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ABSTRACT

Let {X(t) : t € [0,1]} be a stochastic process.
Suppose E(x(t)-X(s))2 < f(|t-s]). We find conditions
on f in order to establish the existence of a version
of X with continuous sample paths. Furthermore,
under these conditions X satisfies the central limit
theorem in C([0,1]. Counterexamples are given to show
that in a number of cases the results are best possible.
For processes with only jump discontinuities satisfying
weaker conditions on tge second moments of increments,
supplementary conditions are found to insure that the
central limit theorem holds in D([0,1]. In particular,
stochastically continuous independent increisent processes
satisfy the central limit theorem in D(0,1]. The case
~of processes with fixed discontinuities is treated
separately.
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INTRODUCTION

Among the most striking features of the classical
central limit theory for real-valued independent identi-
cally distributed random variables is the wide class of
distributions for which weak convergence occurs, The
central limit theorem asserts that there is weak con-
vergence to the normal law if and only if the random
variables have finite second moments. Because of the
fundamental role of this theorem in probability and
statistics, it is only natural to seek an analogue for
stochastic processes. Since each stochastic process is
a random variable in an appropriate function space, the
natural setting for the problem is in terms of function
space-valued random variables.

Examples of Strassen and Dudley (1969) and Dudley (1974)
show that the claisical'aisumption of finite second moments
is not sufficient in general function spaces. The difficulty
in trying ﬁo extend the classical technique of proof, which
involvés characteristic functions, is that there is no
obvious analogue of the Lévy COntinuity Theorem, even
when chataetetistic»functions can be definhed. .

Some of the first function spsce central limit theorems
were proved for spaces in which an analogue of the Lévy
Continuity Theorem could be fo&nd. In their work on G-spaces,
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which include the LP spaces for 2 < p < =, Mourier and
Fortet (1955) obtained a continuity theorem by taking
advantage of the inequality

BI1X, + oo + X [12<a T 11%,]12
1 [ N ] n il igl 1 '

valid for xi independent random variables with A constant.
Also, using characteristic functions, varadhan (1962)
found necessary and sufficient conditions for the central
limit theorem to hold in Hilbert space.

Because of the insufficiency of the second moment
condition for the central limit theorem in general function
spaces, it is important to classify those spaces in which
it does suffice. Hoffmann-Jg¢rgensen (1974) has recently
obtained with Pisier such a classification for Banach
spaces. A Banach space E is called type 2 if, whenever
(ej) is a Rademacher sequence and (yj) is a sequence
in E such that |} ||y:‘||2 <w, } €4y converges a.s.
Hoffmann-J¢rgensen and Pisier have shown that the central
1imit theorem holds for all sequences of independent
identically distributed E-valued random variables with
only the assumption that second moments exist if and only
if B’fo of type 2. This result completes the work begun

by Mourier and Portet.



The spaces -C(S) of continuous functions on a
compact metric space S need not be of type 2. For example,
Cc((0,1]) is not of type 2. Since every separable Banach
space is linearly isomorphic to a subspace of C(S) for
some S, it is natural that most recent work on central
limit theorems has been for C(S).

Strassen and Dudley (1969) introduced metric entropy
considerations into the problem. They proved a central
limit theorem for C(S)-valued random variables with paths

satisfying the Lipschitzian condition
|X(t.¢n)-X(s;ﬂ) I f_ M(U)D(S,t) ’

where M ¢ L“(n) and p is a pseudo-metric satisfying

a metric entropy condition. Giné€ (1974) extended these

results to the case where M ¢ L?; Dudley (1974) inter-

polated between the results for: p=2 and p = o, Cul-

minating this line of investigation is the theorem of

Jain and Marcus (1974), which improves the entropy con-

dition, | |
Other lines of investigation have been followed by

de Acosta (1970), who works on Banach spaces with a Schauder

basis; Le Cam (1970), who establishes a concentration ine-

quality which is valid in any locally convex space, and

Arlﬁjo (1974) whose work includes a Lévythintchine formula

for separable Banach spaces. |



One of the earliest central limit theorems in a
function space was formulated by Donskér (1952) for the
special case of empirical distributions. Donsker con-
sidered the space of all bounded real-valued functions
on [R with the supremum norm. Dudley (1966) justified
the weak convergence in this non-séparable space., It
had been noted earlier that since the empiricai processes
Yn(t) = /K(Fn(t,w)-r(t)), where En is the'empirical
distribution function of F, have only jump discontinuities,
the'results could be made precise by introducing the
space of functions with only jump discontinuities and the
Skorohod topology. Gikhman and Skorohod (1969) have
done precisely this by realizing the eﬁpirical processes,
for 0 ﬁ.t'i l, as D[0,1l])-valued random variables.
#{0,1] is the space of real-valued functions on [0,1]
which are rigﬁt continuous with left limits, For ex-
tension of the empirical processes to multi-dimensional
parameters, see Dudley (1966), Straf (1970), and Bickel
and Wichura (1971).

Processes with only jump discontinuities seem to
be the logical objecg of investigation after continuous
processes; and D(0,1) is certainly the natural space in
which to consider such processes on [0,1]. In this thesis

we address ourseilves to three main questions. First, when
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do second moment conditions on the differences X(t)-x(s),
i.e., conditions of the form E(X(t)-x(s))2 < £(|t-s]),
prcvide sufficient conditions for central limit theorems?
Dudley (1974) shows that this type of condition is not
sufficient in general. However, we show, in Chapters 5
and 7, that processes which satisfy the central limit

theorem in D must have certain continuity properties in
quadratic mean. Furthermore, we show that if f satisfies
a simple integral condition then X has a separable version
which‘is continuous a.s. and the central limit theorem
is always satisfied for X. Examples are given in Chaptgr 4
to show that there are processes with no finite-valued
separable version, and hence no continuous finite-valued
version, for which the integral condition barely fails.
Furthermore, examples are given to show that there are
continuous processes which do not satisfy the central
limit theorem and for which the integral condition barely
fails. |

Second, what additional assumptions on stochastically

continuous processes yield good central limit theorems?
Our main result is a condition on the second moments of
the products of the increments X(t)-X(s) and
X(t)-X(8) for g < t < u, The condition is natural in

the sense that it is also a sufficient condition for sample
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paths to be in D, As a consequence we can show that all
stochastically continuous processes with independent
increments and sample paths in D satisfy the central
limit theorem, Another consequence is a cehtral limit
theorem for Markov processes from which we conclude

that all finite state stochastically continuous Markov
processes with sample paths in D satisfy the central
limit theorem.

Third, how can processes with fixed discontinuities
be handled? We show that if a process can be decomposed
into the sum of two or more processes, each with finite
second moments, where at most one of the processes has
fixed discontinuities, then it suffices to show that each
process in the sum separately satisfies the central limit
theorem. Utilizing this method we show that the central
limit theorem fdr'processes which are stochastically
continuous except for a finite number of fixed discontinuities
can be reduced to the stochastically continuous case.

The case of processes with a countable number of discon-
tinuities, all fixed discontinuities, may be reduced to
studying the central limit theorem for continuous functions

on an appropriate compact subset of R.
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CHAPTER 1. PRELIMINARIES

This section includes definitions,,prope;ties of
the space D[0,1], and background material on the central
limit theorem. Billingsley (1968) has given an excellent
treatment of the subject of weak convergence of probability
measures on the function spaces C[0,1] and D[O0,l].
Thfoughout this section all reference » Billingsley (1968)

will be given by page number alone.

§1. THE SPACE D

Let D = D[0,1] denote the space of equivalence
classes of all real-valued functions x(t) on [0,1]
having right and left limits at every point, where two
functions are considered equivalent if they coincide at
all points of continuity. We adopt the convention of
Billingsley that the representatives of each eguivalence

class are right-continuous with left limits:

(i) for 0 < t <1, x(t+) = 1lim x(s) exists and
s+t
x(t) = x(t+);

(ii) for 0 < t <1, x(t-) = lim x(s) exists.
- stt

This differs from both Parthasarathy (1967) and Gikhman
and Skorohod (1969) who also require left continuity at
t = 1. Henceforth we will tacitly assume that the space D
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congsists of those functions satisfying (i) and (ii).

This space is natural for studying stochastic processes
with jump discontinuities. If a stochastic process X
has almost all its sample paths in D, then X may be
thought of as a D-valued random variabie, i.e.
X : (,F,P) » D such that for each w, X(w) € D and
the value of X(w) at t is X(t,w). For example,
- separable stochastically continuous processes with inde-
pendent increments (Gikhman and Skorohod (1969) p. 168),
separable stochastically continuous sub-martingales

(Doob (1953) p. 361), and Markov processes under extremely

broad conditions (Kinney (1953)) all have versions with
sample paths in D. Of course, C = C[0,1] is a subset of D.
Several important properties of functions in D are

a consequence of the following lemma.

LEMMA 1.1 (p. 110) For each x € D and each
positive €, there exist points to, tl,...,tr such that

o = to < e o o < tr = 1 and
sup{|x(s)-x(t)| : s,t € [ty q/t;)} <€, i=1,...,r.
From this lemma it follows that x € D is bounded

and has only countably many discontinuities (all jumps)

of which there can be at most finitely many points t at
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which the jump |x(t)-x(t-)| exceeds a given positive
number.

The uniform metric is too strong for many purposes
since with it D becomes nonseparable. To avoid this
difficulty Skorohod (1956) introduced the following
topology on D. Let A denote the class of strictly
increasing, continuous mappings of [0,1] onto itself.
For A € A, A(0) =0 and A(1l) = 1. The metric d(x,y),
for x,y € D, is defined to be the infimum of those

positive ¢ for which there exists )\ € A such that
sup|At-t| < ¢
t
sup|x(t)-y(At)| < €.
t

A sequence of elements {xn} 'belonging to D converges to
a limit x in the Skorohod topology if and only if there
exist functions A, € A such that both 1lim x (A t) = x(t)

n-o

and lim A t = t wuniformly in t. When relativized

n+o
tq C, this topology gives the usual uniform tobology;‘ The
physical interpretation of the Skorohod topology is that
time can be measured no more accurately than position.

With the metric d, D is separable but not complete.
However, there is another metric d,, generating the same

S8korohod topology, under which D is a complete separable
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metric space. do(x,y) is defined to be the infimum of

those positive ¢ for which there exists ) € A such that

suplloglxt As|| < g
s#t -

“sup|x(t)-y (At) | < €.
t

The following proposition shows the relationship
between functions in D which have uniformly small jumps

‘and the subspace C.

PROPOSITION 1.2 Let C° = {x €D : d, (x,C) < €},
Then x e C° implies that sup|x(t)-x(t-)| < 2e. Also, if
t .

x € D is such that sup|x(t)-x(t-)| < ¢ then x e cEt.
t

PROOF. Suppose x € C°. Then there exists y € C
such that d,(x,y) < ¢ which implies sup|x(t)-y(At)| < ¢
t

for some A € A. Since A is continuous, A(t) = A(t-) for
all t. Thus sup|x(t)-x(t-)| < sup{|x(t)-y(At)| +
' t t

|ly(At=)-x(t=) |} < 2¢.

Next suppose x € D is such that sup|x(t)-x(t-)| < e.
. t

By Lemma 1.1, there exist toreeart, such that
0=ty <...<t. =1 and sup{|x(t)-x(s)| : s,t (‘[ti_l,ti)} < €

for i =1,...,r. To construct a continuous function Y
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such that sup|x(t)~y(t)| < €, proceed as follows:
t

Let €; = |x(t;)-x(t;-)], i=1,...,r. Each g < e,
Choose 5; such that 0 < t - t, < &; implies

. E=ey € K ,
[x(e)=x(ty)| < min{—g—=, 5=}, Let §, = min{6;, ty,,-t;}.

Defing

y(0) = x(0)
y(t,) = x(t,=) i=1,...,r

Extend y to be linear in between.

sup ly(t)=x(t) |
t € (ty,t,45,/2) |

g.luﬁ | | {Iy(t)-x(ti)l + Ix(ti)-x(t)l}

< ei + (e-ci)/z <e for i = 1,....!‘.

sup |y (t)=x(t) |
t e [t1+61/2,t1+1)

< sup max{ |x(t -)-x(t)[ |x{t, +6,/2)=x(t) |}

< : is= 1.....:.

Also, sup ly(t)=x(t)| < € by the way t, was chosen.
St eo,t) | .

_Thug,.i:plxlt)-y(t)l < ¢ which implies x € CS. ///
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For 1_:1,...,1:k in [0,1] the natural projection

" from D to RK is defined by
tloootk .

wtl...tk(x) = (x(tl),....x(tk)).

To and ¥, Aare everywhere continuous while LI is con-
tinuous at x if and only if x is continuous at t.

However, for all tl....,tk in [O0,1], "t1‘°‘tk is

measurable with respect to the o-field ? of Borel sets
for the Skorohod topology (p. 121), Since D is a com-
plete separable metric sbace. (D,VP) is a standard Borel
space. | | |

let T, be a subset of (0,1] and define FTO to
be the family of sets

1 tkll  § Hcllk} tlpooo'tk 3 To’ k : 1}.

F, = (x"

To tl‘..
FTb generates 0 provided To contains 1 and is

dense in (0,1] (p. 121). Consequently, a probability
measure P on (D,D) is eo-plitoly determined by its

finite dimensional distributions, pall

for time
tl...tk'

points in Td;

ﬁb have already seen that a stochastic process with

ollPlo §pthl in D {s hvb-vulued randonjVariable; Con-
vornoiy; if X is a D-valued random variable then for
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each t, X(t) is a real random variable so that X is
actually a atochaltic_process. Throughout this thesis we
will use both terms.

If x(t) is a separable stochastic process and if
there exists on (D,0) a probability measure having the
same finite-dinensional distributions as {Xx(t)} thén
the sample paths of X need not be in D. However, they
must be right continuous at t = 0, have left limits at
t = 1 and have limits from both sides at all t € (0,1),
(p. 136). This emphasizes the fact that right continuity
is only a convention. However, if the finite-dimensional
distributions of a separable stochastic process can be
realized as the finite-dimensional distributions of a
probability measure on (C,C), then the sample paths are
continuous with probability 1.

Whitt ((1974) p. 8) has shown that the restrictions
Tab ? D(0,1] + D[a,b] defined by rabx(t) = x(t),

a<t<b for [a,b] € [0,1] are measurable.

There are three moduli on D which are used in

characterizing the compact subsets ofl D.

(1) The uniform modulus,

w, (§) = sup sup{|x(s)=x(u)| : s,u € [t,t+5])}
0<t<1-8 |

] sup w_(t,t+8)
Ost<1=s * '
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is the modulus of continuity for functions in C.

(2) The natural modulus on D is

w!(8) = inf max sup{|x(s)=x(u)| : s,u € [t. ,,t,)}
x (t,) o<icr | e e i=1774

where the infimum extends over the finite sets of points
{t;} satisfying

o.to<tl<o..<tr-1

ti - ti-l > 8§ i= lpooopro

It is natural because it leads to a complete characteri-
sation of compact sets (p. 116) and a necessary and
'sufficient condition for x to 1ie in D 4is that

lim w;(c) = 0, For continuous functions w;(a) is
8+0

essentially the same as w (6) (p. 111).

