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ABSTRACT

Reactor fuel elements generally consist of rod bundles
with the coolant flowing axially through the bundles in the
space between the rods. Heat transfer calculations form an
important part in the design of such elements, which can
only be carried out if information of the velocity field is
available. A one-equation statistical model of turbulence
is applied to compute the detailed description of velocity
field (axial and secondary flows), the wall shear stress
distribution and the friction factor of steady, fully
developed, turbulent flows with incompressible, temperature-
independent fluid, flowing through triangular arrays of rods
with different aspect ratios (P/D). Also experimental
measurements of the distributions of the axial velocity,
turbulence kinetic energy and Reynolds stresses were
performed using a laser Doppler anemometer (LDA), operating
in a "fringe" mode with forward scattering, in a simulated
interior subchannel of a triangular rod array with P/D=1.123
and L/DH=77. From the experimental results, a new mixing
length distribution is proposed. Comparisons between the
analytical results and the results of this experiment as
well as other experimental data available in the literature
are presented. The results are in good agreement.
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NOMENCLATURE

I. Fluid Flow Parameters

A t subchannel area;

c 1constant in pressure-velocity gradient
correlation;

C 2 constant in main rate of strain-turbulence
correlation;

CD constant in the dissipation rate of TKE;

C constant in turbulent viscosity;

D rod diameter;

DH hydraulic diameter of subchannel;

E constant in "law of the wall";

f friction factor;

K turbulence kinetic energy;

Z mixing length;

L length of test section from inlet to
measuring station;

m mass flow rate;

p instantaneous pressure;

p timeaveraged pressure;

p' fluctuating component of pressure;

P pitch of rod array;

P wetted perimeter of subchannel;

r radial coordinate;

R rod radius;

R Reynolds number;

v b bulk velocity of the flow;

v. instantaneous velocity component in the
direction i, where i is

(a) cylindrical coordinates: r, 0 or z
(b) cartesian coordinates: x, y or z;
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v. time averaged velocity component in the
direction i;

VI fluctuating component of velocity in the
direction i; -

v normalized axial velocity ( -);

v local friction velocity p

VT average friction velocity V'U/P} ;

x cartesian coordinate in plane of cross section;

y distance from rod wall to point of interest in
the radial direction; also, cartesian coordinate
in plane of cross section;

A

y distance from rod wall to MVL;

y + non-dimensional distance from wall
(2 v &/v);

T

z axial direction of flow (cartesian or cylindrical
coordinate);

A 2 (v,2 - v;2 )
W r

dissipation rate of turbulence kinetic energy;

C radial eddy diffusivity of momentum;

Em,O tangential eddy diffusivity of momentum;

streaip ftnction;

K constant in "law of the wall";

v kinematic viscosity;

VT turbulent viscosity;

p fluid density;

e angular coordinate;

T Wwall shear stress;

T Waverage wall shear stress;

W vorticity.
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2. Laser Doppler Anemometer Parameters

a distance from beams to optical axis;

b beam radius at waist;

d fdistance between two consecutive fringes in
probe volume;

D beam diameter at laser exit;

Dph pin hole diameter in front of photomultiplier
tube;

f L focal length of lens;

h v probe volume height;

1v probe volume length;
Nf number of fringes within probe volume;

*n0air refractive index;

*npplexiglas refractive index;

nw water refractive index;

x 0distance from inside surface of window wall
to focal point of lens;

x M distance from inside surface of window wall
to probe volume;

t plexiglas wall thickness;

w v probe volume width;

S half-angle between beams in water;

laser beam wavelength;

vD Doppler frequency shift;

6 half-angle between beams in air.



CHAPTER I

INTRODUCTION

1. FOREWORD

Nuclear reactor fuel elements generally consist of

rod bundles, in which each rod represents fissile material

cladded by a suitable canning. In the space between the

rods, the coolant flows axially through the bundle.

Present methods of thermal design of such fuel

elements are lumped parameter methods which deal only with

subchannel flow and enthalpy averages. However, in many

cases, the surface temperature of the fuel rods limits the

thermal power that can be generated by the reactor. Such

temperatures can only be calculated by present methods if

heat transfer coefficients are provided as input. Also

exchange coefficients for mixing, diffusion and convection

processes are essential for lumped parameter calculations.

To date, all information required by those methods is obtained

through expensive experimental measurements. However,

principally because of the existence of fuel element spacers,

lumped parameter techniques are presently the only practical

means of analysis. Nevertheless the study of distributed

parameter methods can lead to insight of the functional

dependance of the required input parameters on geometric and

18
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operating condljtons and in some cases to reliable prediction

of the required information, Eventually, when more

understanding about the exchange processes is obtained,

distributed parameter methods may be used in place of lumped

parameter methods in the thermal design of reactors.

2. THEORETICAL BACKGROUND INFORMATION

The fundamental equations, for the computation of

the velocity field in any geometry, are the Navier-Stokes

and continuity equations. For a teady, fully developed,

turbulent flow with incompressible, temperature-independent

property fluid and neglecting body forces, these equations

can be reduced to the axial momentum, vorticity and stream

function equations, as shown in appendix A. In cylindrical

coordinates, with the main flow in the axial direction,

they are:

(a) Axial momentum equation:

1 1 a Wvz
-a Y- 4' z -

z
r)9 r -V- -*(1

(b) Vorticity equation:

z
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[ 91 Oa ~7 ~~2
r r eIr [r r rr - r2 2 (r(I.2)

(c) Stream function equation:

- r =_ ' (I.3)
5rz )r1rI r6\e

with vorticity defined as

r r(I.4)

and the stream function, as given by the expressions

v D.r-- 3(I.5.a)

V EV (I.5.b)
vr rNe *5.)

and P = constant.
z

Equation (1.4) includes only velocities and

gradients in the radial and angular directions. Thus the

vorticity can only exist when they are not zero. So, the

vorticity is directly connected with the existence of

secondary flow in the channel. Take equation (1.2). The

first two terms on the left represent convection of vorticity

by the secondary flow. This process tends to make the
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vorticity constant along the secondary flow streamlines.

The last two terms on the left represent @iffusion of

vorticity by viscosity and tend to make the vorticity

uniform over the duct cross-section by diffusing it from

high intensity to low intensity regions. In a laminar

flow, these are the only processes present, since the

Reynolds stresses, on the right hand side of eq. (1.2) do

not exist. So, in a straight duct in laminar flow, no

generation of vorticity takes place and the existence of

secondary flow is not possible, as pointed out in ref. 1.

In a turbulent flow, in a straight axissymmetrical channel,

the term v'v' is zero because an instantaneous value of

rSr
v v1 is equally probable in time as its negative,, - v v ,

both cancelling each other out when the term is integrated

over a long period of time. The first term on the right

hand side of equation (1.2) is also zero because angular

gradients of all parameters in the flow are zero. In this

case, therefore,no generation of vorticity takes place and

no secondary flow existence is possible. Such axissymmetry,

however, does not exist in flows parallel to rod bundles

(Fig. I.1). In this geometry the effect of the vorticity

generation terms is expected to increase as the aspect

ratio, P/D, approaches 1.

With this last consideration, it is shown that no

complete description of the velocity field (axial and

4.
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secondary flows) can be obtained that does not involve

either the solution of equations (I,1-3) or any other

equivalent form. The accomplishment of this goal, however,

is not a simple task since it requires information about the

Reynolds stresses which is not available in analytical

grounds. So, the engineer has to make assumptions about

their behavior, usually, based on experimental observation.

In many cases this assumption can be to disregard terms

that he senses do not have any appreciable contribution to

the velocity field being sought.

A review of the different approaches that have been

used throughout the years for rod bundle geometries is

presented and discussed in chapter II. Additionally discussed

are more recent turbulence models which, although, they have

not been aplied to rod bundles, look very promising for a

larger variety of applications.

3. SUMMARY OF PRESENT WORK

In the present work, the hydrodynamic structure of

the flow in a typical channel of a rod bundle with triangular

array (see Fig. I.1) is examined analytical and experimentally.

The simplified One-equation Statistical Stress Model for

turbulent flows, used by Launder and Yingg(2) for square duct

geometries, is modified for rod bundle applications. A new
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mixing length distribution based on analysis of experimental

data, obtained in this work, is used instead of the

distribution suggested by Buleev

In the experimental task, a Laser Doppler Anemometer

(LDA) was set up for measurements of the hydrodynamic parameters

(axial velocity, turbulence kinetic energy and Reynolds

stresses) of a flow of water within a test section designed

to simulate a typical interior channel of a triangular

cluster of rods with aspect ratio P/D equal to 1.123 and

L/DH equal to 77. The test section was designed to reduce

to a negligible level the refractions of the laser beams

on curved surfaces. A closed loop was used to circulate the

water. The experimental results were, then, analysed to

produce the constants needed to complete and optimize the

analytical model,

Finally, the analytical and experimental results

were compared to those obtained by other methods currently

available.

4



24

symmetry line for one rod

tipical sulb hannel

P A
- Aspect Ratio

Fig. I.l. Fuel Bundle Geometry with Triangular Array of Rods
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CHAPTER II

REVIEW OF LITERATURE

1. Introduction

The solution of equations (1.1-3) for flows in any

geometry requires information about the Reynolds stress

tensor. It has become usual to classify the various

different approaches designed to provide such informa-

tion into three categories:

a. The phenomenological turbulence models.

A turbulence model is assumed to explain the

behavior of turbulent eddies and how turbulent shear

stresses are created. An example of this group is

the mixing-length theory proposed by Prandtl, in 1925,

in analogy with the kinetic theory of gases.

Schlichting(2) describes in detail this model. More

recently, Buleev(l) proposed a model assuming two

mechanisms of momentum exchange of the eddies with the

medium: first, momentum exchange by molecular

mechanisms and second, the disintegration of part of

large eddies into small ones by the effect of surface

friction forces.

b. The eddy diffusivity methods.

Here, the turbulent shear stresses are related to

26
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a velocity gradient by a coefficient defined as the

"eddy diffusivity" of momentum, i.e.

vI vV V = -S 4 .(Iz r MI rr

Many expressions have been proposed for the variation

of over the cross section of the flow channel.

Such expressions can be derived on theoretical grounds

or they can be calculated from either measurements of

velocity distribution, using equation (I.1) and (II.1)

or from measurements of the cross correlation v v r

and the velocity distribution, utilizing equation

(II.1) directly.

c. The statistical turbulence models.

This group of models assumes that the turbulent

fluctuations are random in nature and that a few of

the statistical properties of turbulence are supposed

to obey laws of generation, dissipation and transport.

For the prediction of the velocity field utilizing

one of these models, the fundamental equations (1.1-3),

a set of differential transport equations that describes

the behavior of the statistical properties, and

associated algebraic equations that provide closure

to the model have to be solved altogether.
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Another way of classifying the different methods

that is becoming usual lately is by the number of

additional differential transport equations necessary

to solve the basic equations. So, in this classifica-

tion, the phenomenological and eddy diffusivity

approaches would be roughly classified as zero-equation

turbulence models and the different statistical

turbulence models would be one-, two-, or many-equation

turbulence models, depending on the number of turbulence

properties whose behavior is assumed to obey differential

transport equations.

Until now, all methods applied to rod bundle

geometries have been of the phenomenological and eddy

diffusivity types. Even more empirical methods have

been suggested throughout the years. Some of them are

reviewed briefly in the next section.

2. Analytical Methods Applied to Rod Bundles

2.a. Deissler and Taylor Method(3)

This seems to be the pioneer work, for rod

bundle geometies and represents an empirical approach

to the problem. The first step is to draw assumed

velocity gradient lines using best judgment (Fig. II.1).

These are lines with normal velocity gradients equal
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to zero. The universal velocity profile, obtained by

circular tubes, is assumed to be obeyed along those lines.

With such a velocity distribution, new velocity gradient

lines are drawn and the procedure is repeated, iteratively.

The tedious graphic-iterative procedure, the

assumption of analogy to circular tube velocity distribu-

tion, the impossibility of accounting for secondary flow

effects and the difficulty of adapting this method for

computer calculation are some of the drawbacks of this

method.

2.b Bender, Switick and Field Method( 4 ,5)

This method represents an application of the

mixing length theory proposed by Prandtl to rod bundles.

Secondary flows are neglected. The Reynolds shear

stresses are written in the form

r z m,r r

and

- _E: vz
0 vz m,6 rDI

where the coefficients e and m,6, called radial and

tangential eddy diffusivities cf momentum, respectively,

are given by
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m,r = c2

and

E = 2 = Z(11.5)

In these equations, k is the turbulent characteristic mixing

length, assumed given by Buleev's formula (see Appendix D),

and c is a constant.

Among the criticisms of this method, are the fact that

the eddy diffusivities are forced to zero, wherever the

respective velocity gradients go to zero and the lack of

inclusion of secondary flows. Also the resulting variations

of the wall shear stress distribution are unrealistically

high.

2.c. Method of Ibragirnov and Co-workers(7)

Since the total transfer of momentum is due to

two processes (see, for example, Ref. 8, pp. 288): a

gradient (or diffusion) transfer of momentum due to

molecular friction and small-scale turbulent eddies, and

a convective (or secondary flow) transfer of momentum due

to the large scale motion of eddies. Ibragimov and

co-workers suggested that convective transport of momentum

should become important for channels with sharply varying
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cross-sectional shapes where exchange between eddies of

considerably different velocities may occur. For those

cases, neglect of the convective transfer may lead to

considerable errors. Based on these presumptions they

concluded that the effect of the large eddies will be

most important circumferentially along the perimeter, in

the direction in which the velocity varies slowly.

Normal to the channel walls, such effects can be neglected

because the velocity gradient and the diffusive transfer

are high.

This reasoning led them to propose a semiempirical

relation for the wall shear stress distribution, determined

only by geometric parameters of the channel, that, for a

rod bundle subohannel, can be written as

t ( )F 1 7 -( il
__= c 1 - exp[-Lg 4 j , (11.6)

w av

where
A

-c

Yav

Ac - subchannel flow area;

y(O) = distance from wall to maximum velocity line
along normal;

A =

-a average value of y(0);
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and c is a normalization constant given by

6

-T de = 1 .(11.7)

max
o w

With this wall shear stress distribution and the

friction factor given by theElasius formula for circular

tubes

0.0791
f .- 0.25*

Re

the universal velocity distribution was assumed to hold

normal to the channel walls. In their next paper , they

suggested an expression for the ratio between the friction

factor for the specific geometry being analysed and that

for circular tube, i.e.,

4/3

= [0.58 + 0.42 exp(-0.021 +K)] 1 + 0.1 + 1
c c

(II.9)

where

K =0.5a25[ma x~ n
e

av J

-7
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R E radius of curvature of surface.

This method was proposed for any geometry and it

was applied to rod bundles by Bender and Magee in the

code VELVET-II, developed for computation of temperature

field in rod bundles cooled by liquid metal coolant.

The generality of this method makes it very attractive

but the method does not provide any information about the

magnitude of the secondary flows that is desirable for

turbulent heat transfer calculations. Also, the

assumption of the universal velocity profile along lines

normal to the wall is not valid for all cases. Finally

the assumption that the wall shear stress distribution is

only a function of geometric parameters and independent

of the Reynolds number should not be expected on theoretical

grounds since different turbulent parameters have different

behavior with the Reynolds number.

2.d. Eifler and Nijsing Method(10)

These authors, initially, proposed a method(18 )

to overcome the shortcoming of the Deissler and Taylor(3)

model which assumed that turbulent diffusion of momentum

around the rod periphery is neglected. Later the effect

of secondary flows was included as follows.
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Based on the explanation proposed by Hinze (11)that

secondary flows must transport turbulence-rich fluid

away from regions where turbulence production exceeds

dissipation, they observed that the lateral variation of

wall shear stress must be considered the prime cause for

the existence of secondary flow. Along with the experimental

observation that the rate of fluid ejection away from the

(12)wall is directly related to the local wall shear

stress, Eifler and Nijsing concluded that in the presence

of a lateral wall shear stress gradient., this will induce

a circular motion tending to transport high momentum

fluid through the rnainflow in the direction of decreasing

wall shear stress. This reasoning led to the prpposition

of an expression for the secondary flow component v0

as follows:

T

ve F , A ee -F , II1= Fr;z Aej1a(11.10)
where AO is the circumferential extent of the character-

istic domain. This secondary flow can be represented as

shown in Fig. 11.2. The following shapes were suggested

for the functions shown in eq. (II.10):
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1/2

AG = 2 eF , II.12
d w

F e -YLA 1 2C sec &0AO ,(11. 11)
p ee dO e

cos t}(11.12)

where Cse 0.6sec

For the eddy diffusivities, they used;

Tw
S 0154 y y .(1113)

C A (11.14)
mr r P

where Cr, in this case is taken as a function of the

aspect ratio and the Reynolds number.D'

Since no reliable secondary flow measurements have

yet been obtained, for rod bundle geometries, the

proposed shape of the peripheral velocity distribution is

not based on experimental evidence, In fact, measurements

of the wall shear stress distribution obtained by

several workers (13,14,15,16) showed the maximum value of

the wall shear stresses for Lk 1.2 does not occur at theD

symmetry line of the subchannel connecting the center of

the channel to the rod center (6 = 300 ) This distribu-

tion of wall shear stress would induce secondary currents

in disagreement with the description suggested by Eifler

K
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and Nijsing. Furthermore, Rowe , analysing the fluctuating

velocity contours obtained for both triangular and

square arrays with a laser Doppler anemometer, concluded

that, in certain cases, the deformation of the isovels

could only be explained by the presence of more than one

loop of secondary flow in a subchannel.

2.e. Buleev's 19) Model

The model proposed by Buleev is intended to

describe the interaction of a turbulent eddy with the

medium strictly from the phenomenological point of view,

Two mechanisms of momentum exchange are assumed. The

first mechanism states that the eddy exchanges momentum

with the medium by molecular interaction. The second

one considers that, due to the effect of surface friction

forces, a portion of the eddy disintegrates into small

eddies and is transferred to the surrounding medium.

With these two hypotheses in mind and describing the

probability that an eddystarting at a certain point,

will reach the point where the Reynolds stresses are being

sought, Buleev was able to construct the tensor of

turbulent stresses by integrating over all points that

can contribute to the turbulent behavior of the fluid

at the point in question. Buleev and his co-workers

li
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applied this approach to several different geometries(21)

(22) such as rod bundles and rectangular ducts.

In order to match the experimental results

available for rod bundles, Ramm and Johannsen(20) made

several minor changes in the above method, Artificial

boundaries were introduced to limit the flow area that

contributes to the turbulent properties prevailing at a

certain point. Anisotropy of the turbulence was

introduced by taking different scales of turbulence for

different directions. The momentum transfer in the

circumferential direction was arbitrarily increased to

examine the degree of compensation obtained for the

lack of inclusion of secondary flows in the model.

Although having the attraction of attempting to

explain the nature of the momentum exchanging mechanisms,

this model lacks of experimental evidence of the proposed

exchange mechanisms. Also, when the physical mechanisms

are mathematically expressed, many assumption become

necessary which certainly will affect the predicted

results. The proof of the utility of the model will lie

in its future comparison with experimental data. Here

again the impossibility of predicting secondary flows

is observed. The compensation of the secondary flows by

increasing the tangential diffusional momentum transfer

cannot be expected to produce accurate results in a detailed
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velocity distribution, since momentum transfer by convection near

the wall and near the maximum velocity line are expected

to occur at opposite directions for continuity reasons.

3. STATISTICAL TURBULENCE MODELS

As mentioned before, these models attempt to describe

certain turbulence parameters of the flow by laws of

diffusion, convection, generation and dissipation.

Transport equations are proposed for the parameters to

be described according to such laws. The other necessary

parameters are approximated by algebraic equations.

These statistical methods are usually classified by the

number of extra transport equations necessary to provide

closure for the Reynolds equations, In the presentation

that follows, these methods will not be reviewed in

chronological order, but instead, by the number of

equations, sinplicity of approach and the relevance of

the contribution.

3.a. One-equation models

In 1945, Prandtl suggested that the turbulent

viscosity could be described by a relation involving

the turbulent kinetic energy( ) and a lencrth scale, Z,

that is,

VT = K/2.15)
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In this model, K is obtained by the solution of a transport

equation, such as that presented in Appendix B, and the

length scale t was to be proportional to the distance from

the wall,

Launder and Ying (23) applied the above method to predict

the secondary flow distribution in a square duct, For the

normal and shear stresses involved in the vorticity equation

source terms, algebraic equations were obtained from the

transport equations for the second order moments, after a

series of approximations. The results obtained were very

encouraging when compared to the experimental results

obtained by the same authors ,24) that had been published

previously,

Bradshaw and co-wOrkers (25), studying a two-dimensional

boundary layer developemnt, converted the turbulent energy

equation into a differential equation for the turbulent

shear stress by defining three empirical functions relating

the turbulent intensity, diffusion and dissipation to the

shear stress profile. This approach eliminates the

trestriction imposed by the association of the shear

stress to the velocity gradient that they sould be zero

at the same position. This method, however, as one-

equation model can not be applied to three dimensional

flows since transport equation for only one turbulent
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shear stress is provided,

3,b, Two-equation models

All two-equation models use the definition of

turbulent viscosity, eq, (1,15) as proposed by Kolmogorov

and Prandtl separately. Of the two transport equations,

one is used to describe the behavior of the turbulence

kinetic energy, K, and the other one is for a quantity

from which the length scale Z can be obtained. The

different approaches differ with respect to the selection

of this latter quantity and the procedure to obtain a

transport equation for it.

(26)
The first two-equation model was proposed by Kolmogorov

in 1942. He proposed an equation for the mean frequency

of turbulence, f, that is defined as

f .(11.16)

Harlow and Nakayama(27) cbhstructed a transport equation

for Z, on semi-empirical grounds. Three source terms were

added. The first one represented a source term for non-

steady flows. The second source term which would be the

only term for a completely homogeneous flow, represented

contribution to the growth of mean eddy size. Finally,

the last term described the breakdown of eddy size in

(28)regions of shear. In a following paper, they derived
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on rigorous grounds a transport equation, but this time

for the turbulent energy decay rate, assumed to be equal

to K/P2

Spalding(29) proposed a model that deals with the

same parameter K/P2 but gave a different interpretation

for it. It was assumed to be a characteristic turbulence

parameter or vorticity decay parameter. The source terms

of the equation were obtained by analogy to the source

term of the turbulence kinetic energy equation.

Another two-equation statistical model was proposed

by Jones and Launder 31). This model involved a transport

equation for the turbulent energy dissipation rate, following

the line proposed by Harlow and Nakayama(2 8 ) including

molecular viscosity effects on the turbulence when the

turbulent Reynolds number is low.

3.c. Many-equation models

Several different approaches have been suggested

to avoid, primarily, the concept of turbulent viscosity

involved in the simpler models. The basic idea is to

construct separate transport equations for second, third,

etc. order correlations of the turbulent intensities.

In 1945, Chou (30) observed that double and triple

correlation equations are necessary to describe a flow

field when walls are present. Quadruple correlations
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can be approximated by algebraic expressions, For free

turbulence cases, only double correlations are required.

Also, an extra equation for the vorticity decay is

required, So, this procedure, in its most general form,

would require 17 equations. Davydov(3 2 ,33) also described

a method involving transport equations for second and

third moments of turbulent intensities and finally the

turbulent energy dissipation. In a following paper

he argued the necessity of including equations for the

"dissipation flow parameter C ", defined as

12

Ci = VV v k .(11.17)
i axI

These methods just described are some of the most

general methods proposed to date. Due to the complexity

involved in the numerical solution of such a large number

of equations and the proportionally high number of

empirical constants involved which require estimation

from experimental information, they have not been tested

to date. Many uncertainties remain about the degree of

improvement they would provide over some of the simpler

models. However, to overcome some of the shortcomings

associated with one- and two-equation models and while

still not being as complicated as the models with equations

for the second and third moments of the velocity fluctuations,
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several models were proposed where only equations for the

double correlations are present. This type of model has

the potential for treating highly anisotropic flows or

flows with low turbulent intensities, when diffusive

effects significantly modify the transport of turbulent

properties

Hanjali6 and Launder developed a model involving

approximate transport equations to the Reynolds stress

tensor and for the turbulence energy dissipation rate,

in a total of seven equations. For boundary-layer flows

a simpler version is suggested involving only transport

equations for the shear stress - v1 v2 , the turbulence

kinetic energy and the turbulence energy dissipation rate.

(36337)
Harlow and Hirt ' also developed a seven-equation

model along the same lines as the previous one., but where

the unknown correlations are approximated by expressions

containing mean velocity gradients, Reynolds stresses

(42)and length scales. Gosse and co-workers recently

proposed a three-equation model where transport equations

were derived for the turbulence kinetic energy and for two

independent turbulence scales: one connected with the

turbulent diffusion, and the other related to the viscous

dissipation process.

The statistical turbulence models described are going

/:
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through a period of intensive tests in a wide range of

applications. Summaries of details and applications

can be found in references (38),(39),(40) and (41).

Until now, there is no general criterion to select

the method that would yield best results for a certain

flow. This is left to the designer to decide which

method would combine accuracy with economy and simplicity

for his specific case of interest!

4, EXPERIMENTAL MEASUREMENTS PERFORMED IN ROD BUNDLES

Published experimental data of distributed turbulent

parameters such as axial velocity, turbulence kinetic

energy, Reynolds stresses, are very limited!

Eifler and Nijsing,(43,44) using a Pitot tube,

measured the velocity distribution of water flowing through

a test section with a cross-section as shown in fig.IIL.3,

for = 1.05, 1.10 and 1.15 and Reynolds number in theD

range (15-50) x 103 *Eifler(45) extended the measurements

for P1= 1.08. Subbotin and co-workers(15 ) also used theD

same type of cross section for their measurements of

velocity field and wall shear stress distribution in

air for = 1.05, 1.10 and 1.20 with Reynolds number in
D

the range (18.8-81) x 103 They also utilized a Pitot

tube for the velocity measurements. It was observed from

the data of both investigations that the proximity of the

Ii,
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wall blocking the gap of the subchannel adjoining the

subchannel where measurements were being performed in

fact distorted the velocity distribution in a way that

should not be expected by symmetry considerations. In

his experiment, Kjellstrom(13) tried to eliminate such

perturbations by placing his subchannel being analysed

(Fig.II.L4) as far as possible of blocking walls. He

Pused = 1.217 and air flow. With the utilization of a

Preston tube, wall shear stress distribution were measured

for Re = 2.74 x 105. He also measured, using a hot-wire

anemometer, velocity distributions, turbulent intensity

distributions in axial, tangential and radial directions,

as well as the Reynolds stress -vr v distribution, for

a few angular directions. He also attempted to measure

secondary flows but obtained only very scattered results.

Hall and Svenningsson (lN)using the same experimental

techniques and test section as Kjellstrdm also attempted

to measure secondary flows, with no better results. Rowe(1 7 )

used a laser doppler anemometer to measure velocity

distribution and turbulent intensities along a few specific

lines of several different geometries, typical of rod

clusters. However, the most complete experimental work

on rod bundle hydrodynamics has been performed by Trupp

%nd Azad(1 6 ) using a hot wire anemometer. Pitch-to-diameter
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ratios were 1.20, 1.35 and 1.50, and the Reyholds number

was in the range (12-84) x 10 Measurements were made

of axial velocity, turbulent intensities, shear stress

-Vr z as well as power spectra of the axial turbulence.

Also wall shear stress distributions were obtained by a

Preston tube, Measurements of thetangential shear stress
-rr

-V6 v were very scattered so that no information could

be obtained about the relative value of the peripheral

eddy diffusivity eM, compared to the radial eddy diffusivity

e m.r The cross-section of the test section used by

Trupp and Azad is shown in figure 11.5. Table II.1 shows

a summary of the measurements performed in rod bundles as

discussed in this section.



TABLE II1.
Cross-

I I) L RTurb. orrelations T
INVESTIGATOR Rex 10 Vlct nestD ]ciyIrtensitjy

H Axial Second. z r 6 v'v' v'v' TWrz Oz w

Eifler, 1.05 139 15, 30, 50

Nijsing 1.10 90 15, 30, 5/

1.15 65 15, 30, 50

Eifler(45) 1,08 137 10-152

Subbotin 1.05 154 18.8-81

et al(15) 1.10 100 18.8-81

1.20 72 18,8-81

Kjellstrbm(13) 1.217 81 149-373-/V/ Y/V/V/

Hall and 1.217 81 270
(14)

Svenningsson ___

(16)
Trupp and Azad 1.20 51 12-84

1.35 30 12-84 //W//
1.50 20 12-84Y/

Rowe(1 7 ) 1.25 85 (0) 50-200

1.11P 117 50-200Y/

1.25 90 50-200 //
1.25 105 50-200 //
1.25 138 50-200

1.25 122 50-200

(#) All data for triangular array except where mentioned
(*) Square array
( * * )Square and triangular channels in same test section
(o) Based on cross section hydraulic diameter instead of

otherwise.

sub channel's.

SUMMARY TABLE OF MEASUREMEUIT N I ROT RTTNDIr.
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maximum velocity
- ine

velocity gradient
lines

Fig. II.l. Procedure for Calculation of Velocity Distribution

by Deissler and Taylor Method

eE~

Fig. 11.2. Schematic Representation of Secondary Flow

Pattern proposed by Eifler and Nising



49

Fig. 11.3. Cross-Section of Test Section used by Eifler

and Nijsing for Velocity Field Measurements

Fig. 11.4. Cross-Section of Test Section used by Kjellstrbm



50

Fig. 11.5. Cross-Section of Test Section used by Trupp

and Azad
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CHAPTER III

DESCRIPTION OF ANALYTICAL MODEL

1. General Consideration

As observed in Chapter II, none of the models that

have been applied to rod bundles can give a detailed

description of the complete velocity field in a typical

subchannel. Description of axial and secondary flows can

only be obtained through the solution of the Reynolds'

equations for all three directions (axial, tangential and

radial) along with the continuity equation. Obviously,

information about the Reynolds stress tensor is necessary

to accomplish such goal.

