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ABSTRACT

Team Deoision Theory
by James D, Hess

Submitted to the Department of Eoonomios on May 1975
In Partial Fulfiliment of the Requirements for the
Degree of Dootor of Fhllosophy

This thesis explores four topios in the theory of teams:
multiperiod team theory, sequential acgquisition of information
by a team, optimal iterative approximations of the team deolsion
funotions, and planning by constrained teams,

Essay One addresses the question,"How can the team best use
jts historioc information?” In Bayesian decision theory informa-
tion 18 acoumulated when the decision maker updates his beliefs
about the state of nature by replaoing the prior distributions
by the posterior distributions. The informational differences
within the team prevents the construotion of a team posterior
distribution., To facilitate the sccumulation of information
"ex post communications” are added to the information structure to
summarige ourrent kmowledge within the team, Optimality conditions
are derived for multiperiod teams with eilther statio or changing
environments, and with either intertemporally separable or non-
separable utility funoctions,

Seoond, the team may gather information one pilece at a time
and sontrol the amount of information gathered, If each obser-
vation and resulting communication is costly, the team should
only acquire information that inoreases the net expected payoff.
Essay Two develops an optimal stopping rule for stopping the
sequential acoumulation of information where the evaluation of
previous information is based on the ex post communications,

Third, the optimality oconditions of team decision theory are
ocomplicated systems of intagral equations. Essay Three explores
approximate solutions of the team's problem, Drawing from the
theory of gradient algorithms in optimal control, an iterative
solution procedure is developed for the quadratic-normal team.
When both information and computation are costly, optimal amounts
of information and acocuracy can be defined,

Fourth, constraints on deoclsions are particularly oconfounding
in a theory that ocombines both informational differences and
decentralized authority, Modifioations of the team problem to
incorporate Joint constraintas are oatalogued in Essay Four, If
the organization has internal differences in technologloal
knowledge, differences that ocannot be readily eliminated, then
fterative planning mechanisms must extract pertinent data from
the knowledgeable members, The properties of such decentralized
procedures are studied in this essay.

Thesis Supervisor: Paul A,Samuleson
Titles Professor of Economiocs
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ABSTRACT

TEAM DECISION THEORY

by James D, Hess

The theory of team decision making developed by J., Marschak
and R. Radner can be viewed as an extension of Bayesian stat-
istioal decision theory to an organization with many decision
makers, Both theories study the use of information in mathemat-
lcal optimigation under uncertainty, but team theory by 1its
multiperson nature also features informational 4ifferences, ocom-
munication, interdependence and cooperation. Thie thesis explores
four topics in the theory of teams: Multiperiod team theory,
sequential acquisition of information by a team, optimal itera-
tive approximations of the team decision funotions, and planning
by oconstrained teans,

Egssay one addresses the question, "How ocan the team best use
1ts historio information?” In Bayeslan decision theory informa-
tion 18 acoumulated when the deocision maker updates his beliefs
about the state of nature by replacing the prior distributions
by the posterior distributions, The informational differences
within the team prevents the construotion of & team posterior
distribution, To facilitate the accumulation of information “ex
post communications” are added to the information structure to
summarize ourrent knowledge within the team, Optimality oonditions
are derived for a multiperiod team with either static or changing
environments and with either intertemporally separable or non-

separable utility funotions.



Second, the team may gather information one plece at a time
and control the amount of information gathered., If each obser-
vation and resulting communicatlion 18 costly, the team should
only acquire information that increases the net expected payoff.
Essay two develops an optimal rule for stopping the sequential
accumulation of information where the evaluation of previous
information 18 based on the ex post communications.

Third, the optimality ocnditions of team decision theory are
complicated systems of integral equations., Essay three explores
approximate solutions of the team’s problem. Drawing from the
theory of gradient algorithms in optimal control, an iterative
solution procedure ts developed for the quadratic-normal team,
When both information and ocomputation are costly, optimal amounts
of information and accuracy can be defined,

Fourth, oonstraints on desisions are particularly confound-
ing in a theory that combines both informational differences and
deocentralized authority. Modifioatlons of the team problem to
incorporate joint constraints are catalogued in essay four. If
the organization has internal differencea in teshnologioal
knowledge, dlfferences that cannot be readily eliminated, then
1terative planning meohanisms must extract pertinent data from
the knowledgeable members, The properties of such decentralized

prooeduree are studied in this essay.
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ESSAY ONE

Multiperiod Team Decision Theory



MULTIPERIOD TEAM DECISION THEORY

I. BAYESIAN STATISTICAL DECISION THEORY
AND TEAM DECISION THEORY

a, Introduction The theory of team declsion making developed
by Jacob Marschak and Roy Radner(l) i8 olosely related to
Bayegian statistical declsion theory. Both theories study the
use of information in the maximization of expected utility,
where utility 1s a function of the actions of the decision
maker and the uncertaln state of nature, Both theories specify
optimal decision functions, which map sample information into
actions, Team theory can be viewed as the extension of Bayesian
decision theory to an interrelated group of decision makers,

What role does team theory play in economics? Marschak
and Radner used it as the theoretical basis for the study of
the optimal use of information within the group, The group
most often sited is the "firm"” and most examples are couched
in terms of the business firm, Statistioal decilsion theory
{8 essentially a theory of one dzcision maker, the "statisti-
clan,"” while team theory studies the joint decision making of
several individuals acting as a unit,

What is a team? Analogous to the common usage of the term,
a tear is a group of people who have identical tastes and
beliefs:s tastes referring to utility funotions and beliefs
referring to subjective probablilities of the random variables.
The fundamental assumption of team theory is that each indiv-



10

idual maximizes the same group expected utility function where
expected utility is a product of the utility function and the
probabllity estimates, Team theory 18 a polar case of a game
against nature, with the opposite pole being the zero-sum game
of complete conflict. By movirg to the extreme assumption of
identical tastes and bellefs, the ambiguities of general non-
zero-sum games disappear,

Each teammate controls a personal action variable and re-
oceives a personal sample statistic that i1s correlated with the
unknown state of nature (hence providing information about the
gtate of nature), Communication is allowed betwsen teammates
acocording to a prescribed rule or information structure., In
faot this 18 the focus of the applications of team theory:
how valuable is communication to the team? The team decision
problem 13 a group problem not a set of individual decision
problems because the interaction of the actione taken by
different teammates affects the team utility; coordination
18 desirable becausge cross partial derivatives of utility
with respset to different actions are non-zero, A joint choice
of individual decision functions must be made. The teammate
may implement his action personally, but he 18 not allowed
to construet his own decision funotion ignoring the others,
The economic theory of information solves the team decision
problem for particuler information structures (such as decen-
tralized, centralized, partitioning into committees, or
reporting only exceptional cases) and ocompare the correspond=-

ing optimal payoffs,
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b, Statistical Deoision Theory Bayeslan statistical deoci-
sion theory 1s constructed from the following basic elemenb&(z)
o ¢ random state of nature

A 1 action variable
UW(A,®)  utility function

Y 1 observation from random sample

(YY) 1 decision function

$(6}) 1 prior probability density funotion of ©

$(¥{©)1 conditional prior p.d.f, of Y given O

The infermation provided by Y comes through the dengity func-
tlon‘$(1(e). In the following ,dfs will denote prior proba-
bilities and f's will denote posterior probabilities, Dif-
ferent densities will be denoted merely by the name of the
random variable in the parenthesis., To faclilitate the com-
parison of statistiecal decision theory and team decision
theory the action variable will be taken as an N-vector
A=(a1,82,...,8N)"', Hence the decision funotion is vector
valued « (Y)= (&l(‘ﬂ,...,d-u(‘{)\‘ .The statistioian wants to
select a decision function « to maximize expected utility:
(1) W] = EsueM, @ = §Jy ax),e) d(tle)b(e)dr d0.
Only first order conditions will be discussed here; prob-
lems of exlstance and unigqueness of global optimality are
ignored and it is always assumed that utility 1s differen-
tiable and conoave,

The optimal decision functions '&“---,in must satisfy

the following first order conditionsa for glven Y
(2) O= Jg Ug,(R(1),8)d(YI6)P(6) 46 1=1,2,...,N.
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Dividing by ¢p(Y) , the prior probability of receiving the
observation Y

(3) W)= Sg dLNO) d(e)de

and moving (3) within the inteagral, we can rewrite (2) asi

(#) 0= J5 Uq,(R(¥),8) £(81Y)do 1=1,2,..,N

where

(5) f(oly)= oMY D(8) / B (V).

£(81Y) 18 the posterior probabllity of © given the observed
value of Y, The first order oconditions (4) can ba interpreted
as follows: select for eaoch Y the actions 80 that the expected
marginal utility with respeot to &y given the observed Y 18 zero,
For any partiocular ¥ the decision %(¥) can be found without
computing the entire optimal decision function &(‘f_)- It can
8imply be chosen as the value of A that optimizes against the
posterior distribution £(©O(Y).

o. Team Deojsjon Theory The team oconsista of N teammates indexed
by 1=1,2,.,,N, Each teazmate controls a personal action 8y and
recaives a personal infermation value yl. The basjc elements of
the tean problem are

© 1 random state of nature

A-(al,aa....a“)' 1 aotions of teammates

Y=(y4s¥20004¥y)* ¢ information of teammates

U(A,8) 1 team utility funotion

$(8) : team prior p.d.f, of ©

®(¥(8) 1 team oconditional prior p.d.f. of Y given O

(V)= (% (4.}, &y (4u)) 1 team decision function
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The individual information Yy is a combination of personal obser-
vations and messages received by 1th teammate from other members;
this will be discussed at length in the next subsection. The y th
teammates action can only depend on his own information Yy The
1¥" yrdividual will never know what value of ¥y the 1t teammate
received, This oritiocal restriction on the decision funoction 1is
all that analytically differentiates team decision theoxry from
statistical decision theory.

'~ The individuals are all team prlayers so they all desire to
gelect decision funotions to maximize the expected team utility,
(6) W<} = Ejuix(y),0)} = Sefa u((Y),0)P(Y10) H(e) 4y dO.

Since the maximand is a functional and the instruments are func-
tions, the technique for solving the problem is analogous to the
calculus of variations. The first order conditions are actually
the Euler equations of a specific caloulus of varlations problem.
Again we will deal only with the first order conditions, will:
assunme differentiable.concave utility, and will ignore existence
end uniqueness questions,

Let(ybe the optimal team decision function, All arbit-
rary deoision funotions can be written as %((4;) =:<.-(';li)* € §; f‘ji\
where € 18 a constant and K} i3 a f notion only of ¥y The
definition of optimality implies that W(X] 2 W(X4EX] for all
arbitrary funoctions Y(‘()=(8.(‘5.),...,!!,,[3,,,\)’ , where £ 18 a diagonal
constant matrix, That is W(&+EY] treated as a function of € is
maximized at E30 for all arbitrary funoctions ¥(Y), The first

order conditions are

(7) AWEREV] - 5 a2, N
'QE( End
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where g‘g‘%lo — j@j’«j U\q;(&(ﬂ,@)ifﬁ(ﬂi)‘(’(Y(B)CP(G)A‘MB,

Reordering integration

(8) 0= Su,[Soui Ua; (R, 0) $(Y16) H(BY AV 48] &ily) dy;
where Y(i) denotes the vector (y]_.«..y-1 1'% +1...,yN).

Use will be made of the foliowing lemma.

Lenmea s Ixfu)gtx)dx =0 for all arbitrary g(x) then f(x)=0,
In equation (8), g(x) corresponds to Xi(“si) and f(x) corresponds
to the bracketed integral, Hence for each y; the optimal decision
funotions R must satisfy simultaneously the followings

(9) 0= Jo Jya) Uq (R(¥),8) p(Y(6) D(B) 4Y(i)46 1=1,2,.,,N.
Dividing by $i(y;}, the prior probability of observing y ,

(10)  b;(4:) = Sg Sy Pl1IB) b(6) 4Y(i) 40,

the first order conditions become:

(11) o= §, s‘j(i) Uq;(&(Y),0) £(Y(),01Y;) dY()d e i=1,2,..,N.
The density funotion

(12) FOIW),014;) = D(YI6)Y P (8)/ i (%)

18 the joint posterior density of Y(i), © given the observed
value of y;. The conditions (11) are interpreted as aeleoting&
8o that the expeoted marginal utility with respeot to aj; glven
the personal information yy is Zero, We should compare the
oconditions (11) for team theory with the ocorreaponding ones for
statistical decisiontheory (4) and note the oruolal differences
the restriotions on X oreated. Unlike statistiocal decision
theory, for a particular Y=(¥;,..,¥y) the team action

<«M)= (&.(E\)....,Qn(q,.»' can pot be found without computing

the entire optimal decision funotion (Y}, This 1s because the
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+

i%h teammate does not know the value of ¥;,» J#i, and hence 1t

mugt be treated as a random variable,

d., Ex Ante Communiocation The team model of Marshack and Radner

allows communication among teammates before actlons must be
selected., We assume that 1 runs a personal experiment whioh gives
him a sample value z; which 18 ocorrelated with the true state of
nature through a conditional p.d.f. <;(2;16) .Communication of
the results of thses experiments is represented by a message
matrix Y where y;; 1is the message sent to i from j. A communica-
tion structure is represented by a matrix funotion 7(Z) wherse
Bij(2) = 7:3(=;)  1s the message sent to teammate i from team-

mate j when he observes the value 2 3

r‘_“n Yiz - 3"!\ ’nu("-".) "702(3:) " ,IIN(EN)\

Y2 Y22 * 17_._,(2.) Nu (2 .
(13) Y=9(&= | . - I B - : -

kﬂm -t 5"“) L’]m(t‘\' T "m‘ﬂ“),

The 1*M yow of Y 18 the total message recelved by the i'! team-
mate and the Jth ocolumn of Y is the totel message sent by Jth
teammate, Typiocally the diagonal elements are of the form 7%, (:)~2;.

If the personal sample experimente are independent so that
$¢(zlo) = 'ﬁ: $; (gy(e) , We oan compute the induoed oonditio-
nal probability of the message xatrix X as follows:

N
(18) gqlvie)=1r (f ., &j@e) dw)
28 Q)

where .ﬁ ’m;“(g; j) is the set of all sample observations z,

that would cause teammate } to send the messages (’1 greeo ¥y J)"
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The ith Tow of Y 18 what we have been calling Yy &nd the p.d.f.
4(Y!8) 1s what has been called ¢(Y(6). Because the measage Y is
sent before the team must seleot the action A, this communication

ie denoted "“ex ante”,
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IT. MULTIPERICD TEAM DECISION THEORY
WITH A STATIC ENVIRONMENT

a. Multiperiod Statistical Decision Theory For simplicity of

analysis 1 will make several assumptions about the multiperiod
problems, none of whioch affect the major result.
Assumptions:

(a) T = 1,2 t two periods, supersceripts denote period

(b) ©'=6*=9 1 environment is constant

(o) U(AYA?, )= u(A\8) +U(A% ) 1 additive identical utility

(d) Perfect memory of past observations

The thrust of what follows 18 that the action in period
two can be gelected by the statisticlan in three i1dentical ways:
by construoting a decision function &z(Y‘aYz) to marximize
expected utility against the prior p.d.f. ‘b(e); by walting
for the observation Y!=Y and selecting a decision function %Y%)

to maximize expeoted utllity against the posterior p.d.f. €(&1Y%);

or by waiting for both observations 'f“',Te and selecting an action
32 to maximize expected utility ageinst posterior p.d. f.

£(©|Y', ¥?). Each of these procedures will result in the same
aotion for a given set of observations T]',Yz.

The statistician must take two declsions, one in each
period, hbased on two sample observations 11,12 taken at the begin-
ning of each period one the optimal decision function <'(Y') 1s
found by equation (4). The optimal decision for period two ocan be

oonstruoted in three ways, differentiated ty what information
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is assumed already known by the statisticisn, Just aa identical
actions result from selecting a decision funotion sgainst the
prior p.d,f, $(8) or just a single action against the posterior
ped.f. £(8IY} 1n the single period ocase, each of these procedures
leads to identical actions in a period two,

Before period one's observation is known a decision func-
tion for two,<*(Y',Y%), can be seleoted that maps (Ii,Yz) into the
set of actions to maximize the expected utility:

(15) jﬂ.&f_S@ U2, 12),8) P14, 1210) (o) dedf'ayr
Alternatively the statistiolan could wait until Y! 1s known,
update his beliefs about ©, and then seleot a decision funotion
%2(1Y)  to maximize expected utility against the posterior p.d.f.

of Iz,

(16) Syrfo U(X*(¥9),8) £(¥2,81Y1') d0dy?
Finally the statisticlan oould wait until both Yl and Y° are ¥nown
update his beliefs about € , and then seleot a single action ﬁzto
maximize expected utility against the posterior p.d.f. of O ,
(17) Jg u(a*e) £(el ¥, 4*) de.

In (15) 42 is explicitly a function of both observations
Y! ana Y2, In (16) 42 1a expliocitly a funotion of Y and implictly
a function of Y! through the denstity €+ (%8 (Y'). In (17) a2 1g

1 anda Y2through the density (01! {*).

implictly a funetion of Y
In all three cases the explict-implict relationships between A2
and II.YZ are the same because the firast order conditions for
(15),(16),(17) are identical and are given by

(18) 0= Sg Uq, (A2,8) (ol Y4, 1?) de.

where
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b4 6) D,y e) P(e) .
Py, Jo LY, ¥ 6) d(e) do

(19) €(eI¥'¥?) =

b, Multiperiod Team Decision Thegry Four works on team theory
have included a time dimension., Charles Kriebel‘B)Specified a
multiperiod problem but assumed away difficulties by making ©
different in each period and independent of all past © , Charles
Ying(u) developed what he called an "adaptive team”, Marsohak
and Radner(5) studied "dynamlo teams” but foocused on the prob-
lem of delayed information. Y.C, Ho and K.C, chul{é) explored
team problems when present actions influence future information.

The above assumptions (a)-(d) will still hold., The team
must make two decisions, one in each period, based on information
provided at the beginning of each period, For period one the
optimal team rules ?(‘(‘i'] are defined by equation (11), After
reriod one's information Il is received, current team beliefs
about © should bve € (8(Y') not B(6) but each teammate only knowa his
own information y} and no one knows the value of the entire mes-
sage matrix Y!, Not one teammate oould compute ¥(8 (Y'} ana hence
it cannot be used as period two's prior beliefs about @. Eaoh
teammate can compute 'f(G'S{) and oould then meximize expented
second perlod utility using £(6141) as the density of ©, but if
this was attempted we would not have a team problem in perind
two because of differences in beliefs. What should the toam do
in period two?

Ag long as the team model allows only ex ante communioca-
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tions about the individual experimental results, the following

procedure 18 the optimal solution for two periods. The assump-

tion of perfect memory for the team problem implies that the

1th teammate remembers exactly what mossage yi‘ he reéelved in

period one, In period two he can make a desisgion based only on

his two messages (yi,yf). The joint prior density of (Yl,Yz, o)

for all teammates is defined by $(Y', V% @) = ¢ (¥, v*|0) $(o).

The multiperiod maximand 18 the expected utility of both periods

against this prior p.d.f, 1

(20) W' (Lar) = Efu(o(¥),8) + u*(¥', %), 0) %

= Ie&ﬂ,.f et (1), )+ u(a 2 ¥2),0)] b1 Y Te)dt '3V e,

The decision funotion for period ¥x* has the restricted forms

(21) <297 = (&T (41,42, %G (44, 42))"

Unlike the statistician the team cannot substitute a poasterior

density of 8 for the prior density of period two, The team must

seleot a deoision funotion % at the same time it selects a

function '3('. The assumption of additive utilities implies that

the first order conditions of ! are disjoint from those of {_\(z,

but «* 1s ocomputed prior to period one as far asp.d.f!s &re

concerned, Q2 18 not schanged hetween period one and two. The

first order conditions for Q"“',‘i‘) are given by the following

(22) 0 = §g fyry Ua, (XY, 4%),0) £L1'G@, 4D, 81 4}, 4T) V') av0) dE
1=1,2,..,N

where

(23)  FOIDND01Y:,47) = S 1 18) dlE)/ (i, 4F)

is the conditional p.d.f. of & and the non-i two period informa-
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tion variables given of teammate 1's observations in both periods,
These firat order oonditiona (22) are to be distinguised

from thé optimality eonditions if the entire matrix Yl was known

by all teammates prior to period two, In that sase the posterior

p.d.f. f{(OIN'] could be computed and the second periocd deocision

fanotion A*(N?) would have to satisfy

(24) 0= §_ fyry Ua, G2, 0) F(¥H0), 0147 W) 9V d  1=1,2,,.,N

where

(25) F(2W 014} )= (V2 (6) d(8)/ b (47, (")

is the posterior probability of © and the non-i second period

information variables given the known value of I1 and the 1th

teammate‘'s information yf.

¢. Intertemporal Communication The above formulation of multi-
vperiod team theory excludes communiocation between veriods other
than individual "memory,’ which is a personal internal communica-
tion, A more general framework for intertemporal communication
was suggested by Marschak and Radner in the "dynemlc” team model.
In the Tth reriod, messages are sent and recelved by teammateg:gﬁ
the past history of individual observations and messages, In its
most general form the message matrix IT is a function of the pre-
vious individual experimental outoomes'E(T)=(Zl.za,..,ZT), an
NXT matrix:

(26) YT =T (ZM).

When the team makes only ox ante communications baged on

a single communication function q(ZJ in each period but indivi-
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dual memory 1s allowed, this 1s modelled by choosing & intertem-
poral communication struoture'ﬁT of the following form.‘ﬂ&

is a T-vector valued function, each element of which corresponds
to the message sent from j to 1 in one of the previous periods,
i.e.,

(27) M5 = (M), M5 (23),y 74 (2T)).

The 1%P teammate makes his decision based on the information he
recelves in period T, which 18 the set of all past ex ante mes-
sages sent to him plus the ourrent ex ante message about the ocur-

T. For the case that the indivi-

rent experimental observations 2
dual experiments are independently drawn, the distribution of
the message matrix Y2 is given by

(28) ¢l(w'\e)=f“ { X d;(zj18) (2 () 42jd 2] .

S Tae b nite) 2he R
One should note that even if the ZTs come from independently
drawn random samples, in general the Y's will not be indepen=-
dently drawn— &(V,4%16) ¥ H(Y' (6} #*(¥21®) — because the gth
column of Y1 and Iz both depend on z%.

In its moat general form the intertemporal communiocation
makes multiperiod team theory analytically identicel to single
reriod team theory. However, interesting insights into important
problems can be gained by studying various restricticns on the
functional form of‘ﬂt For example, Marschak and Radner study
the effects of delayed information when & is8 changing, by making
information of the following form : Y1 = nT(Z(T-d)) where d is a
delay, We will now study the restrictions that must be made to
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allow the team to behave as an adapting organization; that is,
one that modifles its beliefs about the random state of nature

ag its life progresses,

d. Ex Post Communication For & single periocd team, communica-
tion almed at construoting a team posterior p.d.f. ofE%'F(BlY'L
would be unnecessary since the only distibutions needed in the
optimality conditions (11) are computable from known information,
But when we introduce multiple decisions over time, the fact that
information for each teammate 1s different prevents the team from

computing posterior densities, The team model can be modified to

solve this problem by introducing a second set of communications
bgtween teammates, This communication should be such that each
teammate gets the same information. Let us represent this commu~
nication by

(29) x;=X= m(2) 1=1,2,..,N.

where x; 18 the message reoeived by teammate 1. The messages are
the same for all teammaces and depend on the observed samples
Z=(zl,22,...zN). Each message X has an induced probability, given
the state of nature, defined by

(30 hixie) =§, .  b(zle)dz2.

For every value of the message X, the posterior p.d.f., of &is givenb

_ _hixie)dled ,
(31) f(6ix) = §o h (XI8) dledde

Because Xy =Xy Te e o= Xy=X and the funotion/dx)is the same for all

teammates, the posterior distribution for O given the message X

can be constructed; it is the same for all teammates,
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The communiocation X 18 not avallable to ald in the selec-

tion of an action variable but only to oreate a poaterior p.d.f.
of ©. We ghall refer to M(2) as an "ex post” communication struo-
ture, aa though X occure after the decisions are made, The entire
team communication structure is represented by the two funotions
?)(Z) and /I(z),the ex post and ex ante communiocation funotions,

The signal X oan be a veotor or matrix, so M oan be a
vector matrix valusd funotion, The ex post sommunioation struo-
ture defined by /4(?-)5“'— 7 (Z) implies that each teammate knows the
entire ex ante message matrix Y, The ex post ocommunication struo-
ture “#4(2) = sonstant’ provides no information since for all X,
M) = fal1l possible 2°e} . Notice that the null information
struocture implies that eacsh member forgets his own personal
sample value 24,

For given (7], M) the two period problem optimal team
procedure igs as follows, For the first period the team selects
a decision funotion «'(N') to maximize
(32) W] =Eiui9,e)f= S, SH' uie'(y),8) b (' 1@)b(B) AY'dE.
Optimal conditions for X' are given by equation (i1), After pe-
riod one is complete, the team ocalculates a new density fuvnotion
for 9 by computing £(e {x) using equation (31), where X is the
oX post meesage sent to all team members., The team selects a deci-
sion function «*{V?) for period two to maximize
(33) WA= = E{Uc(y?),0)| X§ = §p Syr U(«(¥3),8) F(Y3 0 1K) d¥*d6.
Ths first order oconditions for 2 *(\*) are
(34) O= je_(w,%tﬁ‘(w‘),e) £ ,819%,X) dyil de i=,2,..,N
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where
£ 81 x)

ay. 1 - -
(35)  £(Y* (), 814} x) = Jo Sy F14* 00 X1 dytid do

18 the posterior Joint probabllity of Yz(l),f3 glven the observed

ex post message X and the observed value of yf.

Implicitly, the value of Az depends on X and hence on the

observed value of 21

. For/u(z')'i 7{2'), the optimal second perlod
conditions (33) are egquivalent to those given by equation (24),
For null ex post communication, M = constant, the conditions
specified by (33) are not equivalent to those in equation (22)
because null information implies loss of memory about the value
of zi,

Ex post communioation can be expressed in Marsohak and

Radner's intertemporal communication notation as follows:

2 A
r(‘il';nx) £ (‘ﬁm,x\)
(36) Y*= (%)= [ . : = (), M(ED).

(300 X) * « o (aas X))

The declsion function for perlod two is a funotion of YZ and is
selected to maximize the expected utility

(37) W = ETu(=41Y,0)3 = Sy Sx S W« (¥5 %), 0) &(¥2, x,0) 40K dY?
The first order conditions are given by

(38) 0= JynyJp Ua, (7Y%, XY, 0) £(N2(0), 01 4}, K)dodTi), 1=1,2, . ., .
which 18 identical to equation (34) hence both formulations

lead to identical deoisions for given !2,x .

u

r_

FE

(Y-
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III, A TWO PERIOD TEAM EXAMPLE

a, Joint Preduotion Under Price Uncertainty The organization

which will be modeled here as a team 18 a business firm which
produces on a day-to-day basis two commodities, q; and q,. The
firm is divided into two production departments, each speoiali-
Zing in the produotion of the goods, Deoision making is decen-
tralized in the sense that department one chooses the dally
output level of q1 without being directed by a central autno-
rity.