(3) The following modulus is often more convenient

‘to work with than W, .

w;(C) - lnp.nin{lx(t)-x(tl)lolx(tz)-x(t)|}
where the supremum extends over t;, t and t, satisfying
Sttty -t <6, wi(8) < wl(6) and there can be
no tnoﬁuality in the other direction. Howovér, cdmpact

sets can be characterised in terms of w;(a) and the
behavior of x near 0 and 1 (p. 119).
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§2. THE CENTRAL LIMIT THEOREM

A sequence Pn of probability measures on D coh-
verges weakly to a probability measure P on D (written
Pn => P) if, for every bounded, continuous function
F : D—>MR,

) F(x)AP_(x) —> [ F(x)dP(x).
D D

We will now discuss what it means to say that'the
central limit theorem (CLT) holds in D. Let Xy0 X5 oo
be independent D-valued random variables with the same
distribution L(X). Assume that they are defined on the
same probability space (Q,F,Pr). We suppose that for any

t € [0,1],
EX(t) = 0, EX2(t) < =,

Let 2, =n t/2(x4...4x) and P_= L(z). The
sequence {X;} is said to satisfy the CLT if there
exists a Gaussian process Z with sample paths in D and
law L(2) = P such that P, =—> P, By considering
finite-dimensional distributions it is easy to see that

if the CLT holds for one such sequence then it holds for
all seéuences with’the same properties. Thus, we can |
unambiqupualy say that the CLT hold§ for X, or L(X), if a
sequence {xi} as above satisfies the CLT. We also
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write L(zZ ) + L(2).

We observe that the second moment structure of the
limiting Gaussian process 2 is identical to that of X.
1f |

(1) there eixsts a Gaussian process with saméle

paths in D which has the same covariance as X;
then, by Theorem 15.1, p. 124 of Billingsley (1968), in
order to show that the CLT holds for X it suffices to
verify

(2) Convergence of the finite-dimensional distributions

p -l O

n tl...tk tl"'tk

(3) Tightness of {Pn}.

If condition (1) holds so that P is a measure on D,
then by the ordinary CLT, condition (2) always holds.
We thus turn our attention to the tightness of {Pn}, a
condition which by Prohorov's Theorem (p. 37) is also a
necessary condition.

A sequence {Pn} of measures on D is tight if given
€ > 0, there exists a compact subset K of D such
that, for e¢ll =n, Pn(R) >1 - ¢, Using the Arzela-Ascoli
characterization of compactness, tightness can be broken
down into two.sots of conditions, uniform boundedness (UB)

conditions and uniform equicontinuity (UBC) conditions.
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By Theorems 15.2 and 15.3, P. 125 of Billingsley (1968),
the sequence {Pn} is tight if and only if the condition
UB and either UECl or UEC2 below hold:

(UB) for each positive n, there exists a such that

Pn{x : sup|x(t)| > a} <n, n > 1.
t
(UEC1) for each positive €, there exists §, 0 < 6 < 1,
and an integer n, such that
P {x wi(6) > e} <n, n 2 n,

(UEC2) for each positive €, there exists 5§, 0 < § < 1,
and an integer nhg such that

Pn{x g w;(c) >2€el<n, n 2 n,
Pn{x t w [0,8) >€e} <n, n 2 n,
Pn{x : w [1-8,1) > ¢) <n,n> nof

Furthermore, if w;‘ is replaced in UEC2 by Wy,
giving a condition UEC3, then the condition
(uB?) for each positive n there exists a such that
P.{x s |x(0)] > a) <y, n>1
together with UEC3 imply {Pn} is tight, and, if p
is the weak limit of a oﬁbuqucnce {Pn.}', then P(C) = 1
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(Theorem 15.5 p. 127).

Actually, convergence of the finite-dimensional
distributions and any of the UEC conditions together
imply the UB condition (p. 126). On the other hand, in
finding counterexamples, the UB condition is the one we
have found most useful to try to contradict.

The criteria most easily applied to verify weak
convergence in the case of the CLT are given by the
following theorem (Theorem 15.6, p. 128).

THEOREM 1.3 Let X, and X be stochastic
processes. Suppose that the finite-dimensional distri-

butions w X —> 7 X for all
tl'..tk n tl.l.tk

tireeenty € [0,1]; that P{X(1l) # X(1-)} = 0; and that

(*) P{|x (t)-X (8)]| > A, [X (w-X (t)] > A} <

'1‘27[r(u)-r(s)lz“

for s <t <u and n > 1, where y > 0, a > 1/2,
and F is a nondecreasing, continuous function on

[0,1). Then L(xn) —> L(X) on D.

When considering sample-continuous processes on a
compact metric space S, rather than processes on [0,1]

with sample paths in D, the CLT problem can be formulated
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in an analogous manner, where this time the convergence is
in the weak-star topology on the dual of C(S) and the
limiting Gaussian process must be sample-continuous. The
best known results for C(S) are due to Jain and Marcus
(1974). |

Since under certain circumstances the CLT problem
for processes properly in D can be reduced to the CLT
problem for continuous functions on an auxiliary compact
metric space, we will now state Jain and Hagcus's main
result. The hypotheses of their theorem involve the con-
cept of metric entropy.

If T is a metric space with metric (or pseudo-metric)
p, let Np(T,e) denote the minimal number of balls of
radius < € which cover T. Let Hp(T,e) = logeNp(T,e).
np(T,e) is called the metric entropy of T with respect

to op.

JAIN AND MARCUS CLT. Let (S,d) be a compact metric

space. Let X be a C(S)-valued random variable on (9,F,P)
with E(£(X}) = 0, for £ € C(S)* and sup E|x(t)|2 = 1.
Suppose there exist a non-negative rando: variable M,

Buz = ], and a metric p on S, which is continuous with

respect to d, such that given s,t € S, w € Q,

|X(s,0)=X(t,0)] < M(w)p(s,t).
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1f
[/ H:/Z(S,u)du < >
0

then X satisfies the CLT in cC(8).

A stochastic process x is said to be stochastically

continuous at a point to € [0,1] if for each € >0,

P(IX(t)fl(to)l >e —> 0 as [t-ty] —> 0. If X has
sample paths in D, stochastic continuity at to implies
that P(Ix(to)-X(to-)l >0) =0 : it suffices to show that
there exists Gk + 0 and 8, * t, such that
P(lx(to)-x(sk)l > 6, i.0.) = 0. By stochastic continuity,

lim P(|X(tg)-x(s)| > 1/k%) < 1/k%; g0 1et &, = 1/x2
s+t

and there exists 8, such that P(Ix(t)-X(sk)I > 1/x%)

< 2/%%. put { PUx(E)-x(80] > 1% < kzl 2/%% <

Thus, by Borel-Cantelli, P(lx(t)-x(sk)l > 1/k2 i.o.) = 0.

X is said to be stochastically continuous if it is
stochastically continuous at each point.

If X has sample pPaths in D  and is not stochasti-
cally continuous at a point il' then with positive proba-
bility X has a jump: discontinuity at t; - t1~ is said

to be a fixed point of discontinuity.
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,rollow$ng Dudley ((1973) p. 68), we will say a

stochastic process {x(t), t € [0,1])} is sample-continuous

if there is a version of the process with continuous
sample paths, i.e., there is a countably additive proba-
bility measure on C[0,1] with the same joint distri-

butiohs as X(t) on finite subsets of (0,1].
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CHAPTER 2. FUNCTIONAL AND DECOMPOSITION CLT'S

In this section are grouped together a few of the
facts concerning functional and deéomposition central
limit theorems which will pr ve useful throughout the
rest of this thesis.

By a functional central limit theorem we mean a
theorem giving sufficient conditions on a function f
so that f(X) satisfies the CLT whenever X does. The
main problem is to establish suitable conditions on f.

The basic tool in proving functional limit theorems
is the Continuous Mapping Theorem stated below:

Sﬁbpoie X.»n€eN and X are random variables
with values in a separable metric space S with the Borel
o-field. Let f , ne€ N and f be measurable functions
fron s into a separable metric space S', also having
the Borel o-field. Let D; be the set of discontinuities
of £. |

THEOREM 2,1 (Continuous Mapping Theorem)
(Billingsley (1968) p. 31 and 34)

A('i,)’ I LX) — LX) and P{X ¢ D;} = o0,
thonA-L(f(x )) =—> L(f(X)Y.

(11) Let Em= {x € s 3 there exists a sequence

X, —> x luch tlut "n) —-> £ (x)}. E is meuurable;
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and if P(E) = 0 and L(X ) —> L(X) then
L(E (X)) —> L(£(X)).

The importance of determining which functions are
measurable and/or continuous from D into D or D x D
into D is now apparent. In his 1974 paper Whitt considers
conditions for certain elementary functions to be continuous
or otherwise preserve convergence at points belonging to
appropriate subsets of D or D x D,

We summarize the facts concerning those functions

which will be important to us here.

2.2.1. Addition is measurable on D x D and con-
tinuous at those (x,y) for which Disc(x) N Disc(y) = ¢
whoré Disc(x) is the set of discdntinuity points of x
"in [0,1). 1In particular, addition is continuous on
D xC (Whitt p. 22), |

2.2.2, Multiplieation is measurable on D x D and
continuous at those x,y for which pisc(x) N Disc(y) = g
(Whitt p. 24),

2.2.3. ut Dy be the set of non-decreasing
[0,llrvnlued'fun¢tion¢ in D; Let C, be the set of strictly
'1ncrqqping_jo,1]ﬁ§u1ued functions in C. Composition on
D x Dy is tnalﬁtablc'and continuous at |

(x,y) € (C x Dg) U (D x Cy) (Whitt (1974) p. 14).
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It is now possible to prove several useful functional

central limit theorems.

LEMMA 2.3 Suppose X(t) satisfies the CLT. Let u(t)
be a continuous function on [0,1]. Then (p+X) (t) satisfies
the CLT. Furthermore, if the limiting Gaussian process is

sample~-continuous and V¥ € D then the conclusion holds.

PROOF, Since ¥ is not random, Billingsley's Theorem 4.4,
P. 27, 2.2.2 above and the Continuous Mapping Theorem yield
the desired results. ///

LEMMA 2.4 Suppose that X(t) satisfies the CLT in D
and n € C, or that X(t) satisfies the CLT with a centinuous
limiting Gaussian process and n € Dy. Then (X e n)(t)
satiqfies the CLT 1n»D.

PROOF. Again n is non-random, so Billingsley's
Theorem 4.4, 2.2.3 ahove, and the Continubus Mapping
Theorem yield the result. ///

If X(t) satisfies the CLT, then the time-reversed
process Y(t) = X((let)-) also satisfies the CLT.

The main purpose of the rest of this section is to
prove a decomposition theorem which will justify to aome
extent our separate treatments of processes with only
fiind‘d;ncontinuitie- and of stochastically continuous
ptbeo.iol. In order to prove the Decomposition CLT, it
is noeolcaty to prova a CLT for random vectors whose

eoo:dinatos are D{0,1)~-valued random variablea, i.e.
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k

acCLT in D = Dk[0,1] which is the product of k copies

of D, with the product topology.
Conditions fot weak convergence of vectors in Dk

are given by the following theorem of Iglehart:

THEOREM 2.5 (Iglehart (1968) Theorem 5, p. 11)

Let {Pn} and P be probability measures on
(Dk,Dk). Then (i) and (ii) are necessary and sufficient

conditions for Pn a=> P

-1 -1
(i) P« -—) Py whenever
I'I tl...tr tl...tt

tl....,tr € Tb vwhere

Tp = {t : P{x € D* : x(t) # x(t-)} = o).

(ii) the families of marginal measures {Pi} on
(D,?) for i=1,,..,k are tight, where
PLA) =P (D x oo. x D xAxDx ... xD) with A in
the ith place.

THEOREM 2.6 (CLT for DY)

Let X = (xl,...,Xk) be a Dk-valued random variable.
Suppose that 'xj; J= 1,000,k satisfy the CLT in D with
limiting G-naiicn,procoss z.'j. Then X satisfies the

CLT in Dk

withtliniting Gaussian process
2, = (8.’1,....2.‘k) where the joint distributions of

the Jz..j ‘are determined by the convergence of the
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finite-dimensional distributions.

PROOF. In order to apply Theorem 2.5 we must verify
conditions (i) and (ii). Let §(i) denote independent

(1)

copies of X. Each component X is an independent copy

| _ no 3
of X.. Let z_=n"12 J x(i)

"tll [ N ) 'trgn = (En(tl) roee 'En(tr))

(zn'l(tl) XX oozn'k(tl) pzn'l(tz) p‘o oo 'zn'l(tr) poece 'zn'k(tr) )

which is a vector in Rrk. So condition (i) follows by

the CLT in RTK,

n . ) - — = pJ
P] = L(Xy) and P = L(z, J) ==> L(Z, j) = P

by the hypothesis that xj satisfies the CLT in D,
Thus, the marginals {Pg} are tight.

So, by Theorem 2.5, X satisfies the CLT in Dk

with limiting Gaussian process Zge ///
It is now easy to prove the Decomposition CLT.

THEOREM 2.7 (Decomposition CLT)

Let X be a D-valued random variable with,the.
decomposition X = X) + co0 # X, » where each 'xi is
a D-valued random variable satisfying the CLT with
limiting Gaussian random variable ¥;. Furthermore,

assume that all except possibly one of the Yi's are
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C-valued random variables. Then X satisfies the CLT
with limiting Gaussian random variable y = Yi teeo Y
where the joint distributions of the Yj are determined

by convergence of the finite-dimensional distributions.

PROOF. We can assume that if there is one X; whose
limiting Gaussian random variable is not C-valued then it
-is xl. By Theorem 2,6, the random vector (xl,...,xk)
satisfies the CLT with limiting Gaussian random variable
.(Yl""'yk)° Addition is continuous on p x Cx ,.. xC,
using 2.2.1 and induction, So, since
L(Yl,...,Yk)(D X Cx .00 xC) =1 by hypothesis, the
Continuous Mapping Theorem appliesj and thus
X = X+ ...+ X, satisfies the cLT. ///

In Chapter 5 it will be shown that the limiting
Gaussian process, corresponding to a stochastically
continuoua process with sample paths in D, must be

sample-continuous,
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CHAPTER 3. CONTINUITY AND THE CENTRAL LIMIT THEOREM

We begin our investigation of the CLT problem by
considering conditions which imply saméle-continuity.
We are thus siﬁultaneously considering the CLT problem
in both C and D. There are two main results in this
chapter. First, we show that if X is a separable
process with Elx(t)-x(s)lr'i f(|t-s|), where f satisfies
a simple integral condition, then X is sample-continuous.
Second, we prove that whenever the integral condition is
satisfied with r = 2, then the CLT holds in C for X.
Dobrushin (see Loéve (1963) p. 515) has given the
following criterion for a general sepdrable stochastic

process not to have jump discontinuities:
sup P[|X(t+h) - X(t)] > €] = o_(h)

where the supremum is taken over all intervals (t,t+h]

in [0,1). A simple application of Chebyshev's inequality
now shows that if E|X(t+h)=X(t)|% = o(h) for some r > 0,
then X cannot have jump discontinuities. 1In particular,
if X satisfies such a moment condition and also has
sample paths in D a.s., then X must be sample-continuous.
Observe that for r = 2 gsuch a condition is best possible
‘as shown by the Poisson process, which satisfies
E(X(t+h)-Xt))? = |n]|.
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Kolmogorov (see Loéve (1963) p. 519) showed that if
X(t) is a process (with or without sample paths iﬁ D)
for which there exist a and r > 0 such that
ElX(t)-xls)lr‘i clt-s|1+° for some constant C and
all t and s, then X(t) is sample-continuouﬁ.
Delporte (1964) weakened Kolmogorov's condition to

| t-s|

E|X(t)-X(s) |¥ < Toaltos [T

where a = 1lyr and ¢ > 0. The counterexamples of
Prbposition 4.8 show that when r = 2, this result
is best possible.

