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ABSTRACT

Reactor fuel elements generally consist of rod bundles
with the coolant flowing axially fhrough the bundles in the
space between the rods. Heat transfer calculations form an
important part 1n the deslgn of such elements, which can
only be carried out if information of the velocity fileld is
avallable. A one-equatlion statlstical model of turbulence
is applied to compute the detalled descriptlon of velocity
field (axial and secondary flows), the wall shear stress
distribution and the frictlon factor of steady, fully
developed, turbulent flows with incompressible, temperature-
independent fluid, flowing through triangular arrays of rods
with different aspect ratiocs (P/D). Also experimental
measurements of the distributlons of the axial velocity,
turbulence kinetic energy and Reynolds stresses were
performed using a laser Doppler anemometer (LDA), operating
in a "fringe" mode with forward scattering, in a simulated
interior subchannel of a triangular rod array with P/D=1.123
and L/Dy=77. From the experimental results, a new mixing
length distribution 1s proposed. Comparisons between the
analytical results and the results of thils experiment as
well as other experimental data avallable in the literature
are presented. The results are in good agreement.
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NOMENCLATURE

Fluid Flow Parameters

At subchannel area;

cq constant.in pressure-velocity gradient
correlation;

c, constant in main rate of straln-turbulence
correlation;

CD constant in the dissipatlon rate of TKE;

Cv constant in turbulent viscosity;

D rod diameter;

DH hydraulic diameter of subchannel;

E constant in "law of the wall";

f friction factor;

K turbulence kinetle energy;

3 mixing length;

L length of test sectlon from inlet to
measuring station;

m mass flow rate;

p instantanequs pressure;

) timeaveraged pressure;

p' fluctuating component of pressure;

P pitch of rod array;

Pw wetted perimeter of subchannel;

r radial coordinate;

R rod radius;

Re Reynolds number;

vy bulk velocity of the flow;

vi instantanecus velocity component in the

direction 1, where i is
(a) cylindrical coordlnates: r, 6 or z
(b) cartesian coordinates: x, y or z;



>

A @ D < < A &
=

all

time averaged velocity compeonent in the
direction 1i;

fluctuating component of velocity in the
direction 1i; v
—Zy.
v >
T
local friction velocity[E _/Tw/p];

normalized axial velocity (

- /T
average friction velocity [= w/D] 3

cartesian coordinate in plane of cross section;

distance from rod wall to point of interest in
the radial direction; also, cartesian coordinate
in plane of cross sectlon;

distance from rod wall to MVL;

non-dimensional distance from wall

(2 v y/v); :

axial direction of flow (cartesian or cylindrical
coordinate);
= (vé2 2)

-VI" 5

dissipation rate of turbulence kinetlc energy;

radial eddy diffusivity of momentum;

tangential eddy diffusivity of momentum;

. stream function;

constant in "law of the wall';
kinematic viscosity;
turbulent viscosity;

fluid density;
angular coordinate;

wall shear stress;
average wall shear stress;

vortleity-

16
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Laser Doppler Anemometer Parameters

distance from beams to optical axis;
beam radius at walst;

distance between two consecutive fringes in
probe volume;

beam diameter at laser exlt;

pin hole dilameter in front of photomultiplier
tube;

focal length of lens;

probe volume helight;

probe volume length;

number of fringes within probe volume;
alr refractive index;

plexiglas refractive 1index;

water refractive index:

distance from inside surface of window wall
to focal point of lens;

distance from inside surface of window wall
to probe volume;

plexiglas wall thickness;

probe volume width;

half-angle between beams 1In water;
laser beam wavelength;

Deppler frequency shift;

half-angle between beams in air.



CHAPTER I

INTRODUCTION

1. FOREWORD

Nuclear reactor fuel elements generally consist of
rod bundles, in which each rod represents fissile materlal
cladded by a sultable canning, In the space between the
rods, the coolant flows axially through the bundle,

Present methods of thermal design of such fuel
elements are lumped parameter methods which deal only with
subchannel flow and enthalpy averages. However, in many
cases, the surface temperature of the fuel rods limits the
thermal power that can be generated by the reactor. Such
temperatures can only be calculated by pfesent methods if
heat transfer ccefficients are provided as input. Also
exchange coefficlents for mixing, diffusion and convection
processes are essential for lumped parameter calculations,

To date, all information required by those methods is obtained
through expensive experimental measurements. However,
principally because of the existence of fuel element spacers,
lumped parameter techniques are presently the only practical
means of analysis. Nevertheless the study of distributed
parameter methods can lead to insight of the functional

dependance of the required input parameters on geometric and

18
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operating conditions and in some cases to reliable predictiqn
of the required information, Eventually, when more
understanding about the exchange processes is obtalned,
distributed parameter methods may be used in place of lumped

parameter methods In the thermal design of reactors.

2. THEORETICAL BACKGROUND INFORMATION

The fundamental equations, for the computation of
the veloclty field in any geometry, are the Navier-Stokes
and continuity equations., For a Steady, fully developed,
turbulent flow with incompressilble, temperature-independent
property fluld and neglecting body forces, these equations
can be reduced to the axlal momentum, vorticlty and stream
function equatlons, as shown in appendix A. In c¢ylindrical
coordinates, with the maln flow in the axial direction,
they are:

(a) Axlal momentum equation:

tag 3y - 2 v(ﬁ)-iir(avz _'vl'”vé)
r ar % rag red z'‘ar r ?r \9r v
- —— —
R L AN (1.1)
rof ‘rafd v gv 2z ° *

(b) Vorticity equation:
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or ro8’'  roe ‘or’/ =
1 ]9 ][1 2 _ 2 fo 1 9 a2 ) -7
- o7 S5alr 507 = v - |5F 3 o - =5z | T (a2

- #3705 - loe) - % @3

with vortleity defined as

2]

_ 19 =
Wz 55 Vg - 735 (I.4)

and the stream function, as given by the expressions:

EXy

ve = = \)é_; s (I.S-a)

- _ 39

Vr = rDB R (I.5.b)
and —% = constant.

Equation (I.4) includes only velocities and
gradlents in the radlal and angular directions. Thus the
vorticity can only exist when they are not zero. So, the
vorficity is directly connected with the existence of

secondary flow in the channel. Take equation (I.2). The

first two terms on the left represent convection of vorticity

by the secondary flow. This process tends to make the
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vorticlty constant along the secondary flow streamlines.
The last two terms on the left represent diffusion of
vorticity by viscosity and tend to make the vortlcity
uniform over the duct cross-section by diffusing it from
high intensity to low intensity regions. In a laminar
flow, these are the only processes present, since the
Reynolds stresses, on the right hand side of eq. (I.2) do
not exist. So, in a straight duct in laminar flow, no
generation of vorticity takes place and the exlstence of
secondary flow is not possible, as pointed out in ref. 1.
In a turbulent flow, in a straight axissymmetrical channel,
the term F;VE is zero because an instantaneous value of
v;vé 1s equally probable in time as its negative, - v;vé,
both cancelling each other out when the fterm 1s integrated
over a long period of time. The first term on the right
hand side of equation (I.2) 1s also zero because angular
gradlents of all parameters in the flow are zero. In this
case, therefore,no generation of vorticity takes place and
no secondary flow existence is possible. Such axissymmetry,
however, does not exlist in flows parallel to rod bundles
(Fig. I.1). In this geometry the effect of the vorticity
generation terms is expected to increase as the aspect
ratio, P/D, approaches 1.

With this last consideration, it is shown that no

complete description of the velocity field (axial and
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secondary flows) can be obtained that does not involve
either the solution of equations (I,1-3) or any other
equivalent form, The accomplishment of this goal, however,
is not a simple task since it requires information about the
Reynolds stresses which is not available in analytical
grounds. So, the engineer has to make assumptions about
fhelr behavior, usually, based on experlimental observation.
In many cases this assumption can be to disregard terms
that he senses do not have any appreclilable contribution to
the velocity field belng sought.

A review of the differenf approaches that have been
used throughout the years for rod bundle geometrles is
presented and discussed in chapter II. Additionally discuésed
are more recent fturbulence models which, although, they have
not been aplied to rod bundles, look very promising for a

larger variety of applications.
3. SUMMARY OF PRESENT WORK

In the present work, the hydreodynamic structure of
the flow in a typical channel of a rod bundle with triangular
array (see Fig. X.l) is examined analytical and experimentally.
The simplified One-equation Statistical Stress Model for

(2)

turbulent flows, used by Launder and Ying for square duct

geometries, is modified for rod bundle applications. A new
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mixing length distribution based on analysis of experimental
data, obtained in this work, is used instead of the
distributlon suggested by Buleev(3).

In the experimental task, a Laser Doppler Anemometer
(LDA) was set up for measurements of the hydrodynamic parameters
(axial veloecity, turbulence kinetlec energy and Reynolds
Stresses) of a flow of water within a test sectlon designed
to simulate a typlcal interlor channel of a triangular
cluster of rods with aspect ratio P/D equal to 1.123 and
L/DH equal to 77.. The test section was designed to reduce
to a negligible level the refractions of the laser beams
on curved surfaces, A closed loop was used to circulate the
water., The experimental results were, then, analysed to
produce the constants needed to complete and optimize the
analytical model.

Finally, the analytical and experimental results

were compared to those obtalned by other methods currently

available,
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CHAPTER II

RLVIEW OF LITERATURE

1. Introduction

The solution of equations (I.1=3) for flows in any
geometry requires information about the Reynolds stress
tensor. It has become usual to classify the various
different approaches designed to provide such informa-

tion into three categories:
a. The phenomenoclogical turbulence models.

A turbulence model 1s assumed to explain the
behavior of turbulent eddies and how furbulent shear
stresses are created. An example of thils group is
the mixing-length theory proposed by Prandtl, in 1925,
in analogy with the kinetic theory of gases.
Schlichting(g) describes in detaill this model. More
(1)

recently, Buleev propesed a model assuming two
riechanisms of momentum exchange of the eddies with the
medium: first, momentum exchange by molecular
mechanisms and second, the disintegration of part of

large eddles into small cnes by the effect of surface

friction forces.

b, The eddy diffusivity methods.

Here, the turbulent shear stresses are related to

26



a veloclity gradient by a coefficlent defined as the

"eddy diffusivity" of momentum, i.e.

. | (IT.1)

Many expressions have been proposed for the variation
of €y over the cross section of the flow channel.

Such expressions can be derived con theoretical grounds
or they can be calculated from either measurements of

velocity distribution, using equation (I.1l) and (II.1)

t

1
or from measurements of the cross correlation vZ Vr

and the velocity distribution, utilizing eguation

(II.1) directly.

¢. The statistical turbulence models.,

This group of models assumes that the turbulent
fluctuations are random in nature and that a few of
the statistical properties of turbulence are supposed
to obey laws of generation, dissipation and transporst.
For the prediction of the velocity fleld utilizing
one of these models, the fundamental equations (I.1-3),
a set of differential transport equations that describes
the behavior of the statistical properties, and
associated algebralc equations that provide closure

to the model have to be solved altogether.
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Another way of classifying the different methods
that is becoming usual lately is by the number of
additlonal differential transport equations necessary
to solve the basic equations. 8o, in this classifica-
tion, the phenomenological and eddy diffusivity
approaches would be roughly classlfied as zero-equation
turbulence models and the different statistical
furbulence models would be one-, two-, or many-equation

turbulence models, depending on the number of turbulence

properties whose behavior is assumed to obey differential

transport equations,

Until now, all methods applied to rod bundle
geometries have been of the phenomenological and eddy
diffusivity types. Even more empirical methods have
been suggested throughout the years. Some of them are

reviewed briefly in the next section.

2. Analytical Metheds Applied to Rod Bundles
2.a. Delssler and Taylor Method'3)

Thls seems to be the pioneer work, for rod
bundle geometies and represents an empirical approach
to the problem. The first step is to draw assumed
velocity gradient lines using best judgment (Fig. II.1).

These are lines with normal velocity gradilents equal

28
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to zero. The universal velocity profile, obtained by
circular tubes, is assumed to be obeyed along those lines,
With such a velocity distribution, new velocity gradient

lines are drawn and the procedure is repeated, iteratively.

The tedious graphic-iterative procedure, the
assumption of analogy to c¢ircular tube velocity dlstribu-
tion, the impossibility of accounting for secondary flow
effects and the difficulty of adapting this method for
computer calculation are some of the drawbacks of this

method,
" 2.b Bender, Switlick and Field Method(u’S)

This method represents an application of the
mixing length theory proposed by Prandtl to rod bundles,
Secondary flows are neglected. The Reynolds shear

stresses are written 1n the form

- sz o

A (I172)
and _

I A c v,

Vo Vg = ~®n,o T30 ° (I1.3)
where the coefficients ¢ and e called radial and

M,r m,H?

tangential eddy diffusivities € momentum, respectively,

are glven by
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o avz )
E:m’r = C.Q’C "é"'r'— (II.”‘)
and
3\72
Em’e = ck ;é—e' (II.S)

In these equations, £c is the turbulent characteristic mixing
length, assumed given by Buleev's formula (see Appendix D),

and ¢ is a constant.

Among the criticisms of this method, are the fact that
the eddy diffusivities are forced to zero, wherever %the
respective velocity gradients go to zero and the lack of
inclusion of secondary flows. Also the resulting variations
of the wall shear stress distribution are unrealistically

high.

(7)

2.¢c. Method of Ibragimecv and Co-workers

Since the total transfer of momentum is due to
two processes (see, for example, Ref. 8, pp. 288): a
gradlent (or diffusion) transfer of momentum due to
molecular friction and small-scale turbulent eddies, and
a convective (or secondary flow) transfer of momentum due
to the large scale rotlon of eddies. Ibragimov and
co-workers suggested that convective transport of momentum

should become important for channels with sharply varylng
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cross-sectional shapes where exchange between eddies of
considerably different velocities may occur. For those
cases, neglect of the convective transfer may lead to
considerable errors. Based on these presumptions they
concluded that the effect of the large eddies will be

most important circumferentially along the perimeter, in
the direction in which the velocity varies slowly.

Normal fo the channel walls, such effects can be neglected
because the velocity gradient and the diffusive transfer

are high.

This reasoning led them to propose a semiz=empirical
relation for the wall shear stress distribution, determined
only by geometrlc parameters of the channel, that, for a

rod bundle subchannel, can be written as

T_(9) o
—— = ¢|1l - exp —3678 . {(8)} > (II.6)
Ty ¢ Yav
where
Ao
o] = R
Tav
AC = subchannel flow area;
§(8) = distance from wall to maximum velocity line
along normal;
v = average value of y(8);

av



32

and ¢ is a normalization constant given by

nax _E
— LACORETIN (I1.7)
max T

o

With this wall shear stress distribution and the
friction factor given by theflasus formula for circular

fubes

0.0791
T B e (II.8)
c Reo‘25 3

the universal velocity distribution was assumed to hold

(9)

ncrmal to the channel walls. In their next paper , they
suggested an expression for the ratio between the friction
Tactor for the specific geometry being andlysed and that

for circular tube, i.e.,

[ L/3
£ _ 3 yav
= = [0.58 + 0.42 exp(-0.021 Ke)] IL+0.1ig—+1 ,
c e

(II.9)

where
K_ = 5025 ymaxA- Ymin ,
¥

av
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R = radius of curvature of surface.

This method was proposed for any geometry and it

(6)

was applied to rod bundles by Bender and Magee in the
code VELVET-II, developed for computation of temperature

fleld in rod bundles cooled by liquid metal coolant.

The generality of this method makes it wvery attractive

but the method does not provide any iInformation about the
magnitude of the secondary flows that is desirable for
turbulent heat transfer calculations. Also, the

assumption of the universal velocity profile along lines
normal tolthe wall is not valid for all cases. Finally

the assumption that the wall shear stress distribution is
only a function of geometric parameters and independent

of the Reynolds number should not be expected on theoretical
grounds since different turbulent parameters have different

behavior with the Reynolds number,

2.d. Eifler and Nijsing Method ‘1C)

These authors, initially, proposed a method(lg)

to overcome the shortcoming of the Deissler and Taylor(3)
model which assumed that turbulent diffusion of momentum
around the rod periphery is neglected, Later the effect

of secondary flows was included as follows.
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(ll)that

Sased cn the explanatlon proposed by Hinze
secondary flows nust fransport fturbulence-rich fluid
away from regions where turbulence production exceeds
dissipation, they observed that the lateral variation of
wall shear stress must be considered the prime cause for
the existence of secondary flow. Along with the expsrimeltal
obgervation that the rate of fluid ejection away from fhe

wa11(l2)

is directly related to fhe local wall shear
stress, Eifler and Nijsing concluded that in the presence
of a lateral wall shear stress gradient, this wlll induce
a circular notion tending to transport high momentum
fluid through the mainflow in the direction of decreasing
wall shear stress., This reasoning led to the proposition
cf an expression for the secondary flow component Vg
as follows:

T
- A y
Ve - F \/ 0 ] Aee . F[%] s (II.IO)
y

where Aee iz the circumferential extent of the character-
istic domain. Thils secondary flow can be represented as
shown in Fig. II.2. The following shapes were suggested

for the functions shown in eq. (II.10):
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- A0, , (II.11)

/T o |
Fl— s opo| = 2c

—

Frll = coé[§1r] (I1.12)

where CSec = 0.6 ,

For the eddy diffusivities, they used;

L
n,9 " 0,154 y < s (IT.13)
~ Tw
= —_ TI.14
Em,r Cp ¥ P ( )
where Cr’ in this case is taken as a function of the

aspect ratio t%& and the Reynolds number.

Since no rellable secondary flow measurements have
yet been obtalned, for rod bundle geometries, the
proposed shape of the peripheral veloclty distribution is
not based on experimental evldence, In fact, measurements
of the wall shear stress distribution obtalned by

several workers (13,14,15,16)

showed the maximum value of
the wall shear stresses for g-3 1.2 does not occur at the
symmetry line of the subchannel connectlng the center of
the channel to the rod center (8 = 30° ). This distribu-

tion of wall shear stress would induce secondary currents

in disagreement with the description suggested by Eifler
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and Hijsing. Furthermore, Rowe(l7)

» analysing the fluctuating
velocity contours obtained for both triangular and

square arrays with a laser Doppler anemometer, concluded

that, in certain cases, the deformation of the isovels

could only be explained by the presence of more than one

loop of secondary flow in a subchannel.
2,e. Buleev's(lg) Model

The model proposed by Buleev is intended to
describe the interaction of a turbulent eddy with the
medium strictly from the phenomenological point of view.
Two mechanisms of momentum exchange are assumed., The
first mechanism states that ﬁhe eddy exchanges momentum
with the medium by molecular interaction. The second
one considers that, due to the effect of surface friction
forces, a portion of the eddy disintegrates into small
eddies and is transferred to the surroundins mediumn.

With these two hypotheses in mind and describing the
probablility that an eddy,starting at a2 certain point,

will reach the polint where the Reynolds stresses are being
sougnt, Buleev was able to construct the tensor of
turbulent stresses by integrating over all points that

can contribute to the turbulent behavior of the fluid

at the point in question. Buleev and his co-workers



applied this approach to several different geometries(2l)

(22) such as rod bundles and rectangular ducts.

In order to match the experimental results

(20) made

avallable for rod bundles, Ramm and Johannsen
several minor changes in the above method, Artifiecial
boundaries were introduced to limit the flow area that
contributes to the turbulent properties prevailing at a
certaln polint. Anlsotropy of the turbulence was
introduced by taking different scales of turbulence for
different directions., The momentum transfer in the
circumferential direction was arbitrarily increased to

exanine the degree of compensation obtained for the

lack of inclusion of secondary flows in the model.

Although having the attraction of attempting to
explain the nature of the momentum exchanging mechanisms,
this model lacks of experimental evidence of the proposed
exchange mechanilisms. Also, when the physical mechanisms
are mathematically expressed, many assumption becone
necessary which certainly will affect the predicted
results, The proof of the utility of the model will lie
in its future compariscn with experimental data. Here
again the impossibility of predicting secondary flows
is observed. The compensation of the secondary flows by

increasing the tangential diffusional momentum transfer

cannot be expected to produce accurate results 1n a detaliled

37
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veloclty distribution, since momentum transfer by convection near
the wall and near the maximum velocity line are expected

to occur at opposite directions for continuity reasons.

3. STATISTICAL TURBULENCE MODELS

As menticned before, these models attempt to describe
certain turbulence parameters of the flow by laws of
diffusion, convection, generation and dissipation.
Transport equations are proposed for the parameters to
be described according to such laws. The other necessary
parameters are apprdximated by algebralic equations.

These statistical methods are usually c¢lassified by the
number of extra ftransport eguations necessary to provide
closure for the Reynolds equaticns. In the presentation
that follows, these methods will not be reviewed in
chronclogical order, but instead, by the number of
equations, sinplicity of approach and the relevance of

the contribution,

3.4, COne-equation models
In 1945, Prandtl suggested that the turbulent
viscosity could be described by a relation inveolving
the turbulent kinetic energyééé and a length scale, 2,

-that is,

% (II1.15)
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In this model, K is obtained by the solution of a transport
equatlon, such as that presented in Appendix B, and the
length scale & was to be proportional to the distance from

the wall,

Launder and Ying(23) applied the above method to predict
the secondary flow distribution in a square duct, For the
normal and shear stresses invdlved in the vorticity equation
source terms, algebralc equations were obtalned from the
transport equations for the second order moments, after a
serles of approximations. The results obtalned were very

encouraging when compared to the experimental results

obtalned by the same authors(2u), that had been published
previcously.
Bradshaw and COawmrkers(25), studylng a two-dlmensional

boundary layer developemnt, converted the turbulent energy
equation into a differential equatlon for the turbulent
shear stress by defining three empirical functions relating
the turbulent intensity, diffusion and dissipation to the
shear stress profile. This approach eliminates the
restriction imposed by the associatlon of the shear

stress to the velocity gradient that they sould be zero

at the same poslition. This method, however, as one-
equation model can not be applied to three dimensional

flows since transport equation for only one turbulent
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shear stress 1s provided,

3.b., Two=-equation models

All two~equation models use the definition of
turbulent viscosity, eq. (IX.15) as proposed by Kolmogorov
and Prandtl separately. Of the twoe transport equations,
one 1s used to describe the behavior of the turbulence
kinetic energy, K, and the other one 1is for a quantity
from which the length scale £ can be obtained. The
different approaches differ with respect to the selection
of this latter quantity and the procedure to obtain a

transport equation for it.

The first two-equation model was proposed by Kolmogorov(zs)

in 1942. ~He proposed an equation for the mean frequency

of turbulence, f, that 1s defined as
r=de . (11.16)

Harlow and NakayamaczT)

constructed a transport equation
for &, on semi-empirical grounds. Three source terms were
added. The first one represented a source term for non-
steady flows. The second source term which would be the
only term for a completely homogeneous flow, represented
contribution to the growth of mean eddy size. Finally,

the last term described the breakdown of eddy size 1n

(28)

reglons of shear. 1In a following paper , they derived
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on rigorous grounds a transport equatlon, but this time
for the turbulent energy decay rate, assumed to be equal

to K/1°,

Spalding(zg) proposed a model that deals with the
same parameter K/P.2 but gave a different interpretation
for it. It was assumed to be a characteristic turbulence
parameter or vortlcity decay parameter. The source terms
of the equation were obtalned by analogy to the source
term of the turbulence kinetlic energy equation.

Another two-equation statistical model was proposed
by Jones and Launder(3l). This model involved a transport
equation for the turbulent energy dissipation rate, following
the line proposed by Harlow and Nakayama(QB) Including

molecular viscosity effects on the turbulence when the

turbulent Reynolds number 1s low.

3.¢. Many-equation models
’ Several different approaches have been suggested
to avoid, primarily, the concept of turbulent viscosity
involved in the simpler models, The basic 1ldea 1is to
construct separate transport equations for second, third,

ete, order correlations of the turbulent intensities,

In 1945, Chou(3o) observed that double and triple
correlation equations are necessary to describe a flow

field when walls are present. Quadruple correlations
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can be approximated by algebralc expressions, For free
fturbulence cases, only double correlations are required,
Also, an extra equation for the vorticity decay is

required. So, this procedure, in its most general form,

(32,33)

Wwould require 17 equations. Davydov also described

a method involving transport equations for second and

third moments of turbulent intensities and finally the
(34)
2

turbulent energy dissipation, In a following paper

he argued the necessity of including equations for the

n

"dissipation flow parameter C,", defined as

Y

]

oV

— ! k

C; = vvy %,

. (IT.17)

These methods just described are some of the most
general methods proposed to date. Due to the complexity
involved in the numerical solution of such a large number
of equations and the proportionally high number of
empirical constants involved which require estimation
from experimental information, they have not been tested
to date. Many uncertainties remain about the degree of
lmprovement they would provide over some of the simpler
models. However, to overcome some of the shortcomings
associated with one- and two-equation models and while
still not being as complicated as the models with equations

for the second and third moments of the veloclty fluctuations,
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several models were proposed where only equatlons for the
double correlations are present. This type of model has
the potential for treating highly anisotropic flows or
flows with low turbulent intensities, when diffusive
effects significantly modify the transport of turbulent
properties,.

Hanjalié and Launder(33)

developed a model involving
approximate transport equations to the Reynolds stress
Tensor and for the turbulence energy dissipatlon rate,
in a total of sevenlequations. For boundary-layer flows
a simpler version is suggested inveolving only transport

. ? T
equations for the shear stress - vl v the turbulence

5 3
kinetic¢ energy and the turbulence energy dissipation rate,
Harlow and Hirt(36’37) also developed a seven-equation
model along the same lines as the previous one, but where
the unknown correlations are approximated by expressions
containing mean veloclty gradlents, Reynolds stresses

and length scales. Gosse and co-workers(ug)

recently
proposed a three-equation model where transport equations
were derived for the turbulence kinetic energy and for two
independent turbulence scales: one connected with the

turbulent diffusion, and the other related to the viscous.

dissipation process.

The statistical turbulence models descrlbed are golng



through a'period of intensive tests in a wide range of
applications, Summarles of detalls and applications

can be found in references (38),(39),(40) and (Hl);

Until now, there 1s no general criterion to select
the method that would yield best results for a certain
flow., This is left to the designer to decilde which
method would combine accuracy with economy and simplicity

for his specific case of interest.

4, EXPERIMENTAL MEASUREMENTS PERFORMED IN ROD BUNDLES

Published experimental data of distributed turbulent
parameters such as axlal velocity, turbulence kinetic
energy, Reynolds stresses, are very limited.

Eifler and Nijsing(*3»4%)

, using a Pitot tube,

measured the veloclty distribution of water flowing through
a test section with a cross-section as shown in fig.II.3,
for'%==]u05, 1.10 and 1.15 and Reynolds number in the
range (15-50) x 103, Eifler(’?) extended the measurements

for %==]“08. Subbotin and co—workers(l5)

also used the
same type of cross section for their measurements of
velocity field and wall shear stress distribution in

air for %= 1.05, 1.10 and 1.20 with Reynolds number in
the range (18.8-81) x 105. They also utilized a Pitot

tube for the velocity measurements. It was observed from

the data of both investlgations that the proximity of the

4y
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wall blqcking the gap of the subchannel adjoining the
subchannel where measurements were being performed in

fact distorted the veloclity distribution in a way fThat
should not be expected by symmetry considerations. In

his experiment, KJellster(IB) tried to eliminate such
perturbations by placing his subchannel belng analysed
(Fig.II.4) as far as possible of blocking walls. He

used £ = 1.217 and air flow. With the utilization of a
Preston tube, wall shear stress distribution were measured
for Re = 2,74 x 10°. He also measured, using a hot-wire

anemometer, velocity distributions, turbulent intensity

distributions in axial, tangential and radial directions,

' B . . .
as well as the Reynolds stress -v,, v, distribution, for
a few angular directions. He also attempted to measure
secondary flows but obtained only very scattered results.

Hall and Svenningsson(lu)

using the same experimental
techniques and test sectlon as Kjellstrom also attempted

to measure secondary flows, with no better results. Rowe(l7)
used a laser doppler anemometer to measure velocity
distributlon and turbulent intensities along a few specific
lines of several different geometries typical of rod
clusters. However, the most complete experimental work

on rod bundle hydrodynamics has been performed by Trupp

and Azad(ls) using a hot wire anemometer. Pitch-to-diameter
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ratios were 1.20, 1.35 and 1.50, and the Reynolds number
was in the range (12-84) x 103, Measurements were made
of axial velocity, turbulent intensities, shear stress

L
=V, v, as well as power spectra of the axlial turbulence.

r

Also wall shear stress distributions were obtained by a
Preston tube. Measurements of thetangential shear stress
-

~Vq vz were very scattered so that no information could

be obtained about the relative value of the peripheral

eddy diffusivity sm,e compared to the radial eddy diffusivity
Em,r' The cross-section of the test section used by

Trupp and Azad is shown in figure II.5, Table II.1 shows

a summary of the measurements performed in rod bundles as

discussed in this section.



TABLE II1,l,

SUMMARY TABLE OF MEASUREMENTS IN ROD BUNDLES

1 ~ Cross-—
- p(#) L -3 Turb. korrelations | T
INVESTIGATOR | T z Re x 10 Velocity Intensity —
; : H Axial | Second.| z[r[O [ vivi| v!Vv! T
rz 8 z w
Eifler, | 1.05 139 15, 30, 50 4
Nigsing M3 ¥ | 1 10 90 J15, 30, 50 v
1.15 65 |15, 30, 50 4
Eifler(45) 1.08 |[137| 10-152 v
Subbotin 1.05 154 18.8-81 v/ 4
et a1ll>) 1.10 |100 | 18.8-81 v v
1.20 72 18,8-81 4 v
Kjellstrom 137 | 1.217 | 81| 149-373 / v vV o v
Hall and (14) 1.217 81 | 270 v v
Svenningsson
(16)
Trupp and Azad| 1.20 51 12-84 / VA VA BV "4 Y
1.35 30 12-84 Y v A v Y v
1.50 20 12-84 J/ ylvlv] v Y/
Rowe 177 1,250 g5(0) 50 500 Y Y
1.1 117 | s0-200 / /
1.25 9o 50200 J/ J/
(%%)
1.25 105 50-200 / /
1.25 138 50-200 v Y
1.25 122 50-200 J/ Y

) All data for triangular array except where mentioned otherwise,

#)Square and triangular channels In same test section
) Based on cross section hydraulic diameter instead of subchannel's,

(#
(*) Square array
(#
(o

L
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maximum velocity
F—1line

velocity gradient

™ lines

Fig. II.1. Procedure for Calculation of Velocity Distribution

by Deissler and Taylor Method

Fig. II.2. Schematic Representation of Secondary Flow

Pattern proposed by Eifler and Nijsing
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Fig. II1.3. Cross-Section of Test Section used by Eifler
and NiJsing for Veloclty Fleld Measurements

Fig. II.4., Cross-Section of Test Section used by Kjellstrdm



Fig.

IT.

5.

Cross-Section of Test Section used by Trupp
and Azad
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CHAPTER III
DESCRIPTION OF ANALYTICAL MODEL

l. General Consideration

As observed in Chapter II, none of the models that
have been applied to rod bundles can give a detalled
description of the complete velocity field in a typical
subchannel. Description of axial and secondary flows can
only be obtained through the solution of the Reynolds'
equations for all three directions (axial, tangential and
radial) along with the continulty equation. Obviously,
information about the Reynolds stress tensor is necessary

to accomplish such goal.

In the present work, the velocity field will be sought
for an incompressible flow wlth temperature-independent
properties, in steady state and fully developed conditions
with body forces neglected. The subchannel selected will
be one from a very large (infinite) array of rods. For
such situation, the Reynolds and continuity equatlons can
be reduéed to a set of three transport equations for the
axlal momentum, vorticity and stream function, as shown in
Appendix A, They are presented below, in cylindrical

coordinates.
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{(a) Axial momentum equation:

t t
1l 23 v v Vv
= < 2 5 3y 13 z
rorr v (s - e V2 (3F) - Far r[ar Y ]
a t
v v,V
- 9 |.Z 6z _ _1o23ap . III.1
~ Tra@|rad T T v - Tvp 3z g ( 1)

(b) Stream function equation:

1 . oY Y W .
= F‘E% r{s%) - ;%géfgg) == (III.2)
{e) Vorticity equation
12 By _ 3y _ L 3 3wy 3 3w
rar T U - me e - e TR - reeteee)
P-E-) B 2|
- 1ja 1 9 1 1 3 1 3. ) e
T V)3 r e r{ve - Va ] t st FS5F T - ;EEE?Jr A (ITI.3)

where the vorticity was defined as

9

] = r
¢ ¥ Yo~ ree  ? (I1L.4)

E
1]
e ] o

and the stream function, by the relations

- _ 3

Vg = =V 3% > (III.5)

vz v =2 . (III.6)
r rab ¢



In equation (III.1l), the bars over v, and p, meaning
time-averaged values, were dropped since, from now on,
instantaneous values of those quantitles will not appear

in the development of the model.