The firm does not know the prices p; and py 1t will
receive for its products when they are sold, Through past expe-
riences the two departments have identical subjective beliefs
about the probability that the market will set prices at any
particuler levels, The departmental decisions about production
levels must be made without knowledge of the exaot price because
the goods are not sold prior to production., The firm has a two
day work-week followed by a market day when the preceding days'
outputs are sold at the going market prices. On neither the
rfirst nor the seocond work day will the firm know exaotly what
Prices will result on the market day.

This does not mean that the departments must decide on
Production levels based only on prior heliefs about prices. As
each work day begins, the individual departments read trade
newspapers, talk to prospective buyers and fellow businessmen,

etoc, to gather information about the "market conditions™ of
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thelr respective commodities., The infdmation 18 summarized in a
gingle statistic which will be called the "price forecast”. Using
this forecast as a gulde to prices, the departments will mam;:“w"s
on production levels,

The decision of each dspartment cannot be made ignoring
the possible decisions of the other department, The firm has some
resources such as floor space, machines or tools that are used 1n
the production of both commodities. As a result of these faotors
the Jjoint cost of producing at levels qi and q, 1s such that

gzcost/’az.az,_ +£ C. That i8, cost cannot be additively
decomposed into two components cost (qq)+cost(q2).

The firm 15 a team and each department desires to select
an output level to meximize expeoted profits where profits are
TT = p;q4 + P9, = €(qq,ap) = P'Q - CQ)

P=(p pp)'Q = (a4 q,)'3C(+) = cost.

The firm operates on a day-to-day basis, each day attempting to
maximize that day's profit ¥ = P'QY - ¢(¢*), t=1,2, It should
be noted that the profit 18 not realized until the products Q1+Q2
are sold at the prices P on market day, Cost functione are lden-
tical for each day and interest charges are neglected by assu-
ming zero interest rates, The total profits are the sum of the
two daily profits although each component oocurs at different
times in the week T 1*2 =Trl +7% = p*(@1+@2)-c(al)-c(@?).

We have yet to introduce communication to the firm's
decision procedure, Each department observes a dally foreocast

price zf which 18 correlated with the unknown price, P,, Commu-
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nication is defined by a function'q which maps Z=(zl,zz) into a

message matrix
Y M (2) M)
Y = () =
7u(3|) 'ﬂ1z(E:)
Each department makes its decision on production level based on
1ts messages to maximize that day's expected profits,
Specific assumptionsabout the funetions and variables
must be made so that the optimal decision functions can be calcu-
lated for particular communiocation structures, Let cost be a qua-

dratic function of output levels,
2
(39) C(Q):C\\il +2~c-|zz‘z:‘f'ctz ?,_2'-“- Q' c Q; c = Cie Cio
Cz¢ Ca4

The utility function 18 defined as the profits given this cost

function.

(40) U(Q,P) = P'Q-Q'CQ

Both department have the same prior joint p.d.f., for Py and Py

and 1t 18 Jointly normal with zero means and a variance-cova-

riance matrix (; T) » 80 that

(41) P(p,P) = (znj"'“'(‘-r‘)‘"‘ exp(“"i T.L;a (e 1«-P,P,_+P,_"}],
It has been pointed that normality assumption about

prices are unrealistioc because there would always be a positive

Probability that prices are negative, an impossible event. In

particular, with zero means the probability of negative price is

exactly one half, We will ignore this serious objection because

¥e want to demonatrate the optimality conditions for multiperiod
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teams and normality with zZero mean greatly simplifies calcula-
tions,

Each day the 1th department observes s forecast price zy
Wwhich is distributed normally with variance=1 and mean=p, .
(#2) D;(2,1P) = &, (7|8 = (zm) "exe (-L (2, -7,)), 1-1,2.
We will compare two ex antecommunioation structiires ~ no com-

munication and complete communication - defined by the following

communication funotions, ,
‘jl [ - ~ ll n
no communication: Y = o Y| ° 7 (2) = o 2.
complete communication: Y= (3 9a)_ " (2) = (2, .
2y Y kz'l 23

The information ¥y for no communiocation i8 distributed normal
with variance=l and mean=p,. The information (yil.yiz) is distri-

buted jointly normal with variance-covariance(;?\ and mean(ﬂ,&)z

(43) Pil4;09:,0P) = () exel (40, P V=% (42~ R)T)], 14,2,

b, Quadratic-Normal Teams Before continuing the two period
example we should state some theorems developed by Radner(7) con-
cerning trhs optimal decision rules for a team maximizing a quad-
ratio utility function when random variables are distributed
normal,
Theorem 1t If a two member team's utility function is
U(R,B) = A +24,0,8, 424, 6,y ~ Vi A= 2V12 Az - Vau Ay
then the optimal decision functions *44,) and ct,,(tgt)
must for all (yl.yz) satisfy the following conditions:



30

X 4)= "(l/: (AMEED 43 ~ Ve Ef&.(9.) (4.})
%z(g)= g (ACEEO L 43~ v  Efd,(9.) [ 93).
Theorem 2: 1f the utility funotion of a two member team is that
of theorem 1 and the random variables ©,,©9.,Y., Y=
are normally dlstributed with E6: E163=0, var-cou(o,0) (i
E¥4,18,3 =8, Efy.laf=06,,var(4,16)=vav(4216.)=1, then
the optimal decision funotions are linear in the infor-

mation:

% ) = 21 i e ?. constant

%l = & ae, 5. constant,

where ?. and ?,_ are the solutions of the linear equation
g = ﬂ“' 2 pty — T2 Vi &)

$rz o (e~ 2 U J7).

Theorem 31 If the utility function of a two member team is that
of theorem 1 then the maximum expected utility is
A "'/“leial:‘t("ll); “"/"teiet&t.(“,\tlg.

Corollary 1: If the utility function of two member team is that
of theorem 1 and the random variables are distributed
a8 in theorem 2, the maximum expeoted utility is
WwiaY = A +u, ?. + flo ?-. .

In the example of the profit maximizing two product firm, we have

a quadratic payoff funotion with V3 3704 50 A =+ and A20; also

the random variables ©,,01,9,,4s are distributed jointly nor-

mal; hence the optimal decision funoctions are linear in the infor-

mation,
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c. Optimal Decisgion On Day 1 On the first day the firm wants to
select a deoision funotion Q'= a'(¥)=(s \'3'.),0";_(‘1',,))’ to maximize
expeoted first day profits W '=P'@'-@' €' when there 18 no
comnunication the message y% i the individual sample observation
z%| therefore y} has a p.,d.f, like (43). The optimal decision
function will be linear:

(4ha) Ti(4))= S g

(Wbb) T 4l4l)= 3L 4. .

The coefficients S' and S! are def . by

O T I A WP AP T

(45b) 2L = o (M- T ea ?))

or solving for the actual values:

(46a) SV =L (2€a-ca.) [ (HenCan ~v 0)

(46b) SL+ X (zau- v [ (A tn - FPGT Y.

When ex ante communication is "complete” both departments get the
megsage veotor (y},y%) which has a p.d.f,

7y Plah,901P) = (e expl-4 (yi-e) - £ (4L -R) ],

The optimal decision funotions will be linear in the information
and of the following form:

(48a)  Ti(4h,9h) = 34 4p ¢ 3L 9

(48b) a-;. (4 ;'1-:.) = 21.'1 4+ ?:."l. 9% -

The coeffiolents g;i
(49a) S = 7 (R (Y- - Ca¥)
(b9b) 3= & (v (4 — i 3y)
(490) 34 = Elh f((4-YY) - Cn g0

A
(492) 3g.= F';'t (£ () fy-v" - S S,

are defined by
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or 8olving for the actual values
~

| J—

(503) S“ - —12:— -;—i—r—; E&l(z—vt} '—C'z_ v
CiCez. — c—lz.l

I Crz ¥ — Ciz (2—-v")
2
t-v Cplaz — C2°

(50Db) glL = '%T

(500) g\l = —l{ —L—_’: Cun? - C\z_ (7—-(1\
1 -—
l A CiCra ~ C..f'
(s0d) S0 = _L \ Culz-v?) =Cp v
5 =L

G-v*® CnCaq — Cc-:_L

The maximum expected profits for no communioation is given by

(51) — A [ ¢ -ve
(v — 3 2t (- ( +Cea “z
wCaz =V "(4

The maximum expected profits for complete communication is8 given b

(52) —Tclt [-a—l] ='J7: (gl: + /5\7(.1.) "‘—‘;: (gu‘-r. '*'g-zln]

C“ + CM "V"('n,, - r(,z._"l.) c\‘l,.

YCylza —(2Cl_:'— (!fz('“ Cea + z(z""l) Ct':)

L
= 2z
If the correlation between p; and p, is zero (r=0) then knowledge
of one sample statistic provides no information about the other
commodity’s price, In this oaseﬁ?£c>iﬁélf the correlation bet-
ween p; and po 18 perfect (r=1) knowledge of one sample statistic
does provide information about the opposite price and we cannot

—1 ==
say that Tctc >Wae for all possible cost functions.

d, Optimal Decision For Day 2 Without Ex Post
the beginning of the first work day each department gathers infor-
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mation about the conditions of its respective market. The depart-
ments pass on this information to the other part of the firm
according to the ex ante communication funotion. The daily deci-
sion on production levels 18 made and production is carried ocut.
Suppose that at the end of the first business day the department
heads simply go home without discussing "market conditiors” any
further, The next day each department gets a new report on the
probable price that it can sell its product., This 18 usedas the
basis for the ex ante communication in day two and nothing is
sald about yesterday's information. On the seocond day the depart-
ments make their production decisions based on the message
received on work day one (which they remember) and the message
received on day two. The decision functions are of the form
Q*=T*(Y}Y) = (¢ (4,4, 0"1('-5'2,*1';))'. The maximand 1s the expec-
ted profits for period two 1 2=PG-G*C92 The optimal decision
functions must satisfy

(53a) Ti(4hy?) = & (£ ELP (4,43} — = ELT 1 ¢y, 4001y, 9%8)
(53b) G 2(9y,93) = (5 E1rlyl, 938 - ETd 2(yl, 4350 4L, 433).
Y! and Yz come from independent random samples with the same
distributions:

(sh) POLYEIP) = b (4!119) S (9L 1p) D, (431P) P4l ) @),

For the ex ante communication structure "no communication} 4%

is distributed normal with variance=1 and mean=p1, t=1,2

(55) P;(q¥(®) = (| " exp (- (T -2 ).

The optimal decision function for no communication will be fnear

and because of the identical distribution of yi and yf they will
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be of the following formi
(s6a) T 2(459%) = $3(9¢y5)
(560) T 1(g9kr42)= 82(qi+42),
where the coefficlents are

¢ C"ucll_(g—rcl'l.-)'z

(570) SL= , 2u-FVC<-= ]
Culaz —~ (% Clz)z'

The maximum expected second period profits are cé%uted as
(58) TrE(@T=37488 =% CutCea-FcCz
Ly Cea— (5 v C2)*

For ex ante "complete communieation yf:(yf,yg),the optimal
solution 18 of the form
(s9a) &3(V,¥%) = 33 (gleq?) & $F(4Lvyl)
(sob) @X(YLYD) = SEH(4iry?) + 81 (4lvyl),
where the coeffioients aﬁ are the solutionsof the simultaneous

equations:
Az _ L (1 Dozl

A2
(60a) an = & (£ 5= -¢a 57)
(6ob) 3% = o (% et~ Q= 3.5)
o .
{60c) gr:‘a * C4a ("&. _q-:ﬁ_}-t. - C('Lglzl)
o —2vt
(60a) 34 = er (432 - @ 33).
Solving these equations we get the values
A

(61a) S(T = J—;_—-—l-—; Ca2(3-2¢*) ~ Cia ™

I-4v C¢ Q12 — Cn.‘-
(61b) 82 =Lt —Ll_o Ce2¥ - Ci2 (3-2¢%)

hr W

Z ‘f—qfl C(\ Q‘L-L —'C|1='
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(61c) 382 =L 7_‘4,:. Q¥ = Ca (3-2v2)
Cu Caa -G

! C-Il(?"'z‘fz) - Ca v
z

x

(61a) 3 =

The maximum expected profit fer period two with complete commu-

nication is

(62) TE = 3% 432 4 v(32 4« 22)
= L —L (Cll+ c"l.‘z)(?n—\’z) —V'(S'Zf?') C 2

2 q-y4v2 -

C\IC'LL_C\L

e, Ex Post Communjcation Structures The above solution for
optimal output decision functions assumed that at the end of the
first day the departments did no more communication to come to a
ocongensus about the probabilities of future prices. Suppose we
now allow ex post communication. Two particular ex post communi-
cation struotures will be studlied here: "complete” ex post com~
munication by only the team's "ecaptain.” If at the end of the
first day the decision-makers of each department play & round of
golf together and in the process give thelr colleagues the oonm=-
plete picture of market conditions that they observed that mor-
ning, then the firm's ex post communication is "oomplete”, Sup-
pose that at the end of the day the decision-maker for department
one puts a message on the bulletin board near the exit summari-
zing the market conditions that department 1 observed that mor-

ning. All decision-makers in the other department read this
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message and th.s 18 the only information that they remember the
next day. The ex snte communiocation will be "no communiocation”
in this example. The two ex post communication strustures are -

repregsented formally by

-3

M(Z) = (#,1;) “oomplete” ex post communication
A(2)= (2)) “captain's message” ex post communication
To find the optimal decision function for day two when

the ex post communication was "oomplete”,the following equations
must be solved,
(632) Ti(91) =2 (FELPNYT,Y'E - ca EETT(4) 197 ,¥/F)
(63b) G2 (43)= & (REFp|yd,y'E ~ Ca € ETTYNYT, VD).
After the beljefs are updated by the ex post information,the
variables continue to be distributed normaliy but the means of
(pl,pz) are no longsr zero, Radner shows that in this ocase the
optimal decision funotions are still linear in the information
but with the addition of a oonstant term,
(64a) F(4}) = 37 43 + 0%
(64b) Ti(y2)= 3T 4%+ Uy

N
The cptimal coefficients 57,
A , y A A-v"®
(650) <4 S'. * Gagoger 33 2 't' ‘-zrv"-
A
T : - ik et
(55b) Cv - 202 ? t CuSy = -'t %:#‘l

Solving thse equations

(66a) 22\ = L (2-v%) (€-2¢%)Cy,; =¥ Qi

CuCz22 ~ r2 0t

22 _ L (2-r?) (6-2v7) Cu = v'l.c‘-’- .
(66b) 527 CnCaq— ¥2C,
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>
Given the above values of S‘ and 3 ., the oonstant terms Vi and
A
V,_ must satisfy
A A A |
1; -+ C‘-,_V:_ :"2'_‘ <~ zrt((l-\fz)ﬂ‘i-f l:.) - T2c®
(67a) Cy vV 4

C 121(r3:+(3~u")¢61)
(67v) Cn 0["" Cze G:_ 2. ¢- zr*("":h*‘('l"t)‘iz) S5t Ca §"

((s-2v¥yl eryl),
It 18 olear that the constant terms depend on the value of Y1,
This is the implicit relationship between Il and Q2 that was
mentioned above,

When ex post information 18 the"team oaptain's” message,
the optimal solution is again of the form
(68a) G 2(4%) = 3% 47+ U7
(68b) T Z(4i)= 31 4L+ Vi,
The ooefrfiolents §f and §§_ must satisfy the first order conditions
(69a) <y g? “‘% C—(zg:_ = ’é‘
(69D) Tqevx iz 37+ C3% =& %—%‘:‘5— ’

Solving these equations we get

(70a) S% = « L - Camaetle,,

3C||C1.-z_ 5 "

& 3(s~2ct) _ Lo
T

3G Qo - ?f}'—"l'- Cia

Given these valueg, the constant terms V and V -._must satisfly
(71a) C‘\l\'( +C\LU-;_= (‘L—LCnet\‘j.

-~
(71b) Cea V + C2z Vt = ("f' (1"‘“’2) Cia ? J‘_— )‘j‘

Again the constant terms depend on the ex post message 4,.
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IV. MULTIPERIOD TEAM DECISION THEORY
WITH A DYNAMIC ENVIRONMENT

a, Introduction In the previous section the environment was
static in the sense that the unknown state of nature did not
change in time, Only information and aotions changed as time
rassed, The next step ig to study the multiperiod team decision
rroblem as the unknown random state of nature takes on different
values in each period,

We will begin with a two period problem although results
are easily extended to T periods, In each period a new state of
nature 1s believed to occur, first &' then ©% The team has a
set of "beliefs” about the unknown states of nature summarized
in the jeint prior p.d.f. $(©' 8%). Notice that 1f B' and ©°
are believed to be statistically independent, ¢ (&'8%)= $.(&Y $.(67),
then the two period team problem is dichotimized intc single
period team problems,

Agaln assume total utility is additively separable in
time with identical single period utility functions,

(72)  U(A, A3 8,68%) = U(AY8') + U(R%6%),

In each period information is availlable to teammates through an
ex ante observation-communication system as specified above,
Decision functions for both periods are again of the restriocted
form:

(72)  &lY) = (1), Xal4a) ) Faal4a)) .

The team desires to select decision funotions«' and X*to maximize
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total expeoted utility:

(74) W' [ah«*] = S5 U, 0') vd(x* %)},

Before first order optimality conditions are derlived, epecific
assumptions must be made about the information available to eaoch

teammate in both periods.

b, Individual Memory Assume that the only intertemporal commu-
nication allowed 18 individual memory of past messages; that 1is,
in period two the 1P teammate knows only the values of (y},yf).
The second period team decision function 1s then defined by

I S U B ERCH O JE S CTAT Y

The two information variables Y1 and Iz are postulated to have
come from independent random samples so that the prior conditlio-
nal joint density is

(76) (Y, ¥*(8',8%) = (1) ST,

Because 8' and 6" are not independent, knowledge of Y! will pro-
vide information about the unknown © ., (If ' and ® are indepen-

1 2

dent then the posterior p.d.f. of © given Y and Y° i8 only a

function of Y21 € (e*[¥' ¥ =F (e Y%). )

With these hypotheses about intertemporal communication
in mind, the two period team problem is to select &'(Y') - ana
204 ¥%) to maximize total expected utility:

(77) W' = fofefydp (U0,09 et 13),0%)) &' (¥ 16")
SN (8Y) (6,61 dV'd(2d6'467
Let &f and az'denote the optimal team deoision functions. Because

of the additivity of utility, first order conditions for Q! are
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disjoint from those of %%, The first period team decision funotion
(YY)  must satisfy simultanecusly for all ¥t

(78) 0= Soidyin Ua,(R'(¥")i0°) £(1'U) 0114 1) ati)46! 1-1,2,..,N.
The density function

t (o
(79) £V etgly= BUYISY) P (6"

EHTH
- $(1'16') Squ b (8! 6%) a8™
SyrSater 211 10Y dle",07) da'de (' () '

18 the joint posterior density of Y! (1) and 8' given the observed
value of y%.
Sz tyl

The second period's deolsion funotion <% (Y¥,{*) must for
all (yi,yf) satisfy simultaneously:
(80) 0= Swmf':‘mfe‘“a-. (14, 0%) £ (116), (0, 8% 4}, 47 ) 48T )Y (i)
for 1=1,2,..,N where the density function 18 the joint posterior
density of Yi(i).Iz(i) and ©" given the values of the 1'N team-

mate's observation in both periods — y} and yf.

Afyr T ‘| 2
(81) £, 0 My, 43) = d g‘(l:!”)ﬂ;;( ,6%)

2 (1*e®) Jg. d'(y'e') (e, 6} 46"
S‘J‘m J,-m Sat Sgr D' (1160} D2 (210%) $(6',0%) d 8'dB Y ()dY i)

Suppose there are T perilods angr;nly intertemporal com-
runication 18 individual memory of the pﬁﬁious observation. The
team decision funotion for the tth preriod 18 of the restriocted
form:

(82) ot 5 = (gL 4T S (w8, 4N
1r &(e\e}..,6T) 18 the joint prior density of all T states of

nature, the Jjoint prior density of (Gt)etﬁ) is given by
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(83) $t(e%, 6t = Jodor Sg-idguSor dlo)05..,67)d0" 46" %6 JoT.

The joint prior density of Y®,Yt~l and €% 1a given by

(84) (S Y ot)= &t (1t(et) St $tl(ytifot)pt(a%0 ) 401

With additive utility, the desires to Beleotdt to maximize

expected utility:

(85) W = L Sytdor WY v Bt) SF(TI8¢) S (117 BL)dET ATV
The first order conditions for &1(“, YH) are exactly

analogous to these of the two period problem,

(86) o= Setsj*i)s'j“‘(i) Uq, (F(YY°71) %) £ (YT (0,87 ( 4% 977)

A1 avttget,
where

trytiat t-\ At
(87) F(4H), Y1), 0f 4,48 ) = dt(1tiet) d (Y 6Y)

cbit("r‘: 45

The reader can easlly extend this T period problem to allow the

individual memory of the past T message for L £ T = t-1,

c., Ex Post Communication As long as 8'and0” are not indepen-
dent, information concerned with‘9'1s indireotly information
about 0%, The team would like to update i1ts bellefs about the
second period's random variables based on 1ts information Il.
As noted above this 18 impossible becauss no team knows the
entire value of Il. Ex post communication was introduced to
allow the team to adapt its beliefs according to its informa-
mation, The ex post message X'fﬂ4(2f) received by all team-
mates 18 statistically distributed by the p.d.f.
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_ !
(88)  h(X(8') = §,iq ey P(TION 42
Given the value of x1 all teammates update their beliefs by

computing the conditional joint density of Y° and ngiven x1,

89y €(y%er|) = L=(y*le*) (¢, 6%)
o2 e I

d2(y*e?) Ju h(k'|e')${6',0%)d B’
§Sofg: N X' 18Y) &(86") 40'd0™

The team selects a second period decision funotionc&ltvz) to

maximize expected utility against the posterior p.d.f.{701ﬁ9?fx')f
(90) Wi« = S.i.fem U(*(Y*),0%) 104K dyrqe®
The first order conditions that the optimal decislon function
%2 (4*) must satisfy are:
(91y O = S',‘,,;m%. Ulql.('&l(\l"),e‘) €1*0),07 1 K, 43) 4170) 402
The density function defined by
(92) £(Y¥0,0%( x4ty = £l x')

(4T

= P nhex')
P (43 ,x")

18 the joint posterior density of Y%(1) and O™ given the ex post

mesgsage x1 and the ex ante individual message yf.
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APPENDIX: UTILITY AND THE RATE OF CHANGES OF ACTIONS

Previously total utility was additively sep rable in time,

i.e., T
(93) U(A\AS.,ATE. 8}, 0T) = 2 UT(AS 6%).
In addition single perioed utility funotions, Ut were the same for
all ¢t=1,2,..,T, This latter assumption can be dropped without
changing the nature of the optimality conditions, For example, we
could introduce a rate of time preference P and define the tth
period’s utility by
(o) UYRAY 0 = (l+p)"tu(ﬂt,e*\
Ih this case the optimality conditions would be identical to those
derived above, Athough the additive form of utility eould be drop-
ped, a special type of additive utility has heen found useful,
Many intertemporal economic problems (most notably "optimal econo-
mic growth”) assume that total utility is additive in time but
also assume that the single periocd's utility is a funotion not
anly. of the policy instruments but of the rate of change of the
instruments, In the neoclassical optimal growth literature today's
utility is a function not only of the capital stock but also the
rate of change of the capital stock,

This new definition of total utility 1is

T -
(95) u(ﬂl,...’ A-]; B:,_‘ GT) = Z (H.‘a) tu* (ﬂ 1.1 H“'_ ﬂf-l, e-{-)

t®y

= i (o)t U (A, AT 8%)

L LT

The first difference At-Atnl is the discrete analogue to the rate
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of ohange of actions. A rate of time preference has been added and
will play a role in the optimality conditiorns.

Let us begin with a static environment: 8=0'=0%=-=a 67T,
Let us also begin with an assumption not yet explored:s all team-
mates forget the values of all their past message, The decislon
for period t is based only on the single information YY and no
intertemporal communiocations are made, The deocision funotions
() = (ﬂffﬂf),._,)d; (3:,))' , t=1,2,.,,T,are gelected to maximize
total expected utility:
(96) Wiw'\.. dT) = E{ 55 ( t+f=) Uy, a4, 8) §

- ¥ (HF) “eg U (¥ ot (yt) 8) 3

twg
with A®:«°(°) a given constant action

*T).

T .TYT
All arbitrary decision funotions can be written as CARY Y “r",a‘ +4'87)

A
Denote the optimal decislion functions by (*',-—-,

where A% 1s a constant diagonal matrix and ¥t 35 an arbitrary
team function of the same form as % €. W(d\. AT} treated as a
function of At mist be maximized at At=°,t=1,2,..,'1‘,by the
definittion of the optimality of SC*', The first order conditions
are: for all arbitrary ¥°

(97}
(98) 537“;’: = (Y  E S U; RHO,RTU(Y) 0) 69T +

ilo
(4E) T § Uy (R¥(41), 8 (44),0) K (418,

1=1’2'..'N t=1'2’..'T

where.. U1 denotes the partial derivative with respeot to the y th

component of the current actlion and Uy,, denotes the partial

derivative with respect to the lth component of the previous
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(99) U (R, At g) = ;};? U (At At @)

P . I -1
(100) Uy,; L A% A% 6) = 5ar WAt AT 8),
By reordering integrations and applying the lemma®§ {(4)q(x)dy=6
for all g(x) implies f(x)=0" and finally dividing by the margi-
nal prior density of yf the first order conditions for optimal
team decision functions for all yf the optimal decision functions

must simultaneously satisfy the following equations:

(101) 0= §a) S.jf..fe u; (am*),i**‘(w**),e)f(w*ta),\l*",e) «3;‘) AYf )N 4B
LY Sy S S Unet (5900, 254, 8) £14 ), 6 [ 4*)
ANV AN EG) A8
= ESULLRS A, 0) [ 413+ (1ep) ' €T Uy, 37,27 0) 19T g

for 1=1,2,,.,N; t=1,2,..,T.
Certainly the complete loss of memory of all past obser-
vations is an unrealistic assumption. Instead, suppose that each

-1 but no

teanmmate remembers the immedjiately prior message y
other form of intertemporal communication is allowed, The deci-
sion funotions will be of the form «*(Yf‘it")=(-'~f(*_f.‘,ﬁ"),"’ctf,(3},"365'”’.
The optimality conditions for the decision funotions 1,,.,T are
(102) 0 = Sy Sy Sqr-a S Ui (FH(144#) R4yt 1+2) @)
FUCOYONY o Ly, 95" A PGy ay )yt g 0
tLP) Sy dgeiy g So Unws (BT (YE 44, 24yt e) o
FOPLHOD TG, 0 19T, Yy A ™ A AT Gy A B

= BEEW @530 0) 4T, g1 ) +(p) E Uy ar i a2t o) gty g
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for 1=1,2,.,.,N t=1,2,..,T.