We include a proof of the following theorem of
Delporte because the method is instruciive and the inte-
gral condition of Theorem 3.5 will be derived from
Delporto's theorem,

s+l

Let A (0) = 0::22“ 1"“—-1"“‘""‘_1"‘“” 8 € 2.

We use ||-||r to denote the usual norm on LY (q,Pr).

THEOREM 3.1 (Delporte (1964) p. 179-80) Let
¢(h) be a non-negative function on [0,1] which is
non-decreasing in h for h sufficiently small and such
that ¢(h) —> 0 as h —> 0, 1If X(t,w) is a separable

process satisfying
T e T S |
I @A), <, 221
q=li 5
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then there exists a random variable A € Lr(n,P:) such

that
|X(t,w)=X(s,0) | < A(w)é(|t-8]) a.s.

for |t-s| sufficiently small.

PROOF. (Essentially Delporte's proof)

T 6241 e < T e THi A )], < -
q=1 1= gqm T

implies that ] (0271417 (w) < = a.s.
q=1 d

Let & be such that for h<é§ <1, ¢ is
non-decreasing in h. Given t,s € [0,1] with ¢t > s.

and t-s < §, let h = t-s. There is a q > 1 such
that 2791 < h <27, Let r =p 27 end

bq.- rq- + 2749 be such that rq <8< bq. Then there

are two possibilities, either rgis<ts bq or

r. <s<b

q <tc<hb + 29 gince s <t=gs8 + h,

q q

Using the dyadic expansion for s,

s=r + .12""1 + .22""2 4+ ..., the separability of X,
and repeated application of the triangle inequality
we obtain

Ix(o.u)-x(rqm)l < j_czm A lw).

The same bound holds for t replacing s if ¢t < bq.
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Otherwvise,

)| < T AL(w)

|X(t,w)=X(b
j=q+1 J

q

by the same method. As a result, in either case

IX(t,w)-x(s.u)|§3 Z A (w)
jmg+l ]

<30 [ (0273717 a (w)
jmq+l J

since ¢(h) > ¢(2"%%) for every i > 1. rLet
Alw) =3 § l¢(z‘5'1)1'1nj(m).
j=1

There remains to be shown only that A ¢ Lr(ﬂ,Pr).
For n > n,
n m . |
TRt} e VR N T D W
=1 7 m
n n B
=l (02731171 ) < 02734171 1A || —> 0o
ybe1 e s 1) Hiagh,
as m,n —> o, Thus, the partial sums are Cauchy in the
complete metric space r.'-'m.p:) which implies that

A & Lr(nopt)o ///

DEPINITION. A function h from [0,1] into [0,=]
is called a modulus (of continuity) if and only if both
the following hold: | '

(1) h is contituous and h(0) = 0;
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(ii) h(x) < h(x+y) < h(x) + h(y) for all «x,y >0
with x4y < 1.

DEFINITION. Let X(t), t € [0,1] be a stochastic

process. h is called a sample modulus for X if and

only if
(1) h is a modulus
(ii) for aimost all w there exist finite constants

km such that for a2ll s,t € ([0,1]

|x(t,w)-X(s,w) | < k h(|t-s]).

If ¢, in Theorem 3.1, is a non-decreasing function
on [0,1] then, as a consequence of the proof,
IX(t)=X(3)| < A(w)¢(|t-8|) a.s. whenever [t-s| < 1.

If s=0 and t =1, then |X(1)-X(0)| = A, ()

<o 2"H17 A () < $(DIAW).  Thus,

[X(t)=x(8)| < A(w)o(|t-8|) a.s. for all s,t. If

in addition, ¢ 4is continuo»rs and ¢(x+y) < ¢(x) + ¢(y)
for a11‘ #,y‘z 0, then ¢ is a sample modulus for X(t).

COROLLARY 3.2 Let X(t) be a aepatable stochastic
process with Elx(t)-X(-)l’ < £(|t-s|) for some r >1
and all s,t € [0,1). If there exists a non-negative,
non-decreasing function ¢ on (0,1) such that

é(h) —> 0 as h —> 0 and such that
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[
J 16279717 9/T (g (279%)) 1/E o
g=1
then X(t) is sample-continuous and there exists a

random variable A € LF(R,Pe) such that

|X(t,w)=X(8,0) | < A(w)¢(|t-8]) a.s.

PROOF .

Al = (B(ogupzq_llx((s+1)2-q+1)-x(82'q+1)Ir))l/r
8<

2971,
(§  EIx{(s+1)27T*)_x(s279*]) | ) 1/E

<
s=0

291,
= s=0 -

Now,

I @It a i, < § te@ 9y tialam/r g gmatty)
q=1 q=1
< @

which by Delporte's Theorem implies X is sample-

.continuous and furthermore

|X(t,0)-X(s,0)| < ¢(|t-8])Alw)

where A(w) = 3 Ill¢(2°q'1)l'1aq(u) «L*. ///
qi
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LEMMA 3.3 There exists a non-decreasing, non-
negative function ¢ om [0,1] such that ¢(x) —> 0

as X —> 0 and such that

J [6(27971))"129/T (g (2matyl/x
q=1

if and only if

21 2UT (g(27T*)) 1/ ¢ o,
q.

PROOF. The only if part is obvious since

(4(279°4))°1 4 o as q —> o,

So assume ] Zq/r(f(z'q+1))1/r < o, Then there
q=1

exists an increasing sequence of positive real numbers
[}

c, such that [ c 29/F(g(27%))1/r o o et
q q=1 q '
O(Z'q'l) = 1/’cq and extend linearly in between; ¢ has

the desired properties. ///

EE!E& 3.4. If £ is a non-negative function on
{(0,1) ‘which is non-decreasing in a neighborhood of 0,
then, for some r > 1,

I 2VF (e VT (o yeg [ g2 0/ () U/E

dy < =,
=l 0

PROOF. Let 6§ be such that f(x) is non-decreasing
in (0,8). Choose m such that 2"R2 8.
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(xf): § 2{a1)/rpg(pmatly | U/x
q=m

q=m
3 Zq-l

< I 2f ex1))Tax gince f£(x) is non-
q=m

29-2

decreasing on [0,6]

=2 [  (xI"Te(x"l)) /Ty

21-2
2-]!!+2
=2 y“(r+1)/r(f(y))1/tdy letting y = x~1
0
< e,
22 -(x+l)/ 1/r
(Only if): { y T(£(y))* Tay

™ 2q.1
1 J (xl-rf(x-l))l/rdx by reversing the above
q m ,q-2
reasoning

< ] 219D Q-r)/r (a2 1/r,9-2
q== |

- ] 2leW/rpgpmatl r 77
g m-1

THEOREM 3.5, Let f be a non-negative function

on ([0,1] which is non-decreasing in a neighborhood of 0.
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Let X(t) be a separable stochastic process such that

for some r > 1, E|X(t)-X(s) |¥ < £(|t-s]). 1f

g y-(r+1)/r(f(y))1/r < »

then X(t) is sample-continuous.

PROOF. The theorem follows immediately from

Corcllary 3.2, Lemma 3.3 and Lemma 3.4. ///

Define logklxl inductively by logo|x| = |x|,
logllxl. = log|x|, the usual natural logarithm, and
loqklxl = logllogk_llxll. Define e, (u) inductively
by e,(u) = e' and ¢, (u) = exp(e, _,(u)). Let
E, (u) - exp(-ek_l(u)). We will suppress the 1 if u = 1,

For k =1,2,... and € > 0 let

e l10g|x|1%...]20g, _; Ix|]1“|210g, |x]]

Note that fk,'e(x) 'decreases to 0 as x —> 0 for

X < E.. We now consider the special case of Theorem 3.5

when r =2 and f(x) = ()(fk e(x)) ag x —> 0,
[}

COROLLARY 3.6 Given k €N and ¢ > 0, let
X(t) be a separable stochastic process with
E(x(t)-X(s))? = O(fk'e(lt'_'“) as |t-s| —> 0. Then
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X(t) is sample-continuous. Purthermore if ¢ is a
non-negative, non-decreasing function on [0,1] with
¢(u) = |1¢.~gk.._:|_lu||":'/2 for |u| < E, and ¢' < ¢, then
there qxist § > 0 with 6 < E, and a random variable
Ae thn,pr) such that for |t-s] < &,

|X(t,w)=X(8,0) | < A(w)¢(|t-8]) a.s.

PROOF. Let vy < E, be such that [t-s| < y implies
E(x(t)-x(8))? < cf, _(|t-s]). We can set
£(|t-s]) = ka,e‘lt"|) for |t-s| < y. As an immediate

consequence of Theorem 3.5, since

. Y _ -
£ v~ 32 (£(y)) 1 24y

Y - - - -

X(t) is sample-continuous.

In order to obtain the desired Lipschitz condition
.we verify the hypotheses of Corollary 3.2. There -
exists a § < E, such that £, é(x) is monotone on
) ’

(o;c),' Choose m such that 2°™! ¢ 5§ and
m> (e_,/109 2) + 1. Then
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I (o279 722971 /2 g (pmatdy 172

q=m
- log, _, ((q+l)log 2)¢'/2

h qu (g=1)log 2|log((q-1)1log 2)""I1°gk-1((q'1)1°9 2)|I4e/2

cc, ., ‘I' _ log, _, ((g-1)1og 2)¢'/2

- ’

g=m(q-1)log 2|log((g-1)1og 2)|...|log, _,((g-1)log 2) |1¥E€/2

- ck'e.ézm((q-l)log 2|log((g-1)log 2)|...|log, _, ((g-1)log 2)|1*%)~2

where a = (e-€')/2 > 0,

This sum is finite by the integral test because

® 1+a)-1

(x log 2(log(x log 2))...(logk_1(x log 2)) dx

e .1/1og 2

o < =,

= - (e(logy_, (x log 2))
ey .1/1og 2

Therefore, by Corollary 3.2, we again see that X(t) is

sample-continuous and in addition it satisfies the desired

Lipschitz condition. L7/

Delporte ((1964) p. 179) concluded the above result for
k = 1. Without the hypothesis of separability, the proof of
Theorea 3.1 shows that the process X is uniformly cﬁntinuous
on the dyadic rationals. If X is also stochastically con-
‘tinuous, it will have a unique ocentinuous version,

Theorem 3.1, with the additional assumption of stochas-
tic continuity, Theorem 3.5, and Cotollaries 3.2 and 3.6
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can thus be stated without the hypothesis of X being
separable, if we replace X in the Lipschitz cbnditibns,by
the continuous version X. In the future we will denote
the extensions of these theorems by putting an asterisk (*)
after the number.

It will be shown in Chapter 4 that Corollary 3.6*
is best possible, in the sense that for each K¢ N

there is a process satisfying
E(X(t)-X(s))? = 0(f, o(lt-s])) as |t-8| + 0

which has no continuous version. Since the process
discussed there has no separable version either, the
question of whether Corollary 3.6 gives best possible
results still remains.,

Whenever X(t) has sample paths in D a.s., X(t)

is separable since for 8 € Q = rationals,

lim inf |x(8)| < X(t) < lim sup |X(s)| by right
840 |t-s|<$ = 640 |t-s|<$
continuity.

‘THBOR!H 3.7 hct f be a non-negative function
on (0,1] which is non-decreasing near Q. Let X(t)
be a stochastic process with mean 0, finite second moments,

and sample paths in D, satisfying

E(X(t)-X(8))2 < £(|t-s|) for all s,t € [0,1]
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and g vy 323 (s(yN 1t %ay < -,

Then X is sample-continuous and satisfies the CLT in C.

PROOF . According to Theorem 3.5, X .is sample-
continuous. Let {xi} be a sequence of independent,
identically distributed C-valued random variables with
law L(X). Let & = n'1/2(x1+...+xn). z, are C-valued,
hence separable. Moreover, B(zn(t)-zn(s))2 =
E(X(t)-X(s))2 for all n; so Lemmas 3.3 and 3.4 imply
that all the z, satisfy the hypotheses of Corollary 3.2.
Thus, there exist random variables A(n) € Lz(n.Pr) and

a non-negative, non-decreasing function ¢ such that
|2n(t,u)-zn(s,m)| g.A(n)(u)¢(|t-s|).

As seen from the proof of Corollary 3.2,
(-]

A® 12 = 113 ] ey ialh g2

q=1
T q=1,,=1;,(n) 2
g_s(qzlto(z 117 HAg ™ 1 )
< 9( ] 112797y "12(a"1)/2 (g (pma¥1 ) 1/2)2
- q=l o

EM (this defines M)
< @,

In order to show that the CLT holds in C it suffices
to show convergence of the finite-dimensional distributions,
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existence of a sample-continuous Gaussian process with
the covariance of X, and condition UEC3 of Chapter 1.

Given é >0 and n > 0, choose § such that
$(8) < e?n/M. Then

P §) > ¢} = Pg{ z2_(t)-2 )| > €}
AW, (8) 2 € ¥ I:EE|<6| n(t) -2, (s)]| > ¢

< Pr(aA™ () e(8) > e} < eT2EA M (61 ?

2

= o8 2E(a™)? < me™29(8) < n.

Thus condition UEC3 is satisfied.

1Iet 2 be a Gaussian process with the same
covariance as X. Since B(Z(t)-Z(s))2 = B(X(t)-x(a))z,
Z ll£1lficl the hypotheses of Theorem 3.5*; hence, 2
is sample-continuous. By the crdinary CLT, the finite-
dimensional distributions of 2 converge to those of 2.
Hence, X satisfies the CLT in C. ///

Examples in the next chapter show that the CLT need
not hold if the integral condition in Theorem 3.7 is not
satisfied.
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CHAPTER 4. COUNTEREXAMPLES

The following examples have several purposes. The
examples of §1, Proposition 7.8, show that the integral and
sum conditions for sample-continuity in Theorem 3.5
and Lemma 3.4 are sharp in the case of second moments. To-
gether with Corollary 3.6: these examples settle the problem,
mentioned in Dudley ((1973) p. 93)of what is the best exponent
of the logarithm. They furthermore show that the exponents
for multiple logarithms found in Corollary 3_.6‘r are best
possible.

By modifying the examples of §1 which have both unbounded
and discontinuous sample paths, hence are not even in D, we
obtain continuous processes satisfying the same moment con-
ditione. Proposition 4.12 of §2 shows that these continuous
processes cannot satisfy the CLT in C. As a result, these
examples strongly suggest that Lipschiti conditions on second
moments of the increments alone imply that the CLT holds in
C only if they also imply sample-continuity.