To solve equations (III.1,2 and 3), only statistical

turbulence models were consldered in view of the 1limitations

of the other models, Statistical models wilth more than

two equations which were considered still in the develop-
ment stage were ruled out because of their added complexity
and due to the faect that, until now, they have not proved
to produce more accurate results than simpler one- ard two-
equation models. So, the cholce was between one- and two-

equation models,

These two types of mcdels assume the Reynoclds stresses

as beilng proportional to axlal velocity gradients, for
Y v
Tt

example Vv v, o —5% . Por the proportionality parameter or

furbulent viscosity, it is assumed the expresslon prepared

by Kolmogorov and Prandtl, independently,

<
"

[}

-~

T v Lo (III.T)

where Cv is a constant, K is the turbulence kinetic energy,

2 1is the mixing or mixture length, and Lv is the actual
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diffusion length of momentum. Both types of models compute

K through a transport equation.

With equation (III.7) in mind, the selection of a
model is reduced to the consideration of whether or not
to express & (or related parameter) also in terms of a
transport equation. A few Intensive arguments are presented
below to substantiate the declsion of using a one=equation
model; tht is, expressing &£ by an algebraic expression.

Since, 1n rod bundle subchannels withﬂg > 1.0, the

absence of corners rules out the presence of strong
vorticity-generating regions, as observed 1in square ducts(l),
the generation and dissipation of vorticity are expected

to be more uniformly distributed along the surface of the
rods, wlth secondary flows being established due to
imbalances of these two processesce). Based on this
reasoning secondary flows in rod bundle subchannels should
not be expected to be as strong as in ducts with corners,

and they should decrease with the increase of %, since the

asymmetry of the channel, that can be mathematically

expressed by

>

-y
g =z _max min (III.8)

av

<>

decreases as % increases. In the range of values for %



where secondary flows can be considered important, say

% < 1.25(3) the wetted perimeter 1s usually much larger

than § because of the elongated shape of the subchannel.

av?
So, the wall region plays an important role 1n the cal-
culations. However, it 1s expected that for points close
to the wall the mixing length should be properticnal to

distance from the wall.

With the two heuristic arguments above, it was
inferred that, in rod bundles, secondary flows are not
very strong and that the wall region can be considered
dominant in the description of turbulent parameters. It
i1s known that, in the wall region of any turbulent Tlow
without secondary flows such as flows 1In circular ducts or
over flat plates, that the mixing length can be taken as
~proportional to the distance from the wall, to the point
being analysed. In the region near the maximum velocity
line (MVL), small errors in the values of the mixing
length &, consequently in Vs wlll not affect the final
velocity fileld computation considerably, since, over that

region veloclity gradlents are very small.

In the following sectlons which present a detalled
description of the model, selection of many input
parameters and constants is described based on existing

experimental data. For the mixing length, &, and constants
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CD and Cv in particular, experimental data from this study
were used to deduce optimum representations or numerical
values. As pointed out in the discussion of results,
Chapter VI, however, alternate representations or numerical
values for these functions based on existing data in the
literature would demonstrate the general success of the
one-equation model utilized here for predicting the
hydrodynamlc parameters of turbulent flows in rod bundle

geometry.

2. DETAILED DESCRIPTION OF MODEL

The first step in the application of the one-
equation statistical model of turbulence 1s to relate the

Reynolds shear stresses to main velocity gradients in

terms of the turbulent viscosity Vips that 1is,
(| BVZ .
- - —— III.
V.V, ”T[jar ’ { 9}
v
r ot .
= = Z .1
VoY -"T[m] , (1I1.10)

where the turbulent viscosity is given by the Prandtl-

Kolmogorov formula (III.7), repeated here,

1/2

Vo = cv K '3 . (ITI.11)

The turbulence kinetic energy, K, will be calculated

60



61

by the transport equation (obtalned in Appendix B):

SN VI ST TN U S I SUAE ulll IO ok _ Vet
T3¢ T Mrse) Tree MR Trar Niar TV VL v
3/2 _—‘1—'1" v —T[aV |
= K 1 3 Z w12 2
= =Cp =5 - U[Yrvz =r)t YoVzlrs (II1.12)
Here again K 1s the time=averaged value of the
turbulence kinetic energy, the bar over its symbol being
dropped for simplicity.
Assume, by analogy with (III.9) and (III.10),
v,k = -r; 2K (III.13)
b o K 3r > .
r T dK
veK = =Ty 755 . (III.14)

where PK is an exchange coefficient of the kinetlc energy
of the fluctuating motion. Assuming that the diffusion of
turbulence kinetic energy is produced by eddies with
approximately the same scales of motlon of those which
promote momentum transfer, FK can be approximated as

v

Ty = == (II1.15)

=

where PK can be understood as an effectlve Prandtl number,



which is taken as constant.
Regarding the mixing length distribution, there is no
information avallable about 1ts distribution in rod arrays

(4)

based on experimental data. Buleev proposed a semi-

empirical expression,

2n
@ (III.16)

ST
1
OS] o

where s represénts the dilstance from the point in gquestlon
to the solid wall in the direction ¢. Based on analysis
of rod bundle subchannel experimental data obtained in
this present work, as will be discussed later, it is

proposed the mixing length distribution be expressed as

ro¥% L, foro0<€collh ,  (III.17)

y ¥y =y =

b4 T

< = 0.U4 + 0.066 si (& - 0.44)

3 n[é.33'% } s

for 0.44 <L < 1,0 (III.18)
y

where § 1s distance from the wall to the maximum velocity
line, along a radial line.

Both expressions will be compared to experimental
data 1n Chapter IV, for different angular positions.

In order to obtain a closed system of equations,

€2
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the vorticity source term in equation III.3 has to be

determined. This term (see Appendix A) is:

_ 1
Iw = -GF(II + 12) s (II1.19)
_ 31 3 12 12
where Il = ﬂ- F .ﬁ“- r Ve - Vr s (III.20)
1 = |81, 52 L 1
s ElsE T - ero: r v,V . (IIT.21)

(1)

Brundrett and Balnes observed that, for square ducts,

Il >> 12.

bundle subchannels. Then,

This 1s assumed, here, to be true also for rod

2 2
I, = - o= o = = r[ve - v, . (III.22)

2 42
Vg -~ V. . Three possibllities

- Define the term Aw =

were analysed to obtain the term Aw as follows:

i. from empirical correlation of experimental data
in the literature;

ii. by assoclating A to the turbulencge kinetie Bnefgy,
through a geometric funetion, that is,

a, = K« £(r,8) (III.23)



64

1ii. from algebraic approximations of the transport

equations for the turbulent intensities.

In the first approach the procedure éxamined to corre-
late turbulent intensities was that proposed by Bobkov et
a1(5) and applied by Ibragimov et 31(6) for square ducts.
The difficulty associated with this procedure arises
from the fact that the experimental error associated with
Aw is very large, since it represents a small quantity
obtained by the difference of large quantities each having
an experimental error, This precludes any effort to

obtain gradients of A accurately, particularly in the
W

tangential direction.

The second possibility was also exglored for applications
in square ducts, this time by Ying as described in Ref. 7.
The difficulty lays in obtaining the geometric function
f{r,8). This would have to be accomplished by examining
experimental data related to the behavior of Am based on
heurlstic considerations. The major setback of such
appréach is 1ts lack of universality. For rod bundles,
there is no reason to believe that the same function
would represent well Aw for very different values of P/DQ

The third approach comes from the assumption that, close
to the wall, all turbulent intensity 1s produced in the
axial direction and part of it is redistributed into the

tangential and radial directions by pressure fluctuations.



So, since convection and diffusion are negligible near the
2
1

wall, the pressure redistribution of Vg Or v, is made
equal to its dissipation (see Appendix C for details).
From these assumptions, one obtains:

2 12
L -1 ) I AP ,(III.24)
~ ri3f or

where

o = gi . 21§92 - 2] , (II1.25)

D ll[cl - 2c2]

with ¢y and Cys constants.
Expression (III.24) will be adopted in the present

work.,

3. Boundary Conditlons

The sketch below shows the subchannel boundaries

where conditions are belng sought.
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a. Boundaries I and III (® = 0 and © O max?

respectively)

For the axial velocity and turbulence kinetic energy,

by symmetry considerations,

sz

=& =0, (III.26)
I,III

[_g_%_} =0 . (I1I.27)
I,III

Since no net flow crosses lines AB or CD, the stream
function must be constant along boundaries I and III, which
can be observed from equation (III.5) by imposing Ve equal
fto zero. Since the value of this constant 1ls arbitrary, it

1s taken as zero, So,

The boundary condition for the vorticity along these

boundaries is obtained from equation (III.M), cbserving

Vv
that Ve = 0 and 333 = 0 by symmetry. Then

b. Boundary II (maximum velocity line, MVL)

By symmetry, the gradients of the axial veloclty and



turbulence kinetic energy are zero along the normal to

MVL, that is,

[EE]' = ()
My,

These expressions can be written in the form:

Bv_] [3vz]

~2 = |2 tan 8 (III.30)
[3r mvL Ty,

25] = [_QE] tan © (III.31)
[ar mr %y

Since no net flow crosses MVL, the stream functlon is

constant along BC and the constant 1s set to zero, that is,

Ypvp = O-

Since no net flow crosses MVL, the direction of the
secondgpyflow velocity, v, 1s along that line. Expressing

?B and ?r in terms of v, obtain:

ve = Vv.Cc0s 0

Vr v.s5in & .

Substituting these two expressions into equation
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(IT1I.4), one gets:

3#‘ "sin 8 3v v cos O

_ Vv cos B o
v T T ot - TSH—wo T
or
av
w =(_"‘ *
MVL on MVL

By symmetry, the normal gradient of v along MVL is

3 ;
zero. Then

OMyL = 0, (III.32).

By symmetry, the gradients of the axial velocity and
turbulence kinetic energy are zero along the normal to MVL,

that 1s,

These expresslons can be written in the form:

[BVZ] [sz}

-2 = |l tan 6 (ITI.30)
r v LTy ’

3K 3K

(== = () tan o . (III.31)
ar MVL raf MVL
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Since no net flow c¢rosses MVL, the stream function 1is

constant along BC and the constant 1s set to zero, that is,

C. Boundary IV (solid wall)
Since the wall is non-porous, that 1s, no flow crosses

its surface, and applylng the non-slip condition, one finds:

(v,), =0 (III.33)
K, =0 (II1.34)
v, =0 (III.35)
and (%) =0 . (TII.36)

€.1. Wall Functions for Axilal Velocity and Turbulence
Kinetic Energy

Near solid walls, the radlal gradients of the velocity
and turbulence klnetic energy are very large. So, a
numerical procedure based on linear approximations would
not be valid for large mesh space in that region. Also,
the coefficients OD and Cv’ introduced in the analytical
model, can only be assumed as constant, with the mixing
length given by elther eq, (III.16) or the set of equations
(III.17) and (III.18) for large turbulent Reynolds number,

defined as



R, = & _¥ (III.37)

where y 1s the distance of the point being analysed to the
wall. The coefficiehts CD and Cv aré chosen in such way
thét, just outside the wall sublayers, in the fully
turbulent reglon, the diffusion length Lv’ associated with
vy (= Kl/sz), multiplied by 1/C is equal the dissipation

length LD, associated with the dissipation rate of
3/2
K

turbulence klnetic energy ¢ E.=1|> multiplied by CD. Also
D

each product is equal to the distance from the wall to the

point being studied, that is,

e

E% =Chplp=2=y . (III.38)
However thils does not happen close to the wall or in the
so=called laminar and buffer sublayers. Distributions of
the mixing length, as a functlon of the turbulent Reynolds
number, have been proposed(s’g) for the wall sublayers.
In general, they can be written in the form:

(a) 1laminar sublayer:
5, = A R.y (ITI.39)
’ (III.40)

(b) buffer or transition sublayer

L, = y[} - exp(-AvRt{] ’ (ITI.41)
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Yy = vy[1 - exp(—ADRtf. R (III.k42)

where Av and AD are constant, Distinction was made
between the diffusion and dissipation length scales since
they are not proportional to each other inside fhe wall
sublayers.

Utilizatlon of the mixing scales as given by
expressions (III.39-42) in a numerical procedure would
require a very fine mesh space 1n the radial directilon,
near solid walls, which would make the numerical solutlon
very expensive, JSince, inside the laminar and transition
sublayers, convection of momentum 1s small, it is expected
that the veloclty profilé in the reglon close to the wall
could be accurately represented by a law-of-the-wall
function (see, for example, Ref, 10, p. 554) of the type:

v E VY

= T
vz = -z log

- , (III.43)

where Vi 1s the friction velocity and K and E are constants.

This distribution will be assumed in this work.

For the turbulence knetic energy, assuming that
diffusion and convection are negligible compared fto
generation and dissipatlon near the wall, its equation

(III.12) 1is reduced to

Cpmg— = = V¥

g3/2 —T—?[avz} :?"‘F
D
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The velocity gradient in the tangential direction is
very small compared to 1ts radial gradient, so, 1t can be
neglected. Usling equations (III.9) and (III,7), equation

(III,44) 1s further reduced to

2
3/2 fav
K2/ = _ 172 Z
cD____ = Cv K LU[EF_] . (III.45)

Now, from eq. (III,43), assuming negligible curvature

effects near the wall,

Na| (V2| _ Y
3T 5y o

Plugging this result into (IITI.45)

3/2 2

, CDK - c K1/2 v
2 RV Ev " 5o '
D K'Y

Since, 1t can be assumed that, at the edge of the

buffer Sublayer (call it point B), ED = lv =y , one obtains

N— v, (III.46)

The valde of K given by eq. (IIT.46) will be used
as the wall boundary condition for the turbulence kinetic
energy equation.
C.2. Vorticity boundary condition at wa11<ll)

Since nelther the vortleity nor its gradient normal



to the wall are known, 1ts wall boundary condition has to
be deduced from the non-slip condition between the wall
.and the fluid. Assume; then, that in a very thin layer
close to the wall, the vorticity source term is negligible.
Usually, in this region, gradients in the peripheral
direction are much smaller than gradients in the direction
normal to the wall. With this assumption; equation (III.3)

is reduced to

—a—az—, o (%g-) - = r(%%) = 0 (TII.47)

Integrating this equatlon from the wall to a radlal position

r, one obtainss:

Y _ Low T =
w =5 r(ar) + A 0

where & is an integration constant. For a domaln very

close to the wall r can be taken as the radius &f the rod, R.

Then
3w w3y _ K _
S TRIW-R-A
The solution of this equation is
_ o
. ! 1 ay "
AJ dr exp[-ﬁj (39) dr + B
o = B R - (III.48)

r
exp[:% IR (%%) dr!
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where B is another integration constant.
o, 3%y A
Since, at the wall, (37), = O, take (5%) N0
in the thin layer close to the wall considered. Then

A

equation (IXII.48) 1s reduced to

A{r = R) + B

£
[

or

€
R

Ay + B, (IXI.49)

This expression represents a linear approximation of
the vorticity near the wall, A and B are the radial
gradient and value of the vorticlty at wall respectively.

With the approximation expressed by (III.49),
neglecting ftangential gradients and curvature effects in
the wall region, equation (III.2) yilelds:

"EE P o= %(Ay + B) . (II1.50)

3y

Integrating twice with the conditionsn%= 0 and

3 g2l
v - -3 a (111.51)

v

Equations (III.49) and (III.51) define the boundary
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condition for the vorticity at the wall. Taking P as the
point at the wall and F as the first mesh point inside the

flow, A can be written as

wr, =
A = F RP ,
Tp =
and B = wp .

Equations (III.49) and (III.51) are reduced to

wp = “EF -3 2 Vg (III.52)

(rF - R

Thls equation represents the numerical approximation
adopted for the vorticity boundary condition at a solild
wall.

4, SOURCE TERM FOR AXIAL MOMENTUM EQUATION

The source term for the axial momentum equation is

_ 1l o
Ivz =~ -.5% , (III.53)

where %% 1s constant since only fully developed flow 1is

being treated.

A balance of force between two positions 1 and 2 in



the downstream dlrection, one gets

(pi - p2) . At =T, Pm . (22 - zl) , (III.54)

where

At = subchannel flow area,
Pw = subchannel wet perimeter,
?@ = average wall shear stress.

From (III1.54) obtain

Bp ) . q:
2= (5 (III.55)

-l L

where DH is the subchannel hydraulic diameter, defined as

DH = _P— . (III.BG)

Defining the friction factor, f, as

L
f = —vé— » (III.57)
b
=z

where w, is the flow bulk velocity, equation (III.55)

is reduced to

Iv Z -

2
v
% = f(ri!.) . _\Jb . (III-SS)
Z

hel I
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This equation represents the source term for the
axial momentum equation,

Recallling that

Tw(e) 172
s (II1I.59)

VT(B) -] [

the required friction factor f is obtalned directly from
equation (III.57) with ?@/p given by

- )
T, 1 f max .
v

0

max
The distribution of the friction velocity v, with Bhe
angular position is obtained (see Chapter IV, section
6.3.1) from application of the wall function, equation

(TI1.43).
5. CONSTANTS OF THE MODEL

Several constants were introduced durlng the
description of the model. They are:

(a) C introduced through the definition of the

\,,
turbulent viscosity, equation (III.T7)};
(b) CD’ from the approximation of the dissipation

rate of turbulence kinetic energy, €, equation (B.7);
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(c) ogs effective Prandtl number defined by equation
(III,15);

(d) c, and Css from the vorticity source term as
deduced in Appendix C and shown in equation (III;25);

(e) ¥ and E introduced in the axial veloéity
distribution near the wall, equation (III.43).

The procedure adopted to obtain these constants will
be described, here, not in the sequence above, but 1n the

sequence that they were obtalned.

5.1 K and E
They can be obtalned from the plot of v* [E ;5]
T
as a function of'y+ [5 Z%Z]
by approximating its dilstribution by the function
vt = 110z EyT . (III.61)

Since, in the present work, no experimental measurements

of the wall shear stress distribution were carried out,
Tw(o) 1/2
necessary to obtain v. = vT(e) = |—

(12)

s the values

of k and E given by Patel , were adopted

= 0,4186 s

Fat
I

E = 9.8 .



5.2 Cv

The constant C\J is obtained from the expression

(3

’ (III.62)

which 1s obtained directly from (III.7) and (III1.9). The
parameter C, & can be calculated directly from the experi-
mental measurements of ;;;;, v, and K. Taklng & to be
equal to the distance from the point under study to the
wall along the radlal line, for points close to the wall,

Cu is, then calculated considering all angular positions

in the subchannel, The value obtained was 0,180,

5.3 Cp

C;) can be calculated from (II1.46), by estimating
Vo from pressure drop megsurements, The value obtained
for K/vf near the wall was approximately 3.5. From this
value, CD = 0.30. However, better agreement between
analytical predlctions and measurements of thls thesils for
the TKE distribution were obtained using CD equal to 0.38.

So, this later value was adopted in all subsequent computa-

tions.



5.4 oy

Since the measurements of ;EET and VéK' would require
friple correlation measurements, this was not carried out.
These measurements aré necéssary for a correct estimate
of the value of Tpw It has been suggested 1n the liferature
(see, for example, Ref. 3) that oy should be in the range
(0.9 - 2.5). This constant was arbitrarily taken as 1.3
although no sensible difference predictions of all parameters

were observed utilizlng a wvalue 1,5.

5.5 cl and Cy

The constant ¢, was discussed in Appendix C. Its
value is expected to be between 2.5 and 3.0. 1In this work,
¢, = 3.0.

Hanjalic(l3), analysing the éxperimental work performed

by Champagne and co-workersclu)

on nearly homogeneous
turbulent shear flows, concluded that ¢y was approximately
0.4, Thils value was readjusted to 0.37 based on analogy

to square duct results of Launder and Ying,(IS)

6. SUMMARY OF EQUATIONS OF THE MODEL

This sectlon presents a summary of the relevant

equatlons of the model.
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6.1 Transport equations

(a) Axlal momentum equation

, .ﬁ BV'
i 9%y 3y 3% _li _T
r o T V255 - Fow Va5 - s T(L + ) 5
. Vv v .
9 T Z 1 3p
"m[l"u—Jr—a‘é*'G—‘%"ﬁ - (IIL.63)
(b) Stream function equation
- _i -9 oYy _w
r 3 road (rae) v * (III.64)
(c) Vorticity equation
1 3 ay
Fé?r“’(rae) rae wlgg) = r ( ¥ - T(rae)
e 2
_ 1 93 1 3 !
TV ree r sr [VQ p ] y (II1.65)
(d) Turbulence kinetic energy equation
1 3 3y 13 | Vo | ek
rar ¥ (raa) rae K(—F) T r §F'rL1 + vck ar

. (III.66)




6.2 Algebralc equations

{a) Turbulent viscosity

. = 1/2
Vep = CvK L . (I11.67)

(b) Mixing length distribution

E-L , roroRLc<o.uy ,  (III.68)
y y y
El T ,
£ < 0.44 + 0.066 sin m[»‘f - o.uu] , for 0.4 <L 1.0,
y ¥ Yy
T2 T2
= 1 - |
(¢) Expression for Aw = vy v)
' 2V v, 2 v, 2
Aw = -cf m‘ - T > (III.GQ)
where : c, 2(602 - 2) _ )
C = —— o - . (III-?O
CD ll(cl - 2657
(d) Source term for axlal momentum equation
2 "tzj
I = (=) » — . (III.71)
v, Dy v
(e) Friction factor
T
u
£z =8 ) (I1I.72)

“Joﬁv



(f) Average value of wall shear stress

max
2
Vt(e) ae .

o emax

6.3 Boundary conditlons

(a) Wall boundary conditions

v . Ev_y
s L L3
Vg K log v )
.C
K= v2 v ’
CDK
vy =0 s
w
F 3V
Wy = ==me = ]
P -
(ry - R)
(b)e = 0 and 6 = emax
av
.J:EE:O
a0 90 ’
P=w=20 .
(e) WMVL
ayz avz
3% - (7ee) tan® s

(III.73)
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"9K _ 3K
37 - (Fﬁﬁ) tan 6 .
9K _ , 9K
% - (rse) PR 0
b=w=0 .

6.4 Constants of the model

C. = 0.180

(9]
]

0.38 >

o, = 1.3 s

K = 0.4186

cq = 3.0 P!



10.

11.
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CHAPTER IV

NUMERICAL PROCEDURE

To derive finite-difference equations from those
differential ones described in the previous chapter, the
procedure selected was that of integrating the equations over
finite areas, making assumptlions regarding the distribution
of the varlables between the nodes of the grid. This
procedure ensures that the conservation laws are obeyed over
arbitrarily large or small areas, withln the accuracy of
assumptions made.

It can be observed that the differential equations
for the axlal momentum, vorticity, stream function and

turbulence kinetic energy can be put into a generic form

1 8 ¥ 2 Y 1 9 ¢ 3 ¢
a¢[;5;¢é‘é'm¢§'f}'{;ﬁrb¢‘a? *m%r—a@}
%sc} , (IV.1)

with the parameters given in the table IV.1.
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Table IV,l1, Parameters ¢, a¢, b¢

and S¢ for the
Differential Equatidns |

¢ | 2, by 54
v 1 1l 9
Z £ -g—‘;g%
1 1 13 18,7 =2
@ ‘G?a—ebsf-‘r("é"’éﬂ
Q 1 )
¥ >
K |1 €x Vr -(avz v, 2] 372
v [\s7/ * \w8 ° T
N
where €=1+ Tg y
| g (IV.2)
=1+ —,
_ YK

Figure IV.l represents the finite difference grid.
The dashed lines limit the integration area and they are

placed half way between two consecutive grid lines, that is,

1
Tivlze = 5 (Pypy *75)
= l (rn + r )
Pi-1/2 = 3 Iy -1’ 2
. (IV.3)
O541/2 = 3 (ej+1 * ej) 3
1
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The element of area, in cylindrical coordinates, is
dA = r dr de ,

Intégrate, now, equation (IV.1l) over the dashed

area:

Tiv1/2 [Z541/0
5

2 dr ae [55 ¢
Ti-1/2 3%5-1/0

QJIQJ
Q€
I
bt b
-=r
W Q@
5 €
S |
1

N
Convection Terms

1]
L]

Ti+1/2 [®541/2

™ 3 o 260 7 _
dr de [5? r b¢ - + F§§r b¢ 555'] =
Y172 ) 85-1y0 | )

v

Diffusion Terms = 1

Ti41/72 (%542/2

r S¢ dr de . (IV.4)
Y1172 485170 )
~ _ ¢
Source Terms = sor

So, the equation assumes the form

= 1¢

l. CONVECTION TERMS

The convection terms can be broken down into four

integrals:



84172 ®i4172
I.= lae [ 2 - |ae (¢ 2
c ™ 55 -9 (¢ 58)

o T141/2 g i-1/2
j=1/2 j=1/2
Ti+1/2 Ti+1/2
dr (ﬁ,gf) + [ dr (( 32) . (Iv.6)
T /s are
r j+lr2 |, j-1/2
1-1/2 1-1/2

Consider the first of the integrals

eJ+1/2

_ Y
Ig,0 % |9® (¢ 55) . (Iv.7)

5 Ti+1/2
j=-1/2

For regions away from the wall, it 1s assumed that ¢ and VY
are well-behaved functions, so an average value ¢i+l/2,j
1s defined(}) for the parameter §, such that

(054172

oY
ae (? 55
_ Jg Ti+1/2
¢ = —mlf2 .

(IV.8)

[
40

So, I can be written in the form:

c,1
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e, 7 brnge,y Waaage geage - Yire,g-172 10 029

At thils point, "upwind differences" are introduced(l) into
equation (IV.9), which means that if the difference
(Wi41/2,34172 = Y141/2,9-1/2 ) 18 positive, the directlon
of the flow is from the point (i,j) to the point (i1+1,3),
and so the property ¢i j has predominance at point (i1+1/2,3),
]

and ¢i+l/2,j is assumed to be equal to ¢i,j' On the other
hand, 1f that difference 1s negatlive, the flow is from
(1+1,3) to (i,J), and the property ¢i+l j i1s predominant at

. 3

(1+1/2,3), and wi+l/2,j is taken as ¢ Mathematically,

i+1,°
one can write

I

- 4 (Yir1/2,5+1/72 = Wirr/2,j-1/2)
C,1 i+1,3 2 -

|Wi+1/2,j+1/2 ~¥iv1/2,5-1/2] }
3

W - -y
Dy {( 141/2,J+1/2 ~ 1+1/2,3-1/2),

2 . -
Another approximation is introduced by taking the
value of the stream function at z particular corner of the

Integration area as belng equal to the average of the wvalues
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at the four neighbouring nodes, Hence, typilcally

. 1
\Pi+1/2,.i+l/2 o lt'h)iﬂ,jﬂ * kP1+1,J + q)i,j+1 + lpi’j], (1Iv,11)

The other terms are obtalned the same way and the

total convection term can be wriltten as, after rearranging,

I.=A

¢ = Aran,y O 5 = Gy p)

Ai,J+l (¢1,J - ¢i,3+1) + Ai’J_l (¢i,1 - ¢i,3-1) s, (IV.12)

where the coefficients A, using (IV.11), are:

Aiyr,y = I]f{(‘*’1+1,j-1 “ Wie,41 F WiL5o1 T Wi ga) t
l\"1+1,3-—1 = Wis,g41 P Wi51 T ‘Pi,j+1|}’
Ayq, B %{{(“’i-l,jﬂ “Nio1,3-1 YW, ge1 Y510 F
l“’i-l,jﬂ = Wil1,5-1 tYi50 'L*’i,J-ll}’

(IV.13.a)
By g+1 = %l(wi+l,j+l = Wio1,5+41 T V141,35 T ‘*’1-1.,.1) +

|“’1+1,j+1 = Wio1,g+1 T Y141, 7 Wio1,g |}’

=]
|

1
1,5=1 ° 8{(“’1-1,3-1 = Wib1,3-1 YV, T Yien,y) t

|‘“1-1,J-1 = Wie1,3-1 Y Vi1, ~ Ve, |}
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The apprqximation_given by equation (IV,11) can be
applied only if the stream function 1s known at the four
nodes around the corner of the rectangle. This means that .
such an approximation cannot be applied to  points near the
east boundary (MVL) of the subchannel (see Fig. IV.2). For

points at boundary, it can be written that

Vo1, = 9

¥i,9-1 7 %

Since the mesh spacing is small, point (i+1/2,j-1/2) is very

¢lese to the MVL and therefore it can be assumed that

Yi+1/2,3-172 % 0

This would be exact if the lines for r=constant were straight
lines. Due to their curvature, it 1s only an approximation.
»» (r

However since r - ri), this should be expected to

i i+l
be a reasonable approximation.

Following the procedure already described, the
coefficients A of the convection terms for those points are

given by

_1 .
Ai+1,1 ¥ {‘ (\Pi+l,j+1 +‘P1,j+1 +‘P1,J) +

- I‘\’i+1,j+1 *W¥ o541 “’"i,J.l},



Ai1,g ® 5 {(\vi-l,Jfl SRCISINIRILL /IPER
I“ﬁ-1,3+1 “Wil1,5-1 +‘Vi,3+1|},
(IV,13.b)
1,041 = %I {(\Pi+1,j+1 = Wig,541 " Yiog,y)
‘kpi+l,3+l -kpi-l,j+1 RETS jp
A1,9-1 ® § {(‘Pi-l jo1 Y Wiog,y v g0

alf

|W11.31'+Wi1j *Wi s

2. DIFFUSION TERMS

Here again, the diffusion terms can be separated

into four terms:

- i
®i41/2 ®41/2
- LX) 3¢
ID do(r b¢ 5% . - de(r b¢ ST . +
Je 1+1/2 o 1-1/2
J=1/2 j=1/2
(T341/2 REFEYZ
X
dr @b =) - dr'(bq) ;5—5)9 . (IV.14)
®y41/0 - i-1/2
Jrs.1/2 i=-1/2
Call I the first term of I.. I is given by

D,1° D* °D,1
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“jr1/2. ”
240
ID,l 3 de(% b¢>r (:g;cl . (IV.15)
8 i+l/2 i+1/2
j-1/2

Now,_both'bQ and Q are linearly approximated along the line

r = Ti41/2 which gives
b .+ b
o )
(b¢)r s Atl,] L) ana
1+1/2 2
(IV.16)
(?59) TS WY,
or '
Ti+1/2 Pivl — T3
This way, ID 1 is reduced to
3
r +r
1 "1+l i
I ® 2= (8 -8, )b + b Y($ . =
D,1 8 Piep - Ty o 9%1 j-1 ®141,5 @1 1+1, ¢i,3

(IV.17)

Analogous considerations lead to similar terms for
the other parts of the diffusion integral, whlch can be

written 1n the form:

Ip = - Bi+l,5(§¢i+l’j+ b¢i’j)(¢i,3 - ¢i+l,J)
" B,y ® )t Py ey - by
- Bi’j+l(b¢i,j+l+ 1-)‘)1“_])(({)1,.j - ®i,j+1)
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4

with the coefficients glven by the expression below

R TP e
T ti+l
B = (8 8 )
i+1,3 ° B Ti4 - j+1 j-1’ »
..+ r
1 Ty 1=1
B = . - 8
=13 FEE T Gt %)
- (IV.19)
B J11 Tivl T Tl
= - L]
1,j#41 = T ry ej+1 e;j
11 Tie1mTia
Bi,j-1 T 5 8 -8 .
’ i3 3=1

(l),

Although the procedure was not the same of Gosman's

the obtalined expression for the diffusion terms was the same.