This can be generalized to the individual memory of the
past T messages 3t-§,%t*t+z"u Yyt for 1¢ ¥ ¢ t-1, For example
if the teammates can remember all their pest messages (x = t-()
then the optimal decision functions must satiefy
(103) 0= ERui (X53% 00yl 433+ (p) ' ET Uy, @M2ta) |4}, 4T}
for 1=1,2,..,N 3 t-1,2,..,T.

Similar equations can be construocted when intertemporal
communication 18 not individual memory but ex post communication,
There 18 also no problem in extending the theory to & dynamic

environment where the state of nature ochanges each period.
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FOOTNOTES

(1) ;. vMarschak and R. Radner (1972),

(2) see any of the following: DeGroot(1970), Pratt, Raiffa, and
Schlaifer(1965), Raiffa(1968), Raiffa and Schlaifer(1961)
or Savage(1972),

(3) ¢, Kriebe1(1968).

(%) ¢, Ying(1969).

(5) Marschak and Radner(1972), Chapter 7.

(6) Ho and Cchu(1972).

(7) g, Radner(1962) or Marschak and Radner(1972), page 168,
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ESSAY TWO

Sequentlial Team Decision Theory

And Optimal Stopping Rulee
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SEQUENTIAL TEAM DECISION THEORY
AND OPTIMAL STOPPING RULES

I. SEQUENTIAL SAMPLING

a, Decision Rules and Stopping Rules In the introductory
discussion of statistiocal decislon theory the information
variable was treated as a scalar, although it could have been a
vector of sample observations, Many statistical problems involve
a fixed number of observations, m, represented by the vector
Y=(y1.y2,...ym)' where the number of observations is a given
parameter. However, there are other statistical decision problems
where the number of observations 1s not fixed but is determined
by the statistician,

One class of suoh problems 1s called sequential sampllng.(
In these problems the statistician makes his observations one
at a time; after esach observation he evaluates his total infor-
mation and decildes either to continue gathering information
or to stop sampling and make a decision using only the previous
observations. Each observation provides information about
the unknown state of nature and increasesa expeoted utility,
Typically the cost of each observation is a oonstant, C., Net
expected utility is ocomputed as the numerical difference between
expected utility and the disutility of the ocost of information,

(2)

Many studies have pointed out the special nature of this

additive utility assumption, but it greatly simplifies these
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complex decision problems, A sequential decision problem requires
the selection of two rules: the decision rule and the stopping
rule. If the sample terminates after m observations,the decision
rule determines which aotion 18 to be taken for each possible
vector of observations:

(1) R =cm(Y)= L (N 392y2 Ym).

The stopping rule specifies after m observations I=(y1,y2,..,ym)'
whether sampling should be terminated and an action be chosen or

whether another observation y should be drawn, If the obser-

m+1
vations scome from a set'ﬂ , the stopplng rule generates a sequence
of subsets Se € 7= YrYrxY calleq gtopping sets. If (9,,.,9m)< Sy,
then sampling terminates, If (3”",3pdﬁ.5w1then another sample will
be drawn. These stopplng sets ocan be used to construct another

sequence of sets called termination-at-m sets which define the

observations which will cause sampling to stop after m observations

but not before:
(2) Twm= 95,015,270 Sm. N Sm

where Sk is the compliment of Sk.

The following 1s the total net expected utility of a sequen-
tlal declsion procedure with a maximum of B observations (possibly
infinite), where &= (d‘lr--,dm> is the vector of decision functions

and T=('1‘1...,Tm) is the oollection of termination-at-m sets:

(3) W, T] = E{U(tm(H1s94m),B) —m U(<)F
= é, S‘rmse u(d""(‘i‘i")‘ﬂ"‘)le) cb(‘&l‘e)"' 4’(‘;1”(9)4’(9)49‘!‘11"“:}

1]

+ > r\qu(C) Pf@b((%i)“'l‘ﬁﬂ) QTM).

3y

An optimal sequential declision procedure is a stopping
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rule and a set of decislon funoctions that together maximlze total
net expected utillty,\d[*ftj. A fundamental property of the optimal
sequential decislon procedure 1s that the declsion funotion must be
optimal for each possible m=veoctor of observations, That is if sam-
pling stops after the m observations (y1,..,¥m), the decision for
each possible (y1,..,¥yp) nust meximize expected utility against the
posterior p.d.f. of © given (yl,...ym). Because of this property
the discusslon of optimal sequentlal declislon procedures focuses on
the optimal stopping rule, implicltly assuming that the decision

functlions make optimal use of information,

b, Backward Induction If there is a finite 1limit on the number
of observations, the optimal stopping rule may be developed by a
procedure of backward 1nduct10n.(3) The rationsle for this techni-
que of solving the general sequential sampling preblem 1s given
and wlll be formalized in the next subsection,

Suppose the utility 1s a function of the unknown state of
nature, ©, and the statistician's action A, The information varlia-
bles yi are independent and have the same conditional p.d.f.
glven ©, Cb(‘;\;le). The statistiocian is allowed to take a sequentlal
gample of up to B observations. Each obsgervation has a fixed
disutility U(C). The decision rule, %w, maps a m-vector (¥1,..,¥m)
into an action A. The prior p.d.f. of @ ia ¢$(©).

The initial question the statistician must answer is :
should the first observation be taken or should a declsion be

made based only on the prior beliefs about 87 The answer depends
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on how the informatiom in y; 1s uased. If ¥y is obsearved, will
another obgervation y; be drawn or will a declsion be made uaing
Just ¥ ? If observations are limited to B, the final question

in this sequence of questions will be: if yl,...yﬁqhave been
observed, will the last sample Yp be taken or will the decision
be made without this additional information 7?7 The statisticlan
can usually find the stopping subset of 4°"' <€or which the final
observation should not be taken., Moving backwards a similar pro-
cedure can be set up for Yyeser1¥Ba2 and so forth back to y,;, Thus
“for each possible value of ¥1. the optimal continuation through-
out the remaining stages”(4)18 known and the origlinal question

resolved.,

¢. Bounded Stopping Rules Optimal stopping rules require the

congtruction of the posterior p.d.f. of © after the m observation

(¥4172+44,¥p) are dr:wn.

() f(6l4u-4m) = T p(4il0) $0)/ SoTT digile) bio) d6.

The expected utility after sampling has stopped with m observations

18 denoted

(5) Wol£(Bl4,-yym) = maxr S ulhe) £(ely,,..,4-) de.

Implicitly the optimal action 18 a funotion of the observations,
Suppose the statistician has observed B-1 values Y1rv04¥p.1

and wants to know if the final variable should be observed, He
continues sampling if the expected utility of deciding based on
¥Y4s000Yp.1 18 less than net expeoted utility with the final -6bser-
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vation, i.e.,
(6) Wolf(o14,45.)) < EE Wo (F(8141Y8)) 141,y Yg-d ~ UL,
Define the optimal expeoted utility when the ourrent belief's about
are-f[elghﬂjﬂg_t) and when only one additional sample may be
taken by
(7) Wi (£(8l49y,,44)) = Max [We (F(8lY,., 4s-1)), E§WalF(e1Y,-,48)) |
-9 Ye-13 - W],

Backing up to the previous stage, the computed posterior
p.d.f, for © is F(Bhy,m,jaaz). The optimum expeocted utility given
the first B-2 observations,but nct the last two,is
(8) Wol(f(O141y,de-2)) = mar SoU(A,8)L((Y,-Yg.2) 4
The expected net utility of taking another observation is
(9) Ef W, (flelyy,.., 4 )} 1 41,, Y23 —U().
The optimum expected utility for the remainder of the procedure
when the current beliefs about @ are ‘F(el‘ﬂu---, ‘jg-z) and when
at most two more samples can he drawn is
(10) Wz (€(8{9,.-,45.2)] = max [Wo(f(BlY ., 45.)),

E3W,(Folyy,., 98-0M G1,-., Yg.o3 - Ut<)].

By induction the functions Wa (P(6)), Wg.((flely)),...,

Wo (£(0(4y--, 4)) can be defined using the relationshlp

(11) Wpopm (€(8141)-,Ym)) = max [Wo(€(O14q,, g ) 4
Es.wﬁ-h-u(c(al‘lu"o‘inﬂ\)[‘ﬂu--aﬂ\m}—“(C)J-

This provides the statistician with all the needed information

to establish a stopping rule,

Proposition 2-1: If the prior p.d.f. of © is $(6) then Wa(§(6))
is the total expected utility from the optimal segquential
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decision procedure in which not more than B observation can
be taken, Furthermore, for m=1,2,,.,B-1 after the values
yl'yg....ym have been observed and the posterior p.d.f., of
& becomes f(®lY,., 4Ym), the expected net utility from
the optimal continuation 18 Wp.. (€(0 (4, ., Ym}).

DeGroot also states the optimal stopping rule as follows:

Proposition 2=2: Among all sequential decision procedures in which
not more than B observations can be taken, the following
procedure 18 optimal, If Wo (¢(8)) = Wg(4(6}) a decision
18 chosen immediately without any cbservations. Otherwise,
¥1 18 observed. Furthermore, for m=1,2,..,B-1 suppose the
valueg y1,¥3,..,¥y have been observed. If \do(F(9l3”nvﬂnﬂ >
WB-..,('F(M'j.,...,g...)) a decision 18 chosen without further
observations, Otherwise Yp+1 18 observed., If sampling has
not been terminated earlier, it must be terminated after

¥p has been drawn,

d, Example:s Maximum of Two Observations Suppose the statisti-
clan make at most two observations, The stopping rule must spe-
cify the oconditions under which (1) no samples are made, (2) only
one sample is taken and (3) both samples are observed. The analy-
818 begins by computing the maximum expected utility if both

2 18 selected to maximize expec-

obgervation are made, The action A
ted utility againat the posterior p.d.f.‘F(Ol%\f1t).

This defines
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(12) W, (€(819,4)) = max S 4(A%8)F(8(9,,9.) 46.

Under what conditions should the statistlolan observe the
second sample when he had already observed the value y 7 If the
statistician does not observe the second sample then he must
select an action that maximizes expected utility against the pos-
terior p.d.f. f(6l4,).

(13) We (F(&ly)) = may o UlR,8) £(01Y,) 46.

Expected net utility if y> i3 observed at this stage is

(1) EfWo(f(814,42)) (Y}~ Ulc) = max qutseu(%‘(u;),e)ﬂe,th1‘1.)
dgde - Ul9).

The stopping set is then defined as

(15) S,= 14,1 Walf(014)) > E§Wolf(B14,,42))14F —U(D].

If ¥y falls in the stopping set, no further observations are made,

The maximum net expeoted utility for the remailnder of the prooce-

dure when ¥y 18 known and no more than one additional observation

can be drawn 1s

(16) W, (£18ly)) = mar[WolfiBlq)), E 5w, (Floly, 4y 4,3 -atec)].

Under what conditions should the statisticlans even make
one obgervation 7?7 If no observations are made , an action must be
selected to maximize expected utility against the prior p.d.f. $(6);
this defines
(17) Wo( (8)) = max S U(h.0) b(o) d6.

If a sample i1s taken 1t will either be in the stopping set or it
will not, The expeoted utility of the optimal oontinuation is
(18) E {w,(fle(u))§ -utar= S ‘sfe u{'(4,),0) ¢ly.(0) (2140 dYy, +

S 4 5.5y S0 U (44j4.),6) 6 (4,16) biy.(6) b0} dody. dy,
~ULE) —U(cY Prob (4, ¢5)).
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The optimal stopping rule 18 thus defined by the following
sequential declsions:
(a) If W,(d(8)) > E§W,(f(oly))3 —~U(c) then make no samples.
Otherwlse make the first observation y;.
(b) If the first observation is in the stopping set S, then
do not take another observation, If ¥y 18 not in 84 then
take exactly one more sample before making a decision

on the best action,,
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II. TEAM DECISIONS WITH SEQUENTIAL COMMUNICATION

a, Sequential Observations and Intertemporail Communication In

the chapter on multiperiod teams a decision making prccedure was
studied which conslisted of three phases: (1) the teammates obser-
ved the environment, (2) the teammates communicated the results
of thelr observations and (3) the teammates decided on thelr
optimal actions. Each period these phases were repeated. This
team model was general enough to include a fixed number of obser-
vations or communicationss the observatlons zj could be vectors
and the communication functions ’hi(zj) could be vector-valued,
Let us call an observation and 1ts corresponding communication
an information gathering operation, abbreviated IGO0, 1If the
number of IGOs allowed before actions are chosen is an element
of the decision of problem and not a fixed parameter, the theory
of teams must be modified,

Suppose the team makes IGOs one at a time; after each
IGO the team evaluates its total information and decides elther
to contihue gathering information or to stop and make a team
decision using only the current kmowledge. This sequential team
decision problem has two components: a serles of decision func-
tions to determine what actions are taken for the given infor-
mation and a stopping rule which determines how much information
shall be gathered,

Care must be taken to differentiate sequential team

problems from non-gsequential, multiple observation team problems.
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thus each teammate will independently give the same anawer,

b, Interim Actions and Opportunity Losses In the theory of team

declslons all communications and computations were acocomplished
instantaneously, This could also be assumed for "sequential” team
theory but several interesting situations can be studied only if
communication becomesa time consuming vpreration, Suppose that each
1GO takes a finite, pozitive length of time to completse, At tne
end of the IGO an optimal aotion 18 selected and implemented, but
while the informs.tion was being gathered an opportunity mﬁy have
been lost because either no action was taken or the action that
was suboptimal, If the number of IGOs is fixed this opportunity
loss 45 unavoidable beosuse the tear cannot change the length of
time it spends gathering information, However the sequential team
ocan determine how much time 13 spent gathering information because
1t can select the stopping rule., The sequential team should recog-
nize such opportunity losses when 1t ploks its stopping rule.
There are various ways that opportunity lesses can occur
in sequential decision problems, Three specific schemes will be
studied in this chapter, First, it can be assumed thét utility
18 realized only at the end of the period instead of oontinuocusly
throughout the period. No opportuities are lost while information
is gathered, Second, a known interim action 'K can be effective
until a final decision is reached, As information 18 collected

tentative aoctions are proposed but not implemented until the team
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stops gathering information. Third,at each stage of information
gathering the tentative actions based on the current knowledge
can be temporarily implemented. The effective actions change as
information acocumulates, Once information gathering stops the
final actions remain effeotive for the rest of the period,

Two declsion making proocedures not studied are:(1) Sup-
pose that a ochange ineffective actlon creates a cost which lower
utility., At the beginning of the perliod a historical interim
action 18 in force, As information is acocumulated the team must
decide not only what 1s the optimal action and whether or not
more information should be gathered, but 1t must also decide
whether or not to replace the interim action with the current
tentative action, (2) Suppose the team can not only choose how
many IGOs it makes but also how many communications it makes ba-
sed on each observation, The teammates can not only ocommuniocate
the results of thelr observations but can also communicate the

result of their individual ex ante messages.

c. Assumptions The sequential team decision problem requires

the introduction of several new components to team theory. For

oonvience all assumptions about the old and the new components

of team theory will be presented here,

Assumption 2-1: The length of the period of operation is a fixed
time A.

Assumption 2-2: the environment takes on an unknown value O at
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time t=0 and is unchange for all time 0% t <« ). The team’s
prior p.d.f, for © is 4){9)

Assumption 2~3: The ex ante communisation function V==q{&)1s the
same for all IGOs, The only intertemporal communication is
the ex post message )(iﬂ&(%);the ex post communication func-
tion M(Z) 1s the same for all IGOs.

Assumption 2-4 The seguence of team observation zl,zz,.., ocome
fron independent, identically distributed random samples,
This, along with Assumption 2-3, implies that the distri-
bution of ex ante messages are independent and identlocally
distributed for each IGO with conditional p.d.f. (N [6).
Similarly all ex post messages are independent with the
same conditional p.d.f. h(X[€).

Assumption Z-51 Team actions implemented only after the ex post
message has been recelved,

Assumption 2«63 The cost of IGO is independent of the actual
messages sent and depends only on the functional forms n('\
and Mml). This, along with assumption 2-3, implies that
each IGO cost a fixed amount C = C[ﬂ1“M).

Assumption 2-7:The time required to complete an IGO is indepen-
dent of the actual messages and depends only on the func-
tional forms 7)(-) and M(-). (Note: computations of decision
functions and stopping rules are instantaneous.) This,
along with Assumption 2-3, implies that each IGO takes a
fixed time 1=K (7, m).

Assumption 2-8: Utility is a function of the team action A, the



63

unknown state of nature and the total cost of gathering

information. The utility will be additively separable as

follows U = U(A, 8) - U(Ctotal)‘

From assumption 2-1 and 2-7 an absolute upper 1limit on the
number of IGOs is defined, Let m denote the number of IGOs; 1t
must satisfy the restiotion 0 £ M £ AN

d, Stopping Rules Without Interim Actions A sequential team

makes a series of 1GOs and after each one proposes a tentative
action. Exactly how does the team select these tentative actions?
When the team is about to make the m®h IGO0, 1t wants to maximize
expected utility given its accumulated information., All teammates
have observed and remembered the m-1 past ex post messages

x1,x2 ,.,x"1 and caloulated the joint posterior p.d.f. of the

ex ante message Y™ and the state of nature ©:

(19) F({TelK|. x")= ¢(%”\e)"?[:[4’(x"l9ﬂ<b(9)/se'r[f[4>{x"lej}cb(e)o|e.
The team picks a decision function o("‘(!"‘)=(d.',“13':‘),m;d":"‘(.j:))l {o
maximize expected utility against the posterior p.d.f.FHTelK:..,x"'").
The first order oconditions the optimal deoision funotions

must satisfy are

(20) 0=§ fyn, Uq; G&(1),8) £ (1™a) ey DX k™Y de , a=1, ..,

It should be noted that each individual decision funotion i=s
tmplicitly a funotion of the ex post message X1;..,XT !, This
conld be introduced expliotly by writing the decision funotion

as c(m('i": K"",,__, X') and maximizing
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(21)3953.,5,(-.-."'3‘ o U X, 1), 6) Cb(Y"‘\e)?r_if [plriie)] blo)axt ~4x™ay"48.
The two procedure lead to identioal decisions for glven values

of Im,xm,..,xl. Also notice that the mbh decisions does not

depend on the mtN ex post message XM because X™ 18 received after
decisions are made, However XM is used in all subsequent decisions,

At what point does the team declde whether or not to stop
the information gathering process and what information 1s used to
make such a decision? Suppose the team had made its mth obgerva-
tion end corresponding ex ante communication and each teammate
has selected a tentative action aj'= T4 X5, X'). After the team
recelves 1ts ex post message XM it must decide whether to stop
and implement the tentative 3\"= (aTr--; a:) or to continue
gathering information, At this point in time all teammates know
the value of the ex post message X1,X2,,.,X? (including Xm) and
the entire vector a"‘of a tentative actions.(5)

The team establishes an optimal stopping rule by backward
induction begimning from the final IGO. Suppose that all B 1GOs
have been made and a tentative action i‘=&.('{a, Ka-;---, K') has
been seleoted. Beocause there cannot be another IGO this action
must be implemented and has a net expected utility
(22) w3 (RB K8, x) = £ U(R®8) £(BIX,..XB)A® - U(Be),

Back up to the B-1*h 1G0, The team has a ohoice of imple-
menting its tentative action ﬁ"‘-.- &'-‘('{B;' XBJ' X') or making one

: Rl
AR.
more IGO, If AB‘ is implemented, the expected net utility is

(23) Sy u(R8 ) £(81x,..,X8")de ~ U(8-OC),
If the information gathering is continued the expected net utili-
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ty of continuation 1s
(28) ETWELX®S ¥R,
Define the maximum expected net utility after B-1 IGO and with
at most one more IGO by
(25) WP (RO k8t x)= max[ S U(A®)8)€(alx,. x84)db ~U((6-0C) ,
eswd | x® . x'3.
Back up to B-2th information gathering sequence. The team

An. B-'L ~1
has a choice of implementing its tentative action APt L\iB °

XB:’,--., K') or taking at least cne more IGO, If A\B-lis imple-
mented the expected net utility 1s
(26) Sy U (A®70) €(B1x,., X8 2)de - U((B-2)c).
If information gathering is continued the expected net utility
of continuation is
(27) Eswy' KB x'%.
Define the maximum exvected net utility after B-2 IGOs and with
no more than 2 more IGOs by
(28) WOHAL™ kB x') = man[§oulB®0) €0 1X, .,k )db - W((B2)c),
Eiur&l-l [ xcﬂ;___) Ki; ].
By induction we can define the maximum expected net utili-
ty after m IGO with most B-m additional IGOs by
(29) W;‘m (A‘m' \(",‘...’K') = may [_f u(ﬁ": e)ﬂelx‘,..,x"")de - b{lmé),
ESw, Lxm, K .

B-m-l
Finally 1et:3°be the veotor of team actions that maximizes expec-
ted utility against the prior density #(8) ; 1i.e,, ﬁ° satisfies
S Uq;(ﬁ‘: ¢) 4(6)de =0, 1=1,2,..,N, Define the meximum
expected utility if no more than B IGOs are made by
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(30) W3 = max [ SoulR®0)d(0)}dB, E§Wa.3 ].
These B+l expected net utilities can be used to speclfy

the optimal team stopping rule without interim actlons,

Proposition 2-3: If the team models satisfies Assumptions 2-1

through 2-8 and utility depends only on the final actlon

selected, the following stopping rule is optimal,

(0)

(1)

(B)

Al

o]
It §, U(R° 8) d(6)dp > E $Wy. 3 the deotsion A 1s
1mplemented without any information gathering. Other-
wise the first IGO is made,
" 1
If Jo u(A e)f(elx')do~ ) > E JWg, 1 X'S the action
~
A'= = '(N') 18 implemented without further information

gathering. Otherwise the second IGO is made,

A
1t §g U(A™ B)£(e |K)., x)dd - U(me)> E fwg }x7 X%
A
the action AT a""(qﬁ m- S ¥ ‘) 18 implemented without
further information gathering, Otherwise the m+1 %0 160

18 made,

A L
The action AS =:LB(‘{B, ¥®'..X') 1s implemented 1f the

Bth IGO was made.

e. Stopping Rules With Interim Actions When the snvironment of

the team takes on a new velue at the beginning of the period the

teammates begin looking for new values for their action variables.
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Current actions may be totally suboptimal with the respect to the
new state of nature, It is now assumed that the team receives
utility continuously throughout the period, As a result each IGO
creates two costs: (1) there is a cost C==C07NM) associated with
the transmission of messages and (2) while information is belng
accumnlated the interim action'x may be suboptimal; hence an
opportunity loss is 1nourred.(6)

If exactly m IGOs are made and then an action %"Hmwﬂemen-
ted for the rest of the period, the total utility for a given @ 1is
(31) WA, B 6)= UlA B km + U(R™ @) (A-Km) — U(mC).

The team establishes an optimal stopping rule by backward
induction from the final IGO0, Suppose that all B IGOs have been
made and a tentative action RB ='&BL\":xa:t'"7 Xl) has been
selected, By definition of optimality ﬁ" is more valuable than
Kq so /A\' 18 implemented for the remainder of the period. The
additional net expscted utility to be gained is
(32) WE(ABXB X" = (A-BI)S, U(R%6) £(BYX)....XB)d8 ~ U(BC),

Back up to the B-1th IGO0, The team has a choice of imple-

=y

menting its tentative action ﬁeq L (v a"‘, Ka't vany X'

or continuing with xruntil the final IGO is completed. If RB'I
is implemented, the expected net utility for the remainder of
the period 1is

(33) (A=~ (B-OK) S U(R*) 8) (1K), x*") 48 ~u((B-1)C).

If the information gathering is continued the expected net

utility of continuation is
() WS U(R,8)F(o1X)..., X" "Vde + ELWR X8 x13,

9oy
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Define the maximum expected net utility after B-1l IGOswith at most
one additlional IGO by
(35) WA (A% K8 x)= max [(A-8-36) S ut A% 0) £(olx! .. KB™) 4o
~ulB-ne), Kl ulh,e)fe1 . x®') 48 +
ESWEIKE. x31.

Back up to the B-2th IGO0, The team has a cholce of imple-
menting its tentative action ﬁB-1=3<B-z(‘iB:f X3 ., X'} or al-
lowing ﬁ to be in effect at least one more IGO, If ﬁs"l is8 inmple-
mented the expected net utility for the remainder of the period is
(36) (A-®B-DR)SyulAB2e)f (ol x® %) a8 - u((R-2)e),

If information gathering 18 continued the expeoted net utility

of continuation is

(37) KSg W(R,0)F(BLK).., K3 %) a0 + ESWE' \ kB2 X'} .

Define the maximum expected net utility after B-2 IGOs with at

most two additional IGOs by _

(38) WE(ART ™ x) = max[(A-(B-DKVS, w(RE20) otk e
~h((B-2)c), Ko ULA,B)E(BLK, ... xB2)do +

ETW') ko x'3 ],

By induction define the maximum expected net utility
after m 1GOs with no more than B~m additional IGOs by
(39) Wymw, (A% %™ )= max[ (a-mu) §, W(A™B) RBIX',.., X" ) 0

~Uime), KSouA 6)e(elx:. x)ae + ESwgre \xm_ x{].

Finally let A® be the veotor of actions that maximizes
expeoted utility against the prior density <$(8) . Define the
maximum expected utility when no information 18 known and with

at most B IGOs by
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(40) W = max [ AS_U(A®6)4(8Ydd, K So U(A,0)bO)AE +EF W), T ],
These B+l expected net utilities can be used to specify the opti-

mal team stopping rule with interim actions.

Proposition 2=4: If the team model satisfies Assumptlions 2-1

~
through 2-8 and A 13 the interim action, the following

stopping rule is optimal
(0) Ir ASoU(R°8) (O 40 > K UIA,6)d(6)d0+E {W3.§ then

A
the action R® is 1mplemented immedlately without
gathering any information. Otherwise the first IGO made,

“N ~
(1) I (A-K)S Uu(R @) F(alx')do - ui) > WS U(R,8)fle (x40

2 B
EiW;-z| K'} then the action ﬁ‘-‘-&\(‘l') is implemented

+

without gathering more information, Otherwise the

second IGO is made,

(m) If (A-mK) g U(A™ B)F(B1K!,.., X™) 46 «U(me)> K U(K,0)

. I L -
flold._ x™)ae+ESWp,, (X X\ then the action R =AM (KL, )

1s implemented without further information. Otherwlse

the m+1th 160 is made.

. A A -
(B) The action A®= BB x® y-» &') 18 Amplemented if the

Bth 160 15 made.

f. Stopping Rules With Adapting Interim Actions Again, each IGO

oreates both a cost due to transmission and an opportunity loss

due to the time required to complete the communication. In thls
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decision procedure the actlon in effect whlle information is
gathered i1s not a fixed interim aotionia, but is the tentative
action of the previous IGO,ﬁ'“ﬂ. This 1s very close to the multi-
period team model with a static environment in which the team

ad Justed 1ts decislon according to 1ts information; now the team
must declde when enough information has been accumulated,

The team establishes an optimal stopplng rule by backward
induction from the final IGO0, Suppose that all B IGOs have been
made and a tentative action AB "&B”By XB:-.,K'] has been selected.
'Rais impiemented immediately for the remesinder of the pericd,
netting an expected utility
(h1) W3 (AEX® ') = (a-BK) S U(ABBYF(BIX, . X®)dE ~UBO).