In the present work, the velocity field will be sought

for an incompressible flow with temperature-independent

properties, in steady state and fully developed conditions

with body forces neglected. The subchannel selected will

be one from a very large (infinite) array of rods. For

such situation, the Reynolds and continuity equations can

be reduced to a set of three transport equations for the

axial momentum, vorticity and stream function, as shown in

Appendix A. They are presented below, in cylindrical

coordinates.

55
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(a) Axial momentum equation:

r zrz

aa3vz OZ = (11.1
r1 v J vp 3z

(b) Stream function equation:

-4r( ))W (III.2)

) Vorticity equation

r w( ) r w F - r(j) - )e

1 2 2 + 1Fl r2
-~ - rvT - vT r vr II3v r I aF r7 vF DO2'r+

vrdtrW 0 rj r30

where the vorticity was defined as

W=- a -- \Tr

w = - -r ,(III.4)

and the stream function, by the relations

ve -V 2v =% (111.5)

r VA v(III.6)
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In equation (111.1), the bars over vz and p, meaning

time-averaged values, were dropped since, from now on,

instantaneous values of those quantities will not appear

in the development of the 'Model.

To solve equations (111.1,2 and 3), only statistical

turbulence models were considered in view of the limitations

of the other models. Statistical models with more than

two equations which were considered still in the develop-

ment stage were ruled out because of their added complexity

and due to the fact that, until now, they have not proved

to produce more accurate results than simpler one- arid two-

equation models. So, the choice was between one- and two-

equation models.

These two types of models assume the Reynolds stresses

as being proportional to axial velocity gradients, for

example v v Ta Z For the proportionality parameter or
r z Dr

turbulent viscosity, it is assumed the expression prepared

by Kolmogorov and Prandtl, independently,

K1/2VT =K 1 L ,or

T v~1/2V T =C K1 1 i ,(111-7)

where CV is a constant, K is the turbulence kinetic energy,

i is the mixing or mixture length, and LV is the actual
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diffusion length of momentum. Both types of models compute

K through a transport equation.

With equation (111.7) in mind, the selection of a

model is reduced to the consideration of whether or not

to express (or related parameter) also in terms of a

transport equation. A few intensive arguments are presented

below to substantiate the decision of using a one-equation

model; tht is, expressing t by an algebraic expression.

Since, in rod bundle subchannels with- > 1.0,the

absence of corners rules out the presence of strong

vorticity-generating regions, as observed in square ducts

the generation and dissipation of vorticity are expected

to be more uniformly distributed along the surface of the

rods, with secondary flows being established due to

imbalances of these two processes (2). Based on this

reasoning secondary flows in rod bundle subchannels should

not be expected to be as strong as in ducts with corners,

and they should decrease with the increase of , since the

asymmetry of the channel, thAt can be mathematically

expressed by

y yA

max min(111.8)

decreases as increases. In the range of values for
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where secondary flows can be considered important, say

< 1.25(3the wetted perimeter is usually much larger

than y because of the elongated shape of the subchannel.

So, the wall region plays an important role in the cal-

culations. However, it is expected that for points close

to the wall the mixing length should be proportional to

distance from the wall.

With the two heuristic arguments above, it was

inferred that, in rod bundles, secondary flows are not

very strong and that the wall region can be considered

dominant in the description of turbulent parameters. It

is known that, in the wall region of any turbulent flow

without secondary flows such as flows in circular ducts or

over flat plates, that the mixing length can be taken as

proportional to the distance from the wall, to the point

being analysed. In the region near the maximum velocity

line (MVL), small errors in the values of the mixing

length L, consequently in v, will not affect the final

velocity field computation considerably, since, over that

region velocity gradients are very small.

In the following sections which present a detailed

description of the model, selection of many input

parameters and constants is described based on existing

experimental data. For the mixing length, Z, and constants
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CD and C in particular, experimental data from this study

were used to deduce optimum representations or numerical

Values. As pointed out in the discussion of results,

Chapter VI, however, alternate representations or numerical

values for these functions based on existing data in the

literature would demonstrate the general success of the

one-equation model utilized here for predicting the

hydrodynamic parameters of turbulent flows in rod bundle

geometry.

2. DETAILED DESCRIPTION OF MODEL

The first step in the application of the one-

equation statistical model of turbulence is to relate the

Reynolds shear stresses to main Velocity gradients in

terms of the turbulent viscosity vT, that is,

V v _ (111.9)vr z = T-DT

IIv

v v F (111.10)

where the turbulent viscosity is given by the Prandtl-

Kolmogorov formula (111.7), repeated here,

1/2VT = C K 2  . (11.11)

The turbulence kinetic energy, K, will be calculated
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by the transport equation (obtained in Appendix B):

vvK vK
1 rK(L-) --- KO) i a K r 1 a K 6
r r r36 r3e a' r r r3rrD v

= =CD+ v (III.12)

Here again K is the time-averaged value of the

turbulence kinetic energy, the bar over its symbol being

dropped for simplicity.

Assume, by analogy with (II.9) and (III.10),

3Kv K
*1 ~ Kar

vK0 P

(1I1.13)

(111.14)

where r is an exchange coefficient of the kinetic energy

of the fluctuating motion. Assuming that the diffusion of

turbulence kinetic energy is produced by eddies with

approximately the same scales of motion of those which

promote momentum transfer, tK can be approximated as

FK (III.15)

where rK can be understood as an effective Prandtl number,
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which is taken as constant.

Regarding the mixing length distribution, there is no

information available about its distribution in rod arrays

based on experimental data. Buleev proposed a semi-

empirical expression,

,2it

I do (1II.16)

40

where s represents the distance from the point in question

to the solid wall in the direction 4. Based on analysis

of rod bundle subchannel experimental data obtained in

this present work, as will be discussed later, it is

proposed the mixing length distribution be expressed as

= , for 0 < Y < 0.44 , (111.17)
yy y

= o.44 + o.o66 sin- 0.44)

for 0.44 < Y-< 1.0 ,(II.18)

y

where Y is distance from the wall to the maximum velocity

line, along a radial line.

Both expressions will be compared to experimental

data in Chapter IV, for different angular positions.

In order to obtain a closed system of equations,
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the vorticity source term in equation 111.3 has to be

determined. This term (see Appendix A) is:

= 2
-- (y 1 12

ao rv7 - Vr

rrr r2 -VV

Brundrett and Baines observed that, for square

I >> I2.This is assumed, here, to be true also

bundle subchannels. Then,

(111.20)

(III.21)

ducts,

f or rod

12 12
Srv - vr . (III.22)

De fine the term A 2 . Three possibilities

were analysed to obtain the term A as follows:

i. from empirical correlation of experimental data

in the literature;

ii. by associating AW to the -tuwblenge kinetic eaetgy,

through a geometric function, that is,

w = K - f(r,O) (III.23)

where

CI
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iii. from algebraic approximations of the transport

equations for the turbulent intensities.

In the first approach the procedure examined to corre-

late turbulent intensities was that proposed by Bobkov et

al(5) and applied by Ibragimov et al for square ducts.

The difficulty associated with this procedure arises

from the fact that the experimental error associated with

AW is very largq, since it represents a small quantity

obtained by the difference of large quantities each having

an experimental error. This precludes any effort to

obtain gradients of A accurately, particularly in the

tangential direction.

The second possibility was also expLored for applications

in square ducts, this time by Ying as described in Ref. 7.

The difficulty lays in obtaining the geometric function

f(r,O). This would have to be accomplished by examining

experimental data related to the behavior of A based on

heuristic considerations. The major setback of such

approach is its lack of universality. For rod bundles,

there is no reason to believe that the same function

would represent well A for very different values of P/D.

The third approach comes from the assumption that, close

to the wall, all turbulent intensity is produced in the

axial direction and part of it is redistributed into the

tangential and radial directions by pressure fluctuations.
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So, since convection and diffusion areneglible near the
2 2

wall, the pressure redistribution of v or v is made

equal to its dissipation (see Appendix C for details).

From these assumptions, one obtains:

where

2 A 2 rv 2
V - r

C 2t69 2 -2
D life1 - 2c2J

(III.24)

(111.25)

with c1 and c 2 , constants.

Expression (111.24) will be adopted in the present

work.

3q Boundary Conditions

The sketch below shows the subchannel boundaries

where conditions are being sought.

C

e-e

~e =~O A l B
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a. Boundaries I and 11I1(6= 00 and =max',

respectively)

For the axial velocity and turbulence kinetic energy,

by symmetry considerations,

=0 , (111.26)

0 . (111.27)

IIII

Since no net flow crosses lines AB or CD, the stream

function must be constant along boundaries I and III, which

can be observed from equation (111.5) by imposing v, equal

to zero. Since the value of this constant is arbitrary, it

is taken as zero, So,

I,LII 0 (111.28)

The boundary condition for the vorticity along these

boundaries is obtained from equation (1114), observing
aT

that v = 0 and 0 by symmetry, Then

0 . (111.29)

b. Boundary II (maximum velocity line, MVL)

By symmetry, the gradients of the axial velocity and
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turbulence kinetic energy are zero along the normal to

MVL, that is,

(avL

IniMVL

These expressions can be written in the form:

av:-a

(9r MV L rMVL

LFhMVL traoMVL

tan 0 (III.30)

tam 0 (III. 31)

Since no net flow crosses MVL, the stream function is

constant along BC and the constant is set to zero, that is,

*MVL 00.

Since no net flow crosses MVL, the direction of the

secondaryflow velocity, v, is along that line. Expressing

v and V in terms of v, obtain:
0 r

V# Cos 0

v =vsin6

Substituting these two expressions into equation
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(III.4), one gets:

_ vcosO 0 v. - sin a 3v v cot 0+Cos5 S- r

or

wMVL = av
TMVL

By symmetry, the normal gradient of v along MVL is

zero. Then

wMVL 0 (111932),

By symmetry, the gradients of the axial velocity and

turbulence kinetic energy are zero along the normal to MVL,

that is,

= 0
) MVL

OK(2L) = 0
MVL

These expressions can be written in the form:

(av ~ a~ fvz = z

%D MVL L eMVL

(a)MVL
- K )

MVL

tan 6 (III.30)

tan 0 (111.31)

/I

0
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Since no net flow crosses MVL, the stream function is

constant Along BC and the constant is set to zero, that is,

C, Boundary IV (solid wall)

Since the wall is non-porous, that is, no flow crosses

its surface, and applying the non-slip condition, one finds:

(vz = 0 ,(111.33)

K =0 , (111.34)

- 0 , (111.35)

and ( )= 0 (111.36)

C,1. Wall Functions for Axial Velocity and Turbulence

Kinetic Energy

Near solid walls, the radial gradients of the velocity

and turbulence kinetic energy are very large. So, a

numerical procedure based on linear approximations would

not be valid for large mesh space in that region. Also,

the coefficientsOD and C , introduced in the analytical

model, can only be assumed as constant, with the mixing

length given by either eq. (111.16) or the set of equations

(111.17) and (111.18) for large turbulent Reynolds number,

defined as

/
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1/2

t V

where y is the distance of the point being analysed to the

wall. The coefficients CD and CV are chosen in such way

that, just outside the wall sublayers, in the fully

turbulent region, the diffusion length LV3 associated with

VT (E KL 2 LV ), multiplied by 1/C is equal the dissipation

length LD, associated with the dissipation rate of
3/2'

turbulence kinetic energy E f - multiplied by CD. Also
I DJ

each product is equal to the distance from the wall to the

point being studied, that is,

-p- =C D. y(111.38)
V

However this does not happen close to the wall or in the

so-called laminar and buffer sublayers. Distributions of

the mixing length, as a function of the turbulent Reynolds

number, have been proposed(8 99) for the wall sublayers.

In general, they can be written in the form:

(a) laminar sublayer:

k A t(111-39)

Z1=DAD Rt y , (III.140)

(b) buffer or transition sublayer

9V = y 1 - exp(-AVRt)] , (111,41)

/
A,
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D 1 - exp (-ADRt)j , (111.42)

where AV and AD are constant. Distinction was made

between the diffusion and dissipation length scales since

they are not proportional to each other inside the wall

sublayers.

Utilization of the mixing scales as given by

expressions (111.39-42) in a numerical procedure would

require a very fine mesh space in the radial direction,

near solid walls, which would make the numerical solution

very expensive, Since, inside the laminar and transition

sublayers, convection of momentum is small, it is expected

that the velocity profile in the region close to the wall

could be accurately represented by a law-of-the-wall

function (see, for example, Ref, 10, p. 554) of the type:

V = log Ev-- (111.43)

where vt is the friction velocity and K and E are constants.

This distribution will be assumed in this work.

For the turbulence ktnetic energy, assuming that

diffusion and convection are negligible compared to

generation and dissipation near the wall, its equation

(111.12) is reduced to

z rK3/2j-vvv z-I(111.44)
D kDr=z-Drr e z
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The velocity gradient in the tangential direction is

very small compared to its radial gradient, so, it can be

neglected. Using equations (111.9) and (111.7), equation

(111,44) is further reduced to

.2

C=3/2=C K/ 11)z
D K V

Now, from eq. (111,43). assuming negligible curvature

effects near the wall,

IV 3v v 1

Tr Dy I y *

Plugging this result into (111.45)

C K3/2 2D 1/2 1
D2CyK Z 2

D ICy

Since, it can be assumed that, at the edge of the

buffer ublayer (call it point B), D = V = y one obtains

C

B K C T - (111.46)
CD-

The vale of K iven by eq. (111.46) will be used

as the wall boundary condition for the turbulence kinetic

energy equation.

C.2. Vorticity boundary condition at wall(ll)

Since neither the vorticity nor its gradient normal
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to the wall are known, its wall boundary condition has to

be deduced from the non-slip condition between the' wall

and the fluid, Assume, then, that in a very thin layer

close to the wall, the vorticity source term is negligible.

Usually, in this region, gradients in the peripheral

direction are much smaller than gradients in the direction

normal to the wall. With this assumption; equation (111.3)

is reduced to

(3aw)
() - ar( ) 0 (1II.47)

Integrating this equation from the wall to a radial position

r, one obtains::

w2t-r-) + 0ao a

where W is an integration constant. For a domain very

close to the wall r can be taken as the radius df the rod, R.

Then

The solution of this equation is

r n'

A dr expL- ;( ) dr4 + B

f R=R a e ( 1 1 1 .4 8 )

exp - ( ) dr'
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where B is another integration constant.

Since, at the wall, ( 0, take ()% 0

in the thin layer close to the wall considered. Then

equation (III,48) is reduced to

w = A(r - R) + B

or

W = Ay+ B (111,49)

This expression represents a linear approximation of

the vorticity near the wall. A and B are the radial

gradient and value of the vorticity at wall respectively.

With the approximation expressed by (111.49),

neglecting tangential gradients and curvature effects in

the wall region, equation (111.2) yields;

a 1 (Ay + B) . (111.50)
ay

Integrating twice with the conditions = 0 and

(At) = 0,ay

P = +(111.51)

Equations (111.49) and (111.51) define the boundary
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condition for the vorticity at the wall. Taking P as the

point at the wall and F as the Cirst mesh point inside the

flow, A can be written as

and B =w

Equations (II.49) and (111.51) are reduced to

(r < -. R)
2 *F (III.52)

This equation represents the numerical approximation

adopted for the vorticity boundary condition at a solid

wall.

4. SOURCE TERM FOR AXIAL MOMENTUM EQUATION

The source term for the axial momentum equation is

Ivz = - z (III.53)

where is constant since only fully developed flow is

being treated.

A balance of force between two positions 1 and 2 in

J- i v
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the downstream direction, one gets

(p1 - p2)9 At = 'P - (z2 -].) ,(III.54)

At subchannel flow area,

P 2subchannel wet perimeter,

2 average wall shear stress.

From (111.54) obtain

ap DH
la a z p (III.55)

where DH is the subchannel hydraulic diameter, defined as

D 4At
D

w
(III.56)

Defining the friction factor, f, as

7 /p
if

Vbb

(III.57)

where vb is the flow bulk velocity, equation (111.55)

is reduced to

IV E l f(A) -
z H

. (III.58)

where

.0
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This equation represents the source term for the

axial momentum equation,

Recalling that

T (6)- 1/2

VT () * (111.59)

the required friction factor f is obtained directly from

equation (III.57) with T /p given by

1f 01max v (e) dO . (111.60)
P 0max fo T

The distribution of the friction velocity v with the

angular position is obtained (see Chapter IV, section

6.3.1) from application of the wall function, equation

(111.43).

5, CONSTANTS QF THE MODEL

Several constants were introduced during the

description of the model. They are:

(a) C., introduced through the definition of the

turbulent viscosity, equation (III.7);

(b) CD, from the approximation of the dissipation

rate of turbulence kinetic energy, e, equation (B.7);
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(c) cyK) effective Frandtl number defined by equation

(I1I,15);

(d) cI and c2, from the vorticity source term as

deduced in Appendix C and shown in equation (111.25);

(e) K and E introduced in the axial velocity

distribution near the wall, equation (111,43).

The procedure adopted to obtain these constants will

be desdribed, here, not in the sequence above, but in the

sequence that they were obtained.

5.1 K and E

They can be obtalned from the plot of v+

as a function of y VI

by approximating its distribution by the function

V = log Ey+ . (111.61)

Since, in the present work, no experimental measurements

of the wall shear stress distribution were carried out,

o()1/2
necessary to obtain v v(= v(O) = -,the values

of K and E given by Patel l2), were adopted

K = 0.4186

E = 9.8

I
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5.2 C

The constant C is obtained from the expression

C-2 r , (111.62)

which is obtained directly from (111.7) and (III.9). The

parameter CXZ can be calculated directly from the experi

mental measurements of vtvV and K. Taking to ber z' z

equal to the distance from the point under study to the

wall along the radial line, for points close to the wall,

C is, then calculated considering all angular positions

in the subchannel. The Value obtained was 0,180,

5,3 CD

C- can be calculated from (111.46), by estimatingD

v from pressure drop measurements. The value obtained

for K/v near the wall was approximately 3.5, From this

value, CD = 0.30. However, better agreement between

analytical predictions and measurements of this thesis for

the TKE distribution were obtained using CD equal to 0.38.

So, this later value was adopted in all subsequent computa-

tions.
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5.4 aK

Since the measurements of v'KI and V'K' would requirer 0
triple correlation measurements, this was not carried out.

These measurements are necessary for a correct estimate

of the value of 0K' It has been suggested in the literature

(see, for example, Ref, 9) that aK should be in the range

(0.9 - 2.5). This constant was arbitrarily taken as 1.3

although no sensible difference predictions of all parameters

were observed utilizing a value 1,5.

5.5 c1 and c2

The constant c1 was discussed in Appendix C, Its

value is expected to be between 2.5 and 3.0. In this work,

c = 3.0.

Hanjalic(13), analysing the experimental work performed

(14)by Champagne and co-workers on nearly homogeneous

turbulent shear flows, concluded that c2 was approximately

0.4. This value was readjusted to 0.37 based on analogy

to square duct results of Launder and Ying (15)

6. SUMMARY OF EQUATIONS OF THE MODEL

This section presents a summary of the relevant

equations of the model.
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6iTranspQrt 'equations

(a) Axial1 momentum equation

i~r(--t-~v(~?) aVT)avZ
rr r zrae6 rae tta r Fr 7r r) TF

rae v Jr36Q 10p az

(b) Stream function equation

(111*63)

1 r'(21) - (a a =_ (11*64 )r 3x' rae rae v

(Cc) Vorticity equation

A rw( LO4aWAi, a aw araDr r@6 rae aDr r@ a . 3

v rraeFD7rvG r (111*65)

(d) Turbulence kinetic energy equation

t r K( )-~ K(2t)-LAAr rae rae ar r
V.T

vac
3K

3/2 2(C K3 2  v rav) fav)

a e va raeO v tar Ji raej,
0(111.66)

) ~/
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6,2 Algebraic equations

(a) Turbulent viscosity

vT CVK (III.67)

(b) Mixing length distribution

for o . 0.44 , (II.6$)

4 = 0.44
y

+ o.o66 sin T -0.44
[0.3A

for 0.44

Cc) Expression for a v'2 -v0w - r

2LavJ ( 2
2 z -z2-

C 2 2(6c - 2)
C

where

(III.69)

(111.70)

Cd) Source term for axial momentum equation

2
2 b

I = f() -

Friction factor

2
Vb

0 (111.72)

A A

y y

< 1 .0
y

Ce)

(III.71)
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(f) Average value of wall shear stress

0Max

max

2( de
T

6.3 Boundary conditions

(a) Wall boundary conditions

v Ev Y
V = Tlog EV

Z K V

D

*1= 0 ,

(b)6 = C

F 3\
2

(rF

ando emax

hi

) F

Dv
_3K _-

30 DK 0

(c) MVL

Fv v ~
-= L--WJ tanG

(III.73)

a



aK Kai) tan o

tan 0

6.4 CohsatAts of the model

Cv= 0.180

CD = 0.38

0K =1.3 ,

K = 0.4186

E = 9.8

C-1= 3.0 ,

c2 = 0.37 .
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CHAPTEE IV

NUMERICAL PROCEDURE

To derive finite-difference equations from those

differential ones described in the previous chapter, the

procedure selected was that of integrating the equations over

finite areas, making assumptions regarding the distribution

of the variables between the nodes of the grid. This

procedure ensures that the conservation laws are obeyed over

arbitrarily large or small areas, within the accuracy of

assumptions made.

It can be observed that the differential equations

for the axial momentum, vorticity, stream function and

turbulence kinetic energy can be put ihto a generic form

a, 'aIV 3 -) ? ar Dr 9 - - -rj r r b Or + Debr

= , (IV.1)

with the parameters given in the table IV.l.

87
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Table IV,1, Farpmeters a b and S for the

Differential Equations

43 a b s

V 1 lp
a,

0 1

2K 1 E zT V\ (zv\ 2K 3/2

[r + rD

VTE= 1 + -
+.

K K

(IV* 2)

where

Figure IV.l represents the finite difference grid.

The dashed lines limit the integration area and they are

placed half way between two consecutive grid lines, that is,

+1/2 W +l

ri-1/2 2 (r i + r

E) I (E) + EQ
J+1/2 2 + + ),

9J-1/2 2 j1 J-)1

(IV. 3)

a
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The element of 4rea, in cylindricl coordinates, is

dA r dr de?

Integrate, now, equation (IV.1) over the dashed

area:

r +1/2 0 J+1/2

9-a t j'dr d

ji-1/2 .Jj-1/2

Convection Terms I
c

r +1/2 J+1/2

dr db r b + r bF =

r1-1/2JJ-1/2r -a

Diffusion Terms = I

1+1/2 -J+1/2

r S dr de . (IV.4)

ri-1/2 j-1/2

Source Terms =I
sor

So, the equation assumes the form

a I-ID J0 r -5)C D sor

1. CONVECTION TERMS

The convection terms can be broken down into four

integrals:
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+1/2 +1/2

Ic dQ d

r1+1/2 1-1/2
9J 1/2 J1/2

r 1+1/2 1+1/2

Jdr (rj (IV.6)

Jr D 0j&L/
r j+1/2 rj -1/2

1-1/2 i-1/2

Consider the first of the integrals

GJ+1/2

IC,1 edE)

r1+1/2
J3-1/2

For regions away from the wall, it is assumed that 4 and W

are well-behaved functions, so an average value (}.+1/2 j

is defined(l) for the parameter , such that

1+1/2

6 1/2 ( IV. B )dOe/2r1i+1/2

J-l/2

So, IC, can be written in the form:
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1  < k+1/ 2 ,3  4+1/2,j+1/2 AktY/2,,J-1/2

At this point, "upwind differences" are introduced~1 ) into

equation (IV.9), which means that if the difference

(yi+1/2,j+1/2 -i+l1/2,j-/2 ) is positive, the direction

of the flow is from the point (i,j) to the point (i+l,j),

and so the property has predominance at point (i+1/2,j),

and Wi+1/ 2 ,j is assumed to be equal to Q . On the other

hand, if that difference is negative, the flow is from

(i+l,j) to (i,j), and the property ti+dj is predominant at

(i+1/2,j), and fi+1/2,j is taken as Mathematically,

one can write

CS1 4i+.9j(w+1/2 ,+1/2 2 1+1/2 3j-1/2)

l+1/29+1/2 -1y+1/22 -1/21

2J

+1/2 +1/2 Wi+1 1/2,-1/2)

2
i.+1/2Lj+1/2 - )1+1/23-1/2 . ( IV .10 )

Another approximation is introduced by taking the

value of the stream function at a particular corner of the

integration area as being equal to the average of the values
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at the four neighbo.4,ring nodes Hence . typIcally

Y + Y +4) (IV r'll)[yi,+ lt j + 1 i+l'ii+1/22j+1/2 7 
ij

The other terms are obtained the same way and the

total convection term can be written as, after rearranging,

I C A i+13j 
+ Ai lsj ( jjj Oi-LOP +

ijJ +1 ' j+l) + Aisjl ( iqj ijjj) 3 (IV* 12

,where the coefficients A, using (IV.11), are:

A +
i.+ilj gf(%Fi+llj-l - Ti+lsj+l + Yi.9j - 4)ij+l

+ Y .9I'Pi+ii-l - 4)i+l.,J+l i., j -1 - Yilj+ll

1
A i-1.9j 'a 1(y i-lgj+l - 4i-1,9j-l + yi3j+l - 4 i3li-1) +

IYIlsj+l - Wi_13J-1 + Y i2j+l - Y i3j-111 .1

A i 
- Y - -12j+l + 

+ (IV.13.a)

,$J+l (Yi+13j+l i+ljj -121

lwi+l' J+l Yi-12j+l + 4)i+13j kvi - 1.9 j 
3

A $J-l yi+l +
.9j-1 M-1 Wi+ljj-l + 4)i-lsj

T

1-1.9 1 -1 Yi+13,i-l + W 1-1.91 yi+lsj
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The approX 4tiqn given by equatiqrz (Iyll) can be

applied only if the stream function is known at the four

nodes around the corner of the rectangle. This means that

such an approximation cannot be applied to points near the

east boundary (MVL) of the subchannel (see Fig. IV.2). For

points at boundary, it can be written that

T+1, =0,

iJ-1 = 0.

Since the mesh spacing is small, point (i+1/2,J-1/2) is very

close to the MVL and therefore it can be assumed that

Yi+1/2,j -1/2 a 0.

This would be exact if the lines for r=constant were straight

lines. Due to their curvature, it is only an approximation.

However since r>> (ri+ 1 - rj, this should be expected to

be a reasonable approximation.

Following the procedure already described, the

coefficients A of the convection terms for those points are

given by

AF +19j (i+l,j+l +M'i,j+ 1 +'Y9 +

7



Ai j E

Ai j+i
1
F

A=

i+1,j+1

r +1, +1

- ,j- +

-y +Yi -l j+11p4) .11 + i J 1

i-1,j+l K-ij) +

+

(IV, 13,b)

+ ) +

j1-1,g -1 %4-

2. DIFFUSION TERMS

Here again, the diffusion terms can be separated

into four terms:

0j+1/2

D de(r% 1

i now+1/2

p1+1/2

dr r e

j+1/2

j +1/2

.d r b
^1

r 1+1/2

- jdr(b,
r.. .

Call ID,1, the first term of I D'
D,1 is given by

94

+

. (IV.14)

j-1/2

G



TD,l 5 de(r b

-1/2
ri+1/2 ri+l/2

Now, both b and are linearly approximated along the line

r r+/ 2 which gives

(b )4 +/2

(G9\

b + b

2

1+12

r i+l

and

(IV.16 )

This way, IDl is reduced to

r l+r E e )(b
ri+l +i+1J IV17),j ,j *

(IV.17)

Analogous considerations lead to similar terms for

the other parts of the diffusion integral, which can be

written in the form:

ID = Bi+1 j(b4 +

B (b

+b ) - t+l,

+ b~ )( - $i- )

+b ) i ,j+l

95

(Iv, 15)

a

i+1/2

4 j

- i,j +1(b i j



b-4 l

with the coefficients given by the expression below

E' J+1B1+1, 1j 1rr1 5+l -- S

l Fr rj

(IV.19 )
B - i+ i-
14 +1 Gj+1

S I+ 1-1

J(.)
Although the procedure was not the same of Gosman's

the obtained expression for the diffusion terms was the same.

3. COMPLETE FINITE DIFFERENCE EQUATION

The source term is

sor,1ij

fri+1/2 eJ+1/2
r S dr de.

ri-1 /2 j-l/2

(IV.20 )

The finite difference expressions for the source

term for each transport equation will be treated separately

in section 4, along with the finite difference formulas for

96

t b (IYl8)
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the b:Qi4nda,.ry, oQndi t: -pn.s

.At thi,s, point bpweve:r, the' cQmplet e- 'finite. 'differenoe

.equation can be' written" ass:emblying equations (IV,12), (17,18)

iand (IV.20);

li4 C i.+lsj :L+12 i + C illlj i-l 0i + C ipj+l iq J+l +

sor
i9j-l Oii.i (IVo 21)

where

) Bi+lli I j":i'ij b is

ly ij

B ilj+ll Yisj

B ilj-ll /X:
ON*

A.i +1

A i9j.1

+ b loiq j

+ b

+

ITs 2 2

and

+ A + A + A6
i-i . itj+l

I i j

b B i+llj + (b + b
's j 1.9 1 j

j is i
) ilj+l + (b j,9j.l + b oigj

Bioj l

(IVo 23)

i's
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4 SQIJIWK TEPI4 FQB TIANSPORT EQUATIQNS

Due to the different mathematical form of the source

terms, they will be treated separately.

4.1. Source term of the axial momentum equation.

This term is

r 1+1/2 J+1/2

I i 22. - r dr dO, (IV.24)sor',i,4 PV az

jr1 -1 /2 0J-1/2

since = constant, for fully developed flow.