3. COMPLETE FINITE DIFFERENCE EQUATION

The source term is

rTi41/2 {54172

b =
Loor,1, r §, dr de . (Iv.20)

3172995172
The finlite difference expressions for the source
term for each transport equation will be treated separately

in section 4, along with the filnite difference formulas for
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the bqundary cqnditian,

At this point, however, the complete flnlte-difference
equation can be written assemblying equations (IV;12), (IV.18)
~and (IV.20):

P15 = Carnyy Puen,y * Caoay Bioay o g frga
B LA
Cy,yo1 Py,5o1 ¥ Sor,l,g (Iv.21)
=1,
where
i+1,5 = |2 Pre1,y ? (b@i+1,j+ b¢i’J) Bivr,s /=4,y >
Ci—1,3 = |2 P11,y * (b¢i-1,j+ b,“’i,J) By-1,7 | /Eq,5 »
— - (1Iv,.22)
Pt ® P fagnn T Coy T Py 0 Pagn [T
“1,5-1 % 1P May-1 t Cop o R0y ) Bayya1 | /T
and
T,y = 2o,y YR,y YA pa Ay
+ (b + b ) B + (b + b ) B .
Y141,5 Ca,y0 MBI Uiy 0yt AL
+ (b + b ) B + (b + b ) B, . 4.
ORI Y T Z W B R 2 UE M Dt

(Iv.23)
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L, SQURCE TERMS FOR TRANSPORT EQUATIONS

Due to the different mathematical form of the source

ferms, they will be treated separatély.

4.1. Source term of the axlal momentum equation.

Thls term is

Ty41/72{%5+1/2

v Ce
Z _ 1l dp
Isor,i,J = = 5V 5z r dr de, (IV.24)

T3-1/2895-1/2

since %% = constant, for fully developed flow,

Defining Vi,j as

rs+1/2 19541/

V, ; = r dr do , (IV.25)

Ti-1/2°%3-1/2
the axial momentum equation source term 1s reduced to

v
z I (Iv.26)

Isor,i,j - vz'vi,J 4

with IV defined by equation (III.53) and calculated using

z
equation (III.71).

Equation (IV.25) can be integrated to yleld

I 1 , -
A R T PR R S LG N LI I A1)



4,2, Vorticity equation source term

The vorticlity source term is

Pi+172 (854172

-3 KIS B

r3f6 [r or
Tio172 " Pyo1p0

r Aw]r dr de , (Iv.28)

with the term Aw = vé - vé +« This term can be written as

P1+1/2[%541/2 |
w = -1 9 3 3
Tsor,1,5 = = % [ae 5r 2w t 538 Aé]dr ae. (Iv.29)
I
1-1/2

The first part of equation (IV,29) is then

integrated to give

= % [{Aw)i+l/2,j+l/2 - (Aw)i+1/2,j—l/2 - (Aw)i-l/2,3+l/2

* (8)1-1/2,5-172 |- (1IV.30)

Assuming that, inslide the integratlon area around a

mesh point, the radial distance r does not change very much,

the second term of (IV.29) is reduced to

Ti41/2 Ps+1/2
1 _
Ti-1/2 Ti-1/2
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The term Aw will now bé assumed tq bg apprqximately
cgnstant alqng the radial line between the points ri-1/2 and
Ti41/2° with a value equal its value at point 1, So, equation
(IV,31) is finally reduced to y

(ri+1 —‘2rif+'ri;l)

- TV, L(Am)i,j+1 -2yl Y E(Am)i,J—l]‘

(1Iv.32)

Prom equation (III.24), one has

'sz 2 sz 2
by=-c¢ 2* (rae “\or * (1v.33)

When this expression is applied into equations (IV.30) and

(IV.32), the mixing length 2 is taken as constant and equal
to its value at point (i1,]). So, from equation (IV,33),

one obtalns

av 2 Vv e
(8 )34170,54172 = = © %5 5% - \37 -
w ) sd (\Fe¥/441/2,5+1/2 i+1/2,3+1/2

(IV.34)
The velocity gradlent in the tangentlal direction is then

calculated by

(v_) -+ (V) - (v_ ), -(v_)
(EZE) . g 1+1,3+1 'Z'i;j+l" z'1+1,]) A 1,7
rab i+l/2,j+1/2 (ri+1 + ri)(63+1 - BJ)

(IV.35)



and the radlal gradient,

(avé>
I /141/2,5+41/2

~

(v.)

Z

B aa1g41

L+ (vz)

141,

- (VZ) B

- (v_)
i,j+l 2

1,4

(ry4q

- ri)

{(Iv.36)

These two expressions are plugged into equations

(IV.34) to obtain the term (A )
Wiisr/2,341/2

approach 1s used to compute the other terms of equations

« A similar

(IV.30) and (IV.32), determining then the finite difference

expressions for the vorticity source term,

4,3, Stream function source term.

From the stream function transport equation,

v =
Isor,i,j

This integral

7
Isor,i,J

=1
Vv

r

i
v

T

i+l/2

i-1/2

84172

w r dr d4de .

By-1/2

can be divided into feour integrals:

]

T3

Pia1/2

(Ty+1/2

Ty

fej

wr dr 4o +

94172
"'B-
J

wr dr 49 +

5-1/2

(IV.37)
T4 1934172
w r dr de
JTy 172 V8
Ti+172 (%4172
wr dr do ;.
.ri BJ

(Iv.38)
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Take, for example, the integral

Ti+1/2 [ %4172
I1 = wr dr d4do .,
Pi BJ
Assume now a linear approximation for w of the kind:
A — w, . - w,
W=y gt e CAEIE P SR e PV Y P
s i+1 1 J+1 j J
(IV.39)

then, the integral Il can be written, after assuming that

3ry tryy, = b,

in the form:

r.(r - r, )(8 - 8,)
o rirsg 178y = 8,
I, = 1% (2wg 541 * Wipg,y ey y)

Analogous expressions can be derived for the other

integrals of (IV.38). Assuming A® f793+l 'fﬂj = ej - ej_l,

one writes:

riae

2 -
Tsor,1,5 = “Bv- [}r1+1 R TSR TR TS B T I D

+ (r (IV.40)

(ryyp - 1y) “1+1,3 1~ Ti-1) “1-1,3] .

4.4, Source term for turbulence kinetic energy equation.
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This source term is

K — 1 2
Tsor,i,5 = Ysor,1,j ~ Tsor,1,j ° (IV.41)
where
Ti+172 [P3+1/2
v T78V.\2 OV \2
SUUPE I A
Tsor,1,i = v [(Br ) *\roe i}r dr de, (IV.42)
"1-172 7 %5-172
B,
Tysr/p | IFL/2
2 (372
sor,i,] 2 T— Tr dar dé . (IV.43)

ri_172° %5-1/2

Selecting a mesh space such that the velocity
gradients do not change much over the integration area,

expression (IV.42) can be approximated to

Tiv1/2 (954172
v 2 av _\2 v
e - |02) () =
Isor,i,j 5T i,j+ r36/1,] - r dr dé . (IV.44)
Pi-1/2Y 952172

The integral that appears ih the term above was then
treated in a similar manner as the vorticity in the stream
function source term, ylelding an expression similar to
(IV.40) substituting w by vT/v. Same treatment was performed
on K3/2/£ in equation (IV.43). The velocity gradients of

equation (IV.44) were written as
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_a_"_z_) .1 i+l,] 1,0 o _%i,0 %1
i, °

5. Grid for numerical procedure.

Since large gradients of any properties in the
tangential direction are not expected, an uniform angular

separation was selected In this direction, that is,

AB = ej+1 - ej = constant. (IV.L45)

Also, in order to simplify writing boundary
conditions for the MVL, mesh points were taken on that line,

(see Fig. IV.3), that is, if re is equal P/2, then,

P/2
PG+1 i cos @
1
In general,
r = F . (IV.“G)
G+m 2 cos @
m

In the gap region, an approximately uniform grid

was used. The distance between the two first 1ine is
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r, - ry =4, (IV.47)

Py =Ty = A+ 6§,
I’u - I°3 = A + 26 5 * e (IV.&B)
ry = ry_q =4+ (1-2)6 ,

wlth 4 selected in a way that the edge of the wall sublayer,
taken as y+ = 30, falls right in the middle of two mesh
spaces. Jince the friction velocity and hence the spacial
poslition corresponding to y+= 30 changes from one iteration
to the next, the edge of the wall sublayer does not remain
in its initially prescribed position in the middle of two
mesh spaces. The change in spacial position is insignificant.
That is, A corresponds to

- 3, (n > 1) (IV.49)

n+ 0.5

where n is the smallest integer such that

(G - 1)4 < g - R, (IV.50)

where G is the radial mesh point at r=g (see Fig. IV.3).

§ is given by

2 [ P_R) - (g1 A}
() - ]
(G-1)(a-2)

(IV.51)

In the computer program developed, the following



notation was used:

(a) forr =R, 1

1]
=
-e

(b) for r = Payp? ¥ = ilim(m)’ i-1 = imax(m);
(c¢) for & = 0%, j=1;
(d) for & = emax’ J = Jn;

(e) 144,000 = I 3
(f) for (I'i - R) corresponding to y+ > 30, such that

+ .
(ri-l - R) corresponds to y < 30, 1 = imin.

This notation will be followed from now on.

6. Boundary conditions
6.1. Boundary conditions for 6 = 0% and 6 = © .

For 6 = 0%, expanding the velocity in a Taylor
series in the angular direction, following the notation

just introduced,

21,2 ,1 i,1 382 71,1
and
dv (p_=-6.)2
(v,) = (v,) + (0,-6)) (BBZ) + 3 ( ) +o
i,3 i1 1,1 382 71,1
Since it has been assumed that 82-61 = 93—92, and

neglecting terms of the order of (92—81)3, taking into

account eq. (III.26), then
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(v_) = =(v_) - §(vz) . (IV.52)

1,1 3 %'1,2 1,3

Analogously for K,

K (IV.53)

=
[H
W=

1
1,20 38,3

For vorticity and stream function,

Y31 = 0. (IV.54)

Analogous expressions apply to 6 = € .
max

6.2. Boundary conditions for MVL.

For the velocity equation, from equation (III.30),

one writes, taking 1 = ilim(j)’

(v_.) - (v_) (v_) - (v )
z . 7z Z° . . Z7 .
i,J 1-l:|j -~ l’*]+1 l’J tan BJ.,
or
n.(v_) + (v, )
J oz Z 4.
(v,) = 1,3+1 i-1,3 (IV.55)
1,] n. + 1
J
where
r, = r,
i i-1 (IV.56)
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An expression analogous to (IV.55) is written for K,

K + K

n \
K SENBEETHLE i-1,) - (IV.57)

i’j nJ + l

Again the vortlceclty and stream functions are

W, =9, ., = 0. (Iv.58)

6.3. Boundary conditions at wall.

Starting with the vorticity and stream function,
it can be written, directly from equatlons (III.52) and
(III.35)’

¥y 3 =0, and (IV.59)

3V

- 2,J
W = - - Y . (IV.60)
1, 2 (I‘2-R)2 25

6.3.1l. Boundary condition at wall for axlal momentum equation.

The wall function for the axial velccity is given by
equation (III.43),

v V. y
_ T . T
v, = —& log E ~

o (IV.61)

Taking y = Yp when y+= 30, and im = imin,

continuity of the velocity and 1ts radial gradient is imposed

at polnt y = Yy that 1s, (see Sketch}



109

1
v, Vim
. 3 |
Vims : :
I |
| wall %uncﬂon
|
1’ ! |
: ' }
I | x -
Yima B Yim Y
vT
Vg = — log 30 E, (IV.62)
K
= 30 v
¥y v. (IV.63)

From (IV.61), differentiating at point Ygs one has

Bv%) v, vi
—_] = = . (IV.64h)
a8y B yB 30vk

Now, one writes

v - V. v
B . T (IV.65)

Vg K

im

yim

From (IV.62), (IV.63) and (IV.64),

_ . log 30E
Vim T Ve B vi
Yim ~ V.

Solving this equation for v, yields

v, = ¢x2+ Ny = X s (IV.67)



110

with
x = 30v(%0$ 30E - 1) , (IV.67)
im
n = 33!& . (IV.69)
im

A fictifious value of ?Z, at point im—l i1s then
defined such that, for the numerical procedure, a linear
approximation between points Yim-1 and Yim becomes a
reasonable assumption, regardless of the magnitude of the

actual steep gradient existing in that regilon. Mathematliecally,
it is imposed

- v¥ 2
vim Vim—l _ VT
-y = 30vk * (IV-TO)
Yim "Yim-1
hence
y - V.
im im=1\_
¥ = -
Vim-1 = Vin ( 30 VK Vi o (IV.71)

This fictitious value of the velocity is, then,
used as the wall boundary condition for the axial momentum

equation.

6.3.2. Boundary condition at wall for the turbulence

kinetic energy equation.

Knowlng V. from equation (IV.67), the value of K

at point yg can be calculated using (III.46)
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Ky = v o. (IV.72)

Defining here, also, a fictitious value for K at

point im—l’ one has

K - K

%
im im-1 _ "im

s (IV.73)
Yim = Yim-1 Tim ~ B

or

Jio= ¥ c
: im im=-1 V
¥ = - - 2

K
Yim™ Tv D
T
S0, this value K%m—l represents the wall boundary

conditlons for the turbulence kinetic energy equation.

7. ITERATIVE METHOD

The procedure selected to solve the finite difference
equation (IV.21) is the method of sucessive displacements(Q)
also known as the Gauss-Sliedel method, which is a point
iterative method, where each new value of the parameters is
used 1in the finlte difference equation as soon as it becomes
avallable, For simplicity, however, the coefficients of
equation (IV.21) and the scurce term were assumed to be given
only by the values of the parameters from the previous cycle.

For a certain value of } (angular position), the method

proceeds to iterate from 1 = 2 to 1 = imax(j), sweeping,



this way, one radial line, then proceeding to the next
value of j, Based on the above, equation (IV.21) becomes,

for the nE—lrl iteration:

pn) = o(n=1) ,(n-1) | (n-1) ,(n) _ ,(n-1) ,(n-1)

1,J i+lsj i+l,j i_lyj i'l:J i,J+1 "1,j+1
I¢ (I'l—l)
c{n=l) o(n) o |sor,ind : (IV.75)
1,ij-1 1,j-1 Zi i
s

Included in the procedure is provision for under-
or over-relaxation in order to compensate for variations
of the coefficlents Ci I that, in certain cases, can lead

b

to divergence of the numerical iteration. So, 1t was

taken
(n} _ (n)# (n-1)
@i’J = ap @i,J + (l-—aR) ‘1’1,3 s (IV.76)
%
where, now, ®in§ is the wvalue of @i 3 as given by eqguation
3 3
(IV.75) and ap 1s the relaxation parameter, with ap<l or

uR>l for under- or over-relaxation, respectively.

8. CONVERGENCE CRITERICN
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The first idea was to impose as convergence criterion

that the maximum fractional change of the parameter ¢, in
the field, from one cycle to the next, should not exceed a

prescribed value, il.e.:
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S(A=1) <A (IV.77)
i, max

(1)

However, Gosman et al pointed out that, when it
happens that the value of a variable at a particular node

is much smaller that fhe wvalues at the surrounding nodes,
fluctuations in the small value wlll occur which 1s not
acceptable by the above criterion. This happens, particularly,

to the vorticity. So, it was suggested to base the criterion

on the rate of the change of the variable to the maximum

previous value in the fileld, °é2;l) , that is,
(n) (n~1)
1,0 7 %a,g
k] 3
STRSD) < A (IV.78)
max max

This later approach was adopted here.

9. INITIAL CONDITIONS FOR PARAMETERS

The initial conditions for the axial veloecity
distribution are given by the method of Ibragimov and co-workes
(see Chapter II, section 2.c.).

The turbulence kinetic energy initial conditions

are determlned by

K. =
i,J

rnoj=

s r

[(v;f)i,J + vyt L+ (w_g)i,J] (1v.7)
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with the turbulent intensitles obtained using Bobkov's
empirical correlatlons (see appendix E).
The vorticity 1s taken as zero in the field.

The stream function 1is initially assumed as given

by its definition
— -~ ﬂ
Vg 2= v a2, (IV.80)

with Ve given by Nijsing's assumptions, equation (II.10),i.e.,

T \1/2
- d(l) y
T TW

Aee cos (%-w) dy. (IV.81)

sec || p q0
0

The computer code "HYBBAC" was developed to solve
the equations just descrlbed. This code is presented

in appendix J.
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Fig. IV.l1., Finlte-Difference Grid

maximum velocity
" line (M VL)

Fig. IV.2. Polnts Near East Boundary of Subchannel
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CHAPTER V

DESIGN OF EXPERIMENTAL APPARATUS

1. INTRODUCTION

Measurements were made 1n water flowing within a test
section using a laser Doppler anamometer (LDA) operating
in the fringe mode wilth forward scattering. The cross
section of the test sectlon was designed to simulate an
interior, undisturbed subchannel of a triangular array
rod cluster., The following sections describe the test
section, the hydaulic loop, the laser Doppler anemometer

and traversing mechanism.

2. EXPERIMENTAL APPARATUS
2.1, Test section

It was observed in Chapter II that the cross
sectlon shape adopted by Subbotin and Eifler and Nijsing
introduced perturbation in the subchannels where measurements
were performed. Also, the use of a full scale bundle
scaled up to allow distributed parameter measurements would
be very expensive and require the LDA to operate in a
back-scattering mode which would decrease the scattered

light intensity drastically. The shape adopted for the
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cross section 1s shown in Fig, V.1,

Four constraints were adopted in the selection of the
dimensions of the test section: (1) the aspect ratio P/D
should be as small as possible, preferably below 1,1,
since it is expected that the influence of secondary flows

increases as P/D decreases; (2) the half-gap size, g = P E D,

should be large compared to the probe volume length, lv’
{see Appendix F); (3) the number of hydraulic diameters of
the length, L/DH, should be as large as posslible to insure
fully developed conditions; (4) fabrication cost should be
minimized.

Figs. V.2 and V.3 show variations of the half-gap

dimension, g, and the length of test section required

for L/DH 100, with the rod diameter for different values
of D. A typlcal value for the probe volume length, %,, is

0.5 mm,

Table V.l shows the selected values of test section
dimensions and the values measured in the test section after

fabrication.



TABLE V.I. SELECTED AND ACTUAL PARAMETERS OF TEST SECTION

PARAMETER = D Dy L | L | & |A&;x10°
(in) (in) (ft) DH (mm) (in2)

SELECTED 1.10 2.0 0.668 5 90 2.54 8.75

AFTER

FABRICATION | 1,123 2.014 | 0.787 5 77 3.15 | 10.37

In this table, DH and Af represent the hydraulic

diameter and flow area of a typical interior subchannel.

They are

and

(V.1)

(v.2)

where Pw is the wetted perimeter of the subchannel given
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P =13 . (v.3)
The length L represents the distance from the flow inlet
to the measuring station {(windows).

Fig. V.4 shows the cross section view of test section
with assembly details. Fig. V.5 is an overall view of
the test section with description of components and
dimensions. The test section i1s composed of three sections,
each 2 feet long and, to reduce costs, only one of the
sectlons is provided with windows. However, since the
sections are the same, the section with window can be
relocated to permilt observations into the developing region.
Two tap holes, 19" apart, symmetrically located around
the windows were used for pressure drop measurements to
estimate the average friction velocity and friction
factor. It was fabricated with a low=-copper aluminum
alloy AA-6061 T6, for better corrosion resistance.

-At the measuring statlon, windows were provided on the
four sides of the test section to permit the laser beams to
reach the flowing water., Due to refraction of the beams
on curved surfaces of materlals with different refraction
indices, hollow rods were used at the measuring station,

with apertures 1/2" wide. The hollow rods were, then
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covered by a thin plastic film, 0.010" thick, with water
on both sides of the film, as shown in Fig. V.6. This
way, an optically homogeneous reglon was obtained with
refraction reduced to a negligible level., Distances from
the plexiglas wall inside surface to the flowing water are

in the range from 1,1 to 2.0 in.

2.2 Hydraulic loop

A closed circuilt hydraulic loop was used as shown 1n
Flg. V.7. 1In order to minimize corrosion of the test
section and to have control over the size and concentration
of the seeding particles, distilled water was used to fill

the loop
2.3 The laser Doppler anemometer (LDA)

Principles of the LDA are discussed 1n Appendix F.
The dual scattered beam mode, also called fringe mode, 1is
used due to the simplicity in aligning the beams and its

suitapbility for low seeding particle concentrations.

2.3.1 Opties
Fig. V.8 shows the optics components used in
the set-up. The green line beam (X, = 0.5145u) of a
Spectra Physics model 164 Argon laser 1s split inte two
beams by a Disa model 55L01 optical unit. The two beams
are foéused by a single lens into the flow reglon and the

scattered light is recelved by a light collecting system
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composed of two lens. Flnally the scattered light 1s
focused at the pin hole located in front of a RCA-T265
photo multiplier tube. The current signal generated by
the PMT 1s then fed to the electroniecs. Table V.2 shows
the design elements of the LDA used in the present work,
following the discussion of Appendix F.

In all measurements of turbulent intensities; a
DISA flow direction adapter (Bragg cell), model 55L02,
was used. The frequency diffefence used between the two
beams was 250 KHgz.

For cross correlation measurements, a sequential
method was used as will be discussed later in this chapter.
The laser beam was split lnto two beams. A supplementary
optieal unit was attached to the original one.. The four
resultant beams, in perpendlicular planes, were focused
at the same point. The measurements of the turbulent
intensitlies were then obtained by blocking each of the
original twe beams one at a time. So, the measurements
were made sequential with this set-up and the data were
obtained exactly at the same point. Fig. V.9 shows,

schematically, this set-up.



TABLE V.2. DESIGN

PARAMETER

A. Refractive indices
Air
Water

Plexiglas

B. Laser
Wavelength

Beam diameter (1/e2)

C. Integrated optiecal uni
Distance from beams
Focal length of lens
Half angle between b

Half angle between b

ELEMENTS OF THE LDA

SYMBOL

t

to optlcal axis a
fL

eams in air 8

eams in water B

D, Light collectlng system

Focal length of lens
Focal length of lens

Diameter of pin hole

E. Probe volume
Diameter of beams at
Length

Height

1 f
s
2 big
p
rh
waist b0
2
v
h

DATA

1.33
1.50

0.5145 n

1.5 mm

25 mm
130 mm
10° 50°

g% 10"

200 mm
105 mm

0.1 mm

0.054 mm
0.541 mm

0.078 mm
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TABLE V.2.(cont.)

Depth

Distance between fringes

¥. Seedlng particles
Material
Density relative to water
Shape

Diameter

125

W 0.108 mm
df 1.362
Polysterene
1.0
Spherical

0.234 n



2,3.2, Traverse mechanism,

All optics components were mounted on a hllling machine

table and were distributed on a two-level bed (see Fig. IV,

10). The test section was assemblied horizontally on a

fixed table. So, the positioning of the measuring point was

done by moving the optics. A unit movement of the optics
changes the position of the measurement point in air, X5
and the location of the measuring point in water, Xy » is

related to X, as shown in Appendix G.
2.3.3. Signal processing electronics

The pedestal of the signal generated by the PMT (RCA-
7265, S-20 Spectral response) was removed by a TSI 10095
high pass fllter and then processed by the TSI model 1090

frequency tracker, The frequency signal v is then trans-

D’

formed into an analog voltage signal, Voo

YD .
VD = 5 Vmaxs (V. 4)
max
where
Vnax = upper 1limit of tracker frequency range being
used
v

max maxlmum output voltage
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For the TSI tracker, Vinax - 10 V.,

To obtaln the time-average of Vo the voltage given
by eq. (V.4) is integrated by a RC integrating circuit and
fed to a digital voltmeter (Keithley model 160). The time

averaged value v. is proportional to fhe velocity of the

D
fluid normal to the interference fringes at the point under
study, that is, Fi.

The RMS of the analecg voltage v
model 55D35, RMS voltmeter. Call it

is given by a DISA

The turbulent fluctuation of vy is obtained by removing
the broadening resulting from finite ftransit time and velocity
gradient making use of eqs. (F.24) and (F.27). (See

Appendix F, section 3.1.c), that is

2 .2 ~ a2
vy _ Vp ) 2 lv avD
B T - 1= 3y ) (V.5)
—2 =2 £ ave, Y
. v D
i D .
From eqs. (V.4) and (F.17)}
A Y
= _ W | _max =—
vy 5 5in B 7 D . (V.6)

max



Ny \ ny
Since Aw =|a~ Ai and sln 6 = o sin B ,
w o}
A v
—-— i max —
V. = v . (V. T)
1 2 s8in g8 vmax D
The value of “nax used in all measurements was 5.0 MHgz.
So, numerically,
v; = 0.681 vy m/s s (v.8)
with V; given in volts.

Since the veloclty gradlents were not very large in
the region where measurements were made, the velocity
gradient broadening was neglected. Then, from eq.(V.5)

= 27
since Nf =
=142
2
12 v! _ _
v, = D. 0.00012} , v . (V.9)
vp

However, the smallest value observed for the

e 2
. t —
ratio V vy vy was, for the axial velocity, 0.053, at the
center of the subchannel. At that position ,2 /
vy v

was equal to 0.0028, which is much larger than 0.00012. Then

2
' r— or
-~ ]
Vi = 0.053 vi
' 2 2
vy = 0.681 Vi m/s . (v.10)

/ .2
t
with vy given in volts.
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In the case of turbulent intensities of the secondary
flow components, a frequency shift unit (DISA model 55L02
was used). When a frequency shift 1s used, the interference
fringes move with a velocity equlvalent to the shifting.

The number of fringes crossed by a particle is much larger
than it would be 1f the fringes were still, that 1s, the

effective number (Nf) in this case 1is much larger than

eff
Nf. Based on this argument, the finite transit time

broadening, in measurements of the turbulent intensitles
of secondary flow, can also be neglected. So, equation

(V.10) applies to all cases.

3. MESH GRID USED IN MEASUREMENTS

Measurements were performed along 1l radial lines,
3° apart, within one typical subchannel as shown in
Fig. V.12. In the plane of the cross section, measurements
were made in the directions x and y, instead of r and 6 as
deslred. Only measurements of velocity components
parallel to the walls were possible in order to avoid
beams wilth different paths within the test section and

ensure correct probe volume positioning.

4, MEASURED PARAMETERS

Measurements of the parameters described below were

performed.
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4.1 Axial velocity.

4.2 Turbulence kinetic energy.

Measurements of the turbulent intensities in
the directlons X, y and z were performed. The turbulence

kinetic energy was calculated by the expression:

1 92 12 l2
k = 5| v + vy + V. . (Vv.11)

- L r T
4,3 Reynolds stresses v.v, and VgV

1
Z -
T T
The Reynolds stresses v_v_ and v.v_ were
rz 'z
calculated from sequential measurements of turbulent
intensities along axes 45° from the coordinates X, ¥

and x, z as discussed next.
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Take the plane x-2, see sketeh below:

One writes

v
X

\
Z

Also

Taking the

subtracing them
t

v
X

v
Z

Multiplying,

= Vv cos(% + a) ='£§ v(cos a - sin a) ,(V.12)
= v Sin(% + q) ="£% v(cos a + sin a) ,(V.13)
= vV cOs & R (V.14)
= v s8in o (Vv.15)

time-average of equations (V.12~15) and
from the above egquations, they are reduced to

;‘Cg (vy - vy) o, (V.16)
-2 (v s vy . (V.17)
N

z = E(vl - V2 ) . (V°18)



The time-average of this equation is

Dttt = L —v__ 2
VeV, S E[Vl -V, ] . (V.19)

From equation (V,19), it can be observed that measure-

ment of turbulent intensities at directions making 45° with

- the axis can be used to measure the cross correlation

VoV, = %-[v3 - vy ] : (v.20)

T 1
The cross correlatlions vrvz and vevz can be calculated

T LR
from the wvalues of VeV, and vyvz, by observing that

(see sketch)

132



<
n

p 5 Vg cos 6+ vy sin 8, (V.21)

v =‘vy cos @ = Vo sin 6 . (v.22)

Taking the time averages of(V.21) and (V.22) and subtracting
them from equations (V.21) and (V.22), multiplying by

' _
v, and agaln taking the tlime-average:

v _"TvTr rr
VeV, = V.V, cos B + Vyvz sin © s (V.23)
Y r 1y 8 y 1 l
VgV, = vyvz.cos - v,v, sin 8 . (v.24)

Measurements of v

A S
1

' .
» Vs ,_v3 and v, were performed,

' (L] LI}
From equations (V,19) and (v,20), v v, and VyVs were then

calculated, Finally, plugging those values into (V.23)

and (v.gu), the Reynolds stress VI'VZ and Vevz were obtalned.

h,4, Pressure drop around windows
The pressure drop were measured by an inclined gage
using a gage oil with specific density Py = 2.95. The

average wall shear stress was calculated by

ol

(D
w_ 1["H
o E[Tff] b, (v.25)
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with Ap = (po - p) g AH
where L = distance between tap holes,
AH = incllined gage reading.

The friction factor is given by

f = , (v.26)

5. GENERAL ASPECTS OF ERROR ANALYSIS,
The following sources of error in the measurements
were identified.
1. flow fluctuations
2. electronics error

3. finite integration time.

5.1. Flow fluctuations
The flow fluctuation was estimated to be 1/4
of divlsion of the flowmeter scale. This scale is divided

into 100 parts with the full scale corresponding to
' v

- 30 1
30 gpm. This fluctuation is then given by 0, = <= pz& , (v.27)

where m is the operational flow rate (in gpm) and v, is the

measured velocity.

5.2 Electronics error
It can be divided into two different sources:

a. uncertainty in the analog voltage readout,
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b. wuncertainty in the RM3 voltage.

5.2.1 Uncertainty in the analog voltage readout

The error introduced in the analog

voltage is 1% f.s.d.

of range in use. In volts, the

error is 0.1 V. Transforming into m/s, utilizing

equation (V. 8)

Aﬁ = 0,07 m/s

This error 1s uniformly distributed. The standard

deviation 1s, then, given by

Avi
A {31
This 1s the error for the time-averaged velocity.

For the turbulent intensity, it was assumed that 1t had

the same percentual error as the time-averaged velocity,
that is

(v.29)

_<l.. :
[
L__Ei
'._l
n
2] ]9

5.2.2. Uncertainty in the RMS voltage

This uncertainty affects only the turbulent intensity

measurements. It is 1% of the RMS range in use.
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5.3. Flnite integration time

This error occurs only in the measurement of the
tlme-averaged velocitles and 1t 1s due to turbulent fluctuations
of the flow (see ref.l, p.211).

The measured time-averaged velocity, V&, is given

by

T
V= LJ (t)at, (V.30)
0

H

where the instantaneous velocity is given by

vit) = v + v'(t). (v.31)
T is the integration time and v is the actual time averaged
velocity. The difference between the measured and true

values is

T
. -v=t%
Vp = V = T.[v'(t)dt s (V.32)
0
and the variance 1is
™ rT _
0% = (G& - ?)2 = lzJﬂ vi(g)vi(t?)dtdt . (V.33
T
0+ 0

Defining the autocorrelation coefficient p(t'-t) as

p(tt=t) = V1Tt)_:f;(t') , (V.34)
v
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and taking t = t-t' , equation (V.33) can be reduced %o

— T t
r t
Ué = 2V2 w[dt p(t)dr
T° 4o Jo
—_— AT
[
= gx-T—J‘(l— %) p(T)dTt . (V.35)
0

The integral defined by

= J‘D(T)dr (V.36)

0

Lo
1l

represents the integral time scale of the fluctuation v'(t)
and provides a rough measure of the time interval over
which v'(t) is related to itself. Taking T >> I', 1/7 << 1,
then

-
re ST | (V3D

For istfropic turbulence,

v
[ = —-——-T (Vo38)
VAR
where Vip is the eddy viscosity. Hehce
o2 E:E or
T T °?

2v\1/2
I ”('Tg) - (V.39)
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To calculate Oms Vi is estimated from the

measurements of Y}Vé and ?é through the expression

viv?
\)T = - _I’__Z__ . (V.L{O)

(=2
ar
The integration time, T, used in the experiment was

10 s.

The total error 1s estimated by

1/2
g = [z c;] s (V.41)
1

where the sum 1s over all error causes of the particular

parameter.
6. EXPRESSIONS FOR ERROR ANALYSIS

6.1, Axial velocity

1/2
o7 = [?2 + g% + 02] . (V.42)

A T

6.2, Turbulence kinetic energy

The turbulence kinetic energy is

=l 2 v 2 r2
K 5 (vx + vy + v, ). (V.l43)
Differentiating

8K e . 8K oy . 3K .o,
AK ﬁIAvx+3?§Avy+a_v;sz’



t = 1 2 1/2
where Vi = [vi J .