Back up to the B-1Yh 1G0, The team has a cholce of imple-
menting its tentatlive action RB-"—'AB-‘ (YB_,‘ XG;Z..., X') for the
remainder of the period or allowing 1t to be effective only until
the final IGO is completed. If A®' 1s implemented for the rest
of the period, the expected net utility is
(42) (A-(8-0K) S U(ABB)£(BIX]...,XB") 48 ~ U((B-0C).

If information gathering is continued the expected net utility

of continuation is

(43) WS, (et @) £lBIK,. . X2 d0 + ESWEIXE! X',

Define the maximum expected net utllity after B-1 IGOs with at

most one additional IGO by
‘ A
(u) VIS (RBI K XYY = RS WA E) F(BIX,..,XP1) 4B +

max[ (A-Br) L U(AB ) £(B1X,.., XY aB ~U((8-NC),
ESWS XL x1],
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By induction define the maximum expected net utility after
m IGOs with at most B-m additional 1IGOs by
(45) Wy (A KR X') = KS U(Am )€ (BIX,.., 1™ )do +
max[ (- (ma)K) Sy U(R"™ )€ (01X, X™)db - U(mL),
Efwet L., x3 ],

Finally let R° be the vector of actions that maximlizes
expected utility against the prior density‘*(e\. Define the maxl-
mum expected utility when no informatlion is known and with at most
B IG0Os by
(46) W3 = K §,U(R%8) dB1d8+ max[(A-K) u(Ac ) d(e)do , E SWg. 3 ].
These B4+l expected net utilities can be used to specify the opti-
mal team stopping rule with adapting interim actions.

Proposition 2-5: If the team Assumption 2-1 through 2-8 and actions
are adjusted, the following stopplng rule is optimal,
(0) If (?\—K)SGU(R",G)QIB)AG > E{W,_§ then the decision A°
18 implemented for the entire perlod, Otherwise the
first IGO is made,
(1) Ir (A -2K)S U(RLe)€(BIK }de - Ue) > EfWao [ X' then the
action ﬁ“-‘&'(‘(') is implemented for the remainder of

the period without gathering more information. Otherwise

the second IGO0 is made,.

t
(m) If (A-tmadK) S (RTOME(O(x! ., x™)d0 - Ulme) >E LW (X T xS
then the action ?\"'-‘G'*M(“": K".:---a K') is implemented for
the remainder of the period without gathering more in-

formation, Otherwlse the m+1th IGO i8 made.
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(B) The action A3 =2B(yBxP' x') 1s implemented if tho

Bth IGO0 was made,

g. Sequential Teams With A Maximum of Two Observations This 1is

an example of a sequential team which can make at moet two 1GOs,
The team can do three things: (1) make a decision based only on
prior beliefs, (2) make a deocislon based on an ex ante measege Y1

1 and an ex ante

or (3) make a decision an exr ante post message X
massage YZ. The optimal stopping rules of propositions 2-3, 2-4

and 2-% will be disocussed with B=2 and stopping sets willl be de-
fined for those three sequential decision procedures.

Take first the scheme without interim actions or cpportu-
nity losses, If the first IGO0 has been taken and the team decldes
to ocontinue gathering information; the expected value of ocontin-
uation is
(7) E3WSIXT = §ua I gU@M(y*X),0) (1% 01K 404> ~ Uk (22).

If the second IGO is not made, the expected value of i1mplementing

the tentative action A'= &' ({') 44

(48) fg UIR'O1£(0(X')dO - ULe).

A stopping set for the first stage 1s the set of all (R, ¥') that

satisfy

(49) S@u(ﬂ'.e)ﬂe(%‘)de-u(d>Saszeu(ﬁ"(\";x‘),e)ﬂ‘ifelx')du'{"
~U(z<).
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Maximum expected net utility for the rest of the decision proce-
dure 1is A -
Z Lyl
(50 w! =max[ S U(RLBIF(BIK) de -U(), EEWEIX'S 1.
Define a conditional stopping subset of the ex post message for

each possible action by
(51) SHAY = X' §,u(R,)F(BIX)A0 -7 ETWLIX'E L.

If the team has & cholce of implementing K‘ or meking another
IGO, the decision depends entirely on whether or not the ex post
message X! fall in S'(A').

Backing up to the stage 0, the team has a cholce of making

~

the decision A° and receiving expected utility

(52) §qu(f%0) (o) 40

or making the first IGO. At this time the expected utility of

taking at least the first IGO depends on 5‘(?¥‘). The decision

function ! “') 18 known but not tentative action R‘beoause

18 not yet known, The conditional subset Sl are thus a funetion

of the observed value of Yl and .hie 1s denoted s'(W)= S‘(QU(\('))'

The expected net utility continuation is

(53) EfWi§ = Sq 3‘3. Svie s,m(u(&‘(w‘),e)-u(c))<b(~1', X'{e) $(e)drK'dy'de+

(a5 X)) -U(z2) (X, {'8) (1|6) (o)
dY'dN 44240,

If .\‘eu(ﬁ", 8)(6)48 > E§W!} then no information will be gathered.

S:s* e 3‘ X4 SHUY'Y

Otherwise at least one IGO is made
Seoondly, let us analyze a team with an opportunity loss
NS
due to the suboptimality of the interlm actionf\. If the first 1GO

has been taken and the team decides to continue gathering informa-
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tion, the expected value of continuation 1is

(54) EJWaiX'i =S U(AR)FBIX Y40 + SRS NTTERCRTON:D
FEB X" )20~ (2 €).

If the second IGO0 is not made the expected utility of implemen~

Pl

ting the tentative actlon A' for the rest of the period is

(55) (A-K)§o ULR @Y F(0 (X' ) 46 ~ U(c).

The maximum expected net utility for the rest of the decision
procedure 1s

(56) W! =qu[mmseu(ﬁ‘;e)#(alz&‘Me-u(c), EswiIx'{].

A stopping set for the first stage 18 the set of all (A", ') that

satisfy

(57) (a-K\Sau(ﬂ;eW(eln‘)m-ul(c) > K§ UlR,0)-F(8lK' }d0 +
(A-2)S, Sope UR™(1% X", 0) £(1E 1K' )dY 8- U(2C),

Define a conditional stopping set for each ’A\‘ by

(58) SHAN= X (A-h)Seu(ﬁ‘:e)f(elx'ue —u(c)>n%u{’ﬁ,a)F(elx*)de+
(A-20)5, Son U (Y3 K'), 0) £ (¥, 81 X' )4y 4 - u(2¢).

If a team has a choloe of implementing ﬁ'or allowing a’ to be

effective while more information is gathered, the declsion de-

pends on whether or not the ex post message Xi falls 1n5'(ﬁ‘).

Backing up to the previous stage, the team has a choice

of making the decision Ro effective for the entire period and

receiving net expeoted utility

(59) a S, U(R° )4 (e)d0

or allowing i' to be effective while at least one IGO 1s made.

The expected utility of continuation 1is
(60) K§oU(R,0)d(O)dO + EL W\
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where
(61) ET0LE= Jg i Sy gipp { AHOUEA,8) - WO (Y, K 10)d(B) Ax1AY 1o
+5, S,JJ .S‘X,ﬁ,(v.)(ﬁu(ﬁ,eh{a—zn)u(al(‘i':x'l,e)*U(ZC))
$ (1'% (8) bLR{ I d(@) 4x'AY'd Y dB.
1€ I\Se U(R", o) (s 46 >Hjeu(ﬁ',ev)cble)481-ﬁfw:fthen no information is
gathered, Otherwise at least one IGO 18 made,

Thirdly, suppose the gequential team can take as the
interim action the tentative action of the previous IGO0, If the
first IGO0 has been taken and the team decides to continue gathe-
ring information, the expected net utility of continuation 1is
(62) KS5U(R' &) FlOIX Y0+ (A-2K) T, Syr WRHLT X, 006045 olx)aete -ulzo).
If the second information gathering operation is not made, the
expected utility of 1mplement1ng'ﬂ‘ for the rest of the period im
(63) (A-K)Gu(R',8)F(a(x") 46 - U(e).

The maximum expected utility at this stage with at most one addi-
tional iGO 1is
(64) W' =K Seu(ﬁ‘, 8)f(e (¥ )40t max [(A-2K)S, U(BB)f(o(X' )48 -d(c),
(2~2) §g Sy WEBLHXY), 0) (47 01" ) ay 40 -u(z) ] .
A stopping set for the firast stage 18 the set of all (ﬁ‘, X')
that satisfy
(65) (a-26}5, u(R' )}Fe(x)48 -Uc) > (A 26, Sy U@y k), 0)
f(1%0(x') (%46 - u(zc).

Define a oonditional stopping set given 31 by
66) s (A= EX' 1 (A-26)§ U(R! 0)F (81X A8 -U(c) > (A-2K)

5o 3y Uy, @) F(¥L 0 X)) d Y2de ~Uu(z) §.

A
If a team has a cholce of implementing A' for the rest of the
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period or allowing 3‘ to be effective only while the final IGO
1s made, the stopping rule depends only on whether or not the ex
post message X! falls in Si(ﬁ‘).

Backing up to the previous stage, the team has a choice
of making Ao effective for the entire period and recelving net
expected utility
(67) A §5 U(R®B) $(6) 46
or allowing ﬁ“’to be effective only while an IGO 18 made. The ex-
pected utility of continuation is
68) K §, u(R%6) b(6Yde + ETW!'S

where

(69) E5WE=§, S Syic 5104y LATOUN,0) ~ticl] ¥, X! [0)pLo) AX'dY 40

Flo Syl (UGS (), 0) 4 (M- 20)UB (Y ) 0 ) - ulzd]
PV, x'[8) H(Y2(6) G(O)K AV 4N AO.
Ir ('A—K)Seula",a)"’lﬂ)de > EfW\3 then no information will be

gathered., Otherwise at least one IGO0 is made,

X'¢S'(1)
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ITI. AN EXAMPLE OF SEQUENTIAL TEAM DECISION MAKING

a, Joint Production With Quadratic Costs The organization model~

led in this example is a business firm producing two commodities,
Q=(q1,q2)', when their prices, P=(p1,p2)', are unknown.(7) Costs
are quadratic C(Q)=Q'CQ=011q12+2012q1q2+022q£'which implies pro-
fits are also quadratioc:
(70) T0(Q,P) =P'Q - Q'CQ
The firm is divided into fiwo departments, each specializZing in
the production of one of the goods and each deciding on the out-
put level of their commodity. Both departments have identical
prior subj}eotive beliefs about the probabllities of particular
prices and both departments are "team players” interested only
in maximizing total expected profits.

Each department i1 observes a price forecast z4 which is
correlated with the unknown price py. The firm makes ex ante

communiocations defined by the function 7}

NulZY  72(20 )
y)°

= Z)Y=
(71) Y =7(2) (,h'(_m s (2

Only one particular ex ante communication function will be stud-

ied here — no ex ante communjcation:
4 © g, O
(72) Y = = 7(2) = .
© Y2 o 22
That 18, the departments keep their information to themselves. An

ex post communication is made based on the funotlon,u:
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(73) X = M(?),

Only one partiocular ex ante communication will be studled here -—
complete ex post communjication:

(78) X = (X, %) = () = (2, ).

Thus each department knows both price forecasts ex post,

b, Normal Variables and Posterior Distributlions The random var-
iables P and Z are distributed normally. This contradicts the real

world fact that prices must be non-negative,but normality {(along
with quadratic profits) implies linear decision functions which
makes computation simpler,

The Jjoiny prior p.d.f. for P, and P, 18 a binormal density
with zero means and a variance-covarlance matrixL;T :
(75) $(B,,B) = &m)™ (l—r")--}-' exp(-L Lz (P -2vPP + nY)).
The 1th department observes a forecast zq which has a normal dis-
tribution with mean=p; and variance=1,
(76) ®y(2:|P)= di(2i 1py) = (=Y exp (-4 (2i-P))7).
Hence the ex ante information yy 18 also normal with mean=p1 and
variance=1,
(77) €:(4i|P) = i (4ilm;) =(zm) Texp (-4 (4i-P)?).

The ex post message (xl.xz) is distributed jointly normel with
| ©

man=(p,,p,) and variance-covariance= (o 1} .
- 2 T
(78) 47(*”*1‘?):(217) IEKP(“l; (!."P.) ‘J,‘,(FL"Pt.) ).
The following posterior p.d.rf., are used in calculating

optimal decision functions and stopping rulss for the firm,
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(79} 'F("'\ts‘\ -.-.(z“)"'i: Jz ‘!XP(‘“J:: (?‘__3:1_)2)
(80) £(Puly) = (2WVE 73 exp (-4 (Po- H2))

(81) +"L‘31.\'5.8=(WYJ‘ L:.- exp(-L f?"'- (42-%4)7)

(82) f(‘ﬁ. | “,\1) = (‘ZTT'TJ'-'\ q:,z E‘[.P(-J-;_ q:_r'l (‘5; - S‘l.)l)-

Let superscripts denote different I1GOs.
() (P I, K )=(eny S5 exp(-A L Byt B (AR

3-2¢* -
1-4r*  q-4e¢t

Y= 1 var-cov matrix
—r  a-2yt

T-are  A-ges

k™
-F'=11":_-;'.':T K“ +ﬁ:'- K;_ 1 mean of by

s+ mean of )

(84) £(P\ 3';’3'”‘;_) = ('zTI'\"l ‘I éla_z::av‘F{-JiE( PI-T,l),(Pl."Ftﬂ’E;‘[(PO-FI). (P,—E']])

2-v" Y
G-2rt 6-v™
.= i j.z4q-| ¢ var-cov matrix

6-2¢+- §€~T¥™

[ 8
By =¢_zrt(5‘f‘"x.\+‘-gfs K',_ t mean of pPq

5 = ! 2 g :
Pa=%mzvt (‘azli-x,)-f%-_-’-_-_;;, K;- 1 mean of p,

e ———

(85) F(PLa3,%\,,) = (zw)" \l 22 exp (-5 [(m-P (o] T [0rR), (0B))
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3-2¢™ r
6-2¢* 6G-2v*
= i var-cov
21 - . var-cov matrix

&-2v> 6-2r*

. 3 -2 f | T
= - z¢* xl +e-2vr ('3,1-3(") '+ mean of p,

- __C_x+

?1,- C-2v™

,1.('3,1-}(,_) + mean of p,

(86) €424l X! x!)=(zu)* "“‘i—ra exp(-4 $222 (91-%%))

- | o
3:".'. &~2v2 (5|+Kl)+ &- ;'I. ‘ 1 mean of yg

(87) € '3|"31.|K|, I.) (2“)-1-\‘-‘—!%: Q'FP(—L -qu ('5| Ut)

- ~2v* 2
31= 325 K+ 5 (4iexl) 1 moan of ¥

c. Coat and Time of Communication It now remainsto quantify the

cost and time of communication by plcking the functions C(’),,M)

and K(M,M) , Define a matrix ¥=(%;;) such that X{;=0,and for 1#):

X {1 if department 1 sends an a2x ante message to department )
ij =

0 if department 1 does not send an ex ante message to
department

Define a veotor‘?-‘-(wﬂ suoh that
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" 1 it 3/4/82.- .-,to { 1.e., the ex post message depend on 2
' —{0 if a,q{az,- =0,

Assume that all departmental observations, z,, take place simul-
taneously and last an equal length of time T ,. Each department

can make only one communication at a time, Suppose that each ex
ante message, regardless of ite ocontent, takes an equal length of
time to transmit T,. Suppose that an ex post message takes a

length of time to transmit that depends linearly on if’;. If sending
and receiving cannot be done simultaneously, define a function
K(’),/ﬂ as the time that will allow all departments to complete

their communicationsi

N N N
(88) K(MM) = Yo+ T, mgx[ EXgrE X]vr. X Yi

d=t
Suppose that each departmental observation cost Cy and each
ex ante messege cost an equal amount C;. Suppose also that the
cost of an ex post message depend linearly on how many observations

influence its value. The.goif of en IGO és
(89) C(npm)= Nco-t-c.g‘%'?(;j-e ¢, ?;‘ Vi.

In the partiocular csese that N=2 and there 18 no ex ante
communication but complete ex post communication, we have the
following time and cost functions for an IGO:

(90) KiMm,m) = To + 27,
(91) Cln,m) = 2Ca+ 2 Ca.
To complete the specification of the model, the disutility

funotion of the cost of communication must be specified, Let 1t

be linear in total cost with a unit coefficient: 'U(Ctotal)='ctoum_
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The total utility function is then equal to net proflts,

(92) TTpee = P'Q = Q'CQ - Ctotql’

In this example the length of period is such that at most only
two IGOs cen be made; i.e,.,

(93) 2{(Vot2Wa) < 2 £ 3(Wpo+27,).

d., Optimal Decision Funetions If the firm makes only one IGO

and then decides on output levels, what i8 the optimal relation-
ship between ex ante messages and output levels? As derived in the
pPrevious chapter they are linear functions of the ex ante messages,
(Gha) §i = Ti(qi)= 34

(940) §3= Ti(4)= S 4p

where the coefficients are

A - 2¢ -y e
(95a) s'! = i 22 12
! 2 §€, Gz - 50T

A ——
(95b) s ‘1 - _L tcll ¥ c‘t -
r Y4l ~¥v G

If both IGOs are made, the optimal deoision functions are
linear in the ex ante messages and the ex post information,
(96a) §7 = @093, %%, x4) = 8T yte &, ¥ie D XL
(96p) F3= FI(y3, i, xi)» $Lyl+ da Xt v e k4
where the coefficients S2and 32 are

- T c _vc
(97a) $2%= . (2-~yn (6-2v2) Cazg ‘L
1 z ( ) (G - z'.'l.)lcu C‘I.Z. —- f"!_ ct_z-

(6‘7-(1) C“ -7 Cia .
(6 "zrt)Lctt Czz — Cn.z

(970) 31 L (z-¢2)
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A A ~ A
Given the values of S} and 53 the values of du and dz2, are

found by solving the simultaneous linear equations:

A A A
(98a) Cndy + ¢ dy = € 2

" -2v* 2
(98b) cI‘I.A“ + C2l.3-u = ‘.‘.l._‘_ 6—%;" - qu_ ﬁ S'i o
A
The values of Au and 3.,_ are found by solving the simultaneous

linear equations:
~ ~ .-Zf"'
(992) Cudia+Cndi =3 Zfz;’- T Cagaer st

N A
(99b) €, A+ Candar = Cqq S

2
1.

e, Optimal Stopping Rules Without Interim Actions Suppose that
the firm must make a single production run, producing both goods
q4 and Q2. and then it sell the oommodities at the prices estab-
l1ished on the market day., Before beginning the production process
the firm’s departments can observe i1ndustrial reports, newspapers,
ete, The time contraints are such that this information gathering
can be done twice at most before actual production must begin,
This 18 a sequential team problem without opportunity losses, The
communication system has been described above,

If the first IGO has been made and the second one will be
made, the expected net profits of continuation 1is
(100) EEM2Ix}, k3 = EE P& -T e a2k, X ] - d(Cotes)

1A X e A% KL+ R, x‘f) +4 (834 52)
- ¢4 (CotCs)

where £;4,4;,,42, are constants that depend only on the parameter
¢11,c12,022 and r, See the appendix for the specific values of all
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coefficient in these examples,
If the second IGO is8 not made,the expected net profit of

-~ A
implementing the tentative output levels @'=TNY e

(101) E£P'B'~ e B x,xi-2(€o4C) = £, X} +£:K} =GV C B -2(CotCe)
where 21 and 22 are constants that depends only on 5‘ and r. It 18
unprofitable to continue gathering information if

(102) EL®'8'- 8§ | K, X2 3~ 2ot () > ESTLIN, XS,

The stopping set for each tentative action Ql 18 defined by

(103) S'"®) = {x{, ¥, : D(x! xL)>0%,

where D(K(UX(;) 18 a quadratic function of the ex post messages,
(104) DXL XY™ ay ¥ 54w XKy + e X2 4 o, K+ ug Xt Uy

If the firm has a cholce of implementing 6'or continuing the gath-
ering of information, it need only look to see if 1ts ex post
forecast makes O(X\,X:)) rositive,

Should the firm make even one IGO? If it does not, it must
pick output levels a" that maximize net profits against the prior
beliefs. The expected net profits of doing this is
(105) EEP§°-Borc el = §°'cdn
Because the prior mean of both prices is zero, the first order
conditions for ao requires that awc a"-o. Henoe net profits of
making no observations is zero, If the net profits of making at
least one IGO is non-=negative then the first observation should
be made.

There 18 an exact correspondence between ex ante and ex

post messages in this problem: ‘f“"?(zl)‘ﬂ(z',"-‘.‘('. The dscision

of department one depends only on y%, but, exr post, 1t knows the
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value of y%. Looking ahead before any observatinnsg made, the deci-
sion to make one or two IGOs depends solely on the observed velues
of y} and y%. Glven the ‘{1, a‘ls determined exaotly via the decl-
sion funotion Gbl("), and the ex post message X1 1s determined
exactly by X1=Y1. The stopving rule depends only on Y! and can be
formulated as follows: the coefficlents in the function D are such
(106a) W= If\u'ﬂll +hll.‘j;

(106b) Uz= hyq' + hepyl

(106c) Yo = M4 ™t hd'iyh +h 4 2+ 1°

The function D can be rewritten, using X1=Y1, as

(107) F(Y\) = w,, ‘5:1"" wn‘:j: Y4y + Wzy ‘5;1"' Wo -

For a given ex ante price forecast Y1 the firm will make exactly
one IGO if F(Y!)> 0. The firm will make two IGOs if F(Y1)£0, The

r.v; profite of making at least o.: IGO0 and not more than two IGOs is

(108) EfTI"lz =595;:(‘-,,}P’e"(‘i')-a"(‘i‘)‘c e-i(“')-Z(CQ'l'CL)lq)(P,\{I)J“‘AP
5o Bun § g SB TR -T2 ) C T2 YD~ (Got €2))
$ (8 1Y) AN'A{ 7R
Ir EfW 1> O then the first IGO ahould be made,

f. Optimal Stopping Rule With Adapting Interim Actions Suppose

that the firm can produce both goods continuously over the time
intervalos t£A but can make at most two IGOs, At the end of the
production periocd all produced goods are sold at the same price,
If the firm decldes to produce @ goods per unit time for length
of time T , the total profits for that period are ‘t(P'Q-Q'C_c,))

This is a sequential team with opportunity losses and adapting
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interim actions,

If the first IGO has been made and the second one will be
made, the expected net profits of continuation is=s
(109) (eot2702) EEPG-81 e I K}, KL + E§WE | v, ¥b} =

(Cotz ) (L X\ + LKL "6' CYY + (A-2To -4 (ATTE W (IS S

4R, KT HS2 452 - 4 (Cot ).

If the second IGO0 i1s not made, the expected profits of implemen-
ting a‘for the remainder of the period 1s
(110) (AT -2 (L X\ 4+ £, X5-34C Q") - 2(CotCe
It 1s unprofitable to continue gathering information if (110) >
(109}, The stopping set for each tentative action Q1 15 defined as
(111) sY(®') = X1 ¥h T (k! KLY S 03
where G‘(IL:,X';) is a quadratic function of the ex post messages:
(112) G(X1HKL)= Vi M4 v KOS + Ve X5V R 4V, K + Vg -
If the firm has a cholce of fixing outputs at Ql for the rest of
the period or gathering more information, it need only look to see
Af 1ts ex post price forecast makes G(X|,X.) positive.

Should even one 1GO0 be made? If no information is gathered,
the expected profits for the entire period 1s zero, If the firm
begins gathering information the expected profits of continuation is
(113) ESTY = §p §uy (A-To2TIP T - 14 F) ~2(Cot¢2)) SR 1YV AP

+§, sﬂ.s‘uw)s}('t.ﬂrzn) (P& H+ (A-2TsmT2)
(P'&2- T ) -4 (Co+¢)) PR (D AN A2 P

where

(114) HOE = 5y 45,4 g8,y 2 45,
IrEfM!{20 then the first IGO should be made,
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R, = ?',‘(_V;__r- + ?:(:.-r‘}z v 3.
Yoyl —r*
\ ; A
b ER e
”
2t it thEn
o, = -1/z2 K,
U2 = -t/ ‘R|z
uz = ~4/2 Raa
wy = £
4z = L
ap = Aoty )- B e - 1/2(Red2
SO &
hiz > 3 v
q-rr
hyy = 2: q:;;
hey = ¢ 2-¢%
Q-vt
hr‘ = -e, (8 z
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Apprendix : Coefflolents

w o ?I (q--r'l' +§ q-r‘-) +3|\

(37+8%) zv(2z-y®) 4 (&), 42 r
| ) ﬁ?‘v-‘)"_ g 223 -

hg = 2(Cp#G) - L7257

- o
Wi T Ay, gy

Wa = Ut thut by

QDae= q11f+ktt.+'1:;
Wo = \\g

In Stopping Rules

T-v>

r

L

qQ-vt

A
Y-v*™

+ (3(#3:\)

4 gg_z_ Z~ vl

Y~y

2-¢"

- r*
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- (24N S R
~O-27-u,) L A,
S S ACTY A W
O -25-4) 2
IS SR AL S A NP
SO AR e FM L (3T 490) 4 2(Covcy)
(A-2%-0T ) »
(A-~20,-4) W, o
(A -TWom4Ty) Wz

2(Cora) =4 (A-2G~qT) (B34 82 )
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FOOTNOTES

(1) See Wald(1947), Blackwell and Girshick(1954) and Jackson(1960).