Defining V as

%1+1/2 0 j+1/2

V. . r dr de , (IV.25)
1,4 J

ri-1/2 j-1/2

the axial momentum equation source term is reduced to

v
= I -V , (IV.26)

sor,i,j vz 124

with IV defined by equation (111.53) and calculated using

equation (111.71).

Equation (IV.25) can be integrated to yield

V1 Ir- .) +1 +2-(r.) .(IV.27)



99

412, Yortcity equation source term

The vorticity source term is

-r1+1/2 J+1/2

or / r r dr d , (IV,28)

ri-1/2 J-J/2

with the term A E V? - v This term can be written as

S1+1/2 J+1/2

r ,-,- 2 -A + -aidr dO. (IV. 29)sor,i,j V00 O1 r w rOG Wj

i-L/2 '-1/2

The first part of equation (IV,29) is then

integrated to give

-1 [(AW)i+1/ 2 , j+1/ 2  i+/ 2 ,j/ 2 1/2,j+1/2

+( -1/ 2 ,J-1l/2 -(IV-30)

Assuming that, inside the integration area around a

mesh point, the radial distance r does not change very much,

the second term of (IV.29) is reduced to

1+1/2 d r 1+1/2

- (A)+12dr -(A )-12dr .(IV.31)

L jri- 1/2 r 1-1/2

13
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The term 4 wi4. now be assunied to be approxitmately

constant 4lQfng the radial line between the points r- 1 /2 and

r+2with a value equal its value at point i, So, equation

(IV,31) is finally reduced to

(r +l 2 ri +' -r

4 vr(A ixj+1-2(A ) + 2(A )

(IV.32)

From equation (111.24), one has

av 2 avz2
t c L rDO) A(IV.33)

When this expression is applied into equations (IV.30) and

(IV.32), the mixing length Z is taken as constant and equal

to its value at point (i,j). So, from equation (IV.33),

one obtains

/ \ --1E z
A'-c ZX2  j 1 avY 

2  2
W i+1/2, J+1/2 1,2jrae 6 +1/2.,j+1/2 1IVr~ +l/2,J+l/2,

(IV.34)

The velocity gradient in the tangential direction is then

calculated by

(v )+ (V (v i -(v

S+lj+1 i +1 '1),ljrz

i+l/2,Oj+l/2 (r 1+1+ r)(j+1 -E)

(IV.35)

(fq
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and the r4ja gradtent

(y + (V ) (V)

+/2,+/2r()

(IV. 36)

These two expressions are plugged into equations

(IV.34) to obtain the term (Aw) ,A similar
1+1/2,jj+1/2

approach is used to compute the other terms of equations

(IV,30) and (IV.32), determining then the finite difference

expressions for the vorticity source term,

4.3. Stream function source term.

From the stream function transport equation,

71+1/2 J+1/2

i r dr do . (IV.37)
sor,,j V

r 1-1/2 3J-1/2

This integral can be divided into four integrals:

[03 Fri [J+1/2

s r dr dO +j r dr do
sor,i,j V

+ r -l/2. clJ -/2d ri-l/2 T?'
r1+1/2 1r+1/2 eJ+1/2

+ w r dr dO w r dr dO .

ir J -1/2 r 6

(IV. 38)

/ C
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Take, for example, the integral

i+1/2 j+1/2

1 = r dr d

ri 6

Assume now a linear approximation for w of the kind:

r + +(r -r1) + +(ei
r J+ i+j ij+j+ - -

(IV.39)

then, the integral I can be written, after assuming that

3 r + ri+ 1

2 r + ri+1  3 r

in the form:

ri(ri+1 (- r +) - +)
1(16 (2 wigi+l +i+l, j +i ).

Analogous expressions can be derived for the other

integrals of (IV.38). Assuming A = 0 e0 = 0 - 0
4+1>4 j j-i'

one writes:

Itr,i ,j t2 [r+ 1  - 1)(W + w,+1 +Wil +

(ri+, ri) '+lj- + (ri - ri-1) l- *j (Iv.4o)

4.4. Source term for turbulence kinetic energy equation.

/L;
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This source term is

I=K111 2
,(iv.41)

sor,i,j soriJ sori,j

where

r1+1/2 6 J+1/2

1 
~v T [3 z2 (Dz2

s{oril/j2 [ V) +QF) ]r dr dO, (IV.142)

r1-1/2 j-1/2

Ir 1+1/2 0 j+1/2

3/2
I 2 = K3  r dr de.(IV.43)
sor,i,j dDd .V3

ri-1/2 -OJ -1/2

Selecting a mesh space such that the velocity

gradients do not change much over the integration area,

expression (IV.42) can be approximated to

r 1+1/2 j+1/2

Fav 2 (av) IFf2+/
Isor,i,j .t r+J r dr dO . (IV.44)

r-1/2 j-1/2

The integral that appears in the term above was then

treated in a similar manner as the vorticity in the stream

function source term, yielding an expression similar to

(IV.40) substituting w by vT/v. Same treatment was performed

on K3 /22/Z in equation (IV.43). The velocity gradients of

equation (IV.44) were written as
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(v )- (v) 

v- z zaz v ,) j +1 (-

iJ r (9+1 B -

(v)
ii2

5. Grid for numerical procedure.

Since large gradients of any properties in the

tangential direction are not expected, an uniform angular

separation was selected in this direction, that is.,

AU = a - 6. = constant. (IV.45)

Also, in order to simplify writing boundary

conditions for the MVL, mesh points were taken on that line,

(see Fig. IV.3), that is, if rG is equal P/2, then,

P/2
r G+l

cos

In general,

p
r = 2 o
G-fm 2 cos 6

(IV.46)

In the gap region, an approximately uniform grid

was used. The distance between the two first line is

f-11
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r2 -r = A. (IV.47)

The next,

r3 -r 2  A + 6

r- r3 = A + 26 , ... (IV.48)

r - r = A + (i-2)6

with A selected in a way that the edge of the wall sublayer,

taken as y+ = 30, falls right in the middle of two mesh

spaces. Since the friction velocity and hence the spacial

position corresponding to y = 30 changes from one iteration

to the next, the edge of the wall sublayer does not remain

in its initially prescribed position in the middle of two

mesh spaces. The change in spacial position is insignificant.

That is, A corresponds to

+= 30 , (n > 1) (IV.49)

n + 0.5

where n is the smallest integer such that

(G - 1)A < - R (IV.50)

where G is the radial mesh point at r=L (see Fig. IV.3).

6 is given by

2[ -R) - (G-1)A]
6 =* (IV.51)

(G-1) (G-2)

In the computer program developed, the following

I?
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notation was used:

(a) for r = R, i = 1;

(b) for r = r G+m =lim (m), i =1
tmax (i);

(c) for 0 = 0', j=1;

(d) forO0== 0max J=J;

(e) 1 J =I ;()ilimW n n

(f) for (r1 - R) corresponding to y > 30, such that

(r 1  - R) corresponds to y < 30, 1 = 1min

This notation will be followed from now on.

6. Boundary conditions

6.1. Boundary conditions for 0 = 0 and 6 = max

For 0 = 00, expanding the velocity in a Taylor

series in the angular direction, following the notation

just introduced,

av z(62- a 1)2 ,02VZ

(v ) = (v ) + ( ()V-- + ( 2  ( z) +
z i,2 z 1 il 902i,1

and

+(03-0)7)2va2Z

(v ) (V) + (03-0) (z)+ 2 92
1,3 il 1,1 2 D2

Since it has been assumed that 2-0 a60-0 and
2 1 3 2' n

neglecting terms of the order of (02-e1) taking into

account eq. (111.26), then

Z, tf -



4 1

2 - ( )z

Analogously for K,

4 1
K,1 3 Ki,2 3 K1,3 .

For vorticity and stream function,

.2 1 == . (IV. 54)

Analogous expressions apply to = .
max

6.2. Boundary conditions for MVL.

For the velocity equation, from equation (111.30),

one writes, taking i = ilim(J)3

(v() -(v ) a

r1 - r1

(v )
ii +1
(a

- (v

.z 1.1tan
a'

- hi1

n2(v ) +(vZ)

i + 1

-. r 1 r 1 Ttan 64

(v )9
1,1

107

(IV. 52)

(IV. 53)

or

(vs)
zi,j

where

(IV. 55)

(IV.56)

.0

3

1. 1
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An expression analogous to (IV.55) is written for K,

ri.K.
K ~ ji1j+l i-lj (IV.57)

Again the vorticity and stream functions are

.=.0. (IV.58)

6.3. Boundary conditions at wall.

Starting with the vorticity and stream function,

it can be written, directly from equations (111.52) and

(III.35),

= 0, and (IV.59)

3v
W2 -2,j 2 . (IV.60)
l,j 2 (r-) 2,

6.3.1. Boundary condition at wall for axial momentum equation.

The wall function for the axial velocity is given by

equation (111.43),

vT vy
Vz = log E .(IV.61)z K V

Taking y = yB when y+= 30, and iM = min,

continuity of the velocity and its radial gradient is imposed

at point y = yB, that is, (see Sketch)
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VV

I

wallif n to

V"

vB = 1 log 30 E, (IV.62)
B K

= 30V (IV..63)

From (IV.6l), differentiating at point TB' one has

(avN v V2

(Z) = T = T (iv.64)
Y B YB 30vK

Now, one writes

v -v- VYim - B KT

From (P1.62), (IV.63) and (IV.64),

V im - V Tlg30E V
K = T i.6

y 30v 30vic *(I.6

~im V T

solving this equation for v T yields

V X 2 + flV i - ,(Iv.67)
TM X

-? -17
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with

X_ =30v(ZLOy30E-1) (IV.67)
2yim

,=30v (IV.69)
YiM

A fictitious value of %z, at point i is then

defined such that, for the numerical procedure, a linear

approximation between points yim-1 and y becomes a

reasonable assumption, regardless of the magnitude of the

actual steep gradient existing in that region. Mathematically,

it is imposed

Vim im-1 Tr(IV.70)

YMY 30vK

hence

im-1 im 30 vK T

This fictitious value of the velocity is, then,

used as the wall boundary condition for the axial momentum

equation.

6.3.2. Boundary condition at wall for the turbulence

kinetic energy equation.

Knowing vT from equation (IV.67), the value of K

at point yB can be calculated using (111.46)
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C
K 2(IV.72)
B CODK 2  '

B D

Defining here, also, a fictitious value for K at

point ir-1, one has

K -K# K -K
i -im-1 i B (IV.73)

im - im-1 im B

or

Kim im-( C
K m-1 =im (Y 30v-(Kim~ C DK T

im- -

So, this value K* represents the wall boundary
im-l

conditions for the turbulence kinetic energy equation.

7. ITERATIVE METHOD

The procedure selected to solve the finite difference

equation (IV.21) is the method of sucessive displacements(2)

also known as the Gauss-Siedel method, which is a point

iterative method, where each new value of the parameters is

used in the finite difference equation as soon as it becomes

available. For simplicity, however, the coefficients of

equation (IV.21) and the source term were assumed to be given

only by the values of the parameters from the previous cycle.

For a certain value of j (angular position), the method

proceeds to iterate from i = 2 to i = i (j), sweeping,
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this way, one radial line, then proceeding to the next

value of j, Based on the -above, equation (IV.21) becomes,

for the n- iteration:

(n) = C(n-1) (n-1) + C(n-1) 4 (n) + C(n-1) (n-1) +
i,J i+1,j i+1,j ji-l, j i ij+1 1,j+l

5 (n-1)

(n-1) (n) + ii(Iv.75)

Included in the procedure is provision for under-

or over-relaxation in order to compensate for variations

of the coefficients C.j., that, in certain cases, can lead

to divergence of the numerical iteration. So, it was

taken

0(n) = , $n)*+ (1-,, ) (n-1), (IV.76)
j R 1 (1R) i,j'

where, now, $n)* is the value of % as given by equation

(IV.75) and aR is the relaxation parameter, with aR<l or

U >1 for under- or over-relaxation, respectively.

8. CONVERGENCE CRITERION

The first idea was to impose as convergence criterion

that the maximum fractional change of the parameter 4, in

the field, from one cycle to the next, should not exceed a

prescribed value, i.e.:
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(/n) 4..n-l)

A + L- tXj.(IV. 77)() (n-1)

i,j max

However, Gosman et al pointed out that, when it

happens that the value of a variable at a particular node

is much smaller that the values at the surrounding nodes,

fluctuations in the small value will occur which is not

acceptable by the above criterion. This happens, particularly,

to the vorticity. So, it was suggested to base the criterion

on the rate of the change of the variable to the maximum

previous value in the field, 4 Il-1 , that is,

)(n) (n-1)

Pn,4n -lj < X. (IV.78)
(n-1)-

max max

This later approach was adopted here.

9. INITIAL CONDITIONS FOR PARAMETERS

The initial conditions for the axial velocity

distribution are given by the method of Ibragimov and co-workes

(see Chapter II, section 2.c.).

The turbulence kinetic energy initial conditions

are determined by

K. = (V7) . + (v12).+ (v,2)1(IV.?)i,j 2 Lzi,j Oi1,j r i,j
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with the turbulent intensities obtained using Bobkov's

empirical correlations (see appendix E).

The vorticity is taken as zero in the field.

The stream function is initially assumed as given

by its definition

ve = vD (IV.80)

with v given by Nijsing's assumptions, equation (II.10),i.e.,

(T W1/2

- C c.os rdy. (IV.81)Vsec P dOe

The computer code "HYBBAC" was developed to solve

the equations just described. This code is presented

in appendix J.
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CHAPTER V

DESIGN OF EXPERIMENTAL APPARATUS

1. INTRODUCTION

Measurements were made in water flowing within a test

section using a laser Doppler anamometer (LDA) operating

in the fringe mode with forward scattering. The cross

section of the test section was designed to simulate an

interior, undisturbed subchannel of a triangular array

rod cluster. The following sections describe the test

section, the hydaulic loop, the laser Doppler anemometer

and traversing mechanism.

2. EXPERIMENTAL APPARATUS

2.1. Test section

It was observed in Chapter II that the cross

section shape adopted by Subbotin and Eifler and Nijsing

introduced perturbation in the subchannels where measurements

were performed. Also, the use of a full scale bundle

scaled up to allow distributed parameter measurements would

be very expensive and require the LDA to operate in a

back-scattering mode which would decrease the scattered

light intensity drastically. The shape adopted for the

118
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oross section is shown in Fig. V.1,

Four constraints were adopted in the selection of the

dimensions of the test section: (1) the aspect ratio P/D

should be as small as possible, preferably below 1,1,

since it is expected that the influence of. secondary flows

P -D
increases as P/D decreases; (2) the half-gap size, g 2

should be large compared to the probe volume length, L,
V

(see Appendix F); (3) the number of hydraulic diameters of

the length, L/Da, should be as large as possible to insure

fully developed conditions; (4) fabrication cost should be

minimized.

Figs. V.2 and V.3 show variations of the half-gap

dimension, g, and the length of test section required

for L/DH = 100, with the rod diameter for different values

of D. A typical value for the prObe volume length, Lv, is

0.5 mm.

Table V.1 shows the selected values of teSt section

dimensions and the values measured in the test section after

fabrication.
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TABLE V.I. SELECTED AND ACTUAL PARAMETERS OF TEST SECTION

In this table, DH and A frepresent the hydraulic

diameter and flow area of a typical interior subchannel.

They are

A =,I (V.
D 23 2

and

4Af
DH

H w~F

1 )

(V.2)

where P W is the wetted perimeter of the subchannel given

PARAMETER D D L L g A x102
DHDf 

2(in) (in) (ft) DH (mm) (in2

SELECTED 1.10 2.0 0.668 5 90 2.54 8.75

AFTER

FABRICATION 1.123 2.014 0.787 5 77 3.15 10.37
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by

STD (V.3)

The length L represents the distance from the flow inlet

to the measuring station (windows).

Fig. V.4 shows the cross section view of test section

with assembly details. Fig. V.5 is an overall view of

the test section with description of components and

dimensions. The test section is composed of three sections,

each 2 feet long and, to reduce costs, only one of the

sections is provided with windows. However, since the

sections are the same, the section with window can be

relocated to permit observations into the developing region.

Two tap holes, 1911 apart, symmetrically located around

the windows were used for pressure drop measurements to

estimate the average friction velocity and friction

factor. It was fabricated with a low-copper aluminum

allpy AA-6061 T6, for better corrosion resistance.

At the measuring station, windows were provided on the

four sides of the test section to permit the laser beams to

reach the flowing water. Due to refraction of the beams

on curved surfaces of materials with different refraction

indices, hollow rods were used at the measuring station,

with apertures 1/2" wide. The hollow rods were, then
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covered by a thin plastic film, 0.010" thick, with water

on both sides of the film, as shown in Fig. V.6. This

way, an optically homogeneous region was obtained with

refraction reduced to a negligible level. Distances from

the plexiglas wall inside surface to the flowing water are

in the range from 1.1 to 2.0 in.

2.2 Hydraulic loop

A closed circuit hydraulic loop was used as shown in

Fig. V.7. In order to minimize corrosion of the test

section and to have control over the size and concentration

of the seeding particles, distilled water was used to fill

the loop

2.3 The laser Doppler anemometer (LDA)

Principles of the LDA are discussed in Appendix F.

The dual scattered beam mode, also called fringe mode, is

used due to the simplicity in aligning the beams and its

suitability for low seeding particle concentrations.

2.3.1 Optics

Fig. V.8 shows the optics components used in

the set-up. The green line beam (X = O.514 50) of a

Spectra Physics model 164 Argon laser is split into two

beams by a Disa model 55L01 optical unit. The two beams

are focused by a single lens into the flow region and the

scattered light is received by a light collecting system

4-,,
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composed of two lens. Finally the scattered light is

focused at the pin hole located in front of a RCA-7265

photo multiplier tube, The current signal generated by

the PMT is then fed to the electronics. Table V.2 shows

the design elements of the LDA used in the present work,

following the discussion of Appendix F.

In all measurements of turbulent intensities, a

DISA flow direction adapter (Bragg cell), model 55LO2,

was used. The frequency difference used between the two

beams was 250 KHz.

For cross correlation measurements, a sequential

method was used as will be discussed later in this chapter.

The laser beam was split into two beams. A supplementary

optieal unit was attached to the original one. The four

resultant beams, in perpendicular planes, were focused

at the same point. The measurements of the turbulent

intensities were then obtained by blocking each of the

original two beams one at a time. So, the measurements

were made sequential with this set-up and the data were

obtained exactly at the same point. Fig. V.9 shows,

schematically, this set-up.
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TABLE V.2. DESIGN ELEMENTS OF THE LDA

SYMBOL DATA

A. Refractive indices

Air

Wat er

Plexiglas

B. Laser

Wavelength

Beam diameter (1/e2)

n0

nw

n

x i

D
0

C. Integrated optical unit

Distance from beams to optical axis a

Focal length of lens f

Half angle between beams in air 0

Half angle between beams in water 6

D. Light collecting system

Focal length of lens 1

Focal length of lens 2

Diameter of pin hol.e

E. Probe volume

Diameter of beams at waist

Length

Height

f

f

Dph

b

iv

h

1.00

1.33

1.50

0.5145 i

1.5 mm

25 mm

130 mm

100 50'

80 10'

200 mm

105 mm

0.1 mm

0, 054 mm

0.541 mm

0.078 mm

PARAMETER
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TABLE V.2.(cont.)

Depth

Distance between fringes

w

F. Seeding particles

Material

Density relative to water

Shape

Diameter

0.108 mm

1.362 y

Polysterene

1.0

Spherical

0.234 P
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23,2, Trayerse mechansr

All optics components were mounted on a tilling machine

table and were distributed on a two-level bed (see Fig. IV.,

10). The test section was assemblied horizontally on a

fixed table. So, the positioning of the measuring point was

done by moving the optics. A unit movement of the optics

changes the position of the measurement point in air, x0 ,

and the location of the measuring point in water, xM, is

related to x0 as shown in Appendix G.

2.3.3. Signal processing electronics

The pedestal of the signal generated by the PMT (RCA-

7265, S-20 Spectral response) was removed by a TSI 10095

high pass filter and then processed by the TSI model 1090

frequency tracker. The frequency signal vD, is then trans-

formed into an analog voltage signal, vD,

VD
VD Vmax3 (V.4)

Vmax

where

max E upper limit of tracker frequency range being

used

va maximum output voltage
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For the TSI tracker, v = 10 V.

To obtain the time-average of VD, the voltage given

by eq. (V.4) is integrated by a RC integrating circuit and

fed to a digital voltmeter (Keithley model 160). The time

averaged value VD is proportional to the velocity of the

fluid normal to the interference fringes at the point under

study, that is, v .

The RMS of the analog voltage vD is given by a DISA

model 55D35, RMS voltmeter. Call it

v D

The turbulent fluctuation of v is obtained by removing

the broadening resulting from finite transit time and velocity

gradient making use of eqs. (F.24) and (F.27). (See

Appendix F, section 3.1.c), that is

2 2
v__ vD '2 2 R. avD

S - -T v y(V.5)
42 -2 fl

V. v1 D

From eqs. (V.4) and (F.17)

.1ax-
v. = s -V . (V.6)
1v2 sin m D
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Since A =and sin e= (]sing ,
ninV0

V1 = 2sin v TD (
max

The value of vma used in all measurements was 5.0 MHz.

So, numerically,

= 0.681 M/s ,(V.8)

with r given in volts.
D

.Since the velocity gradients were not very large in

the region where measurements were made, the velocity

gradient broadening was neglected. Then, from eq.(V.5)

since Nf =f 5

1/2

,2 - 0.000121--

vi = - v1  . (V.9)
D

However, the smallest value observed for the

ratio vD 1 was, for the axial velocity, 0.053, at the

center of the subchannel. At that position 2/ 2
vD /VD

was equal to 0.0028, which is much larger than 0.00012. Then

~=0.053vi ,or

v.- 0.681 v1D r/s . (V.10)

,2
with-/VD given in volt s.
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In the case of turbulent intensities of the secondary

flow components, a frequency shift unit (DISA model 55L02

was used). When a frequency shift is used, the interference

fringes move with a velocity equivalent to the shifting.

The number of fringes crossed by a particle is much larger

than it would be if the fringes were still, that is, the

effective number (Nf)eff in this case is much larger than

N f. Based on this argument, the finite transit time

broadening, in measurements of the turbulent intensities

of secondary flow, can also be neglected. So, equation

(V.10) applies to all cases.

3. MESH GRID USED IN MEASUREMENTS

Measurements were performed along 11 radial lines,

30 apart., within one typical subchannel as shown in

Fig. V.12. In the plane of the cross section, measurements

were made in the directions x and y, instead of r and 0 as

desired. Only measurements of velocity components

parallel to the walls were possible in order to avoid

beams with different paths within the test section and

ensure correct probe volume positioning.

4. MEASURED PARAMETERS

Measurements of the parameters described below were

performed.

1 1'
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4.1 Axial velocity.

4.2 Turbulence kinetic energy.

Measurements of the turbulent intensities in

the directions x, y and z were performed. The turbulence

kinetic energy was calculated by the expression:

,2 ,2 1

k= 2[x y+vy +_2] (V.11)

4.3 Reynolds stresses vrvz and v 0 V z

The Reynolds stresses vrvz and v0v were

calculated from sequential measurements of turbulent

intensities along axes 450 from the coordinates x, y

and x, z as discussed next.
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Take the plane x-z, see sketch below:

zZ

Vx x

One writes

v =v cos( + a) = v(cos a - sin a) ,(V.12)

v = v sin( + a) = v(cos a + sin a) .(V.13)

Also

=vcosa ,(V.14)

= v sin a (V.15)

Taking the time-average of equations (V.124-,15) and

subtracing them from the above equations, they are reduced to

v1 -v 2j ,(V.16)

(v (V.17)
v 2 1 + v2)

Multiplying,

I =1 1 ,2 2 (vxvz = f(v 1 -v 2 )
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The time-average of this equation is

v'V V 2.[vC 2C M(V19)x z 2 l2;-

From equation (V.19), it can be observed that measure-

ment of turbulent intensities at directions making 450 with

the axis can be used to measure the cross correlation

v v

Analogously

vIv3 v;-v;J2(V.20)

The cross correlations vrv and v v can be calculated
r z 0z

from the values of v vzand vyv , by observing that

(see sketch)

iv

vr
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.y .7 Cos + v sin (.21)

v v cos 0 - v sin 0 (V,22)

Taking the time averages of (V.21) and(V.22)and subtracting

them from equations (V.21) and (V.22), multiplying by

v and again taking the time-average:

VrV VV 5Cos 0 + v v sin oe(V.23)

vz v 05Cos 0 - v v sin 0 . (V.24)z Y z x z

Measurements of v v 2  3  and v4  were performed,

From equations (V,19) and (V.20), vv and vyVz were then

calculated, Finally, plugging those values into (V.23)

r ? rr
and (V,24), the Reynolds stress vrvz and v vz were obtained.

4.4. Pressure drop around windows

The pressure drop were measured by an inclined gage

using a gage oil with specific density p0  2.95. The

average wall shear stress was calculated by

T rD}
- W , (V.25)

P PIJAp
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with Ap = (po - p) g AH

where L E distance between tap holes,

AH inclined gage reading.

The friction factor is given by

f =P2 (V.26)

2b

5. GENERAL ASPECTS OF ERROR ANALYSIS,

The following sources of error in the measurements

were identified.

1. flow fluctuations

2. electronics error

3. finite integration time.

5.1. Flow fluctuations

The flow fluctuation was estimated to be 1/4

of division of the flowmeter scale. This scale is divided

into 100 parts with the full scale corresponding to

30- gpm. This fluctuation is then given by a = , (V.27)

where m is the operational flow rate (in gpm) and v. is the

measured velocity.

5.2 Electronics error

It can be divided into two different sources:

a. uncertainty in the analog voltage readout,
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b. uncertainty in the RMS voltage.

5.2.1 Uncertainty in the analog voltage readout

The error introduced in the analog

voltage is 1% f.s.d. of range in use. In volts, the

error is 0.1 V. Transforming into m/s, utilizing

equation(V.8)

Lw = 0.07 M/s

This error is uniformly distributed. The standard

deviation is, then, given by

:Av-- = 0.04 M/s . (V.28)

This is the error for the time-averaged velocity.

For the turbulent intensity, it was assumed that it had

the same percentual error as the time-averaged velocity,

that is

A' (V.29)
- 1/2 ~ -_( .29)

V! 2 v

5.2.2. Uncertainty in the RMS voltage

This uncertainty affects only the turbulent intensity

measurements. It is 1% of the RMS range in use.

1 1-
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5.3, Finite integration time

This error occurs only in the measurement of the

time-averaged velocities and it is due to turbulent fluctuations

of the flow (see ref.l, p.211).

The measured time-averaged velocity, VT, is given

by

T

vT = v t)dt, (V.30)

0

where the instantaneous velocity is given by

v(t) = V + v'(t). (V.31)

T is the integration time and v is the actual time averaged

velocity. The difference between the measured and true

values is

%T

vT -v= vt (t)dt(V.32)
0

and the variance is

T %T

2 v'(t)v'(t')dtdt' . (V.33)
YT vT 7tT2V33

-0% 0

Defining the autocorrelation coefficient p(t'-t) as

p(t'-t) = ___ (V.34)

I 'I'll
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and taking T = t-t , equation (V.33) can be reduced to

T t

2 = 2V1 2 jdt p(T)dT
T T 2 0 0

T

2v2(1-) p(T)dT . (V.35)

0

The integral defined by

J=p(r)di (V.36)

represents the integral time scale of the fluctuation v'(t)

and provides a rough measure of the time interval over

which v'(t) is related to itself. Taking T >> , T/T << 1,

then

2vT r (V.37)

For isotropic turbulence,

V T (V.38)
V2

where vT is the eddy viscosity. Hehce

2vT
aT (T or

(2vT 1/2
CF~ .(V. 39)

I
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To calculate aT' VT is estimated from the

measurements of v v' and V through the expressionr z z

V T r z (V.40)

( v'z)

The integration time, T, used in the experiment was

10 s.

The total error is estimated by

a = F a 2  , (V.41)

where the sum is over all error causes of the particular

parameter.

6. EXPRESSIONS FOR ERROR ANALYSIS

6.1. Axial velocity

1/2
2 = +ar2+carfl2(V.42)

6.2. Turbulence kinetic energy

The turbulence kinetic energy is

K =1(v2+v2+ V12). (V.43)
2 x y z

Differentiating

AK =7 xAv + Ov Av + @_AV,
x yz

/1)
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VI rV21/2where E [771/

Noq K = vI , then follows:

AK = v' AvI + v' Av' + v' LvI
x x y y z z

or, in terms of standard deviations,

aK = V' a + v' a + v' a . (V.44)
K x x y y z z

6.3. Cross correlations v'v' and vIvI
r z 0z

From equations (V.23) and (V.24), one writes the

standard deviations of the errors introduced in the cross

correlations v'vr and v'vt as:
r z Oz

a rz= a cos 6 + ayz sin 0 , (V.45)

aoz yz cos 0 +a a sin e. (V.46)

The subscripts represent the cross correlation.

Analogously to eq. (V.44), from eqs. (V.19) and

(V.20), one obtains

a = v' a+v (V.47)xz 1 1 + 2G2 0

a =v'a +v' (V.48)yz 3 3 + 4 a4 .

With the values of a and a given by (V.47) and
xz yz

(V.48) plugged into eqs. (V.45) and (v.46), the errors of

v'v' and v'v' are found.r z 0z
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CHAPTER VI

DISCUSSION OF RESULTS

1. INTRODUCTION

Before performing the measurements at the maximum L/DH

position two preliminary tests were conducted: the first one,

regarding the symmetry of the flow within the test section

and the second one, related to the developing region of the

flow. These tests are presented in detail in Appendix H.