In the final qection} §3, we extend some examples of
Dudley (1974) to show that if X is C-valued with
s(x(t)-x(-))z < |t-s|° foi: all s,t ¢ (0,1}, o < 1, then

even the additional assumption of sup | x(t,w) | <1 is not
t,w

sufficient to imply that the ChT holds for X. Dudley's
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examples work for a < %, 8o this extension fills in the gap
for é.g a < 1, Since by Kolmogorov's Theorem (Loéve (1963)
P. 5195, a > 1 implies sample-continuity and hence the CLT
(Araujo (1974) p. 27), this leaves only the case a = 1
undetetnined.

For results in this chapter we suppress the chapter
number 4.

§1. We begin by introducing a convenient notation and

several service lemmas to be used in the proof of Proposition 1.

Notation: Let 1log|y| be the usual natural logarithm of
lyl. 1Inductively we define log, |y| = logllogk_llyll. Let
8g(x) = x, e(x) = e;(x) = exp(x). Inductively we define
ek(x) - exp(ck_l(x)). Let Ej(x) - exp(-ej_l(x)). For
convenience, x will be suppressed i f x = 1,

Approximation (*): if 0 < p <1 then

{log(l-p) | = .I. §3< .f pj-rP—.-

129 ym1 T = 3m1 P

LEMMA 1. Given k € N, there exists vy(k) such that if
- [3B,ik-nl and B < y(k) then for every j = 2,...,k |

1095-'%:.-'-“’- hl (1/ )1091(8-3).

| | log, ., (3-B) | _ |
PROOF. 8ince 1°9155§:IT§TET'- logj(z-B) - logj(z+B)

it suffices to show that log,(s+B) > (1/2)log, (z-B).
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Differentiating,

a log. (z+B) . -1
azl 53, Z-B ] = [(z+B)log:i (Z-B)logj_l(z+B)...lo_g(z+B)]

-(logj(z+B))[(z-B)(logj(z-B))zlogj_l(z-B),,,109(2_3)]*1 =0
implies that
log.(z+B) log. l(z-B)

Iogjlz-Bi logj_11z+B$"‘log(z+§T (z+B)
Letting vy
logsy _ o9y (¥-2B)  1o9(y-28B) y-28
g (y= logy_ ;¥ “*"log y Y

= log, _, (1/(y-2B))

pl ... log(1/(y-2B)) , _ 2B
logj_l(lly) **log(1/y (1 y)

> ey, logr(l/(y-zn)) > 1ogr(1/y) for

Z+B, Y € [4B,Ek] we obtain

1
Since ;:53 >

log.y
r = lpooo,ko Th\ls, l—oai'?m > (l - '2'§B') _>_ ‘%‘o

The critical points found above might be maxima or inflec-

<=

tion points rather than minima. We check the endpoints of
the'inﬁerval in which 2z is defined.
log, (z+B)  log, (1/4B)

At z = 3B, 133173557 = 10§j B which converges to 1
at B «» 0; so there exists Gj such that B < Gj implies
that logj(l/CB) > (1/2)logj(1/28). Let
§(k) = nin(&l,....ck).
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log. (z+B) log 'Ek

At z = E_-B, — = —
k lagj z-B logj (Ek 2B)

which converges to 1 as B + 0; so there exists “j such

that B < ny impliies 1;>ng:k > (lOgj (Ek-ZB))/Z.

Let n(k) = min(nl....,nk).

Let v(k) = min(6(k),n(k)). Then for all B < y(k)
the desired result holds. ///

2 2k
LEMMA 2. lim (logk+1|Ek-x|) | 1og x|

x+0

= 0 for every k € N.

PROOF.

. log, .1 (1/(E, =x))
Using 1'H8pital's rule, lim —X+i l_‘k
x+0 (log (1/x)

" (og, (1/(E,=X)) .. .1og (1/ (E=x)) (E.-x)) *
= lim

x+0  k(log(1/x)) %t (1/x)

The numerator converges to a constant Sy and the denomina-

tor goes to » as x + 0. Hence, the resuit follows. ///

LEMMA 3. Por every P > 0,

2, (P)

2 een?’

" 2
/(log Y°E, (Py)e, , (Py)...e(Py)dy <
1 B (Y081 Pl (e,_, (P))



'PROOF.

E, (Py) =
= [-(log )% Ky Lt z { 298 Ye, (py)dy]
= é'{ y'lloq(y)Bk(Py)ir - %I-y'llog(y)sk(Py)...El(py) 1

+ g { ly~%-y 10g (y) 1E, (PY)E, _, (Py) .. .E, (Py)dy

k=2 =
- I | v 109(0IE (Py)...E, (Py)e(Py)...e, (Py)dy]
j=1 1 1 ) -

<2 y2% @ ) e« o.E, (Py)d
£ 57 { ¥ EcBY) L Ry (By)ay

‘ 2E, (P) e _ -
_<_ _~ . Bk -y { y ZP Ek(PY) (Ek(P)) lek_l (PY)...G(PY)dy
P (ek_l(P)...C(P))
2E, (P) ' e
.- k -2 -1
= . [-y “E_ (Py) (E, (P))
Plle,_,(P)...ee))> = X = K 1
9 {e -3 -1
- y “Ey (Py) (E (P)) "dy]
ZEk(P)
< [ ]
=¥ @r..een?
e, (y)
2
LEWA 4. gly) = —y——y has a minimum between
| y (e(y))

1 and 2 and no other extrema in (1,=),
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PROOF . Differentiéting,

a v) ez(y) ez(y) Z e, (y)
59ly) = 47— -3 g5 = 0 implies that
dy yqe(y) y‘(e(y))2 y3(e(y))

ye(y) = 3+2y. The left side increases faster than the right
side, (y+l)e{y) > 2 for y >1l. At y=1, e <5 and at

y =2, 2e(2) > 7. Thus, fhe only solution is between 1 and 2.
The solution is a minimum since 1lim g(y) = « and

lim g(y) = =. ///
y+0

ek(y)
LEMMA 5. If k > 3, f£(y) =

Yoely)...ep_,(¥) (e (¥))>

does not have a maximum or a minimum inside (1,«).

PROOF. Differentiating,

d(£(y)] % ) 2
dy viie,_,yn? ;5e(y)...ek_2(y)(ek_lty))

ek(y)

3

k=2 ek(y) ek(y)

. - 3— — = 0
371 y2e, (¥)..nep o (y) (e 1 (¥))°  yile,_ (y0)°

2 k-2 1

+
ye(yi...ek_l(Y) j£1 ej(y)...ek_lli)

implies (*%): 1 =

| 3
+ 5;:;7?7' Since the right s;de decreases as y increases,

y 2 1, we obtain an upper bound by evaluation at y = 1:

k-2 | »
2 1 3 2 (k-2) 3

—_— ¢ Z ,
.....k-l j-l .j....k-l ‘k-l - e ek-l ek-l
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Since k 3'3, each term decreases as k increases so we

Y3 1 3
obtain an upper bound when k = 3; —imp + =— + =—
el €& &
-2+ L. l. Thus, (**) has no solution in (1,»), so
P

no maxima or minima of f(y) ocour inside (1,%), ///

ek(y)
LEMMA 6. If k > 3, h(y) = ~ —y does
. yle,_,(y)e..e(y))’
not have a maximum or minimum inside (1,«),
PROOF. Differentiating,
a ek(y) ek(y)
(hiy)] = -3
& Yoo, (W) eeee () Yole, 1 (¥)emmely))?
k-1 e, (y)
-2 { ..! k - = 0
j.l Y G(Y) oooej-l‘Y) (ej (Y) Oooek_l (Y))
implies (*#%); 1 3 2 kfl 1
pil168 H = + .
yeT?)...ek_l(Y) ju1 ej(y)...ek_l(y)

Since the right side daecreases as y increases, evaluating

at y'- l, gives

k=1 |
e 3 —+2 2 e 1. hd e : + 2ék-1)
LA k-l j.l j... k-l eeoe k-l k-l

which decreases as k increases; so at k = 3 we obtain

3 4
* =<1,
. =z .2
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Thus, (***) has no solution in (l,e), ///

LEMMA 7. If R < (1/8)exp(-k?),
log(1/4R) > log, (1/4R),..log, (1/4R).

PROOF. Leét y = (1/4R). Since y > exp(k?),

y > (log y)k > log y...logk_ly. Thus,
log y‘ > loqzy...Ingy giving the desired result.

PROPOSITION 8., For any k e N there is a process

X(tw), 0 < t <1, with discontinuous sample paths which

satilfies the condition

' 2 |te-s]
E(X(t} - X(8))" < c : .
=~ lloglt-s||Z|1eg,|t-s]|2...|10g, |t-8] |

PROOF. Let k e N be fixed., We define the process

logk+1|(1+2t)/4 - w| if | (1+2t)/4 - ]| < E,
xk(t'“) = X(t,w) ' - “ ¥ (1e2¢) /4
0 othervise

where t ¢ (0,1] and w € ((0,1], Lebesgue).

Each sample path of X(t,w) is discontinuous at
(1+2t)/4¢ = v and is unbounded since

lim . xt,0) = lim xt,w) = -,
t Y2u=(1/2) -t t2u=-(1/2)
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(1) x(t,w) has finite second moments:

1l
Let v = (1+2t)/4, E(X())? = £ x%(t,w)dw

vt

3
= (log, ., |v=0]) “du =
£'Ek k+1

v vt

[ +1

2
(log, ., |v-w|) “dw
V‘Ek v k+l

=2 f (1ogks)2e"ds upon substituting s = - log(v-w)
®x-1 |
in the first integral and s = - log(w=-v) in the second

integral.
Ifk =1, B!?(t) = 2 { (log s)ze"dc =M <

1f k > 2, letting u = 1°9k-1' we see that

sz(t) = 2 { (log u)znk(u)ek_l(u)...e(u)du |
= zl;(log u)ZEk(u)I1 + 2 { lg%-Ezk(u)dul
-4{ 1—°9323k(u)dusuk<-.

Now we prove that X(t,w) satisfies the stated
Lipschits condition. Let y(k) be as in Lemma 1. By
Lemma 2, there exists a(k) such that x| < 2a (k)
implies (logk+1|3k-x|)zllog xlzk < 1, Choose
r = min(E,v(K),a(k) ,exp(-k>) ,1/144).
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If r< |t-s| <1 then E(xX(t)-x(s))?
<e(lxtv)]| + |xt@ D? < 2(2x)? + ExeN?) < am
where M is defined as above.

. 2 2

4% |log r|“e..|log, r|“|t-8]
Thus, E(x(t)-x(s))z‘g u V3 k —y

rllog|t-s||%...[log,|t-s]|

|t-s]

z C(r,k)
|10g]t-8[[%.. [10q, |t-s]

_lz .

Next assume O < |t-s| < r and t > s,

Let v = (1+2t)/4 and u = (1428)/4. Then v - u < .}r.
' v=-E
2 k 2
E(X(t)=X(s))" = [ (logk+1|u-w|) de
II-BR
" ;Mg" U L L] PR ;Mku lv-u])2a
vn °9|Yog, To=aT|’ 9 b, ogy 41 |v-0]) “dw

I1 + I2 + 13., If k = 1, use the maximum of the above

bounds of integration and 0.

(2) conlid;ring the first integral
v-E
k 2 2
I, = /] (logy,,lu-w]|)“dw < (v-u) (log, . |u-v+E, |)

“-Bk
‘ 12 (1 E, - (v-u) |)*.
I 1“ (v-“) I eee lloqk (v-u) l’ qk."l' k

|1oq(v-u)|2...|1ogk(v-u)|z

< T___!;:& m———l i +11E= (v-u) 1| 20g (v-u) | 2

log(v=u) |*...|10g, (

< | (v-u)
=1 by Lemma 2 and our choice of

1“ (v=u) l (XX Ilﬂk (v=u) I
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r < a(k). Therefore,

t-s|
I. <
L= Micgleosl 1%... ITogy [eoa]

|2 for a constant Gk

since v-u = 555.

(3) For the third integral we note that

V+Bk

2
I, = ‘{w (log ,, lv-u]) “dw < (v-u) (log,,, |v-u-E, |)
a+Ey

2

< G — 1t"4 —w by the same reasoning as
|1og|t-8]]|®...|10g, | t-8]|
k

for 11.

(4) The second integral, I,, is the hardest to
estimate. It will be divided into a number of parts.
utE, Iv-ml

= [£-Bk + { +'£ 1(109|IEE—TE—ET1) dw

+1

) ¢

2,1 ¥ 12,2+ 1,

u+Ek

Now I, +1I, 4= [f + ) (log|

ogklv-MIi 2
V-E, Vv Tog, Tu=u]

) “dw

zk 1ogk(y+u-v) 2

-2 (log| ) “ay
£~u ogy Y |

upon letting y = v-0 in 12'1 and y = d-u in I, 3¢
’

Now letting A = v-u = 3|t-s| we find that



(]1]
(F]
-
+
(7]
N

22 log, (1/(y-A)) ,
(5) Jl 3{ (loglrog—k(wr—’) dy
2 log, (1/(y-A))
< [ (109136-117!x7-——) dy since (1/y) > (1/2a) > (1/r)
A k

2 e

A

{ (109(2/3))23k(z)ek_1(z).;.e(z)dz
‘ogk(lla)

upon letting z = loqk(l/(y-a)) and B = 1ogk(1/2A)

=B [ (log y)’E, (By)e, _, (By)...e(By)
B"110g, (1/2)

letting y = z/B

<3 [ (09 y) ’E, (By)e,_, (By) ...e, (By)dy

2Ek(3)

< by Lemma 3
2 e T een?

42 — = _ 2|t-s
(1oqk25{,i..(loq 22)°  |i1og|t-s]|| ...Ilogklt-.llz
2| t-s|
0 Iy £ .
1 = logle-sl|®... 1209, |t-s|?

1A

Thus




58.

(6) Eku |1°9" y-») ')26

6) J. = y
2 £A °9|Toq, ¥

Ey-R log, (z-R)

2 L]
= (logl |) dz letting 2z = y-(A/2) and
{n Tog, Tz¥K) |

“ Rw A2 = |t;s|/4

l!k.nu ((1-1 109y (2°K) )/10g, (z-R)]) 24
= og - r——r—w Og z=R b 4
{n *9Tog, _, (=+ k

)/loqk(z-R))zdz

by Lemma 1 and Approximation (*) with p < %. 80
1/(1-p) < 2,

We now consider two cases, k =1 and k > 2,
In what follows let D(k) = logk(lllk). We will suppress
the 1 if k = 1,

Case 1 (k=1): By the above,

Ex-R 1og(§§§))2 Ex™R log(1-=58) ,

it ‘sgEw 4] w9

R
2 (K 2
< 4 '{n (2R/[(3+R) log (2+R) }) “dz

by ‘Pproxination (*), again with p <7

D
= ¢3g? { o¥y~2dy 1letting y = -log(z+R)
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D D
= 3r%(e¥y 72|, + 2 [ €Yy 3ay1
) §
< %% [(1/400°% + (172072 + de] since e¥y™) has a
minimum at 3 and no other extreme points in [1,D] we

: D
have approximated [ by the value at the upper limit
3

: 3
times the length and we have approximated [ by the

value at the lower limit times 2.