(2) Raiffa and Sohlailfer(1961), Marschak and Radner(1972) and
Lavalle(1968),

(3) This argument 18 drawn from DeGroot(1970),

(4) DeGroot, (1970), pp: 277-78,

(5) The knowledge of other teammate's tentative actlions could be

used to guess what ex ante messages they received and
hence, could provide indirect information about 8 , Just as
ex post messages are not used in current decision making,
it 18 assumed that the team does not readjust its actions

to make use of this indirect information,
(6) Tnis formulation 1s derived from T.Marschak(1968).
(7) This organization 1s also studlied in the essay on multiperilod

teamsg.,
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TTERATIVE TEAM DECISION THEORY
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ITERATIVE TEAM DECISION THEORY

I. INTRODUCTION

This essay examines one way the team might solve 1ts deci-
sion problem, As noted in Essay One the optimization problem
involving information is a infinlite dimensional problem in general,
The objective functlon, expected utility, 1s a functional and the
Instrument of optimization 1s a funotion defined on a set which
generally has an infinite number of elements, In statistical deci-
sion theory the complexity of the problem can be reduced signif-
lcantly by walting until the information is known and then solving
a scalar posterior problem, This procedure cannot be used in team
decision theory because at no time before actions are selected
wlll the teammates have identical information; therefore a poste~-
rior density cannot bte computed and the problem cannot be reduce
to a N-dimensional optimization, The differences in lnformation
force the optimality conditions to take on a "Nash equilibrium”
character; the 1tD teammate makes the optimal use of his informa-
tion given the optimal decision rules of all other teammates. But
how do the other teammates know their optimal decision rules if
the 1th teammate is still computing his rule? The team's person-
by-person optimality conditions are generally a system of N lnteg-
ral equations in N funoctions whioch must be solved simultaneously

to get the best decision functions, How is this system solved?
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Imagine that each teammate knows all the features of the
team's problem =-- utility funoction, ocommunication function,
conditional distribution of all observations and prior distri-
bution of the state of nature., Eaoh teammate can therefore
express the Integral equations that define the person-by person
optimal decision rules of other teammates in order to select his
optimal action, he can compute all N optimal decislon rules by
solving the system of integral equations. Since there are assumed
to be no differences in tastes and beliefs, each teammate's solu-
tion of the person-by-person conditions will be the same decision
rules derived by any other teammate. However, the solution of the
person-by=-person optimality conditions may be very diffiocult.
Even the easlest team model with quadratic utility and normal
random variables, the solution of the person-by-person optimality
conditions requires the inversion of a N-by-N matrix. In more
complicated problems the integral equations may have no analytic
solution., Therefore, the strong assumption that all teammates
know all features of the problem still does not make the general
problem tractable,

Suppose that the teammates are not quite as knowledgeable;
rerhaps the teammate i1 knows only those portions of the team
problem that enter in the g th person-by-person optimality condi-

tion. If the utility function can be written
N . [0 ..
W(R,8) = 1 U'(ai,8) + & I U'(a;,a5,0) + U°(A,0)

IR LY
it might be true that the 1th teammate only knows the funotions

Ui,Uu,Uiz,..,U1N and UO, In this case no teammate can express
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all the integral equations which define the decision functions,
and therefore dlrect solution of the team problem is impossible,
What prevents the team from pooling all their knowledge and then
solving the system of integral equations? Unless the utility
functions can expressed in a small number of parameters, it may
be very expensive to pool the information. In addition, the
utility functions may be only implicitly known by the teammates;
in the theory of the firm, a firm may know its technclogy but
not its produetion function, which requires a previous maximilza-
tion

These are two reasons that an iterative solution to the
team problem may be required: direct solution may be cumbersome
and costly or direct solution may be impossible due to technolo-
glcal decentralization. This essay analyses one lterative solu-
tion procedure for a quadratic-normal team problem, Since this
procedure is based on the gradlent algorithm, section II outlines
the gradient procedure for functional problems. Section III shows
how the procedure 1s formulated in a decision ocontext with a
single decision maker. Filnally, section IV studies the iterative

solution of the team problem,
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ITI. OFTIMIZATION BY STEEPEST ASCENT

a. Gradient Methods in Calcvlus Consider the problem of finding

an unconstrained maximum of a function f(Xi,¥,...,Ka) . A neces-
sary condition for a point(fpp",fg\to be a local maximum is that

the partial derivatives vanlsh at that point as follows:

£_po 26 __  IFf _
(1) %71 3%, = 9 --53%n = O

If £(X,,..,Xn) 1s a concave function these conditions are both
necessary and sufficient for (i‘,.“jin) to be a maximum,

How do we find this point (Xi..,Xn) ? We have n equations
that can be solved simultaneously for the values of the n varlables
Yt,-..,ih . However in many cases the functional forms of the partial
derivatives of f(*‘,u.,xn3 make such a solution computationally
difficult and expensive., As a result numerical methods are used
to determine the optimal values of Ayy.-)&wn . The most straight-
forward numerical method is that of gradient or steepest ascent.

Gradlent methods are iterative algorithms that begin with
an approximate solution X?,X;,..,K: and move successively closer
to satisfying the optimality conditions (1). Each coordinate is
varied separately in such a way as to increase F(Xu---,x.\) A T
i1s the i1teration number, the gradient method requires
(2) XT*‘- X? have the same sign as éﬁﬁ (XT;.",Xﬁ) i=|,2,"qﬂ
where the veotor %’%ﬁn‘ evaluated at T is the gradient
of‘F » 1If adjustments take place continiuously, the requirement

(2) 18 replaced by the differential equations:
h
3 455 = A, 2E (7,003
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where ¢&; 1s the ad justment speed.

There are many varlations of this hill climbing technique,
At each step the ohange in x is the direction of the steepest
slope at that point on the hill. The value of R Ksy-ry R deter-
mines the magnitudes of the change. If £(X.,..,X,) 1s strictly
concave then the gradient process (3) converges to the maximum
pointi]r”;in, although in general the converges becomes glower
the nearer the process gets to the optlimum, There are other numer-
lcal methods, such as Newton's method, that involve higher order
derivatives which converge faster near the optimum but may not
have stablility properties like the gradient method., This chapter

will deal only with generallzed gradient prooesses,

b. Gradient Methods of Solution in Optimal Control There is a

wide literature on the generalization of gradient algorithms to
problems of optimal control.(l) The decision and team theory prob-
lems ocan be looked at as speclal examples of optimal control
theory and, hence, a summary of the gradlent methods for optimal
control are presented here,

Conslder a system of differential equations
() X =£x,4,t)
where X 1s the n-vector of state variables and ‘A(f) is the n~
vector control funotion. The optimal control problem 1s to choose
the control U(#) to transfer the initial state Xo=K(to) in accord-
ance with (4) to a final value at time | 1in such a way as to

maximize the functional
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(5) Trul = MM, T) + §TLixu, ) dt.

The optimal control must satisfy the necessary conditions of

Pontryagini

Pontryagin's Maximum Principle: Let W) ve an optimal control and
X*“') its corresponding state trajectory. Then there exist
adjoint funotions P )., Pal®) guch that

(a) The functions X (+)and P(+) satisfy the Hamiltonian 8ys8-

- _3H s 2H
tem of differential equations X = 3p ) T ax
where H, the Hamiltonian, is H(K.,Pqu-,"'\ = L+ P

(b) Wt)maximzes W (X5 P,uU4); that 18 for a1l t
-g—a— (XS R uf+) =o

(c¢) At the terminal point {T,X*(T)}the transversaiity sondi-

M = -9,
ey H¥(T) = - S

The necessary conditions reduce to the following equations
(5) X =-§-§- =€ u,+), xl.) =X%e

Ao~ 9L _2f" -~ 9M
6y P= thi" 3% “ax b, P(M=%5%
e _ aL '
The gradient procedure begins with an arbitrary control bl(f)

tions hold=— P(T)=

and oorrects the non-optimality by edding a function SUl)to the
control a(‘i') such that

(8) TLd+Jul > TLA47.

Letg be the state trajectory found by solving (5) withU\:a. Let
X+4X denote a similar solution of {5) with U= QA+ Su,

(9) (Reax) = £(R+4X, D +5u,4),  Ri)+ax(t) = Xo.

It follows that

(10) Ax = €(X+ax,OQ+5u,4) - €(R,0,+4), axt)=o.
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Making a Taylor serlies approximation of the right-hand side of
(10) we linearize the differential equation to find
(11) Sx = g-‘;- £X -+ %ﬁ-sq, SX(t)=o.

How does the value of the objection change when a.ls modified?
A linear approximation is
(12) £3 = TLA+su] - TLAT T B UxO+5T 135 9x+ 3 sd] 4t
Making use of substitutions from (6}, (7) and (11) and remembering
P(T) ‘-‘-%“? and §X{t) =0, equation (12) becomes
(13) §T = j:';%—&'a’u At
where%'s 1s the gradient of B with respect to U4, If the change
in control,dU, 1s chosen so that JET 13 pogitive then we can
increase the value of the objlective functional, One way of doing
this is to choose SU such that
(1y) Su=R 28, fso
wherezﬁ:is analogous to the speed of adjustment, The change in
performance 1s given by
(15) 8§T= SJJ&%&'%{} 4t = o

These first-order gradient methods usually move the value of
the objective functional up rapidly the first few iterations, but
as the optimal control is approached, the speed of convergence
slows dramatically. Second-order algorithms are available analo-
gous to Newton's method that converge more rapidly but which are
computationally more difficult and which can diverge if the

initial control is not near the optimum

¢.. Variational Derivatives 1n the Calculus of Variations The

calculus of varlations can be considered a subproblem In the the-
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ory of optimal control., Indeed, it can be easily shown that Pon-
tryagin's maximum principle implies the Euler and Legendre neceg-
sary conditlons of the caloulus of variations. Because the previous
derivation of optimal team declsions was analogous to the calculus
of varlations, gradient methods of the calculus of variations.
Hence, the gradient method in the notation of the caleulus of var-
lations will be presented rather than depend on the formulation
given above for optimal control theory.

Suppose we desire to select the funotion X () to maximize
(16) JLx1 = §T T(x,¥%,+) dt.
Assume X(t) 48 incremented by h(t}, which is different from zero
only in the neighborhoocd of a pointig. Dividing the increment of
the functional, YLx+h] —JI{x] , by the area AY lying between the

ourve h %) and the t-axis, we obtain the ratio

Ixth] —TI(x]
(17) o

Let AT go to Zero in such a way that both maxlhtf)l and the length

of the interval in which h{t)1is non-vanighing go to zero. If the
ratio (17) oconverges to a 1limit, this 1limit is ocalled the varia-

tional derivative of the functional J[¥1lat the point € and is

(2)

The prinecipal linear part of the variational

d
dencted by?ﬁELaz .

derivative is
(18) £Y . = T,00,%,7) - % (T (6, %,9)

+t=t
= F(X(D, X(¥), x®,7T).
The Euler necessary conditions of the calculus of variations
require the extremal to satisfy

(19)'%(;&‘1. =0 forall 02 t< T,
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If the function x is veotor-valued,K(+)=(*%‘L-~,K"tﬁla con-
cept analogous to the gradient can be introduced. In addition,
the functional can be a multiple integral, The variational gra-
dient when X 1s an n-vector and t is a m-vector can be defined
as follows,

We want to select functions K(t,. tm), X*(t,., ), ., K (E,.., ta)
to maximize the functional
(20) T, X = 80 TG, X UK TK e bl dt -t
where VX* = (3% Wik, oy bmdy -y P K (4,0, tm) -

Suppose we give}(%&hudtn\ an inorement hi(f\,u-fth). The change
in the functional 1is
(21) AT = TLX'+W,., X" W] - TLX,., X")
= S:""S‘:" {I(K‘+h',..,x“+h'; V(K h),-, V(X" W), ty,..,tm)
- T (xt’ __’,(lr\l VXY, VX"t tM)Z dt, " At.

"

A 1linear approximation of AT around X', ¥"VR,. .. Tx" 1s

(22) AT = ST"--ST"[i (Igi ‘\‘+§"i ‘a‘;f% %’55)] At dt,,

Let us make the notation%}‘: = xt . Noting that 3%, (ax' hi)=

1-1 I ¢
-aﬂ-i-a-t k +§"~r T_'g 9 wevewrite equation (22) as

(23) 47= L5 --ST'“(Z(I,L- Zax-at)\n“* chtm T
T 5 S*"‘(}: (2‘;'1 W) dt, -

i=ite
The ternn{ atlax;h) 18 the divergence ofax. h' and the divergence

theorem statea that Af I' 1s a boundary of the region of integra-
tion then

(24) 3 Sow($e u)o\t At = S ‘\'(a, ’ ’axt.,) AT,

The arbltraryln(f” ,.hoan be seleoted to vanish on this boundary

I' go that
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Tm {
(25) S}:.' S D‘u(ax‘ "\‘) "(tgt‘t'ﬂ = O,
Hence the change in the functional 1s
n T, m 2 .
AT =2 §1 T (- L e )W G ta) 4t b,
1=\ 0o J=1\ 3 9
The generallzed Euler conditions are
[Aa) ZI
Ty~ 2 2 =0
X J-,,axt,‘,a:i

The principle linear part of the variational partial derivative

L=,2,., 0.

of a multlple 1ntegra1 functlonal is

- = Lyi — (=42,.,N.
(26) g‘x X E-‘ax‘at 15

Suppose the number of functions equals the number of indepen-
dent integrands, n=m, and suppose the functions are restricted so
that the 1%1 integrand, Xilt,,.. tm) = X' (&;),
Then the varlational partial derivative 1s
T, Al A Yol S G-
(27) S‘X‘ S‘ (i)-- Sm(I z ax"tat_\o\‘t‘ @--dt,,
3=t 3 9

where the notation " (i) " implies the ith integral does not appear.

d. Gradient Solution in the Calculus of Variations As in the

gradient procedure of optimal control theory, the gradient proce-

dure for the calculus of variatlons begin with an arbitrary func-

tion X#) and corrects it by adding a function JX(4) that increases

the objective functional, Iff%%k:ls positive then increasing x (1)

will increase ¥, and 1fﬁl-€ 1s negative then decreasing 2@) will

increase J. One way.to do this 1s to specify the k&) function as

follows:

(28) FxW)~REX], k>0 rorall oscteT

where .

(29) -§2—| = T, ( ?(f), éﬂ),t)-‘j‘; I*(Q(-i\,?(“\,f)
F(2®),30), 2, t)
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and ﬁ is annlogous to the speed of adjustment,

If we denote the iteration by ¥, the change in the Tbh jte-
ration 18 defined by
(30) X¥"'-x® = A F( XKW, X (&), %), t)

or if the adjustment is continuous

(31) 2EZW = @ F(KW, kB, X14),1).

4T
1t L 138 strictly concave in X and X then 1t appears that the gra-

dient process 1is convergent?’The process converges to an extremal
that satisfies the Euler equations. Agaln we should notice that
as we get closer to the optimum, the magnitude of % decreases
and hence the speed of approach decreases, A second-order method

could prevent thls slowdoun,
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ITI, ITERATIVE SOLUTIONS IN STATISTICAL DECISION THEORY

a. Gradient Solutions with Quadratic Utility and Normal Densities

Statlatical decision theory is related to the calculus of varia-
tions in that the objective is a functional and the instrument of
optimizationr is a function, It differs from the traditional calcu-
Jus of variations problem in that the felecity does not depend on
rate of change of the decisicn function end the functional is a
double integral where one integrand does not affect the decision
funotion, The optimality conditions of decision theory are anal-
ogous but not l1dentical to the Euler equations of the caloculus of
variations, Variational derivatives differ from those developed
above, We will express the variational derivative in its general
form below, but the remainder of the section will focus on the
special case where utility is quadratic and random variables are
normally distributed,

The statlistical decision theory problem 18 to select a deci-
sion function ¢.(4) to meximize expected utility:
(32) Wlx1= §y 8 U(xty), 8) P(yle) $(6)48dYy
where 4 1s a sample value distributed conditionally by $(y(0) and
® 1s the unknown state of nature distributed ${8), The expected
utility can be rewritten to look like
(33) Wisd = £ [, U(xX(4),0) $ (yi8)b(9)d 8l dy

= §y Ty, 9) dy.

The varlatlonal Qerivative of W] 15 defined for eaohlj asg

ou) SpEl = 3L -4 (3%)

aoc 3 “u(‘“‘-\\ 8) $(yle)d(eld 6.
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The optimality conditions that ® must satisfy are equivalent to

-%%%-3:: 0

for all Y.
We will now make the assumptions that utility is quadratic

and random variables are normally distributed,
(35) U(n,0) =2MA6 -9 A"
(36) dH18) = MWT exp(-% (4-0)")
(37) $©) = (ZTT)'&exP(-";_ 91)-
Under'these assumptions optimal decision rules will be linear 1in
the information variable
(38) a(4)=ay.
Hence the only functional forms that need appear in the gradient
process are linear and we can adjust them by adjusting the slope
coefficient, The decision function of the T iteration 1s denoted
(39) «C(y)=a™y,
The variational derivative for eachfj 18 then defined by
(10) £fly = §G (2B -29a%4) b(y|6) blorde

= fo (zme-2pa™y) floly)de - 4(3)

= 2 (mEfely3 — ¢ a°Y) $(4)

= 2(ume Y = 2a%q) $(4)

=24 4(9) (mumg ~ga™)
whereM, 1s the constant such that Eiel‘-j}=me‘-j } in this example
me=-;: ‘

If% > O then we want to increase the value of A*(4)=aty,

If '&g 40 then we want to decrease the value of &(*(4)=a¥y. For
a partloularg, the sign of % depends only on the four coeffi-

clents,u,w\e,: and Q® « The gradient adjustment process ocan be
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defined by the difference equation

(41) ™ -a™ = e(umg- ga™)

where £>0 18 a parameter analogous to the speed of adjustment,
The solution of this difference equation if the initial decision
function 1s nL°(‘$\)=4°3 is

(b2) a®=a°(1-£g)™ + &= (1-(-ep)7).

If @®°= 0 and Mgz L then the solution 1s

(43) q"=;‘§-( - {\-gp)®).

Ir Z)n andtzA! then I,E,Ll‘;\nﬂt-‘—'a , the wvalue of @ that
maximizes expected utility. Also note that

(W) g, @70 = g EMMo(1-eg)T = 0.

That 1s, the adjustment process slows down as it gets closer to
the optimum, Second-order methods could improve the speed of
convergence,

If we treat the gradient adjustment process as a continuous
procedure then the action coefficlent should be adjusted acocording
to the differential equation
(45) 4% = £(Mmg-pa™).

The solution of this first order differential equation with a(@)=a®
is
(46) a®= a’e & + a5 (1 - %Y,

If Q°=0 and Mg==% then the solution is

(47) aT= -f‘i (1-e%%7%),

If t>o thentg’l;\od'%a , the value of a that raximizes expected

utility. Also notice that
T -€97%
- EM T
(48) LM %‘—t = %IH e = O,

T-rco =00 &
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The ad Justment process slows down as it approaches the opylmum,

b, Optimum Number of Iterations With the above formulation of

the gradient solution of the statistical decislion problem, let
us look at the problem of selecting the number of iterations to
complete before fixing the decision function, Suppose each suc~
cegssive approximation of the decision function costs C units of
utility. The decision maker will select an optimum number of
iteratlions of the ad justment process to maximize net expected
utility.

(49) NET W ([«xT] = Wi(x*] -¢t.

The value of t¥picked should satisfy

(50) W= ]- W) ¢ € 2 WK]-W[<""],

If we imagine that the ad justment process 1s continuous, an approx-
ximate solution to this problem is to take T* to be the neerest

integer to the number T that satisfies

(51) AN_L‘E?. — C.

47T
This states that the marginal inorease in expected utility from

refining the decision function should equal the marginal cost of
refining the decision function,

How do we express Wf_"‘t] as a function of T? If utility is
quadratic and random variables are normal with 559}= O, then
W[O'-t.] will depend only on the variance and covariances of ©
and 4 , If a®°=0 then
(52) WIx*]= E{2ma®ye -g(qat)* 423

=.€£€ (zcou(y,0) (1-e¥T) -4 var(4)(1 - ET)*

= 48 (201-&T%) - (1-€ ),
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The marginal expected utility of more ad justment in the decisicn
function 1s

(53) 9L = Lepn T

The optimal number of iterationsis the value of T that satisfies
(54) temre 7= ¢
This number is

(55) T= 1"(%%1)#"‘-
Noting the fact that E:C)O we see that increasing the marginal
cost of adjusting the decision function lowers the optimal num-
ber of 1terations sinoe'g%=;;_"z" « Increasing the impact of the
state of nature on utility (increasing M ) increases the number
of iterations because this increases the distance between a®=0

and the optimal decision coefficient 3=-{§-.

c. The Joint Selection of the Amount of Information and the Accu-

racy of the Decision Function Suppose the statisticlian can not

only select the number of iterations the gradient approximating
process makes but can also select (non-sequentially) the number
of observations, These two d¢.:;1sions cannot be made independently
because they both affect expected utility in complex ways, In-
creasing the number of samples may or may not lead the statis-
tician to less refined decision funetions. Such tradeoffs will
be studied here,

The statisticlan can draw some number of random samples, S,

where each observation Y 1s identically distributed
(56) H(4\8) = Tyt exe (-L¢-8)?),



108

The state of nature is again distributed normally according to
equation (37), Leth=(wa3‘)be the vector of observed sampies,

Then the Joint p,d.f, of N®and & 1s
(57) b(0,4%)= (zuy " exp(-4 Lo ¥1' B9y 1)

LTS
where _G 9 b
o 4 41 -.. J]
Y |4 24 i
P T ; : vav-cov (8, Y%)_
,ﬂ s l-l 1 - v = 2-—

An important element in the following caloulations is the expected
value of € given 5,
(58) Ef019,.,4%F = 25 (4'+ 454 vy?).
The optimal decision function will again be linear in the infor-
mation:
(59) &(¥F) = A'y'+a%Ty> 4 -+ a5 yS,
Because of the symmetry of the 3'5 each coefficient A% 38 the
same as all others, so
(60) & ({9 = & (q'+yle-+ys),
Suppose that we have an approximate decision function.«(4’):4(5um*35);
what 1s the expected utility of such a deoision function?
(61) WI(¥H] = EL2ma(y'+ - +y3)@- ?qlf‘j‘f---i-gs)z [

= 2.uq il cov(6,41) -ga* éilmu (4 g9)

= zMas ~ga*(s*+s),
What 1s the optimal number of observations for a partiocular dec!
stion function ®k(¥?)2q (4'+-44*)assuming observations are costless?

It 18 the integer g that satisfies
£62) w(d.(‘l?)] 2 WK(N®*)] Forall 5.
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As an approximation this ocould be the the nearest integer to the

number that satlisfles

(63) _LAW““EQ"_’H. = 2Ma - ga*(2s+1) = O.

This number 1is

(64) s=ﬁ——41-.

Obviously the optimal cholce of the decision funotion depends on

the number of observations, If the optimal value of a is
A —-d
(65) (%) ~ (st)g

then
AWIX(ND] . 42 |
(66) AS - Z (S*\s’— > O

If the observations are costless then an infinite number should

be drawn, If each observation has a cost of X\ utility units then
the net utility of a deoision function d(,‘{’):Q(ﬂ‘+---+3S> 18
(67) NeT WI(Y)] = W(a(¥*)] - s K.

The optimal number of observations for a fixed value of @ is the
integer 2 that satisfies

(68) w[q(‘{g*‘)] ~We(IH] &« we w=(y$)] - W3],

M
We might approximate thls result by taking S as the nearest integer

to the number S™ that satisfles

(69) dﬂﬁ*ﬁs&m = K.

This number 1is

% _ M _ K 4
Again 1f @ 15 adjusted to take account of the change in .S then

(70) 18 1noorregt. The correct oondition is

AWl (Y )]_ - MY\ -
(71) AS - : (Sa,(-_‘_‘)l - K
which ylelds a number
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(72) S* = ﬁ - 1.

Now let us introduce gradient solutions of the S-observation
statistical deocision problem, There 1s no conceptual difference
from the formulation of the previous subsection., The variational
derive from each‘Ysia defined by
(73) JWL“.‘“S)%YS—-S (zuo~ 2,za (4'+--+43)) £(8115)48 b(1%)

= 2(METO1*E - g 4=(49"+-+y*)) S (V*)
= 2(£5 ~2a%) (4'++43) $(N%)

The gradient adjustment process can be defined by the differential

equation

- T
() 4L = e(£h -ga®).
If the initial value ofa’is zero then the solution of this
equation 1is

€7
(75) Q%= (1-¢ ).
(ﬁﬂ)g

If each iteration in the gradient process costs a fixed amount C
utility units, then the net utility is

(76) NET WIstF(Y9)] = W {a™(y5)] ~ct ~SK
- % £ (2(-€FF) - (1~ e €y ) -ex-sK,

We can approximate the optimal integer solution by selecting the

nearest integers to the numbers 5% and ¥¥that satisfy the marginal

oonditions o <
s

{(77a) QW[_.:‘V‘(T*)]_ =@
X E 3

The Hessian of W{X"(Y?)] evaluated at t¥ 5¥ 1s

rat!! 21“ t
(78) 9t  Jxas| _ —282C G/
a*wW  3*W

- £ __  -=K_
asdr af* | S5(s*M) Rl
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which 158 a negative semidefinite if
(79) 2 (s¥Y*(s%+1) £2 K >e,
We will assume that this holds at the point ( S*,'Tf) and hence
thlis 1s a local maximum,

If the price of additional information 18 changed, the direc-
tion of the response is determined by
(80) snem%?; = slén 'at"-c*s* < 0
(81) sieN %—f‘: = SiGN %{53\.5-.‘5* = 0,
This 18 not a surprising result; increasing the marginal cost of
information lowers the amount of information acquired and increases
the attention pald to that information, If the marginal cost of
refining the dec¢lision funetion increases, the response is

s* atw
(82) S\GNL = SlGNﬁlt*}S* >0

ec
a*w
(83) swm%—z = SIGN Jst !1:*5* < O,

Again, these results corresponds to expectations,
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IV, ITERATIVE TEAM DECISION THEORY

a, Gradlent Solutlons with Quadratic Utility and Normal Densities

The team decision problem is to select a team declsion function

o(Y) = ("Ll(ﬂ.),“z('jz),..,,d.('ju))'to maximize the team's expected utility
(84) Wu] = § So U((1),6) P({16) (B)dib Y

where Y is the information variable distributed conditionally by
$H(I0) and © 1s the unknown state of nature distributed P(e).

The variational partial derivative of WI*]l with respect to ®%;(4;}1s
(85) i), = Sy o Ua (2 (1,83 @ (HleY i) d oo VIT)
where Y(1)= (41,541 %e0r > Yn) « The optimality conditions that

& (N) must satisfy ars equivalent to

86) S5,

We will make the assumptions that utility is quadratic and

=0 for each possible Yi , i=4,z,.,N.

random variables are normally distributed, The ex ants communica-~
tion system is completely decentralized, so no teammate communl-
cates the results of his personal sample, Other information struc-
tures could be used in the study of iterative teams but the oalcu-
lations beoome complicated,

(87) U(R,08)=2u'A0 - A'QA Q1 positive definite
(88) dly;le) = (21Y T exp (-4 (4;-8)")

(89) &(Y(®) = ﬁjcb(s:le)

(90) (&) = (amY* exp(-f6%)

Under these assumptions optimal declision rules are linear in the
Ainformation variables,

(91) &;l*m= a; Y; i{=\,2,..., N.
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Thus the only functional forms that need to be explored in a gra-
dient process are linear and the only parameters that need to be

ad Justed are the slope coefficients (Ay,.--,q4), After ©t iterations

of the adjustment process the deolslion functions are denoted

(92) «F(4D = aF i i=4L2,,N.

The variational partial derivative for each 4; in the quadratice-

normal problem l1s

(93) ﬂ}g‘—‘-}] = Syl (3418 -2 Qial™(NIF (0,310 V4 )d0 440D d(y;)

= 2(mEfely3-giaTyi - 3 2i;aTEf4il9:d) S (4)
= 2(Mmimei Yy - 3..4 Yi gzua M5 Yi ) b(4i)
- (/h'“e( zn‘ 21;*“3;4 )713 ‘btﬂ )

where My; and M;; are the constants such that E30iy;{=m;; Y; and
Ei'j,,\‘i;? 31 §1 o« In this example e =% and My = s

.{__70

<
If o then we want to inerease the value of <;(%;)=%; 4}

Similarly, if éﬁ'; 4 O then we want to decrease the value of
«j43) =aT 4; | For a particular 4;, the sign of '%,% depends
only on the ocoeffiocients Mi, giiy-- fins MaisMiis..; My and af,.., a%.
The gradient adjustment process ocan be defined by the difference

equations
h

(94) q:‘.i-H ~ ay = € (M; My, - Z" Z. Tij ™ A .\) 24,2, N
where €;20 is the speed of a.djuatment. It should be noted that
if each individual 1 ocomputes his own change in his decision

function using (94) then he does not need to know the values of
the parameters tgsga,r--> Janr et Mgy -+ Myq A#i ., The teammate
could actually be ignorant to the team's objective function as

long as he knew the coefficients related to himself,



114

We express the system of difference equatlions in (94} 1in
matrix notation as follows
(95) A™M-AT=NV-GAT or A = (T-6)AT+V
where

(96) V =( G M Moty 8 M M5y o.., By My Mpyy )!