» then follows:
= t t 1 1 1 t
AK Vo Avx + vy Avy + v AvZ

or, in terms of standard deviations,

———

6.3. Cross correlations v;vé and vévé
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(V.44)

From equations (V.23) and (V.24), one writes the

standard deviations of the errors introduced in the cross

correlations v'v'! and vév; as:

rz
=g cos 6 + ¢ in 6
Orz XZ 5 vz 5 ?
o =g c 8 + ¢ sin 8 .
fz NgA 08 Xz

(V.45)

(V.46)

The subscripts represent the cross correlation.

Analogously to eq. (V.44), from eqs. (V.19) and

(v.20), one obtains

=v! o, + vl o
“xz 1

f + 1

yz 3

Z

With the values of o and ¢
X vz

(V.47)

(V.uU8)

given by (V.47) and

(V.48) plugged into egs. (V.U45) and (V.46), the errors of

1! 'v! ar nd.
vr z and vevZ are fou
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Fig. V.1l. Cross-Section Shape of Test Section
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Fig. V.3. Variation of Length of Test Section for 100 D
with Rod Diameter for Different Values of P/D
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CHAPTER VI

DISCUSSION OF RESULTS

1. INTRODUCTION

Before performing the measurements at the maximum L/DH
position two prelimlnary tests were conducted: the first one,
regarding the symmetry of the flow within the test section
and the second one, related to the develeping region of the
flow. These tests are presented in detail in Appendix H.
From the first test, it was observed that the flow, indeed,
obeyed the symmetry lines of the c¢ross section and that no
assymmetry was 1ntroduced in the flow by either the inlet
nozzle or the fabrication of the test section. Regarding
the development of the flow, it was observed that the dif-
ferences between the velocity profiles for L/DH = 46 and
L/DH = 77 were within the experimental error. However due
to consistency of the deviations, it was concluded that,
for values of L/DH larger than 46, the flow was still in the
developing region. Also it could not be concluded that the
flow was fully developed at L/DH_= 77, since measurements for
L/DH > 77 were not permitted by the present test section.

On the other hand, since the velocity profile did not change
considerably in the range L/Dy = [46, 77], there is no reason
to believe that substantial modifications will occur for

larger L/DH.

153



154

Table VI.1 summarlzes the measurements and conditions
under which they were performed. The bulk velocity of the
flow was calculated from the axial veloclty measurements by

numerically integrating the axlal velocity over the area,

i.e.,
v, == 11 v, 184y (VI.1)
iy y :
where A\ j 1s the measured value of v, at polnt 1.,j and
3
AAi 3 can be observed from the sketch below.
3

"AA, ., 1s gilven b
1,3 g ¥

-

2 2 )

AA = = Ae(fi+l/2 - ri_l/z

Tt , (VI.2)

where A8 is angular separation between two consecutive radial

lines,
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TABLE VI.1. Operational conditions for measurements
performed in rod bundle with P/D = 1.123
| TEST z Rex1g™> | MEASURED
H PARAMETERS
A. PRELIMINARY TESTS
I. Symmetry test 77 27 v,
ITI. Developing Region 15 26 Fz
he 27 v,
77 27 v,
. MEASUREMENTS
I, Axlal veloecity 77 7.9 ?z
77 27 v,
II. Cross correlations:

T 12 t 2
vxvé 77 27 v1%sV5
v;vé 77 27 véz,vaz

III.Turbulent intensities 77 27 v%z,v§z,v"
IV, Secondary flow search 77 27 ?k,?y
V. Pressure drop 15 26 Ap

Le 27 Ap

77 27 Ap




(r). .. .+ (r) |
Ti+1/2 i+i’J2 1.) s (VI.3)

and

+ (r)

(r)iJJ' i,J-1

Hl

Ty 1/ (VI.h)

In order to check the consistency of the present
measurements, for P/D = 1.123, of the axial velocity distri-
bution, the results were compared to Eifler and Nijsing's(l)
data for P/D = 1.10 and P/D = 1.15 and close values of Re.
The presenf data were expected to be between those measure-
ments which, in faet, occurred as can be observed in Figs.
VI.1l.(a), (pb) and (e¢), for different values of §.

From this polnt on, only measurements at L/D = 77 will

be considered.

2. EXPERIMENTAL DATA OBTAINED IN THE PRESENT WORK

Figures VI.2.(a) and (b) show the veloecity distribution

maps (or isovels) for Re = 7.9x103 (flow rate = 7.5 gpm) and

Re = 2.7x10u (flow rate = 22,5 gpm). The differences observed
were larger than expected. The differences were attributed to

the instability of DISA Model 55L20 frequency tracker utilized

in the measurements for the lower Re, requiring very short
integration time (1 sec) to get the time-averaged values of
the velocity. Frequent loss of tracking made these results
unrellable. After this fact was noticed, only the TSI Model

1090 frequency tracker was used since the DISA tracker was
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being modified by the manufacturer.

The curvature of the 1sovels (see Flg. VI.2.(b)), for
® close to 30°, represents a clear indication of the existence
of secondary flow moves in the direction of the subchannel
symmetry line (MVL) for 6 n~ 30°. The loop 1s closed with the
flow moving toward the wall for 6 ~ 15°, The center of the
loop 1is probably in range 6 ~ (20°-25°). The deformations of
the lsovels near the gap can be the result of either or both
of the following speculations. The flirst one is that the
isovels in this region are not affected by the secondary
flow loop described above. Since such flow pushes the isovels
in the wall direction in center of the channel, deformations
are created by continuity of veloclty distribution. The
second one, 1is the possible existence of one more secondary
flow swirl, in_the gap reglon, with the flow moving in the
opposite dlrection of the one described above. In any case,
such observation is not in agreement with the secondary flow
pattern suggested by Nijsing (described in Chapter II, Section
2.6). Hls proposed pattern leads to only one secondary flow
loop with the center at, approximately, 6 = 15°.

Figure VI.3 presents contours of constant turbulence
kinetic energy.

Figure VI.U4 shows the distribution of the Reynolds shear

stress in the radial direction, v;v;, compared to the linear

distribution assumed by Nikyradse for plpe flow (see, for



example, Ref. 2, p. 568). An approximately linear behavior
1s also observed for the experimental points.

Due to the fact that, except for P/D approaching 1,
the assymmetry of the subchannel is not very large, the

assymmetry of the distribution of vé is also small. So,

1
3
bution of vé, should be very small. The experimental error,

the values of v v;, that are directly related to the distri-

however, is large due to the fact that vév; 1s calculated

from measurements of large quantities (see Chapter V, Section

4.3). This led to very scattered experimental data as shown

in Filg. VI.5. No attempt was made to interpret these results.

The experimental data for Re = 2.7x10u are tabulated 1in
Appendix 1.
3. ERROR ANALYSIS

The expresslions required for error analysis have been

discussed in Chapter V, Sectlon 5.

3.1 Axial velocity dilstribution

158

The bulk velocity, for Re = 2.7x10%, 1s v, = 1.35 m/s.

b

The error due to flow fluctuation, obtained from Eq. (V.27) is

F 30 . Y1 100
v 100 = 5575 * 150 v,

Hence, using a typical value of vi/vb equal to 1.0

a
¥ x 100 = 0.32 .
b



The analog voltage error is given by Eq. (V.28)

ag
2 x 100 = 208

Vb = rﬁ x 100 = 3.0%

As will be seen, the largest value of Ve is

of 65v. For water, at 20°C (68°F), v = 1.01}:10'6

from Eq. (V.39)

o -6 1/2
T . 100 = (2 x 60 x %601 x 10 )

Yo

So, the analog voltage error is much larger than

The total error, in the axial velocity, 1s, then

F; X 100 = 3f0%
3.2 Turbulence kinetic energy

From Eq. (V.29), on average, taking vy

Ay 100 = 2299 4 100 = 3.0%

where vi was taken equal to vb.

Cleose to the wall, where vy < v, the error

than the typical value above, while it decreases
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of the order

mz/s. So,

= 0.3%

the others.

(VI.5)

"
q

1ls larger

as the position

moves away from the wall toward the center of the channel. The

error introduced by the RMS voltmeter, for the range of voltage

obtained, was estimated to be of the order of 5%.

So, the
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total error, on average, 1ls approximately 6%, for each tur-

bulent intensity. Table VI.Z2 shows the order of magnitude of

furbulent intensities, near the wall and MVL.

TABLE VI.Z2

ORDER OF MAGNITUDE OF TURBULENT INTENSITIES AND ERRORS,

TURBULENT INTENSITY (VOLTS) | ERROR (VOQLTS)
DIRECTION MVL CLOSE TO WALL MVL WALL
v; . 060 .100 .0036 { .006
v; . 065 .110 .0039 | .0066
v; .115 .250 .0069 | .015
From Eq. (V.u4h),

o, ~ (0.0013 - 0.0051) Volts®

or

Uk '
-"K' x 100 = 12%

Tt ] t
3.3 Cross correlations v;vz and vevz

The application of Eqs.

(V.45-48) led to the con-

clusion that UrZ/V$ is in the range (0.35-~0.52) as the angular

position changes from 8 = 0° to 6 = 30°.
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Analogously, ¢ /vf varies in the range (0.45-0.56) as

0z
¢ goes from 0° to 30°.

b, SECONDARY FLOW SEARCH

A search was conducted in order to detect secondary
flows, using the DISA Model 55L02 Flow Direction Adapter,
however it was not successful. The reason was attributed
to the error associated with the analog vbltage produced by
the frequency tracker. The frequency shift used in the search
was 250 KHZ and the tracker was operated in the range of 500 KHz.
Since the analog voltage error is 1% f.s.d. of the range of
operation, this error ls of the order of 5 KHz. This means that,
for the secondary flow be detected, it has to generate a frequency
shift, at least, of the order of 5 KHz. Since this did not ocecur,
it was concluded that secondary flows were smaller than the
velocity corresponding to 5 KHz, that 1s, smaller than 0.009 m/s.
This means that the secondary flow velocities are smaller than

0.67% of the bulk velocity.

5. DETERMINATION OF MIXING LENGTH AND CONSTANTS OF THE MODEL

From the discussion of Chapter III, one writes:

g -v'v!
C, === 1/2r : (VI.7)
§ YK (3v,/3r)
From the experimental data for v;v; » K and v,, the

value of CU2/§ can be estimated. This was carried out and
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the results, for 6=0° and 6=30°, are shown in Fig. VI.6,
compared to values given by Buleev's formula (Eq. III.17)}
with Cv = 0,20. The discrepancies between the estimated
values and Buleev's occur, mainly, for values of y/§ larger
than 0.5. The average curve shown in Fig. VI.6 represents
the average radial distrilbution of the mixing length over
all angular positions where measurements were performed.
Assuming &=y for points close to the wall, this average is

closely represented by

Loy y
— =< , for 0 < = < 0.44,
y y y
‘ (II1.68)
A
£ = 0.44 + 0.066 sin [ﬁg (£ - o.uu)} ,
y ¥
for 0.44 < % < 1.0, with Cv equal to 0.180. This distribution

y
of the mixing length were used In the analytical analyses,

although the utilization of Buleev's equation would not
introduce appreciable error since the discrepancles occur
only over a reglon where axial velocity gradients are not
very large.

Now, to determine CD’ one observes, from Fig. VI.7,

that close to the wall K = 3.4 vf. From Eq. (III.46)
Cv
5 = 3.4, (v1.8)
C.K
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Hence, CD * 0.30. Better agreement, however, with measurement
of the TKE distribution, were obtained for Cp = 0.38, as can
be seen from Fig. VI.8, for 6=0°. Similar behavior occurs
for other values of 8. So, the value of 0.38 was adopted
for CD.

The discusslon of the other constants was already

presented 1n Chapter III. Table VI.3 compares the constants

used in the present work with those used 1in the past.

6. COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS

In this section, experimental and analytical results
for P/D equal to 1.123 (Re = 2.7x10u) and 1.217 (Re =
1.H9x105) will be discussed. The experimental data for
P/D = 1.123 are those obtained by the present author and
for P/D = 1.217 are Kjellstr&m's(6). The axlial velocity
distributions, for sake of comparison, were also computed
by the Ibragimov's method, described in Chapter II, Section
2.c¢c. The predictions performed by the present one-equation
meodel, for P/D = 1.123, were carried out, utilizing |
(a) C, = 0.180 and CD = 0.38, which are the values obtained
by the author for those constants and (b) C, = 0.22 and
C, = 0.41, which are the values for these constants most

D
frequently recommended in the literature.
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6.1 First case: P/D = 1.123

Flgures VI.9.(a), (b) and (c) show the axial veloclty
distributions for 6=0°, 15° and 30°, respectively. It can be
observed that the results obtained by the present method
provide a closer agreement to the experimental data than those
obtained by Ibragimov's method over most of the subchannel.
The agreement was not satlisfactory in the gap region, though.
As discussed in Appendix G, Section 2, the experimental data
may have been taken 1n the develeoping reglon where the ten-
dency of velocity distribution in the gap reglion is to de-
crease. Since a small decrease in the gap region would not
affect considerably the velocity distribution elsewhere due
to the area and velocity magnitude relations, this could
explain the behavior. The worst deviation, nevertheless,
was less than U4%.

Pigures VI.10.(a), (b} and (c¢) show the TKE distributions
for 6=0°, 15° and 30°, respectively. The agreement between
experimental and analytlcal results are within 10%.

The comparison between the predictions usling the values
of Cv and CD suggested here and using the typical values for
them is presented in Fig. VI.9 anad lQ. These results demon-
strate the generality of the present one-equation model, in

particular the fact that typlcal values of Cv and C. can be

D
utilized to handle an arbitrary rod bundle geometry without

unacceptable error.
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Figure VI.11 shows the streamlines 6f the secondary
flow as predicted by the present model with Cv = 0,180 and
CD = 0.38. Two loops of secondary flow were obtained
flowing In the directions indicated by the arrows. The
strongest loop has 1its center at 6=23° and, as will be shown
later in thils chapter, the secondary flow veloclty is always
less than 0.6% of the bulk veloelty. The weakest loop, near
the gap, has its center at 6=8° and the secondary flow
veloclty 1is less than 0.2% of the bulk velocity. The present
finding of two swirls of secondary flow as well as their
position in the subchannel are in agreement with the discussion
of Section 2. The order of magnitude of the secondary flow 1s

wlthin the expected range as described in Section 4.

6.2 Second case: P/D = 1.217

Figures VI.12.(a), (b) and (c¢) show the axial velocity
distributions for 6=0°, 15° and 30°. The results obtalned by
the present method are in closer agreement with the experimental
data than those obtained by Ibragimov's method. The deviation
is below 4% everywhere in the subchannel.

Figures VI.13.(a), (b) and (c) show the comparison between
analytical and experimental TKE distributions for 6=0°, 18°
and 30°. The agreement 1s within 10%. Notice that, in this
~case, the experimental values of K were normalized by Voo

instead of Vi in Figs. VI.10. v, can be obtained with better

b
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accuracy than Vo> since vy is obtained by integration of the
axial velocity distribution given by a large number of velocity
measurements over the subchannel-area, while v, comes from
single measurements of the local wall shear‘stress. So, errors
in the value of v, may account for part of the deviation. Also,
the analytical predictions, in this case, tend to give lower
values than the experimental data, while, as can be observed
from Figs. VI.10(a), (b) and (c¢), the predictions are usually
larger than the experimental data. This may represent an
indication that the constants C\J and CD should be weak functions
of P/D.

Figure VI.1ll4 shows the predicted secondary flow stream-
lines. Here, agalin, two loops of secondary flow were observed
with the difference that the strongest loop 1s spread over
almost the entire subchannel with the weakest loop reduced to
a small region near the gap and near the wall. However, the
center of the strongest loop, when compared to the P/D = 1.123
case, has not moved considerably (6=21°, in this case).
Kjellstrom attempted to measure the secondary flow velocity
Ve and the experimental data that he obtalned turned out to
be very scattered. The present predictions were compared to
these scattered data as shown in Flg. VI.15, for 6=6°, 12°,
18°, 24°, Although no definite conclusion can be drawn
from this comparison, the analytical predictions are in

agreement with the general trend of the experimental data.
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7. APPLICATIONS OF THE THEORY

7.1 Wall shear stress distribution

Figures VI.16 and 17 show comparisons of experi-
mental and analytical wall shear stress distributions for

P/D

1.10 and P/D = 1.217. The experimental data for

P/D 1.10 are those obtained by Subbotin and co—workers(7)

and for P/D = 1.217 are those obtained by Hall and Svenningsson(lg)
and Kjellstram(6). The agreement between the experimental

data and the predictlons obtained by the present method is
satisfactory, particularly for P/D = 1.10 (within 1%). For

P/D = 1.217, the deviations were less than 2%, which 1s within
the reported experimental error, and the experimental obser-
vatlon that, for this case, the maximum value of the wall shear
stress does not occur at the angular position 6=30° was also

predicted. This featufe is not predicted by Ibragimov's

method.

T.2 Priction factor

The variation of the friction factor with the
Reynolds number is shown in Fig. VI.18. For the same Re,
the friction factors for rod bundle are larger than those for
the smooth tube obtained by Blasius formula (Eq. II.8) and

they increase as P/D 1increases.
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7.3 Effect of Reynolds Number

The effect of the Reynolds number on the secondary
flows and the wall shear stress distribution was studied for
P/D = 1,123

Figure VI.19 shows the streamlines for Re = 2x105.
Comparing this figure to Fig. VI.1ll, 1t can be observed that
the posltions of the secondary flow locops do not change appre-
ciably, but the loop closest to the gap becomes stronger as
Re increases. Flgure VI.20 shows a comparlison between the
predicted secondary flows for Re = 2.7x10u and Re = 2x105
for ©=6°, 12°, 18°, 24°, Observe that, for 0=€6°, which is
within the weakest loop, the maximum value of ve/vb goes from
0.15% to almost 0.4% while, for 8=24°, within the strongest
loop, the increase is only from 0.56% to 0.78%.

Since the secondary flows lncrease with Re, the wall
shear stress distribution should be expected to become more
uniform along the wall, which can be seen from Fig. VI.Z21.
Due to the increase in the secondary flow rate wallward, near
the center of the wall region, carrying high momentum flow,
the position of the maxlimum value of the wall shear stress

moves from 6=30° to lower wvalues of 0.

7.4 Prediction of eddy diffusivities

Filgure VI.22 shows a comparlison between the turbulent

viscosity distributions predicted analytically and the radial
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eddy diffusivity estimated from the present experimental
measurements, at different angular positions, for P/D = 1.123
and Re = 2.7x10u. The agreement 1s within 20%. As discussed

iln Section 3.3, the experimental error involved in the deter-

mination of v;v; is very large. Since e is directly related
>

to v;v; by the relatlon
) ]
rz
3
m,r [asz
Br

(VI.9)

a deviation of 207 between predicted and experimental values

is within the range of uncertainty due to experimental error.

8. FINAL NOTE

All the computations in this chapter were perfofmed
with the grid described in Chapter IV, Section 5. Silxteen
angular positions, 2° apart, were used. The parameter A,
defined by the convergence criterion Eq. (IV.78), was taken
as 0.0001. The computations were processed by an IBM Model
360/65. The average computation time, for each case, was of

the order of 8 minutes.



TABLE VI.3
COMPARISON OF PRESENT VALUES OF CONSTANTS WITH VALUES IN THE LITERATURE

AUTHOR C C g c ¢ APPLICATION

Launder & Ying(B) 0.22 0.39 1.5 2.6 0.365 Square duct

1

&

() ; One-dimensional flow with
Wolfshtein 1 0.22 0.416 1.53 turbulence augmentatlion
' and pressure gradient

]

(5) { % | Heat transfer from
Spalding E 0.179 i 0.224 ! 2.13 % b turbulent separated flow
i ? : ?

Present work 0.180 { 0.38 | 1.30 { 3.0 | 0.37 | Rod bundle

0.LT
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CHAPTER VII

CONCLUSIONS AND RECCOMMENDATIQONS FOR FUTURE WORK

1. CONCLUSIONS

The present study has produced the following

conclusions:

a. Due to the small magnitude of the secondary flows (usually
less than 0.5% of the bulk velocity) in réd bundles,
methods that disturb the flow should not be ekpected to
produce good results. However, even methods as the LDA,
without a solid probe, will only be able to measure those
velocitles 1f a more accurate frequency tracking system
is developed or if very high Reynolds number flows are

investigated.

b. The analytical predictions of the magnitude of the
secondary flows are 1in agreement wlth the experimental
limitation that secondary flow velocltles should be less

Y

than 0.67% of v, for P/D = 1.123 and Re = 2,7x10 .

b

¢. The analytical predictions of the secondary flows, for
P/D = 1.217, are in qualitative agreement with the

scattered data obtained by Kjellstrim.

d. Two loops of secondary flows were predicted inside an
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interlior rod bundle subchannel, although one of them,
located near the gap region, 1s very weak compared to

the other one, and tends to disappear as the P/D increases.
This pattern leads to good predictions of the wall shear

stress distributioen.

The magnitude of the secondary flows relative to the
bulk veloclty increases with Re. The magnitude of the
weakest secondary flow loop ilncreases much faster than
the magnitude of the other one. Regardless of this
disproportional increase in magnitude, no significant

change occurs in the secondary flow pattern.

For the same Reynolds number, the maximum value of the
secondary flow veloclties decreases as P/D increases,
as should be expected, since the assymmetry of the

subchannel also decreases.

. For the same P/D, the wall shear stress distribution

becomes more uniform as Re increases. Due to the increase
in the magnltude of the secondary flows with Re, the
maximum value of thls distribution moves from the angular

position 6=30° to lower values of 6.

The axial velocity distributions predicted are in good

agreement with experimental results.



2.

a.

206

RECOMMENDATIONS FOR FUTURE WORK

It was observed that typlcal values for the constants C,‘J
and CD of the analytical model led to good predictions
for the veloclty fleld. Better agreement was obtalned
wlth the new values determined from the experimental data
for P/D = 1.123. The model with these constants, however,
when applied to the case P/D = 1.217, presented a
deviation that probably could be reduced using slightly
different values for Gv and CD. So, an experimental
study of the effect of P/D as well as Re on the constants
could lead to an optlimazed set of constants for rod

bundles.

The law of the wall, assumed as the wall boundary condition
for the axial momentum equation, was obtained in tube

and flat plate flows. Measurements of the axial velocity
distributlon near the wall certainly could lead to even

more accurate predictions of the velocity field.

Measurements in test sections with larger values of L/DH
are necessary to put to rest the question of the length

of the developing region in rod bundles.

More accurate measurements of cross correlation v}vé are

necessary for a better determination of the mixing length
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distribution necessary for the one-equation models. This
could, probably, be accomplished wlith the LDA operating
with two colers: one for each component. The scattered
light could be separated by Interference filters or a
dichroic mirror and the instantaneous signals generated
by two photomultiplier tubes could be electronically

multiplied leading to the cross correlation sought.

Accurate cross correlatlon measurements, as proposed in

ltem d, has the capability of producing good results for

vévé. This plece of information 1s Important to determine

the degree of anisotropy of flows in rod bundles.

With the existing tracking system, secondary flows can

only be measured for very high Reynolds number and small
P/D, even though the measurements would have a large
experimental error. However, such measurements would
probably show the secondary flow pattern and could be

used as a check of the analytical method presented here.

A digital voltmeter, wlth at least four digits, is required

for these measurements.

Expansion of the present method to handle different
situations as lateral or corner subchannels, fuel rod

spacers, etc., 1s required.

Application of the method to predict temperature fleld
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can also produce important information regarding the
effect of the secondary flows on the wall temperature

distribution and heat transfer coefficlent.

Measurements of vivlI/v?

r z’ "1 obtalned by Trupp and Azad for

different P/D and Reynolds numbers, as well as those of
the author, for P/D = 1.123 and Re = 2.TXIOH, showed a
linear behavior of this parameter with y/§. In view of
such behavior, it seems to the author that it is worth

to Investigate the possibility of correlating, for design
purposes, the cross correlation V;V; directly, instead of
assoclating it to axlal velocity gradiénts by an eddy

diffusivity. The behavior of vévé, within the subchannel,

has still to be investigated, though.

CONCLUDING REMARKS

The author would like to polnt out that simple

statistical turbulence models, such as the one presented here,

adopting the algebralc stress model proposed by Launder and

Ying, can provide good predictions of the axial velocity,

wall shear stress and eddy diffusivity distributions as well

as frietlion factors, for rod bundle subchannels. Also this

model, compared to previous approaches, can take into account

secondary flow effects without substantial increase in
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complexity.

From the experimental point of view, one of the
major limitations of the LDA 1s the presence of curved
surfaces 1n the geometry to be studied. The technique
introduced here can overcome this difficulty in many

practical situatilons.



APPENDIX A

TRANSPORT EQUATIONS FOR COMPUTATION
OF VELOCITY FIELD

Assuming temperature-independent properties, incompressible
flow and neglecting any body forces, the momentum conserva-
tion equation known as Navier-Stokes equation, the derivation
of which can be found in any fluid mechanics book (see, for

ex., ref. 1), In vectorial form, this equation is

2}'1—:.%} P+Y°Y1/="‘-‘:_YP+ \)VZM - (A.{)
Dt

This equation is valid for either laminar or turbulent
flows. For turbulent flows, however, the point properties
would be the instantaneous ones and the equation would be
most difficult to treat analytical or numericially., So, the
flow properties are written as a sum of time-average values

and fluctuating components, that is,

i <<
Ii
i<l
+
i<

) (7.2)

—
il
-oi
+
T
.

Applying (A.2) to equation (A.1), and averaging in time,

one obtains:
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+ Lyp o+ VYY - (T 0) L (B
ot § -

This equatlon was first formulated by Reynolds (1895)
and so bears his name. The term ETET has nine components
and is called the Reynolds, eddy or turbulent stress.

The mass conservation equation or continulty equation

is
V'Y_ = 0. (A.‘t)

Also applying (A.2) to (A.4), one gets

V-‘\Z =0 (A,‘S)

after time-averaging.

Equations (A.3) and (A.5) represent the basic tools
avallable to handle computation of velocity flelds in any
geometry. In c¢ylindrical coordinates, for steady state,

fully developed flow, these eguatlons are:

a) Continuity equation

L2 ¢ 4+ 2 %=0, (A.€)
r or
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since Eﬁ; =0

55 for fully developed flow.
b) Momentum-conservation equation
b,1. Axlal direction
T 20, 5 B oF ? 0, 5 0
T, W% 2% oo R (PG LG, 9%
I Y 38 § 93 2 r or 220

R Ot A - Y C AR U
C ‘ar(' ’ 3’) ‘_ae(eg);

b.,2. Radial direction

_ A= — ~2 - —

o o0 ., G 2% Ue G ) ( ¥ e
o+ U & & o _ L °L L 4
or 90 T § o dr

~ QU - .EL + — - EL 2y ) ﬁ_-—-( Ve — Uﬁ )

¢ or 2 et roroe
e

= G _ ;

E_t: -_ s-—-a—- (q" YG) i)

v Top

b,3. Tangential direction:



— — —_— oy 2
T 9% _ Us 9% U:%e _ _+ OFP p( e

2= o+ = — 5

r Yot C £ coe EAY
% & w2 BEN 2 (R -
L} DY f?' ‘-2%2' | r'ae Y

- T
3 (FW) . U (A.9)
oAl Y'oe

In order to eliminate the gradients of p in the radial
and tangential directions, take g% (egqn. A.8) and 5% r
(eqn. A.9) and subtract them. After tedious rearranging of

the terms, the result can be written in the form:

T —_ ; MO
Ico = v I+ Ig, (a.10)
where
ICT'— U | 25 3%_:63 4 Erg_\" ?_%.4.@.-?_@_
T B¢ Y r-38 or v

213



214

I-—iraﬁ@ UB_?_‘E_B%+§}__§E:
b= 32 Sy T 7 T s T 5¢] v - "
Z — —— —
3 P & _ R0 (A.10-2)
v 36 or iy rob

Dr __:_af___](f&FE;‘) .

36 oF
(A0 -3)
At this point, the definition of vorticity is
introduced as
W= L 2 ¢ - 06 | (A-“)
C oY T

With the above definition, equatlon (A,10) takes the

form:
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This 1s the transport equation for the vorticity.
The term Ic represents convection of vorticity by the
secondary flow and it tends to make the vorticlty constant
along the streamlines., Diffusion of vorticity by viscosity
is given by ID. It tends to make vorticity uniform dver
the duct cross~section by diffusing it from regiohs of high
intensity to regions of low intensity. In laminar flow,
these are the only terms in the equation since Reynolds stresses
do not exist., Hence secondary flow cannot occur in a laminar
flow because these flow mechanisms serve only to transport
and not to generate vorticity., The last term, Isor’

represents production (or destruction) of vorticity. (It

depends on the relative sense of this term to the vorticity),

In order to eliminate the need of working with the
continuity equation (A.6), a stream function ¢ is defined

as

or
(A.12)
Ii. = v V¥

ok



Using this definition, equation (A.7), (A.1l) and
(A.12) are rewritten in the form below, after rearringing
the terms.

Axial momentum equations

4D H(BYY _ B T (WY 12 (2};_.1%)

o " 3[*'38) 30 a('ew) T3\ B v

0 ('30'3 o\ _ ' 9F (A.14)
6 | v3& v gV 0%

Stream function equation [obtalned directly from

eqs, (A.1l1l) and (A.13)]:

) (A.15)

ji.f‘(Eﬂ&)._ :3_(f6%’) - W
ree\rae /) T o

D (W) 2

B u:(.EEL’.) _1 3 (.3‘2
rag of

or -4

, (A.16)
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where I . 1s given by equation (A.10-3).

r

These three last equatlons can only be solved with some
knowledge of the Reynolds stresses. This represents the
closure problem assoclated with the computation of a
turbulent flow. Many turbulénce modéls have been proposed
to provide a closed system of equations. The most important
models applied to rod bundle flows are discussed in the

test.



APPENDIX B

TRANSPORT EQUATION FOR THE
TURBULENCE KINETIC ENERGY (TKE)

In order to provide a closed set of equations, the
one-equatlon turbulence model requires the computatlon of
the turbulence kinetic energy over the region of interest
by solving its transport equation. The TKE transport
equation is derived from the Navier-Stokes equation by
multiplying the momentum equation for each direction by
the corresponding fluctuating velocity component, averaging
in time and then adding the three equations, that 1s:

a.l., axial direction:

< PO — b R 'a" ol 'aU};
) Uy =3 4 WUy 9% i 22
T or Ar + 0:6 Br

4+ Y% 2% L we 9% Ug Uy Y%

0B o8 r o6
— N U —-|_2 _'1-: |2 -_—T ""aP'
+ U U% % + W Eijé U .303 =L b%___
20 EP T
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a,2, peripheral direction:
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a, 3, radiagl direction:
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Equations (B,1),(B.2) and (B.3) are added, and use 1s

made of the definitlion of TKE

2 2 2
k' = .iz_(Ug + Uf + Ve ) ’ (B.4)

and its time-averaged value
(G + O + Ué) . (B.5)

One obtains, using the continuity equation, affer a

very cumbersome rearranging of terms:

ok i D (0. F 2 (R« R (BE
O 4 £ 5 ER) + F &P+ HEF)
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In order to transform thls equation into a more
workable form, a few approximations are necessary:

i. the term Sl,which répresénts diffusion of K by
fluctuating pressure effects, is assumed to be negligible;

ii. fhe terms 82 and SM represent the rate of
dissipation of K by molecular viscosity. Prandtl suggested,

based on dimensional analysis, a simple form for these

terms

S, + 9 = - KX =_D,

where £D is the dissipation length scale of TKE.

DK is assoclated with the mixing length and can be expressed

as

Dy = & -Ji- 5 (B'—’)

where CD is a function of the Reynolds number of
turbulence, Rt' In fact, CD ls inversely proportional to
Rt‘ For Rt large, however, CD is expected to assume a

constant value (see, for example, ref. 2, pg.287).

iii. The terms 83 represents the rate of energy
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transferred from the main flow to the turbulent eddies.
- Gradients of the main velocity are predominant in affecting
this transfer. Neglecting other velocity gradients and

applylng the fully developed flow condition, yields

S = [(ﬂ-@ '303 Ublf iaué . (B.&
37 ? or + 2 yoi )

Making use of the definition of stream functlon given
by equation (A.13) and the conditions of steady state, fully

developed flow, equation (B.6) is reduced to

19 Eo¥YN _ 19 K AL
?5‘“"(;‘5@3 = FEH p'a'r(ar S )

3F  ®F e
— o — Y% k = - Cp l<_.
o |\ 20 v ¢

—— T

T (3R) WEER)]
®.9) |

This 1s the usual form of transport equation for the

TKE used by one-equation turbulence models.