From the first test, it was observed that the flow, indeed,

obeyed the symmetry lines of the cross section and that no

assymmetry was introduced in the flow by either the inlet

nozzle or the fabrication of the test section. Regarding

the development of the flow, it was observed that the dif-

ferences between the velocity profiles for L/DH = 46 and

L/DH = 77 were within the experimental error. However due

to consistency of the deviations, it was concluded that,

for values of L/DH larger than 46, the flow was still in the

developing region. Also it could not be concluded that the

flow was fully developed at L/DH = 77, since measurements for

L/DH > 77 were not permitted by the present test section.

On the other hand, since the velocity profile did not change

considerably in the range L/DH =[46, 771, there is no reason

to believe that substantial modifications will occur for

larger L/DH.
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Table VI.1 summarizes the measurements and conditions

under which they were performed. The bulk velocity of the

flow was calculated from the axial velocity measurements by

numerically integrating the axial velocity over the area,

i.e.,

Vb =Vi1,jAA (Vi.l)
f i jiJ

where v is the measured value of vz at point i,j and

AA ican be observed from the sketch below.

J+31

-7j

C

Li-ti

-

a:

AA is given by

AA = AO (r+2ii 2 i+1/2 (VI . 2)

where AO is angular separation between two consecutive radial

lines,

-r 1-1/2),



TABLE VI.l. Operational conditions for measurements

performed in rod bundle with P/D 1.123

.TEST L -3 MEASURED

H PARAMETERS

A. PRELIMINARY TESTS

I. Symmetry test 77 27 Vz

II. Developing Region 15 26 V

46 27 V

77 27 V

B. MEASUREMENTS

I. Axial velocity 77 7.9 Vz

77 27 vz

II. Cross correlations:

vV' 77 27 vt2vZ
x z 1 2

y z 77 27 Vf 2 ,vh2

III.Turbulent intensities 77 27 v ,v ,v
I y IVZ

IV. Secondary flow search 77 27 vxvy

V. Pressure drop 15 26 Ap

46 27 Ap

77 27 Ap
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= (r) 1  1 4 -+ ( r )

r+1/2+,2 (VI.3)

and

ffijl jjfiAl(VI. 4
--1/2 2

In order to check the consistency of the present

measurements, for P/D = 1.123, of the axial velocity distri-

bution, the results were compared to Eifler and Nijsing's

data for P/D = 1.10 and P/D = 1.15 and close values of Re.

The present data were expected to be between those measure-

ments which, in fact, occurred as can be observed in Figs.

VI.l.(a), (b) and (c), for different values of 0.

From this point on, only measurements at L/D'= 77 will

be considered.

2. EXPERIMENTAL DATA OBTAINED IN THE PRESENT WORK

Figures VI.2.(a) and (b) show the velocity distribution

maps (or isovels) for Re = 7.9x103 (flow rate = 7.5 gpm) and

Re = 2.7x104 (flow rate = 22.5 gpm). The differences observed

were larger than expected. The differences were attributed to

the instability of DISA Model 55L20 frequency tracker utilized

in the measurements for the lower Re, requiring very short

integration time (1 sec) to get the time-averaged values of

the velocity. Frequent loss of tracking made these results

unreliable. After this fact was noticed, only the TSI Model

1090 frequency tracker was used since the DISA tracker was



157

being modified by the manufacturer.

The curvature of the isovels (see Fig. VI.2.(b)), for

o close to 300, represents a clear indication of the existence

of secondary flow moves in the direction of the subchannel

symmetry line (MVL) for 0 "' 30. The loop is closed with the

flow moving toward the wall for 0 150. The center of the

loop is probably in range 0 (20*-250). The deformations of

the isovels near the gap can be the result of either or both

of the following speculations. The first one is that the

isovels in this region are not affected by the secondary

flow loop described above. Since such flow pushes the isovels

in the wall direction in center of the channel, deformations

are created by continuity of velocity distribution. The

second one, is the possible existence of one more secondary

flow swirl, in the gap region, with the flow moving in the

opposite direction of the one described above. In any case,

such observation is not in agreement with the secondary flow

pattern suggested by Nijsing (described in Chapter II, Section

2.6). His proposed pattern leads to only one secondary flow

loop with the center at, approximately, 6 = 15*.

Figure VI.3 presents contours of constant turbulence

kinetic energy.

Figure VI.4 shows the distribution of the Reynolds shear

stress in the radial direction, vv> compared to the linear

distribution assumed by Nikuradse for pipe flow (see, for



158

example, Ref. 2, p. 568). An approximately linear behavior

is also observed for the experimental points.

Due to the fact that, except for P/D approaching 1,

the assymmetry of the subchannel is not very large, the

assymmetry of the distribution of v is also small. So,

the values of v4v, that are directly related to the distri-

bution of v, should be very small. The experimental error,

however, is large due to the fact that v v'is calculatede z

from measurements of large quantities (see Chapter V, Section

4.3). This led to very scattered experimental data as shown

in Fig. VI.5. No attempt was made to interpret these results.

The experimental data for Re = 2.7x104 are tabulated in

Appendix I.

3. ERROR ANALYSIS

The expressions required for error analysis have been

discussed in Chapter V, Section 5.

3.1 Axial velocity distribution

The bulk velocity, for Re = 2.7x104 , is vb = 1.35 m/s.

The error due to flow fluctuation, obtained from Eq. (V.27) is

UYF 30__ v 1  100
-x 100 = 2 3v b 22.5 YUJ vbb b

Hence, using a typical value of vi/vb equal to 1.0

a'F
v x 100 = 0.3%
vb
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The analog voltage error is given by Eq. (V.28)

Ax 100 = *3x 100 = 3.0%

As will be seen, the largest value of vT is of the order

of 65v. For water, at 200 C (680 F), v = 1.01xlO-6 2/s. So,

from Eq. (V.39)

x 100= 2x 60 x 1.01 x 10-6 1/2 100 0.3%vb 10 1.35

So, the analog voltage error is much larger than the others.

The total error, in the axial velocity, is, then

a x 100 = 3.0% 
(VI.5)vb

3. 2 Turbulence kinetic energy

/v-2From Eq. (V.29), on average., taking vE v

A 100 = 0. 4 100 3.0%
VI 1.35

where v was taken equal to vbe

Close to the wall, where v1 < Vb, the error is larger

than the typical value above, while it decreases as the position

moves away from the wall toward the center of the channel. The

error introduced by the RMS voltmeter, for the range of voltage

obtained, was estimated to be of the order of 5%. So, the



160

total error, on average, is approximately 6%, for each tur-

bulent intensity. Table VI.2 shows the order of magnitude of

turbulent intensities, near the wall and MVL.

TABLE VI.2

ORDER OF MAGNITUDE OF TURBULENT INTENSITIES AND ERRORS_

TURBULENT INTENSITY (VOLTS) ERROR (VOLTS)

DIRECTION MVL CLOSE TO WALL MVL WALL

v.060 .100 .0036 .006

y 1.065 .110 .0039 .0066
y

v .115 .250 .0069 .015

From Eq. (V.44),

k (0.0013 - 0.0051) Volts2

or

ak
k x 100 12%

3.3 Cross correlations vrvz and vIvI

The application of Eqs. (V.45-48) led to the con-

clusion that ar/v2 is in the range (0.35-0.52) as the angular

position changes from e = 00 to 0 = 300.
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Analogously, a0 z/v2 varies in the range (o.45-0.56) as

6 goes from 00 to 30*.

4. SECONDARY FLOW SEARCH

A search was conducted in order to detect secondary

flows, using the DISA Model 55L02 Flow Direction Adapter,

however it was not successful. The reason was attributed

to the error associated with the analog voltage produced by

the frequency tracker. The frequency shift used in the search

was 250 KHz and the tracker was operated in the range of 500 KHz.

Since the analog voltage error is 1% f.s.d. of the range of

operation, this error is of the order of 5 KHz. This means that,

for the secondary flow be detected, it has to generate a frequency

shift, at least, of the order of 5 KHz. Since this did not occur,

it was concluded that secondary flows were smaller than the

velocity corresponding to 5 KHz, that is, smaller than 0.009 m/s.

This means that the secondary flow velocities are smaller than

0.67% of the bulk velocity.

5. DETERMINATION OF MIXING LENGTH AND CONSTANTS OF THE MODEL

From the discussion of Chapter III, one writes:

-vv
C-= rz(VI.7)

9 y K/ (3v/ar)

From the experimental data for v'v' K and v., the
r z

value of CVz/2 can be estimated. This was carried out and
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the results, for 0=00 and 6=300, are shown in Fig. VI.6,

compared to values given by Buleev's formula (Eq. 111.17)

with CV = 0.20. The discrepancies between the estimated

values and Buleev's occur, mainly, for values of y/y larger

than 0.5. The average curve shown in Fig. VI.6 represents

the average radial distribution of the mixing length over

all angular positions where measurements were performed.

Assuming =y for points close to the wall, this average is

closely represented by

y y
for 0 -r <_ 0.4,

y y y

(111.68)

= 0.44 + 0.066 sin . ( - 0.44)]

y y

for 0.44 < < 1.0, with C equal to 0.180. This distribution
y

of the mixing length were used in the analytical analyses,

although the utilization of Buleev's equation would not

introduce appreciable error since the discrepancies occur

only over a region where axial velocity gradients are not

very large.

Now, to determine CD, one observes, from Fig. VI.7,

that close to the wall K = 3.4 v2. From Eq. (111.46)

C

V2 = 3.4 .
(VI.8)

CD
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Hence, CD ~ 0.30. Better agreement, however, with measurement

of the TKE distribution, were obtained for CD ~ 0.38, as can

be seen from Fig. VI.8, for Q=0*. Similar behavior occurs

for other values of 0. So, the value of 0.38 was adopted

for CDo

The discussion of the other constants was already

presented in Chapter III. Table VI.3 compares the constants

used in the present work with those used in the past.

6. COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS

In this section, experimental and analytical results

for P/D equal to 1.123 (Re = 2.7x104) and 1.217 (Re =

1.49x105 ) will be discussed. The experimental data for

P/D = 1.123 are those obtained by the present author and

for P/D = 1.217 are Kjellstrom's The axial velocity

distributions, for sake of comparison, were also computed

by the Ibragimov's method, described in Chapter II, Section

2.c. The predictions performed by the present one-equation

model, for P/D = 1.123, were carried out, utilizing

(a) CV = 0.180 and CD = 0.38, which are the values obtained

by the author for those constants and (b) CV = 0.22 and

CD =0 .41, which are the values for these constants most

frequently recommended in the literature.
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6.1 First case: P/D = 1.123

Figures VI.9.(a), (b) and (c) show the axial velocity

distributions for 0=0., 150 and 300, respectively. It can be

observed that the results obtained by the present method

provide a closer agreement to the experimental data than those

obtained by Ibragimov's method over most of the subchannel.

The agreement was not satisfactory in the gap region, though.

As discussed in Appendix G, Section 2, the experimental data

may have been taken in the developing region where the ten-

dency of velocity distribution in the gap region is to de-

crease. Since a small decrease in the gap region would not

affect considerably the velocity distribution elsewhere due

to the area and velocity magnitude relations, this could

explain the behavior. The worst deviation, nevertheless,

was less than 4%.

Figures VI.10.(a), (b) and (c) show the TKE distributions

for 0=00, 15* and 300, respectively. The agreement between

experimental and analytical results are within 10%.

The comparison between the predictions using the values

of C and CD suggested here and using the typical values for

them is presented in Fig. VI.9 and 10. These results demon-

strate the generality of the present one-equation model, in

particular the fact that typical values of C and CD can be

utilized to handle an arbitrary rod bundle geometry without

unacceptable error.
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Figure VI.ll shows the streamlines of the secondary

flow as predicted by the present model with CV = 0.180 and

CD = 0.38. Two loops of secondary flow were obtained

flowing in the directions indicated by the arrows. The

strongest loop has its center at 0=23* and, as will be shown

later in this chapter, the secondary flow velocity is always

less than 0.6% of the bulk velocity. The weakest loop, near

the gap, has its center at 0=80 and the secondary flow

velocity is less than 0.2% of the bulk velocity. The present

finding of two swirls of secondary flow as well as their

position in the subchannel are in agreement with the discussion

of Section 2. The order of magnitude of the secondary flow is

within the expected range as described in Section 4.

6.2 Second case: P/D = 1.217

Figures VI.12.(a), (b) and (c) show the axial velocity

distributions for e=00, 150 and 30*. The results obtained by

the present method are in closer agreement with the experimental

data than those obtained by Ibragimov's method. The deviat.ion

is below 4% everywhere in the subchannel.

Figures VI.13.(a), (b) and (c) show the comparison between

analytical and experimental TKE distributions for 0=00, 18*

and 300. The agreement is within 10%. Notice that, in this

case, the experimental values of K were normalized by v ,

instead of vb in Figs. VI.10. vb can be obtained with better
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accuracy than v, since vb is obtained by integration of the

axial velocity distribution given by a large number of velocity

measurements over the subchannel area, while vT comes from

single measurements of the local wall shear stress. So, errors

in the value of vT may account for part of the deviation. Also,

the analytical predictions, in this case, tend to give lower

values than the experimental data, while, as can be observed

from Figs. VI.10(a), (b) and (c), the predictions are usually

larger than the experimental data. This may represent an

indication that the constants CV and CD should be weak functions

of P/D.

Figure VI.14 shows the predicted secondary flow stream-

lines. Here, again, two loops of secondary flow were observed

with the difference that the strongest loop is spread over

almost the entire subchannel with the weakest loop reduced to

a small region near the gap and near the wall. However, the

center of the strongest loop, when compared to the P/D = 1.123

case, has not moved considerably (O~21*, in this case).

Kjellstrbm attempted to measure the secondary flow velocity

v and the experimental data that he obtained turned out to

be very scattered. The present predictions were compared to

these scattered data as shown in Fig. VI.15, for e=60, 120,

180, 240. Although no definite conclusion can be drawn

from this comparison, the analytical predictions are in

agreement with the general trend of the experimental data.
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7. APPLICATIONS OF THE THEORY

7.1 Wall shear stress distribution

Figures VI.16 and 17 show comparisons of experi-

mental and analytical wall shear stress distributions for

P/D = 1.10 and P/D = 1.217. The experimental data for

P/D = 1.10 are those obtained by Subbotin and co-workers(7)

and for P/D = 1.217 are those obtained by Hall and Svenningsson(18)

and Kjellstrm*m 6 . The agreement between the experimental

data and the predictions obtained by the present method is

satisfactory, particularly for P/D = 1.10 (within 1%). For

P/D = 1.217, the deviations were less than 2%, which is within

the reported experimental error, and the experimental obser-

vation that, for this case, the maximum value of the wall shear

stress does not occur at the angular position 0=300 was also

predicted. This feature is not predicted by Ibragimov's

method.

7.2 Friction factor

The variation of the friction factor with the

Reynolds number is shown in Fig. VI.18. For the same Re,

the friction factors for rod bundle are larger than those for

the smooth tube obtained by Blasius formula (Eq. 11.8) and

they increase as P/D increases.
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7.3 Effect of Reynolds Number

The effect of the Reynolds number on the secondary

flows and the wall shear stress distribution was studied for

P/D = 1.123

Figure VI.19 shows the streamlines for Re = 2x105

Comparing this figure to Fig. VI.ll, it can be observed that

the positions of the secondary flow loops do not change appre-

ciably, but the loop closest to the gap becomes stronger as

Re increases. Figure VI.20 shows a comparison between the

45
predicted secondary flows for Re = 2.7x10 and Re = 2x105

for 6=60, 120, 180, 240. Observe that, for 0=60, which is

within the weakest loop, the maximum value of v/Vb goes from

0.15% to almost 0.4% while, for 0=240, within the strongest

loop, the increase is only from 0.56% to 0.78%.

Since the secondary flows increase with Re, the wall

shear stress distribution should be expected to become more

uniform along the wall, which can be seen from Fig. VI.21.

Due to the increase in the secondary flow rate wallward, near

the center of the wall region, carrying high momentum flow,

the position of the maximum value of the wall shear stress

moves from 6=300 to lower values of 0.

7.4 Prediction of eddy diffusivities

Figure VI.22 shows a comparison between the turbulent

viscosity distributions predicted analytically and the radial
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eddy diffusivity estimated from the present experimental

measurements, at different angular positions, for P/D = 1.123

and Re = 2.7xlO . The agreement is within 20%. As discussed

in Section 3.3, the experimental error involved in the deter-

mination of v'v' is very large. Since em is directly related
,r z

to v 'V by the relation
r zI

v v
rz r(VI.9)

r

a deviation of 20% between predicted and experimental values

is within the range of uncertainty due to experimental error.

8. FINAL NOTE

All the computations in this chapter were performed

with the grid described in Chapter IV, Section 5. Sixteen

angular positions, 20 apart, were used. The parameter X,

defined by the convergence criterion Eq. (IV.78), was taken

as 0.0001. The computations were processed by an IBM Model

360/65. The average computation time, for each case, was of

the order of 8 minutes.
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TABLE VI-3

COMPARISON OF PRESENT VALUES OF CONSTANTS WITH VALUES IN THE LITERATURE

AUTHOR CCD k c 1  c 2  APPLICATION

Launder & Ying 0.22 0.39 1.5 2.6 0.365 Square duct

One-dimensional flow with
Wolfshtein 0.22 0.416 1.53 turbulence augmentation

and pressure gradient

(5) Heat transfer from
Spalding 0.179 0.224 2.13 turbulent separated flow

Present work .18 .8 .3 3.0 0.37 1 Rod bundle
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

1. CONCLUSIONS

The present study has produced the following

conclusions:

a. Due to the small magnitude of the secondary flows (usually

less than 0.5% of the bulk velocity) in rod bundles,

methods that disturb the flow should not be expected to

produce good results. However, even methods as the LDA,

without a solid probe, will only be able to measure those

velocities if a more accurate frequency tracking system

is developed or if very high Reynolds number flows are

investigated.

b. The analytical predictions of the magnitude of the

secondary flows are in agreement with the experimental

limitation that secondary flow velocities should be less

than 0.67% of vb for P/D = 1.123 and Re = 2.7x10

c. The analytical predictions of the secondary flows, for

P/D = 1.217, are in qualitative agreement with the

scattered data obtained by Kjellstr~m.

d. Two loops of secondary flows were predicted inside an

204
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interior rod bundle subchannel, although one of them,

located near the gap region, is very weak compared to

the other one, and tends to disappear as the P/D increases.

This pattern leads to good predictions of the wall shear

stress distribution.

e. The magnitude of the secondary flows relative to the

bulk velocity increases with Re. The magnitude of the

weakest secondary flow loop increases much faster than

the magnitude of the other one. Regardless of this

disproportional increase in magnitude, no significant

change occurs in the secondary flow pattern.

f. For the same Reynolds number, the maximum value of the

secondary flow velocities decreases as P/D increases,

as should be expected, since the assymmetry of the

subchannel also decreases.

g. For the same P/D, the wall shear stress distribution

becomes more uniform as Re increases. Due to the increase

in the magnitude of the secondary flows with Re, the

maximum value of this distribution moves from the angular

position 0=300 to lower values of 0.

h. The axial velocity distributions predicted are in good

agreement with experimental results.
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2. RECOMMENDATIONS FOR FUTURE WORK

a. It was observed that typical values for the constants C

and CD of the analytical model led to good predictions

for the velocity field. Better agreement was obtained

with the new values determined from the experimental data

for P/D = 1.123. The model with these constants, however,

when applied to the case P/D = 1.217, presented a

deviation that probably could be reduced using slightly

different values for C and C So, an experimental

study of the effect of P/D as well as Re on the constants

could lead to an optimazed set of constants for rod

bundles.

b. The law of the wall, assumed as the wall boundary condition

for the axial momentum equation, was obtained in tube

and flat plate flows. Measurements of the axial velocity

distribution near the wall certainly could lead to even

more accurate predictions of the velocity field.

c. Measurements in test sections with larger values of L/DH

are necessary to put to rest the question of the length

of the developing region in rod bundles.

d. More accurate measurements of cross correlation v'v' are
r z

necessary for a better determination of the mixing length
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distribution necessary for the one-equation models. This

could, probably, be accomplished with the LDA operating

with two colors: one for each component. The scattered

light could be separated by interference filters or a

dichroic mirror and the instantaneous signals generated

by two photomultiplier tubes could be electronically

multiplied leading to the cross correlation sought.

e. Accurate cross correlation measurements, as proposed in

item d, has the capability of producing good results for

V v. This piece of information is important to determine

the degree of anisotropy of flows in rod bundles.

f. With the existing tracking system, secondary flows can

only be measured for very high Reynolds number and small

P/D, even though the measurements would have a large

experimental error. However, such measurements would

probably show the secondary flow pattern and could be

used as a check of the analytical method presented here.

A digital voltmeter, with at least four digits, is required

for these measurements.

g. Expansion of the present method to handle different

situations as lateral or corner subchannels, fuel rod

spacers, etc., is required.

h. Application of the-method to predict temperature field

h
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can also produce important information regarding the

effect of the secondary flows on the wall temperature

distribution and heat transfer coefficient.

. Measurements /V obtained by Trupp and Azad for

different P/D and Reynolds numbers, as well as those of

the author, for P/D = 1.123 and Re = 2.7x10 , showed a

linear behavior of this parameter with y/j. In view of

such behavior, it seems to the author that it is worth

to investigate the possibility of correlating, for design

purposes, the cross correlation v'v' directly, instead ofr z

associating it to axial velocity gradients by an eddy

diffusivity. The behavior of v v , within the subchannel,

has still to be investigated, though.

3. CONCLUDING REMARKS

The author would like to point out that simple

statistical turbulence models, such as the one presented here,

adopting the algebraic stress model proposed by Launder and

Ying, can provide good predictions of the axial velocity,

wall shear stress and eddy diffusivity distributions as well

as friction factors, for rod bundle subchannels. Also this

model, compared to previous approaches, can take into account

secondary flow effects without substantial increase in
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complexity.

From the experimental point of view, one of the

major limitations of the LDA is the presence of curved

surfaces in the geometry to be studied. The technique

introduced here can overcome this difficulty in many

practical situations.

4-



APPENDIX A

TRANSPORT EQUATIONS FOR COMPUTATION

OF VELOCITY FIELD

Assuming temperature-independent properties, incompressible

flow and neglecting any body forces, the momentum conserva-

tion equation known as Navier-Stokes equation, the derivation

of which can be found in any fluid mechanics book (see, for

ex., ref. 1). In vectorial form, this equation is

N: V\/ V(A.n)

This equation is valid for either laminar or turbulent

flows. For turbulent flows, however, the point properties

would be the instantaneous ones and the equation would be

most difficult to treat analytical or numerically, So, the

flow properties are written as a sum of time-average values

and fluctuating components, that is,

V V + 2

Applying (A.2) to equation (A.1), and averaging in time,

one obtains:

210
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9V (iv)VA

This equation was first formulated by Reynolds (1895)

and so bears his name, The term v'v' has nine components

and is called the Reynolds, eddy or turbulent stress.

The mass conservation equation or continuity equation

is

v. V. (A.4)

Also applying (A.2) to (A.4), one gets

after time-averaging.

Equations (A.3) and (A.5) represent the basic tools

available to handle computation of velocity fields in any

geometry. In cylindrical coordinates, for steady state,

fully developed flow, these equations are:

a) Continuity equation

* ~ ; 4+
ra rQ +
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since -C -o for fully developed flow,

b) 'Momentum-conse rvation equation
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i;U te 2S + C-ae

_ TG U6
C r

LTG 2 ) 2 ( t )

(A.9)(J-~1~~

In order to eliminate the gradients of' p in the radial

and tangential directions, take 8.a.- a r

(eqn. A.9) and subtract them. After tedious rearranging of

the terms, the result can be written in the form:

IC v + (A()

where

I - - -- --- -- +. L -- .- I - + ---r0 _ r " r Lrr 1

+"M t).m#+4 meJJ io~-.')
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(At.o3)

At this point, the definition of vorticity is

introduced as

With the above definition, equation. (A,,O) takes the

form:

+II Tr ~fbQ A r-

(A.42)
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This is the transport equation for the vorticity.

The term IC represents convection of vorticity by the

secondary flow and it tends to make the vorticity constant

along the streamlines. Diffusion of vorticity by viscosity

is given by ID' It tends to make vorticity uniform over

the duct cross-section by diffusing it from regions of high

intensity to regions of low intensity. In laminar flow,

these are the only terms in the equation since Reynolds stresses

do not exist. Hence secondary flow cannot occur in a laminar

flow because these flow mechanisms serve only to transport

and not to generate vorticity. The last term, Isor'

represents production (or destruction) of vorticity. (It

depends on the relative sense of this term to the vorticity).

In order to eliminate the need of working with the

continuity equation (A.6), a stream function i is defined

as

C~e

kY~(A*of



216

Using this definition, equation (A,7), (A.ll) and

(A.12) are rewritten in the form below, after rearringing

the terms.

Axial momentum equationt

~Tf (V' iT 'r
L~ev

41) Jui 1

Stream function equation [obtained directly from

eqs. (A,11) and (A.13)]:

- WiZ) A

Vorticity equation:

Isr

(AeA1)

(A .Is)

(A. ac1)

of
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where Iso is given by equation (A.10-3).

These three last equations can only be solved with some

knowledge of the Reynolds stresses. This represents the

closure problem associated with the computation of a

turbulent flow. Many turbulence models have been proposed

to provide a closed system of equations. The most important

models applied to rod bundle flows are discussed in the

test.



APPENDIX B

TRANSPORT EQUATION FOR THE

TURBULENCE KINETIC ENERGY (TKE)

In order to provide a closed set of equations, the

one-equation turbulence model requires the computation of

the turbulence kinetic energy over the region of interest

by solving its transport equation, The TKE transport

equation is derived from the Navier-Stokes equation by

multiplying the molj.entum equation for each direction by

the corresponding fluctuating velocity component, averaging

in time and then adding the three equations, that is:

a.l. axial direction:

'Irj3 Iji (Y' v+
t3+ +

+aV ''

+i

73r

r i

L a

218
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Equations (D,l), (B,2) and (B.3) are added, and use is

made of the definition or TKE

I

and its time-averaged value

i "+ o + I u6) (e s
2

One obtains, using the continuity equation, after a

very cumbersome rearranging of terms:

- +

I I : '.
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In order to transform this equation into a more

workable form a few approximations are necessary:

1. the term S which represents diffusion of K by

fluctuating pressure effects, is assumed to be negligible;

ii. the terms S2 and S represent the rate of

dissipation of K by molecular viscosity. Prandtl suggested,

based on dimensional analysis, a simple form for these

terms

where ZD is the dissipation length scale of TKE.

D K is associated with the mixing length and can be expressed

as

CD

where CD is a function of the Reynolds number of

turbulence, Rt. In fact, CD is inversely proportional to

Rt. ForRt large, however,CD is expected to assume a

constant value (see, for example, ref. 2, pg.287).

iii. The terms 33 represents the rate of energy
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trgnsferred Crom the main flow to the turbulent eddies.

Gradients of the main velocity are predominant in affecting

this transfer. Neglecting other velocity gradients and

applying the fully developed flow condition, yields

Making use of the definition of stream function given

by equation (A.13) and the conditions of steady state, fully

developed flow, equation (B.6) is reduced to

This is the usual form of transport equation for the

TKE used by one-equation turbulence models.

I I



APPENDIX C

ANALYTICAL APPROACH FOR VORTICITY SOURCE TERN

BASED ON THE ALGEBRAIC STRESS NODEL(5)

As shown in chapter III, the vorticity source term,

for rod bundle geometries, can be approximated by

(C.l)

The starting point to obtain an analytical

approximation for the difference (v'2 - v') is the exact0 r
transport equations for the normal Reynolds stresses in the

tangential and radial directions. They are equations (B.2)

and (B.3) given in appendix B.

Take equation (B.3) in the form:

,2aihSir, +9 LTC, + %C

Convection

Generation
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r '2 r

Destruction Redistribution

Diffusion
'a Ir ras

Diffusion

C 11

(0-2)

Each one of the terms in the transport equation for

v 2  can be identified as shown in equation (C.2).r

The approximations involved in the algebraic stress

model are:

(a) since vorticity'is produced near solid walls and since

only the distribution of v,2 in those regions is ofr

interest, convection and diffusion terms are neglected

as being very small in those regions;

(b) generation terms are negligible because gradients of

secondary flows are very small compared to gradients of

the axial flow,and thus are very small compared to the

redistribution term, which as shown in equation (C.10)
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is proportional to axial flow gradients. Note that the

action of the redistribution term is to diminish the

(2)difference between the normal stress components

(c) at high Re, dissipative totions should be isotropic.

So, the destruction terms are approximated by c, where

e is the dissipative rate of turbulence energy.

Using the above approximations, equation (C.2) is reduced

to

r "3

Analogous considerations can be applied to the

tangential component of the normal Reynolds stresses, yielding

~ (C.4)
~ 3

So, an approximate equation for (v - v) can bee r

written as

) (C-5)

Solution of equation (C.5) is next required to

yield (v - v'). However, as quoted by Launder and Ying(5)
0 r

approximations of the correlations between pressure and

velocity-gradient fluctuations are the least certain aspect
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of closing the Reynolds stress equations.

It has been shown by Chou(6) that the fluctuating

componettt of the pressure obeys a Poisson equation and that

the pressure fluctuation can be obtained by solving such

equation. Take the divergence of the complete Navier-Stokes

equation and apply the continuity equation in order to obtain

the quantity V2(p + pr) in terms of velocity derivatives.
P

The equation for pt is obtained observing that

4 21-?-) (C.6)

Equation (C.6), in cylindrical coordinates, is

CvaEZC +C tC:5j (C.7)

where:

3))rb +

+ (rUr(fYe +

+ (ire +bewre

+ @2 I
-04( _ky

ar V;)G
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r 4
)srI3 e 3tha'rt tsts

r ~ A .--. r%'a' k/I

L LIT

+ ___

Observe that the term C is mainly products of gradients

of time-averaged and fluctuating velocity components. Te-rm

C2 involves only derivatives of instantaneous Reynolds stresses.

