) to give

FH 4/3
/3 _c

F

s

cos # >4_1 i (4~43)
o B

where FH accounts for the far-field effects ¢ by virtue of the inter-
c
facial equation (see Fig. 3-22). The maximum value of eo = § is
max
estimated: Negligible far-field effects mean FH = 0.25 and at the

Cc
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criterion which describes the transition between the stable and unstable

parameter range was established as

4/3

H/B = 1.84 FS (3-219)

so that

8 = cos™t 473 (1.84) (0.25)%/ 3] = 79° (4-44)
max

For larger FS or smaller H/B, i.e. relatively stronger impact of the
diffuser discharge on the receiving water, the angle 60 is even lar-

max

ger. Similarly, for smaller F i.e. larger resistance in the far-

H°
field, 60 is larger. Howevei, using Eq. (4-44) as the lower esti-
mate, it 2:2 be stated in order to enable control of the three-dimen-
sional flow field through horizontal orientation of the nozzles, B(y)
given by Eq. (4-36) the vertical angle of the discharge has to be less
than 279°. It is immaterial how much less, since if 6.< 6 .y the excess
horizontal nozzle momentum is diffused in the local mixing zone, much
like in the fashion indicated in Fig. 3-25. As mentioned above, the
objective of the control is to counteract the tangential velocity, ;d’
within the local mixing zone. No horizontal motion can be induced by
the nozzle discharge momentum outside the mixing zone, as can be shown
by drawing a control volume around the diffuser area: The net horizon-
tal momeﬁtum in any direction is zero! Thus it is emphasized, that the
horizontal circulations which are set up by a diffuser with vertical

and alternating nozzles are by no means a result of horizontal discharge

momentum, but rather a complex interaction of vertical near-field
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instabilities which are amplified by the entrainment flow sweeping
along the diffuser line.

In summary, through control by local horizontal orientation, g(y)
in Eq. (4-36) of the nozzles of a multiport diffuser the development of
horizontal circulations can be prevented. The control "conéolidates"
the local mixing zone. The flow outside the local mixing zoﬁe will then
be characterized by the two-layered system which is in equilibrium.be-
tween the buoyancy force of the near-~field and the resistance in the
far-field (Fig. 4-1). The two-dimensional channel model conceptualiza-
tion is applicable. No control is required for diffusers with a stable
near-field zone: The flow field outside the near-field will always be
the stratified two-layered type.

Evaluation of the sensitivity of the form of the flow field for
different orientations, B(y), can only be made experimentally. Imn the
experimental program various distributions, g(y), were tested and
changes in flow field behavior and resulting overall dilution are re-
ported (Chapter 6).

4,2.2 Diffusers with Net Horizontal Momentum

4.2.2.1 Generating Mechanism

Diffusers with unidirectional nozzles produce horizontal
circulations due to two factors: 1) horizontal momentum of the dis-
charge, and ii) instabilities in the near-field zone, similar to the
discharge with no horizontal momentum. The relative strength of the
two mechanisms is important,

As no analytical model for the description of the far-field has
been developed, the following is hypothetical, partly in analogy to the
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discharge with no horizontal momentum,

1) Diffusers with a stable near-field zone exhibit a two-
layered system in the far-field. The horizontal orien-
tation of the nozzles, g(y), is not decisive.

2) Diffusers with an unstable near-field will produce circula-
tions which are dependent on the nozzle orientatiomn, g(y).
The discussion is given for parallel nozzles as shown in

Fig. 4-7.

PLAN VIEW

4

L

— \ek

Fig. 4-7: Unidirectional Discharge with Parallel Nozzle Qrientation

(B(y) = comst = 90°)

a) For weak horizontal momentum (counterflow system) the set-up
of horizontal circulations is primarily due to instabilities
in the nea