Hence, J2 < 12]1:-_3[ y, + l‘enz < 780 [t-s] v i
: (log|t-8s|) |10g|t-s||

Case 2 (k > 2):

J, < 4 lzk“R(u ;5252145;2;4/1 (z=R))2dz .

224 [ %965, 1 Ik

-4 Bk-a(1 - (log k=22 -R)1)2
{R ogll (logm)/logt_l(z R)])%.

(log, (z-R)) ~2az

o KR log,_,(3-R) , -2
4 gk (logm) (logk_l(z-l!) logk(z-R)) | dz

iAa

again by Lemma 1 and Approximation (*)

.k-n
_<. rx : ‘k l'n (log(-:-;%).)z(log(z-k)...logk(z-R))-zdz

Bk-ll

- & (log(1-zp)) 2 (1~ (3-R) .. .1og, (3-R)) ~%az

lk-ll

nz ( "*R) log ('-R) [ XN} loqk (."R) ) -zdz

ia

‘uz {n

by Approximation (*) with p = (2R)/(3+R) < 1/2
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E -R
k
*2 [ R?((2+R) 1og(z+R) ... log, (2+R)) 24z
3R

Dy

ak+2p2 [ e tre y ).aaegtyn) ey

letting y = logk(ll(z+R))
' D

2 -2 k
R”[ey (¥) (ey _, (¥)..egly)) ™),

‘k+2

Dy

+ 2 { ek(y)y-l(ek_l(y)...eo(Y))-de

D
k=1 Pk - _
+2 j21 [ o) (veg(y)cecey ) (Y7 e (y)ney, (v)) 2ay]

«**2r2[(1/4m) (D,...D,) "2

Dy

+ 2 [ e tyivTHey (n).. ety Pay
D
K -1 -2
+ 2(k-1) { e (¥) (yeg () .oie, 5 (¥)) 7 (e, _, (y)) ™ “ay]

*2p2((1/4R) (D,...D,) "2

D.
k - -
+ 2 { e (y)y 1(ek_l(y)...eo(y)) 2dY

D
' k
+ 2(k=1){ey (y) (eg(y) ..oy _,(¥)) "2 (e, _ (y) 73|,

’Dk
+ 2_{

e Ny ey (y) .oy _5y)) "2 (e, _; (y)) ~2ay
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k-l Dy
-2
+ 2 { ek(y) (yeo(y)...ei_l(y)) e, (y)...ek 2 (¥ %

(ek 1 (y))

Dy

+3 ek(y)y‘l(eo(y)...ek_z(y))'l(ek_lty))’3dy}1

< 4¥*2R2(((2k-1)/4R) (D,...D,) 2

+ (x-2) | e, (Y)Y e _; (¥)...eq(y)) 2ay
P
+ 2(k-1) (2Ke1) [ e, (¥) (yey(y) ooy, (y)) ey, (y)) ay

We now treat k > 3 and k = 2 separately. If k > 3,
3., < 45*2p2[((2x-1)/4R) (D ) =24 (4x-2) ( (1/4R) (D, ...D,) "~
2 2 . 1oooDk k*°°*"1

+ Do le...e, )72} + z(k-1)(zx+1){(nk...n2)'1 23 (1/4m)

+ Dkek(e...ek_z)'l(ek_l)'3}] using Lemma 6 for the first
integral and Lemma 5 for the second integral when k > 3.
Hence, 3, < 4X*2R?[((6k-3+2(k-1) (2k+1))/4R) (D,...D}) "2

+ o, ((4k=-242(k=1) (2k+1)) /IR M2 (e, e 1)7!)  since

D, = log, (1/4R) < (1/)R"1/2) pecause R < (1/144),
and by Lemma 7.

Therefore J, < N ' It"'i if k > 3,
|10g|t-s]| o--lloqklt-SII

for .om conatant “k‘
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When k = 2,

_ >, |

33 < ¢ 1/AR 007 + 12 [ ey iy (e tn)) THay)
2

-2 2

4.2 -

< 4°R°[(3/4R) (D,D,)"“ + (3/R) (D,D,) ]
D,

using Lemma 4 to approximate f by the upper limit and
~ a

+ 12e2e

a
| by the lower limit where a is the minimum occurring

between 1 and 2.
2

2
Hence, lei 4 -lslt;sl —uyt 4‘-12eeR
, |20g]t-s]||10g,|t-s]|
'< 5,000 J;?’L - if k = 2,
|10g|t-s||“|1og,|t-8]|

Combining all three cases we find that

, |t-s] -

Ja €

2 -
*Tloglt-a[[2... [1og, It-s][?

‘'where L, = max(N,, 5,000). So

I, 41, md 43, < (L+2) Ltos]
2,1 * 12,37 0+ 9y 2 (i l1og|t-8|]%... |1og, |t-s]|>
v logk(v-m) 2
(7) 12'2 = f (1°9|IBE;TE=ET|) dw
u
s
| "V : logk(v-ﬁ)) 2
= [£+u+\ll ](loglmn dw
T |
=u

| T 3 ) 2
logk(!ag + 3)'
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upon letting z = @ - %-(u-w) in the first integral and
zZ = %&v+u) - w in the second integral. Thug,

logk (R=2)

12 2'2! (log|1°—g—(m|) dz
R logk(lly)
= 2 ] (1og(mn-)) dy letting y = R-z
I

since 2ek < 1/2R < 1/(2R-y) < 1/y for y € [0,R],
and setting S = logk(l/ZR)

-2 | (log £)2E (2)e, . (2)...e(z)dz
{og, (1/R) g Eglzle

letting z = loqk(]./y)

=25 [ (log x) 2Ek(s:lc)ek_l(s:c)...e(s:t)dx, X = s-

s™110g, (1/R)
< 28 [ Glog x) %€, (Sx)e, _, (Sx)...e(Sx)ax

< 4, (8)/(Sey_,(S)...e(5))% by Lemma 3

|t-8

|v=ul

< B
|09, [v-ul .. [10g1v=ul 17 = X[iog,[t-a||%... 1og|t-s]|*
for some constant B, .

Combining everything we obtain



64.

E(x(t)-x(s))? < € ees]

where C = max{C(r,k), ZGk+Lk+2+Bk}. ///

2
|log|t-s|]|®...]|10g, |t-s]|

§2., We will now modify the processes of Proposition 8

to obtain mean zero processes with continuous sample paths

which satisfy the same Lipschitz conditions,

be as in Proposition 8 with k e N fixed.

Let X(t,w) = ( X(t,w) if | (1+2t)/4 -
log, ,,600 if |(1+2t)/4 -
0 if w = 3/4-
where 6@ = Ek+1(8/(3-4u))

Let Y(t,w) = Y(t,uxk) = { X(t,0) if
-X(t,w) if
where w ¢ ([0,1] x {0,1}, Lebesgue x (%60 +

The following three lemmas will be used
Y(t) does not satisfy the CLT, even though
satisfies a tight Lipschitz condition on the
moments of its increments.

LEMMA 9,

Elup(y(t)'Y(l))z < _C|t-s]

Let X(t,w)

w| > 6,0 0w # 3/4
w| < 8,0 0 # 3/4

k=20

k=1

761 = dw)
to show that

Y(t)

second

— ..
2oglt-s]17.. 109, | t-s]]
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PROGE. E,, (¥(t)-¥(s))? = B, (X(t)-X(2))%. Now to
show that for all u,t,s where o ¥ (1+2t)/4 or
(1+28)/4, |X(t,w)=X(s,0)| < |X(t,0)=X(s,0)]|. We assume

that t > s,
Case 1. t,s ¢ (w-éw, m+6m), then equality holds.
case 2. t,s € [w-6§ , wts ] implies |X(t)-X(s)| = 0,

Case 3. Onlyoneof t and s is in [m-Gw, w+6wl.

Suppose 8 € [m-sw, ”+6w] X(8) ¢!

L

but t is not., Then - ;
X(s)—"

X{s) > X(s) > X(t) = X(t).
- N . - X(t) = X(t)
So, |X(t)=X(8)]| = X(8)-X(t)

< X(s8)=X(t) = |x(t)-x(s)].

The other case is the same.
Thus, Ehu(Y(t)-Y(s))2 < Ex(x(t)-x(s))2 and we can

apply Proposition 8, ///
Let Y(i)(t). i=1,2,,.. dencte i.i.d. copies of

n
v(t) ana 3 (t) =2 T vu,
/n i=]

LEMMA 10 Given a > 0, sup| (/@Y™ (t,w)| > 2a
t

implies either suplzn(t,g)l >a or suplzn_l(t,g)l > a.
t t -
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PROOF. Assume not, then sup|2z (t,w)| < a and
t

suplzn_l(t,9)| < a. However, supl(l//ﬁ)Y(n)(t,Q)l
t

t

-1)(1/2)

= sup|2_(t,w)-(1-n zn_l(t,g)l < 2a, a

t
contradiction. ///

LEMMA 11. For any b ¢ R, there exists N, such

that n > Ny implies that

P{ max sup(l//ﬁ)|Y(i)(t)| > 2b} > 1/4.
l<i<n t

PROOF. We will need three facts:

2m .\ _x
(1) ) (m) 2% = 1 since each term in the sum represents
k=m

the probability of winning a best of (2m+1l) contest at

trial number k+1,

(2) 27%1 (kl‘;l) <27k (:) for 2m < k < 3m,

(3) (:‘) < (2];‘) for 3m < k < 4m.

For w € [%’l %) x {0,1},

sup (1/vm) | Y3 (£,0) | = (1//m) 1°9k+1(6;](.i))
t

where we can assume the independent copies @f Y are taken
on a product space ¥ (t,w) = ¥Y(t,0(i)).

By the Strong Law of Large Numbers, as- n + © approxi-
mately n/2 of the w(i)'s fallg,in [%, %). Thus, given
§, 0 < 8 < 1/4, thére exists N(§) such that n > N(4) implies
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B, = P{w : max sup(l//ﬁ)|Y(i)(t,Q)| < 2b}

n T . l<i<n ot
<6+ Plwe [0,1]1": 1< i(l) <i(2) < ... < i(In/4]) < n
with w(i(§)) ¢ [4, 3 for j=1,...,[n/4] and
max (1/v/n) log (8~ ) < 2b}
1<3< [n/4] k+1 m(l(J))

n 1 3
= . ¢ A f
Let Ai(j),...,i([n/4]) {w e [0,1] 1w(:;) € [I 4) or
r=1i(1),...,i(in/4)) and w(r) 4 [T' T) for
re{l,...,i([n/4))} ~ {i(1),...,i([n/41)}}.

. -1
So B_ < § + LP{w € A; ‘ ¢ max (— )lo s
oB, = w i(1),...,i([n/4}) 1_<.J'i[%l o Ix+1°%w (i (5))

where the sum is taken over all possible strictly increasing

sequences i(l),...,i([n/4]) with 1 < i(j) < n for all j.

§ + IP{®d € A, 8/([3-4mi(j)]/ﬁ) < 2b}

1), ... il7an *y 3304

n
=45 + z (P{w ¢ [1/4,3/0)})
k=[n/4] (ln/4l)

(P{w ¢ [1/4,3/4) : 8/([3-4wlv/m) < 2b}) ["/4] by independence

k-[n/4],

n k -k [n/4]
=6+ I ( ) 2 “(1-2//nb) for n large
k=[n/4] \[n/4]
-c/h 2m k -k 4m -]() -k 3m k -n
<+ e 5 [(X)7k, ¢ 27k, 27k, 7( 271
- k=m (“‘) k=3m( m k-Zm{ ) l-l)
[n/4]11log(1-2/v/nb) -cv/n

setting m = [n/4], using (3) and e < Me

for n large where M anc c are constants
-c/n 2m\ ,-2m n -n .
<s+e (2+m(m)2 +71([n/4])2 ) by (2)

+ § as n + » ag can be seen by using Stirling's formula.

Choose Ny > N(§) such that n > Ny implies

(1-2/J5b)[n/4] < 1/2. Then for n > N,
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Plw : max sup(l/dm ¥V (t,0)] < 2b} < 3/4,
T 1lci<n t
Hence,

P{lw : max sup(l//')lym (t,w)| > 2b} > 1/4. ///
1<1<n t

It is now easy to prove that Y(t) does not

satisfy the CLT in cCJ[0,1].

PROPOSITION 12, For any k € N, there exists a

continuous stochastic process Y(t,w) which does not
satisfy the CLT in C[0,1] but such chat

Clt-s|
rg 2
Iloglt"3|| ooollogklt"sll

B(Y(t)-Y(s))

PROOF. Let Y(t) be as defined above. Y(t) is
continuous and by Lemma 9 satisfies the required
Lipschitz condition. 1In order to show that Y(t) does
not satisfy the CLT 'it suffices to show that there exists
€ >0 such that given a > 0, there exists n(a) for

which P{s:plzn(a)(t)l > a} > €e

Lemma 11 implies that given a > 0 and € = 1/8
there exists N such that if n > N thén

P{ max supu/l‘)lv(“ ] > 2a} > 2e.
l<i<n ¢t

But this implies that if n 3'N‘
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P{ max sup(l//I)IY(i)(t)l > 2a} > 2e.
1<i<n ¢

Thus, by Lemma 10

P{ max suplzi(t)l > a} > 2¢.
1l<i<n t

Applyirg the Levy inequality for processes (see Dudley
(1967) Lemma 4.4, p. 300 or Kahane (1968) Lemma 1, p. 12),

we see that if n > Na then

P{suplzn(t)l > a} > (1/2)P{ max suplzi(t)l > al >e. ///
t l<i<n ¢t ;

§3., The examples in the previous section show that
certain Lipschitz conditions on the second moments of
differences X(s)-X(t) do not imply that X satisfies
the CLT. Thus, it is necessary to place additional
assumptions on X. The following examples show that even
the additional strong assumption of X being uniformly
sample-bounded does not imply that the CLT holds if
X is only known to satisfy a Lipschitz condition of order a,
@ < 1, These examples are based on the same scheme as those

in Strassen and Dudley ((1969) sec. 3) and Dudley (1974).

PROPOSITION 13, For any a < 1 there is a
process X(t,u), 0 < t < 1, with continuous sample paths,
[X(t,w)| <1 for all t and w, and E(X(8)-x(t))?2 <
|s=t|® for all s,t ¢ (0,1), such that the CLT does
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not hold for X.

PROOF. The following definition of a process X
~depending on a choice of constants {kn,,n = 1,2,...}

is taken verbatim from Dudley ((1974) pp. 56-57). For
each n =1,2,,.., (we) shall decompose [0,1] into a set

n
I, of N, equal subintervals, where N = sglsks,

k, integers. Thus each interval in I,.1 is decomposed
into Skn equal subintervals to form I, where

Iy = {ro,11}.

For each n and each j = °"“'kh'1' we define a
plecewise linear continuous function 9py a8 follows,

Let

0 if unx/B is an integer
Gng(X)- = J 1 4f 64+l < N x < 6i+2
-1 if 6i+4 < N X < 6145

where

i= j"'rkn' rs= 0.1,...,Nn_1-1,

and let gnj be continuous and linear on those closed
intervals for which it was previously defined only at
the endpoints, namely 6i+u < N x < 6i+u+tl, u = 0,2,3,5.