Term C3 represents correlations and derivatives of correlations

between velocity and velocity-gradient fluctuations.

c

I I
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The solution of equation (C.7) is obtained by

application of Qreen's theorem given p' as an integral over

all space

4T jV-

Chou(6  observed that "pt and gradients of pt at a point P

are determined by the turbulent velocity fluctuations vI

not only at P but everywhere within the fluid. Due to the

factor Ir-r*Iin the integrands the effect of the velocity

distribution at distant points P* on the pressure fluctuation.

at P gradually dies away as P* recedes farther and farther

from P." Based on the above argument, Chou suggested that

the surface integrals for points away from the immediate

vicinity of a wall can be'neglected, reducing equation (C.8)

to

.1, 1: 1:!
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2Zi*\ 5YI(01(*)

OrV- (0.9)

Now, the value of V2 pt(r) given by equation (C.7)

can be plugged into eq. (C.9). Multiply both sides of the
a3v

resultant equation by e and average in time. In tensor

notation, equation (0.9) becomes:

VoC
1C C *) O VTI _*

(C1 $GM&\-:1

v

A4 Vol

<- iil
(cboI

where

r6a

=

c7W~

7, -Q
cy~

4,

a

An analogous equation can be obtained for the

quantity p r
p 3

The above eqtation shows that the correlation between

pressure and velocity-gradient fluctuations arises mainly from

11 1

D - ra"
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two kinds of physical interactions., The first has its origin

in the interaction between the main rate of strain and

turbulence and the second from mutual interaction between

turbulence components. So, in a general form, one writes

2AT (C.11)S'A

where 04ijland ij.2 represent the main rate of strain-

turbulence and turbulence-turbulence interactions, respectively.

Utilizing the general form of eq. (C.11), equation

(C.5) becomes:

The * terms are next evaluated.

a. Interaction between the main rate of strain and turbulence.

As a first approximation, assuming that the mean

velocity varies linearly over the volume that can contribute

significantly to the pressure-Velocity gradient correlation,

the term *J3l can be wtitten as

where
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atj vl

This approximation was first proposed by Chou

Hanjalid proposed that the coefficients am could be

satisfactorily approximated by a linear combination of

Reynolds stresses involving one (or both) of the velocity

components v' or v . The expression proposed is

(C.
where a, 8, y, n, vVand c2 are constants. Conditions of

symmetry and mass conservation enable five of them to be

determined in terms of the sixth. The correlation

v v? v'v' is to be replaced by vvi K whenever it appearsm j iimT

to ensure that v and c2 are non-zero.

For the present case, the following expressions for

are obtained:

ra e G ( C .1 5 )

I :, I.,
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Other velocity gradients were neglected as being much smaller

than gradients of the axial velocity of the flow.

b. Mutual interaction between turbulence components.

In a non-isotropic homogeneous flow in conditions

where the velocity gradients of the main flow are small or

zero, only this part is significant in the turbulence

redistribution process. This kind of flow decays to the

more probable isotropic state and the process denoted by

$lm,2 must proceed to equalize the normal-stress components

and to eliminate the shear stresses. Based on this reasoning,

Rotta proposed and confirmed through analysis of

experimental data that

C3 (c.17)

where e is the dissipation rate of turbulence kinetic energy

and c1 , a constant with value between 2.5 and 3.0. This

expression is generally accepted.

Using the expressions (C.15), (C.16) and (C.17),

obtained in the previous sections, for the interaction terms,

/I)
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equation (0.12) becomes:

cyt + Qc~

=0~

C

(c's)

Using (C.124),

rT
tuvr;

'1-~ ~ ~ ~~r C2C1E (jL- t Sr)k

(&~2c& 4/k

(cuts)

1k

(c~zo)

Hanjali6" further showed that

V =-C 
2

= -M(2-6c9 /11 and

c 2 =0.4.

Equation (0. 18) can now be written as

c _ QT

(z6C2).
c;~G

71
ul

I

(c.2f)

6, r
6ft.-ft 

a br )

elftop Cl E
P.. (

Uir.

or

L -To(

d.-W

cTel

--- p

LT
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The terms - YV nd vdenote the

the rate at which the longitudinal components gain energy by

action of the velocity gradients when all other effects are

assumed to be absent. Call it Pk, that is,

ukflEn_(C.22)

Replacement of Pk by e is consistent with the approximations

made to obtain equation (C.5), Thus equation (C.21) is

reduced to

where
2.(2-.C c
i(c, - 2C2)

It has been assumed that

W0(3IV

~r ( / with

The rate of dissipation of turbulence kinetic energy, E, is

given by

.. 1 1
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Taking these facts into account, equation (C.23)

is finally reduced to

( ~24)ccre

with

ccCv



APPENDIX D

NUMERICAL PROCEDURE TO COMPUTE MTXING LENGTH

USING BULEEV'S EQUATION

Buleev's equation, for the mixing length, 9, is

2W

(D.1)

where s is the distance from the point being analysed to the

solid walls, in the direction t.

To numerically obtain i, the contributions of the

rods were divided into two groups: the first contribution

is that of the rods in the imediate vicinity (i.e. rods 1,2,

3,4 in Fig.D.1) of the subchannel being studied; the second

one is that coming from far away rods. The integral (D.1)

is carried out only over the region of rods "seen" directly

by the point P (see Fig. D.1).

In cylindrical coordinates, the point P is defined

by (r ,O ). In order that all rods can be treated by the
p p

same numerical procedure, a cartesian coordinate system is

utilized as shown in fig. D.l. The point P is, then,

expressed by (x ,yP) where

P a ? ? (D.2)

238
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The distance from P to the center of the rod i""

{say CiE(xiy)}1, is given by

and the angle formed by the line connecting the point P to

C and the tangent to the corresponding rod, passing through

F, is

The distance from P to the surface of the rod I,

for a given angle < _ iis

If none of the other rods "projects a shadow" over

rod i, as is shown in fig. D.2, its contribution is given

by

(D.6)

with s given by (D.5) and a by (D.4).

In order to determine whether or not a rod j is

projecting a shadow over rod i, the angle j given by the

line connecting P to the center of rod i and the line tangent

to rod j passing through P is calculated by simple geometry.

If > S , no shadow is projected by rod j, hence 6 can be

I ;: I
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used as one of the integration limits of equation (D.6).

On the other hand, if < %a, the point P cannot see the

rod i completely and so, a9 will be one of the limits of

the integration (D.6).

This procedure is followed for all rods, however,

in the estimate of integral (D.6) regarding the contribution

of far away rods, generically called rod "i" in this

paragraph, s is assumed as being

s =d - RI(D.7)

yielding

' 2 (D.8)

where Aa limits the portion of that far away rod "i"T seen

by the point P. This approximation is reasonable because

usually this i is very small compared to the contributions

given by the closer rods and they are only included for

mathematical rigor. This explains the reason for separating

the contribution for the mixing length into two groups as

mencioned previously.

The integral (D.6), in its most general form can be

written as

I I

i
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where 6 can be different from a . Assume >SSS

E can be written

13S,
or

S S

In the first term, , is divided into 10 parts and the

following numerical expression (4) is applied:

X r, G' +10G 300(+i

JOCC 29936

4&!32SfifQ 272400 )-2GcoSO 5fc 4I bf+

The second term is estimated by dividing (s -,s

into 5 parts and applying the expression(:

In these expressions, h x i+1 - xi

For the present case, x B and f(x)Ef()=1 ,
s

where s is given by equation (D.5).

Although this numerical procedure differs from that

used by Bender and co-workers( , the results were the same.

.1 1: ": 1 11
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APENDXX E

COMMENT ON THE TURBULENT INTENSITY CORRELATIONS

AS PROPOSED BY BOBKOV AND CO-WORKERS

Studying experimental data on the intensity of

velocity fluctuations in turbulent flow in channels of

different shape, Bobkov and co-workers found that the

turbulent intensities could be correlated in form

V bb Aj e (E.1)

where

vz = local axial velocity,

(vZ )m = maximum axial velocity in the field,

vb = bulk velocity,

A and Bi, constants function of the direction i.

They also pointed out that relation (E.1) was

valid regardless of the existence of secondary flows in the

plane of the cross section of the channels.

Since the turbulence kinetic energy is

(E.2)

244
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the ut4i.Uzatz4qn g cqrrelgtjoin to qbtain n 4 Would eliminate.

the necessity of solving a transport equation for k,. So,

correlations of the type (E,1) seemed very promising,

However, from equations (E.1) and (E.2), it can be observed

that

1< L r ---- 2 (E.3)

Since (vZ)m is obtained by a numerical

procedure, a small deviation in its value would introduce

a considerably large error in the calculated value of K.

For example, for rod bundles with P/D in the range 1.1 -

1.25, it was observed experimentally that (vZ ) /Vb is in

the range 1.1 - 1.23. For illustration, take (v ) /Vb

equal to 1.15 as the actual value of this ratio.

=-C). 0C)170

If an error of 3% is committed in the determination of (v )z max,

say, to the lower side, (vZ ) /Vb would be 1.127, and

The resulting error in the turbulence kinetic

energy, k, would be

.1 '1
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APENDQC FZ

LASER DOPPLER ANEMOMETER THEORY

19 PRINCIPLES

When an accoustic or electromagnetic wave,

emitted by a fixed monochromatic source, is scattered by a

moving body before reaching a fixed observer, its frequency

as seen by the fixed observer is changed, This is known as

the Doppler effect. The observed frequency shift can be

related to the velocity of the body.

fixed observer

par tic Ie

stationary
monochromatic
light source

In the sketch above, the light beam is travelling

in the direction defined by the unit vector ni with velocity c.

The number of wave fronts incident upon the

particle per unit time is

247
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This is also the number of wavefronts scattered by the

particle. After scattering one wavefront in the unit direction

vector flsc, the particle moves toward the wavefront with

velocity 4 -Isc. Thus, when the next wavefront is scattered

after a time interval 1/vp, the first wavefront is a distance

Asc from the particle, where

s sc = ---.
C I (C V'C

Asc represents the wavelength of the scattered light in the

direction of the fixed observer.

The Doppler shift is, then, given by

C C C_(F-3

From (F,2) and (F.3)

.. C

Since, for all practical applications of the

LDA, c<<c,

C1
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O 7 ((F,5)

This equation shows that the frequency shift is

directly proportional to the particle velocity component in

the direction defined by the vector difference (fi sc~I i)

The Doppler frequency is usually measured by an

optical heterodyne technique. In the LDA, two laser beams

are involved where either only one or both are scattered by

particles in suspension in a fluid and moving with it. A

photocathode mixes the scattered beam with a reference beam,

in the first case, and both scattered beams in the second

one, to generate a current whose a.c. component has a frequency

equal to the difference frequency. Fig. F.1 shows the lay-out

for both set-ups.

Take the first case, the two light beams of

slightly different frequency may be represented by

8I =E1 sin 2TVt (F.6)

6 E20 scn 2T(c+ V) (F.7)

The photocathode, being a square law detector,

generates an output current i proportional to the square of

the total electric field incident on it:
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(E,+ E 2) '(F,8)

Since the photodetector is only capable of following

frequencies up to j08 Hz, since the laser frequency, v0 , is
1 4

of the order of 10 Hz, in the expansion of i, eq.(F.8),

using eqs. (F,6) and (F.7), terms involving frequencies of the

order of v0 will result in a d.c. current proportional to the

time average of those terms. If vD is below the frequency

limit of the photodetector, there will be an a.c. component

which contains the Doppler shift as illustrated by equation

(F.8),

L tic+cE E20v (F.9)

where ( is a phase angle which is constant if the two beams

are coherent.

This technique was first introduced by Yeh and

(12)
Cummins and then applied to a wide range of cases by

different investigators. References (13) and (14) give

detailed description of design of a LDA.

2. ADVANTAGES AND DISADVANTAGES OF LDA

The major advantages of the LDA are:
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i, since no solid probe is necessary, the Clow is not disturbed

during measurement;

ii, probe volume can be made very small by correct selection

of optical components thus high spacial resolution is

obtained;

iii.no calibration is required;

iv. fluid velocity is directly proportional to frequency

shift.

As disadvantages of this technique, it can be

mencioned;

i. difficulty of handling refractions introduced by curved

surfaces;

ii. determination of probe volume position is usually given

by the distance from walls. This is accomplished by

focusing the two beams on the wall and then moving the

probe volume to the desired position, Since the dimensions

of the probe volume are very small and due to light

reflection by the wall, its position cannot be determined

visually. So, in many cases, it has to be determined by

the PMT signal (see Sketch).

(
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beam 1 probe volume

2
air wal

Although the center of the probe volume is on

the wall, part of it is still inside the flow which can

be crossed by seeding particles yielding a Doppler signal

which is detected by the PMT. Moving the probe volume further

into the wall would give an incorrect wall position

determination. Light reflection when the beams move from one

region (wall) to the other (fluid) with different refractive

indeces decreases the signal-to-noise ratio (SNR), making

this procedure be even more difficult. So, it can be concluded

that the positioning error involved in the LDA is of the

order of magnitude of the probe volume dimensions. This is

a serious limitation when velocity profiles are to be

determined in regions of size comparable to the probe volume

dimensions.

3. THE DUAL SCATTERED BEAM MODE

The discussion that follows will be concentrated

1'.. 1 1
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on aspects of the dual scattered beamIde, F g Fl(b),

since this is the operational mode used in the present work,

The dual scattered beam mode is also called

"fringes mode" because interference fringes are formed in

the probe volume, Fig. F,2 presents an enlarged view of the

crossing region of the two gaussian beams showing how the

interference fringes are created, By simple geometric

consideration, it can be found that the distance between

two consecutive fringes is

2 (F,)10

Since the two incident beams are focused at the

crossing point by a lens with focal length fL, the beam radius

at the waist is given by Airy disc(15) from diffraction

theory:

~ -- (F,ll)

where D0 is beam diameter at the lens.

The dimensions of the probe volume, assuming

crossing at waist as shown in Fig. F.2, are usually assumed

as those of an ellipsoid with

-7
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-- (F,12)

hr 4b0  (F.13)

CC5

U b(F 14)

Figure F.3 shows the light intensity radial

distribution inside the probe volume. As a particle moves

inside the probe volume, it scatters light with intensity

proportional to light intensity along its path. Let AT

be the time that a particle moving with velocity V takes

to go from one fringe to the next and Ri, an unit vector

normal to the fringes, then

(F.15)

The Doppler frequency shift is then given by

V V'n (F.16)

or, from (F.10),

v - -------(VXA).(F.17)
"A

(2?
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The product (Vn) represents the particle velocity in the

direction normal to the fringes.

The number of interference fringes inside the probe

volume can be calculated by

hr (F.18)

3.1. Signal Analysis.

Fig. F.4 shows the typical signals generated by

particles A and B (see Fig. F.3) crossing the probe volume

at different positions. The signals have different

modulations due to differences of the incident light beam

intensities along their paths. Before the signal can be

analysed, the "pedestals" are removed by a high-pass filter.

The current signal generated by the photodetector is, then,

transformed into a frequency signal by either a frequency

tracker or a spectrum analyser. In general, for a turbulent

flow, a broadening is observed around the Doppler frequency,

1D .that can be atributed to three sources:

(a) finite transit time broadening;

(b) velocity gradient broadening;

(c) fluctuating velocity component in the direction

normal to the fringes.

3.l.a. Finite transit time broadening, &w,
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The broadening attributable to finite transit

time is obtained by analyzing the signal from a particle

crossing the probe volume with uniform velocity. The

signal after removing the pedestal can be represented by:

(tj

cos (2Tw Vbt(F.19)

IC

where T is the transit time that the particle takes to

cross the probe volume. The Fourier transform of this

signal is

Pt (F.20)

Since the assumption of particles with uniform velocity was

adopted the broadening in the signal P(V) is only due to

the finite transit time T. The standard deviation of this

gaussian broadening is obtained by taking

(F.21)

directly from eq. (F.20). Hence

vr - (F.22)

Tr T
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Now the transit time T can be written as

A (F.23)

then

TF N (F.24)

This last expression represents the finite transit

time contribution to the frequency broadening of the signal.

3.l.b. Velocity gradient broadening, AV

When velocity gradients are large over the probe

volume, particles crossing this volume at different regions

have different velocities and so generate signals with

different Doppler frequency. This is the cause of the

velocity gradient broadening. Assume a velocity gradient

along the length of the probe volume, tr(see Fig.F.2).

Calling V nSV n , equation (F.17) is reduced to

L A kn4Y- (F.25)

Differentiating 9b in the direction of the probe volume

length
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2 A9(F. 26)

The probe volume length, 2 ., was calculated taking

the beam radius as determined by a decrease of the light

intensity by a factor of 1/e2 in the radial direction. To

obtain Tq corresponding to one standard deviation of the

frequency broadening, &y must correspond to a decrease of

the light intensity by a factor of l/e. Then, A y= 4r/2.

Thus, from (F.25) and (F.26), one obtains:

VD ----,i(F 
.2 7 )

This is the Doppler frequency broadening due to velocity

gradients over the probe volume. It can be seen that it

decreases with a decrease in size of the probe volume in

the direction of the velocity gradient.

3.1.c. Velocity flucttiation broadening,6v'

Since the particles crossing the probe volume have

different velocities due to turbulent fluctuations, they

generate different frequency signals and so a broadening is

observer in the frequency spectrum of the signal. This

broadening represents the turbulent intensity of the velocity

component normal to the interference fringes. If AV is
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the total broadening of the frequency spectrum, the turbulent

intensity broadening A' is obtained by

(V ) vl V 0(F.28)

where and (AN are given by eqs. (F.24) and

(F.27), respectively.

3.2. Seeding particle constraints.

Since the scattered light comes from particles in

suspension in the fluid, they have to be chosen such that

their velocities are the same as the fluid velocity in

every respect in order to permit the investigator to obtain

all hydrodynamic parameters of the flow just by observing

their behavior.

Three important things relative to the seeding

particles have to be carefully examined:

(a) density relative to the fluid whose flow is to be

observed. The density should be as close to the

fluid density as possible to eliminate velocity

lags that might occur. For example, for a water

flow, polysterene (5 =1.0) particles will follow

the water at any velocity, however PVC ( -=1.54)

will follow the water flow, within 99%, only for
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velocity fluctuations up to 10 Khz for particles

with diameter of 5 ,LL(16 )

(b) The diameter of the particles, dp should be small

compared to the distance between fringes, df, for

good signal modulation. It is usually recommended

that

(F.29)

(c) The concentration of the particles should be very

small to avoid superimposing of signals due to a

large number of particles in the probe volume.

As a rough criterion, the concentration can be

selected to yield no more than two or three particles

inside the probe volume at the time.

4. THE LDA DIRECTIONAL AMBIGUITY

Assume a velocity distribution where the time-

averaged velocity is small compared to the turbulent

fluctuations (see sketch below).

f(v)

C-) 0L

. f lk



I I

261

Since the LDA generates a frequency signal, the

negative tail of this distribution would not be recognized

as such and erroneous values for the average V would be

obtained. Another difficulty would be the removal of the

signal pedestal, as discussed, since in the present case

low frequencies represent an important part of the answer

being sought. So, pedestal removal, with the frequency

signal as it is, would also lead to wrong values for the

turbulent intensity since part of the signal is cut off.

This difficulty, however, is eliminated by

shifting the frequency of the incident beams using Bragg

cells. One of the beams is shifted by + Q /2 and the other

by - V 0 /2.

The discussion presentedin section 1 of this

appendix applies to the present case, leading to

V I(F.30)
Lu
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for Y, 44. V . After measuring 4, with i> known, the

velocity can be easily obtained, as well as its turbulent

fluctuation.
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APPENDIX G

EFFECT OF DIFFERENT REFRACTIVE INDECES ON

THE CROSSING POINT OF THE TWO BEAMS

In laser Doppler anemometry, when an integrated

optical unit is used, the two light beams move parallel to

the optical axis of the optical unit lens and are focused

exactly at the focal length of the lens, if the medium is

air. The crossing point will be exactly at the waist of

the beams. However, when measurements are to be made of a

water flow (index of refraction, nW=1.33) separated from the

air by a glass or plexiglas wall (index of refraction,

np=1.50) the position where the two beams cross will change

and the crossing can be off their waists.

From the LDA point of view, it is important to

determine the distance from the center of the waist to the

crossing point, since the spacial resolution of the system

decreases as the crossing position moves far from the waist

region due to the increase of the beam diameter. Another

reason is the fact that, outside the waist region where the

wavefronts are very nearly plane, the wavefronts of the

beams are spherical. This leads to a deformation of the

interference fringes which can result in a broadening in

the frequency spectrum of the signal. Ultimately these facts

266
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will represent errors in the velocity and its fluctuating

component measurements.

Fig. G.1 shows the path of one of the beams in the

situation where the center of the waist is off the optical

axis. The optical axis of the lens is taken normal to the

wall. The crossing point is characterized by the distance

XM from the inside surface of the wall. The waist position

is determined by the coordinates (x wyw) as defined in fig.

G.l.

Start writing the refraction law for the interfaces:

i. interface (I)

SitPC - n9(G.1)

ii. interface (II)

__4(G.2)

From triangles PLO and ABO:

z(tt X)(PzL(G.3)

Now:
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or

C2 Ct nx (G. 4)

The distance from the crossing point to the wall,

xM, is then obtained by

xM( 2-(G.5)

where a2 is given by eq. (a.4), and the angles o and

are obtained directly from eqs. (G.1) and (G.2), respectively.

To find xw and y1w, write equations (G.1) and (G.2)

in the form

oC =Qrc 5n !51 (G.6)
YP

rc sin j)S(G7)

Differentiating ( and f as function of ,

CFO<eCes (G.8)

(I,)?-V.
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The deviation %G is, then, written as

2

From triangles L L20 and B31B20, one obtains

Also from triangle B B2012'

. t I,C~d "- CaD2. - *

(G.9)

(G.o10)

(G.ll)

(G,12)

From equation (G.12)

(G.13)

with

Dzc&s +
(G.14)

With the set of equations (G.8-14), the parameters

4
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D D2 x, are obtained as function of D0 , fL'

e t and x0  So now, x can be calculated by

)CW D2(Q.15)

and yw

OQ (G.l6)

with xCM given by eq. (G.5).

With the above analysis, the position of the

crossing point was determined relative to the inside surface

of the wall, as well as the coordinates of the center of the

beam waist.

The distance between the center of the waist and

the crossing point, AzMis

41 (G,16)

considering eqs. (G.5) and (G.15).

According to ref. (15), the beam intensity, near

the focal plane, has an intensity distribution that presents

radial minimum points due to diffraction. The first dark

ring (radial minimum) is the so-called Airy disc and is
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taken as the beam radius at the waist region. Defining,

according to sketch below,

Waist r

(S r (G.17)

2 bo

and

) (G.18)

where 3 is the light wavelength is water, The Airy disc

is given by(15) L =3.83. It follows that the beam radius

at the waist region, r=bo, equals

60 -- _ f. (G.19)1

Half of the waist length, z0 , (also known as

Rayleigh range) is defined by the condition =j =3.83.

Hence

From the practical point of view, it is recommended

that (LZ4 <zn.

This last criterion was applied to the set up used

in the present work. The numerical values used are:

/I
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i 

05145M

D 1.5 mm,
0

a = 25 mm,

f L=130 mm,

t = 0.25 in.

From Fig. G.2, it can be observed that the crossing

point is always in the waist region, except for large values

of X0, which does not occur in the present work. The curve

XM vs x0 shows the variation of the measuring position with

a variation in the focusing lens position relative to the

wall.
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APPENDIX H

PRELIMINARY TEST OF TEST SECTION

Two preliminary tests were conducted over the test

section: the first one, to determine the symmetry of flow

over the cross section of the test section and the second one

was an attempt to determine whether the flow was fully

developed at the position L/DH=77.

H.l. Symmetry test.

Axial velocities at symmetrical points of the

cross section should be equal. So, the axial velocity

distributions over 8 lines, as shown in fig. H. 1., were

measured. The results are presented in figs. H.2-6. The

largest deviation observed was less than 0.5%, which is

well within the 3% experimental error. It was concluded

that the fabrication as well as the inlet section of the

test section did not introduce any measurable assymmetry in

the flow.

H.2. Development of the flow.

The velocity at the entrance of the test section

can be considered uniform. As the flow progresses, a boundary

layer forms and grows at the wall. Downstream, where the
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velocity profile no longer changes along the flow path, the

flow is said to be fully developed. To observe this flow

development, axial velocity distributions were measured at

L/DH* 15, 46, 77. The isovels for L/DH= 15 and L/DH 46

are shown in fig. H.7 and 8. The isovels for L/DH= 77 are

given in fig. VI.2. It can be observed that the isovels

shown in fig. H.8 present most of the characteristics of

those in fig. VI.2.(b). A comparison of the radial

distributions, for G=Cf and 9=300 , between the measurements

at L/DH= 46 and 77 is given by fig. H.9. Although the deviations

are within the experimental error, values for L/DH= 77 tend

to be lower at 8=0C and higher at 6=30 . This can be

explained remembering that, due to largest effect of the

wall shear stress in the gap region, the flow over that

region is slowed down, while the flow, in the central region

of the channel, is increased to maintain the same flow rate.

Since the variations in the axial velocity

distribution, when the entrance length is increased from

46 to 77 hydraulic diameters is not very large, there is no

reason to believe that very large changes will occur, from

that point on, in the velocity profile. So, for practical

purposes, the flow will be assumed fully developed at

L/DH= 77, although no conclusive evidence was obtained.
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APPENDIX I

TABULATION OF EXPERIMENTAL DATA

In this appendix:

Al = inclined draft gage reading
vow

Table I.l. Pressure drop measurements

L /D R x 10 A H vtx 10 2 fX103
H e (in) (m/s)

15 26 0.32 - -

46 27 0.90+10% 6.7+1.3 5.0+0.5

77 27 1.08+10% 7.4+1.5 6.0+0.6
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Table 1,2, easured dtstrtbution og parameters

I0~ v -xtoAv10 tuG j-io2 io
0

3

6

9

12

0.047
0.205
0.364
0.523
c0.,682
o.841
1.0000

0.057
0.214
0*371
09529
o.686
o,,843
16000

o6o87
0.239
00391
0.544
0.696
098-48
141000

0.*13 3
0.278
0.422
0.567
0.711
o.v8s6
1.0000

0.055
0.-190
0.325
o0.46o
0*595
0*730
o.865
1.0000

0.664
0,839
0.906
0.937
09973
0,999
1.00o4

0.700
o,855
0.90o6
0.947
0.978
r,.oo04
1.01l4

0*767
0.875
0*932
0.968
0*9 9 9
1*020
1o025

0.829
0m906
0*963
00999
1.025
19045
1.056

0.77 .2
06891
0*947
010999
1.m035
1.o56
1*076
16081

1% 311
0.,9 18
0.796
0.740
o.665
0*585
o.548

1.273
0.936
0.*8 19
09763
0.679
o.613
0.v576

19124
0.*9 18
0*838
0.*77 7
0.702
09627
0.609

1.a039
0.9913
0.847
0.777
0.730
0.655
09632

1.273
1s007
0.904
0.843
0*763
0*735
0.679
o.655

o.514
oe544
0.494
0.e459
o.413
0. 398
0. 393

0.535
0*550
0.514
0.479
o,,424
0.,403
0.393

09551
0.541
0*505
0.490
0*440
o0,414
0.404

0.578
0*572
09501
09486
0.435
0.415
0.4 0

0.b587
o.564
0*544
09493
o.478
0.431
0.426
o,,416

0.*439
o.418
0.393
0*363
0.333
0.313
0*303

0*373
0.,428
0.s398
0*368
0,9337
09317
0.307

o.,4ol
o.432
o. 4 02
0.372
09337
0.*322''
0.317

0.445
o,,445
0.4o1
0*384
0.356
0.336
0.325

09382
0.443
0*433
0.399
0.378
0,360
0.*35 5
0.350

A -. La 1i -. -

1.087
0*657
0*516
09445
0.362
0e.299
0.*273j

1*023
0*681
0.547o.474
09377
0*320
0.290

o.864
09660
0.560
0.4 9 1
o.4oo
0.334
09317

o.8o6
06680
0.565
0*494
0.425
0.357
0.337

1.056
0*764
o.,65o
0*556
00477
o.428
0.384
09363

0.219
o.184
0.115
o,,o66
0*027
0

0*163
09134
0.073
0*032
09005

0*201
09130
o,,o68
00026
0.002

0.173
o.141
0*078
o~o4o
0.012

0,,204
0*179
09122
09096
0.0o44
0.017
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vI I' vvfv 11 IVe Z z xo r .z2 rvz x2
b

15

18

21

24

0.129e
0 2 53
0.378
0.502
o0,627
0*751
0.876
110000

00091
0,,204
09318
09432
0.545
0*659
0.m773
09886
1.0000

0.0O71
0.174
09278
0.381
o.48~4
0.*587
0.690
0.794
0.897
1.0000

0.067
0*160
0.253
0.347
0.440
0*533
0.,627
0.720
0.8 3
09907
1.0000

00881
0,942
0,994
1,035
1,066
ivo87
1.097
1.107

0.814
0.,942
0.994
1.035
1.071
1.097

1117
1.133
1.1l43

0.834
0.953
0.994
1.0o40
1.08 1
1.10 7
1.128
1,s148
1o.159
1.169

o,,865
0.932
00990
1.051
1.081
1.123
19143
1.159
1.179
1.184
1.1l95

1.0o67
0.e95 5
0.894
0.833
0,9763
0.a730
0.693
0.655

1.212
1*002
0.936
0.o875
0*810
0.749
0.730
0.707
0.,660

1.194
00988
0.,941
09899
0.838
00801
0,740
0*712
0.702
o.,66o

1.128
1,9039
1.007
09932
0.875
0.815
0.768
0*721
09702
0.679
0.651

0.58
09556
09531
o.489
0.480
0.,443
0*422
0.,422

0.602
0.570
09532
0.522
0,,481
0,,472
00440
0.423
00.413

0.661

09548
0.517
09503
0.466
0*457
0.436
0*413
0.4 0

o.646
09.644
0,,56o
0.525
0*498
0.496
o,,448
0.432

o.404
0.406

0.,471
09457
o.426
0.407
0.386
09368
09358
0.358

0.464
o.451
o.445
o.429
09400
0*378
0.371
0.367
0.357

09477
0.485
0.474
0.,449
0.428
o.,405
09389
0.375
0.373
0.356

0*.09
09485
o.492
0.457
0,,438
0.420
0.388
09379
0.370
0*367
09354

09849
0*715
0*631
0.550
0.481
0.432
0.393
0.368

1.024
0.766
0*679
0.612
0.524
0.464
0*4 3 2
0.407
0.367

1o045
09778
09705
0*639
0*569
09511
o.454
o,,418
0.401
09365

0.975
0*865
0*785
00676
0*603
0.543
0.470
0*425
0.401
0.379
00357

0.205
o.166
0.139
00100
0.056
0.021

0.226
08199
0.169
o,,145
0.3101
09054
0.023

0.258
0.226
0*200
0*168
0.140
0.102
0.059
0.034

0.314
09245
0.201
0,,204
0.162
0.128
09107
o~o4o
0.025



9 VI K 7y, v -zz z r 21 X10 2
v X10 10

y xl 0 -2 xl"o 2b b b b v b v b

27 09073 04860 IoO53 0.651 0*341 09824
09157 Os927 19016 09637 09491 0*840
0 242 iol4 Oo978 Ov598 0*477 0*771 09283
Oe326 19056 0*941 Oo529 oo478 09697 Oe276
o.41o lo097 o.857 0 o 50'1 o.441 0*589 Oe225
o.494 19128 o.81o o.451 o.416 Oo516 09213
Om579 im148 Ov768 o.444 Oe392 o.470 09195
Os663 lo174 Oe730 oe414 0*388 0*427 0*136
0*747 lol90 o.674 o.415 Oe355 04376 09112
Oe831 19200 oo651 0*398 Oe347 0*351 OeO82
oo916 1*210 o.637 o.420 Oe299 Oe336 o,,o4g
19000 lv220 oe604 Oe393 09315 Oe309 0*017

30 OeO87 0*927 o.96o os633 o.46o Oo767
oo163 Oe973 0*.993 0*592 Oe521 Ow803
09239 loO04 oeq04 Os593 0*471 Os695 Os236
O..m3l5 1*071 09890 0*556 0*414 Om636 Oe224
0*391 lol02' o.843 0*466 09436 Oe559 00188
09468 19143 09791 o.433 o.413 o.492 Oe195
Oe544 19164 Oo754 0*401 0*391 00441 oe163
oo620 le179 Oo712 oe4lo Oo360 o.402 oel6o
Os696 le200 0*655 09390 09340 Oo349 Oe113
Oo772 19215 oo623 0*399 Oo3O8 0*321 0*070
o.848 lo210 09604 09394 0*302 0*306 O-mO38
0*924 19210 oo609 09396 09294 Os307 OoO15
19000 19220 0*590 Oe394 Oe302 0*297 OaO02
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DESCRIPTXON AND LISTING OF COMPUTER CODE "HYBBAC

In order to solve the finite difference equations,

presented in chapter IV, the computer code "HYBBAC"

(HYdraulics Bare Bundle Analysis Code) was developed. Fig.J.1

shows the block diagram of the organization of the program.