(97) r‘-.fn el{l"mll tT T Enﬁmmn;
El-z'u“\lt EZZ‘LZ *
=1 C
\Eujmw"“ SR €N fun |

If the initial decision funotions are

(98) o§(y;) = a7 9; i=1,2, N

then the solution to (95) is

(9) A= (T-G)TA° + (T -(T-6)7)6™'V.

It A®=0, €= =g=€, M, = Mig = % then the solution is
(100) AT = (T-(T-£H)™) H'
where
(101) (zfu rz - ?nﬂ ’g"o ...Q"
{21 26r . o fa '
H= 1| . ZQ+DIAGQ; DIAGR= |- -
. ° . a R o
LT 23un) S

The stability of (100) depends on whether the largest eilgenvalue

of T~5 H 15 less than unity. If non-diagonal elementa of H

are negative and £ < "ill" for all i , thenT-£H 15 a positive matrix,

If, in addition, H has a dominant diagonal or

(102) Z 8 + E‘ £i3 >0, i=1,2,.,N

then the solution (100) is stable and converges to the optimal value
A - "'I

(103) A = H M.
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Irrespective of the sign patterns of W, 1f £ 18 swall enough 80
that
(108) §i + L E gyl ¢+ i=nzN
LT ] & i+i 4

then the solution (100) is stable and converges to the optimal
value defined in (103), The largest eigenvalus of X %H cannot
exceed the column sum of L-£H or(%#)
(105) 1M & \-2g -5 % Al
Inequality (104) implies that the maxinum sum is less than unity.

Suppose the gradlent adjustment process 1s continuous
rather than discrete; the coefficients are adjusted according to
the system of first-order differential equations

AA° = V-@AT
(106) S5 = V-GAZ
Under the assumptions ;= - =&, =& and Mga=Mjg = '5_‘ this system
of equations is

(107) 48°- £ -2 AT

AT ~ 2

The matrix H 15 the sum of @ and the diagonal matrix with the

same elements as the diagonal of @ . Since Y is positive definite,
H 1s positive definite, The general solution to the system of
differential equations 1s of the form

(108) AT=2 eMTM,

where M 1s a eigenvalue of -%_H and M"i i3 1ts oorresponding elgen-
vecfor. The convergence of the solution depends on the signs of
the elgenvalues. IrH s positive definite then 1ts elgenvalues
are positive, The eigenvalues of £ H are-% times the eigenvalues
of H and hence A; <0, 12(24.., N : convergence is assured,

h

Let H=[H,‘;'-M;\N] be a N-by-#matrix with the 1" column equal to
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AT AT ATyt
M,\,. . Define a vector of exponential funoctions € =(€',...,e™ )

A partiocular solution to the system (107) is

(109) A=H7u.

The total solution to the system (107) 1s therefore

(120) AT = Hu + MelrT

Notice that the system converges to Y\ Al which are the coefficlents
which satisfy the person-by-person optimality conditions. The
decislion function after T 1teration is

(111) <N =Y AT =Y Hu +Y Me?"

where we have put the vector of information variables along the

dlagonal of a diagonal matrlx-&r.

(112) 4,0 - o)
o Ya .

Y: :- n' ]

(0

b, Optimum Number of Iterations Suppose the lterative process

of approximating the optimal team decision function is a costly
process, If each iteration lowers utility by € utility units, the
team would like to select an optimum number of 1terations,:% , to
maximize net expected team utility

(113) nNeTWxF] = W[x*]-¢T,

The'?'-' selected should satisfy "

(115) WIS -W] & € £ WG] - W],

If the adjustments take place continuously as in (107), we can

A
make an approximate solution to this problem by taking T to be
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the nearest integer to the number T* that satlsfies

™
(115) éﬂ;tj = C.

4T
At this point the marginal inorease in expected utility from im-

proving the team decision funcetion should just egqual the marginal
cost of improving the decision function,

How do we express\JE*f]as a function of €7 If utility is
quadratic and random variables are normal es in (87)~(90) then

W™ 1 will depend only on the variance and covariances of ¥
and 6 :
(116) WI[xT] = Efzu'a®({)6 - oL=({) Q™) ¥
= Efzu'YA%0 - RAT'YQY A}
= 2u AT -ATHA"
where H 1s defined in equation (101). The rate of change of W{4T]

with respect toT 18 computed as

AAT t'y4R*®
(117)5%._:[_3:77/“]—{"2ﬂ Hi‘ﬁ;
:f(/dl/b{—z/ulHnt‘fﬂt'Hznt)

using the definition of the adjustment process (107), The solution

path is
(118) AT = Hlu + Met®

and (117) reduces as follows
(119) 4% = & (ulu — 2" H (Hlu + MerT)+ (HIusMe™) Wit He™))
g (Me*™) ' HY{MerT)
= £ (ZAMAT) (F AHMe?T)
4 (Me*=)A* (M)

7]
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[- N
where A= (A\ 6) is a diagonal matrix of eigenvalues,
The rate of change of\dﬁiflis of the forn
(120) ﬂ%“q = F (€ dee T o dn ),
The optimal number of i1terations ic then the root of the equation
(121) 4, " 4 4"y s et = wC,
The root of this equation will define a maximum because WI[®™]
1s concave in T ; concavity can be proved as follows
(122) “::’1 = 2g (AT H=4R_ 4 H48%)
- 2 (e 2 (e,
Define a vector X as

(123) X = (Me*T)

)
Then ‘%{r is a quadratio form in X :

(124) 48 = & x'A>x.

3
If A;1s a elgenvalue of =i then (2\1)3 1s an elgenvalue of(""t H) .

If H 1s positive definite then M < © which 1mplies(?\;);éb and
hence H 1s positive definite. The quadratic form {(124) will thus
Le negative no matter what valueX takes and % £ O , which
1mplies\J is concave,

If the cost of adjusting the team's decision function changes,
the response of the optimal number of lterations will be in the

oproslite direction;

(125) 'g%=£/iﬁ|:‘i' £ O.

¢, Opportunity Losses and the Optimal Number of Iterations  Sup-

pose the iterative process of approximating the optimal team deoi-

sion function is time consuming., While the team is computing its
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T* so that

X
(127) 4\55&“‘1 = ESu(A e D+AE§LJ(L—D‘C-‘)—-M[«“]D—Q:O

This implies a first-order condition for T«¥*

v -
(128) 2 (M ) [ 2(LDTIA*-DAJ (M) = C+ D A'GR +D 4/ Hm
which is of the form

-t v ¥
(129) (“u*“ut*)Q r‘t'l' e o (dlm*‘dtw\t&)& "t s constant » O

where Y;> 0o, (We assume the upper 1limlt on ‘C“, T¥* < l-/D , DPlays
no role in finding the root to equation (129),)
The first-order condition (127) is a maximum if \;J(ﬂ,it]

1s concave in € , This concavity can be proved as follows,

2 A ot
(130) TWEAHLT by 45%5-_—{1 —-zD—-—L——"*:’T_‘q

dT*
The components of the right-hand side of (130) ore signed by :
diw[=*]
(131) —dTe < O by equation (124),

H* 1s positive definite by 1ts relation to the positive definite

matrix Q t therefore

(132) é%t—] =2 (Mer) ' A (Metr) > o,

Hence ﬂ' "J
d*WLA,% o.
(133) L =

Comparative static results can also be established. If the

marginal cost of iteration of the adjustment process increases then
the optimal number of iteration décreases, If the speed of \tera-
tion 18 changed the response of L X 1s

(134) 2E = (R'QR+p' W) / "“&%{“3 40

since @ and H"'are positive definite, If the length of the perliod

e
thatﬂis unchanged is inereased then the optimal number of iterations

inoreases since
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¥ T W [ot)
(139) 3T = - 44T ) (4D pr) -2ndel) = o,

Finally, siner!u(gﬁﬁ:'K"?‘g if the interim action is selected

to have a 21gher payoff, then the number of iterations inocreases:
z T

(13614"%&7@3 =-D / "—"f;’;%ﬁj > 0.

Now looking at the opportunity loss of the second speocific-
ation, suppose that the tentative team deoision function «"(Y) 1g
used to select a temporary action., The totel net expected utility is
(137) W3 =] = F2°W[%5] ds + (L-DT) WxT] ~ e,

The first order condition that T*must satisfy are

(138) dﬁ;:_f.ci‘l = W™ ID +(L-DT")5N—£§B ~-pW*l-¢ = ©
=(L-DT¥) A%Lfi) ~c =0,

The first order conditions 1s of form ¥

(139) (L-0T) e ™+t ((-DTHdme€ " = CE,

The total net expected utilityiis concave in T sinoce

(140) d-blleetol -pr) Wl _ o Awled] Lo,

Comparative static results thaut follow are
+ T o At
(181) 3T = 2/ 4WEER) 2o

(142) 2=F -d%%%?ﬂl // dtWfes o] >0

L dtt
axct AWz ™) 2\ (o5 a(T]
(143) YS) = T % ‘T_L—- / d %;;'_ < 0,

I el — ——— IR S EE——

Decision Function Suppose that the team can not only select the
number of lterations in a gradient prooess of approximating the
optimal team decision function but can also select (non-sequen-
tiall) the number of information gathering operations 1t makes

before an action is implemented. The two decislons must be made
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jointly because of the complicated structure of the problem,

The teammates can observe some number of random samples, S
and receiving the S corresponding ex ante commuicatlon, The prob-
ability distribution of each observation and ex ante communication
function is assumed to be identical for each IGO0, As a result the
individual messages are identically distributed accordling to
(1) (4ia)0) = @Y Fexp(-£ (4ig-0F) i=4,2,.,N; R=iz,., s,
The state of nature is again distributed normal with mean=zeroc and
varlance=one, The important velues in the iteratlive proocess are
(145) ET8143,..,4is? = = (Qut -+ %is)

(146) E$950 1941y, %53 = 30 (D +-+Y4is)
(147) coy(0,%;g) = 1

(148) var (43¢) = 2

(149) eov (41554,) = -

The optimal individual decision functions will again be
1inear in the individuals information and because of the symmetry

of the sample

-\ .
(150) O{i('jh:---;%i53= s (Qil"'""‘"ﬂl"S) |=l:z'l"') N. S
The tentative decision functions should thus be linear in %;1‘1;&

s

1.e. oKi(Y;,,... = .o , If each IGO0 costs an equal amount
§ '5|n ,",hs\ Qs E;.tilk

W in utility units, the net expected utility with S IGO’s and

decision function d(‘{s) is '
(151) NET Wla(1:)] = Wl (¥s) J-sk=Ef2u'Y A5 -A. Y. 0Y, A3-sk

wnere As = (Qusgy.-.,8y)
[ s
(152) L4a 0 -+ 0

0

"al‘jz"& .

L}

Y&

(5 <o - E;fjufj

\
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(153) NeT W[a(f3)}] = 2 s m'As-sASFA, - 5K

(154) F=s5Q + Diac Q.

The optimal number of IGO's 18 the integer g that satisfies
(155) nevWl=(¥2)] = Mgt W=(¥5)] for all §.

This might be approximated by picking the nearest integer to the
number S¥ that satisfies

(156) A9E e - 0 yras -2 S AL gns- AS viac 9 Ay = k.

This number is

(157) s% = (2u'As~ A DiAe As-K) /2 As' QA;.

It should be pointed out that As is just an arbitrary vector of
coefficients in the above analysls; the optimal veotor of coeffi-
olents'as is a function of the number of observations: ﬁsf;F->M
whereF 1s a matrix that is a function of 3 and @, This dependence
was not accounted for in (156),.

Now let us introduce gradient solutions to this multiple
observation team theory. The gradlent of \JC*(‘s)] 18 defined by
SuW _ . . L P -
(158) §o,- = 2 (MEEO Y10, is T~ i1 Gis 5 Yis ;L;, $i sEHE Nid\ai,. L 4003)
. = .
2(pise X %in “fitisT i -jiﬁ 2i5 q.if(;%-—l‘fﬂil)
A
(Misvi-giidis- F s ) 2 Toix.

The adjustment process to be studied is
by —— T
(159) 4R; - E(Sﬂ/“ —Rﬂ,)

il

AT
where
( -5 S )
(160) T w2z - s
.- .
Sﬂzll t“'
S S
R: - . . — s+‘ Fo

\;{-" LTI ) ) i“"J
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The system of differential equations is rewrltten as

H': ! =
(161) 't—,_— s g Mo~ 3 FAY.

If the elgenvalues of % F are denoted {,.,By)=f then the
solution to (161) 1is
AARY _ BT
(162) 1T = F-u +Me
wheree®™ i5 a vector of exponential funoctions (e

/T T
‘,..,G"'N ) and

™M 18 the matrix of corresponding eigenvectors, The particular
solution F?u 15 the coefficient vector which satis fles the
person-by-person optimality conditions,
The team decision function after iteration is
(163) xT(5) =Y, A% = Y, Fuy +Y Mes?
If each unit of iterations in the gradient process cost a fixed
amount of C utility units and each IGO costs an equal ¥ units,
the net utility of taking S observations and running T lterations 1s
(164) NET W[KT(Y5)] = WI®({:)] ~sw-ct

= Efzm YA 0-AY, OY, ATS - sk -¢cT

= 2su'AS - AT'FAT —sk-cT.
We can approximate the optimal integer solution by selecting the
nearest integers to the numbers s* gnd T* that satisfies the
marginal conditions

(165) WU - o

(166) 3“(:“‘1*(‘(&*)! = K.
as
In this general formulation, comparative statlc results are hard

to derve because of the complex form of WE(*({)] in equation (165).
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FOOTNOTES

(1) A good introduction is Murti(1970), also see Bryson and
Denham(1962), Bryson and Ho(1969), Kelley(1969), Lasdon,
Mitter and Warren(1967), Luenberger{1969), chapter 10,
Luenberger(1972), Mitter{(1969) and Stein(1953).

(2) gelfand and Fomin(1963), pp. 27-29. No particular distinction
1s made between the competing techniocal definitlions of the
variational derlvatives, Gateaux and Frébhet, since we are
not using them to develop analytic results, See Luenberger
(1969) chapter 7.

(3) The differential equations (31) is defined not on & finite
dimensional space but some finlte dimensional Banach space,
Difficulties arise in such an extension; see the appendix
to Essay Four.

(4) I would 1ike to thank Professor Solow for this result,

Let M=(M13) and let A be any eigenvalue of M, The corres-
ponding elgenvector X must satisfy AX;= %;”ujxj_ Let Xi be
the component of X with largest absolute value; then

EY IR \‘ﬁ\\“%""\j'&i‘ é'-%l"h‘j' IX; < |¥i|%‘”‘fj‘ ;
thus (Al & g_ IW\;:'I.

(5) These are analogous to those developed in the chapter on

sequential teams and optimal stopping rules,
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ESSAY FOUR

PLANNING BY A CONSTRAINED TEAM
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FLANNING BY A CONSTRAINED TEAM

I, CONSTRAINED TEAM DECISION MAKING

a. Solution Difficulties with Joint Constraints on Actlons Team

theory studies the use of information in making decisions in a
multi-member organization that faces a risky environment. The
basioc elements of team decision theory are identical to those of
Bayesian statistical decision theory with the eritical exoeption
that members base their individual aotions on different informa-
tion. I will outline the theory of team theory noting the simila-
rities and differences between it and Bayesian decision theory.
In this presentation single agent constraints will be introduced
and shown to be easily handled by team theory. However, when joint
constraints are introduced that bind the actions of decision
makers, difficulties ocour which require modification of the team
problem., The remainder of this seotion catalogues a few of the
most ebvious modifications that will allow & team to solve its
constrained maximization proble,

‘The team consist of N teammates, indexed by i=1,2,.,,N, Each
teammate must select an action, ay, which may be a vector. The
unknown state of nature ig represented by the variable © and it
has & team priori probability density (), Utility depends on
all teammates' aotions and the state of nature, U=U(aj,ap,..,ay O).

Each teammate 1 independently observes a separate statistio, 2,,
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which 138 correlated with the unknown state of nature via & condl-
tional density functlon‘ﬁﬂida). Notice that in Marschak and Radner%él)
terms, this information may be "noisy”; that is, more than one value
of z; 18 possible for a particular value of the state of nature

S . These observations are the basis for communication since
teammate 1 does not know the value Zy observed by teammate j, A

communication structure 12 defined as a matrix of communication

functions, 7 (2D

r‘ﬁu IS TR 3\&] ("7”(2.) M) - - - —qu(EN?
(1) Y = (Y= Y=2 . = ‘7(2) = ”hlfza) 7122( 22) ‘
é-ﬂ\ Co ‘5NNJ L")NI(E‘\ ) ’ : ',?NH(EN)J

where y4;.=7;;(2)=%;(2;) 18 a message sent to 1 from } when )}
observes the sample value zj. This message matrix Y ie random with

oonditional probablility
() Y8y =T ([ | biele)dz;)
= 2e N7 (4
where i\‘ 17{?(‘5;,-) 18 the set of all sample values z, that would
cause the )N teammate to send the messages (¥13,¥230 44+ 983).

Each teammate uses his messages y =(yy1,..,¥yy)' to select his
action 84. This 18 represented by the individual decision functicns
;=9 (4)s It 18 important to notice that the action a; does not
depend on the information ¥y for j¥1. This 185 all that analytioally
differentiates team decision theory and Bayeslan statistiocal deci-
sion theory. Denote the vector of decision functions o&{Y)= (%i{4,),

...;ﬁuﬁhﬁ)t The teammates want ¢to select their individual decision
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functions for 2 given communiocation structure to maximize the
team's expeoted utility:

(3) Eful(y),8)3 = §_ Ty u(=0y),8) $(1i0) ¢ (6 dY46.

Radner's person-by=-person necessary oonditions require the optimal
decision funotionséz(‘) to satisfy at each yy the following:

() O= SOS,MU\q., ((Y),8) £(8, i)y, )dyli) 46

where Y(1) is the message matrix with the 1®® row deleted and the
posterior density 1s “F(B,‘fli\l‘j'.)=<b(’(l9)¢193/¢.'l‘ji\ . These necessary
conditions are interpreted as selecting &~so that the expected
marginal utility with respect to a4, given the pPersonal message
¥4» 18 zero for each possilble message, One should notice the
"Nash-equilibrium” nature of the person-by-person oconditions; The
1th teammate must know Qj in order to select his optimal action,
Therefore, the team must select optimal decision functionzs ex ante
and cannot just select optimal aotions ex post,

In the above presentation we have assumed differentiability
of the utility funotion and assumed a; can be any real number., Sup=-
pose however, that the action a; had to belong to some subset of
the real line:

(5) q;(a;) <0.

How would the team seleot decision functlions to maximize team
expected utility while simultaneously satisfying the single agent
constraints on actions? Define a vector of multiplier functions
(6) )= (R11),.., Aul9x))

and then find a saddlepoint of the Lagrangian

(7) LIl = Efu(1),6)3 - ESR) G(=())$
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whera G—(*W))= (‘3\("'%(3.»: 9 (""N(‘jm)))'r . Notice that L i8 a
functional and the inatrumsnts of optimization are functions, The

person~-by-parson saddlepoint Kuhn-Tuoker conditions are

(8) 45 = E1uaR(0,0)14:3 ~R 4D JiZ(a)) = 0
(9) ﬁ."“ = —9;(&(4;)) 20, A (4;)

(10) ‘%é B; = - 8;(4:) 3 (;ty)) = ©

for each y; ¢ ;i , 1=1,2,..,N.

If U 18 strictly oconcave and differentiable and g 15 convex and
differentiable, the above conditions are both necessary and suffi-
clent for &,E to be a saddlepoint. We see that there 18 no
conceptual difficulty in the introduction of single agent cons-
traints to the team problenm,

The team may find that the vector of actions of i1ts members
is oconstrained because of limited resources or teochnologleal
transformations., A general fcrmulation of such oconstraints would
be g(ag,..,ay, © )20, but in this chapter we will deal with the
particular constraint
(11) b'A = i‘biai & C
where ¢ 18 : rixed scalar denoting resource endowment and b i3 a
veotor of “"resource use” coeffioients, Notlce that this linear
constraint 1s independent of the state of nature &; that 1g, the
state of nature neither influences the endowment nor the technioal
coafficients, The important feature of this constraint is that 1t
binds the joint teanm action A,

The oonstrained team problem for & partioular communioatlon

structure 18 to select the N individual decision functions to

maximize expected team utility while satisfying the joint cons~
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traint with certainty
(12) max Eful«(Y),0)3

subject to b'dlY) «¢ for all Yé"j
The major question is8 how to guarantee that the oonstraint is
satisfied for all possidle information variables.(z)

For partioular set of N individual deoision functions,
%41, % (48}, the random variable ¥ , defined by
(13) WY = blet(Y) = ?,'i:' b oG (47,
has a probability density function that can be computed given
the joint density P (4.,.,4x). Denote the p.d.f. of ¥ by h(¥)
and the corresponding cunulative distribution by Hctl where
h(¥) =H'(¥), If the joint density of y1,..,yy has "infinite tails”
whioh only asymptotically approach zero then the cumulative
distribution of ¥ might look like this

Y 44

L

>y

The important feature 1s that H(¥) only asymptotically approaches

]
]
<

1. For any value of o, H{c) 18 the probvability that b'o(D & & op
verbally, H(¢) 18 the probability that this decision funotion
would use less of the resource than the *am's endowment, What
should be clear is that, 1n general, the probability of constraint
violation, 1.~ H(t), 18 positive for all c¢. If an unlikely event
should ocour (a statistloal outlier is observed) then the teammates
will seleoﬁ actions that are incompatible with the limited endow-

ment of resouroae,
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In previous chapters "team” decision theory and Bayesian
"gstatistioal” deoision theory have been presented side-by-pide
to emphasize their analytic similarities and differences, Do the
above difficulties arise in "constrained” statistical”™ decision
theory? Nol! There 12 only one decision-maker 1n statistioal
decision theory and hence there can be no difference in information
or problem of coordination. In statistical decislon theory the
only type constraint possible is "single-agent” becsuse there is
only one agent, Any constrained problem can be solved using the
above Lagrangian metheds,

Viewed from another perspective, suppose the 1th teammate
wants to seleot his action a3 80 that his actlion is not that
final "straw that breaks the oamel's back," How much of the
resource is still available for hias personal use? The remainder
of the endowment when the other teammates take thelr share is
() €~ X bkl
Because y, 18 not known by teammate 1, from his viewpoint the
remaining resource 18 a random variable and no mattér how small
he selects a,, he still might provide that the final "straw”,

As an example, suppose there is a two member team with a
utility function
(18) U(a,%.,8) = ZM, 06, % ZMe0a, ~ £, 3 -2£,299. ~ 25, % *
and jointly normal random variables where
(16a) E3Bly,3=8'y, » Ef6ly.3=58%y,

(16v) Ei4.l43= 4L 4,, ET9.143= 37 90
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with 8,679.,3% given soalar parameters, and the joint constraint
(17) a,+a4, =0
The conatrained team problem is to
(18) wmax E % 2, 0 (4} + 2y B0:(9) — 70 A4,y - £y CRCALACIN
—-gu_o(l(tg,f :
subject to o4 (4}t (4.)=0 for all yq,¥5.
Form the Lagrangian
(19) L = E 2 24,0%(4,)+2M26 %2 (9]~ Fu o (9,) 28,5, (4, )2, (4,) —f.,_u(,fg,ff
- E3209,92) (1) +%(4.)) -
Because of the quadratic-normal assumptions, the optimal decision
functions are linear, and 8o are the Lagrange multipliera:
(200 &(4,) =8, 4, 5 Re(42) =AY A(9,,%:) = B4, + 3, Ye
The firet order necessary oconditions are
(21) O= M, 8' -, &, ~p, 923, -H -39
(22) O = M8 ~£, 0, ~£.32 q, -3 4% -3,
(23) O = d, 4, +3,4, For all 4, and 4..
The only solution to these conditions are@d=0and 4,20, In other
words, the only way to satiefy the oonstraint with certainty is
to make the action independent of the information (in this ocase
the constant action is zero),

In summary, three aspeots of the Jointly constralned team
problem seem to be incompatible, (1) independent selection of
actions by the different teammates, {2) different random informa-
tion variables for eaoh teammate and (3) an inflexible joint cons-
traint on teammates’ actions that must be satisfled with certainty,

The remainder of this section looks at how the conatrained team
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problem ocan be modifled by varying each of theame three components
to make solution well definad, At eéach step, many variations ocould
be used and this 1s not an attempt to oatalogue all interesting
modifications of the constrained team problem, For partiocular prob-
lems, other squal interesting modifioations might suggest themeslves,

b. Quotas and Joint Conptraints The teem is not run by some ommi-

rotent central authority) individual teammates ohooae the s2otions
that they think are best and, because of the "tean” assumptions of
identiocal utility and probability funotions, theae independent deeci-
sions are optimal from the organizations viewpoint, But independent
deoision making mekes oocordination diffioult, We begin by leooking at
one way the independence of the deoision makers ocan be redused so
that the joint constraints oan be satisfied with certainty.

Suppose that the actions of the teammates must be chosen from
single-agent constraint sets Qli-that are bounded from above by My
Further suppose that the corresponding upper bound on b°A is less
than or equal to the resource endowment,) b, [1;£¢ . Then no team-
mate will seleoct an aoction that pushes the resource use beyond the
rescurce endowment, Or from teammate 1°'s viewpoint, the mitnimum
amount of the resourse remaining for his use, C —.,}_‘ﬁ b; M, ie
greater than the marimum amount of the resource he could use and
still remain feasibdle, by My, If thie situation ococcurs then the
Joint constraint on the aotions can be effectively ignored by all
toanmates (the shadow price of the resource will be zero)., However,

this upper bound !1 ey not be & part of the originsl team problem;
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Cl; be the set of all real numbers, an unbounded set. Hence, we
might have to aonstruct artificial upper bounds whioh we will oall
quotas. (3)
Definition: We oall q-(ql....qn)’ & quota yector if
b'{ < C.
Rather than allowing the individusl teammate to zeleot any

aotion, we will add the single-agent restriotions
(24) &, <13, 1s1,2,,.,N
where q 18 & quoia veotor. This quota veotor is a discretionary
variable and should be selsotsd in conjunction with the descision
funotions to optimize the conetrained team problem:
(25) maximize Eiu\(d(\!),e\?

subjeot to «(1) «¢ for emoch Y € ™J

and h’:f € c.
Assuming concavity and differentiability of U, we oan charsoterize
the optimum by the saddlepoint of a Lagragian defined uzing multi-
rlier funotions A(Y)=(A(4),...,An(y,)) and scalar mmitiplier ¥:
(26) LU, 2,A,%] = ESUMY),0)3 + ELAlY) ‘(3 ~<L D)+ ¥(e-bp)

The Kuhn-Tucker conditions are:
(27) ‘E&ilm = EfUq,(2(¥)6)14;3 - 2, (4;)=0  for eaoh yieY;
(28) -3? = EI2n(4)E-¥b; =0

(29) -}:\.l‘ji‘: Ii —o(i(lji\_:_-_o , Ai (‘ji)?-o for aach ‘jie"j,‘
(30) (gi —=u(4:)) Mi(yi) =0 for sachy; e,
(31) AL =¢-bp2o, ¥20 amd (c-b'gl¥=o0.