Note that for each j, inside every interval in
I,y 1is an interval in I, on which 9y = 1 and
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another on which gnj = -],

8 where 1<B<2 and c=1/) n”B,

Let p_=oc¢n
n n=1

To be definite, (we; take B8 = 3/2,

Now (we) define a probahility measure u on

Cc[0,1] by setting u({gnj}) = u({-gnj}) = p /2k  for

n=1,2,... and each j = 0,....kn-1. Let X be a
random variable with distribution u. Then clearly
[x(t)| < 1. Also for each t, EX(t) = 0 since X is

symmetric and bounded.

Dudley proves that the CLT never holds for X
with the given Ppe for any kn > 2, What remains is
~>r us to choose an appropriate sequence {kn' n=1,2,...}
and then estimate the mean-square differences. Define
k inductively by:

n

kl = 2 N, = le = 12

k, = N:f{l"") for n>2 and a fixed <1,
Note that

- ] = 1/(1=-a)
() N =6k N _ =en/{170) g5 g

Now we estimate the mean-square differences. Given

s,t ¢ [(0,1], take n such that
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/N 4y < |s-t| < 1/N , where N, = 1.

As Dudley has shown (p. 58),

Ex(m=x(t)? < [ 2pk-leen |t-s|)?

+ 2pnk;ltl:||-t|2 +8(] pk-

m<n

1).

m>n

.Por ns=20,

E(x(8)-X(t))? < 4 = 48N]} < 48|s-t| < 48|s-t|%,

(4)

For n =1,

(1)

(2)

(3)

(4)

The first term is vacuous

2p k02 |s-t|% < n}|s-t|® ¢ 144|s-t|? < 144|s-t|°

8p,, k. < 0N 7% < qant%) < 48|s-t|®
(%)
v -1 v -a/(l-a)
8 k = =8 p.N
-!uz Pnm m-£+2 mm-1
-e/(l-a) ¥ -a/(l-a)
b Py < 8Nn+{( *

msn+2

< ‘|,-t|8/(1-,u)i 8|s-t|%,

e E(X(8)-X(t))? < 200|s-t|%.
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For n > 2,
(1')  2p,k; (6N, |8=t|)® < (36:144) [t-8|" < 5184|t-s|

a" I 2px-laen?|s-t|?
1<m<n

- =a/f(l=a) 2
) 72p N_ 9

l1<m<n

w2|s-t|?

< |s=t|® ] 432p n27%|g-¢|?"C

1<m<n

< ls-t|® 432 ] p < 432|s-¢|®
1<m<n -

(2*) ank;lﬂils-tlz < N;f{(]"a)uzlsntlz
< 68ON2[a-t|? = 6827%|s-t]? < 6s-t|®
(3) and (4) are as for the case n = 1 above.
. E(X(8)-X(£))2 < 5678|s-t|%.

Replace X by X/76 to get rid of the constant. ///
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CHAPTER 5. STOCHASTICALLY CONTINUOUS PROCESSES

In Chapters 3 and 4 we have showh that certain
assumptions on moments of the differences X(t)=X(s)
imply both sample-continuity and the CLT for X while

weaker assumptions imply neither. Therefore, most

- moment conditions must be accompanied by additional

hypotheses in order to provide good CLT's. The main
purpose of this chapter is to show that for stochastically
continuous processes, a good supplementary hypothesis is
given by a condition on moments of products of the
differences X(t)-X(s) and X(u)-X(t) for s < t < u. As

a consequence, it will be shown that every stochastically
continuous process with independent increments and sample
paths in D satisfies the CLT.

Sufficient conditions for a process to have sample
paths in D are much less stringent than conditions
implying sample-continuity. For instance, if X is a
separable, stochaltically'continuous proceas then the
existence of a continuous non-decreasing function F and

numbers ¢ > 0, vy > 0 such that
PU|X(t)-X(8) | > A, |X(w)=X(t)| > A} < 277 [F(u)-F(s) }1*€

for all 0 <s <t <u<1l is sufficient to imply that
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X has a version with sample paths in D (see Gikhman and
Skorohod (1969) p. 161 or Billingsley (1968) p. 130).

By Chebyshev's inequality, a condition of the form
E(X(t)-X(8)) Y (X(u)~X(t))Y < [F(u)-F(s)11*¢ with F as
above, also implies the existence of a version with

sample paths in D,

DEFINITION. A stochastic process {X(t)} is
continuous in quadratic mean (CQM) if and only if for
all ¢,

1im E|x(t)-x(s) |2 = 0.
s+t

It is well-known that a Gaussian process is CQM if and
only if it is continuous in probability. We now show
that a necessary condition for a stochastically continuous

process to satisfy the CLT is that it be COM.

LEMMA 5.1 Let {X(t)} be a stochastically con-
tinuous process which satisfies the CLT in D. Then X
is coM. |

PROOF. Let Z be the limiting Gaussian process which
has sample paths in D a.s. THe Process 2 is right continuous

a.s. 80 2(t) = 1}: Z(s) a.s. which implies that
s : .

lim E(2(s)-2(t))2 = 0. But
sit
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1im E(X(t)-X(8))2 = lim E(2Z(t)-2(s))2 = 0; therefore,
s¢t s+t

X is right‘CQH at t. Similarly, 2 has left limits a.s.,

80 Z(t-) = lim Z(s) a.s. and thus lim E(Z(t-)-2Z(s))2 = 0.
stt sttt

By the stochastic continuity of X, 1lim E(X(s)=X(t))?2
stt

= 1im E(X(s)-X(t=))2 = 1im E(Z(s)-2(t-))2 = 0. Hence,
stt s4t

X is also left CQM at t. Therefore, X is CQM at t.
Since t was arbitrary, X is CQM., ///

The following example shows that not every stochas-
tically continuous process with finite second moments

and sample paths in D is CQM.

EXAMPLE., Por t € [0,1] and w € ([0,1], Lebesgue)
‘let

X(t,w) = n if te (w,atn"2) and w € [n-l-n'z,n—ll

‘ = 0 otherwise
X(0,0) = 0
X has sample paths in D, Since | P{X(n'l,u) >0} =
n=1

2 . ®, the Borel-Cantelli Theorem implies that

In
P{x(n.l,u)’>0 i.0.} = 0; thus, X is stochastically
continuous at 0, X 4is obviously stochastically con-

tinuous ovcrywhero else. However, sz(t) <1 for all t
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and Ex?(n"}) = 1 for all n. so E(X(n~1)-x(0))?2
= Ex®(n"l) =1 4>0 as n + =, Thus, X is not
coM. /// |

The following theorem of Ito and Nisio describes
the kinds of discontinuities which Ganﬁsian processes
are allowed to have. From this theorem we will deduce
that every stochastically continuous Gaussian process

with sample paths in D is continuous a.s,

THEOREM (Ito and Nisio (1968) Theorem 2, p. 210)

Let Z be a separable, measurable, CQM Gaussian
process on [0,1]. There exists a function
a(t) = a,(t), 0 < t < 1, such that for each t
P(lim sup Z(s) = zZ(t) + %o(t), lim inf Z(s) = z2(t) - %c(t)l =],
s + t s » t
a is called the oscillation function of the Gaussian

process Z.

COROLLARY 5.2 Any stochastically continuous Gaussian
proeaoi ﬁith sample paths in D has sample paths in C a.s.

PROOF . 'z is separable and stochastically continuous,
hence measurable (Doob (1953) Theorem 2.5 P. 60), By the
Ito-Nisio Theorem, there exists a fixed function a such

that for almost every sample path, Z(t,w) satisfies, for



78.

all ¢,

lim sup|2(u,w)=2(v,w) | = a(t).
u,v-+t

This implies that |2(t)-2(t-)| = a(t) a.s.

Iet to € (0,1}, Z(to) - Z(to-) = lim (Z(to)-Z(s))
s+to

where L(Z(s)) is Gaussian, mean 0. Thus,

.L(z(to)-Z(to-)), being the limit of Gaqssian mean 0

random variables, is also Gaussian, mean 0. The Ito-Nisio
result then implies that for almost all w, Z(to)-Z(tO-)
equals either +a(to) or -a(to). which is impossible

for a Gaussian, mean 0 random variable uhless a(t,) = 0.
But a(t;) = 0 implies t, 1is a continuity point of z.

Z, having sample paths in D, is right continuous at

ty = 0. Thus, for almost all w, Z(t,w) is continuous. ///

THEOREM 5.3 Let X(t) be a stoéhastically con=-
tinuous process with EX(t) = 0 and Exzit) < » for all
t € [0,1]. If the CLT holds for X in D then the limiting

Gaussian process is sample-continuous; hence L(Z)(C) = 1,

PROOF. The theorem follows immediately from
Proposition 5.1 and Coroliaty S.2. ///

Before proving the main theorem of this chapter we

need a method for determining whether a Gaussian process
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is sample-continuous.

Let H be a real, infinite-dimensional Hilbert
space with inner product (¢,*). Following Du¢;ey
((1973) p. 67), a Gaussian process L on H will be
called isonormal if and only if L is a linear map from
H into real Gaussian random variabiles with EL(x) = 0 and
EL(x)L(y) = (x,y) for all Xx,y € H, Aset F<H is
called a GC-set if and only if L restricted to F is
sample-continuous.

1f {(x(t) :+ t € [0,1]) is a Gaussian process CQM
with EX(t) = 0, then X(t) is aanple-contiﬁuous if and
only if E = {X(t) : t € [0,1i} € 1%(R,Pr) = H is a
GC-set (pudley (1973) p. €9),

Sufficient conditions for sample-continuity of
Gaussian processes are usually deduced from metric
entropy considerations or fairly ueak'momenﬁ conditions.
The latter is sufficient for us here. If there exist
5 >0 and C < = such that E|X(s)-X(t)|? < c/|10g|t-s| | 1"
then X(t) is sample-continuous (Delporte (1964) p. 180).

We are now ready to prove the main theorem.

THEOREM 5.4. Let X(t) be a stéchastically con-
tinuous process with sample paths in D. Assume EX(t) = 0
~ and Ex3(t) < = for all t € [0,1]. Also, assume
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(1) there exist a non-decreasing, continuous
function G on (0,1) and a number a > 1/2 guch that

for all O €t<ucx<l,
2 (1]
E(X(u)=-x(t)) < [G(u)=G(¢t)]™;

(2) there exist a non-decreasing, continuous
function F on [(0,1] and a number B8 > 1 such that

for all 0 <s <t<uc<l,
2 2 . 8
E(X(u)=x(£)) 2(x(t)-x(8))2 < (Flu)-F(s)]P.
Then X satisfies the CLT in D and L(Z)(C) = 1.

PROOF., We will verify the hypotheses of Theorem 1.3.
We may assume that |F(t)| <1 and |G(t)| <1 for all t
since dividing X by the positive constant F(1)G(1l)
doél not affect the CLT. Let {xi} be_independent;-
identically distributed D-valued random variables with
law L(X). Let 2 = n-1/2(81.+ see + X ). By Chebyshev's
inequality, |

etz (-3 (0] > A, 2 -z (0)] > A)
< B(z,(0)-5 (8)) 2 (3, (w)-2_(t))?

- n"2g(( 'f X, (£)=x, (s)) %( 'f X, (u)-x, (£))2)
gm 4 7 e 177 4
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= n~2(nE(X(t)-X(8)) % (X(u)-x(t)) 2

+ n(n-1)E(X(u)-X(t}) 2E(X(t)-X(8)) 2

+ 2n(n-1) (E(X(u)=X(¢)) (X(£)=X(8)))?}
using independence of the X, and mean 0
n~2(nE(X(t)-X(8)) 2 (X(u)-X(t))>

iAa

+ 3n(n-1)E(X(w)-X(t)) 2E(X(t)-X(8)) %}
using the Cauchy-Schwartz inequality
< B(X(w)=X(t)) 2 (x(t)-X(s))?
+ 3E(X(w)-X(t)) 2E(X(t)-X(s))?
(F(w)-F(s)1® + 3[G(u)-G(£)1%[G(t)-G(s)]®
Ir(u)-r(s)]B + 3[G(u)-G(s)lz°

(F(u)-F(2) 1872% + 3(G(u)-G(s)]P*20

1A 1A 1A A

using the fact that x'+y' < 2(xvy)Y < 2(x+y)?
for x,y > 0
:,(n(u)-nts))ahza
wvhere H = 21/(8“2°)(F + 31/(8“2“)6) which is a continuous,
non-decreasing function on [(0,1].
Let 2 be a Gaussian process with the covariance
of X. E(3(t)-3(s))? < [F(t)-F(8)]1® for some 8 > 1/2.
Let F l(t) = inf(s ¢ {0,1] : F(s) = t}. ;Since
rer~l(e) = ¢,

E(zerl(t)-zer 2 (s))2 < |t-s|® < c/|10g|t-8]|2*®
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for some C < e and 6§ > 0, This condition implies
z-r’l is sample-continuous. Thus {ZOF'I(t) : t € ([0,1])
is a GC-set, since zeF~1(t) is CQM. Now, the sets of
random variables {zor'l(t) : t € [0,1]]) and
{z2(t) s t € (0,1]) are identical. Therefore, |
{z(t) s+ t € [0,1]) is also a GC-set which implies 2
is sample-continuous.

By the ordinary CLT, the finite-dimensional
distributions of Z, converge to those of a sample-
continuous Gaussian process. Therefore, Theorem 1.3

implies that the CLT holds in D and L(2)(C) = 1. ///

Notice that condition (2) is not at all unnatural
because, as shown at the beginning of the chapter, it is
a sufficient condition for a process to have sample paths
in D. |

Hypothesis (2) cﬁn be changed slightly with the help
of a modified version of Theorem 1.3; ndmely, condition (*)

of Theorem 1.3 can be replaced by
PUX (0)-X () | 2 2, I (=X (8] 2 2}
< .;’it(r-(t);r(o) MR IGIA

for s <t < and n > 1, vhere c_>_o.y>1/2,and F
is a non-decreasing, right ocontinuous function on (0,1]

(Billingsley (1968) p. 133).
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COROLLARY 5.5. Let X satisfy the hypotheses of
Theorea 5.4 and replace assumption (2) by

(2°) there exist a non-decreasing, right continuous

function P on [0,1] and Yy > 1/2 such that
E(x(0)=x(£)) 2 (X(t)-X(8))2 < [F(u)-F(t)]1Y (F(t)-F(s)]".
Then X satisfies the CLT in D and L(Z){C) = 1.