Presented below is a list of the subroutines related directly

to the main program and their contribution to the computation.

Numbers in parenthesis represent equation numbers as they

appear in the text.

1. BLOCK DATA - Provides numerical input for the program:

- P, D, R, 9,' (flow)

-2(IV.78), N (max.# of iterations)

In' 1n (Grid)

2. Inicialization Subroutines:

IBRAG - f (II.9 ),T' (11.6)

COORD - r,3 6, yir-R,'% (IV.56)

GRID -B (IV.19), V (IV.25)

FLOW - A (V.1), P (V.b3),DH (V.2), Vbulk

INIT - Initial conditions (Ch.IV, section 9)

MIXLEN - e(III.18) or (111.17)

STREAM - P (IV.81)

I
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3q VELDIS VE V (A,13)

4, NORM normalization of initial conditions for vZ

for laminar flow,

5. NORM2 - normalization of output

Vz _z K K

bVtmax

6. Print-out subroutines

PRINT - print-out of parameters distribution

PRINT2 - print-out of general information:

f, VbR H, DH, distribution of

7. CORE - Iterative Subroutine

Fig. J.2 shows the block diagram of the iterative

subroutine CORE. Its related subroutines are listed below.

VISCOS - (III.11)

MAXVAL - t(n-) (necessary for 2 , IV.77)
max

REYNU - Adjusts bulk velocity yielded by (n-1)

iteration to desired Vbulk'

WALL - f (111.57), vT (111.67), ti/g(III.60 )

WF - wall boundary conditions

(IV.60), vim (IV.71), Km-l(IV74)

CONVEC - A (IV.13.a)
ii
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STRESS

SOUPCE

BOUND

The

same used by

- ( IV, 34)

s Source terms (IV,26), (IV 29), (IV.40),

(IV, 41)

- Boundary conditions except wall's.

nomenclature followed in the program is the

Gosman et a(l?) in the ANSWER code.



STAR T

BLOCK DATA

CALL INICIA LZATIO,-IN ICIA L I Z A T 10 N
SUBROU TINES SUBROUTINE S

ITERATIVE

(CALL ITERATIVE SUBROUTINE-
SUBROU TIN EEw perf orms one c icle

o f ileration

prin t out yes CALL PRIN T
required? PRINT SUBROUTINES

no

mlax

number of yes
iterations
exceededP

no

convergence
nocr it e r i on

5atisf ied7

yes

CA L LNORMAL IZAT!DNNORMALItZATION
f UB.ROUTINE SUBROUTINE -for outputs

CALLL PRINT PRINT SUBROUTINE

STOP

Fig. J.1. Block Diagram of Main Program
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MA.1 N

vi sc.0 sCALL V! Scos

.ck 'parameier 'Ib'i itpbe iterated

two

00MI'lavI .1

compute residuai

1, .I.,

r)
0

I O c k:Dlagra.m op Subroutine C-

EC A L L MAXVA L M A. XNA L

y e.S
Vz R E Y N U

n o
no

compute wall cond i t ion s WALL
. ............ W F

CONVEC, STR :S SyEccef ficients of ..equ2 tions. $OUR C E

c ompute new values

for parameter

CALL BOUND B 0 U N D

ax.# yes
of i.teratiQn

elxceedied.

no

no converWAS it rf er -onI sfi 
ied

yes

2 
1. 1n o. equ2tions

iter2ted'

Y e S

MAIN



DPMENS I 0 11 lk (41., 2 1 8) AN A [IF (0-,8) A -SYMBL (9) BE (4 1) BW (4 1) B-Til (4 1)
2 P -S (.4 1 AM:T m T 'V 2 7)

C 0 .19) M. 0. NC /C V P B -T,.E At A N A 1%1 Er A S Y " M BL

C O.M.AMON/C N U M B. R/ N W, N F., N V, _N'K N To ir N M U., N V 1 4F NV2 J-r r Tvr IV

c 0 m mo 14 /c 0 /-T Y, I IN J IN , J 1 d -I.M A X (2 1 LIL M (2 1) ., X 1 (4 1) X 2 (2 1
2R, (4 1) rVP (41) 1 PUN (4)

%r-,,-rMMON/CFLOW/ pTmyDIAvDH,,ATOTFRF,,, VAVGK,",-#LOW R0,RFFZMUT -E- '.F'vVB
/"0MM0'1k!/CGEN/NMkX TNN-BRv NPRI NT71 I PFcc'r'pp p) jy RP (9) jr R -S-4'0'u (-9)

01 10"t /C W-11-1: L' ixM.10 LN f'm%,k.L V PiTA-4 2 1- USTAR (2 1), FR YB (2 1)
"'10 MTM 0 N 'S (2 1.)

/C 0. 14 D/- -'
c &M.B10 Nl(,FTJ TICIF W 14 1 2 1)
C.OM MO NICCO N. S, T C K E C V.I S j D 11- r C 1 C 2.

c SUBRotjTjN:' 1?.o F TN,
.E ITIALISATION AND PROG'RkM CONTROL

C
:c
c 77 tq s U. R E T H A-T DTMENSTONS.. OF ARRAYS b,,F0:V.'F* CORREFISPOND WITH VALUES
c As"E31GNED TO NlIN2 AND N3 lNe YOLLOWI.NG DATA CARD

DAT A. 11411 N 2.r.N.3 /4 1 2 1., ell
1 N M. IN - 1

c*** REP-:D 11,1 P H Pi M F R I C 'I N F OR, M 10- T"'I QN. FOR HELDINGS AND T -ITL P, S
j. R. A D (5 2 (00) ASITLE.
PEA D IS 21G 13 1

4 ANAM-L'JASYlp
C*** CALL IM I T 1AL I S ATI 0 N: 'Z'13% U B P. C TJ T I. ME S

-CALL lfl 10114
C::,N'LL 1- B.TR A G
C-A-L L CGORD:

:A Ll G'. R I Tj-).. N :3'01 Bl 9 W 7 B N;,r R S).
c w';R' T. T LE PRO.AZENNI-SPE":1. TCATTON I N F 0 11 10 N

W R. I. T F 6,,w 3:0 1 Am.'-T. TL E.
WRI T E (6 4,3, 1: 0:) (K.,j A IN A M 7 K) T.,-= 1 9) T'm

W R IT; E' 6 3 12 ,'.10 RE F Z -M. U R TLq'Fr !?TFj Kr P R F.K= 1 r 4.) r KrR, P K)',f K 1 4)
.2 t M- A Y- f C (77 T. N. i M (J -TM k X (J) J 1 J N)

J- ?q T -74 "i.3 A, A NA. Mfl
P4. (N 1 421

N I. T E, RE

MAIN,0002
M-AINOCO-3
MA TNI,0004
N, A I N CYO, 0 5
TMAT'NO0306
LMATNO007
'M A, I NO -0 0 8
M.AIN0009
IMAINO-O 10
MAIN0011
M Al NO 0 1. 2
MI-IN0013
M A TRO 0 14
MAING13,11 5
M A ISO 0 16
M A, 1 IT 0.0 17
-M A IN, 0
M A I NO 0.: 19

MAINO'021
MAT N 0 0 2 2
N Al N 0 0:2. 3
2-11INOO,24
M.K 1",14, O Q 2.. 5
M ki N a 0(-, 2 6
A. A -I NO, 02 7
HAING-02:8
M A T N 0 O'. 2:9
M: AIN 0 0 3 0
MAT NO, 3 1
Tl A. - INODA2
M A T I IN 0 .0-.: 3. 3
M A I N 0-0, 3.4

-M A 1, NTO 016
PA E I



C*** ITERATTON LND PETNTO-UT CONTROL LOOP
C 0 .14 T I N U:H
N'T T E --,q = N.-,,r,- T F R + 1

CAUSF ONE CYCLE OF Tfr-F-FATMN T(4-). BE PERFORTIED
CAll C'C F E N 1 N 2 N 3 ff A# B.. :-jP:y B VT I B.Nr B S I A N A ME)

C T E S T I IF PRI I N T 0 U TIP T 0 BE 101- FQ D TJ C E D
IF ( (NITER+ NPRI NT,-I7,D) /N.D,-.R,.---r Ni-r.'.N'-6.,IITTER/N',PRII T) GO TO 10

C A L L VE LDI 5 (N1,N2 1N3fA)
C lk L L P R -'-:iq T 0%141 1420-3:,,A)
T F (KFL-0 W oP-, Q e 1). .0- 0 TO 3
CAIL P RIV T 2
CO NTT NU E
.w P, 'j- T j, IF,)IT 2 ('6,f, 10 (A S Y mg B L 1-K) l.K=
-WRTTEl (6 1,04) NITER, fESDU X)I'T, -=IT

K: N UM. -IBER, OF. ITERATION"
C*** T-E ,,ST IF m AX I IM u ('N., A X) P'E R F 0. R ED

F N I T F R; N M A:. K GO TO. 8..

DO K-;,..]'
Tf (p, Ti- s (F. 4 S) L T,* A PSUSDU VQ RES=RSDU (K,)

7 R SUU (K)
C**.* T ES'Il ]f F c;.,4klv2p-GE:NC.E CRITFRTON (, #:C) SAT-IISFIED

I F (A 135 E. S) CT I C c 0 0 R's N.1 T:-0;,4 Re LEv 5) G 0 TO 1
C*** EM D OF L.01-0 P

GO TO 9
WRlTE (6; 1.1,016) NIT-FER
C:O NT]T[W

C*** 0 BTIA.1 N V"? LO'C I T Y. D1. TONS
C AlL V.UL7),'T S :(N 1 1N 2 N A)

C*** FINAI P.R--'r,-NT-o..UT.
C Al L r p T NT (N I N2, N-3, A
CALL PRlVT2-

C*** N R 14 A LT Z E, FINAL c) ff T p IT

C. A UL N R:M 2 (N 11 N 2 r TV 3,1 A)..
s c? 0 p

r j T rp E-Rr
10 -3 -IT:kESIDTT:AL FOR 7M."'.111 VARTAHLE,//Oli L

1AU 2-X)

MAT-NO037
MAIN0038

I-, I N 0 3 9
ivi .A TN- 00:4 13
M A'T N 0 0 4 1
MAIN0042
IMAIN.0043
MAI-NO044
.1 A ]ALN. 0045
ML-AIN0.046
M A I V, 0. 0.4 7
MAIND048
M A .1 !,,TG.049
MAIN0050
MAI1,005 1
M A I,N,O 05 2
MAIN0053
,ri A1110:0 5 4
M.A.1, N10,0. 5 5
IAIN 005-6

'M A I N 0 D S. 7
M A iNto 0 518

M: A 1-11-:0"0 6:..()
M Al 100 0 If 5 1
M.

-,l UDD 6:3k -,N
'M N 0 0. 6 4
P, I N 0 5
M A, I N 0 0 6,6
I A 1, t-.O:O 6 7

M A. ]: N 11 10 6.,.18
14A i R 0:0
M., AT NO 0 TO
"l A IN
MAINO. .072

in A GIE 2



Tq A 11M. 0, 0 7 3
M k I N 0 0 7 4
MAINO 0,75
M AI. N. 0 07 6
MAIN0077
M A I Ii-O 0 7 8
-MAIN0079
'TIA I ROD
.m A I,--N 0
M A I NP -.0 8 2
MkIN:0083
MAIN008-4

A I if 00 8 5
M, A I N. () 0 8, 6
M Al NIG 0 8 7
l A -1 11TO 0 8 8

MAIN:/08 9F, 4k- T. 11 ;
NO 0:9

NATRO.n Q 1
NAI NO 092
1111 A I -N.. 0. 093
Mki:N'0.09 4

FORM AT 1 H j 1415X 1 (1 PE, 12 * 3)
F 0 R M AT 3 2 fl 0 YHE P R OCE S S D I D NOT CONVERGE lN -1-5 13H ITERATIONS)
'F OR M AT (9A4)
F 0 R -Yl A 1-11 1 H 12 4 X 7 5 H F I N I T E-' DT ER FNCFF TTERATIVE SOLUTION IS UNDIKIP1, CON

2-SIDER ATl[ON FOR THE CkSR OF/

101 .4

j 0

'301

1Xr27,k4////
3 40TI THE DEPENDENT VARIABLES BFING C-011451D.ERED ARFr)

310. FORIMAT I-HC 9X ,TlrlH f 9,A4)
312 FORT14k.L 06,H10j-HE IMill"LlAl SUPPLIED 15//

31'0X..F50ER0REFo REFERENCI DENSITY FOR THE F.IIITT I D;o . -a 1 P 15.6

-F7FRENC.E V7SCOSITY FOR. "'-'H.E FLU"r-D-eo -a-* a*-;& o.'=vl.PEl:5.6/
5 10 50 -MU R E F R .F

R RE Y I DS. N U M B F R a -0 a 0 0 V a. V V -4 0 -.0 S 0. "o. 0 0 -0 'W jr 1 PE 15:. 6
310X. ,r57HP.R*S j R ATIOS OF MOMENTUM: AYD P.R0PERTY D'TFx'USIVITT'-ES ARE//
-5 18.jv4(3HPR(-?.llj2H)=jr0PF5. 2 ,? 2H,
5 1 OX, 57 HR? S. 'PELAXATICtif P.ARAMETERS YOR DEP.ENDENT VARTIABLI-4;:.S: AR hFI/4

TTHF MAX F I V, R A IONS -6/
TMUM: 'NTJKB.ER 0 'o 0 0 A 9 -a

i'llox: 50.HN,,mA.X#l 44 1 11
10 X 5 0. .RC C, THE COINVERGI3124 C Y C R 1.' 1 PF 15 6/

COL CT T 0 N- I) is I* Ab1, 01 TJ 1-1 N S IDIR-1 16/5 0. H 114 11"IffE iq tj m 93 E R.: OP
.0 X 5 Off J, N THE NUMB (DIF 1 6

'F; R OF lW:WS Pi CT 10 N- 2)
5 11 X., 1H. J 1 OX, 4 B I L 114 9 X;r.4.H TIM A X// 1 B 19xf 3. .12, 1 U)

El N D

P AGE
N)



I .hl

I B Rk 000 1
IBRA0002'
"t-TERA0003
I BRA 0,004
'T -A- BiR A,,O 0 0 5
-1 BRA 0 0 0 6
IBiA0007

IBRA0008
I BR A GO-0 9
1 BRA GO 10
IBRAO..0.1 1:
T B;,R A 0: 012
I B ,R A 0 0 13
TBI R A CYO 14
I B,"P, A Ojo. 15
I BR A, 0.0. 16
.I B, R A 0: .O. 17..- A.B-r R.A00118

I B R kol.0 19

.1 ."0 2.1
'I BRA 0 0 22.
B''R A Y 0 2.3

02*
I BER A 0 0. 2:5

D 0 2 6
I BR A Of). 23.

"T.'Px Z. A 0,0 2 8
T -B Pal A'G.'O. 219
T B Rk 30
I B I R. An.,O 3 1.
I B Rik 0 0. 3 2
I.-BRA0033

IBRA0,034
T.1i R A OT 13 5:
I B R A 0-1.0 3:6
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UT D190"U T I N, E IBRAG
C.fj-Me0N/CGj'P0 /IN, I M A X f2l) !L I M(21) jX-1 (41) rX2 (21) .1

2 TR (4 1) V P .(4 1 T T,j''I N.(4)
COMMON/CFLOW/Plml.tDIAoDHIATOToR-E .f VAVGIKF-T,,. 4 G W . 7 R 0 R, - E F Z M U EP E F, V B

COMMON/CWALL/ TA74-aAV.yRmi-AL (21) .- OSTAR (.21) jrFRjYb (21)

c SUB ROUTT.N.E FOR COMPUTATION OF WALL FRICTTON BY 'IBRAGIMOV METHO-D

C*** C(liMPUTE YAN
YAV=Om5*(:3.,o/.-'.ie.1-41,6*PI-T*ALt)G:(3*).-D.IA-)

C*** COMPUTE FRICT-1014 FACTOR, FR
X--A'P4OT/Y AV** 2

X K= X. *:0 215'* PT T S.Q R T (- 3 Y-0 a 5) /YA V
x x 0 0 2 T* X K 3

PT R--= (,m58'+.-s.:4.2*-E'XP -'XX-) 1 lb 1 2,v Y A V/D I A + .1 3 m
Fc 1 P oo '0 46 -R 'VE#

F.R =.:R FR,,* FC'I,.'AR.
c C G'M PT.1 T'Ps D I S T-R I B U -T 0. N OF TA',L AND USTAR

T k L'j'-" V= O'b *-pp v v G,
A.C= 3. 8 5 Pl T/ ('X* A V
C: C- XC/ 2 0. 5 -3, 1 416/AS-A.
c le -6,a /3 *14 16-* (3* 14 16/ 2,* /AC) *0 -5 *E X P AC). FPT (CC)
c- 1 /c
9Ra- 7 (X *4 Go 8* Y A V)(C *B *PIT *.o. 05,C.-C .3 14 16/6 .2
C D: 0 5 173. * I T 1)T A
CT= 6 (3 14.16,* B P *EXP (CD) _'RF (CC)

1 10 -ci)
D -17:2, A 3 1. 4 16 /6 /F.1,0A T (J N-,
DO: 1 -J 1 41. N

TET-A-=DTt"-7A*.F .T0AT (J.- 1)
f rilIT T's -DTA).YT= C,v 5) Xr (Pa /COS ETA)

y E, T
.T'Al, 1 Es X.P (B V)

N)
10
00
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. 9 3!)Vd

z 0 D W 0.0 3
I le 0 0 HOOO

6? 0 0 'd" 0 0 0
Z' 01'.0--w 0 0

:9 Zolol-NOO-0:

Mwooa

9. 1'.0 0 40'010 :

'L 1:01, .0 11000
9:1 1110 "0 mol"o.

Z T 0,0 "N
T TO 0'8000
0. 10 0 Hrao 0
6000"d'00:3

9 . 00THOOO
q0:00"Hor 3
470.OOW003

E0031 1003

zooo'IH003

TOCOWDOO

I x=( I H X T I
TI 00 9

911 N I lN 0 3 z
J

Z+ I =.0 I
C *0+'(,

T= I Z G
t T

:dV9 J.-I X
X. -.4 f I 13A oz

z GO
b3.,Avlgns Jo s s 3UN 3 1 Hl 39Vb- JO

A VIlvl..) I bb s
S SgN,,A:) I H.1 'H 9AV :,-I.VM' 3,N 1-W-V,31 30 ***'J

.,WN
'TUM 0 1 IDS: HV3N

tvlu:.M W *-6-, 0 --,0
01, 0=4 I'll X

J-) W s giVI-N Milo 0 . ,G b
V. 1.31 a+'c'-T r,),:zxF, :4 ZX

ZY
(WNf'IIVGI=I/ 91,16,941, 1

"'r Z.X 'IS 3.11-%f N.:l 0 1100 1 IVI l:N-9
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S 'J"_ R F 'I C H E"D G P I
L,= (PI _T (.M.--TB+1-) /2
DR= X 1 f M) -X 1 (IT3o) -FLOAT flimi- lna- ) *X 1 (2.) /FLOAT T

I I =.T.B + 1
DO. 15 I=ILy MN

15 Yl (I.) =,x I I'l-i +xl (2) +YLOAT (I-,TL+l) *D."R
DO 3 J= 1,J N
T ET A = X,2 (J)
x I M + J_ I .=.P T T 2 C,"05 1P, RT A T,). i., z

C*** RADIAL ID I S.447- A Nt CZ S, 'R (I I
D 0. 4 .-1= 1 IN7,10-.0'. 5*D.

TiA X I
C 10i ETEER III NA T 10 N 01.1 1,111, N

I M, 1, N (NVY --.7'.2
I.Ml N (-'F:): 2
1 1.11 N f. N V.

(K FTo V 4VIEW I I MIN (NV) =2

CT I L I.M. ARD IMA.X
DO.
IT MA X fJ) M.. +J. - 2

.5 '1 LAMI J.) M: + ill I
&..S T B MU N D A R Y PA P AMSE TERS CB

DO '10 J= 2.' j N

I mg! X2.
1.0 (R. f I B) - L.a 1 .4.C. B (J. :X2 (J+l) -X2."J) ):*TAN (TETI)
C*YC* PIR.1 174179 OUT :,(,'0 -.0 R. D I M A .TES, I L'. M A N:D IMAX

WRT 'IllIE 1. 0 1.) (X 1 1.) 1:=,J.. al IN,)
16# 1:0.2) (Y, 2 (J) Jl.=. 1 JK)0 3) T' -('j171 'F 1: -,Lj M 'Y .1 m A x (I,) J N

RE; T 0 RN-
101 L 0 R M AT 2. 5 ff OD I s IN A","B s Iff TD I RF C 77. 1 .0 N. - 1 (1 H F 2 "_9 80. R: M A H.0DTSTbLN.,l,-E-S :TN T I RF 8

_,CT.'l_0%K-2/(l;J 4P,25,of)
Tj r T 4 5 X)'S OF I TMAX/ lli. 4(S' T 4,10 3 .F. 0 R. I'l A "T' 2 10 V A., 7 ILIM A _4 D

END

COOR0037
COOROG38
C 0 (7) R () 0, 3 9

OOR -0 () 4 0
c 0 -1117) R. 0 0 41
COOR:0042
COOR0043
CD 0 R--. O 0 4 4

CPOR.0046
C-I.O-ORD 0 47
kf-'4 0 -0. R.0 in, 4 8
COO.oR-:O 0. 4 9

COOR0.051
7'COOR...:G5.2

C.00R,00.53
C, 0 0,,'B D 054
COG.R00.5.5

C-00 R0057
C.010 R 09,5 8

-0..05 9
CO o"R 0: 0 6 0
C'. 0. 0. RQ.Q:.6 1:
CO"GRI, 0 0 16 2

CO.- .:064
CO.G.:R 0 0. 6.5
C.0:.0.F 0. 0 66
C. 00R. 0., 0. 6 7
C.0 O.:R OtO:.6 8
COO R 0 0 6 9
coo.R.0:070

0: 0: ]RI 0 -07 1
COOR0072
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S TJ 31X 0 11 -l' I NE G "-R I ! 1) .(1; 1, N 2" N 3, BE B Wr B N j, B.T Pl! "E"', N., S i 0 N. F ( N 1 v E, 1) jr EN.(N 1) E S (N 1)
um T f N M.U 4 N V 2, 1.,R/Nltil I NP INV, N K, N V 1 -1 N IV

CIO I NY -TNfMj:J Mv JNM*v TL MAX (2 1 IL I X 1 f4 1 X 2 (2 1
2 R (4 1) V P 4. 1 I'm "I N 4)

ro Al
0 CA L C, Ul A T T 0 1 ,.R.o u T I N.-E BE -B 14 B N B S. A N D VP

DT'E TA ='Orr 'w% 0.
C*** COMPUTF s :AND VP

T.P 1) (R (2)
TR (IN) =7DT-.BT A.'-IcR N)*..(.fR U -N) R (IN 14)
D 0.. 21 1= 2:.r.l I NlM
B'E A. 2.5. *..D.T ET A. (R. L-[+'l) +Rk (1) (R (T-+ 1) -l f'

1 TR I [T) -R (1-1)
BW -(I):. -25..*DTETA* (.R'l R
BNII R (.:I+ I 1) (.T)/DTEiTA.

-1
21 VP(T)7DTf:'TA* (-R ('L"+. 1). ft (T (R, (I+ 1) +2* *R (I) +R (I-1) /8'-o

Elp Tj:'R N
:END

Cy R I DO 0 0 1
G. izi DO It! 0 2
GRID0003
GRID:0004
GR D000-5
f7m -R i. r) 0 0 0 6
G.-R I D 0 0 -10 7
:GRID000.8
G.R I ao -0 ol 9
GR. .I DOO lO
G.R I. DOO. I I

G-RIDO-0 13
GRIRO.
GRl D.O:,O 1. 5
G,:,R I D, 0:01 16
GR I D. 0. 17
GIID010 T:8

I D 0: 0 19
kj,6, 'L 10,f"I..RT -C D 2 0

A GR
LAJ

Q

N)



FLOW0001
F Ira 0 W 0 0 12
FLORD003.
YLOW0004
FLOW0005
,FLOW0006
FLOW0007
Flow 0 0 0 8
FLOW0009

FlOWOO 11
'TLOR-O 0 12
YLOWO 0 13
YLOW0014
'FLOW 00 15
FLOW.-0016
FLOW0017

TOlvo 0 18
PLOM0019

_SSUBROUTINE F"' L 0 W
ITCOMMON./CNUMBE/N idrNFI.NVr4N -KINL,,NMUyNV1,yNV2jr

COMMODNICCIF-01 IN Mf JNsO?\ I A X (2 1) jr ILI M (21) Xl (41) rY,
2F (4 1) ., VP (4 1 1 Yll N'(4)

F-T (-W/pj"
C0111NION/C VAVGIKF-,rAOWFROPEF TNUREF ,JVB

S U BRCl, U TI RE. T G C 0 Ma P U T 11-3 El Y D -SAULIC PARAEFTERS OF THE YLOW

COM11 E C FIA N N R: A R B
A T 0 T:--pTT * T)l /8: /,SQRT (3m) -DIA*DIA*3 a 14159/4810.

;JETTE.D PER11-METER
'PW-DlA-*3* 14159jwl;2&

C**.* fivDRATIL]EC .'D-IA E T, E R
D H 4. A T 0 -T/..

C*** ATERAGE V131,10CITYV1." Cv- Z M TV* R, E/7D H
UWE k,

U R N
-E UD

D A. G FA..
U.)
0
LA.)



.I

(N N 2 1 N 3 ir A I AN A M 13)-u M 11 N S I ONT A N 1 M 2 v N 3 jvA -N AM E (9,o 13
Ci , 0 Yl M, 0 N C N 1 -1 TIM R W N F , IN V N, K r N L. v, N M U N V 1 N V 2 11 1 Pkj, I V
C 0JM MICYN C-0 G E 0/7N 1 NM r.J N., N M, I Ml AX (.2 1) I-L' M (2 1) X 1 (4 1) f Y, 2 (2 1

2R TA 1) VP (4 1) IM-'A- W(4)
C 0-M M-Wyl /C FTtO W/T lTr D-A,,r DFfv ATOT 'R -r VAVG I KF.LOWf ROREFIr Z -UREF VB
C0MMkDX/CWATL /T A LA V,# P T11 1 2 1 TJ S T -A R (2 1 F Rj Y lb" (2 1
C. 0. m 14, 0 N C -C, 0 N 5 T/ C.'_1 F.. 'S f..c v IS;.v C D I S, C I, C 2

C4 7i -46 -Ap J- -A w% -1. A, V,

S, U R 0 U T- 1 N E FO- R CC) M P U fl'A T I C) N IT'TAL CONDITIONS
C****
c
C' '** P, T. V A LRE 5 TN STORE TO Z E R70

DG 30 K=:l .N 3
DO -3 0 0 N.