APPENDIX C

ANALYTICAL APPROACH FOR VORTICITY SOURCE TERM

BASED ON THE ALGEBRAIC STRESS MODEL(®’

As shown 1n chapter III, the vorticity source term,

for rod bundle geometrles, can be approximated by

R
Toor = - %H_%r(ue - U )] (c.1)

The starting point to obtailn an analytical

approximation for the difference (vé2 - v;z) is the exact
transport equations for the normal Reynolds stresses in the
tangential and radial directions. They are equations (B.2)
and (B.3) given in appendix B.

Take equation (B.3) in the form:

\

2 — 2 ; —_— —
.g_f *.1.ELTUPU? A ° _ Ug U¢ + EL.Ugo} —
3t r or St CE

“w - 4
Convection

p——
C—

._2[0'32 B0 o' D _ 2 o't _U_‘EL L 'y 9%

CAY o0

\
ol

Generation
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ar OB 3 [ ar
| v— - L —— )
Destruction Redistributicn
._? 2 L2 'E:EI;T . 3 lU'
- A0l 4 S By 4 31.030} —_ e 4 2 ° PV
¢ or b 23 or ¢
N ~— v
Diffuslon
= Tz 2 2 2 P SRR
vt d e 8% _ U d U Do 4ur D
¢ ot Br & e 23 > o0
Y —~ )
Diffusion

(c-2)

Each one of the terms 1n the transport equation for

;;; can be identified as shown in equatilon (C.2).
The approximations involved 1n the algebralc stress

model are:

(a) éince vorticity is produced near solld walls and slnce
only the distribution of ;E; in those regions is of
interest, convection and diffusion terms are neglected

as being very small in those reglons;

(b) generation terms are negligible because gradients of
secondary flows are very small compared to gradients of
the axial flow,and thus are very small compared to the

redistribution term; which as shown in equation (C.10)
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is proportional to axial flow gradients. Note that the
action of the redistribution term is to diminish the
(2},

difference between the normal stress components H

(c) at high Re, dissipative motions should be isotropic.
So, the destructlon terms are approximated by. %,5’ where

€ is the dissipative rate of turbulence energy.

Using the above approximations, equation (C.2) is reduced

to
oA L & . (c.3)
g or 3

Analogous considerations can be applied to the

tangential component of the normal Reynolds stresses, ylelding

PR ., E . (c.4)

§ o8 3

So, an approximate equation for (vé2 - v;z) can be

wrltten as

‘(3% _ %\ o (c.5)
'E“{cae or ) -

Solution of equation (C.5) 1s next required to

(5)

yield (vé2 - véz). However, as quoted by Launder and Ying'’’,
approximations of the correlations between pressure and

veloclty-gradient fluctuatlons are the least certaln aspect



228

of closing the Reynolds stress equations.

It has been shown by Chou(s)

that the fluctuating
component of the pressure obeys a Poisson equation and that
the pressure fluctuatlion can be obtalined by solving such
equation. Take the divergence of the complete Navier-Stokes
equation and apply the continuity equation in order to obtain
the quantity % V¥ (p + p') in terms of veloclity derivatives.

The equation for p' 1s obtained observing that

—~ VP = gV(P+?) 'V(Y*?) (C.6)

Equation (C.6), in cylindrical coordinates, is
(c.7)

LN v P = G+ G +G

where:

= 2| (3B)() - (E)RE) + ()
N 'am- ) ('au.- ’aus) + (%Q)(ga%&)
S (F)E) - GE) (B)N)]

‘ — - } (RN
2] U ur - 2. Je Ve U b_‘Ue + Ur o ] ]
+ ?[ v ’a“(‘ )+ Ur Y90 =Y
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= .
: ! \ U,
Ci= 4 2 of vf O Vg e Ue U; oY
: ¢ dr [rar + e 583
- i Vopd '
2 | gl cle g ol Ur Vg U, Y% ]
Fgé[r'ar e TTe T e 5
v oAlwey L oway 053“5].
3 or 20 233

Observe that the term Cl is mainly products of gradients
of time-averaged and fluctuating velocity components. Term
02 involves only derivatives of instantaneous Reynolds stresses.
Term C3 represents correlations and derivatives of correlations

between veloclty and velocity-gradlent fluctuations.
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The solution of equation (C.7) is cobtained by

application of Green's theorem given p' as an integral over

all space(7):
e = U TR e) AV e)
P 4T - | F _
Volu‘me
! sy o (F as(r*
- q—"r?j p (%) Bn*(y_fg_*) (™)
Surface

. L L3 pendsee) (€9
4 e~ on*
Surdoce

Chou(6) observed that "p' and gradients of p' at a point P
are determined by the turbulent velocity fluctuations vi
not only at P but everywhere within the fluid. Due to the
factor |E:%¥| in the integrands the effect of the velccity
distribution at distant points P¥ on the pressure fluctuation
at P gradually dles away as P¥* recedes farther and farther
from P." Based on the above argument, Chou suggested that
the surface integrals for polnts away from the Immediate

viclnity of a wall can be ‘neglected, reducing equation (C.8)

to
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dVol(Yﬁ)

?'(E}t: - Z%F ‘VZF'LQE) ————

lf.. S_* ‘ (C.9)

Velume.

Now, the value of V?p'(r) given by equatien (C.7)

can be plugged intec eq. (C.9). Multiply both sides of the

C v}

resultant equation by 7386 and average in time. In tensor

notation, equation (C.9) beccmes:

_ ¥* t
£) = | (25 V(20)(2g) _aw
¢ \ 136 T D%, %, 1o e
Ve g.\ ,.5‘ -‘: .‘.'.. \
v A8 By €9
4T | PR, o8 |e- e}
Vel -
where
- D
°F or ¥F, 16 o3, 3
D =12, 2 =22, 2 =2 .
o, o oM, (B o1, 3
An analogous equatlion can be obtalned for the
gquantity Ezi .
) _ar
The above equnation shows that the correlation between
pressure and veloclity-gradient fluctuatlons arises mainly from
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twoe kinds of physical interactions. The first has its origin
in the Interaction between the maln rate of strain and
turbulence and the second from mutual interaction between

turbulence components. So, In a general form, one writes

Ji Eii.'a CP

+ " ] .
F o . fkmz (c.11)

where ¢ij,1 and ¢ij,2 represent the maln rate of strain-
turbulence and turbulence-turbulence 1interactions, respectively.
Utilizing the general form of eq. (C.1l1l), equation
(C.5) becomes:
) 1 - -
_E- oV _ B_U‘> = (q)ee d%‘-)‘ t (%9 d}")a =0, (C'R)
¢ \ vob or

The ¢ terms are next evaluated.
a. Interactlon between the mailn rate of strain and turbulence,

As a first approximation, assuming that the mean
veloclty varies linearly over the volume that can contribute
significantly to the pressure-velocity gradlent correlation,

the term ¢ can be wiitten as

13,1

Lo Clm-‘L 2% (C.13)
CE“ ) ('ag d

where’



QT; 2o (?_Y'm)*(%vt') Vel
a NI lc- 5|

This approximation was first proposed by Chou(6).

Hanjaliécs) proposed that the coeffiecients a?§ could be

satisfactorily approximated by a linear combination of
Reynolds stresses 1lnvolving one (or both) of the velocity

components vj or vi. The expresslon proposed is
mi —_— - — —
Qy = o Uny & + (s(urm % &+ Um0 &g + U0 S

00 )+ (V8 By + [ v g 8] )

+ v o/ + On G Y)Yk 4+ Qoo @?3‘) [k
(c-t4)
where o, B, ¥, n, v and c, are constants. Conditions of
symmetry and mass conservatlion enable five of them to be
determined in terms of the sixth. The correlation

i

to ensure that v and 02 are non-zero.

For the present case, the followling expressions for

vév& vivj is to be replaced by vév‘ K whenever it appears

¢lm,1 are obtained:

e ey ee =
- DU o Us (C.15)
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_ -~ |
b 5 (33) + 0 (%) - 9

Other velocity gradlients were neglected as being much smaller

than gradients of the axial velocity of the flow.
b. Mutual interaction between turbulence components.

In a non-isotropic homogeneous flow in conditlons
where the velocity gradients of the main flow are small or
zerc, only this part is slgnificant iIn the turbulence
redistribution process. This kind of flow decays to the
more probable lsotropic state and the process dencted by
¢1m,2 must proceed to equalize the normal-stress components
and to eliminate the shear stresses. Based on thils reasoning,
Rotta(g) proposed and confirmed through analysls of

experimental data that
t 2 ..
qzii)z = - ( )(“ - ?“6‘&) ) (c.17)

where e 1s the dissipation rate of turbulence kinetic energy
and ¢y, @ constant with value between 2.5 and 3.0. This

expression 1s generally accepted.

Using the expressilons (C.15}, (C.16) and (C.17),

obtained in the previous sections, for the interaction terms,
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equation (C.12) becomes:

8 fr DU &e ér ?..%)
(- 06 (3] + (o - o) (32

— &(.‘f_)(U’E—-U;}) =0 . (C.iS)

2\ k

Using (C.14),

f e — g
(Q';z - (lér\,.) = -_P U".Ué‘ + \;[U"_'U'e‘ U-Btu-e: +U§U'r‘ (\E; - % )] /K

f (R GR - Tg) Ik, ()

(05 -05) = &G +v[WFeE-0") - FFFE [k

N (T AN Rt VI (C.20)

Hanjalié further showed that
v o=- ¢,

B

- (2-602)/11 and

]

s 0.4,

Equation (C.18) can now be written as

—~— AT oTa OF 2 F
-l9(8) S (0 By WY Fa%)] (@ -0 ) =

2\ K

(2-6%) [y 8% _ ooy %] . (c.21)
11 6 or
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The terms - VIv' —2 and - Viv' —2 denote the
r z Jar 8z raé

the rate at which the longitudinal compenents gain energy by
action of the velocity gradients when all other effects are

assumed to be absent. Call it Pk’ that 1is,

o T T AN
Pkfg._ Uy Uy .ag_é_ - U.BUE: Eiﬁ °© (c.22)
¢ P

Replacement of Pk by e 1s consistent with the approximations
made to obtain equatlion (C.5). Thus equation (C.21) 1is

reduced to
I A = [2&
(}Te - Uy .) = c %‘.U‘éU‘B (?-B%) - Ur Ug (——B—S ] 1 (Ca 93)

where . ~ 2(2-—602)

C = —_— T e
(- 2C2)

It has been assumed that

————1

%%{a_\%CB@ 1

T oe

UVl = ou (OB, wie
v

< ¥,

Vi = Cp BT L

The rate of dissipation of turbulence kinetic energy, €, is

given by

236



237

3/
E. - CD ..._k.-_..z .
¢

Taking these facts into account, equation (C.23)

is flnally reduced to

(o8 -0 ) ~ct M%;i)z— (?;}ﬂ 5 (c.24)

with



APPENDIX D

NUMERICAL PROCEDURE TO COMPUTE MIXING LENGTH
USING BULEEV'S EQUATION

Buleev's equation, for the mixing length, %, is(3)

2T

_‘..__-_J.J.é‘_P (D.1)

L~ 2] =

o]

where s is the distance from the polnt belng analysed to the
s011d walls, In the direction.¢.

To numerically obtain &, the contributions of the
rods were divided Into two groups: the first contribution
is that of the rods 1in the imediate vicinity (i.e. rods 1,2,
3,4 in Fig.D.1l) of the subchannel being studied; the second
one is that coming from far away rods. The integral (D.1)
is carried out only over the region of rods "seen'" directly
by the point P (see Fig. D.1).

In cylindrical coordinates, the peint P 1s defined
by (rp,ep). In order that all rods cah be treated By the
same humerical procedure, a carteslan coordinate system is
utilized as shown in fig. D.1. The point P is, then,

expressed by (x ,yp) where

p
X, = £ -

le - "P sin 9’1, .

238



239

The distance from P to the center of the rod "i"

{say CiE(xi,yi)}, is given by
o
2 2
di = | (o) + (9, 90) ] ) (b.3)
and the angle formed by the line connecting the point P to

Ci and the tangent to the corresponding rod, passing through
P, is

= 5¢ ;.R__ < D.4
g = arc éux( di) (v.4)

The distance from P to the surface of the rod 1,

for a given angle B < B1 is

A= d; s @ - [22- d; sm?'@] ¢ . (®.5)

If none of the other rods "projects a shadow" over
rod 1, as 1s shown in fig. D.2, its contribution is given
by

]
=4 S
_(3;

with s given by (D.5) and Bi by (D.4).

(D.6)

In order to determine whether or not a rod j is
projecting a shadow over rod 1, the angle Bij given by the
line connecting P to the center of rod 1 and the 1line tangent
to rod j passing through P is calculated by simple geometry.

Ir Bij > Bi’ no shadow 1s projected by rod j, hence Bi can be



2k

used as one of the integration limits of equation (D.6).
On the other hand, 1if Bij < Bi, the point P cannot see the

rod 1 completely and so, B will be one of the limits of

ij
the integration (D.6).

Thils procedure is followed for all rods, however,
in the estimate of integral (D.6) regarding the contribution
of far away rods, generically called rod "i" 1in this
paragraph, s 1s assumed as being

s = d; - R, (D.7)
yielding

A
=%y SR (D.8)

where ABi limits the portlon of that far away rod "i" seen
by the point P. Thils approximation is reasonable because
usually this Ei is very small compared to the contributions
given by the closer rods and they are only included for
mathematical rigor. This explains the reason for separating
the contributlion for the mixing length into two groups as
mencioned previously.

The integral (D.6), in its most general form can be

written as

+Ps

- st



where BS can be different from Bs,.

L, can be written

1 PS\ Psié
4 df i
'ZL = 5—- j ’:’5&‘ + —Sj A
-(;',Sl s
or
Bs @s
d ag .
o Pg

In the first term, Bs'
following numerical expresslon (4)
Lo
(eodx = Sh__
29937¢
Ag
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Assume 8. > B, .

(0.10)

is divided into 10 parts and the

is applied:

{46061 (£.+§.) + foeseo (a + §3)

_ 48525 (§,+$5) + 212400 (§-§,) ~260550 (f,+ £) + 421368 f } .

The second term is estimated by dlviding (BS-BS,)

into 5 parts and applying the expression

Xg

288

(4),

j (@dx = Sh_Tio(f,+4) + 75 (§+4,) +s0 h]u

g,

tr

In these expressions, h

For the present case, X

where s is given by equation (D.5).

*141
8 and f(x)=r(p)=1 ,

- xi .

Although this numerical procedure differs from that

used by Bender and co-workers(lo),

the results were the same.
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ROD 13

ROD {4

Fig. D.1. Computaticnal Procedure of Buleev's Mixing Length
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region not "seen’
by point P due
te rod 1 shadow

Fig. D.2. "Shadow" of Rod 1 over Rod 3 relative to Point P



APPENDIX E

COMMENT ON THE TURBULENT INTENSITY CORRELATIONS
AS PROPOSED BY BOBKOV AND CO-WORKERS(*1)

Studying experimental data on the intensity of
veloelty fluctuations in turbulent flow in channels of
different shape, Bobkov and co=-workers found that the

turbulent Infensities could be correlated in form

B 2
-B; =2
v e Uy i.'_ Uy, ] A e 3 (E.1)
(U'é)m;r. '
where —
v = Vo'
[ = 4
v, = local axlal velocity,
(vz)max = maximum axlal velocity in the field,
Vi = bulk velocity,

Ai and Bi’ constants functlon of the direction 1i.

They also pointed ocut that relation (E.1l) was
valid regardless of the existence of secondary flows in the

plane of the cross section of the channels.

Since the turbulence kinetlc energy is

CEL R
K:é_LU§+ Lre+m] , (E.2)
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the utilization of correlations to obtain y{ would eliminate
the necessity of solving a transport equation for k. So,
correlations of the type (E,l) seemed very promising.

However, from equatlons (E.1) and (E.2), it can be observed

that
2
, Ul
kK o« if- 2 ] c (E.3)
(%Dnmx
Since (vz)max is obtained by a numerical

procedure, a small deviation in its value would introduce
a conslderably large error 1ln the calculated value of K.
For example, for rod bundles with P/D in the range 1,1 -

1.25, 1t was observed experimentally that (v_) /v. is in

z'max” b

the range 1.1 - 1.23. For illustration, take (vz)max

equal to 1.15 as the actual value of this ratio.

/vb

\2
(i -~ __'____.) = 0O.0170
1S

If an error of 3% is committed in the determination of (v )

245

z'max,

say, to the lower side, (vz)max/vb would be 1,127, and

§ 2,
(t_ ) = ©.017 .
271

The resulting error in the turbulence kilnetic

energy, k, would be
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0.0171C = 00127 0o = 25% .

0.0170

Por this reason, this approcach was not pursued.



APPENDIX F

LASER DOPPLER ANEMOMETER THEORY

1l, PRINCIPLES

When an accoustic or electromagnetic wave,
emitted by a fixed monochromatic source, is scattered by a
moving body before reaching a fixed observer, its frequency
as seen by the filxed observer 1s changed, This 1s known as
the Doppler effect, The observed frequency shift can be

related to the velocity of the body.

Tisc

fixed observer

stationary
monochromat:c
hght source

In the sketch above, the light beam is travelling
in the direction deflned by the unit vector ﬁi with velocity c.
The number of wave fronts incildent upon the

particle per unit time 1is

247
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b= T (F.1)

This 1s also the number of wavefronts scattered by the
particle. Affer scattering one wavefront in the unit direction
vector ﬁsc’ the particle moves toward the wavefront with
velocity v-ﬁsc. Thus, when the next wavefront 1s scattered
after a time interval l/vp, the first wavefront 1ls a distance

lsc from the particle, where

hse = SVl g (S, (F.2)

Asc represents the wavelength of the scattered light in the

direction of the fixed ocbserver.

The Doppler shift is, then, given by

VoxVee-W= & 0 S o Eﬁ[l—t] : (F.3)
A AL A

c-Vo n; V (ﬁSC"ﬁi) (F.4)

Since, for all practical applications of the

LDA, V<<c,
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V.

b ;7. (ﬁu:‘ %() . (F,5)

i
bY

This equation shows that the frequency shift is
directly proportional to the particle velocity component in
the direction defined by the vector difference (ﬁsc-ﬁi).

The Doppler frequency 1s usually measured by an
optical heterodyne technlique. In the LDA, two laser beams
are involved where either only one or both are scattered by
particles in suspension in a fluid and moving with it. A
pPhotocathode mixes the scattered beam with a reference beam,
in the first case, and both scattered beams in the second
one, to generate a current whose a.c. component has a frequency
equal to the difference frequency. Fig. F.1l shows the lay-out
for both set-ups.

Take the first case, the two light beams of

slightly different frequency may be represented by

E, = E;, sin 2TV, t | (F.6)
E, = Exg sin ZTT(Vc."'V'D) t . (F.7)
The photocathode, belng a square law detector,

generates an output current i proportional to the square of

the total electric fleld incident on it:
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Y .2
L~ (E+Ea). (F,8)

Since thé photodetéctor is only capable of following
frequencies up to 10® Hz, since the laser frequency, Voo is
of the order of 101u Hz, in the expansion of 1, eq.(F.8),
using eqs.(F,6) and (F.7), terms involving frequenciles of the
order of Yo will result in a d.c, current proportional to the
time average of those terms. If vp is below the frequency
limit of the photodetector, there will be an a.c, component
which contains the Doppler shift as illustrated by equatlon
(F.8).

=2 4+ £
E ~ | S ,,_,io_ + Eic Ex Sin Qﬁ(\%t+§) ]

(F.9)

where £ 1is a phase angle which is constant 1f the two beams
are coherent.
This technique was first introduced by Yeh and

(12)

Cummins and then applied to a wide range of cases by

different investigators. References (13) and (14) give
detalled description of design of a LDA.

2. ADVANTAGES AND DISADVANTAGES OF LDA

The majJor advantages of the LDA are:



i,

ii,
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since no sqliﬂ prqbe is necessary, the flow 1ls not disturbed
during measurement;

probe volume c¢an be made véry small by correct selectlon

of optical components thus high spacilal resclution is

obtained;

i1ii.no calibration 1s required;

iv.

fluid velocity is directly proportional to frequency
shift.

As dlsadvantages of this technlique, it can be

mencioned;

i.

ii,

difficulty of handling refractions introduced by curved
surfaces;

determination of probe volume position is usually glven

by the distance from walls. Thils 1s accomplished by
focusing the two beams on the wall and then moving the
probe volume to the desired position. Since the dimensions
of the probe volume are very small and due to light
reflection by the wall, 1ts position cannot be determined
visually. So, in many cases, it has to be determined by

the PMT signal (see Sketch).
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beam 1 probe  volume

beam

ar

flow

Although the center of the probe volume 1is on
the wall, part of it is still inside the flow which can
be crossed by seeding particles yielding a Doppler signal
which is detected by the PMT. Moving the probe volume further
Into the wall would glve an incorrect wall position
determination. Light reflection when the beams move from one
region {(wall) to the other (fluid) with different refractive
indeces decreases the signal-to-noise ratio (SNR), making
this procedure be even more difficult. So, 1t can be concluded
that the positioning error involved in the LDA is of the
order of magnltude of the probe volume dimensions. This is
a serious limitation when veloeity profiles are to be
determined in reglons of slze comparable to the probe volume

dimensions.

3. THE DUAL SCATTERED BEAM MODE

The discussion that follows will be concentrated
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on aspects of the dual scattered beam mode, Fig. F,1(b),
since thls is the operational mode used in the present work,
The dual scattered beam mode is also called
"fringes mode" because interference fringes are formed in
the probe volume, Fig. F.2 presents an enlarged view of the
crossing region of the two gausslan beams showing how the
interference fringes are created, By simple geometric
consideration, it can be found that the distance between

two consecutive fringes is

d{r.?t.

Py (F.10)

Since the two incident beams are focused at the

crossing point by a lens with focal length f the beam radius

L’
at the waist is given by Airy disc(15) from diffraction

theory:

b= t22 Af

F.11
D, ( )

where DO is beam diameter at the lens.
The dimenslions of the probe volume, assuming
crossing at walst as shown in Fig. F.2, are usually assumed

as those of an ellipsoild with
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i, = )Eé_ég_ (F,12)
sulﬁ
e = V2 b (F,13)
¥ ———— ]
cos (:5

Figure F.3 shows the light intensity radial
distribution inslde the probe volume. As a particle moves
inslde the probe volume, it scatters light with intensity
propeortional to light intensity along its path. Let AT
be the time that a particle moving with velocity v'takes
to go from one fringe to the next and n, an unit vector

normal to the fringes, then

AT = 9
—.:3:— (F.15)
Ven
The Doppler frequency shift 1s then given by
v . ‘ .v‘ 3 (F.l6)

D-....-r-—-—_——

]
A ds

or, from (F.10),

vD = ’2"%& (V* 3) . (F.l?)
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The product (V1) represents the particle velocity in the
direction normal to the fringes.

The number of interference fringes inside the probe
volume can be calculated by

Ns_:: _hl"_ .
de (F.18)

3.1. Signal Analysis.

Fig. F.4 shows the typical signals generated by
particles A and B (see Flg. F.3) crossing the probe volume
at different positions. The signals have dlifferent
modulatlons due to differences of tﬁe 1ncident light beam
intensities along their paths. Before the signal can be
analysed, the "pedestals" are removed by a high-pass filter.
The current signal generated by the photodetector is, then,
transformed into a fregquency signal by either a frequency
tracker or a spectrum analyser. In general, for a turbulent
flow, a broadening is observed around the Doppler frequency,
vb, that can be atributed to three sources:

(a) finite transit time brcadening;

(b) velocity gradient broadening;

(c) fluctuating velocity component in the direction

normal to the fringes.

3.1.a. Finite transit time broadening, QAv,



The broadening attributable teo finite transit
time is obtalned by analyzing the slgnal from a particle
crossing the probe volume with uniform velocity. The
signal after removing the pedestal can be represented by:

-8(%)
Ls U_T_? ~ oS (2'ﬁ'\’b-t) € ! (F.19)

KPS
where T is the transit time that the particle takes to
cross the probe volume. The Fourler transform of this

signal 1s

‘ o “(Eg)z(""vb)z
_.(mPPV) - g(%) e . (F.20)

Since the assumption of particles with uniform veloclty was

adopted the broadening in the signal P(v) 1s only due to

the finite transit time T, The standard deviation of this

gaussian broadening is obtained by taking

TTY (ALY =

( 2_) (ave) =1 (F.21)
directly from eq. (F.20). Hence

Avf - & (F.22)
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Now the transit time T can be written as

v (F.23)
then
Ave 2,
vb TI-N{- (F.20)

This last expresslion represents the finite transit

time contribution to the frequency broadenlng of the signal.
3.1.b. Velocity gradient broadening, Avq

When velocity gradlents are large over the probe
volume, particles crossing this volume at different regions
have different velocitlies and so generate signals with
different Doppler frequency. This is the cause of the
velocity gradient broadening. Assume a velocity gradient
along the length of the probe volume, [w(see Fig.F.2).

Calling V = Veni , equation (F.17) is reduced to

.vb = 2 N 1@ Vﬂn - (F°25)
A

Differentiating V¥, in the direction of the probe volume

length
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IVp 25&71&(_'3_!11_)2 AVq (F.26)

99y A \7y AY

The probe volume length, €., was calculated taking
the beam radius as determined by a decrease of the light
Intensity by a factor of l/e2 in the radial direction. To
obtain Aﬁﬁ corresponding to one standard deviation of the
frequency broadening, Ay must correspond to a decrease of
the 1light intensity by a factor of 1l/e. Then,lky=ﬂV/2.

Thus, from (F.25) and (F.26), one obtains:

ave b *axm) .
5 = m(-_-——aa (F.27)

This is the Doppler frequency broadening due to velocity
gradients over the probe volume. It can be seen that it
decreases with a decrease in size of the probe volume in

the direction of the veloclity gradient.

3.1.c. Velocity fluctuation broadening, AV

Since the particles crossing the probe volume have
different velocities due to turbulent fluctuations, they
generate different frequency signals and so a broadening is
observer in the frequency spectrum of the signal. This
broadening represents the turbulent intensity of fthe wvelocity

component normal to the interference fringes. If Av is



259

the total broadening of the frequency spectrum, the furbulent

intensity broadening Av' 1s obtained by
. A 2
AV (e é_&)+(f‘_‘@-) ,

¥
where (é\-):c—) and (é_vfi_) are given by egs. (F.24) and
b Vi

(F.27), respectively.

3.2. Seeding particle constraints.

Since the scattered light comes from particles 1n
suspension 1n the fluid, they have to be chosen such that
theilr velocitles are the same as the fluld velocity in
every respect in order to permit the investigator to obtain
all hydrodynamic parameters of the flow just by observing
thelir behavior,

Three important things relative to the seeding
particles have to be carefully examined:

(a) density relative to the fluid whose flow is to be
observed. The density should be as close to the
fluld density as possilible to eliminate velocity
lags that might occur. For example, for a water
flow, polysterene (§ =1.0) particles will follow
the water at any velocity, however PVC ( §=1.54)

will follow the water flow, within 99%, only for
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velocity fluctuatlions up to 10 Khz for particles
with diameter of 5 fl(lG).

(b) The diameter of the particles, dp, should be small
compared to the dlstance between fringes, df, for
good signal modulation. It is usually recommended
that

<& ds . (F.29)

d il
4

P

(c) The concentration of the particles should be very
small to avoid superimposing of signals due to a
large number of particles in the probe volume.

As a rough criterion, the concentration can be
selected to yield no more than two or three particles

inside the probe volume at the time.
4, THE LDA DIRECTIONAL AMBIGUITY

Assume a velocity distribution where the time-
averaged veloclty is small compared to the turbulent

fluctuations (see sketch below).

f{v)

+) v



Since the LDA generates a frequency signal, the
negative tall of this distribution would not be recognized
as such and erroneous values for the average Vv would be
obtained. Another difficulty would be the removal of the
signal pedestal, as discussed, since in the present case
low fregquencies represent an important part of the answer
being sought. So, pedestal removal, with the frequency
signal as 1t 1s, would also lead to wrong values for the
turbulent intensity since part of the signal is cut off.

Thls difficulty, however, is eliminated by
shifting the frequency of the incident beams using Bragg
cells. One of the beams is shifted by + vo/2 and the other
by - Vo/2.

observe“

The discussion presentdin section 1 of this
appendix applles to the present case, leading to

Vv, 4t Ve (M- (F.30)

.'

261



262

for v,4<Vv; . After measuring ¥, , with ¥ known, the
velocity can be easlly obtained, as well as its turbulent

fluctuation.
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Fig. F.3. Light Intensity Radial Distribution in the Probe
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APPENDIX G

EFFECT OF DIFFERENT REFRACTIVE INDECES ON

THE CROSSING POINT OF THE TWO BEAMS

In laser Doppler anemometry, when an integrated
optical unit is used, the two light beams move parallel to
the optical axls of the optical unit lens and are focused
exactly at the focal length of the lens, if the medium is
air. The crossing point will be exactly at the walst of
the beams. However, when measurements are to be made of a
water flow (index of refraction, nw=l.33) separated from the
air by a glass or plexliglas wall (index of refraction,
np=1.50) the position where the two beams cross will change
and the crossing can be off their waists.

From the LDA point of view, it is important to
‘determine the distance from the center of the waist to the
crosslng polnt, since the spacial resolution of the system
decreases as the crossing posiltion moves far from the waist
region due to the Increase of the beam diameter. Another
reagson is the fact that, outside the walst region where the
wavefronts are very nearly plane, the wavefronts of the
beams are spherical. Thls leads to a deformation of the
interference fringes whilch can result in a broadening in

the frequency spectrum of the signal. Ultimately these facts
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will represent errors in the velocity and ifs fluctuating
component measurements,

Fig, G.1 shows the path of one of the beams in the
- situation where the center of the walst 1s off the optical
axis. The optical axls of the lens 1s taken normal to the
wall, The crossing point is characterlzed by the distance
Xy from the inside surface of the wall. The walst posilition
1s determined by the coordinates (xw,yw) as defined in fig.
G.1.

Start writing the refraction law for the interfaces:

i. interface (I)

sin X = T s @ (G.1)
Np
i1, interface (II1)
sin§ = Mp sina = MNe sinB
nw T,lﬁ (G.2)

From triangles PLO and ARO:

Q, = (t+xc)(%) : (6.3)

L

Now:

0,2‘:-' 0.1"ttQT1°(_’
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or
Q= | (L) —tans} t 4 (9 ) 26
; " (G.4)
L L
The distance from the crossing point to the wall,

Xy » 1s then obtained by

ton
where a, is given by eqg. (G.4), and the angles « and ¢

are obtained directly from egs. (G.l) and (G.2), respectively.

To find x and Vi ? write equations (G.1) and (G.2)

in the form
3
o = Qre sm[ (.’l&) sin @ y (G.6)
"o
_ 04 e n g
p = arc o‘”[(;,;) SAEL (G.7)

Differentiating « and ¢ as function of & ,

o G.8
Jx: Cos B ge} ( )..




The deviation €8 1is, then, written as

$6 - _Do Qo:?e
fu

From trilangles L1L20 and B1820, one obtains

D‘ = (‘t"ﬁ- xo) (%) t

Also from triangle B1B2O,

89( = DI 005'29‘ = .
Lot t Lp

From equation (G.1l2)

D= %D, ,
IP'I'{:

with

Xp = ji_gfifL t

X i
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(G.9)

(G.10)

(G.11)

(G.12)

(G.13)

(G.14)

With the set of equations (G.8-14), the parameters
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S s gw, Dl’ DZ’ xp, are obtalned as funetlon of Do, fL,

e, t and Xy S0, how, X, can be calculated by

2
X = D2ws9 (G.15)
a0
and Yo
g = (Zu-xe) tany, (6.16)

Wiﬁh Xy glven by eq. (G.5).

With the above analysis, the position of the
crossing point was determined relative to the inslde surface
of the wall, as well as the coordinates of the center of the
beam waist.