These oconditions have the following 1nterprctatloh-
(a) Por emch possible message y,, set the posterior expeoted
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marginal utility with respect to a; oqual to the shadow price
of the 1th quota given y,.
(b) Set the expeoted shadow prioe of the ith quota equal to the
resource oost per unlt of the 1%h quota,
(¢) The aotion must satisfy the quota and if the sotion is strict-
ly less than the guota, the quota‘’s shadow price is zero.
(d) The quotes must satisfy the resouroce oonstraint, We will as-
sume this constraint "bites”, so ¥> O.
It should be noted that for particular Yyo¥y WO oen have o{;(y;) < £
and £;(4;)=9;, yet the 1th teammate sanmmot avnounce that he has
excess resources and shift the resource to teammate Jj. In other
words it 13 quite possible that the aoctual observations of the in-
formation will lead to X;(4;)=0 and A, (4;)> O . In a sense, this
means the desisions maybe ineffiocient; that 18, useful resouroces
maybe waeted, That 12 the prioe the team must pay if it wants at
least partially independent deolsion making beased on different
information to satisfy Joint oonstraints with certainty,

As an example of how quotas might be used, imagine a multi-
product firm that produces two goods a3 amd &2 for sale next month
at prioces /, and U, . However for various reasons the national
economic pioture might ckange in the interim; if a depression ooc-
ours, no goods oan be sold but if a upswing ooeurs, any nusmber of
goods oan be sold, The firms revonue is thus
(32) (M, +pM292) O
where ©= O means a doepression

and S = 4. neans a upawing.

hL .
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The firms two decision makers,one for each good, agree that boom
or bust are equally likely: $(6=0)-$(6-1) =L, The two decision makers
are not the beet judgaes of mmaoro economic events, so esach decision
maker independently consults a maocro foreoast: teenmmate 1 looks at
the St. Louis equation and teammate 2 looks at the Fed-MIT-Penn
model, Naturally with such ideologically divergent masro models,
the two teammates refusas to talk to each other; so there is no
communication about macro forecasts, To be fair to both model,
we will assume that both models are equally good at predioting
$(4i=bust]B=0) = b(4i-boom[@:0) = &
&b (4; =bus+1@=1) = & (4= boom [0=12) = 3
for 1=1,2,

We also assume the two predictiens arc indepsndent so that

6=0 Onld

(33) [5‘=bus+.cj‘= bust] : _lqa__ _I_I;
dj(“l)%t‘e) = L4,=bust, 433 boen]: -|3: 2

[4,= boawm, Yz 2 bust] - _(}? _;;:
[51"*‘300“'1,‘_-: bOen] B L t . “;

We will assume the Joint cost of producing & and a, 1s quadratio!
(34) C(ag,8;) = si + ajay + ag
We will assume both prices equal one, 4, =334 Finally we shall
assume that there 18 only one machine-day available and that it
takes two units of machine-time for one unit of either good (the
goods are infinitely divisible). There is a joint oonstraint
(35) 29,4+ 24, £ 4.

If we denote the decision rules as follows a,=o,(yzbust),

A2 T A (Y,2beom), A2 = (Yazbust) , A, =k (Yya= boom),
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then the problem is one of gelecting a veotor of actions,not & con-
tinuous funotion, If there waz no constraint on actions, the optimal

deocisions would be

4= 5 because of high probability of bust
Q= ‘ﬁ; because of high probvablility of boom
(36) = TE becauss of high probabllisy of bust
e = 'f—a because of high probability of boom.

In the quota constrained optimum, both departments are sone
strained to 1/4 units of their goods (notice the symmetry of the
problem) and the optimum decisions are

A .8 A

Ay =8¢ 2 Ta

4 = o &

54 R BT
- .5 L

i“ B¢ 7 o

The eomstraint binds the deoclalons when the macro forecaats say
"boonr® and, as a result, optimum actions for the opposite forecast
inocrease, In the unoconatrained ocase the maximum expected profits
are %f,whila in the quota constrained ocase, maximum expsoted pro-
rits nre?,zil—z, & drop of about 5%, The shadow prioce of machinery is
'Tﬁi, 80 an additional unit of machine-~time would inorease &xpeo-
ted profit by about 12%, Notice that max 2 +2%m = 4

but also note that Min 2% +2qim =3y <1. That is, while the
eonstraint on machine time is satisfied with certeinty, we oan
clearly have extra machine time which could be put to profitable

use,
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o, Decision Making with Identjcal Information The team's general
inability to coordinate actions to satisfy an inflexible joint con-
straint 18 a result of the independent individual decision making
bagsed on different information, The previous subsection on quotas
restricted the independence of decision makers and this subsection
now drope the assumption of different information, J,.S. Jordan(u)
has studied the necessary conditions for an information structure
to be "constraint adeguete,” that is, information sufficlent to
guarantee that the constreint will not be violated by a decision
rule, As an example, if information variables are "nolseless”
{there exiet functions %;=7Yi(8) such that the partition of ®induced
by 7; 18 identical for all 1) then the information structure will

be constraint adequate, A3 we will modify the information structure
80 that all the actions whioh are bound by a joint constraint are
seslected using identioal information , Some teammates must ignore
potentially useful informaetion and other teammates must receive
additional information to equalize knowledge,

Suppose each teammate 1 oontrols seversl action variables,
311...,a1m1, and recives a message vector (yil...,yiu). Without
any loss of generelity, let us assume that the first element in
each member's action vector refers to the use of a limited
resourse, These actions are jointly oconstrained by
(38) ? b;a;, = b'A* ¢ C.

If there was no problem of coordination, the 1th teapmate would

seleot eash of his my actions using all his information; that
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is, his declision funotions would be of the rorm:
(39) Qi = % (i, 9in) 5 o5 Aim, = Xim; (0,00, Gin).
However, the first oomponent of each teammate's veotor of actions
18 bound by the inflexible constraint, so let us postulate that
there 18 an information variabls y* which {8 known to all teammates,
This variable may be a subset of the individual message vectorz or
a speclally construoted message., It i3 gssumed that each toammate
uses only this information y* whan g@eleoting the jointly constralnad
action:
(o) 2y = &, (y4¥) 1= 1,..,N.
If we denote the veotor of funotions (.., «<x) by ®? then the
constrained team problem 18 to selest individual decision funotions
to maximize the team's expecoted utility subjeoct to constraint on
resouroes:
(41) max E‘{u(ul-('j"),d,z(‘g,),n_,uﬂm"(cj”),g)?
subject to  b'%'(4¥) =&  for a11 %

We oan define a Lagrangian for this problem with & multiplier
funotion A(4%)¢ L=EfUlL (9®),.. o, ( 18,803 + ESM(4*) (e -b'u t(y*)) 3.

The Kuhn-Tuoker conditions are then expressed as

(42) 'g'.‘,f."|lg.k=Eiuqh(a,ﬁ)hjﬁ‘:\\('jf)b; =0 for each y*
(43) 'J%A\u_.-'-E{uam(a,e)lq-‘; =0 for each y,, K=2,,.,m
(44) %lﬁ' = 0- b'ed(y¥) =0, A(y¥) =0 for each y"
(85) (c-b'x*(y®) ')\\(-ji) =0 for each y*

If U is differentiable and concave in actions then these conditions
are both necessary and suffioclent for optimality of the constrained
problen,
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As mn exanple suppose there is a firm that produces three
goods and 1s divided into two production depsrtments, Department
oné independently selscts the output levela of goods &yq and a4,
while department two piloks thy output level of good &y, The goods
are produced for sale next month and while relative prices are
known (we will assume all goods have squal prices) the aggregate
price level may inflate or deflate randomly, If we let © denote
the price level next month, the firms revenue from producing
quantities ay;,812,8; 18
(46) (ag3 + ag2 + a3)®,

The firm's two decision makers agreo that the price level is dis-
tributed Gaussian-normal with an expected value of zero and vari-
ance of one, Department one, because it controls several variables,
conaults two prioce forecast, the St. Louls equation and the
P=M=-P model, before it ssleots its output levels, Department two
only observes the F-M-P foreocast of price level, Both independent
forecasts give unbissed Gaunesian-normal forecasts of O with
veriance equal to 1,

(87) (oY= Nlo,1)

(48) o(r,18) = N(B,4) Zq 3 forecast of F-M=P model
(49)  Pl(2.10)= N(9, 1) Z2 + foreoast of St. Louis equation
The joint cost of produsing ®41,812,82 18 quadratio

(50) Clagy,a1p,8) = ayy2+a),24my%4a5ap + 120,

Finally, assume that goods ajy and a; use machinery while a,, does
not and there 1s only one machine~day available, Both goeds &q4

and s, require one machine-day for one unit of output, 2o the firm
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faces the oonstraint a;q + a, £ 1.

Because of the constraint on machine time departmsnt one
agrees to select the output of a11 using only its F«M«P foreoast
variable z3 but will use both zq and z, to plok a;,. In the
linear-quadratic normal team problem optimal decision functiona
are lirnear in the information varisbles and in thia partioular

oonstrained problem the optimal output rules are

\
S, (2)= " ™t %

A A
(51) d‘l(inia_):':r 2, +'J6_ 21+ 5

rS — T

oz ()= = +%.

Notioce that for all forecast from the F-M-P mcdel, the firm does
not violate 1ts resource endowment of machinery. The expected pro-
fits are"%%F:Ir the first department made its declsion on a;; based
only on zy but there was no constraint on machine-time, expeoted
utility from optimal deoision rules would be'%% . If there was no
sonstraint and the first department used all its information in
selecting both a1 and a2 then the expected utility fron optimal
declsion rules would be ﬁﬁ-. Thia loss in utility due to restric-
ting the information stucture for oonstrained variables is analo-
gous to the loss in utility when quotas reduse the effiocisnoy of
the decision making, seen in the previous subseotion,

One final comment on the procedure of selecting all jointly
constrained actions using identical information: this has appeared
in the team literature in a slightly modified form, Groves and
Badner(5), in their study of the allooation of resource in a teanm,

introduce a "resource manager” to tha oonstrained team problem
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and give him the power to select how much of a scaroe resource
each teammate will get, The resources manager acgquires information
about the environment in the same way that other team membera do
and uses that informetion to select the optimum allocation of the
resouroce, Because the memberz of the team have identical tastes
and beliefs, giving them the same information as the resource
manager and requiring them to use only that information in selec-
ting their portion of resources will lead formally to an iden-

tical resource allocation as the resource managzer's alloocation,

d. Penalty Fupetions and Joint Constraints What are the realitias

underlying our mathematioal formulation of joint constraints on
actions? The oconatraint b'A<¢ has represented an immutable fact of
nature for the team, suoh as the fixed volume in a warahouse, The
team can only stors a finite number of goods in & warehouse and

thus the warehouse volume constraint must be satisfied with certain-
ty. This example wazs selected deliberately to strain the meaning

of the term "immutable™, Almost all immutable constraints are
8lightly deo.: {Ave because of the unmentione.. time period under
'oonaideration. Given sultable time almost all inflexible constraints
on resouroces can be flexed; more warehouses may be built or addi-
tions made to old ones., In order to "flex” constrainte, time and
effort must be expended, usually at a progressively higher cost

the more the constraint 18 flexed or the more rarpidly it must be
done, Additional resources ocan be purchased at a premtum if the
organization needs more than it was originally endowed, This sub-
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seotion will study the oconstraine team problem when decision
makers have oomplete independence and different information but
when the oconstraint may be flexed by paying a penalty for extra
resources,

Let M{(b'A~c;3r) may be a family of penalty functions indexed
by r which tells how bilg penalty (in utility measure) the team
must pay for excegs demand for the limited resource, Ideally we
would like M{x;r) to be positive and inoreasing for positive
excess demand, x, and if x is8 non-negative then M(x;r)=0, Thus,
the more resource demand exceeds the endowment,; the bigger is
the penalty, and if resource demand is less than endowment then
no penalty is charged. The index r ig an index of sterner punish-

<]a)

ment if 5 >0for all x>0. A plecewlse linear example is seen below:

H(X;r‘)
yievr?
tM(x;r)

“ < > X

The team wants to maximize the unconstrained difference
between expected utility and expected penalty, rather than the
Jointly oconstrained sxpected utility,
(52) max EFU(<(Y¥),8)3 - EfM(b‘x(1)-¢;v)3.
The person-by-person neoceggary conditions that optimal deolsion

A
funotions %; must satisfy are

(53) 0= EfUq (R(YY,0)14i}-b; ETM,(b'X(N)-¢5v)1 9,3
for each Y4 € %) i=1,..,n,

This states that for each message, the 1th yember must select an
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action that sets posterior expected marginml utility given the
message equal to the posterior marginal penalty per unit of the
g th aoction given the messsge,

In the above formulation of M it was said that “ideally” we
would like M to be zero for X<O and positive thereafter. This
is an inconvient restriotion computationally (and analytically if
M 18 not differentiable at the origin) and in examples we will
only approximate these properties. For example, two convement
penalty functions are linear, M{xjr) = rx, and linear-quadratioc,
M(xir) = 2rx + r°x2, These two w1ll be used later because they
do not complicate the quadratic-normel team problem which is a
useful example, To see this let us use both linear and linear-
qQuadratic penalty funotions to solve @ constrained quadratioc-
normal team problem.

Suppose we have a two member team with a linear-quadratio
utility funotion
u(a,,q. ) = 24,049, "zﬂ-‘zeqz‘ZIlqlz‘zzmqtql - fz;qtl-

Aspume the information variables and state of nature are Gaus-

slan-normal with posterior expeoted values

(s4) Exe(y3 = 8% 4, Ei614.5 =829,
E{sly,3= 9! 4, E$9,0423=237 92 .

The constraint 1a b'A < C.

Begin with a linear penalty funotion, M(b'A-c;r) = 2r
(b'A=c). The optimal decision rules will be linear in the infor-
mation variables: ;‘(‘ (4)= '&“ QY,+ 3‘ 9 3(,_(,'3.,_) = &, Yot g.,_.
The person-by=-person optimality conditions require &‘ and &.1
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to satisfy

(55) 0 = M ETOLY3 -2, (A4, +3) — 2, (A, Ef9 a3 +5,) ~r b,
(56) © = M2EEOI] 22 (F.9,.42,) - 21e (&, Ef9, 1423+ 31~V b,
The optimal values of the elope and intercept coeffiolients of the

deocision funotions are therefore:
(57) (a' S OO P TN el TN

a, 631 gl (4

2 -1 /b
(58) ( ‘) o [0 Lo .

g:. g.-a_ t'l."l b-':.

Notioce that the constraint only affects the interoepts of the de-
cision funotions and not the slopes. The endowment of the resource,
o, does nct affeot the dsocision at all,

Now suppose the penalty funotion 18 linear-quadratioc, M{(x;r)=
2rx + rzxz. The person-by=person optimality conditions require the
linear decision functions gl. and az_ satisfly
(59) © =M Et0ly, 3 - £ul(qi Y+5) - fi2 (3, Efnuly 3+ 3)

~ b (raerb, (3,9,+2,)+ b3, E19. (93 +%) + v¥c)
(60) © = m, ERO1Y,3 -f:-;(ar_‘jn.*g-ﬁ "le(a\ei'ﬂ.lﬁs 1“21)
-ba (f * ‘.161( at"ﬁt"‘?z.) + ‘tb‘(al Eiﬁl“ﬁt‘i +?|"“ 'lc)'

The optimal values of the coefficients are

(a') Dttt (garehb)ai - fH8°)
61 A = - z oY
( ) ., (g trh, b)Yy ru-H‘L-_ Ao ©

S2 Qa4 2b,by £o TR 6o

With linear-quadratic penalty functions the slopes of the decision
funoctions depend on the constraint and the amount of the resource

endowed, o, helps determine optimal aotions,
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II. PLANNING PROCEDURES

a. The Planping Problem In this chapter 1t will be assumed that
the organization's task is to solve a constrained maximization
problem, While other alternatives have been studied, suoch as goal
attainment or satisfioing, the approach of oconstralned maximization
18 consistent with the basic team decision problem which is the
foous of this chapter.

Suppose there are N+1 agents: N firms and the planning board.
The firms are indexed i=1,2,..,N. There are m commodities indexed
by the subscript k=i,,.,m. Final oonsumption of good k 18 denoted
¢y Wwhile net output of good k by firm 1 is denoted x;,. If the
firm produces good k then x,4 18 positive and negative 1f it oon-
sumes the good; Net demand for good k is designated d), where
(63) dx = o "'i;!fn
Veotors of the variables are defined as

d = (d49,..,4y)" » o = (0y,..,0p)" v Xy = (Xgg0000Xpg)’

The vector of net outputs by firm i1 must represent techniocally fean-
ible transformation of inputs into outpute whioh i8 represented by
a set X;, the set of all technically feasible outputs available to
firm 1, It 18 assumed that there are initially wy units of good k
avallable to the organization, and net demand mast not exceed the
initial resouroce, dkﬁawk. Preferences between final demands for
goods are represented by a utility funotion U{e).
The planning problem is to select a set of values of the vectors
d,0,X1,¢0,XN %o
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(64) Max U(c)
subjeot to d = o-i?xl < w
xie>{ﬂ i=1,,,,N,

A planning prooedure 18 & iterative process for the solution
of the orgenizations constrained maximization problem, Given an
arbitrary initial approximating solution, the planning procedurs
2pecifies how it must be modified to produce a better approximation.
The planning board transmits "prospective indices” to the firms:
these prospective indices, denoted pt (where T 18 an index of the
stages of procedure), summarize the ourrent approximating sclu~-
tion. The firms use these indices to compute an answer or proposal.
The sequence of prospective indlces-proposals ultimately terminated
and the final approximating solution to the oconstrained maximization
Problem becomes the organization’s “"plan”,

The size of the organization’s oconstrained maximization prob-
lem, measured by the number of commodities or the complexity of the
technology, 18 generally very large. This makes it impcssible for
the planning board to gather all the information needed to solve
the problem by itself. As a result planning proocedures are typiocal-
ly informationally decentralized; that is, the planning board does
not poel all the information and solve the constrained maximization
by itself, but it delegates responsibility for parts of the problem
to the firms. Generally the planning board lkmews only the objeotive
funetion and the organization-wide constraints,while the firme know
only their own production possibilities,

The remainder of this section presents several of the better
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known iterative, decentralized planning prooedure for constrained
maximization problems, These procedures will be used later as the

basis for planning procedures by decentralized teams,

b, Lange-Arrow-Hurwjoz Tatonnement Prgcedure The main oconclusion
of the eoconomic theory of socialism is that optimal plan e¢f the

organization should satisfy the same marginal equalities as those
resulting from equilibrium in a perfeotly competitive situation.
The traditional model of how markets reach their equilibrium
positione postulates that prices "grc " toward equilibrium by

ad justing according to excess dem: i. lhe first formulation of a
rlanning proocedure, by Langéi), was vaged on Welras's "tatonne-
ment” process. The essence of the tatonnement proocess is that an
auctioneer prices for all goods, receives supply and demand bids
from firme and consumers based on the quoted prices, and then
adjust prices by inoreasing the price of goods which had an exceass
demand and vice versa, Lunge's proocedure was studied in a rigorous
manner by Arrow and Eurwicz(z) and their work provides the basis
for this subsesction on tatonnement planning procedures,

The planning board replaces both the consumer and the auc-
tioneer, The plan deals only with the production side of the orga-
nization and the planning board‘s utility funotion is & surrogate
for the individual preferences of the consumers, The prospective
indices of the planning board are the prloes for eacsh of the
commodities, P = (P,,.“,th): The firnms® proposals are their net

rroduction veotors, Xy=(Xjj,..,Xpy). The initial prices P° are
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arbitrary and may be those resulting from some previous plan, The

procedure from stage T ia defined by

(a) At stage T , the 1 firm maximizes 1ts profits, P %7 subject
to % being feasible, xFeX; and reports net output X;° to the
planning board,

() The planning board finds the final oconsumption that maximizes
the difference between utility and cost of consumption,
W(CcT)-P LT

(c) The vector of net demands for all goods is o\t=ct~% S
The planning board increases the price of goods who's net
demand exceeds resource avallability:

P™ = max(0,PT+K(dT-w))
where K 18 a speed of adjustment coefficient, These prices are
announced to the t'irms and the proocsdure begins agailn,

As an example of a tatonnement planning procedure let us
study an activity analysis model of production. Suppose we denote
the 1%" firm's sale of operation by x, and the amount of good k
rroduced by firm 1 at socale Xy by gyy(x,). The net output of
good k is thus?;_‘gki(xl). The resource allocation problem is
stated as
(65) Max U(°1'°"°m) subject to C&‘é‘ﬁha“i)é-"%_ k=1,2,,.,m.
The Lagrangian for this problem is
(66) L = u(¢,.. L)+ E‘A&(u}& + g.ﬁh("i) _c*)
where Ap 18 the shadow price of the k good. The optimal conditions
are specified as
(67) S ~2p 2O , equal to 01f Cg>0
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}“

(68) ;/; AR

(69) f_ g,(Ki] £ Weg, equality 1f 2, >oO.

£ 0O » equal to O 1if X;>o

A tato—nement planning procedure would be specified by the
following sequence, beginning at stage T with shadow prices ?\E
k=i,,,.,m,

~
(a) Firms maximizes profits at prices ?\i , Profit = EZ=| Aa gM(X-.),
subject to K-rao this leads to first order conditions
E' % ﬂﬁ 4 O, with equality 1f X;°> O,
(b) The planning board finds finsl consumptions that maximizes
the difference between utility and the cost of consumption
at price Ago U(CT‘;---,C;)‘E g g

This leads to oconditions a" £0, with equality if

C&)o.

ac;

(o) The planning board adjusts prices acoording to net demand

for goods
N
o fag=o and Cx - L 34i(XT) > wp
d ?*::_ N 12
at ) Kleg- ‘Y_ 9 (XP))otherwise .
2y
¢, Dantzig-Wolfe-Malinvand Desompogsition Linear programming has

been the precursor of many developments in theoretiocal economics,
A tsohnique for sclving large linear programs developed by Dantzig
and Holfe(3). A8 used in a more general context by Mallnvaud(u)
to study iterative planning procedures, The linear programming
technique is called "decomposition” and will be prssented here,
followed by Malinvaud's planning process.

Suppose we want to maximizZe a linear function whieh can be
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dichotomized into a function of two sets of variables Py'X + Pp'Y
where X = (X1,.4,Xp)* , P3 = (Py,ee,Ppp)* » ¥ = (¥{,..,¥y)’ and

Py = (Py3.+,P2i.44Pyp). The linear constraints can be divided into
three sets, (1) constraints on both X and Y, (2) constrainta only

on X, and (3) constraints only on Y,

(70) ﬁ.x +A.Y £ b 1 8 constraints
(71) AKX £ b, + t oonstraints
(72) AN £ b, t u oonstraints

There will be provisional shadow prices for each conatraint
denoted ¢,.., Wy, Ty, grey Ustt , sppps sdl stéu .
Now suppose that the problem 18 too large computationally to
be solved all at once, If there is a sequense of activity vectors
% *
known to satisfy the last t + u oonstraints, X\, .. X% ;Y% -,‘l%,
then any linear combination of those vectors will satisfy the last

t + u conatraints, Denote a particular linear combination by
i

(73) X35 = El/‘(}aXi, Mg 20, él/q*= 1

ave = * X
(7 NPT = T ¥Yi, Y 2o, T ¥p= L.
These veators oan lie anywhere in the convex hull of the corre-

sponding sequence of vectors

»
X constvaints P«l)( £ b.

convex hatl

A smaller linear progrem will now be solved: select welghts
(75) wmax P/ XY A BRINTS
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-_—

subject to —A‘Xq.:._e "t"f-—\‘z \{q-‘: z b
X'z = El/‘{&X:, '}E_,u&=_1_,/d,b_20

e i 4 Vi, Y =4, dp2o0.
When this problem 18 solved, shadow prices will exist for the 8
joint oonstraints, denoted W =(T\, T ;) These are used to modify
the objective functions of two smaller subsidiary problem. The

two asubsidiary problems to be solved are
(76) wmax (P - ﬁ.Tr-':) Xt

S.+_ AI XT+‘ < b,
and _
(77) wmax (Pz‘ H'&Trt) \{‘cﬂ
5.*- Hz \‘1;-0( < b-?_.

These two problems will result in vectors th\ and ‘(:ﬂ

that are added to the sequence of activity veotors and & new

Joint l1lincar program 18 solved. The proocess iterates until

X% = XT3 amd YI¥ = NP, . Because of the finito number
of extreme points and convex nature of the constraints, the proce-
dure stops after a finite number of iterations,

The Malinvaud planning procedure generalizes the Dantzig-
Wolfe decomposition problem by making the objective function
eoncave, denoted U(cy,..,0p), and the individual constraints
convex, The problem ies stated as
(78) max ule,,... c.)

s.*. C-ix".‘:‘d

Xy € Xi i=\’z'_.,’N
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where U 18 a oconoave rnﬁ.)(;is convex, The prospeotive indioes at
stage T are the prices of the commodities, PT= (PY,..., P,T).
The firm's proposal at stage T i1as a veotor of net outputs that

belong to its technology. The planning is defined at atage T by
the following rules:

(a) The ith firm maximizes profit at the prices P°, profit = PT¥;
subjeot to X; belong to the technology Xi. This optimal
veotor 18 X;';

(b) The vlanning bosard treats the individual technology as the

oonvex hull of the past ssquence of net outpute .

Xo= g x5 s "‘?:‘Mijxit, %:/4.',' =4, Mij=0%
%M
»r

X7 X

The planning board solves the subsidiary problem
(79) max WULlc)
st ¢-FT (M s w

e X isye,. N

4779
(c) From the subsidiary marimization problem, the planning board
has shadow prices for each good which are used as ths proapec-

tive indices in the next 1teration.F5t+‘

d, Weltzman'a Dual Deoopposition The Dantzig-Wolfe~Malinvaud
planning proocedure builds up an approximation of the firma techno-
logy from the inside of the set of feasible net outputas, A dusal

proaedure developed br weitzman(5) builds an approximation of the
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technology from the outdide. The interesting distinotion between
the two 18 that Malinvaud's procedure is price guided in the
sense that the proaspeotive indices are tentative prioces for the
commodities while the Weitzman procedure is guided by output
targets suggested tentatively by the planning board,

Suppose that at stage T the planning board has an estimated
sat of technologically feasible net outputs .for firm i, denoted
¥ 8uch that the true technology is contained in X, 1.e.
X;<X{. If the planning board learns a new feasible point Xi *'
on the boundary of X; and shadow prises (W7" Tt )  that
represent the marginal products at that point on the boundary,
then the planning bocard can get & bstter eatimate of X by the set
(80) X ™M=XT n §X| W™K e T KT
The oonstruction of approximating teohnologles using this tech-
nique 18 the basis for Weitzman'’s planning prooedure,

Before specifying the formal planning procedure we must
define a useful oconcept. We say that a production point ?a is
"efficlent with respeot to a target quota qy=(qyy,..,Qp)" 1if
?i‘XL and i;&zi and there exist a positive veotor P{ such
that P 'Ric B'R; for a11 x; e X, x: £4;.