:DO 30 -vz ' J.: T N
.0 A V. fK 0.

Z-AL CON-DTTIO14S rO -XTk
C*** INITT -R A 'L V' 'LOCITY
C'** A S.S U M I NG F. A 'R MA N S L I N EA. P ATP P R 0 X,TMATION AND
,*** IB R A G T M OV. 'kTA:Ll., S 11 EA R. S"'RESS DISTRIBUTION

Do 55. 0=1 JN

DO 55 1 2. 'i I
x S.= TJ S T: A R J). F
Y ALO(J": (X.5
A U r.-J N::V) =:UYS T A, R ;5 Y+ 5. 5)

C*** C011PUTY B:U 1: K VEL0CITY:
CALL --R.E.Y.Nu (N, ll.j,-,',,M:2 o N,, 1

...IF (TKF LG, W,.,m..,FQw 1 GO T 0 6:5-
COMPUTE Mil X-1 NG LF0 N G T, H

LT, NI K'.-L E X N 1 N y N3,1 A)C*** TNTM 4 1"DITIONS ..-F 0 -,R, -TK'v ASSUMING B, 0 BiKO, V S C OR R 13 -L A, TI 0 N-VAVGi/-k (TN,
V'=. Is v, J Ng N V.):

DO. 10 J! Tr J N
TL-=IMIN (NK
I MI.= I.TZ I M J.)

I NIT000 1
I NI T 000 2
INIT0003
INIT00,04

N I. i 0,019 -5
N- IT0.00 6

I N 17-0:00 7
.1 NITO -0 0 8
I N..T T 0 0 09
I NI: TO 0, 10
I N Al rf: 0 Ol 1
1 NIT -001.2
IN, IT.0 0 13
I Iq 17,0 0 1. 4
I N IT- '0 0'15

To.0 1.: 6
IXITO:01 7.
I'N 1: TO. 0 18.
I N-T ITO 0 19
I N IT 010. 2 O
I.N110-02.1
INTT:D02 2
INITOO 2.3
:111 Tr" 0 0 4
114 1... TG 0 2:5_X., r 0, 2. 6L:T'OY
TNIT:.09:27

NI:.iL",O. 0 28.
INI TO .029
114 Ill' .0:03: .:0:
I N IT -0 G-3 1
-I N I.T&032
1 -N -IT..003.3
IN-I-TO-0 3:.4
INISGO35
I -NI TO-0:36
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-1

I

I 1171TO 03 7
INIT00,38
INTTOO39
INIT0040
INIT00.4 1
INIT0042
DTITOG,43
I NIT Q 04 4
I:N 1 TO 0 4 5
INTT 00 4 6

.I-
iNIT0047
I-NIT 004 8
INIT.0049
I -N I. TO.: 05 0
J.N.JT .f ) 0 5 1
.IY ITO 0 5 2
-INIT005.3
I N IV& .054
IN! T0.055
TN'1 0 056
I N I.T 0. 0 -5 7
TNI.70,058
-1 N T.m

Il. T. 0 0 5 9
INI. T, C." 0, -6 0
I IN, 110 r.() 6 1

.0,62
I N, I TOO -6 3

I='TLJom
E Tl X I ( I.) /,X 'I M
Y-Z--l,,48*FTA
YT-=- 1. 17 * FT A
Y 7 7 *-E T A
F.,z U.8 5 *E X.P :( y Z
'PT=tl, 6 0 *7YP (YT)

D,-0 4 0 * E X P. Y R
F K= 0 5 -* (YZ7 + l-;T + F ID 2
A (I;,r J.,j N K) =FK* (FV* A NV) **2

C*** INITTAl" COWDITIONS FOR ,,3T-Y:EPAM PFUNCTION
IF (KF-,4L0W*'F-gQ*.2) GO TO 50
IF (KPL OW;o N.Ev3mAND* II.e.Er.,3) 0 0 0 50
CALL STRE A M (N T j N2 3 A)
CALL WELD-t- QT I N 2 N3.,r A
(30 TO 5:0

C**"6 N0lRMA'LTZE INPUT FOR L AMIYA R CASF
5 C A, Ll NORM (N I IN 2.1, N 3 A)

C*** PRtt X T, I N.1141 A L. C, 0 14 D 11. T 10 N.. S
50 CP% L L., P P INI N It N 2, N 3,r:

CALL PRINT2
IF (kFL0Ww.LT:* 4.), R-EVIPIN

C*** Fl. C T. IT 10 US, V A -L U F S. AT W AlL F 0 R VELOCITY AND TKE
C Al L WF N NL2 1: N3,okf NVY
C T , -T L W:,F -(N. To N2.,f N:3.,r Af N.K):
kl'; T
Zzlq D

P A GB
LA)

C)
I.n
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m

L z 0 (XI .xI:wl

6 1 W
0

0111 low 9 L, 0 0.1,11. W.

t7 Lo 0 *Ix.LM

E L OOT .x "I, w
Z' L od 0:-.71. 1 W-,
L to oll I W

0 10 oll I W

6 0 0 .0 J. X T1.4

8 0, 0 oll 114

LOOOIXIW

9 G 110 () 7 X I TR

soooqxlK

toGOIXTR
0 0 0 ri.x. -V-- K

'LL

1) C-) I x I w
.1. w

L 010OIX L

11 N 2f

L X* Ctoy -kacs* 9 9 ol Oo+i7i7 Q, o) CrIN -r.* A v
07t7*O-VwD*8E,/6' t tit. t-ID

V: :L x =, (ri, N
o s L IT Ott,

Nl). I X/'(1) LX Vla
lTl.'z=-[ ot oa

CO w I, ri I =.-H I

Nvlt=-o OL oc,

0 L

tl 40 J-

I X, I w
14 19.11 Us

LU Y. .Iorj
10 T v HG J'Y I d I dl 'ei a N 0 14 w 0

W
7) ZX (L t X (Li ) WIrI I I A' i4i r/ 0 g- o 14: j C) D

d, Z A N ' L A N f I W N X N: A X *'A N A R 0 17)



-Ax

'-)U', ROUT I NE CORLE fNlN2,N3,k 7BEBWrFNBSANAMR)
DTMENSION. A N Ali.E. 9 N 3.
DTME14.STON N21 AN 3) __9.F(Nl) ,PW(Nl:) l:BN(Nl) fPS (Nl)

'B A W (41.f2l) f BA N (4 lv2 1) #5 AS (41.. RC, 41.,F21)
TIM EAN 510 N B AE (4. 1, 21) -SO

CQMM0N/.CN'UMBR/kJVrNF_,f NVr YK., lLjNYIUj NVloNV2.r III TFf IV

COIM10 N/CGE0/lN r.,l N.Mr JNl oll isl r IMAX (2 1) 111,1(2 1) r X 1 (4 1) j X2 2 1)
21R. (4 1) f.'V P ( 4 1 _11. MIT N (4.)

TA Dill A TOT R 7,-;, R 0, R F. F 7 IM TJ R EF
M. ON /C FL 0 W/P I D V A V G. K F'T OW,Ll :., -) I P I C:r-,,t r)'D1,4 M 0 N/ C G, T, m / N M A X INT, P R (9) r R P 9) Ric.-O 'L .4- p,: 1.1, N l --L.

.CGMM 0. N /f,; W A L I., /T. A LI Vf .IR ml A, L 2 1 U S P A R_ 12 l F R Y B 2
0,M ift 0 N /C BQ TJ -M in- /C B (2 1

CoM.M.0N/CAFU.NC/--FWf 41, 2.1)
c 0 Pif irl. 0. WIC-C.0 N 3 TIC K, E C V I S, C D I S Ce 1 r C 2.

vlrjRLA'M T inc I T tN

c
C*** CRECK KfI RD OP FLOW

1) GO TO 1
C*Ik* OBTAIN T UP B U 111, E. N. T V I S,C:O 5 T T. Y

A L L (N 1- IN2, N3 r A)
C*** OBTAIN FW J) FOR STRES.S. M 0 D El

14K F1.0 0 w 0 'N.47. a 4 0 TO. .1.
CALL STR 4S (N 1 r N:, 1., Y.A)

C*4z* IT E Rl- T10 N -C YC L'R S:
DO 0 K, 1:1 :IE
IF K.19.EQ 0. NW) .1k. .3. U'R ,R,'Y/X 1 (2) 2
lG=R41N (K)

C*** COYPUTEE DIFIUSION1,1COWECT.-TON WD 3 0 U'-,,C R mi. F.'R, T I S
JN_

DO 10 J=2
I HE IM A X -J)
DO 10 1 1 Cle

C M;T rl,) 14OBTAIN fONVP E N T SE FF I C E,4

C A L lo C 0 N WE IN 1 r N-2, N 3 A Wt A Nr A 'r7 J K)
C0111RUTE DIF FUSTOM+CON VECTIO7 COEFFICT-ENTS

GO TO 5

c 0 B, 21 0
CORPE0002
CORE 0 C', 0 3
CORE0004
c 0 R FI 0 10 0 ED
c 0, R. B 0 0 0 6
CORE0007
CORE10008
CoR.E0009
co RZT0 0 10
Coll Ro 0 11 1
CO"RE-00 12
CORE0013

c 0 RE (l) -0, 15
C G R E.-,C) 016
CGREQ 0 17
:C O R-F. .O.,O 18
C GR,40 0 19
C 0 "R, E 0, Al 2 0
CORE0021
C 0. 2 2
CORE0,023To-"0024s.
C ORE.-O 0 2 5
c olE 0, 0 2 6
CGRE.00 27
A.,1-4 o"R B0 0, 2 8
c O-R Ell -G :o 2 9
C 011 E.0 0, 3 -0
C 0,R E 0 0 3 1
C ORE 0 03 2'
C 0 R F 0: ID
'CORE0034,
CO R E 0, 0 3 !5-
C " 0 REL; 0'. 0 3 6

A G F 13



C* * AXTAL TELOCITY AIHD TYE EQUATIONS
J'2,a + (A (I + 1 j + A I i N TIT U P R, K + A E

(1) f2a + I A 1 Jf NtNlU + A (l Jr A W
i\ IMU /P

B A N (I J N ?.2 + (A (T, J + 1 or N,, M TJ) +,A. 1, 3 N Mtf) ),/PR + N
B A S (I J) B5 (1) 2,w + (A (1, 0- 1 NM U) +.A (I J N, kTJ) /P R (K) + A
G 0 rl 0 10

C*** VOIRTICITY AND -STRFIAM F, TJ N CT 10 ',hT RQU AT I.014S
B A R I J) 2,w B B 1) +11.]FIF
B A W Tj J) 2 B W.,(T)+W
B A N :(Ir J) 2, B N (1) +A.IJ.

A S ('I J),,= B S (1) +.Ao
C*-** COMPUTE SOURCE TERMS FOR VORTFIC-ITY AND STREAM FUNCT-ION

CAIL S:O..,U PC E (NlrN2vN3,rApSORCE.p..,.-#J#K)
CONTINUE

.C*** T..N"N E R T TF R A TI 0. N S
DO F5 0 ..,T T=, 1, 1 X N:*FAR
'T'F (K.0 N-Eo NV* 0RmKFL-0W EQ* 1) GO T 0 20

C*** ADJUST U.S TAII (J) ANP FRICT-I.ON: FACTOIR-r FR
C:,A.l L W A. LL (Nl.f..N2,sN"3..vA)

20 CONTINUB
C*** P A. R. A MI o T A 4 : ,V A L L

-C 7 1 L W.F N. 1 N 2 N 3 -A. K
C4*** C!GMPUTE M: A 4X I '--I. U: 14 YALUE OF P A T? A:'M 3 E R OVER F I FL D

CALL -M-.AXVAL N 1 #'N 2.,-f N 3 k T, A M A X)
DO 7 0. 1 2'r J X .N

C***. P0 T'N, TS.

DO 70 I-ol"Gi't 14'.
C*** Compu-Tll. SO U'R C B TF R I FOR AXTAL VET40CITY AND TKE

IF ( K Is ,o.N V , A:. N.D Ko N4 K) Cr 0 f:O 15
CALL SO U.P C E, (.N, 1 o, N 2 41 NT J'r Ar so R c -p-, I

'15 0,14 T I N U F
C*** COMPUTE F I IN 1 TF DI F,"FBRENCE EQUA--,.T-ION

I F ( K , E N N T D. T -EwQ: m 2 G 0 Ti 0, 3 0
NU M= -113 -(.1 J) * A (I+ lr J -1 1 1 J p K + FA N (I -J + 1

/.+ -13 A S If *A (I I -I- 1,y K) + 3 0 P," (TIJ)

COR BO 03 7
COIRFOO38
COIR E003 9
47, OI E 0- 0 4 0
C 0 -P,. E-10 0 4 1
CORFOO.42
COTIE0043
C E 0 0 4 4
CORE004-
-C,O R EO 0, 4 6
CORE0047

0, FlIt" 0 -0 4:8
CO. RE, 0. 4 9OR-FE 0:050
c G"REO a 5:1
CURiO f,)'5 ) 2
C.O,,-RE,0053
CGHEOO 5 4
C.. G R BO G-5 5
Co- R E G 0 5.6
C 0: RE E 0.0 5:7
CGR'Eo :015.8
C.O'R'.I.E O.o -5 9
Co",IRX0.10-6.0
CORT-0.016 11
CoRkF,0-0'62
C ()'_. P

CORYO O:b 4

c .OPEO-0-6. 6
C OR F 00-6 7
c 0 RL E O 0 6, 8
C -,0 25, E 0 iD 9.
c 0 F-E 0 07..
C 0 RE 10. 0.7.1
C .ORE0072

P ''G-E ji4
w

C)
co



771k

3 I

C 013, E 0 0 7 3
c -o P2 E- 0 () 7 4.; .w -15li--o REO 0 -1
C 0 RE F. 0 Tf;
C 0 R E-0 -0- 7 7
c 0 RF,,() 0'7,8
C 0 R E 0 J,017 9
c OR 17, 0 0 8 0
CORE008-1
CORED 0:8 2
CDR- ED 0 8 3
CORY00.84
C. O-R E.0 O 85
41"

CO RF-O, 0, .8 7
C OTIRT 0 0.88
c .0 -R EO,. 0.. 8 9
C. G REO-090
Coz R. E 0.0 91 1
C GIR E 0,: .0, 9 2
CGRY(10:93
COR

COREO, .0 9 5
c- o la E V,-109-6

9 7
c Q,
co.a

c OR B a" 110
COREO.I.
CORE0102
C () RE 0: 11 0 .3

J) +B A, W (I , J) -+I- AN J) -+B AS (I eJ')
GO TO 35

C*** 171NITE DlFFFRl?,N.E 'FOUA-TTON 'FOR VO R T'T Cl Y -NEAR WALL

30 A N U TM.= _13 A E 2 , J A ( 3 t-T r K) + E A W (2 v 0 A FI*A 2 J -NF) + 5 A 2 J) A J + K)

ADPjM,=BAE (2,,,J)-+ (0,o5+BAV (41J) +BAN (2,rj +BAS (2,J)
35 CONTIN.UE

lFfADNMlm.EQ-,wl0,) GO TO. 70
SITORE OLD IIALUE OF PARAMEPrER

Z.=A (lf Jj X)
C*** C Al C U LAk NEW YALUE

A (T * X
-J ArN U M/A D -M

CAl,\CU,,,_,L.A.TE RESIDUAL,

1: F (A K'kX ll , 4 Q .5 _0 V G.,O TO 70
-R.L A. (T., Jr K) Z) A M A X.

C*** UNDER-. .:0 R 0 V.Es Iii - B L.A. X. IF SPECIFl"ED
& i K)-=Z+R?(K) *(A(l J ;fMZ)
I F A 8 3 R L) IG"i rL A B S it'? s D, IT K) RSDU (K) =RL

70 -C 014TT NUET',
c COMPUTE.. P:ARA 41 ET P A T BOU ?Q.A RIES

B 0 U ND:. Na 1. X2 V3, A P:'K)
C*** TEST IF C0,14 VER G N C E C P I T 1 10 N (C S A T I S I E D

TF (A 13 S: (_R5 DU (,K) LT. CC) 0 TO 9.0
C 04T. TN UE'

9:0 CONT 114,U: 5
:0,W-,* NE:

IF (KYL GO TO
C*** C.O.M-PUTE: STR.EAM F: U N C T. 0 N U-SING .l.lJSTXGlS APPI OXIMAT.TON

C. A'_L L S.4TE'Ea A M. (N 1? U 2 N 3., A.)
0:0 C ON T'T:N U P

F TU 1]M
END

PAGE 15.
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zft

<3 TJBRCTJ'-7-,INE Pl A XVP,!a N 11 N,2-rN3, f K, AMA X)
DIMENSI ON -P,, (Nl,? N2, N3.)
C oMM-ON/C N U "M!3R/NW NFf NV NMIJ it NV 1, N-1 2.r 173 r IV
C0MM0N/CGST0/INj'l'NMr J Nr J.N K,.f I MA.X (2 1) IL Ill (2 1) Xl 4 l-) X2

.2 R (4 lm) r VP (.4 1) f IMIN (4)

rm SUBROUTINF4 TC) YIND MAXIMUM VALUE OF VARLABLFS OVER TH'F FIFLD

DO 1.5 4-1=1 I N
T F= U.11 ;J)

DO 15 1 U#IH
IF (A 7- S "(-A U., J K) G T A B S, (-A M- -A, X AM-AX=A is KY

NU F

R-B-T. U -1 .4

.MAXVO001
MAXV00OZ2
MAXV0003
MAXV0004
MAXV0005
MIA x v 0 D -0
MAXV0007
MA. X V 00 0. 8
-MAXV0009
lM.AXV 0 0 10
MA. X V -fj 0 1. 1
11 A IT 0 f) 12
.M: A x v 0 In, 131
MAXV00.14
ilAXY010 15
M. A, X -VO, 0 16

P A G.'a F 16
LA.)

Fj

C:)



Z) R Enu 00 1
'S T.R 0 2
-S T RL E 0 OYO 3
STRE0004
S TR R 0 -00 5
STRE0006
:S T- R -9 0 0 0 7
,S TREE 0 -0 0 8
s TIR: F 0 0 .0 9
s T RE 0, 10 10
5-T RE 0. o i i
s TRE10,0 T.2

S."TR EH 1 '.3
.S.T R E-,O 0. 1 - 4
STR ROD 15
STRF'0 0 16
SIRELO:1.7
STWE70 0 1 8
ST-R F 0:0. 19

5 T:.' R E 0 Q.4. v
S.T. RE 002.1

SUPROUTINE 5 T R F At 1-1 1 jr N 2.,r AN 31 A)
DIMENSION A(Nl,,N2j.-N3)

NF I lqVr NK,,,NT,,NYU,,,,LqVlfNV211 Il'TEt,-IV
COMMON/CGRO/IN fIN.MIJN,,rJNMrll.,I.AX 21),ILI-LI 2I)oXl(41),#X2i2l)$

2RI (4 1 V P ( 4 1 -.4 1 N
CO IMON/-CF.LOW/PITDI.A.,rD,,HjATOT.I.P,.E, f VAV-r% .,KCFLoWrRORFF I ZMUREF I VB

CO.MilO.,kT/CfAj,-A.T.,T,/TA-LAV,,PRTA-L, 2l') jUSTA.R(:21).rFr.-RrYB (21)

B u 11"-NE To Q 'eAlRUTE ""TRI"Afri FuNCTI-0.11i USING NIJS-ING APIDROXIMATION

C=-Oe 1,9*T.ALAV**2/'Z,:MUpEF
J, 2'i I NM

DU (-RTA L (J + 1 AAL A-L (J- 1) (X 2 (J 1) X 2 (J:- 1
I H IM A X

C* CIE + 1.)
D .0 10 0 1 I T 11

'A N.,G'L F= 3 1.4.15 '9. X-1 (T) x 1 -H+ l)
11TO A" (I ILJ N F) C,-F *.D U I N AV GLE.)

RETURN
END

G E 17



S Ul R R 0 UT I N --F, S Ti ES S (N 1 r N 2 1 N'33
D T IMM R NSILO N A N 1 1 !%T 2,j N 3

.11."*O NMON/,,,,NUMER/NWINFIN.VINK..INLfNrUeiiVlrNV2,r-L jlEjIV
COMMON/CGEO/ INTNM,,,IMJNM, IMAX(21),TLI.!1(21),Xl(41).l'X2f2l),,

21R 't-4 IM I-N. ( 4
C 0 M M 0 N/C YL 0 W/Pl T r D I A j, D -4 A mi 0 T R. F., V A VC7,f K FL OR 14 0 R FF,,,, ZI U R E F YB
C 0 M MO NI CF U NC/FW 14 1 1 -4) 1.)
'401MMONICCONSTIC"K 'E CV!SfCD-lSjcljC2

c STRESS 30DRL FOR COMPUTATION OF VORT'lC-17PY SOURCE TERM

Cl*** COMPUTF:: CONSTANT C
C.B,-= 2 "o *:C,,.2 2,,n 11 w (C l'-.2,o.* C 2)

DO 10-0 1 jr:JN
T T.
.- Ij I L.T: 4

DO 10 C. 1-=: I IF
FW (T,,r J.)

IL=I,,MI N -(,.V)- 1
F, I,* LT 11) fk"w 0 T 0 100

C C,01, RUT E. TANGENTIAL.. V E LOCI T Y CIPA-DI.EFT, DVT
D V 0
IF fu 4 20"o 1 10 0.,R.. J's G 0 To
I.F (.1 G T I L! M. (.iT G 0 TC 4

I UT B RVIAl POI,,NTS
D:V.T= (A. (I.J+ 1. N V).- A 1 NV) X, 2 2) *:iR- .(T)

G 0 0 5.
C*** 'FF A S T B 0 U. N 1), A R. Y:

4 DV.T= (A (1, J+ 1 NV).-A J, NV) (VU4 2) R (1)
5 DVTS=DVT*DVT
C. Comr U 'TE P AD, T AT V' -0'-l .'j

L C' I T Y G R ATID I "'l ,,.D VP
DVR=O,00
IF (I 0,*PQ, T I LM (j 30 TO 6

C TNTERN.,4L ROTPITS
f R (T. 1' -R (T+ 1) -P -T)

T RE "_3 0 0 0 1
'I' R 1"oT S 0 2
T P ri-',S 0 3
T.R E Z '3' Cz 0 -0, 4
TRES0005
TIES.0006
T R, E S. CIO 117
TR 13 S 0 0 0 8
T-LRES0009
T R B S 10 0 10.

TRE S.001.1
TRE SD,,.,G 12
T R E,-S 0 0 1 -3

TR&S-00 14.
TR-NS.0.01 5
T IUR
TR.BSO 0 17

TRES 0:019.
T F'F-S C. 0 2 0

TR S 0:.0 2 1
TR BS.: O 0 2 2
T R:E S 0:0. 2 37

T.,,ri',;- S 024.
TR,,ES:0.0'. 2 5

TRBS-H 2,6:
TRIES. .0.027
TT E S 0 .0, 2 8
T R,,t; SO 0 2 91
TRESO 0 3 0
T RE S: 0 0 --- '; I
TP) S.003,2
rP R ES.t 0 3 3

S 0: 0. 3 4.
T.PN E S. 0 03 5

R -E .13 0 0 3 6
PA G E 18
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DVR-= fRQ* '(7. (.11+1;rj I NV.) -1. (:ErJrNV) +(A (I pJ,,rNV)- A (I-1,J-,NV) )/RQ
+

0 10

C*** POINTS AT. EAST BOUIRDARY

10. DVRS=DVR.*.DVR
X 1-- A J v NL) * *2

COMPUTE U.NCTION FW (l J'(21 f T J N K) v
J60 JL

if Of -GO 1710 100
7p -C /A 1.11 JfNK)W (I J) .*X.L* (DVTS.-DVRS.)

0- N T 1. N..) El
R ET UP, N-..

F]N D

3 7
TRES0038
TRES0039
TRE.SO040
TRES.0041
TRESO-042
Tl 0,43T ii E -.S 0,
TYR, E-4 S 0 0 4 4
T I TW,'S 0 0 4 5
T R E.S;o .0 4 b-
T..R E.,S 0 0. 47.
T IR' -Ze 5: 0 0 4 3
TR .E,.S 0.0 4 9

P A G F 19
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SUB, VOPT IN E S-OU,19-, CE IN 1 IN 2, IT T, k ISO RCE I,!,, J, K)
D-IM12,N&ION A fNl r 142 T 'T3) f 30.f',CE IN l t N12).

0 M M 0 -N / C N U M B', R /'N W N r-":, -NFv,rNLjN.fAUfNVljNV2 IIIIE.oIV
X (2 1)

2 -R 4 1 VP 4 1 1 N 4)

-commo, vv/c--w ALL/ "41-ALAVIR-TA.L(21) UST.,AR 21) rR,#YP, (21)
C(.-,'-LviMON/CFUNC/ VW(4lt2,.il)I

c*
U B RROUT I NE FOR CALCULATION OF S,OVIRC,E 7ERM S

c T-0
0. K.

C*** FOR: V0.R::TLIC-l.TY: FiQUATION
IU R..B Ill: N T 7LOW 74I..H F.PICIRCULATIONT

SoR.CE1.1 =0.0
-N -P T U F. N,

T-F(l,faTa-IMT .(MV.) R L4

D= 1 +1

(.I + + 1) -1 1,,!F r N K) +1 W (I J 1) A (-T 1.,-f J
1., J + 1) A (T,- .1 J+ I N K) F W, G + 1 ,,f 1 1 A (I + 1 J 1 N K) -D

/FRI tl 4r J4 1) *A N K) -,F-W: -J- 1 *A (1, J- 1,jr N K)
E J.) C.* D F

R E T il "iR N.
C*** FOR STREAM: FTJ,N:C:Tl0N F,:QUAT,,loN

12 5* R (1) *X2 2 Z',. R
Jr N..D F= (1+ 1 "rl ..w ff A.3 + 1 N W) J

T + ++ 1) -it M )..#.A (R (1) -R I- 1) *A (1- 1 J W)
SIC PC E Ur a) c *:DIF
-RE T UR N

C.*** YOR AVEAL W.FiLOCITY 7-r,-..UA-11. TON'
3'. 1 F ( KF L-O.. W *.G TM. -0 T 0 3D

L AM; 11'NAR FLO-W
30RCE (IrJ) =4 (DTA*DT A) V -D (,I)

TURBUTa..-JIT FLO'W

OURI-)Ool15

SOUR0002
SOUR0003
S 0 U F 0 ()vO 4
s 0 u R 0
S 0 13 R ir) 00
SQUR0007
so. UIR 0 0 0 a
SOUR0009
s 0- U R 0:G, '10
,so.oRool 1
SOU IFRO 0. 12
33 0 U .1110: 0 13
SO URI 0, 0. 14
.S 0. U. 0 0 5
S 0 'U" oa: 16
50 UR 0 0 17
S OURO 018

01 R001 9
S'o UIR 00.2 0
'30
S O.U R -0:0 2 2
SO UIR 0 0 2 3
5,3- 0 U R 0 0 2. 4
SOUR0.02 5
SOU Ft DO 26
SOUR0027

s O:U.R , 0029
50 URO-030

ISOUR0032
SOUR0033
S 0 U R:O Ok 3.4
S 0 TTIR () 0 3 5
SOIJ-R0036

PAGE .20



. 1)
Ak

SO RCR3 TrJ' -- 2 .9*0-PR*VTVJN "1-**2/Z-AUREF/D.4*VP (I)
R F, u RE N

C*** FOR KINETIC ENEIRGY EQUATIO N
.4 DT ET- A=. X 2 (2)
,c -Y,-% * * r"10MPUT.F. SORCEI

DV 1,= ((A(-!+ 1
/+ 44 (To -_R (_T) (R (T) -R.(I-J) L T+A. V),-:A (I.- 1,f J, NV) R I+l)

R
DV2=jA(T:-J+l:jNV)-A.:'T % 2 R D T EfP A),TMUN +A
D F.=. T? (T + 1'.) -- R (-1 1 rJ+ 1 r NMU) +2:* (F (1) -R (.T- 1)

lk 11 i'l " J r NAN.1-4 U) .+ 2 (P + 1 R T lk (I + 1 r J jr N N U)
.s. RC71=,ITP,-,TA*R (T) /8, *D-F* (DVI **2+-D..V2*.*.2)

C*** COMPUTE SO]RCE2
-,J + I,, N K *-*,l 5 A J+,:l j N-L)

X-K2 A (T J- I lN.,K) **l:.* 5/A (It J
X.K 3.= A (I + 1 f i I N K) -I + 1 J N 1)
l'F (T 2) G 0 TO 4.1
XY*4- A (1- 11 Jv INIR) 1 a 5/A (1- 1 4r r N-L)

GO TO 42
41 X. K) /2. 1,a 5/A.(l f J-oFNL,)

KH 2. A (l J.,r N.K)
X K G A (1 0 N K) /A (lr J j NL)
XR-4--Z, *XK4-X-V,42 D K= (R ('T:+ 1 F +(Xxl-+X-K2.) 20 (R (1) -1R.11-1) *XK4+

/2. * ('R (1. + 1 R (-.T- X K. 3
0RC'r-j2=-CDlS*DTF.TA*R: (1 18.* *DK/Z.MU:REP

7-7C:E Cr =30-lRC'rw" 1+SO'R.:,C.H2
RRE T TJ "R N
F:N D

SOUR00,37
SOUR00,38
SOUP0039
S 0 U YO Cl 40
SOUP0041
SOUR09042
SOUR0043
50. . 11 R 00 4 4
S 0 UIR 0 0.4 5
'3 OU I11,0046

SO 4 7
S OURO 0 4 8
SOOR0049
5 0. 2UR 0 0 5 0
SGUR00:51
S -OU R,,-OO -5 2
SOUR0053
SO -TT II 0.05 4
SO UR 0 0.5 5
SO TJ F 0 5 6