The distance between the center of the waist and

the crossing point, AzM, is

Agm - xcp;"q)xu; (G.lS)

considering eqs. (G.5) and (G.15). _

According to ref, (15), the beam intensity, near
the focal plane, has an intensity distribution that presents
radial minimum points due tco diffraction. The first dark

ring (radial minimum) is the so-called Airy disc and is
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taken as the beam radius at the waist regilon. Defining,

according to sketch below,

Wajg}

o
ft

I &9) ¢ (G.17)
A

i

T 2
1 E‘{N(G@é; (G.18)

where A, 1s the light wavelength is water. The Airy disc

(15)

is given by §° =3,83., It follows that the beam radius

at the waist region, r=b0, equals

by = 122 A _ 192 (’le) A, (G.19)
€q Tw/od¢

Half of the walst length, Z» (also known as
Rayleigh range) is defined by the condition .= §O=3.83.

Hence

Iécz _?_... bc = 244 _T_)E) 3.‘___2-: . (G.20)
&Q Ne® (69)
From the practical point of view, it is recommended
that ‘AZM\ {2z,
Thls last criterion was applied to the set up used

in the present work. The numerical values used are:



’Ai;f 0.5145}1 ,
D=1.5 mm,

a = 25 mm,
f.= 130 mm,

t = 0.25 1in.

From Fig. G.2, 1t can be observed that the crossing
point is always in the waist reglon, except for large values
of Xg s whilch does not occur in the present work. The curve
Xy VS X, shows the variation of the measuring position with
a variation In the focusing lens position relative to the

wall,
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APPENDIX H

PRELIMINARY TEST OF TEST SECTION

Two preliminary tests weré conducted over the test
section: the first one, to determine the symmetry of flow
over the cross section of the test secticn and the second one
was an attempt to determine whether the flow was fully

developed at the position L/DH=77.
H.l. Symmetry test.

Axial velocities at symmetrical points of the
cross section should be equal., So, the axlal veloclty
distributions bver 8 lines, as shown in fig. H.1l., were
measured. The results are presented in figs. H.2~6. The
largest deviation observed was less than 0.5%, which is
well within the 3% experimental error., It was concluded
that the fabrication as well as the inlet section of the
test section did not introduce any measurable assymmetry in

the flow.
H.2. Development of the flow.

The velocity at the entrance of the test section
can be considered uniform. As the flow progresses, a boundary

layer forms and grows at the wall. Downstream, where the

275



276

velocity profile no longer changes aleng the flow path, the
flow is said to be fully developed. To observe this flow
development, axial velocity distributions were measured at
L/Dy* 15, 46, 77. The isovels for L/Dy= 15 and L/Dy= b6
are shown in fig. H,7 and 8. The isovels for L/DH= 77 are
given in fig. VI.2. It can be observed that the isovels
shown in fig. H.8 present most of the characteristics of
those in fig. VI.2.(b). A comparison of the radial
distributions, for 8= and 6=3d° , between the measurements
at L/DH= 46 and 77 is given by fig. H.9, Although the deviations
are within the experimental error, values for L/DH= 77 tend
to be lower at 8=6: and higher at 9=30c . This can be
explalned remembering that, due to largest effect of the
wall shear stress in the gap region, the flow over that
region 1s slowed down, while the flow, In the central region
of the channel, is increased to maintain the same flow rate.
Since the varlations 1n the axial velocity
distribution, when the entrance length 1s increased from
46 to 77 hydraulic dlameters 1s not very large, there is no
reason to believe that very large changes will occur, from
that point on, in the veloclty profile. So, for practical
purpcses, the flow will be assumed fully developed at

L/DH= 77, although no conclusive evidence'was obtained.
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A?PENDIX'I

In this appendilx:

Al

vi

p)
]
AE

TABULATION OF EXPERIMENTAL DATA

inclined draft gage reading

Table I.l1l. Pressure drop measurements
L/Dy | R *1073 AH Tex 102 £x103
(in) (m/s)
15 26 0.32 - -
46 27 0.90+10% | 6.7+1.3 | 5.0%0.5
77 27 1.08+10% | 7.4+41.5 | 6.040.6
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Table 1,2, Measured distribution of parameters
9 y |-V, vl vy vl K vivl
9 g V;!IO ﬁ‘ilo ExlD v—2—xlO ——vrﬂlo
b b
0| 0.047]0.664 1,311 | 0.514 | 0,439 ] 1.087 -
0.20510,839 0.918 | 0.544 | 0.418 | 0.657 0.219
0,3641]0.906 0.796 [ 0.494 | 0.393 ] 0.516 0.184
0.52310.937 ]| 0.740| 0.459] 0.363| 0.445 0.115
0.682]0.973 0.665) 0.413) 0.333| 0.362 0.066
0.84110.999 0.585] 0.398{ 0.313| 0.299 0.027
1.000[1.004 0.548 1 0.393] 0.303] 0.273 0
31 0.057}0.700 1.273 ]| 0.535| 0.373) 1.023 -
0.21410,855 0.936 | 0.550| 0.428) 0,681 -
0.371]0.906 0.819 | 0.5141] 0.3981 0.547 0.163
0.529]0.947 0.763] 0,479 0.368 ] 0.474 0.134
0.686(0.978 0.679 ] 0.424] 0.3371{ 0.377 0.073
0.843|2.004 0.613] 0.403] 0.3171 0,320 0.032
1.000|1.014 0.576 |1 0.3931 0.307 1§ 0.290 0.005
6| 0.08710.767 1,124 ] 0.551{ 0.401 | 0.864 -
0.23910.875 0.918 | 0.541| 0.432 ] 0.660 -
0.391)10.932 0.838 ]| 0.505] 0.402 | 0.560 0.201
0.54410.968 0.777 1 0.490| 0.372 | 0.491 0.130
0.696]0.999 0.702 1 0.4401 0.337 ] 0.400 0.068
0.8488]1.020 | o0.627| 0.414| 0.322| 0.334 0.026
1.000]1.025 g0.609 ]| 0,404 0.327 | 0.317 0.002
91 0.133]0.829 1.039 | 0.5781 0.445| 0,806 -
0.278|0.906 0.913 | 0.572| 0.445| 0.680 -
0.422]0.963 0.847 | 0.501{ 0.4011] 0.565 0.173
0.567(0.999 0.777 )1 0,486 0,384 0.494 0.141
0.71111.025 0.730f 0.4351 0.356} 0.425 0.078
0.856[1.045 0.655| 0.415] 0.336| 0.357 0.040
1.000§1.056 0.632| 0.410| 0.325 ] 0.337 0.012
12}t 0,.06510.772 1.273 | 0.5871 0.382( 1.056 -
0.19010.891 1.007}| 0.564 | 0.443] 0.764 -
0.325]0.947 0.904 1 0,544 0.433] 0.650 0.204
0.460(0.999 0.843] 0.493| 0.399 | 0.556 0.179
0.595(1.035 0.763] 0.478| 0.378| 0.477 0.122
0.73011.056 0.735] 0.4311 0.360| 0.428 0.096
0.865]1.076 0,679 | 0.426| 0.355]| 0.384 0.044
1.000]1.081 0.655| 0.416| 0.350| 0,363 0.017
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8 v vt v o v! K
Y =2 | Exio0] 210 | Zxio | —x10 L_Zx10

N vb Vb vb vb v2 v2

b b

15| 0.12910.881 | 1.067| 0.5811 0.471| 0.849 -

0.253]|0.942 | 0.955| 0.556 | 0.457 | 0.715 -
0.378|0.994 | 0.894] 0.531 ]| 0.426] 0.631 0.205
0.502|1.035 | 0.833| 0.489 1 0.4071] 0.550 0.166
0.627|1.066 | 0.763| 0.4801 0,386 0.481 0.139
0.751|1.087 | 0.730| 0,443 | 0.368] 0.432 0.100
0.876)1.097 | 0.693| 0.422 1 0.358| 0.393 0.056
1.000(1.107 | 0.655| 0.422 ] 0.358]| 0,368 0.021

18  0.091|0.814 | 1.212| 0.602 | 0. 464 | 1,024 -

0.204)0.942 1.002)| 0.570| 0.451 | 0.766 -
0.318|0,994 | 0.936)| 0.532 | 0.445 | 0.679 0.226
0.432]11.035 0.875] 0.522 | 0,429 | 0.612 0.199
0.545]|1.,071 | 0.810]| 0.481 | 0.400 | 0.524 0.169
0.659|1.097 | o.749 | 0.472 | 0.378 | 0,464 0.145
0.77311.117 | 0.730| o.440 ]| 0.371] 0.432 0.101
0.886(1.133 | 0.707) 0.423 | 0.367 ] 0.407 0.054
1.000|1.143 | 0.660| 0.413 | 0.357 ] 0.367 0.023

211 0.071]|0.834 | 1.194] 0.661 | 0.477 | 1.045 -

0.174]0.953 | 0.988) 0.587 | 0.485]0.778 -
0.278|0.994 | 0,941 | 0.548 | 0.474 | 0,705 0.258
0.381|1.040 { 0.899 ] 0.517 | 0.449 ]| 0.639 0.226
0.484)1,081 | 0.838)] 0.503 | 0.428 ] 0.569 0.200
0.5871.107 | 0.801] 0.466 | 0.405] 0,511 0.168
0.690|1.128 | o0.740] 0.457 | 0.389 | 0.454 0.140
0.79411.148 | 0.712| 0.436 | 0.375 | 0.418 0.102
0.89711.159 | 0,702 0.413 ] 0.373| 0.401 0.059
1.000[1.169 0.660| 0,410 0.356 1 0.365 0.034

24 1 0.067]0.865 | 1.128| 0.646 | 0.509 | 0.975 -

0.160]0.932 1.039) 0.644 | 0.485| 0.865 -
0.253{0.990 1.007]| 0.560 | 0.492 | 0.785 0.314
0.347|1.051 | 0.932] 0.525 | 0.457 | 0.676 0.245
O.440)1.081 | 0.875] 0.4598 | 0,438 | 0.603 0.201
0.533|1.123 | 0.815| 0.486 | 0.420 ) 0.543 0.204
0.627]|1.143 | 0.768| 0.448{ 0.3881 0.470 0.162
0.720|1.159 0.721] 0.432 | 0.379 | 0.425 0,128
0.813(1.179 0.702] 0.416 { 0.370| 0.401 0,107
0.907|1.184 [ 0.679| 0,404 | 0,367 0.379 0.040
1.000(1.195 | 0.651f 0.406 | 0,354 ] 0.357 0.025
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) v VAR v v K vIvey
% 2 2.0 | =2x10 | £x10 | —=x10°]|--F=Zx10°

y Vb vy vb Vb V2 v2

b b

271 0.073]0.860 1,053 0.651 | 0.341 | 0.824 -

0.157)0.927 1 1,016 0.637| 0.491 | 0.840 -
0,242011.024 ) 0,978 0,598 | 0,477 | 0.772 | 0.283
0.326]1.056 | 0.941) 0,529 | 0.478 | 0.697 | 0.276
0.410]1.097 ] 0.857]| 0.501 ]| 0,441 ] 0.589 0.225
0.494]1.,128 | 0.810) 0.451 ) 0.416 ] 0.516 | 0.213
0.579{1.148 | 0,768 0. 444} 0.392 ]| 0.470 0,195
0.663|1.174 | 0.730| 0.424 ]| 0,388 | 0,427 | 0.136
0.747|1.190 | 0.6741 0.415] 0.355| 0,376 | 0.112
0.831]1.200 0.651] 0.398] 0.347{ 0.351 0.082
0.916|1.210 0.637| 0.420 | 0.299 | 0.336 | 0.049
1.000|1.220 | 0.604 | 0.393] 0.315 | 0.309 0,017

30 | 0.087]0.927 0.960 | 0.633 | 0.460 ] 0.767 -

0.163|0.973 | 0.993| 0.592 ¢ 0.521 | 0.803 -
0.239|1.004 | 0.9041} 0.593) 0,471 ] 0.695 0.236
0.315|1.071 ] 0.8901 0.556 | 0,414 | 0.636 | 0.224
0.391|1.102| 0.843}t 0.466 | 0.,43610.559 0,188
0.46811,143 0.791 )] 0.433| 0,413 | 0.492 0.195
0.544]1,164 | 0.754 ] 0.401 ] 0.391 | 0.441 | 0.163
0.62011.179 | 0.712| 0.410| 0.360 } 0.402 0.160
0.696{1.200 0.655 1) 0.390 1 0.340 | 0.349 0.113
0.772|1.215 | 0.623]|0.399 ]| 0.308 | 0.321 | 0.070
0.848]1.210 0.604| 0,394 0,302 ]| 0.306 | 0.038
0.92411,210 | 0.609]| 0.396 | 0,294 ] 0.307 | 0.015
1,000]1.220 0.590 | 0,394 | 0.302 | 0.297 | 0.002
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APPENDIX 3

DESCRIPTION AND LISTING OF COMPUTER CODE "HYBBAC"

In order to solve the finite difference equations,
presented in chapter IV, the computer code "HYBBAC"
(HY¥draulics Bare Bundle Analysls Code) was developed., Fig.J.l
shows the block diagram of the organization of the program.
Presented below 1s a list of the subroutines related directly
to the main program and thelr contribution to the computation.
Numbers in parenthesis represent equation numbers as they

appear in the text.

1. BLOCK DATA - Provlides numerical input for the program:
- P, D, Rgs V¢ {flow)
- A(IV.78), N__ (max.# of iterations)

- I, J, (Grid)

2. Inlciallzation Subroutines:

IBRAG - f (II.9), %W/Tw (II.6)

COORD - ris 84, yi=ri—R’TQ (IV.56)

GRID - By 5 (IV.19), ¥y 5 (IV.25)

FLOW - A, (V.1), P (V.3), Dy (V.2), Vo ulk
INIT - Initial conditions (Ch.IV, section 9)
MIXLEN - {(II1.18) or (III.17)

STREAM - ¥ (Iv.81)



34

subroutine CORE.

VELDIS - Vg» V; (A,13)

NORM - normallzation of 1initlal condlitions for V>

for laminar flow.

NORM2 - normalization of output
.
v’v’2,"

T
b vb vt Wﬁax
Print-=out subroutines

PRINT - print-out of parameters distribution
PRINTZ2 - print-out of general information:
f, v,» Ry, Dy, distribution of (Tw/Tw)
CORE - Iterative Subroutine

Fig. J.2 shows the block dlagram of the iterative

viscos - (M/V) (III.11)
MAXVAL - ¢)(n-l) (necessary for A, IV.T77)
max

REYNU - Adjusts bulk velocity yielded by (n-1)

iteration to desired vbulk;
WALL - £ (III1.57), vy (III.67), T/p (I1I.60)
WF - wall boundary conditiocns ,

%

“Ql,J (IV.60), v¥ o1 (Iv.71), K¥ 1 (IV.74)

CONVEC - A (Iv.13.a)

1,J

Its related subroutilnes are listed below.

291
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STRESS - (Ay) (IV,34)
1,3
SOURCE - Source terms (IV,26), (IV,29), (IV.40),
(IV,41)
BOUND - Boundary conditions except wall's.

The nomenclature followed in the program is the

same used by Gosman et al(l7) in the ANSWER code,



BLOCK DATA

293

]

INICIALIZATION

CALL INICIALIZATION
SUBROUTINES -

loop

iteration

Fig.

J. 1-

(CALL

CALL ITERATIVE
SUBROUTINE

SUBROUTINE S

ITERATIVE
SUBROUTINE =

performs one cicle

print out
required ?

of iteration

PRINT

SUBROUTINES

iteraticons
exceeded?

convergence
criterion
satisfied 9

yes

CALL NORMALZATION\ .
SUBROUTINE }

NORMALIZATION
SUBRQUTINE —for cutputs

PRINT |

S
4

Bloeck Diagram of Maln Program

PRINT SUBROUTINE
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VISCOS

iteration ioop

inner

(CALL VISCOS ):::::::
pick parameter to
be iterated _
( CALL MAXVAL ’ A MAXVA L
Yyes
> REYNU
Eompu e wall conditions WE

}

Qoef ficients of equations

{

CONVEC, STRESS,
SOURCE

compute new values
for parameter

!

compute residual

!

( CALL BOUND

I 11

Nax.k es
of |ter§tlon Y
exceededs?

no T "
criferion

istied?

BOUND

no 2quations

Fig. J.2.

i

iterated?

Block Diagram of Subroutine Core




DIMENSIGY R (41,21,8) ANAHMF (9,8) ,ASYHMEL (9) ,BHE{41),BW(L1),BN(41), MATNO0OO0

2ES (41) L2 TITLE(ZT) MaINOOO2
COoOMFON/CVRBLE/R,,ANAME,ASYMBL MAINOGG3
COMMON/CNUMBR/NGW, NP, NV, KX, NL, NM0G, NV, ¥V2,TT, I8, TV MEINQOOU
CORFON/CGRO /TN, TNM, IN, INA, TMAX (21 ,ILIN(2D , X 1(41),x2(21), MATNOQQDS
ZR{4TY VP (81} ,IHIN(4) METHNNDDS
COMKOYN /CPLOR /P17, DIA,DH, ATOT,ET, VAVG ,KPLOW,RORFF,ZMUREF,VE MAINGODT
COMMOY/CGEN/NAAY, TNNER, NPRINT,IP,CC,DPR{Y),RP(2),R3D0 (%) MEINGQDS
CCHMON/CWRLL/TALEV, RTAL {21} ,USTAR (21} ,FR,¥YB(21) MAINOCCY
COMMON /CRBOUND/CR {21) MAINODTOD
COMMON/CFUNC/FH (81,21) MAINOG T
COMMON CCONST/CKLE,CYIS,TDIS,C1,C2 MAINGO12
C#*#*:&**#*i:*%‘#x*#*##*#**##*#**4#**!H-’fﬁ******#*}k##*****#*#:x‘:a‘:x‘xic MIAINOD‘!.g
C SUBROUTINE FOR INITIALISATION AND PROGEAN CONTRHROL MATNOOTU
(3 o ot it o e 8o s it ol o o e e e o o T A e 0 oK e gl e oK ok o o o 80 0 o SRRl o ok ot i o 3 o 3 o 3 o oK RO% oK Tk MATNDO15
C ' ¥aInN0016
Cx&%xTNSURF THAT DIMENSICNS OF AERRYS BRPOVE CORRESPOND WITH VALUES MLINOO17?
C ASSTGNED TG N1T1,NZ2 AND N3 1IN FOLLOWING DATA CARD MAINODO1B
DATS NT,82,M3/707%,27,8/ MAINGO19
INM=TH=-1 MAINOOG2D
JUM=FN~-1 MAINOOZ1

C*%%x REERD LLPELMFRIC INWFORMETION FOR HEADINGS AND TITLES MATNGOZ22
READ {5,200} ATITLE MAINOODZ23
READ{S,290) ANAME,BLSYMRL MATNQQ24

Cxxx CALL INITIALISATICN SUBRGUTINES MAINOODZS
CALL FLOW HATINOO26

CALL TIBRAG MAIROO027

CALL. CGORD MATINOOZ2SB

CALL GRID (N1,N2,N3,BE,B¥,EN,BS) MATINCG29

C*#% YRITE PROBLEM-SPECIFTICATION TNFORMATION MARAINJOG30
WRITE (6,3071) ATITLZE MATNDO3

HRITE (6,310) (K, (ANMAMT {L,¥X),.=1,9) ,K=1{,1IF) MAINOOD32

WRITE (6,312) RORRF,ZMUREF,RF, (K,PR (K} ,K=1,4), (K,RP(X),K=1,4), MATNOO33
2NMAY,CC,IN,IN, (3,TLIM (I} ,TMAX{J) ,d=1,J%) MATINOO34

CELL. INIT (N1, N2, N3,4,AH2H8F MAINDO3S
NITHR=D MATINGO 36

PAGE 1
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10
CHEER

CxEx

CH¥ %

ok

Ok

CXodex

ITERZTTON AND PRINTOUT CONTRCL LOGCP

CONTINUE

NITER=NITER+ ]
CAUSY ONE CYCLE OF ITFRATION 70 BE PERFORMED
CALL CCRE {N1,N2,¥3,A,B%,BW,BN,BS, NAHUE)
TEST IF PRINTOUT TO BY PRODUCED

IF ({NITER+NPRINT-IP) /NPRINT.¥E. SITER/NPRINT) GO TO 10
CALL  YELDIS (N1,N2,W3,4)

CALL PRINT {N1,N2,N3,1)

TF(XFLOW.EQ.1) GG TO 3

CALL DPRINT2

CONTTHRUE

WRITZ (6,703) ({ASYMBL{K),K=7T1,TE)

WRITE {6,104) WITER, {RSDI{K},%x=I1T,IF)
TEST IF MAXIMUM NUMBER OF IT¥RATIONS (NMAX) PERFORMED
IF (NITFR.%Q.NMAX) GO TGO 8

BR5=0.

PO 7 K=JI,IE

TF (ARS (KES) . LT.AES (RSDU{K))) RES=RSDU (X)
RSDU (X} =0.
TEST IF CCUVERGENCE CRITFRION (CC) SATISFIRD
IF {LBS (RES) .6T.CC.0F.NTTER.LE.5) GO TO 1
END OF LOOP

GO TO 9
WRITE (6,106) NITER
CONTINUE

OBTAIN VRLOCITY DISTRIBUTIONS
CALL VELDTS (N1,N2,N3,3)
FINAL PRINT-OUT

CALL DRTHT (81,N2Z,N3,1)
CALL PRINT2

NORHALTZE FINAL OUTPDT

CALL NORM2  (}1,82,83,A)

5E07p .

TORMAT(IHTOMAXIMNUY RESIDUAL FOR TACH VARIARLE//HH NITER,2%,9(

1AL, 2¥) /)

&

Zy

MAINGO3T
MATHNCQ3S
MATINOC39
MATHOO40
MATNOOH
MATINGO42
MATINOD43
MATNOOQU Y
MAINDGYS
MATNOO4G
MATHNOO4T
MATNOOUS
MATNOQOU9
METHQO5D
MATINDO51
MAINQO52
MAINOCS3
MATHOOS5Y
MLINOOSS
MATINOOS6
MAINOOST
MAINGOSS
MaINDO5Y
MAINGO06C
MAINOOB1T
MAINOOG2
MATNQOS3
MuINOOSU
MAINODOS
MATINOOGS
MAINGOBT
MEIND068
MATINGOGY
MEINDOTO
HATNOO0T
HAINQOT2
2

96¢



104
106
200
301

310
312

FORMAT(TH ,I4,5%,9(1PE12.3))

PORMAT (32HCTHE PROCESS DID NOT CONVERGE IN,I5,134  ITEBRATIONS)

FORMAT (924)

FOR¥AT {1H124X,75HFINITE-DIFFERENCE ITERATIVE SCLUTION IS UNDER CON
2SIDERATICY FOR THE CASE OF/ 25X, 75— ~—~m—m o m s m e m i mm e
2m===m- e e ity // X, ?7&4////

3 HGH THE DEPENDENT VARIARLES BEING COHSIDERED ARE,)

PORZAT {1HC 9%,11,3H FSak)

FORMAT {3GHCOTHE INITIAL INTORMATION SUPPLIED I1S//

310%,508ROREF, REVERENCE DENSITY FOR THE FLUID...eeaassaa=,12E15.6/
510¥,50HIMUREF, REFARENCE VISCOSITY FOR THE FLUIDeeessseaa=,1PE1S.0/

51GX'SQHRE' REY:}{O}:DS NI]&BE?"'.I‘..'."!-.‘ﬁ.ll-'..l-_'1PE15-6/
310X, 57HPR'S, RATIOS OF BOHENTUM AND 2ROPERTY DIFTFUSIVITIES ARE/S/
5 18%,4 (38PR{,1I1,2H})=,0PF5.2,2H, )}/

510X,57HRP'S,  RELAXATICN PARAMETERS FOR DEPENDENT VARTABLES ARE//
5 18%,%4 {34R?(,T1,20)=,0PF5.2,24, )/ .

110X, 50HNMAX,  THT MAXTMOM NUMBER OF TTREATIONSeeareaeea=,I16/
310%, 50HCC, THE CONVERGENCY CHITERION.veusnnascnensae=, 1PE15.6/
310%,50HIN, THE NIMBER OF COLUMNS (DIRECTION-1)eeeeoee=,16/
410, S08IN, THE NUMEER OF ROWS (DIRECTION=2) veewena=,16//

511X, 1HI, 10X, 4HILIA,
END

YLLBHIMAY//{H 9L, 3{12,11X)))

A

o
r

MAINDGT3
ARINCOTY
MATNOQTD
KATIWUO07S
MATINGOTY
MAINOOTS
MAINODT9
MATHRDCRBC
MAINGO81
MATNOOB2
MEINGOB3]
MAINQORY
MATHOOED
BAINOORG
MAINGD8T
MATNQO8S
MATINOGES
BATNW0090
MATHE09Y
MAINGOGZ
MAINQO93
MEINCOOY

L6e



SUBROUTINE IHBRAG
COMMON/CGE0/IN, TNN, N, INM, TMAX {21) ,TLIN(21),X1(41),%2(21),
2R (41) , VB (41) ,THTN (4)
COMMON/CPLOW,/P17,LIL,DH,AT0T,RE, VAVG, KFLCOW, ROREF, ZNUREF, VE
COMMON/CHALL/TALAY,RTAL{21) ,USTAR (21) ,FR, YB{21)

e 3 2 o s e g sk e ook ol e Rt ofe o e ol sfe e of i e ok S o e e e o 3 aic o i o e s R ok R e i e o e e e ook sk e AR R

SUBROUTTNE FOR COMPUTATION OF ¥WALL FRICTION BY IBRAGIMOV METHOD
2 3l = v e 3 o e e Nz e e e e 3 Fe g ol e s ek o e e e e o e e Rl ek Rk ok e s ok ek e sk Rk e e R kR ook R

a0

¥ COMPUTE YAV
VYAV=0.5% (3. /3. 14 16%PIT*AL0OG (3.) -DIA)
cH*kok COMPUTE FRICTIOE FACTOR, FR
X=ATOT /Y AVIk2
XK=X* %0, 25%PIT* (1, /SORT {3.) ~0.5) /YAV
XX=~0.02 1% XK**3
RFR= (.58 U2%EXE (XX) )% (1. +. 1% (2. %YAV/DIDA+1.) =% (L, /3.))
PCIR=0.CLUb%R7¥% (-, 2)
TF{KFLO¥.EQ.1) FCIP=16./RE
FR=RFR*FCIR
CH*x COMPUTE DISTRIBUTION OF TAL AND USTAR
TRLEV=0,5%PREVAVEH*®D
AC=3,85%PTT/ (X¥x0, BXYAV)
CC=(AC/2.) *%0.5*3.1416/5.
C=1.-6./3.1016% (3. 1416 /2., /AC) #%0., S*EXP {(-AC) #ERTF (CC)
C=1./C
Y=, 7/ {X*%0. %Y R V)
CC=3.1416/6.%{0.25%B*PIT) **0.5
CD==0.5%3*% (PTT-DIA)
CI=6./{3.1816%R¥PLT) **0  5*EXP(CD) *ERF {CC)
C=1./(1.-CI)
DPETA=3.1816 /6. /FLOAT (JNM)
DO 1 J=1,3N
PETA=DTETA* FLOAT (J- 1)
YT=0, 5% (PIT/COS {TETA) -DIA)
TY=-ERYT
RTAL {J) =C* (1.~-E%P (BY))

EAGS

bl
-

IBRRAOCOT

IRBRAZOOGO2

IEREDOD3
IBRAQOOY
I8RR0005
IBRADODG
IBRAGOQ7
IBRAOOOS
IBRAQGOS
IBERAOCT1O
IBRADOIN
IBRAO01Z
IBRAOOT3
IERAQJ0TL
IBRAOGS
IBKADONE
IBRADOYY
IBRADG18
IBRALOT9
IBRAOD20
IRRAQOZT
IBRAOO2Z2
TBUAGO23
ITBRRONZ24L
TBRAJO2Z2S
IBRAGOZH
IBRAOO2T
TRRADOZSE
THRADU2Z9
TBRA0030
IBRACO3
IBREOO32
IBRA0O33
TE%AGO3YL
IBRADO3S
IBRACH36
4

g6¢e



USTAR (J) = (TALAVHRTAL (J) ) #%G, 5
RBTURN
END

‘'

£

DS
te

I3RA0DO37
IBRACO38
IBRAGD3Q

Lt

66¢e
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15
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ek
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161
102
123

STREXCHED GRID

L= (M~TIB) * (M-TE+1) /2

DR={X1{M) ~X 1 (IR) ~FLOAT(®-I2)%¥X1(2))/FLOAT{(L)
IL=IB+1

DO 15 I=IL,MN
X1{T)=X1{I-1)+X1{2) +FLOAT (I-IL+1) *DR

DO 3 J=1,J¥%

TETA=X2 (J)

X1 (A+J~1)=PTIT/2./C0S {TETA) ~DIk/Z.

RADTIAL DISTANCES, R(I)

DO 4 T=1,IN

EA{I) =0.5%DTA+X1{I)
DETERMINATION OF IMIN

TRIN (NW) =2

IMIN {NF)=2

IMIN(NV)=TIB .