PROOF. As in Theorem 5.4, assuming IF| <1, l6] <1,
W NENCENCIESWRENCE NOTERY
< B(x(w-x(e)) 2 (x(t)-x(s))?
+ 3B(X(u)=X(t)) 2E(x(t)-X(s))?
< (F(u)-2(£))Y (P(t)-P(s))Y
+ 3(G(u)=G(t))*(G(t)-G(s))*
< (P(u)=P())TA% (P (t)-F(s))TAC
+ (G' (u)-@* (£)) YA (G" (£)-G* (8)) TA*
where G' = 31/2(7“')6
E ((F4G') (u)=(P4G") (£)) VAR ((F4G") (£) = (P4G") (8) ) YA
using the fact that xPy® + rfsf <
(:'4»:’) (y‘n') since all terms are positive
and this is < 4(x+r)®(y+8)® as in Theorem 5.4.
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Thus, letting H(t) = 41/(Y"°)(F+G')(t), H is a
nonfdecreasing, right continuous function. Then,

< (H(u)=H()) " m(t) -H(s)) V"%,

Existence of a sample-continuous Gaussian process
with the correct covariance and convergence of the
finite-dimensional distributions follow as in

Theorem S5.4. ///

Let X(t) be a stochastic process with orthogonal,
increments. Define F(t) - B(X(t)-x(O))z. Then
E(X(£)=X(8))2 = E(X(£)-X(0)+X(0)-X(8))
= E(X(£)-X(0))2 + E(X(8)-X(0))2 - 2E(X(t)-X{d)) (X(8)-X(0))
= E(X(£)-X(0))2 - E(X(8)-X(0))2 = 2E(X(t)-X(s)) (X(8)-X(0))
= E(X'(t)-X(O))2 - E(x(s)-x(O))2 because of the orthogonal

increments
= F(t)=-F(s)
Notice that F is monotone non-decreasing since

F(t)-F(s) = E(X(t)-X(s))? > oO.

'Also, for any orthogonal increments process X
there is a set T which is at most countable such that
X(t) iscgMon [0,1] T and for te T X(t) has
right and left limits in QM (Doob (1953) p. 425).

If X(t) is also stochastically continuous with sample
paths in D then X(t) is actually COM because
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lim E(X(t)=X(8))2 = 1im E(X(t-)-X(8))2 = 0 and
sttt s+t

lim E(X(t)-X(8))2 = 1im E(X(t+)-X(8))2 = 0. In this
s+t s+t

case F is actually continuous.

COROLLARY 5.6 Let X(t) be a stochastic proceéa
with negatively correlated squared increments. Assume
EX(t) = 0, Exz(t) <o for all t ¢ [0,1] and that
there exist a non-decreasing, continunus function G
on [0,1] and a number a > 1/2 such that for all

0<t<uc<,
E(X(u)-x(t))% < [G(u)-G({t)1°,
Then X satisfies the CLT.

PROOF. The proof follows immediately from Theorem 5.4

since for 0 < s < t'i,u <1
EX()-x(£)) 2 (x(e)-x(8))2 < E(X(w)-x(t))2E(X(t)=X(s))?
[G(u)-G(t)1*[G(t)-G(8) 1% < [G(u)~G(s)]2®

<
and 2a > 1, ///

As an immediate consequence we obtain the following
.corollary.

COROLLARY 5.7 Every stochastically continuous process
with otihogonal increments and negatively correlated sQuared
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increments satisfies the CLT.

We now deduce that every stochastically continuous
process with independent increments and sample paths in
D satisfies the CLT. This is quite general because
every separable stbchastically continuous process with
independent increments has a version with sample paths
iﬁ D (see Gikhmen and Skorohod (1969) Theorem 3 and
Corollary p. 168).

COROLLARY 5.8 Let X(t) be a stochastically
continuous process with independent increments and sample
paths in D. Assume X(0) = 0 a.s., EX(t) = 0, and
Exz(t) < » for all t. Then X satisfies the CLT with
limiting Gaussian process z(t) = WoF(t) where W is

a standard Brownian motion and F(t) = EX2(t).

PROOF. Since a‘mean 0 process with independent
increments has orthogonal increments and uncorrelated
squarqd‘incromantﬁ, the hypotheses of Corollary 5.7 are
satisfied. In order to determine the limiting Gaussian
process we consider the covariance of X(t). For t > 5
EX(t)X(s) = HEX? (£)+EX? (8) -E (X (t) -X(8)) %}

= Lr(t)+r(s)-(F(6)-F(s)))
= F(s) |
= F(s) A F(t).
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Thus, the limiting Gaussian process is WeF(t) where
W is a standard Brownian motion. ///
By the Decomposition CLT, the assumption

X(0) = 0 a.s. is really not a restriction.

DEFINITION. We say that 2Z(t) is a generalized

Wiener process if Z(t) = Wen(t) where W is a
Brownian motion and n is a continuous, non-decreasing

function on [0,1].



CHAPTER 6. MARKOV PROCESSES

In the last chapter we saw that one class of Markov
processes, the stochastically continuoqs, independent
increment processes, always satisfy the CLT. We proceed
now to consider other Markov processes which have sample
paths in D. Since the sum of Markov processes is not
always Markov, as shown by Exampie 6.3, below, most of
the criteria appearing in the current literature for
convergence of sequences of Markov processes are inappli-
cable.

This section contains some of the CLT results which
wve have obtained for Markov processes. In particular,
it will be shown that every stochastically continuous
Markov process which has only a finite number of states,
has stationary transitions, and has sample paths in D
does iatiufy the CLT.

We begin by investigating several properties of

functions of Markov processes.

PROPOSITION 6.1. Let ¥ be a function on [0,1]
which is non-zero on (0,1). Let X(t) be a Markov

process. Then y(t)X(t) is Markov.

PROOF. Let O $8) € eee B <t <y <0<y <1,
Let A, (i=1,...,m and Bj (3 =1,...,k) be Borel
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measurable subsets of [R. First, assume y(t) ¥ 0 for
every t € [0,1].
Pr{w(sj)x(aj) € Bj (3 = 1,...,k),
Vi )X(ug) € A, (i =1,...,m) |p(t)X(t)}
= Prix(s;) € BJ! (3= 1,c00,k), X(uy) € A} (i = 1,...,m)[X(t)]}
where A! = A;/¥(u,;), etc.
- Pr{x(sj) € B:'i (3 = 1,....k)|x(t)}Pr{x(ui) € A} (i=1,...,m)|X(t)}
by the Markov property for X
= Privis)X(s;) € By ( = 1,...,k) [v(t)X(0)}-
Priv(u;)X(u;) € A; (i = 1,...,m)|¥(t)X(t)]),
If ¥(0) = 0 and 8, = 0 then
Pr{¥(0)X(0) € B, O(sj)X(sj) € By (3 =2,..0,k),
*(“i)X(“i’ €A (1 =1,...,m |W(B)X())
- p:{v(-j)x(sj) € By (j=2,...,k),
v(u)X(u;) € Ay (4= 1,...,m) [¥(t)X(t)) if 0€ B,
0 if 0 ¢ B,
The rest follows QSFCDOVQ.

The cases where (1) = 0 or both y(0) = 0 and
¥(l) = 0 can be treated similarly. ///
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Note that if ¢(t) = 0 for some t € (0,1) the

conclusion of Proposition 6.1 is false. For example, let

i’(t)-{l if t ¥ 1/2
0 if t=1/2

and let X(t) be a Markov process with the two states,

0 and 1, defined in the following way:

T

X(t) = ( X(0) if 0 < t <

x(i-) if %-f_t<1

X(1) if t =1

where the finite Markov chain X(0), x(%), X(l) has
transition probabilities

p(0,0) = P(1,1) = .99 and P(1,0) = P(0,1) = .01,

Obviously, in predicting (vX)(1) given (¥X)(3) it
helps to know (¢X) (0).

We obserxwve that if X(t) is any stochastically
continuous process (Markov or not) and P(X(t) ¥ 0) > O
for every t, in order that y(t)X(t) be stochastically
continuous, ¥y must be continuous. However, if there
exists a point to such that x(to) -'o a.s,., w(to) may
be any finite value. “
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PROPOSITION 6.2, Let X be a process satisfying
the CLT. Suppose that the limiting Gaussian process 2
is Markov. Let ¥ be a continuous function on (J,1]
which is non-zero on (0,1). If Y(t) = y(t)X(t), then Y
satisfies the CLT with the limiting Gaussian Markov
process V+Z. The conclusion holds also if 2 is

continuous a.s. and ¢ € D,

PROOF. The conclusion follows immediately from

Proposition 6.1 and Lemma 2.3, ///

The following example shows, in general, it is not

true that the sum of two i.i.d. Markov processés is Markov.

EXAMPLE 6.3 Let Y be a finite Markov chain with
parameter set {0,1/3,2/3,1}, with state space {0,1,2}, with
Y(0) = 0 a,s., and with transition probabhilities p(i,j) = 1/2
for i # j, i,j = 0,1,2. Define X(t) by

Y (0) 0<t<1/3
Y(1/3) 1/3 < t < 2/3
¥(2/3) 2/3 <t«<1
Y(1) ts=]

X(t) =

Let X'(t) be an independent copy of x(t).'_The state
space of S(t) = X(t) + x'(t) is {0,1,2,3,4}. X(t) is
Markov but we will show that S(t) is not Markov.
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P{s(1) = 1|s(2/3) = 2, S(1/3) = 4} = 0 since
S(1/3) = 4 implies X(1/3) = X'(1/3) = 2; S(1/3) = 4
and S(2/3) = 2 imply X(2/3) = X'(2/3) = 1; hence,
X(1) » 1 and X'(1l) ¥ 1.

However, P{S(l) = 1|S(2/3) = 2} > 0 since the

path

(X(0),X' (0)) + (X(P,X' () » X(P),x'(3) + (X(1),X' (1))

(0,0) > (1,1) - (2,0) > (0,1)
occurs with positive probability. ///

The above example is a three-state Markov process.
For a smaller number of states, namely one or two, the
sum of any number of i.i.d. Markov processes is always
Markov. It is clear in the case of one state. So suppose
the Markov process X has two states, c and d. Let
n

S (t) =
n 121

xi(t). If Sn(t) = k then there exist
unique numbers m,r€¢ N such that m+r = n and

mc+rd = k. This specifies exactly how many of the
independent X, (t)'s are c¢ and how many take the value
d. Thus, 8 (t') for t' < t will supply no further

information for predicting the future.
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PROPOSITION 6.4. Let X be a stochastic process
with EX(t) = 0, and 0 < EX°(t) < » for every t € [0,1].
If X satisfies the CLT with a continuous limiting

Gaussian Markov process 2z then X(t) = y(t)Y(t) where

(1) vy(t) is a continuocus function on (0,1)] which

is strictly positive;

(ii) Y is a stochastic process which satisfies the
CLT with a generalized Wiener-process as its limiting

Gaussian process;

(ii1i) if X is Markov then so is Y.

PROOF. The structure theorem for Gaussian Markov

processes on (0,1) implies that 2Z(t) = Y(t)Wen(t)

2 2,.
v = (| EX" (84) EX" (%)
where ¥(t) 0 if t <s,, s, fixed € (0,1)
%, = %0’ %o
EX(s,) X (t) if t 2 s,
 aw®
and n(t) = ( EX® (t) . if t> s,
(EX(84) X(t))
(EX(8g)X(t)) 2 y
t<s
G =0

for t € (0,1) and W is a Brownian motion process.
These definitions make sense because Bx(ao)x(t) )
(see Neveu (1968) p. 52-56).
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v(t) is a continuous, positive function on '(0,1)
which can be extended to a continuous.positive function
on [0,1) since for all t, 0 < EX°(t) < ». n(t) is a
continuous, non-decreasing, non-negative function on (0,1)
which can be extended to have the same properties on
[0,1] since for all t, 0 < EX?(t) < =, The proof in
Neveu's book then extends to give 2Z(t) = y(t)Wen(t) for
all t € [0,1].

Let Y(t) = X(t)/y(t); if X is Markov, so is Y
by Proposéition 6.1. Since
L(n'l/z;ilv(twi(t)) - un"l/z_'f X, (£)) + L(Y(t)Wen(t)),

= i=1
applying Lemma 2.3 we see that
n

-t g

Y3 (£)) » L(Wen(e)). /77
/R is1

A necesaary condition for any process X (Markov

or not) to satisfy the CLT with a limiting Gaussian Markov

- process Z is that

(*)  EX(8)X(u)EX?(t) = EX(t)X(s)EX(t)X(u).

The reason is that the covariance of a Gaussian Markov
process always satisfies the above condition and the

second moment structure of X is the same as that of 2.
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PROPOSITION 6.5. Either one of the following conditions
is sufficient for a Markov process with second moments to

have a covariance satisfying (*):
(i) if 8 < t, E(X(8)|X(t)) = a(s,t)X(t)
(ii) if 8 < t, E(X(t) |X(s)) = a(s,t)X(s)

where the a(s,t) are constants.

PROOF. Let s < t < u. Suppese (i) is satisfied.

E((X(s8)-a(s,t)X(t))X(u))
= E((X(s)=-E(X(8) |[X(t)))X(u))
= E(E((X(8)-E(X(8) |X(t)))X(u)|X(%)))
= E(E((X(8)=-E(X(s) |X(t)) |X(£))E(X(u) | X(£)))

by the Markov property.
= 0, |

EX(s)X(t) = E(E(X(s) [X(t))X{(t)) =

E(a(-,t)xz(t)) = a(s,t)sz(t) which implies that
a(s,t) = EX(s)X(t)/EX%(t).

Using the above two facts we see that
0 = E((X(s)-a(s,t)X(t))X(u)) = EX(s)X(u)-a(s,t)EX(t)X(u) =
BX(.)x(u)-Ex(t)X(u)Bx(l)X(t)/sz(t) which implies tha£
EX(s)X(u)EX?(t) = EX(t)X(u)EX(s}X(t). This is just
condition (*).

The proof using (ii) is similar. ///
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Many familiar processes satisfy the conditione of
Proposition 6.5. Por instance, if X is a mean zero
process with independent increments, second moments, and
X(0) = 0 a.s. then X satisfies condition (ii) since
E(X(t) |[X(8)) = X(s8) ¢+ E(X(t)-X(s)|X(s)) = X(8) +
E(X(t)-X(s)) = X(s8) if t > s. An independent incre=
ment prociss run baskwards will satisfy condition (i)
for a similar reason. 1In these two examples we have
learned nothing new since we know that the CLT holds
and the limiting Gaussian process is a generalized
Wiener process in the first case and such a process run
backwards in the second aase.

All two state mean 0 processes satisfy both
conditions (i) and (ii) which mg} be seen as follows:

Let r >0 and <-b < 0 denote the two states,
E(X(t) |[X(s) = r) = e(t,s8) and E(X(t)|X(s) = -b) = d(t,s).
Thus, passing a line through two points, |

E(X(t) [X(8)) = a(t,s)X(s) + B(t,s)
rYor coefficients a(t,s) and Bg(t,s).

0 = EX(t) = E[E(X(t) |X(s))] = B(t,s).
Therefore, E(X(t) |X(s) = a(t,s)X(s) as desired.

The main theorem of this section is the following
CLT for Markov processes. Its major attribute is that
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the partial sums zn(t) are not required to be Markov,
There is, however, the disadvantage'that if X(0) = 0 a.s.,

X(i) = 0 a.s. and for some t,, ess sup|X(ty,uw)| = =
’ W

then the hypotheses cannot possibly be satisfied. Thus,
Tied-down Brownian Motion does not satisfy the hypotheses

of the theorem.