SGUR0058
sICYU-RGo4;o

0: U R 0 0:. Q
s OUT ou 0 6 1
s 0::-fjl-.R OC6 -6,2
S 0,U R 0 O :6 3
S O:U: R 0.0, 6 4

A G Eli 21
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SUBROUTTNE VISCOS (NlfN2jvN3:jA)
D TP4 E N S 1[0 N A ( N 1 r li 2. IN 3

0141140IM/C NUMETR/1414 r N T',w N Tf N K-rN L jr N M U 114 V I YY 2,, 1 7-F, TV
TNIIPI MO N I CG-E01,I -I I Ll im (2 1) X 1 (4'f 

TMjJNrJNM 
rIMAX (21) r 

I ,,X 2 (2 1)

2Rf-4-1) VP-(4T -4)
S, I Ill

C0MM-.0X/%-.vFL0W/ P'IT DIADH,,ATOTIREarVAVG.sKFL014,YROREF, ZmUR ",IVB
ILAVI RTAI (.2 1) USTAI (2 1) FR, YB 1)

CC M MIO N/C C OfT 5 T/C Kj Ep C TI S C D I S:,r C 1 C 2

c SUBROUTINP, 'FOR IC-ALCULATION ..OF THE TURRBULEEN'T. ITTSCOSITY

.DO TO -J=,ljJv
I L ITI T N ('14 '51)

P:9
XK=A NK)

lo.. A (T J N PI U =:-c S*A (IF J r NIL) *SQRT (X K) /Z MUREr
R--'ET U.R N
E. 7D

Is c 0 01.) 1
V I C 0 04 0:2
VISCO003
VISCOO-04
VISCO005
v -1, 3 c 0 0"' 0 6
V T SC -0 0 07
VISIC0008
Ti s C0009
v I sc 0 010
v I'S. CO.01 1
v I- c 0 012
VIS C 0. .,O 13
V I SC-0.0. 1, 4
TISC0015
VIS CGO 16
V I.S..C. 0 01- 7
vi.sc 00.18

v I SCJ) 0 1, 9



-f

"" U B R 0 U T _"NE,S L CC NVE-C (N 1 j, N 2 r N 3,A I A Ew o A W s A lk ;s- "if J 0 K)
D 111 -B N S.7re 0 N A ("N 1 j N 2.r N 3 )

GM, 1 10, N /CN TT; M B F /N'ff 4 N N V I N K, N Lj IN Mil U T VF, IV

C G M 110 N ICGEO Il N, i MO. J N, J N M-11 NAX (2 1) I-LIM (2 1) X 1 (4 1) X,2 (2 1)
2 R 41) VP,,j4 1 T M-I -NT (4)

c SURR_ouT,lNE FOR CAICULATION 01F A.v",AVIANrA S

C*** SET COE ?1C.1 F.E."IMTTS TO 7) ER 0
0

A -1.4 9 0
AN= f) 0.
AS 0.. .0

I F, (K B N F) RE-TU'R%j.
1 IF (I E Q I M A X (,,J) --G 0 T 0 5

C C l'p U T E A B A X f AS POP THE. 0, T HE, JR EQUATIONSG F= A (T+.-l 17- 1 -.A (I + lr J + 1,r N F:) A (I J +: 1,r N F)N'F.) +A (It 3 1, N.
G.W=A (T-'lrJ+ 1. Nii.F) +A (.i.,r a+ 1 f KIP) -A (I- ill-il- 1;f NF) -A (Ir J-.lf NY)
GN=A (T+ I I RIF) +A (:.I+.1,1 J,,yN_,L- -A (I-1 rJ+'lr NF) -A (1- 1 jiJ.jr NF)(1- 1,r J- lr.,14f) +k J N:F):-A (I + 1 J 1 NN F)-S=A -A (-1,+ 1 j.J., F)
:GO TO

COEFFICIENTS NEAR EAS"T.- FOUNDARY
G.] FS A T + :A- ki 1 AV) 'v.fl J*1.#NF)-A%(I' J N F)

W, A 1 1 0,J+1 N.F)-A,(T-:41.,r.j.i,:# ,T:F)+A To.:0 + 1 ti F):
G N A (I + 1.,r 43 + 1, N1,Y) A I.- 1 0 + 1: NY) A (1 7. 1 .J, NF)
G5= A -J- 1 v Nfl +,A (71 1 -1 F) +A Is Jr N F)10 5 GFF + ABS G FA.E=0 1.44 Y.
AW=O,. 12,55* (G.W.+,193 (GW
A. N 0. 12, 5. N + A B, S (CiN
AS=0*1:25 j(qs+A3,--
.R ' TU RN

c 0 N v AG 0 vVI, I
COA11TV000.2
CONVO003
CONVO004
C 0 N V 00 0 5
CONVOO06
CONVO-007
CONVO008
CIONvo-00 .9
CoNvo 0 if)
CoNvooll
CONVO012
CONVO013
C .ONVO014
CONVO015
CONVO0.16
Q ONT () 0 1. 7
CONVOO 18.
co 14, v ol 0 19
C-0,N700 20
C0,NV 0 0 2 1
C 0N V 0. 0 .2-2
C.ONV0023.
CON V-0 02 4
C0,3 v () 012 S
c- ON", v 0 0. 2 6
Co N v fl) 02
COMAMO.28
CONVOG.29
CO N V 0 0.3 0
C. AOM V 0 0, 3 1
C 014V 0 0.3 2
C ONN V 00. 3 3:
CONVO034

PkGR' 23



BOUN0001
IBOU NO 002
BOUN000.3
BOUN0004
ROUN0005
BOUN0006
BOUN0007
.3 0 TJ N -3 0 0 8
B 0 U N 0 01.09

BOUN 0010
BOUNG011
BO. -UN,.O 012
BOULN06.13
B:0UN0.0 1 4
BOUN0015
BO:UN.0 '.O.l 6
BOURO-017
BrOUN00. 18

BOU-N0.0 1.9
F, GU N -0 0 2 0
BD-11*0021
Bx olu N. 0 0 2 2

Bo'U lq,:. o.0 2 3
B,.OU.NO-. 02 4.
B.0 U N 0 02 5

BO:7JNOI.0.1.2.7
B . 0 i X 0, (12 8

SUPROUTINE 8OUND N 1 j N 2 1, A r K)
rol INT EN 3 10 N A ( N 1 N,',2) 0 N 3

COMMON/CNUMPR/"NW,,NF., ti-qVi NKI N L, N M U, lN V I V_ I-is IV
NMI f -T'Ar JN. IM., I MAX 2 1) r I Ll M (2 1) r X 1 (4 1) X2 (2 1) f

C 0 !;l M, 0 NI G E G I Ni 10
2'.R -(4 1 V P ( 4 1 WIN (4:)
COMMON/CFL0W/P.lT,, ArDPlvAT0Tf.RF;'lrV VGIK'FLOWoROiiEFIZMUI ..EFrVB
c 0 YlfM 0 N IC B C U.N D/C B (2 1)

CATSUBROUTINE FO'R -UCULATION OF PARAMETERS AT BOUNDARIES

C*** -SOUTH BoUli-DARY.

D-0 3T.,v* 2- 1 H
31 A 1 1. K) 1. 3 3 A (1 2, 9) 3 3 *.A I r 3 s K)
C NO'-RT-M T30 UN'D il R Y

IH---j.T41_M (JN-2).
3 2 2 T H

32 A (I JIN K),,_ 1 3.3 A 33 *A N- 2, K)
l'F L.T. 1 L 1. H:(J. N I A(lH+lyJNvK)=10.3.3,*_A, (,lHJNjrK)-a3:3*A (iH-1j

K)
A(lN-,vJNr'K)=l.,.33*AflN 1,jJRK) 3 3*A (I w-2 J N K)

FA.'.3,,T
D-0, 2 0 J:l_ 2 J W.K.

L M: J)
20 A T fJl: K.) (A (l 1 J K) + C B (,L-!') k fl fJ%_T +1 1 K) 1 + C -B (J)

RETURN .
EN, D

A G, w 2 4
w

-j
co



4

SUBROUTINE V11DIS (NlrN.2,IN3,rA)
D'I fv' Es N S, 10 N-1 A ( N 1 N2 1. N-3)
C 0 MIM 0 N /C N U PM -B *R / N W-f NF I NVr NY, N L N MU v'!,TV 1, ?4V2 I -I 'I -f 1E., IV
CC)MMON/CGEO/ -rN,,INMJN,,JNFi,,I.,IA, (21) rI,LIil (21) j xl(41)IX2(2l)-f

2R J4. 1) 1 VP (41 IIMTN 4)
c c M.M 0, M C F -L 014 P I T D I A, D H r A T 0 T, R ABEA, V A V Gr K7w L 0 14, R 0 R F Z m-- U 'R. E- F V 77

c SUBROUTINE FOR CALC...ULkTl0N OF SECONDAR:Y P-LOW

DT ET A=,-3,,o 1. 415:9/6;w/ FL0ArT (JNM)
CA,** INTERTOR" N- 0 D. E ZS

DO 1: 0 x'J 2..: 4v. A J I
I ff.=i Lim J)
DO 110 1 r.I.H.
H P (17 1 R I) CH (I ).-:,R CL)(I;, :.,j N V. NF) (I)*DTETA)*2MUREF/VkVG:(A (I J 

A I -J.,
10 A (I J NIV:2) (A, (1-+ 1 J,,r -N F) -A (Tf Z -A: (1.- 1N F) -.J-E + (A (I J NF) NF) PH)

-(1 + 1 -IR. 1 *:Z M U RE m
.C*** SOUTH SIDE

DO 2,0 1:=,Z, ITH
it 1,034 v 1 A (Ir 2,1 N F,,) D TE TA Z -M:Tj IiEF/VAVG

C**.* NORTH: S I D-: T&

11 -I r: (J N.) 1.
DO 3 0 :2

N. f (1) DT"V,T:A') Z-?l UR:RF/VAVG
S T'E.A S'T D E.

D-0. 4-'0. J=2.. -7.111.
T.fi- LTM
A. (T H J.P.W. 1) =A (.1114, J + 1 N:,F) All

(I H) D-T ET A) *.Z. I'll U 47uF/ V.A

j, J 4.N V 2) A (IH I J N,40 A -flH F) (P. (I H) -l (I H-- 1) Z,-,- U-E--/VA
R FTTR N

VE T ID000 1
TELD000.2
V EELD0003
V E L D. 'Ll 0 0. 4
TE L DO.,"-) 0 5
v F ..LDOOO-.6
V Fal DO 0 Ci 7
VEIL.DD008
V EL DO -0.0.9
V ELD,0.0 10
VE LD001 1
V EL 010.0 12
VELDO.O.l 3
VEL DO..0.1.4
V E LIDO Ol 5
TEL.D9 0 16.
T T

EL DO. 0. 17
TEL D.O.. 0:18
v EL DOO 1 9
V.-"4

V EL..D:O 0 2 1
V E:L D.0:0 2 2
V ELD D 0 2.3
TEL.

.D'O 02 a.
V HID10.0.2 5
V: D."O 0. 2 6
V T"'L D: 0: 0--,. 2 7
V Rl D 0,0.2 8
VELDG.0-29
V B. LD 0:.,0: 3.0

D
V E. L. DO 0..3 2
VELDO-0.33

P 1"'i G F 25



s u7"', 0 TJ T I N F REYNU (N 1 f V 2 fN 3.,r A)
DIME. N ..-'10 IN A ( N 1 t N 2, -N, 3

TC 0 f-I MO N 1C F Til M P- Pi/NW I N F 4 N V I N K 0 NI I N M U N V 1,w N V 2 T .I-
COPrl.Fl-ONNr/CGEO/IN:.-, INM-tJNrJNMIMAX (21) vILTm (21) oXl 41) rX2 Ul) 1

2 RZ ('4 V P 0 (4)
COMMON/CFLOW/PIT-. DTADH.jATOTpR-jE.,f VAVC,f 'q-TJOWjRORBFoZ-k-lU--RF.F VB
C OM MO..N/CC 0 N S T/C K r E *9 C V I CD IS,, C lf C 2

c SUB.ROUTINE FOR' COMPUTATION OF BULK VELOCITY VB

c
0 0,

D. T R T A. =,X 2,- 1-2)

C*** INTER.:.NAL POINTS
TXV=

DO, 1.0 T-2.. IH
DAV=D.TF.jTA/1S 0 (R(l) -F (T.- 1).) (,k (I- 1,,J.tNV) (B (I) +2,o *R (I-1)

C.1 j N V) *.(2:,* *R "l) + R
IF.: (I., EQo I N) D.A. T= 0 7 5 DAY

10 7A::.V-.TAV+-DAV
EQ, J N) T- V=O 5*TAV

17 V.
20 A --- A l*Al. T y

A. L.C." UILA T E, BU L K V E L, 0 C I'm
V: R- A. V P T-'O T

NO..R:,M'ALIZ:5 VE.LOC:.ITY DISTRIB:U T T 0 N
F= V.A VG,/V 5
.DO. 30. J= I f J.N.
I I Ll M (J)
D -C) :30 7,= -'I I-

30 A. ('-T.,,: J; NY) F..* A (1 3 N V)
R:F.Tl U -R, 11
7,4J: N D

R vza Y. N 0 3
REYNO004
R E' Y N 0 46) 0- 5
R EY N 10 0 0 6
R IE YK N 0 -fk )- 0 7
REYNO008
REYN0009
PEYNOO10
REYN0011
R R Y-14,001 2
REYIN0013
REY..N 0 0 14
-RETNO015
P.- BY -N 0
IR. .Ey..N 0 0 17
REY1001 8
R-EYNO'O 19
R Es YN0020
REY N0021
R E Y. N, 0 0 2 2
R:,E. Y.,N",O 0 2 3
R.-F.Y&O- 0 2 4
R.BY N,',O 0 2 5
REITNOM 2:6
RE Y: N 0 027
RE..YN,0028
RE Y NI 0, 2 9
RE.YNO030
R rEY..N.0031
p EY NO 0 3 2
RIE? YNO033
R FF Y JN0034

. . .1 .
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SUBROUTINE WALL (.NlN2,N3,A)
-D I M E NS 10 N A (24 1 #, N1.2, N:3)f N Vl N -KV, -TLl I&j J-c0P YI0N/CNfJMlRR / NWf NY N, U, NV 1, NV2,r' T V
COMY10 N/CG]Tk--j0/-?- T 1 0, J h M I MA X (2 1) 1 Ll M (2:1) X 1 4 1) X 2 (2 1

2 R (4 1)., V P (4 1.) ,f'T YIT N D 11,r A T T, R V.A VG 1,K'PC0MM0N/CFL.0TI/PTfP r -D A 0. W, R 0 R E F Z M U R E F y V B
C 0-Ml M 0 14./C W A L L /T A , L -A To, R T A L 2 1 U S TA R (2 1 j F R j, VD (2 'It

rE 'r C VTCC NO N/CC:0 M ST/CTK CDI S lt C
ct**
c .7.,;oTJBP0U-TIN'E FOR COMPUTATION. OF USTA-R:(J) AND FRICTTON FACTO.T? TR
c xk *#
c
c#** N 0 R M- A I I Z'Em VELOCITY TO V A YCY

C Al L. R.EYN.U.. (N:l t:N2 rlNT3 A)
C*** co 11 EV V: A 14 U.E 0 F . U STAR J)

Tm L.-MIN (N..V):
CE 310 a E
QST=1510 *,Z:MURT7F*fAt0G- :c E): 1 X 1 (1 M.)
ETA. -3010 *ZYlUT-ZEF*CK/Xl (IM)
D 0 TO J- 1. I.JN

2 + A* A:(T Fj J I NV) 0 5-Q rl. ,10, USTA R (-j S.-r ET
C*** CmOMPUTE N EW FETCTION R

U S T. A R 1 2 + UZ T A P IN 2.)
.DO

20 c5- % s + U.'s A Tt W) Xl:

tJNM
F. R=.2. *7A Ll"'s V /V A VG.

C W All -SH, E A R ST:R E S. S DIS T- IR I.R U TI: 0 N
D 0. 3:0, .1 I.J N

3.0 RTAL. (J) =TJ.ST.AR- (J.) **2 LA V
C*** COMPtTTE: .N, -B. W V A L.U. BE S. 74 C, R: Y.1", (J)

,,)0 4.0 J J.T N
=300 *ZMUP-EF rrj S:T. AY B:. rl R

'R' T U R N:
EDT P

WALL0001
WALL0002
WAT 10()0 3L .
WALL0004
'W Al LO 0 0 5
W..& I T4 0 0 -0.6
W AILL 0 0 0.7
W MLI 0 0 O 8
WA'L.Lf,),O 0 9
W, -A L L 0 0, 1.0
'WALLOO 1. 1
NA L.L O'D 12
WALL001 3
WALIL0014
WA, L.L 0 5
q:A. LL.O 0 16
W ALLOO 1. 7
W: A IL 0:0 i 8
W Al I 111), 0 1, 9
W: A. L 10 0.20
,w:AL'r..O:.0 2 1
W.1", L L. 0, ,,O 2.2

2 3.W A: I L 00 4
W A L, 10,'0 2 5)
W A LL, "2,6
W AtL.O..O. 2 7
W. r) n
.. A L. L: GO

VA Is LOO 2 9
WAIT OG3 0
W. A Ll 0 0. 3 1 .
WALLN32:
WAILL00,33.
F, A LL 0. 0 3:4
W:.A L L -0:0 3.5

2 7.
LA.)



I

w ) Y 711 0001

wF 0002
WF 0003
WF 000.4
-W PI- 0005
,W.F 0006
WF 00-07
WF 0008
WF 0 010 9
W.F 09 10,
W? 10 10 11
W. F 00.1.2
WF 00 13
W -F 00.114
W F 0 0 15D
WF 001.0,,-
WF 001.. .7
W? 001.8
W F 001.:9
W F. 0,0.2.0
WF .0-02 1
WF 0.22
WF 0.,'0. 2n 3
WF 0 0.2.4
-WF 0 0. 2.:
w F 0- G 2,6
W.F 00.2.7
W.F 0 0. 2B
WT. 0 GZ9
W.. F 0 03.0
W F 0031
W F 0 C) .3 2
w F 0033
WF 0 0 3,4
Wo. 0 0 -3.5.'
W 7- 0036:

P A G IF- 28

Z'TfRR,")T7TI:,,RE- W ,' (NljN2,rN3.,jA.,rK) .
DIMENSION A(,N1jrN2jN3)

IT 'F, IVO M M oli C I M -B -R / 11, vv W N F N, V N. K 4 N L N M TJ N V 1 N V 2
C 0. M, M O.N/C G 10 N NM i J N f 4,T liM. -f I Mll (2 1) , I L IM 2 1) r'Y, 1,(4 1) r Y. 2 (2 1

2IR ( 4 1 w V P ( 4 1 T:Nj (4)
Z i U RE

Cp0-mmo-q/CP-Lo:,r4/p IT f DIA I DHvAT0Tr PE, V AVG, KFLOWr ROREFiA, F 7 P1
Tcoemo N/cw ma,L/TAl AV RTA L 2 1 U S']" A R f 2 1 F12 IR, YB (2 1

COTI MO. N//CC0.NST/CKr'E r CV TS v C 1)T f-)- C 1 C 2

c SUBROUTINE F.0-R-: COMPUTA'flIGN OF FIC-2-ITTOU.S VALUES AT SOLID WALL

GO T-0. (1 f 2f 3.0 K
C."*** VORTICITY P-11. WALL

Al -F=3 R,,'FFF/'X 1 '2)
D._0 1. 2 AJYML
A N.W) -=-AY*A...(2., Jo NF): -0,,v 5*-A (21 J,, NW)
Rl T MR. N

C*** S.T.FBAM: F:U, T.1:0,N A T W A L.1
,2 DO 20

0 =.00:0
RETURN

C..* F. IC'T'I T. -10. U 3 V F l OC I TY A T W ALL,
3. 1.1 -'T,4, IN. (,,"N V:)

B1 C --3,0
DO 10 43 j IN

S -'"(j _C

H- (Y. 1:'(TL+ y I Y (J,,)
3.0 A -Tf) *A + 1 Jr N.V)+H *Bv

R Ft. T'- R, N
FICT'-'A--TTOU:S T A 77' WA'LL

4 A K-=CVTS/ (C'.I)T S *C

I L='7- flq TN (IN K)
DO 4,0 J= 1 JN
RK=AK*USTAR (J) 2
H= (Xl -X-14 ("I TI) (Xl (IL+ YB CJ)

4 0/ T" 4,A) .'* A fl I + f + H B K
w



Wv F0037
Y!F Q 0338

PAGEu 29
N)
LA.

RE T UR N
END
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I

Nl 0 R M 0 -C) 0 1
N 0 R M 0", 0,02
N,33400013
NORM00-04
"N 0, R ILI 0, D ri .5
MOPM0006
NORM0007
NORMO 008
14 0,-R m 0 0 10 9
14. 0 -it iq Gol 0
IN ORV M4.0 0 11
NORM0012
N 0 RIM:0 0.13
NORMO, 0. 14
NORM .0015
IN 0 TZ ill 0 0 16-
NOM M. 0 01, 7
IN 0 RI: W) 0. 18
NO RFj,.o 0 19
NOR M 0 020
IN 0 RM 0 0 2 1
NORM.00.22
NORK0023
"UC RII'D 0 2 4
N: OR M.. 0 02 5

SUBROUTIN F N 0 R TM ( N 1. v N 2 f 7N 3. A
DIMENSION A(Nl;rN2tN3)
:C0llvl-M0N-/CNUM-Lr3 r-Z/NW, N71FAI _JVr NY, iiL IN lUo NV1 . NV2 v Il I I EJTV

I k-7.NrJNM-l'TMAX (21) 11 -L IM (21) f X.1.141) rX2 (21) 1
2R (4 1) 1 V P (4 1) I MTN(4)

COMMON/C.FLOV"'PIT y DITA D-H., ATCT ,RP VAVGr KELOW, ROREFs ZMU:pEFj VB

SUBROUTINE FOR NOR -A-L-]F Z ATION OF INPUT ':?OR 1A 141 -NA R CA S E
oYc 

An

U 2.- 0

DO 3 -0 1-2, J N M
U2--tT2+A (.2:?Ljl NV)
'u 3 U 3 A NIV).
J 2:BA R= (0 o..5* (A.( 2-,r 11 + A (2. J ff, , N V) U2) /FLOAT (J N)
V'_3 %BAR= (0.*'S* (A:( 3y 1 r NV) +A OvaNr NV) +U3) /FLOAT (JN)
G R A, D V P- TBA V *.X:l P) /X 1 (2),-U3BAR*K'l (2.) /Xl (3) (X 1 (3) -X 1 (2)

P D.-.R- 4. (.S 0 IR C El D I.A 2)
.DO 10 J Ty JN

DO 10 I=J.'r-TH
Cl; A (.'.T. -Nv. P DR

JAr A ('Tr -1,7,rN V)
R PYr I T'R N-'
END:.

PRGE 30
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S'U p R 0 _u T I NFE N 0 R.M- 2 IN I N.2 1,13.,, k
DIVIENS1-OT A Nl,1121N3)CGM14noNi/CNTjmpR/_NW.,rN K I NN L, N 11 U , Al V 1 -jr N V2,rlF IN Tr.-N I.,r
C.O;-ILION/CGEO /"IN,-'L NMJNJN M,-, T IAX 21) ILI M (21) rXl.(41) rX2 21.),,?

2R (41) rVP (41)
C014TM0N/CF-L0W/PITf D'TAf DH,, ATQ:r.F.,'R._r.. VAVG K-1 n- W,RORFj'F,ZMUR,,EPrVB
Commo NIC W A LL/TALAV, RTAL (.2 1) ,. US'- AR (2 1) F'Rp Y B .,(2'1

T Sc 0 M 11-0 N IC 0 N 3 TICK, CVTS rCD L_ , 1 C2

.'n3U B. R 0 U T FOR 110-RIMIALIZAT-TioN OF OUTPUT

c
C C O'Ml P U T.E V'F L.: 0 C.l T. Y N E A R W A I T_

I;M T T (V V)

DO 1:1. IT N..
D 0 1 - 2. 11A

A (I: J'f N V.) =Jj S "A R. J)./c K *A: VOG (C)CP. 'l '. L'I'Z E D rY VSE 1,,, V "Loll-TY AND TKE NORH -A A VG
F-Io/VAVG
F F.- I a V A. VG, 2
DO 2 j= 1 . JN

I M (J)
D 0- 1
A (.1r J.I.MKI. FFF*A

2 N V.)-:F* A N V):.
C*** NORMTAL.IZFE, B A -M 1-4': t] N C T10 N. BY M.A. X1 M U M VALUL

C.All M A;,X,: V, L li 1.1 :N2.13 A N F. AMA
T F. A, M. AX w E, -nlk -,#. -V Ov. a. 0 Gr). -TO :2.0
:DO 1 !r-3: 2. Ir

If"I A
DO 15 .1
A (I J, N F.) A ,l J, N:',-?) A M XX.

20 1 N TT
WRTCAJ I IT

_,tJ P,;R T h N11 N 2,r N 3 o A.).:.

NOR20001
NOR20002
N 0 RE2 0 0 0.3
NO-,R20004
N C) R42. 0 0 0 5
NOR20006
NOR20007
IN 0 -R:2 0 0,0 8
MOR20009
ROR2 0 0 10
NO 1112.0011
N OR2 0012
N 0 R2. Q 0 13
NO -R2 0 014
NOR2.0015
l 017R, 2 0. 0. 16

2..0- 0.17:
N.OA2.001 .8
So R200 1.9
-m 0 R 2'... 0.,. 0. 0

N.OR..2.10.0 2 2
-NI: 0 R. .2002.3
N" 14

0 3.2'Or-0 2 5
N OPZ2 0, 0. 26
410 R: 2. 0 0.: 27
N. 0,11.1. 2.: 0 k."). 2 3
NO.R.2,0029
N O.R.2 0 0 3.0
N. 0 R 2. 0 -fk,) 3 1
NOR 2 00 32
M OR, 2: 0 0 3.3
' 0.1...2-M.3 4
NO R2.0 0 315
IN O.R 2..0 0 3 :6

PAGE 
31...
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0 9 60Z ulG Iq
6SO OZ d 0 N--.

RSO0 .Z 4. 0 N"

L S'O 0 z a 0 N.
9Sooz4,oN
SSOOZE-ON

'j. OZEON .7 R 0 N
C Z, U.'o
loo I

L so 0 z LT 10 N
0 s 0.0: ZRON
6 tT, 0 0 Z 9:0 N
8 ti,010 ZU 0 N'
L t 0 C. .Z' ZI 0 X

z g 0 N
tA700ZHON

toozal()N
z 1-1 0 0 Z H OK
L t7oozFXON
0 +TO 0 E 17 0 x
6 %F0 0 ? 9 0 N!
8 00ZNOX
LE00e)JON

NA
H 11 V w

XEI GAZI'fIfW-F!K ZY1 Gh'f XII.D.01"A Z S u0i
VIDAVA x1a UZZ111NW80N 43ii afiv A'UIDIWILISTIA :t S V3 L 14: tv J"; v V 0-

lad "I TIV 0

ama,* U Nr J, r 1) v N. tq ..r I

7A a". (A N.f f.1 1) V Abi r IJ i
47-T' 14.1 0.(1

(P-Ikiq

A V I VI /Z
(r) 8xj -sI/f)AVA='IAI1

-T ell. 0 G 4L
9 41 G i v A, IL "V":)ofj S.,t 7 :VD

e**DAVA/AVUVJ,#

m oa

N'tiO lvormVAVI vI:VLTs=-A-,4T'FTI-
SO +A V'I V:T, =A V. ' qVI

11 V tilk
6, rz, f z ="f 9 OC.

( N p TRIS a + %L 't, V:7
JftJLZ) V,*Yy afJWZ) )a

S'p 0 (Z) L X /DA VA * (L N sn
No s ou

0 L Ox 0 5 L LL!) o a a I Lw I,

0 0 L

0



i )

BE v 0 0 1
S TIBE0,00 2
S Jul 3 E 0 D 0 3
-S u 3 E to 0 0-4
S. u B 2 C-1 0 0 5
-SUBE00,06
,;U,3EO 00 7
c T-

SUBF0008
S.UBE0009
s tJB,:.Fo 0 0 10
SUBE001 1
5lu 3 Elo 0 12

u 3",G 0 13
S113,E0.0 14

.U
S. U3 E-O. O 1,6

+i:UM, 0 -0 1. 7

S-,"U BE-. 0,:0 2 .1
SOBE.O..O 2 2
S' '311 .023

S U '13 F, 0 2 5
'S'lJ-., B: E 0 0: 2 6

U B E 0 0 2 7
A,

SUBE0028
su.13 E o o 2 9
SU-BEG030

OUT 1
STJR,,R-,oT-JT.INF PITIIT (N1.tN21N3,A)
DIMENSION k(Nl,142,N!3)
COMMON/CARIM.9-1 'Ni NF NV NKvN-LyN.-MUlNV1,rN

2-R(:41)4VP(41) IMIIIV 4)

OUT- ELIT -SUBR-OUTINE

WRITE (6 , 10.0)
-'T"ET A=,3. 0. /Fl OA T (J N M)
D G: 5,0: J.-I J N..
T E T A:= D T..F-i.:T A *.,'F LO A 71""(J.. I

WR I TE (6 101). T"?TA

I H.= I L 14
D 0 50, 1 1r,-T,H
Q, ST x

/K 1. (IN)

w R. T T. J j' 6 1 C.), 3.) 1 S'Ir ETA r :(A (I,,r J, K*) K= I, N-3)
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