IF (KFLOY.EQ. 1) IMIN(NV)=2

THIN{NX)=IB

TETERMINATION OF ILIM AND IMAX

DO S J=1,JN

THAX {J) ="ed-2

TLIN(J)=M+J-1
FIND PAST ROUNDARY PARAMETERS, CBI{J)

DO 10 J=2,JN#

TE=1LIH{J)

TETA=X2 {J)

CBAI) ={R(IB) -K(IB-1))/R{IR) /{X2{JI+1) —X2 {J)) *TAN (PETR)
PRINT OUT COGRDINATES, ILTM AND IMLY

WRITE(6,101) (X1({I},I=1,1IN)

FRIPE(H, 102) (X2 () ,JI=1,J%)

ARITE (6,103) ((ILIM(L),IMAX{L)),L=1,JN)

RETURN

FORMAT (25H0DISTANCES IN BIRECTION-1/(1H 4E25.8))
FORMAT (25HODISTANCES TN DIRECTION=2/ {1 4F25.8))
FORMAT (2UHOVALYTS OF ILI®X AND IMAX/ (13 4(5(,T4,7Y,I4,5%)))
END

PAGE

COOR0O37
COOROO38
COOROC39
COORIC4D
CODRGBOLUN
COOROOUZ
COOROGU3
COORO0LY
COOROO45S
COOROOYS
COOROOUT
CODROCUE
CODROOAS
COGROLS0D
CNOROGS51
COOROLSH2
COORQ053
COORQO54H
COORALSS5
COORUO5E
COGROOS7
CO0RQ058
COODRGOSY
COOROD6D
COORODA T
COORDG62
COOROD63
COORIOHY
CGOEQO65
COOROCES
COOROO6T
COORGOAE
COORUDGY
COOROOTO
CO0ROOT
COORDGT2
7
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SURROUTINE  GRID  {N1,N2,N3,BE,B¥,BN,B3)
DIMENSION BE(N1).,Ed4 (N1 ,BE(NT),ES(NT)
COMBON /CHUMBR/NW,NF, NV, BK, NL,NMU, V1, NV2,TI, I8, IV
COMMON/CGEO/IN, TNM, IN, INHM, THAX (21) ,ILIN{21) , X1 (41) ,¥2(21),
2R{41), VP (41), INTIN (&)
177 s e se sk o o she e ok ok o ko ok ol R ol e 4 ol e o ol o el o o e o e o ol ok ko ok e o oK ke ok 3ol R B K OK
¢ SUBROUTINE FOR CALCULATION OF BE,BW,BE,BS AND VP
o703 e A vkt ko ok o ol ok e o s e o ok o e e kel o4 ko ol R o o 6 R ot iz ok ok et e it ok R o s Mol vl e e o R R o ok K
DTETL=X2Z {2)
CHwk CONPUTR BE,BW,BN,B5 AND VP
VP (1) =DTZTA*R(1) ¥ {R{2)-R{N))
VP {IN) =DTETAXR {IN) * (R (IN)-R (TNM))
DO 21 I=2,INM
BE{TI) =.25%DTETA* (R(I+1)+R (1)) /(R {T+1)-R (1))
BY (I) =. 25%DTETA* (R{I-1) +R (1)) /(R(T) -R (I-1))
BN (I)=.25% (2 (I+1)-K{I-1))/B{I) /DT2DA
BS (I)=BN(I)
21 VP(I)=DTETA* (R(I+1)-R(I-1})*{R{I+1)+2.*R(I)+R {I-1)) /8.
RETURN
END

w
@

et

GRIDOGGOT
GRIDOGO2
GRIDDDOI
GRIDOODY
GRILOODS
GRIDOODS
GRIDOOOT
GRIDNOOR
GRIPOOGH
GRIDODIO0
GRIDOOC 1
GRIDON1Z2
GRID0OO13
GRIDOOT4
GRIDOGIS
GRIDOD16
GRIDOOD17
GRIDON18
GRIDOO19
GRIDOC2D

cog



SUBROUTINE FLOW

FLOWO0O

COMAMON/CRUNBER/NW, §7F, NV, N, NL,NHU, NVI,NV2,T7,18,1IV FLOWDODZ
COMMON/COFO/IN, INM, JN, INH, DARK (21} ,ILIM{21) , X1 (41),X2(21), FLOWL003
2R {41, VP LT ,IKIN{L) FLOWOOOH
CO&NON/CFLOW/PI?,TIA,DH,ATOT,RF,VAVG,KPLOW,ROPEF,ZﬁUREF,VB FLOE0005
(0 s o s o ok o o o o ek R O ROR SRk e R R o e g iR R R o R R o o R R ek R FLOWGCO06

C SUBROUTING TC COMDITE HYDRAULIC PARAMFETERS CF THEE FLOW FLOWOGOT
R e g el e o o e ok o ol e o ok oo e ol i o R NS O A ol e e ok o o K ok ek e e e sk ek FLOWGO08
c FLOWRL09
CAask COMPUTE CEANNEL AREA FLO¥G010
ATPOT=PIT*DPIT/8. /50RT(3.)~DIa*DIA®3.14159,/48. FLOWOO 11
C#%%x WETTED PERIMETER FLOWOGTZ
PH=DIL*3,14159,/12. FLOWON13
C¥=x HYDRAOLIC DIAMETER FLOWOO14
DH=4,%*ATOT/PY FLOWOO1S
C¥xx AVERAGE VELOCITY FLOWOO16
VAVG=ZHUREF*RE/DH PLOWOD17
RETURN FLOWOO18
END FLOWO(D19
DLGE 3

€0t



SUEROUTINE INIT (M3,NZ,N3,2,LNAME)

DIMENSION A{N1,N2,%3),ANAME {9,N3)

CONMON/CNUMER/NY, NP, NV, NK, RL, ¥MU, NV, NV2,IT,I8, IV

COHEON/CGED /IN, LNM, IN, IN#, THAX (21) ,ILIN{2T) ,X1{4D),X2(21),

2R{81) , VP (41) ,THIN{4)

COMMOK /CPLOW/PIT,DIA, DH,ATOT,RE, VAVG ,KFLOW, ROREF, ZMIREF, VR

COMYMON/CHALL/PALAY,RTAL {21) ,USTAR{21) ,FR,YE(21)

COMMON/CCONST/CE,E,CVIS,CDIS,C1,C2
[k o e gk e oo e i droskodo e ek st ke Ak kR Rk R b ok R ek ko ke fegesk R R ok A
C  SUBROUTINE FOR COMPUTATION OF INITTAL CCONDITIONS
(O % % 2z v Akt e e e ol e ol o e ok e s e ok of Nt ol ok ol e sl o ok i ol s ode s e o ol afe sl ot e e A e e v e e ol Rk e ool ok
C
Cx** SET VALUES IV STORE T0O ZERO

DO 30 K=1,HN3

DO 30 J=1,J¥

PO 36 T=1,IN
30 A{I,T,K)=0
Cwks INITIAT CONDITIONS PORK AXIAL VISLOCITY
C##%% ASSUMING KARMAN'S LINEAR APPROXTMATION AND
C#%* IRRAGTMCOV WALIL SHEAR STEESS DISTRIBUTION

DO 55 J=1,3W

TL=TLIM (1)

DO 55 I=2,IL

TSSUSTAR (J) #X1 {I) /ZNUREF

Y=210G (XS)
5 A{I,J,NV)=USTAR(J)* (2.5%Y+5.5)
Cx*% COMPUTE BULK VELOCITY

CALL REYNU (N1,N2,N3,A)

IF {KFLOW.E0.1) GO 10 65
Cosk COXPUTE MIKING LENGTH

CALT MIXLEN (N1,N2,N3,R)
Cxx% INTTIFL CONDITIONS FOR TKE LSSUMING BOBKOV'S CORRELATION

FV=1.-VAVG/A (IN,.JN,NV)

DO 10 J=1,0%

IL=TMIN (NK) -1

TM=ITIH (T)

PAGE

INTT000

NITOD02
INITO003
INITO004
INITDODS5
INIT0006
INITO007
INIT0008
INTTOCO9
INTITO010
INITO011
INITD012
INIT0013
INITOC14
INITO0015
INITO014
INIT0017
INITOO18
INITOC19
INTT0020
INITOO21
INTTO022
INITO023
INITO02Y
INITGO25
INITO026
THIT0027
INITO028
INIT{029
INIT0030
INITO031
INITGO32
INITDO33
INTITCO34
INITOO35
INITOD36
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CHaHk

ek %
ah
[ k2
50

€ Rk

DO 10 I=IL,I¥
BTE=X1{I) /X1 (I¥)
YZ=—1.4B*ETA
YT=-1.17%ETA
YR=~0.77+ETR
FZ=0.535%EXP {Y2)
PT=0.60%EED (VT)
FL=0.40%EXP {YR)
FR=0, 5% {FZA* 2+ FT¥% 24 FDx% )

A(I,d,NK)=
INITTAL

IF (KFLOW

I? {(KFLOW.
CALL STREAN
CALL VELDIS (M1,

GO TO 50

NORMALTZE INPUT FOR LAMIKAR CASE

PR {PURA (I,J,NV)) *%2
CONDITIONS FOR STRBEANM TFUONCTION
LED.2) GO TO 50
NE.3.AND.TI.EC.3) GO TO 50

(N1,¥2,83,1)

HZ,N3,4)

CALL NOPM {(N1,82,N3,h)

CALL PRINT2
TF(¥FLO4.LT.4) RETURNW

FICTITIOUS VALUFS AT WALL FOR VELCCITY AND TKE

CRLL WF

RETURN
ZND

PRINT INITIAL CONDITIONS

CALL PRINT (N1,N2,u3,R)

(N1,N2,83,A,NV)
CALL WF (N1,2,N3,A,NK)

PAG

oy}

=

INITH037
INITOD38
TNTITO039
INITO040

INITOOU

INITOOR4Z
INITOGA3
INITO044
INETGlus
INITOGUD
INITOOUT
INITOOU3
INITOCU9
INITAGH0
INTTOO051
INIe0052
INTITO053
INITGOSH
INITOGHS
INITOOS6
THNTTG057
THITOO58
INITDOS59
INITCO60
INTT0061
IHIT0062
INTT0063

11
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SUBROUTINE MIXLEN {N7,N2,83,R)
DTHENSION A(N1,E2,53)
COMMON/CNONMER/NW , NF, NV, §K,NT, 48U, NV1,NV2,TI,I%,IV
COBMON/CGEQ/IN, INA,IN, NN, ITNAX(21) ,ILIN(2Y), X1 (41 ,X2{21),
ZR{41),VE{41) ,ININ (8)
COMMON/CFLOW/PIT,DIL,DH, ATOT,RE, VAVG,KFLOW, ROREF, ZNUREF, VE
{9 s e s e o ok sl e afe e e o e e s e Sk e ok e ok ol ofe ok ok s ot ofe e ool e e e e el e S0 R e ook ok a3 o o o o 5k
C  SUBRQUTINE TO COMNPUTE THE MIYING LYKGTH
Crdoofost ok e e vl ok Rl e ko ek R Ak ok et R R R R R kR R R RN R R F F R R R R R R R R gk
DO 10 J=1,JKN
IH=ILIN{J)
Do 10 T=2,1H
RIA=Y1{(I) /¥ 1{IH)
IF (ETA.GT.0.44) GO TC 15
A{I,J,NL)=X1(D

GO TO 10
15 CT=3, 14159/, 38% {2TA-0.44)
A{T,J,NLY= (D t4+0.066*STN {CT) ) *X 1 (1H)
10 CONTINUE
RETURN
END

PAGE

MTXLEGC1
MIXLOG02
MIXLCOD3
MIXLOQOL
MIWLGOO05
BIXLOODDG
MIXLOOO7
MIXLOOGS
HIXL0009
MIXL0019
MIXLOOT1
MIXLOD12
MIXL0013
BTIZLO0T4
HIXLOO15
MIZLOO1G
MIXLOG17Y
MIYLOOR
KWIXLOG19
MIXLOO20
MIXLGG21
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SUBROGTINE CORE {N1,N¥2,83,k,BE,B¥W,EN,
DIMBNSIGN ANAME{I,N3)

DIMENSTON 2 (H1,N2,83),BE(N1),PR(NT), BE(N1),BS(81)

DINENSION BAE({41,21) ,8AW{47,21),BAN{41,21),8A5(41,21),S0RCE(41,21)
COMMON/CHNUSRR/NY ,NF, NV, NK,NL,KMU, NVi,NV2, 11, I8, IV
COMM N/CGFO/I%,ENE TN, GNA, THAX (21) ,TLTN(21) LK1 (81) , X2 (21) ,
23(#1; VP {41) ,TMIN(4)
CCHMMON/CPLOW/®IT,DTA, DH,ATOT, 8%, VAVG, KFLOW, ROREF, ZHUREF, VB
COMNON/CGEN /NHAY, THNTR, NPRINT, TR, CC, PR (9) , PP (9) » R5DU (9)
COMMON/CWALL /TRLEV, RTAL {21) ,USTAR(21) ,FR,¥YB{21)
COMNON/CBOUND/CB {21)
COMMON /CFUNC /PR {81,21)
COMMON/CCONST/CK,E,LVTS,CDIS

BS,ANANE)

£21,C2

¢ sl 3 o dhe e ol 3 g a0 s o oie sk o e e B 3 e 3 e e o R e e o e ale i e o ol ok ol s o ok ol sl e s K OR o e 0 e N R R R e e

C

ITTERATION SURBKOUTINE

{7 s ok 3 e S 3 de o sl o o e ot e sk it 3R R g ok e e e e R o ole e e S e ok s e i SR o v e A o sl e = 35 O ofe e o ek ok K

C
C¥kk

Cxxx

s

Casn
1

ok

CF o 3

£ g

CHFCK KIND OF FLOW
TF(KFLOW.EQ. 1) GO TO 1
OBTAIN TURBULENT VISCOSTTY

CALL VISCOS {NM1,N2,N3,R)

CBTAIN PW{I,J) FOR STRESS MODEL
IF (KFLOW.NE.4) GO TO 1
CaLl STRESS (E1,N2,¥%3,R)

ITERATION CYCLES
DO 20 K=II,TIF
TF(X.EQ. NH) BP=~3.%IMUREF/XT(2) #%2
TG=IMIN (K)

COMPUTE DIFFUSIOGN,CONVECTION
DG 16 J=2,JN4
TH=TIHAX {J)

DO 10 I=IG,TIY

OBTAIN COMVECTION COEFFICTIENTS

CALL CONVES (N1,N2,H23,A,kP,aW,EN,

AND SOURCE TEREMS

35,1,J,K)

CORPUTE DIFRUSTON+CONVECTION COEF¥FICIENTS
IF({K.PQ.¥H.0R.KJEQ.HF) €0 Tn 5

OREOGCH
coan@COQ
COREQDDS
COREQCOOL
CORROQLsS
COREQNQOE
COREGQOGT
COREDNOGA
CORECOOY9
COREQO10
COREOCT11
COREDO12
COREDO13
COREQC(O1Y
COREOD1S
CORECOTH
COREDU1T
COREQO18
COREGO19
COREQNZD
CORECD21
COREOQ22
COREQO23

nowogﬁ

COHS

CCREJ025
COREDRO26
CGREQQZ7
CoRBOO23
CORE{QD29
COREDRO30
CORELOI
COREQO32
COREDDAS
COREUG34
COREQL35
CORTOC36
13
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AXTAL VELGCITY AND TKR ECUATIONS
EARE(L,J)=BE{I) % {2.+ (& (1+1,T,000) +2{I,J,NKU)) /PR (K)) +AE
BAN{I,J)=B¥ (1) * (2.+{A {I~1,J,NU9) +A (T,J,800) ) /PR{K)) +AW
FAN(I,J)=BU{T)*{2.+ (A (T, I+, NNU) +4 (L,J,NNH)) /PR {K)) +AN
BAS{I,J)=BS(I)%{2.+(A(L,3-1,NMU)+A(I,J,NMy)) /PR(K)) +AS
GO T0 10

VORTICITY AND STREAM FUNCTION EQUATIONS
BAR (T,0)=2.%B& (I) +LAF
BAW(TI,J) =2.%BW (I} +AW
BAN (I,J)=2.%*BN(I)+AN
PAS{T,J)=2.*B3(T)+AS

COMPITE SCURCE TERMS FOR VORTICTITY AND STREAN FUNCTION
CALL SOURCE (W1,N2,N3,4,SORCE,I,J,K)

CONTINUE
INNFR ITFRATIONS
DO 80 IT=1,INNEE
TF(K.¥E.NV.0R.KPLOWLEQ. 1) GG TC 20

ADJUST USTAR({J) AND FRICTION FACTOR, FR
CALL WALL {N1,NZ,N3,R)

CONTINUE

PARAMETER AT WALL
CALL WP (N1,82,83,4,K)

COMPUTE MAXIMUA VALUE OF PARAMARTER OVER FIFLD
CALL MEXVAL (N1,N2,N3,%,K,AMAEX)

DG 70 J=2,JNM

INTERNRL DOINTS
TH=IMAY (1)

DO 70 I=IG,IH

COMPUTE SOURCE TERY FOR AXTAL VELOCITY AND TKE
IF(K.HE.NV.AND.K.NE.NK) GO T0 15
CALL SOURCE (%1,%2,F3,A,30RCP,I,d,X)

CONTINUY

COMPUTE FINITE DIFFERENCE EQUETION
IF(K.EQ.NW.AND.T.EQ.2) GO TO 3D
W NUM=RAE (T,J) %2 {I+1,J,K) +R2% (I,J) %2 {I~1,0,K) +BaAN({I,3)*4{I,J+1,K)

J+BAS{T,J) ¥R (T,d-1,K) «502C% (T,J)

s\

COREDO3T
COREQL3E
COREGD39
CGRECOUD
COREOOUD
CORROOU2
CORREOQLZ
COREQOUY
COREDNO4G
CORENDL4A
COREDOL7T
CORENOUS
COREQQL9
COREDNOS0
CORECO51
COREQOGS2
COREQD53
COREQO54
COREOOSS
CORT0O56
CORENO57
COREQOLE
COREDDSY
COREQOGD
CORE0061
CORE0062
CORFO063
COREQOHE
COREQO6GS
COPEDDAS
COREQOART
COREOOGS
COREDNCHS
COREQOTS
CCREOCT
COREDOT2
1u

goE



O

C oo
70

Coksek
ok

.80
30

Cx#

300

ADNM=RER(T,J) +BAA(I,J)+EAN{I,d)+3A5(I,J)
30 TO 35
FINITE DIFFRRENCE RQUATICON FOR VORTICITY NEAR WALL

ANUM=3AE [2,0) %1 (3,3,K) +BAW (2,3) *aF*A (2,d, NF) +BAN(2,J) A (2,0+1,K) +

/BAS (2,J) %A (2,J-1,K) +SORCE(2,J)

ADNM=BAE (2,J) + (0.5+BAW (2,J) ) +BAN (2,J) +BAS (2,J)
CONTINUE

IP (ADNM.Z0.0.) GO TO 70

STORE OLD VALUE OF PARAMITER

Z=L1{I,J,K)
CALCULATE NEW VALUE

A(T,J,K)=AKUM/ADNN
CALCULATE RFSIDUAL

TF{AMAX.Z0.0.) 50 T0 70
RL={A{T,J,K)~2) /ANAX

UNDER~ OR OVE®R-REBLAY, IF SPECIFIFD
A(I,J,X)=Z+RP{K)*(A(I,J,K) ~2)

IF (A8S(RL).GT.ABS{RSDU(X)}) RSDU(K) =RL
CONTINUE
COMPUTEZ PARAMETR®P AT BOUNDARIES

CALL BOUND (§1,82,N83,4,K)
TRST IF CONVERGENCH CRITLRION (CC) SATISFIED
TF(AB5 (RSDU(K)) .LT.CC) GO TC 90

CONTINUE

CONTINUE

IF(KFLOW.NE.3) GO TO 300

COMPUTE STREAM FUNCTTION USING NIJSING'S APPRONIMATION
CALL STREAM (N1,82,N3,3)

CONTINUE

RETURN

END

PAGE

COREDOH?3
COREQDT4
TOREOOTS
COREGQTH
COREQGTT
COREDOTE
COREOQODTY
CORTGO8D
COREQOS1]
COREQQR2
COREQDB3
COREQQSY
COREOQAS
COREDGSE
CORFEQDET
COREQQRRE
COREQOS9
COREQD9G
COREDC91
LCOREQNNIZ
CDREGO93
CORECGO94
COREOGYD
CORESOD6
COREDDIT
COREDOYSY
COREDNDIQ
COREGI00
COREGINN
COREQ1D2
COREDT03
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SUBRODTINE HAXYAL (W1,82,M3,A,K,AHAX)
DTYNENSTION B {N1,N82,%3)
COMMON/CNUMBR/NU,8F, NV, 8B, NL, N8O, NV1,9V2, 1%, IV
COMMON/COFRO/IN, THY, JN, INKE, THAX (21) ,ILIM (21} ,X1{81),X2(21),
2R{4TY,VP{BT) , IHIN(4)
(9 o 24 e A s ek ol ook e v sl e s ol oy e R A ke koo s Aen sl s ook e ook o i s 3o ok e sl o e e ode ool e o e e o o ik ok sk
¢ SUBROUTINE TO FIND MAXIMUY VALUE OF VARIABLES OVER THE FIFLD
(e sk Bt A e ok ol o e e e e oo e e e ol ol e e ol o sk ok e sk ok e o e e Wl ol e s e ok ookl ok ke e ok ok K
CAMAY=0.0
DO 15 J=1,J8
IH=TLIM (J)
DO 15 I=1,1H
TF(A3S(A{I,J,%)).GT.ABS{AMAX))} AMAX=R(I,J,X)
15 CONTINUR
RETURN
 END

PAGE

MAXVOOO
HAXYO0D2Z2
MAXV(O03
MAXVOOOL
MAXVGOO05
MLXVAOL0S
MAXVGOO7
MEXV{008
MAYVOO09
HAXVOO01D
MAXVOO1T
HAXVOD12
MAXVO013
MAXVOOTY
MAXVCO15
MAXVCG16

16
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SUPROUTINE STREZM
DIMENSION A{N1,%2,N3)
COGHMON/CNUNRR /8%, NF, ¥V, NK, N1, ¥NMU, 8V1,NV2,TI,IE, IV
COMEQH/CGEG/IN, INM, N, INM, TMAX (21) ,ILIA(Z2T) X1 (81 X221,

2R {8V VD (47) ,THIN (8)
COMMON/CFLO%/PIT,DIA,DE,ATOT,RE, VAVG,KFLOW,ROREF, ZMIIRAF, VB
COMNON/CHALL/TALAV,RTAL(21) ,USTAK{21) ,FR,¥YB(21)

(R sk ol dk g e o ok ook e ole o ok B e ol R ok N uk o ek ek A sk ok e ol R R ok R Rk K ool e AR oK ok A R R R R R R R R R ok

c SUBRCUTINE TO COHMPUTE STREAM FUNCTION USING NIJSING APPROYIHMATION

oo s g s e ek ok el o ke R e ot ke e ok e ol e R o ok R Rk R e ek Rk R R kR R sk kR A R R R R
C==0.19%TALAV**2 /ZNUREF
DO 100 J=2,JIN4
TETA=X2 (J)

DU=(RTAL {J+ 1) =RTAL{J=-1) ) /(X2 (J+1) =X2{J-1))
TH=IMAX (J)
CR=C*X 1 (TH+1)
Do 100 1=2,1I4
ANGLF=13, 14 159=X1 (T} /X1 (1H+1)
109 B {I,J,NF)=CR¥DU*SIN (ANGLE)
RETURN
END

(HT1,N2,%3, %)

o o
C)O

an
&

[an ]
D

'[.
"F
STﬁuOGD3
STRESOO4
STRENDNNS
S5TRESDO6
STREQCO7
STREQOOS
STREODO9
STREQO1D
STREOOM
STREDO12
STREGO13
STREZO1L
STRENO1S
STRECO15
STREGOTY
STREDO1B
STREGQO19
STREDQ2
STRECGO21

L
ﬂLA

TIE



SUREOUTINE STRESS (N1,¥2,¥3,2)

DIMENSION A (N1,82,N3)

COMMON/CMUMER/NW, NP, NV, NK, NL, MU, V1, NV2,II,I5,IV

COMMON/CGED /TN, INM, IN, IBM, INAK (21) , TLIM{21) ,X1(81),%2(2N),

2R (41),VP {41y ,TATH{4)

COMMON/CPLOW/PIT,DIA,DH,ATOT,3F, VAVG,XFLOK, ROREF, ZHUREF, VB

COMMON/CFRUNC/Fd (41,21)

COMMON/CCONST/CK,€,CYIS,CDIS,C1,02
Otk mk kxR R PR B R R R R REERERRER LT RN
C  STRESS MODEL FO8 CONPUTATION OF VORTICITY SOURCE THRM
(30 3 o e Aok ok Sk sl e o o e e e R o S ol e e e i ol ol e s ok ok ok i e e s e o 3k 3 ok e o e v 3ok o ol Je ol e Bt ok e e ook
C .
CH%% COMPUTE CONSTANT C

CB==2.% (5.%C2~2.) /11./{C1-2.%C2)

C=CB*CVIS/CDIS

DO 100 J=1,JN

TH=TLIM (J}

Do 100 I=1,IF

FH(I,J)=0.0

IL=IMIN (NV) -1

TP(I.LT.IL} GO TO 100
C*%% CCMPUTE TANGENTIAL VELOCITY GRADIENT, DVT

DYT=0.0

IF(J.%0. 1.0R.J.EQ.JN}) GO TO 5

IF(I.6T.ILIN (J-1)) GO TC &4
Cxx% INTERHAL POINTS

DYT= (A (I,J+1,BV)-A{T,J-1,NV)) /7 {2.%¥2(2) *R (1))

GC TO 5
Caxx FAST BOUNDARY
4 DVT={B(I,Jd+1,NV} -A(T,TJ NV} /{X2(2)*R(T))
5 DVTS=DVT*DVT
CH¥%¥ COMPUTE RADIAL VELOCITY GRADIZNT,DVR
DVE=0.0

IF(I.EQ.ILIN(I)) GO TO 6
C*%k* INTERNAL POINTS
RO={B(T) ~B(T-1) )/ (R{T+1)-B (1))

TRESOODS
TRESQDDT
TRZS50008
TRES00G9
TRESDO010
TRESOOI
TRES0012
TRES(G013
TRESCO 14
TRESGO15
TRES0016
TRESO017
TRESJ018
TRESCO19
TRESG020
TRESQOO 21
TRES0022
TRESGO23
TRESG024
TRESOO25
TRE30G26
TRESQQ027
TRESGO28
TRESO023
TRE50030
TRIS0021
TRES0O032
TRESGO33
TRESCO34
TRES0035
TRES003e
18
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DVR={RO* (2 {T+1,J ,8Y) =k {I,d,NV))+ (2{I,J,NV)-2(I-1,0,8V))/R0)/ TRESGO37

Z{F{TI+1)-R{I-1})) TRESGO3H

50 TO 10 TRESG039

Cx*% POINTS AT EAST BOUNDARY TRESO04
é DVR= (A (I,J,NV) -2 {(I-1,3,N6V)) /{R{T)-BR{I-1)) - TRESOOY T
16 DYRS=DVR*DVE TRESO0H2
XL=a{1,J,NL) ¥%*2 TRESONE]

C*%% COMPUTE FUNCTION F¥W{I,J) TRESOGH4L
TF{A(T,J,NK) . FD.C.0) GO 70 100 TRESOHNLS
FH{I,d)=C*XL* {DVTS-DVRS) /A (T,J,NK) TRES0N46

106 CONTINUGE _ TRESNQ47
RETURN PRES0048

FND TRESO0U49

ETE



SURKDDTINE SOURCE (N1,82,N3,%,SO0RCE,I,J,K)

DIAEZNSION A{(K1,42,%3),3CRCE (§1,N2)
COMMOK/CNUNER/NW,NF, NV, K¥,NL,NMU, RV1,NV2,TI,1I2,17
COMAOK/CGER/IN, INM, IN, INE, IRAX (21} ,ILIN{21) ,X1{41),X2(21),
2R{41),UP {81}, THIN(E)

COMMON/CFLOW/PIT,DIA, DA, ATOT,RE, VAVG ,KFLOW, RORTF,ZMUREF, VE

CONMON/CHALL/TALAY, RTAL(21) ,USTAR{21} ,FK,YE(21)
COMMON/CFUNC/FR (81,21)
COMMON/CCONST/CK, E,CVIS,CDIS, 01,02

(0 8 i ok e sk o ok ok ool ool ok o o o e e o ot i ok 3 ok ok ok o e ol et e ok e ol e e e o sk o v ke o A ok R e ol

—~
A

UBROUTINE FOR CALCULATION OF SOURCE TERMS

o 3.3 ol S0k e e g i o o s OR e o ok T R R ok sl o R R e ol o ol o B e dk e o e o i e e R o e o o ook

C ek
¢ ok e
1

Otk

ek

%ok ok

GO TO (1,2,3,8),K

FOR VORTICITY EQUATION
TURBULENT FLOW WITH RECTRCULATION

SORCE(I,J)=0.0

TF(I.LT.INTN(NV)) RETURN

C=0.25/Z8UKEF

D=(R(I+1)-R(I-1))/R{T)

DF=F# {I+1,J+1) %A (I1+1,J+1,NK) +¥% (I-1,J-1) *A(T-1,J-1,NK) -
FR{I-1,J+ ) *A{T-1,T¢1,8K)=Fu {I+1,J-1) %A {I+1,J-1,HNK) -D* (
JPR{T,J+1) *¥A (I, 047, 8K} —FW{I,J-1) %A {I,J-1, NK) )

SORCE (I,J)=-C*DF

RETTRY

FOR STREAM FUNCTION EQUATION

Cm.125%R (1) #X2(2) /ZMUREF
DE=(R(TI+1)~B(I-1)) % (R (T, 3, 8W) +2 (T, T+ 1, NW) +2 (T, J-7,N0)) +
JUR{I+T) —R{D))*A{I+1,J,N0)+ (R{I)-B(I-1)) %A (I-1,J, N¥)
SORCE {I,J) =C*DF

KRETURN
FOR AXTAL VELOCITY ROUATION

IF(KFLOW.GT. 1) GO T3 30
LAMINARZ FLOW

SOBCE{I,J)=8./(DIR*¥DTA) #VD(I)

RETURN
TUGRBULENT PLOW

PAGE

SO0URCO01
SCUROGO2
SOURDOCG3
S0URODCY
SOURAGHS
S00RG006
S0URQODT
5001294508
SOURII09
SO0URGGI0
50026011
50080012
30URQ013
S0URD0Y
S0BRO0OIS
SOURO016
SOUR001T
30URVG18
S0UR0O19
SOURDO020
SQURO0O21
SOURO022
S0UR0023
SOUROOZ24
SQURO025
SQURD026
SOUROQ27T
SOURGO28
SOUR0O29
SOUROO30
SOURD031
SOUR0O032
SCURON33
SOURQG34
SOURGG35
S0URCO36
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30

CERR
g
[ o

(0 st e e

41

42

SORCEA{T,J) =2, ¥FPR¥VAVG*%2 /L4 UREF/DH=VE (I)
RETURN

FOR TURBULENCE KINETIC ENERGY EQUATION

DTRETE=42(2)
COMPYTRE SORCEY

DYV 1= ({A{I+1,3, NV} =A{TI,J,NV))*(R{I)-R{I-1)) /(R(T+1)~E(I))
AT, I NV) ~A(I-1,J, NN ) {(R{I+T) -2 (1)} /{R(I})-B(I-N))) /(R{I+])~
/B{I-1))

DY2= (A {T,J+1,8V) =2 (T ,d-1,8V)) /{2.*2 (T)*DTETA)

DF= (R (T+1)-R{I-1))*{A {I,Jd-1, 00 +A (T, T+1,0M0) ) +2. % (R {T) -R(T=1)) *
JE{T=1,3,8K0) +2, % (R(I+1) -8B (1)) *A{I+1,J,NdaU)
SORCTI1=DTETAXR (T) /8. 4DF# {DV1%%2+ DY2%42)
COMPUTE SORCE?2

¥R1=A (I ,J+1,NK)*%1,5/4 (T,J+1,NL)
XX2=A{T,J-1,N%) **1,.5 /A (T,J-1,H1L)
XK3=A(I+1,J,NR) ¥%1,5 /8 (I+1,J,NL)

TF(I.E0.2) GO TO 41

I¥OU=A(I-1,d,NK)**1.5/A{I-1,J,NL)

GO TO 42

XKH=2,% {(A(L,J,NK) +A {I-1,J,8K)) /2.) #%1.5/4 (I ,J,NL)
XKO=A{I,J,NK}#**1.5/2 (1,3, NL)

XKE=2, % XKH- XKD

PE= (R{T+1) -2 (I-1)) % {(XK1+XK2)+2. % (R (L) ~R{I-1)) *XKi+
2.5 (R(I+1)=R{T)) *XK3
SORCE2=-CDIS*DTETA*R (I) /8. *DK/ZMURET

SOPCE (I,0) =50RCE1+SORCE2Z

RETURN

END

ro

&

SQURCO3T
SOURO(3E
SOURDD3Y
SOURQCYD
SOUROO41
SQUEQQU?Z
SOUR0OO43
SOURODOY
SOURODUS
SOURDD46
SOURCLA7T
SOUEQ048
SOURDGYY
SOURJNSD
SOUROO5S
SOUYRCO52
SOUROO53
SOURDOS54
S50UROD55
SOUR0O0O56
SOUROGLRT
SOUROOSA
SOUR0D59
SOUR0OCOD
SOURDOHD
SOURY062
SCURDO63
S0URQ06Y

21
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SURROUTINE VISCOS (N1,N2,K3,2)

DIMENSION A{W1,H52,83)
COMHON/CNUMER/NY, NF, NV, NK,NL,NMU, VI, NV2,15, 17, TV
COMMON/CGED/IR, TN, IN,INM, TMAX {21) ,TLIH (21 , X1 (41),X¥2{21) ,

2R{UTY ,VEEY) ,IHIN(4)

CUMMON /CPLOW/PTI?,DIA,DH,ATOT,RE, VAVG,KFLOK, ROREF, 2ZHURER, VB
COMMON/CHALL/TALAV, RYAL (21) ,USTAR{21), 7R, Y5 {21)
COMMON/CCONST/CK,E,CVIS,CDIS,C1,C2

3 e e 3k e o okt s e e e e 2k e ok e ok o ok o e st e e ok sk ool o ok e R B K e RO ok ko ek ok e

C

SUBRCQUTINE FOR CALCULATION OF THY TURBULENT YISCOSITY

3% 35 % o o 3 3 s e 0 e 3 o ok ool o e sk B ok Kol R R e o ook e e ok e e ave e o e 3k ik ok o e sk o

10

DO 1¢ J=1,JN

IT=THIN (NK) -1

IH=ILI M ()

DO 10 I=IL,IN

XE=%(I,J,NK)
A(T,Jd,NMUy=CVIS*A(I,J,NL)*SQRT (XK) /ZMURET
RETORN

END

YISCO00
vIscogoz
vischoos
VvISCOO04
VISCOL05
VISCDH06
VIsCooa7
vIsCOH08
VISCOo09
vIscid019d
VISCOG1
VIZCONi2
viscopi3
VISCEO 14
VISC0015
VIsCco01e
YISCGO17
¥IsC(e01s
VISCH019