THEOREM 6.6 Let X be a Markov process and let
F be a non-decreasing continuous function. Suppose

that either
(i) for all t > s, there exists 8 > 1/2 such that

ess sup E[(X(t)-x(s))zlx(s)l < [F(t)-F(s)]®
w

or

(ii) for all s < t, there exists B > 1/2 such that

ess sup E[(X(t)-X(s))2]|x(t)} < [F(t)-F(s)15,
w

Then X satisfies the CLT.

PROOF, We will prove the theorem assuming (i);
the proof assuming (ii) is similar. lLet s < t < u,
We will verify the hypotheses of Theorem 5.4. First
assume that EX(t) = 0 for all t.
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E(x(t)-x(s))2 = [ EL(X(t)-X(s)) %|X(s) AP

< ess sup EL(X(t)-X(s)}?|X(8)) < (F(0)-F(a)1P.
W :

E(x(w)-X(t)) 2 (X(¢) =X(8)) 2
- [ EL(x(uw)-x(t)) 2 (X(£)-X(s)) | x(t) ]ap
= [ BEUX(W=X(£)) | X(£) JE(X(E)-X(8)) ? | X(t) JaP
| by the Markov property

< ess sup E[(X(uw)=X(t))?|X(£) IE(X(t)~X(8))
u _

< lF(u)-F(t)lle(t)-P(s)lB by (i) and the above calculation
< [P(u)-r(s)l28 since F is non-decreasing.
If EX(t) = m(t) then

ess sup E[(X(t)=X(s)-m(t)+n(s))?|X(s)]
(1]

= ess sup {E[(X(t)-X(8))2|X(8)] + (m(t)-m(s))?
Y 2m(t)-m(s))EIX(E)-X(8) |X(8) ]}
< ess sup (EL(X(£)-X(8))?[X(s)] + (m(t)-m(s))?
+2|m(t)-m(s) [E(|X(t)-X(s) | |X(8)1}
by the Conditional Jensen's inequality
< ess sup {E[(X(£)-X(s))2|x(8)] + E(X(t)-X(s))?
Y 2EEE-xenNH Y2 @1k -X(8)) 2| x(8) 1) /2
by the Cauchy-Schwartz and Conditional Jensen's
inequalities

< 4 ess mup E[(X(t)=X(s))?|X(s)]
W

< ap(t)-F(s))b,
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Hence, if Y(t) = X(t)-m(t) then Y has mean 0

and by the case for mean 0,
E(Y(t)-¥(s))2 < 4[F(t)-F(s)]F,
E(Y(w)-¥(£))2(¥(t)-¥(s)) 2 < 16(F(u)-F(s)]12E,

Therefore, by Theorem 5.4, X satisfies the CLT. ///

As an application of this theorem we consider
separable, stochastically continuous Markov processes
with stationary transitions and only finitely many states.
We will show that the conditions of Theorem 6.6 &:e
always satisfied for these processes.

If (pij(°)l is a stationary Markov transition
matrix function such that lim pij(t) - {~1 if i3

t+0
0 if i =3
then the limit

im = q
ts0 © i
exists for all i, but may be infinite. 1In fact,

"'1?""5-91 for all t (Chung (1967) Theorem 4 p. 131

and Pe 135).

If {xX(t)} is a separable process determined by
lPij(°)l together with an initial probability distribution,
then
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P{X(t,w) = i, t; < t < t, + alx(to.u) =i}l =e 44"
(Chung (1967) Theorem 5 p. 152-153). Thus, if q; = 0
the process upon reaching i, stays there forever; if
q; = +o, there is an instantaneous jump so the sample
paths cannot be in D, A sufficient condition that
almost all sample paths be step functions is that the
se£ of q; be bounded above (Chung (1967) Corollary 2

p. 260).

COROLLARY 6.7, Let X be a stoghastically con-

tinuous Markov process with stationary transitions,
only finitely many states, and sample paths in D. Then

X sagisfies the CLT.

PROOF. We will verify the conditions of Theorem 6.6,
Let F be the set of points in the state space of X.

Let N = Tl'|1| which is finite since F is finite,
eF

Suppose t > s then, :up E((x(t)-x(s))zlx(s) = i)
(3

- :2; B((x(t-s)-x(O))2IX(0) = i) since X has stationary

transitions

= sup P(X(t-8) # X(0) = 1)E((X(t-8)-%(0)) 2| X(t-8) # X(0) = i)

< an? sup P{X(t-s) ¥ X(0) = i}
iep

2

= 4N° sup (1l-p;,(t-s)),

iep
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Now l-pii(t-s) :.qi(t-s), since X is stochastically
continuous; and the q; are finite, since X has sample

paths in D, Therefore, :up E((X(t)-X(s))ZIX(s)-i) <
eP : -
an2 sup qilt-sl = C|t-s|. Hence, condition (ii) of
ieF
Theorem 6.6 is satisfied. ///

COROLLARY 6.8 Let X be a atochastically con-
tinuous Markov process with sample paths in D, stationary
transitions, and a countable bounded state space. Further-
more, assume that X has a bounded set of qi's. Then

the CLT holds for X.

PROOF. The result follows as in Corollary 6.7,

except let N = sup|X(t,w)|. ///
t,w
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CHAPTER 7. PROCESSES WITH FIXED DISCONTINUITIES

In the previous sections our attention was restricted
to stochastically continucus processes. Now we consider
processes which also have points of fixed discontinuity.

We show, using the Decomposition CLT, that the CLT for
processes with only a finite number of fixed discontinuities
can be reduced to proving a CLT for stochastically con-
tinuous processes. This is a consequence of the fact

that processes having only a finite number of fixed dis-
continuities and whose sample paths are step functions a.s.
always satisfy the CLT. _

If there is a countable set T of fixed discontinuity
points, we consider the case in which X is continuous a.s.
at all points of [0,1) v T. 1In this case we show that the
’problen can be reduced to considering the CLT in C(JT)
where JT is a certain compact metric space.

Pinally, we discuss the existence of a Gaussian

process with a given covariance and sample paths in D,

PROPOSITION 7.1 Let Y be a stochastic process
with sample paths in D and let T denote the set of points
of tixo& discontinuityvof Y. Assums EYz(t) < o for all
t€([0,1), T is a fin;tb set, and the sample paths of
Y are a.s. step functions with jumps only on T. Then

Y satisfies the CLT.
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PROOF. Let T = {t,,...,ty} be the set of fixed
discontinuity points of Y, Let
Ap = {x € D s x is constant on [0,t1),..., [ty ;,t), [t 1]},

In order for the theorem to make sense, we must show

that A, is & measurable subset of D. (A, ||+|],) is a
standard Borel space. The uniform topology on D is
finer than the Skorohod topology, so every Skorohod open
set is a uniform open set. Thus the injection i : Ap + D
is continuous, hence Borel. Since the l1l-1 Borel image of
a standard space in a standard space is Borel measurable

(Kuratowski (1966) Theorem 1 p. 489), A, is Borel

T
measurable. Thus it makes sense to say that the sample

paths of Y are in AT a.s.

Y is determined by the random variables
{¥(0),¥(t)),...,¥(t,)}. Therefore, the CLT follows for
Y by the finite-dimensional CLT. ///

THEOREM 7.2 Let X be a stochastic process with
only a finite set T of fixed discontinuities. Then
there exist a stochastically continuous process V and
a process Y whose sample paths a.s. are step functions,
with jumps only at points of T, such that X = Y + V,
Furthermore, the CLT holds for X if the CLT holds for V.
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PROOF. Let Y(t,w) = ] X(t,,w) - X(t,-,w).
—— £, <t i i

Y has a finite number of fixed discontinuity points,
narmely the set T. The sample paths of Y are step
functions and EYz(t)E.C ) E(X(ti)-x(ti-))2 < =,
ti<t

Let V(t,w) = X(t,w) - Y(t,w). Then V(t,w) is
stochastically continuous and has finite second moments
since both X(t) and Y(t) do. By Proposition 7.1,
Y satisfies the CLT. Since V is stochastically con-
tinuous, if V satisfies the CLT it will have a sample-
sontinuous limiting Gaussian process, by Theorem 5.3.
Hence X(t) = Y(t) + V(t) will satisfy the CLT by
the Decomposition CLT. ///

A process X which has a set T of fixed dis-
continuity boints and whose sample paths almost surely
are continuous at all t € (0,1] N_T will be called
a pure fixed discontinuity process (p.f.d.p.)

Let X be a p.f.d.p. with sample paths in D,

The set T of fixed discontinuity points of X is a
countable set (Billingsley (1968) p. 124). Let

Q" = {x € D: the only discontinuity points of x occur
at points of T). We will show that Q° may be

identified with the space of continuous functions on
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a compact metric space JT.

Let J, = (0,1] VT where T = {t; t; € T},

Define a metric e on Jp by

e(s,t) = |s'=t'| + ) 2~
tas<ti:pvs

.tisT
where s' =s if s ¢ [0,1] and (tg)' = tj if
tj € T, Here the order relation < denotes the usual
“less than" ordering between points of [0,l1], and is
' extanded to [0,1] VT by the convention that
ti < ti' 8 < ?i if both s ¢ T and sA< ti' and
ti < tj if ti < tj. e 1is clearly a metric.

LEMMA 7.3. (JT,e) is a compact metric space.

PROOF. It guffices to show that every sequence in
Jp has a convergent subsequence. Let {sj : 3 =1,2,...}
be a sequence of points in JT. Then there exists a
sqbcoquqnbp TR and a point s € [0,1] such that
"503-,| + 0, Prop s ,x itis possible to extract a
subsequence .j,k.- .
non-increasing with respect to the ordering <, Suppose

which is either non-decreasing or

the former, lj'k" 4. We claim that °(’j,k,m") + 0,

where S =3 if 8 fT and S =8 if s €T. Given
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€ > 0, there exists N such that ] 2™} ¢ €. Choose
i>N '

M such that m > M implies that trreesity éls ,8)

Jek,m

and |s!

J,k,m-sl < €. Then e(s.'k'm,i) <2 for m> M,

J

The argument for sj

letting 8 = 8 for all s. ///

k.m ¥ follows similarly upon
2.2

let f£f(s) = e(0,s8), 8 € Jpe We now show that f
is an isometry of J, with (FTO,IT, |« - D).
f is a strictly increasing function, hence 1-1,

|£(ty-£(8)| = |e(0,t)-e(0,8)| = t'vs' - t'As' +
-i
2

= e(t,s). Thus, f is an isometry with
t48<ti£Fv8 :

its image, which must be compact. If

t €T lim £f(8) = £(t"). From this it follows that
stt

£(3,) = FOO0TIT.

LEMMA 7.4 If y &€ QT then y extends uniquely

to a continuous function on (JT,e).

PROOF. Let y(t;) = lim y(s) (s < t;) for ty € T.
Let uy € J'r‘ It is necessary to show that, given ¢ > 0
there exists § > 0 such that e(u,uo) < §
=> |y(u)=y(u,)| < €. ¥We prove the case in which
uy = t;3 the others are similar, Suppose u, = t,.
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Let M be such that j > M  implies Iy(tj)-y(t;)l < g/2,
Choose 6, > 0 such that u ¢ (tk-al,tk) implies
ly(g)-y(u)| < e/2. Let & = min(y,6,,27%"}) ana

supposz2 e(t;,u) < 6. Then since e(t;,u) < 2-k'1,.u' < t.
If u = u', then Iy(u)-y(t;)l < e/2., If u= t;, then

j >M and Iy(tj)-y(tk)l < Iy(tj)-y(tj)l + ly(tj)-y(tk)l <
e/2 + /2 =¢, [///

. T
Clearly, if g € C(JT) then 9r[o,11 € 0. So the
spaces (QTo||°||,) and C(JT) are homeomorphic under
the mapping h : (QT,||-||°} + C(JT)' defined by x ——> x*
where x*(t) = x(t) for t € [0,1] and

x*(t7) = lim x(s) for t€T. Por ge ClIy, hl(g) =
stt

alio,13-

For the next theorem we need to know that QT is a
measurable subset of D. (QT,||°||.), being homeomorphic
to the standard space C(JT), is itself a standard space.
As in Proposition 7.1, the injection i : QT + D is
continuous, hence Borel. The Kuratowski theorem quoted
in the proof of Proposition 7.1 now provides the conclusion

desired.

THEOREM 7.5. Let X be a stochastic process such
that L(X)(QT) s 1. Let (Jr.e) be the compact metric
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space defined above. If h(X) sgatisfies the CLT in

C(JT) then X satisfies the CLT in D.

PROOF. If the CLT holds for h(X) in C(J)
then by the Continuous Mapping Theorem the CLT holds
for X = h-lh(X) in (QT0||'||,). But weak convergence
in the uniform topology on QT implies weak convergence
in the Skorohod topology on QT, Consequently, since
L(X)(Q") = 1, the CLT holds in D for x. ///

This theorem shows that it is sufficient to verify
~hat h(X) satisfies the CLT in C(JT); so, for instance,

the conditions of the Jain-Marcus CLT are applicable.

As in the case of stochast: :ally continuous processes,
a process with fixed discontinuity points which satisfies
the CLT must satisfy certain quadratic mean (QM) continuity

properties,

LEMMA 7.6 Let X be a stochastic Process which
racisfies the CLT in D, Let T = {fixed discontinuity
points of X}. Then X is CQM at all ¢t T and X ig
right CQM with left limits in QM at te T,

PROOF. The proof is the same as in Lemma 5,1,
except that X is not stochastically continuous at ¢t ¢ T,
80 we can conclude only right CQM with left limits in QM

S



As a consequence of this lemma, the limiting Gaussian
process 2 must be CQM except at points of T. At points
of T it must be right CQM and have limits from the left in
QM. Thus, if X has fixed discontinuities, 2 will not
be sample=continuous.

Note that if a Gaussian process with sample paths
in D has a fixed discontinuity then that discontinuity
occurs with probability 1 since 2Z(t)-2Z(t-) is Gaussian
and thus equals 0 with either probability 0 or 1.

The CLT can not hold for X unless there exists a
Gaussian process with sample paths in D and the covariance
of X. It is therefore important to determine when such a
Gaussian process exists. Given the process X, construct
a Gaussian process Z with the same covariance. Assume
that X is CQM except for a countahle set of points T,
at which it is right CQM with left limits in QM. 2 will
have the same properties. Let JT be the same set as
defined above for p.f.d.p.'s. (J,,e) is a compact metric
space on which h(2Z) is actually CQM. The Ito-Nisio Theorem
extends to mean 0, COM Gaussian processes on J,. Conse-
quently, the same argument as in Corollary 5.2 shows that
a CQM Gaussian process with sample paths in D, when extended
to Jg, must actually be continuous. Hence it suffices

to determine when h(8) is sample-continuous on J,, or
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equivalently, to determine when Z a.s. has sample paths
in @°. h{2) is sample~-continuous on Jo if and only if
the set F = {Z(t) : t € [0,1] U T} is a GC-set.

1/2

F is always a GC-set if | H_(Jy,x)"/“dx < = where
' 0

HT(JT,x) is the metric entropy of Jp Wwith respect to Tt
| and Tt is the pseudo-metric defined by
T(s,t) = E(Z(t)-Z(s))2 (Dudley (1973) Theorem 1 p. 71).
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