9T¢



SUBROUTINE C(CGONVFEC (N1,82,N3,A,AE,B%,AN,AS,TI,3,K)
DIMENSION B(N1,N2,u3)
COMMOHN /CNYMDBR/HNY NP, NV, NX,NL,UNMU, NV, NV2,T7,1E,1IV
COMBON/CGHO /TN, TNM, IN, INK, IHAY (21) ,ILIM(21) , X1 {(41),¥2{21),
2R{U1),VP{41) ,INIY (&)
(3 ok e o ok o ko ok R R e sje e o aie ok e ok s Sl S ok skal e oS sk o ol 3 el e 9k 3 of e o e o i o ok oo ok e ok e ok ol ok Ak ok
C SUBROUTINE FOR CALCULATION OF AE,AW,AN,AS
{7 s e o sk s ol ot e s ge s e ok o sk o ke e skoak e sl okt 3 ok ool A R s o o o o ol e ot ke ke i sk e ok A st ke o o ok ok oK o o 3
C
Cxa SET COEPFICIENTS TO ZERO
BE=G.0
AW=0.D
AN=0,0
AS=(.0
C**%%x STRYAM FUNCTIQN EQUATION
TF{K.BEQ.NF) RETURY
IF{I.EQ.IAAX (T)) GO TOQO S
Cx&% CCMPUTE AR,AW,AN,AS FOR THE OTHER EQUATIONS
GE=A(I+1,0-1,NF) +A{T,J3-1,8F)-A(T+1, I+, NF)-A(I,TJ+1,NF)
GW=A({T~1,J+1,NF) +A{I,J+1,NF) -2 {I-1,J-1,NF) -4 {I,J-1,H4F)
GN=A (T+1,.J+1,NF) +A (T +1,3,NF) -A{I-1,d+1,NF)-A(I-1,T,NF)
GS=2 (I~1,J=1,0F) +A(I-1,J,9F) -2 {T+1,d0-1,NF)—-A (I+1,J,87)

GO Tn 10
CHxt COEFFICTIENTS NEAR EAST PCUNDARY
5 GE=—A{T+1,J+1,NP) =2 (L,d+1,NF)-A(I,J,NF)

GW=A (I~-1,J+ 1, NF)~A(Z-1,T~1,NF)+a(T,J+1,NF)
GN=A{I+1,J+7,8F)~A(I-1,3¢1, NF)-A(I-1,J,NF)
GS=A{I-1,T~1,0F) +2 (1-1,0,9P) +L(1I,J,H7)
19 AE=0.125%(GE+ABS (G))
AW=0.125% {GW+ABS (G¥H})
AN=0.125% {GH+ABS (GN))
AS=0.125% (GS+AD3 {GS3))
RETURN

END

CONVEO01
COoNV0002
CONVO003
CORVOD0Y
CONVG005
CONVRCD6
CONVEO07
CONV0008
cCONV0009
CONVOD1D
CONVCO 11
CONV(012
CONV0013
CONVOO14
CONVO015
CONVOD16
CONVDD17
CONVDG18
CONVO019
CONV0020
CONVYO021
CoNV0022
CONV0023
CONVOD24
CONVO025
CONV0O026
CONVD027
CONVDO28
CONVO029
CONVDO30
CONV(O031
CONVOO032
COuvV0n33
CONVOO34
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SOBRODTINE  BOUND  (N1,N2,H3,4,%)
DINENSICN A (N1,N2,83)
CCHMON/CNUNBR/NW, NF, 8V, NK, 8L, N¥Y, NV ,¥V2,1I,IF, IV

COMMON/CGEO/IN, THM, IN, M, TMAY(21) ,ILIN{2Y) , X1 (81),X2(21),

2R{4) (VP {41) ,IHIN(Y)

TOMMON /CPLOW/PIT,DIA,DE, ATOT,RE, YAVG,KFLOW, BOREF, ZMURKYF, VB

COMMOW,/CROUND /CE{2T)
C$*#:k##**##**-****#****1’57’:*****$*$##'*-#*$*ﬂ=**#***4’-*************
¢ SUBROUTINE FOR CALCULATICN OF PARANETERS AT RBOUNDARIES
{0 e sk o o g e ke ol i o i SR a0 3 3 o S R ol Al 30 o ol o e o e o 3k ol e o e ol o ot e e ke ot R o e R ok ok ok

IF (K. 5QwNW.OR.K. ¥Q.NF) RETURN
C#*% SOUTH BOUNDARY

IH=ILIK (1)

Do 31 1=2,IH
3 A{I,1,K)=1.33*A(I1,2,%)~.33%A(T,3,K)

C¥%* NORTH BOUNDARY

IH=ILTH {IN-2)

no 32 I=2,7E
32 BAL,JN,K)=1.33%8 (I,dN-1,K)-.33%R (T,JIN-2,K)

TP(TH LT ILIM{IN-1}) R2{IH+9,JIN,K})=1,33%4 (IH,I¥,K)~.33*%E(IH-1,

/I, K}
A(IN,JN,K)=1.33%A(ITN-1,JN,X) —.33%3 (IN-2,IN,¥)
Cx¥& FAST ROUMDARY
Do 20 J=2,J4M
I=TLIM(J)
20 A(T,I,K)=(A{I-1,3,8) +CB{J) FA{I,I+T1,K)) /(1. +CB(J))
RETURN
END

BOUKOGD T
ZOUKOCO2
BOUND0D3
ROUNOOOY4
BOTNOOO S
BOUNDO06
BOUNGOO7
BOUNU008
ECIN0O009
BOUNOO10
BOUNGO11
BOUNOO12
BOUNGO13
BOUNCOT4
BOUNGO015
BOUNCO16
BOUNOOG17
BOUNOO18
BOUNQOO19
EOUNGO20
BOUN0O21
EOUNCO22
BOUN0O23
BOUNGO24
BOUNOO25
EOUN0026
BOUNOO27
BOUNDD28
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SUBROUTINE VELDIS (N1,82,N3,R)
DIMENSION A(N1,N2,N3)
COMRON/CNUMBR/HY,NF, NV, NV, NL, NXU,¥V1,8¥V?2,1I,1IE,IV
COMMON/CGRO/IN,INM,IN,INM,IHAY {21) ,ILIH (21, L1 {41) , X2 (21),
2RA{41) VP {47) ,ININ {4}
CCHAMON/CPLOW/PIT,DIA,DH,BTOT,RE, V2AVG, KFLOY, ROREF,ZHUREF,VE
ok e 3 o e e o o o e e S o S o sl ol e sl ke o o o s o ol e o sl sk ol ok ol afe i ok e e e e ol e ade e ot sl i e e R ok e ot ok oje okt o
C SUBROUTINE FOR CALCULATION OF SECONDARY FPLOW
(e ol ok o e o ek ool ol ol o ot s iR e of e s sfe ok ol e e 3k S a3 Mt e ik skl o ol R e R o e oyl sl ik i s e e ok R o
DTETA=3.T4159,/6., /FTLOLT {JNY)
C#*# TNTERTOR NODIS
Be 1) J=2,JNHM
TH=ITLIH{J) -1
Do 10 I=2,IH
H=(B(I-1)-R(I)} /(R {I+1) -R{(T))
AT, T, NV =0.5%(A(T,J+71,87)~2{I,J-1,NF)) /{R(I)*DTETA) *ZMUREF/VAVG
10 BT, J NV2)=((2{X+1,J,0F) =2 {T,J ,NF))*H+ (& (T,d,8F) -8 {I-1,T,NF)) /H)} /(
ZR{I+1)~R (I-1)) *ZMUREF/VAVG
C%%% SOUYPH SIDE
TH=TLIN® (1)1
DO 20 I=2,IH
20 B{I, N, NV¥)=A{1,2,NF) /(R{I)*DTETA) *TMUREF/YAVG
Cx*%x NOHRTH SIDE
ITH=TILIR{IN) -1
DO 3¢ I=2.,1d
30 BAT, IN,N¥ V) =-A(I,IN-1,NF) /(R{I) *DTETA)*ZHUREF/VAVG
C¥*% FAST SIDE
DO 40 J=2,J8H
TH=TILIH (J)
A{TH,J,NV1) =R ({TH,I+1,NF) /(R{TIH)*DTETA) ¥*ZHUREF/VAVS
40 A{IE,J,NV2}=A(IH-1,J,K") /(R {IH)~-Q (IH-1)) *ZMNUREF/VLVE
KRETURN
NN

PLGE

VELHOGL01
VELDOGO 2
VELDGOOS
VELDODOY
VELDOOOS
VELDGGOS
VYELDOOOT
VELDODO8
YELDOOO9
VELDODOTG
YELDOO11
VELRIO12
VELDDO13
VELDOO14
VYELDOO1D
VELDOO1S
VELDOG17
VELDOO18B
VELDOO19
VELDGQ20
VELDOO21
VELDOO22
VELDOOZ23
VELDGCO24
VELDOO25
VELDDO26
VELDOG27
VELEOO028
VALDOD29
VELDOO3D
VELDGO31
VALDOO32
VELDOO33
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C

C

CoRE

10

20
ol

Co ek

30

SUZROUTINE REYND (N1,N2,83,1)
DINFNSION A (¥1,52,83)
COMNON/CYUNBR/NW,NF,NV,NK,NL, 0T,

2RA{4T) VP4 ,THTIN ()

CGHHRON/CFLOY/PIT,DTIA,DH,ATCGT ,,RE,VAVG,RFPLOW, ROREF,ZAURFF, VE
COMMON/CCONST/CK,E,CVIS,CDIS,C1,C2

{3t fe e e sk ok e e s e ook ol %0 o e o R ol e s R ke R Rl SOk R Sl 3R e o e o O o T ok R TR 3R O 3K
SUBROGUTINE FOH COMPUTATICH OF
(e ok ol ot o 3 o ko ke e s ok e sk ok A o o s ok s ok ok e ok of ke 36 e ol e ofe ok ot sk o 3l o e o e ol ok ok R AR R A o

1V=0. 0
DTETA=X2 {2)

po 20 J3=1,JW
INTERNAL PCINTS
TAV=0. 0
TH=TLIM (J)

DO 10 I=2,IH

DAV=DTETA /6. % (R{I) =R (I=1) ) * (£ {I-1,d,8YV) % (R (I) +2. %R (I-1)) +

AL, T, BY) *{2.%R{T) +R {I-17)))
IF(I.EQ.IN) DRV=0.75%DaV
TAV=TAV+DAYV
IF(J.80.1.0R.J.EQ.JN) TaV=0.5%TAV
AV=AV+TAY

CALCULARTE BULK VELOCITY
VEB=AV/ATOT

NORHALIZS VELOCITY DISTRIBUTTON
F=VAVG/VH
TTL=ILI# (J)

Do 30 I=%,IL
A(T,3,0V)=F%A{T,Jd,NV)
RETUKN

TND

NV1,NV2,TI,1E,TV
COMMON/CGEQ/IN, INM  ON, JUN, INAX (21) ,TLIM{27) ,X1{8 1), X2{(27),

BULK VELOCITY,

DAGE

REYNDULT
BEYNDCO2
REYROOD3
REYNGOOY
REYNOOOS
REYNOOGSH
REYNOOQT
REYNOGOS
REYNOU29
REYNOCID
REYNODOI
REYNDQT12
REYNOOG13
REYNOO14
REYNQO15
REYNOOTS
REYNOQO17
REYNOOT18
REYNCO19
REYNOO20
REYNOG21
REYNDODO22
REYNDO23
REYNQO24
REYNDOD25
REYND026
REYNDO27
REYNOOZSB
REYNOD29
REYNOD3D
REYNLO3N
REYNGO32
REYN(OO33
REYNOO34
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SUBREQUTI¥E WALL (N1,M2,53,4)
DIMENSION A {N1,H2,83)
COHBEON/CHNUMBR/NW, NF, NV, NK,NL,NMU, 8V, NV2,1I1I,1IF, TV
COMMON/CGRO/ TN, THM, IN, RN, THAL(21) ,ILIA (2D , X1 &) ,X2(21),
2R(471),VE{U41) ,ITHTN (4)
COMMON/CFLUY/PYIT,DIA,DH, ATGT,RE, VAVG ,XFLOW, RORER, ZNUREF, VB
COMMON/CWAELL /TALAY,RTAL (217) ,USTAR(21) ,FR, VB (21)
COMMON /CCONST/CK,E,CVIS,CHIS,C1,C2
(A e o ok e s desi e ol ofe aie ok ol ol ol of s e e ke AR e ol i R R e sfe ol e T ol it 3 s ol e e o3I SR i Y R e o ol ok ol vl s o e e e
¢ SUBRCUTINE FOR COMPUTATICN OF USTAR({J) AND FRICTION FACTOZ,FR
{0 e 3 ol s oz ofeai e eoft A7 e o e o2 sl ol e s e aisiole s ale o ol sl ol e ol g i R sk ot sl ol o ol e e K e ik K R e o A K K
C
CHx% NOBRMALIZE VELOCITY TO VAVG
CALT. REYNU (N1,N2,N3,A)
C*** COMPUTE NE¥ YALUE OF USTAR{J)
TH=THMIN{NY)
CE=30.%E
QST=15,%*ZMIUREF* {ELOG (CE) - 1. ) /X1 {IH)
BTA=30.*Z2NUREFCK /XY {IN)
Do 10 J=1,38
10 USTAR{I )= (QST**2+ETA¥A {IM,J,NV) ) **0,.5-Q51
Cx*x% COMPUTE NEW FRICTION FACICR
S=0.5% {USTAR (1) %% 2+USTAR (TN} *%2)
po 20 J=2,JNH
20 5=5+USTAR (J) %2
TALAV=S/FLOAT (I
FR=2.*TALAV/VYAVG®% :
C¥%* YALL SHEAR STRESS DISTRIBUTION
Do 30 J=1,31
an BTAL{I)=USTAR {J) %%2 /TALAV
C¥x¥% COMPITE NEYW VALUES FOR YT (.J)
g 46 J=1,J34
4o YR (J)=230.*LAUREF USTAR (J)
RETURN
END

PAGE

WALLGDO1
WALLOOO2
HALL0003
WALLOGO Y
WALLOGOS
WALLOGOS
WALLOCO?
RALLOCOS
WALLOOOY
WALLOC10
HALLOO11
WALLOO12
WALL0013
WALLOG14
WALLOO1TS
WALL0OO16
WALLOO17
WALLDO18
WALLOD19
WALLOD20
WALLOOZ 1
WALLOO22
WALLOO23
WALLOO2Y
WALLDOZ5
HALLOO26
WALLOO27
HALL0O28
WATLLO029
WALLOO30
WALLGO 31
WALLDO032
WALLOO33
FALLOO3U
WALLO035
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SUBROUTINE WP (N1,N2,83,A,K)

DIMENSICN & (51,82,83)
COMMON/CHUMRRE /¥, NF, NV, NK, NL, NN, ¥V1,NV2,IT,1E, IV
COMMON/CGFO/Th, TNM, JN, I8, THAX (21) ,ILIN(21) , X1 (41),X2 (21},
2R{NT) L, VP {HT) ,INTN (4)
COMMON/CPLOW/PTT,DIA, DH,ATOT, RE, VAVG, KFLO%, ROREF, ZMNURSF, VE
COMMON/CWALL/TALAV, RTAL {21) ,USTAR{21),TR,YB (21)
COMMON,/CCONST/CK, E,CVIS,CDIS,C1,C2

(£ e e s sk ok o o o o e ok g a0 ol Sl A o S R R o ek e R R R R R R ok ok % ok kR R R R R Rk

C SUBROQUTINE POR COMPUTATICHN OF FICTITIOCUS VALUES AT SOLID ¥WALL

:#*##***&:&7**ﬁ#*’ﬁ**#**#*##**$7§H‘F=E‘-1§=ﬁk'*#*ﬂf##****#**#*#)}t*%:##$**¥ﬁ:#$
GO TC (1,2,3.4), K
ck%x VORTICITY »T WALL

] AT=3,*ZHUREF /X1 {2) %2
DO 10 J=2,JINN

10 A(1,d,N¥) =—AF*A{2,JT,NF)—0.5%4 (2,J, M%)
RETURN

Ck¥% SPREAM FUNCTION AT WALL

2 DO 20 J<1,JN

20 E{1,d,5F)=0.0
RETURN

CHak FICTITIOUS VELOCITY AT %2LL

3 IL=THIN (NV}~-1

CE=30.%E

Do 30 J=1,JN

BY=USTAR (J) /CK*ALOG (CH
B=(X¥1{TL+1) =XV {IL)) /(XV{IL+ 1) -¥R(T))

30 A(IL,J,N¥y={1.-H)*A (TT+7,J,NV) +H*BV
RETURN

Cwek FICTITIOUS TKE AT WALL

4 AK=CVIS,/ {CDIS*CK*%2)

TL=IMIN (NK) =1

Do Lo J=1,3N

RK=RK*USTAR {J) *%2

He (K1(IL+1) -¥1 (IL)) /{¥1{IL+7) -YB{(J})
4o B(TL,J, NEY = {T.-H) ®a {IL+1,J,Nk) +H*3K

PAGE

WF
WF
HF
WF
¥F
WF
WF
WP
WF
WF
WP
WFE
WF
WF
WF
WF
WF
WE
WF
WF
WP
WF
WF
WF
WE
WE
WF
WF
WF
WF
WP
HF
WF
qp
WP
WT

28

0001
G002
0003
a0
o005
0006
0047
0008
9009
0010
4011
ac12
0013
0014
0015
0016
0017
0018
0019
2520
0621
(22
0023
G244
9023
a6020
Ga27
2028
G029
0030
0031
0032
0033
D034
0035
0036
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RETURN
END

g

|
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SUPEOUTINF KOBRM (N1,%2,N3,3)

DINENSTION A{N1,N2,N3)

COBMON /CNUNBR/NW, NP, 87, NK, 41,880, NV1,¥72,IT,I8, IV
COMMON/CGE0/IN, THN ,IN, INK, INAX (21) ,ILIN{21),X1{41),X2(27),

2R(41) ,VP{41) ,TNIN (&)

COMMON/CTLOW/PTT,DTA,DH ATCT ,RE,VAVG,KFLOW, RDREF,ZNUREF, VE

s F o e o e o sie sk o b ke e o o ol o s e e ok e e e ok e e ok Rk i R e R R ok e ek b ek R R R R R Kk Rk R

SURRQUTINE FOR NORMALIZATION OF IKEUT FOR LAMINAR CASE
et o o o e sk o o sk 0 o o ok B ok O e o e o8 3 e o v s o e ol o e st ool e Sl e e e A s ofe o e ol R R

U2=0.0

3=0.0

Do 30 v=2,JNH

U2=U2+A(2,L, 57

U2=U3+A({3,L,NV)

J2BAR=(0.5% (A({2, 1,NV) +A (2,JH,NV))+02) /FLOAT (JN)
P3BAR=(0.5% (A(3,7, NV} +A (3,.JN,NV) ) +U3) /FLOAT (JN)
GREDV=(U2BAR*X1{3) /¥ 1(2) -U3BAR*X1(2) /X1({3)) /{X1{3)-X1{2))
SORCE1=-4.%GRADV/DH

PDR=-4.,/ (SORCE1=DIA®#*2)

Do 10 J=1,J¥

IH=ILIN (J)

po 10 I=1,IH

A{T,J,NV)=PDR*A (T,J,HV)

RETURN

END

NORMODO
NORMODOZ
NORMGOO3
NORMOOOU
NORMOOEGS
NORMOQGD6
NORMOOOT
NOR®OO008
NORMOGN9
NORMGG1O
NOR¥MGO11T
NORMQGO12
NORMOO13
NORMOO 1L
NORMGGI5
NORMOO 16
NORMOOTY
NCRMO018
HORMOO19
NORMGQO20
NORMOO21
NORMOO22
HORMO023
HORMOO24
NORMOO025
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SURROUTINE NORM2  (N1,N2,%3,2)
DIMENSION A {N1,N2,H83)
CCHNON/CHUMBR/NW,NF, NV, NX,NL,NNU,NV1,8V2,1I, I8, 1V
COMMON/CGEQ/TIN, INM, IN,INY, INAK {21) ,TLIN(21) ,X1{81) ,£21{21),
2R(471) , VP {41) , TMIN (L)
COMMON/CFLOW/PIT,DIA,DH,ATRT,RT, VAVG,KFLOW,ROREF , ZHUREY, VP
COMMON/CWALL/TALAV,RPTAL (21) , USTAR(21) ,FR,YB (21)
COMMON,/CCONST/CK,E,CVI5,CDIS, 1,02
(0% A e s e ok o S e e o e o ol ok o ok ot o e ok oo ol ekl ok oy ol o s o o X0 K i o le ok ok o T K
C  SURROUTINE FOR HORMALIZATION OF OQUTRUT
{13 e oh e e s ode o e o e o o 3 Sl e o o ok ot o o AR R BE e e e o el o ke o i ok e s o e s e el 5 3K K oK e
C
C®*% COMPUTE VELOCITY NEAR WALL
TL=TMIN (¥V) -1
DO 1 J=1,JN
DO 1 I=2,IL
C=E*JSTAR(J) *X 1{I) /ZMUREF

1 A(I,J,uV)=USTAR{J)/CK*ALOG (C)"
CH%%x CASFE 1: VALOCITY AND TKE NORHALIZED EY VAVE
F=1./VAVG

FF=1./VAVG*%2

DO 2 J=1,JN

IH=ILIA (J)

DC 2 T=2,IH
A(I,J,N¥)=FF*h {I,J,N8K)

2 E(I,Jd,NV)=F%4(1,3,NV)

C*%% NORMALIZE STREAM FUNCTION BY MAXIMUM VALUE
CALL MANVAL {N1,N2,N¥3,4,8F,AMNAX)
TF{AMAX.EQ.D.0) GO P06 20
DO 15 J=2,JNM
TH=THAX (1)

DO 15 I=2,TH

15 A(I,J,NF)=A{L,J,N?) /ANAY
20 CONTINUT

WRTSZ (6, 100)

CALL  PRINT  (H1,N2,43,2)

PAGI

™
o

NOR200D 1
HOR20002
NOR20003
NOR20004
NOR20005
NOR2DD06
NOR20007
NOR20008
NOR20009
NOR20G010
NOR2Z20011
NOR20012
NOR20013
NOR200 1Y
NOR20015
NOR20016
WOR20017
NOR20018
NOR20019
NOR20020
NOR20021
NOR20022
NOR20023
NORZ0OO24
NOR20C25
NOR20G26
NOR20027
NOR20028
NOR20029
NOR20030
NOR20031
NOR20032
NGR20033
HOR20034
NOR20035
NOR20G036
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)]

IF{¥FPLOW.GT.1) GO TO 10

DO 5 J=1,JN

USTAR(I) = (ZMURTF=A (2,0, NT) *VAVG/X1{2))**C.5
TALAV=0.5% (USTAR (1) *¥2+USTAR (IN) *%2)
DO 6 J=2,JNH
TALAV=TALAV+USTAR (J) *%2
TaL2V=TALAV/FLOAT (INH)

no 7 J=1,JW
RTALA(I)=USTAR (J) **2/TALAV
PR=2.%TALAV/VAVG* %)

CALL PRINT2

RETURN

C#¥x CASFE 2: VELOCITY AND TKE NORMALIZED BY US5TAR

10

100
200

DO 2 J=1,JK
RVL=VAVG/USTAR (J)
RKE=VAVG**2/TLLAV
TH=TLIN (J)

DO 3 I=2,1H
B(I,J,NVy=A{I,J,NV)%RVL
A(I,J,NK)=A& (I,J,NK)*RKE
WRITE (5,200)

CALL PRINT (N¥1,82,N3,3)
RETU RN

PORAAT (44 HICASE 1: VELOCITY AND TKE HORMALIZED BY VAVG//)
FORMAT (45H1CAESH 2: VELGCITY AND TKE NORMALIZFD BY USTAR//)

END

PAGT

NOR20037
KORZ20038
HORZ20039
HOR20040
HOR20041
NOR2GOL2
NORZ20CH3
NOR2GO4 Y
HOR2G045
HOR20046
NOR2DD47
NOR20048
NORZ20049
NOR2Q(50
NOR20051
NOR20052
X0R20653
NOR20G54
NOR20055
HOR20056
NOR20(057
NOR20D058
NOR2C(59
NOR20060
NOR20061
NOR20062
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20T
SURROUTINE PRINT (N1,82,N3,A)
DIMENSION L (N1,HZ,N3)
COMMON /CNUMRR/NY, NF, NV, NR,NL, NYU,NV1,NV2,IT,1IR,IV
COMMON/CGRG/IN, TUN, IV, IN, THAX (21) ,ILIN(21) , X1 {41 ,X2(21),
2R(8Y), VP (41) ,ININ{U4)
e oo b o sl ofe S o SN e 38 g o i IR 53 e o i 3 o e oK i o e R oK R vk R R R ORI R R R ek
¢ DUTFUT SUBROUTINE
{7 e e e e ol e i ok ol e e o o e e s ok s o e R sl s ot o R e o ol e R 3l afe e o e e S o i K R R R K ARGR A R Ol AR TR R R K
WRITE (6, 100)
DTETA=30./FLOAT {JNM)
DO 50 J=1,JN
PETA=DTETA*FLOAT (J-1)
WRITE{6,101) THTA
YRITE (6, 102)
TH=ILIHN {J)
DO 50 I=1,IH
QST=£1(I) /%1 (1H)
ETA=Y1{I) /%1 (IN)
WRITHE (6,103} I1,0SI,ETA, (A(L,J,%),K=1,¥3)

50 CONTTINUE
RETURN
100 FORMRT (11140X, 26HDISTRIFITION OF PARAMETERS/
JUTK 26 mmm m = e e //)

101 FORMAT (18D, 10X, 1940ETA {IN¥ DEGREES) =,F7.2//)

102  FORMAT({3X,18I,5%,3805I,5%,3H%TA, 3X,94VORTICITY, 2X, BHSTREAM F, 4%, 74
/AXIAL V,6X,3HTKE, 56X, THMIX LEN,3X,9HTURB VISC,3X,5HRAD V,6Y,6HTANG
/17

103 FORMAT{1X,13,2¥,2{¥58.3),3(1PE11.3))

UND

EAG

ozl

SUBEGOGH
STUBEGDO2
SUBEGDD3
SUBEHCOY
SUsEG005
SUBEQGOS
50BE0007
SUBEQCHOS
SUSE0Q09
SUBROOTID
SUBEQOT
SUBEQU12
SURRO01T3
SUBECO14
SUBEQQ1S
SUBEQD1E
5U8EQ017
SUSEN018
50880019
SUREQL2D
SUBE(QO21
SUBEQQ22
SUBEDDZ3
50880024
SUBRQ025
SUBEQGOZH
SUBEQD27
503E0024
SUREGD2Y
SUBEL030
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SUBROUTINE PRINT2
COMMON/CGRO/IN, TNM, IN, INM, TMAX (21}, TLIN(21) , X1 {841} ,%2{21)
28 (41), VP (41) , TAIN (4)

r

CUHANON/CFLOA /21T, DIA,DH,ATOT, RE, VAVG, KPLOW, ROREF , ZHUREF, VE

COMNON/CAALL /TALAV, BTAL{21) ,USTAR{21) ,FR,YE (2N
RETTEEFE ST FE ST SIS TR TR S R S RS EE R L LT
1 SUBROUTINE FOR PRINTING OF WALL SHY¥AR STEESS DISTRIBUTION
% o o o Ak e Aol g M ok ok ko e o AR ok a o e e ok R A e ok e ol e o o o v sk ot A o ol st e RO sk R o e ot koK

¥RTT® (6,100) PR,T2LAY,DH,VAVG,VE

¥RITE (5,200)

Be 13 3=1,J%

WRITR (6,300)
10 CONTINUE

RETURY
100 PORMAT (31HOFLOW TVFORMATION CALCULATED IS//

110X ,508FR, FRTCTION FAC TR s essnvesnnscensussnsannass

J,RTAL {J) ,USTAR (J)

o

210%,50HTATAVY, AVERAGE WALL SHAAR STRISS/A0REF.scasnsse-
310X, 30HDH, AYDRAULIC DIAMATER . v s vses sannsssasnsannns™
410Y,53HVAVG, BUOLY VELCC T T Yeamssasnsnnsssarancnasensannse™

510%,50HVS, COMPUTED BULK VALOCIT T eovoeeanssncaceoanas
200  PORMAT(14130%,35dDISTRIBUTION OF WALL SUEAR STRESS5ES///
/5%, 183, 10X, 9HTEL/TALAY, 10X, 5HUSTER/ /)
300 TFORMAT (4¥,12,8X,811.4,6X,1PE11.3/)
END

,1PE15.6/
,1PE15.6/

,1PE15.6/

,IPEIS. 6/
,1PE15.6)

CoUT25001

PAGE

SUuT20002
ouT20203
ouT20004
oUT20C05
CUT26006
0uT20007
0UT26008
0UT20009
0UT20010
QUTZ0011
CUT20012
aurT20013
ouT26014
CUT20015
ouT209%16
QuUT20017
OUT20018
QuT20019
QUT20GC20
ouUR20021
QUTZ20022
0yI20023
QUT20924
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3LOCK DATA
COMMON JCNUMER /NW, NF, NV, NK,NL,N#U,NV1,8Y2,11,15,1IV
COMMAN/CGEQ/IN, THH, JN, INY,IHAX (21} ,ILIZ (21 ,X1{s1),X2(2N),
2R{B1) ,VP(41),INTN (L)
COMMON/CFLOW/PIT,LYA,DH,ATOT, 82, VAVG,KFLOW, ROREF, ZHURER, V3
COMMON /CHEN/NMAX, INNER, NPRTNT, TP, CC,PR(3),RP {9),RSDU (9)
COMKON /CYALL/TALAV,RTAL (21) ,USTAR(21) ,FR,¥3(21)
COMMON/CROUND/CR (2 1)
COMBON/CRUNC/FU{LT,21)
COMRON/CCONST/CK, B, CVTS, oIS, C1,C2
(7 b 3 s e 3k ok e sl e ke ni ok 3 e e 3 e o 4 a8 ke oK o ok e e o ok o af e o ke o R ki ok ok R R R A R ok
C  INPUT OF NUMERICAL DATA FCR THE PROBLEN
(e A A e A s o ok ol o o A ol i ol e o ok O A e e ol o e i ol e ol e e ol o e ofe 0 9K e sl e o R okl K e e ol e o e e e o g e o
C
C**% PROGRAM AND DRINTOUT CONTROL DATA
DATA N¥,NT,NV,NK,NL,NMU,NV1,%V2,TV/1,2,3,4,5,6,7,8,8/
1, NMAX,INNER, NPRINT, IP,CC/250,1,500,1,1.0E-03/
2,RP/2%1.00,7*%1.0/
3,RSDU/9%0.0/
C¥xx PHYSICAL DATA
DATA RORBP,ZMUREF/1.205,1.516E8-05/
1,PR/3%1.0,1.30,5%1,0/
2,PIT,DIA/.084,.080/
Crwx CONSTLNTS OF MODEL
DATA CK,%®,CVIS,CDIS,C1,02/0.4819,9.8,0.180,0.38,3.0,0.360/
CHkxx FLOW DATA
DATA IT,I%,KFLOVW,RE/1,U,4,2.78+¢04/
C#%x GBRID DATA
DATA IN,J3N/30,16/
END

=
HES
[P
e

BLATOO0
BDATOCO2
BDATONOD3
BDATOQO4
BDATOO0S
EDATOOCe
BDATOCOT
BpaTOO08
BDAT(O059
BDATON0
BDATO011
BDATOO12
BDATO013
BDATOOT4
BDATGO1S
BDATOO0NG
BDRT0017
BDATO018
EDATO01S
BDATO020
EDATO02
BDATO022
BDATD023
BDATCO24
BDAT0O025
RDATOD26
BDATOQO27
TDATN028
BDATOO29
EDATOO3D

R2SE



wx¥%  TE3T CASE  =*x%%  [ILHE ROD
BUYDLE * POLLY DEYELOPED, TURBULENT
FLOH =xx STRETCHED COORDINATES *®%%k
YORTICITY

STRIEAM TUNCTION

AXTAL VELOCITY

TYURBULENCE KINETIC ENZRGY

MIYING LENGTH

TORBULZAT VISCO3ITY

RADIRL VELOCITY

TANGENTIAL VELOCITY

ESVURSSTRSAVRESKE

INPCO00
INBCHOG2
INPCOO03
INPCO004
INPCON05
INPCO006
INPCOQ07
INPCQO0CS
INPCO00S
INPCOCD
INpPCOOM
INPCOO12

0te€
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