X2; 4

w B

ri QFﬂcim‘l" \'_‘-K :

— Kyi
The prospective indices at stage T of the planning board

will be target quotaé to each firm, ,z:r' « The firm's proposals
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at stage T of the planning procedure will be a 3}- efficlient net
output X *'and the corresponding prices WX'' that =specify the

parginal product at AT The planning prooedure followe these rules

(a) At stage T if target quota ff 18 not producible then the ith

firm reports any if- efficient point X' and price veotor

T‘-—-it‘ﬂ;
(b) The planning board updates 1ts set of feasible produotion
possibilities X ;' = X; N IXV WX £ =™ x™Mg.
(o) The planning board solves the following problem for optimal
target quotas:
(81) max Ll(C“'N)
st CTHI- .Z. g}‘*' & W
and r;cﬂ GX-.::“ v,z N
The optimal values for zf“' are proposed in the next stage
asz target quotas,
While the Malinvaud process builds up a polyhedral a&pproximation
of the technology everywhere interior to the true teohnology,
Weitzman's process orsates an approximation of X; by the building

an envelope of supporting hyperplanes,

o. Heal's Quantity Target Gradjent Procedure 1In practice the
indiees of planning boards are quantitative input-output tergets

rather the prices suggested by Lange, Arrow, Hurwiocz, and Malinvaud,
Weitzman's prooedure is one proocedure whose basic indices ars
quantitative targete, Heal hae also developed a planning procedure,

based on the gradient wethod, whioch uses quantitative indices
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rather than prioea.(6) Heal's proocedure has two desirable proper-

ties that do not hold for the gradient procedurs of Lange- Arrow-

Hurwioz) namely: (1) at any stage of planning, the tentative plan

18 feasible and (2) the obj)ective function inoreasas monotonicmlly
at each iteration,

Heal's planning method beging when the planning board proposes
an &llocation of inputs between firms. At thease inputs the firms
report the maximum output from these inputs and the marginal produc-
tivity of the inputs, given this information, the planning board
realloocates inputs, shifting resources toward uses where they are
more productive, The new allocation 18 used to begin another round
of plenning

The essence of the prccedure can be described by an economy
where there are no intermediate products; i,e,, all firms produce
consumption goods from primary resources, Firms are indexed by
1 =1,2,,.,N, while resources are indexed by j = 1,..,m. The
production of the i1th gommodity by the 1th firm 18 denoted by the
production function
(82) C = -F;LX“,...,KI...\
where xij is the amount of resource j used by firm i, Recognizing
the use of slack variables, the constraint on resource ] i8 repre-
sented by the equality
(83 L Ky = ) = 1,...m.

The planning board proroses an arbitrary a&llocation of
resources amongat firms at stage T , (X(;), which satisfies the
conatraints (83). The firms use their techniocal knocwledge to

report the maximum output from their inputs
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(84) cl 4‘ (X”) I-:."i‘
and the marginal produoctivity of its input
(85) 'Fntj 3)(.: -F\ (xtl) X'i}h\-

The planning board lowers the allocation of a resource to a firm

|l

whose marginal soclal product 18 below the average marginal

aooial product for all uses of the resouroce, or formally
N

= aU_
(86) S = = (o= E - % > Scg o)
The prooedure is defined so that
(8?) (X '\'Kt "'*K:j)‘:‘ O

which means that the total use of e resource as inputs does not
exceed the amount of the resource available,

When the output of the firms can be used as inputs by
other firms, the planning proocedure can be modified to include
these intermediate produots, The only complication 18 Tthat
average marginal soclal produstivities, which guide the reallo-
cation proosrdure, become computationally more difficult for the
planning board,

The non-prioce guided gradient procedure of Haal has proper-
ties that the price guided gradient procedure of Arrow-Hurwicz
does not: feasibility and monotonic increasing payoff, In order
to gain these advantages the procedure requires’ the planning
board and firm to exohangé more information and oreates a ocompu-

tation problem for the planning board.
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ITII. PLANNING BY A CONSTRAINED TEAM

a, The Team Planning Problem This seotion explores prooceduresn

that a large team might use to derive i1ts optimal strategies when
actions are constrained. The size &and complexity of some teams
prevents any teammate or group of teammates from pooling all the
useful information and finding the best decision funotions. The
team must have some program to elioit technological data from the
individual members and to modify proposed s8olutions based on that
information. Several planning proocedures developed in the litera-
ture on centrally planned economies will be modified to fit the
gtructure of the partiocular forms of the jointly conastrained team
decision problenm,

The solution procedure outlined here all involve exchange
of data between the individual teammates and a "planner”. After
some number of iterations decision rules are selected that deter-
mine the relationshlp between incoming signals about the uncertain
environment and the actions taken by the team members. In soms
caseg the final selection of an individual decisicn rule ig8 made
by the teammate and in others it is dioctated by the planner., Once
the final decision furction 18 fixed the teammate acts only acoor-
ding to his rule and 18 responsible only for taking the indicated
aotion for his given signal,

The important features of the organization studied here are
(1) ooiplote agreement between the decision mekers on a single

objective function (2) interdependence of individual actions
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through a non-additive objeoctive funotion (3) decentralized author-
ity in deolsion making (4) differences among decision mekers in

the signals about the unoertain environment and (5) joint
oonstraints on the actione of different membersa, The orgenization
is a "team” with non~additive utility and joint constraints, As
disgussed previously, three ocomponents of the jointly constrained
team problem are incompatible: independent deoision making, differ-
ent random signals and inflexible, joint constraints, Az a result
the constrained team problem must be modified to guarantee its
consistancy, A few such modifications were disocussed above, Using
these modified oonstralned team problems as a basis, several
Planning algorithms will be defined and analyzed,

An essential pert of the theory of team decisions is the
communication between teammates related to the unknown state of
nature, Signals are obaerved by individual teammate and intraorga-
nizational messages are gent in order to reduce the team's unecer-
tainty about the state of nature, These messages are sent after
decisjion rules are known and before acotual actions must be gelec-
ted and implemented. In the iterative planning prooess, which
determines the rules relating signals~messages to astions, infor-
mation is also exchanged, This information does not reduoce the
uncertainty of the state of nature; instead it 18 related to
technological parameters which define the team's proble. Suoh
parameters are known by at least some members of the team and
are not considered part of the state of nature, Communications

about the state of nature and communioations about technological
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parameters differ another way: The former are generally direot
member-to-member transmissions while the latter are between the
planner and the individual teammmates. We will refer to oommunioa-
tions derling with the state of nature as "messages” and oomwuni-
ocation dealing with technological parameters as "prospeotive indi-
ces”, 1f from the planner, or "proposals”, Af from individual
members,

The 1terative planning process might be thought of ag a
computational devioce by which the team problem 18 solved by distri-
buting technological data to those who need it. Why doesn’t the
planner just gather all the information at one time, solve the team
problem and ennounce the optimal dscision rules? Often technologi-
cal information, while known by various teammates, 1s hard to sum=
marize or tabulate for use by other team membera. Algo, such sum=-
mary information may atill be toe voluminous and costly to be justi-
fied. The planning prooedure economizes on technologioal ocomnunica-
tion by requiring the transmission of only “"relevant” data.

The team assumption that U(A,©) 18 the common utility func-
tion of all teammates implies that U(A,8) 18 "known"to all team
mnembera, However, Jjudging from the person-by-person optimality
conditions, the 1th team member needs to knoiwr only his marginal
impaot on utlllty\qufhe)in order to seleoct his optimal actions
given the optimal decision rules of the other teammates, Knowle
edge of Ugy does not necessarily imply kmowledge of U, In the
extreme ocase of additively decomposable utllity.u(ﬂ.9)=§-u" (a;, @),
all the 1'M teapmate must know in order to solve hia part of the
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problem is Ui(a;, e).

If the team's utility function can be written as
(88) U(R8) = 70 Ui(%i,0)+ T T UH(ai9y,0) + U°(8,6)
where W' = Uil , and if the 1th teammate knows only the funoctions
ul u‘,‘ UW2., U™  and U°, then the teammates have enough knowl-
edge to solve their parts of the problem, but no single member has
enough knowledge to generate a complete solutilon.

In some cases the ith teammate may only kmow the above
functions implicitly. An example 18 @& firm which knows when any
particular tentative “"activity” is feasible but cannct trgnalate
this into a production funotion detalling the maximum feasible
output from given inputs, Even if the functions were known explio~-
tly, they may be too complex to be summarized in a smell number
of parameters, The transmission of the entire set of functions
uhtv;.”.,u“' may simply be too costly for oonsideration., How
does the team solve its problem? The team must have some proce-
dure for exchanging relevant information about the utility func-
tion., Many similar procedures exist in the planning literature
but they exclude either signalling about the uncertain environ-
ment or externalites in the payoff funotions. We will modify
some of the procedures to handle both the signals and externa-

lites which characterize a team decision problem,

b. Price Gujded Planning by & Team with Identical Information

The team oconsist of N members, indexed by 1. Ewxch team controls

a personal action a; and receives a personal information veriable
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yy. Team utility is U(ay,--ay,8)where © , the state of nature has
& team probability density funotion 4>(6\ o The team faces a
joint canstraint on the am:lons.li:l bace, where o 18 the endow-
ment of the resource and b; measures the amount of resource used
per unit of the 1M action. There are no conceptual difficulties
in introduoing several Jjoint conatraints or allowing vector
actions Q; = (4j,, Ai2;---,%im. ). For notational simplicity it will
be assumed a4 18 & scalar and there is only one Joint constraint.
As elaborated above the claasical team asaumptions of
independent decision making by teammates and different informa-
tion are generally incompatible with inflexible joint constraint
b'A2C, One way around this problem is to have the teammates
use the same information when they select actions that are jointly
oonstrained, This modification will be the form studied here,
We will agsume yy = yy =y 1is the common information variable
with a oonditional probability demsity function <% (4| 6©)
which is used by all teammates to seleot thelr actions., The team%
problem 18 to seleot deeclsion functions «£(4)=(%i(4),...,c(4)) to
(89) maximize W= E3U (4),8)] = §g Sy Ulxu),0)(5(0) $(e)dyde
subject to b'd(y) 2 ¢ for all 9geY.
The optimelity eonditions require the introduotion of a Lagrange
multiplier funotion 2 (4) and the definition of a Lagrangian:
(90) L= EjU(x(4),0)3 + E$ Alv)(c-b'w(y))3.
If U 18 differentiable and conocave in A, the following Kuhn-Tuoker

person-by-person conditione ars both necessary and suffiocient for



166

optimality.
Theorems %(y) are optimal if and only if there exist a multiplier
function A{4) such that
(91) EfUq(2)0)\93=b; 3(4)  for eaoh 9e™ i=t,z,..., W
(92) b':f(‘i)éd, 2(4)20 for each 3a'3
(93) (b'Ay)-c) Aly)=0 for each ye™,
The intarpretation of these conditiona are as follows: select
deoision functions so the posterior expected marginal utility
with respect to a3 given Yy equals the marginal cost in utility
units of the resouroce used by ay. The resource demand must never
exceed the endowment for all possible information and if for some
information the endowment is not ocompletely used, the shaldow priocs
of the resoursce in utility terms must equal zero,
Suppose the conditions (91) - (93) are very complicated to
Solve analytically or suppose, as dlsoussed above, ths technical
knowledge of U(A,8) 18 deoentralized so that no team member has
enough knowledge to solve (91) ~ (93). Some iterative procedure
for exchanging teohnicsl knowledge must be used to eliclit the
optimal deeision rule. The method to be explored now is based on
the price-guided gradient procedure of Arrow and Hurwioz.(18)
Suppose at stage T, the 1*h teammate has a decision funo-
tion O‘? (4) and the planner has a shadow price funotion 2 {4).
Typricaelly these functions will not satisfy the Kuhn-Tucker person-
by=-person. What the team would 1like to do is adjust the funotions
to get higher up the expected utility "hill” snd this can be done
by modifying each function by its corresponding variational par-
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tial derivative of the Lagrangian., Define a team gradient proce-
dure at stage T by _
(94) A%I8) = E§ U (#7(4),0)19F - b; 2%(4)  forall g, iznz,..,N
(95) éﬁ?’: ( (? ti{? AUy)=0 and b'wC(y)<c cor all 4.
b'a®(4) -~ otherwise
How exactly does the team gencerate such a gradient solutién
prooesses? At stage the planner annocunces a shadow price func-
tlon for the resource A (4) , If the utility function was
additively decomposable, this would be all the information the
teammates woulid need to know to adjust thelir decision functions,
However, in the general case with externalities in the utility
the teammates must know the proposed decision functions of other
teammatea, So we musat also allow the planner to disseminate the
deolaston functions to teammates that require them., Given the
shadow price of the resource and the deoclsion functions of other
teammates, the 1th teammate modifies his decision funotion by the
posterior marginal net utility and reports this back to the plan-
ner, The planner modifies the shadow price function by the excess
demand function for resources, taking account that it must never
be negative, The planner annourices this shadow price funoction
and proposed decision functions and the proocees begins again, The
process will terminate when the planner finds the current deci-
8ion functions and shadow prices that zatiefy (91) - (93).

It should be pointed out that while we have just define a
gradient prosess that ad justs decision funotiones, this could be
reduced to just adjusting an actiop vector. If the total problem
only involves deoisjion functions that depend on y, there is no
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Treason the team could not walt until the informetion ¥ i# known,
S8y “==?S , and then maximize posterior expeoted team utility
given § by seleoting a veotor of aotions (d,,-, 4,) =(=‘<.(q1,..,'&,,ti‘{)).
The gradient solution of this posterior problem would be exaotly
like (94) and (95) except instead of edjusting at all Y E'Ej;
it would adjust only at 9 2?5 « The reaeon this asimplifiocation
was not done above is that in most cases the team will have other
actions not bound by a Jjoint constraint and not gselected based
on the ocommon information y, In such a oase the entire deoision
function °<.'.(S) must be caloulated because other decision makers
w111'not know y.(lb)

A question that ought to Ve answered about any solution
procedure is "Does the solution process converge to the optimum?”
In gradient procedures this is usually answered by treating (94)
and (95) as & syastem of first order, non-linear differential
equations inT and evaluating the stablility of any initial value
Solution, Stability of differential equations is typically
analyze using Lyapunov's seoond method. However, it should be
noted tnat (94) and (95) 18 not @& finite system of differsntial
equations in the general case, Notably 1r“j 18 a subset of the
real numbers that is countsably or uncountably infinite, boundad
or unbounded, the differential equations will not be disorete
axd finite in number, Suppese for exaeple Y =1[0,1) the closed
unit interval, then (94) and (95) are sotually a continunum of
differential equations, The applicablliity of Lyapunov's method

a8 well as existance and unigueness res. its will not necessarily
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carry over to these more gesneral ocases, The 1ssue8 ilnvolved are
disocussed in the appendix on "Convergence of Gradient Methods in
Abstract Spacea”,

Suppose that'ﬂ is a discrete, finite set of reci numbers
4=§% - %v & , and let $(4e|© bve the provability that
4=Ye s1c€4¥V, glven the state of nature, Then the team's prob-
lem 18 to seleot, not functions, but vectors of aotiocns for each
teammate; let us denote the decision funotion by the r-vector

(Tigo-- @) = (149, -, 24(9))

The team problem is to select these vector of actions to

(96) ™max W = i Sau(“ue,...,q,.e_?e) $(4el0) d(B)d0

e:
subjeot to Z' L;Gie < C e=1\12..,V.

We must now introduce a Lagrange multiplier veotor A = (Ays--> A r)!

with each component corresponding to the tdentiocally numbered

slement ofﬂj . If at some stage T in the solution procedure the

teammatos have approximate solutions Qe (T)and the planner has

approximete shadow prices A.(T) then the team adjusts its decl-

sions and prices according to the following process

Ada;(T) _
(97) ZSje— = §, Uq;(QelT), .., Qe (T), ©) £(O1Yc)d® - b re(T)
(98) T3 =0 ! < 0

_‘_‘_A_g_(_}) _ O Ae(.t-) and b Ag

dT Zb;a;.(x) ¢  otheruise

For eash €=1,.. v, where {(0l4.) 18 the posterior p.d.f. of O
given Y=< Ye.

In this problem we ocan give the following stability theorem
Theorem 1: If ({(4(,..,a,,0) 18 striotly ooncave and twioce differen-

tiable in aq,..,a, for 2ll & and a,e,“ie 1i=1,,.,8; e=l,,., v 18
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a saddle point for the problem (96) then

(a)
(b)

(o)

Proof:

the decisiona aig i=1,,,,N j e=1,,..,r are unigue

the aolution of the gradient algorithm (97) and (98) for
any initial condition exists and is unique

the solution of (97) and (98) for any initial conditions
converges to the saddls point,

Strioct conocavity of U implies there is at most one "peak”

of Wand if 64,13 a "peak” then it muet be unique,

Since the Leagranglan 1s twloce differentiable in both

84 and Ae , the gradient process must satisfy Lipshitz ocondi-

tions and will thus have a unique solution to (97) and (98)

for any initial decision funetions and shadow prices, Global

oonvergence will follow if a Lyapunov function c¢an be found,

Let

(99) A ﬂ(a11,..,alr,a21,...aiei,..,aNr)'
and then 1pk at the function

(100) DA, AT = L A ~All "+ £ a) -30%
The rate of change of D with respect to T 1is

(101) O¢x) = AGZY (AL0-B) + MDD (AMx)-3).
It L(R,2) 18 the Lagrangian for this problem, the striot

oonocavity of U implies

(102)

L(A,N) ~ L(AN) < VL' (R-A)

and linearity of L in A implies
(103) L(A,A) ~L (AN = T,L' (R-)).
Since a saddle point 18 defined as

(104)

L(AA) 2 LAYz L(A, N
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it 18 easlly seen that
(105) 0 ¢ L(A,2) ~L(A,R) < GuL (R-A) - VL' (R-2).
Since -V,L (A ~M)='A-A'(A-3) 148 non negative
if ¥=0 and b'g -c <0, it can be shown that
(106) - Vit'(a(x)-R) 2 A(x) (M) -3}),
By definition
(107) Val = Alx)-a(T)b
therefore D{(T) 1is monotonically desreasing in T :
(108) B(T) £ Uy L' (R)-A) -V, L' (AM(T)-A) < 0O,
Obviously D(t) 1s bounded below zero and equals zero if
and only if Pllt)=ﬁ, MT) = "?E . Henoe D 18 & Lyapunov rfunotion
and the saddle point 18 globally stable, Q,E,D,

As an example of how this price guided gradient procedurs
might ooour in practice, imagine a firm that produces N goods
R1,82,¢¢,8ys The firm 18 divided into production departments, one
for each good, whioh independently seleoct the output level of
their good, Today's price of the ith goody py, 18 known by depart-
ment i1 but the goods will not he sold until tomorrow. In the
meanwhile general prices levels will have changed by some random
amount so that the revenue from a3y units of good 1 will be P;q; 6
where B is the general price level, Descision about input levels
pust be made without exact knowledge of 6, but masro forecasts
are avatlable to predict the new prioce level, All departments
consult a company=-wide price forecast Z before seleoting outputs,
The cost of the joint product A = {ay,..,ay) 18
(109) C(A) = 3 A'QA
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where @ 18 a positive definite matrix, Departments specialize 1in
thelr own technology so that they know only the elements qi1,..,d4N
in the ocost matrix., In addition to this, the departments all use
machinery to produce their goods and a fixed emount of machinery
is avallable for use., The departments face a joint oconstraint
(1100 b'Acc

where by is machinery used per unit output of a; and o 18 the
total machinery available to the firm. Again technical knowledge
18 decentralized so that by 18 lmown only to the i1th department,
The total macl.inery avallable 18 known only to the corporate
Planner,

The firm's objective ies to maximize the firms expected
profits by selecting output decision funotions A = *(Z) = (o (7Y,
dt(ﬂ,..,u,,(z))'to maximize
(111) E §u' «(2)0-+a@R)'Qu(R) §
subject to

bell®)< ¢ , for all forecasts Z.
There 18 no individual in the organization who knows all the
rarameters needed to solve this problem: M, Q, b and ¢. Instead
the corporate planner and departments engage in an iterative

C
search for the optimal output deoision rulea., If Ef6lz3 2 b'@m

then at the optinmum all maocohinery will be ococupied no matter
what foreocast 1&g made and the optimal output decision rules
will be linear in the posterior expected price level, Eie\%-i.
Therefore the firm knows it need only look at linear decision

rules and shadow prices in its search for the optimum,
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The planner beginse announcing an arbitrary price funotion
for machinery that 18 linear in E€|=% .
(112) 2T(R)=VvTEielzy + u™
and arbitrary output decision functions that are linear in E{@|%§:
(113) «(2) = AT E$Ole§ + sT
The department modify their output deolision rule by the differ~
ence between posterior marginal profits and marginal cost of

machinery

T M R
(a14) 4RI - 3813 - 2 g T (7) - b AT(R)
=1
or ’
da;" . A ~ T k. 3T
(1158)  SgT = M - L 0 47(2) - b AT(R)

Notioe that the ith department needs to know only parameters it
ought to know:/l,-,zl-“..,'yiu, b; . It 13 not required to know
Mis;es b oF ¢, EIES . The department reports back to
the planner the new slope and intercept coeffiocients of its out-
put decision rule, (If by's are to be known only to the depart-
ment and not the planner then & machinery demand function must
also be reported to the planners; sinoce demand for machinery is
b;%;(2),this would involve rerorting only two parameters, ©; q:;°
and b; 5 . We will assume that the plamner already knows by
80 he can construct the resource demand function,)

The planner uses the coefficients of the individual out-
put declision funotions to modify the shedow price funotion for
machinery, He adjust the shadow price function by the excess

demand for machinery

A2 - puT(r)-c,

dT
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or
1;_ AT _
(116) 4Y" = b'AT-¢
ux _ ' T
(117) -da‘-z = b's

The new output and price functions' slope and intercept coeffi-
oients are announced and the process begins again, Notice that
the planner does not need to know M or Q@ (or b as explained
above) in order to adjust the price of machinery. His only
required knowledge it of resource demand coefficients, b’'A®
and b’ sT, and the endowment of machines, o.

This adjustment prooess 18 decentralized in the sense that
it does not require that any individual reveal his technical
parametersdirectly, It 18 not in general monotonic,either in the
ad Justing coefficients or expected utility. It is convergent to
the optimal decision rules although the rate of sonvergence is
a decreasing function of T , To see how we derive thia properties,
let ue write the adjustment equations as a system of first order,

linear differential equations with constant coeffiolents:

wo ()= -(2 20 ()

e (3= (- ()

The solutions of these two independent sets cof equations both
depend on the elgenvalues of the N+1xN+l matrix

- -[®P
(12z0) B = (-b Q)

Since B 15 not a positive matrix, it can have imaginary roots
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and the solution may overshoot the Bingularity. However, if Q is
positive definite then B is negative definite if and only if
(B{<O. The determinate of B san be shown to be equal to

-5'Q9%*b {@| and hence B 1s negative definite., If B 18 negative
definite then the real parts of i1ts eigenvalues of B are negative
end the solutions of (116) and (117) will converge, Simple calcu-
lation will show that (9)=“Bh' ("j) and (i)“ R (?:) satisfy

the Kuhn-Tucker person-by-person optimality conditions,

6, Prioce Guided Planning by a Quota Team A N-member team faces

an inflexible joint constraint on actions &'A<C and has decided
to introduce a system of quotas so that the constraint is satis-
fled with certainty. The team wants to seleot a vector of decision
functions d(ﬂ=(d|(g.\,.,ol~(|3,)]'and e Quota vector 4 = (Q1,..,ay)"’
to solve the following problem,
(121) Maximize W = E $U(R(Y),8)}%
subject to

() £ ¢ for each Y €™

b b4 =e¢
It 18 assumed that the Joint oconstraint is dbinding so the inequal-
1ty hae been replaced by an equality in b'g€e¢.I¥ AN =0y, 2w (40} Y
aTe multiplier funetions corresponding to £(Y)&¢ and ¥ 1s a scalar
multiplier corresponding to b‘g =d, a Lagrangian expression is
defined by
(122) L[, g, A, ¥] = € §ulatv),0)3 +ELA (V) (g~4())F+ ¥ (e -b'p).

If U 1a differentiable and striotly oocncave, the follewing Kuhn.-
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Tucker person-by-person rules are necessary and sufficient for

A AA
optimality of %, {,h, ¥ 4 For 1 =1,,,,N

gL

(123) {2 = EfUa,(R(N),0)19;3 -R,(q)=0 Foreach yie:

(124) 2 = E{%,(4)3 - ¥ b,

ag,
(125) ;;_; = 2& -'& (4> o0 ’ /?\\i(u_;i)_-\_o for each y4; € 4:];
(126) (?i"/\ (9 ))/7\‘ (93—0 for each y; e’\d;
{(127) < - b'z -0

These conditions are interpretable if we think of A; (4;) as the
shadow price of the 1M action and ¥ as the shadow price of the
regource, both in utility units, The team must set posterior
expected marginal utilities equal to the shadow price of the
action, set expected shadow prices of actions egual to the margi-
nal ocost of the rescurce, seleot actiens that satisfy the gquota,
set gshadow prices equal to zero Af the quota is not binding and
select quotas that completely use up the resouroce endowment,

If the solution of these conditions 18 either diffiocult
because of the complexity of the utility funotion and probability
densities or impossible because the technological knowledge is
decentralized within the team, an iterative exchange of knowledge
rust be used to find optimal decision rules and quotas, We will
again study a modified form of the price guided gradient proce-
dure developed by Arrow and Hurwioz,

Suppose at iteration T the decision rules are o(5 (Y4;), the
quotas are g?‘, the shadow prioce cof aotions h?(ﬂ;)and the shadow
price of the resource 18 ¥°, Sinoce these functions and values

typrioally will not be optimal, they
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should be adjusted to get oloser to the optimal, The gradient
method of hill olimbing suggestsa step should be taken to get
closer to the saddle point by following the direotion of steepsst
agscent, This translate into the following adjustment equations
for 1 =1,2,..,N:
(128) d_q_;{_%‘-)_ = Eg_b{qi(dt(‘i),e)l‘j',-f— 2, (4;)  Forall y; ey
(129) 280 = EAT(4)3 -¥T b
(130) 0 V¢ )\}"(q-')-:o and o(it((j;) 4 g'r“
ANT(43) - { .
T o (y:) - 3;": ethevuse

(131) 4L -yt

How do these equations mirror real world actions and infor-
mational exochanges? The planner is responsible for the quotas and
all shadow prices; the teammate 1s responsible only for his deci-
slon function. The planner informs sach teammats what price he
must pay for a descision funetion, h.ar’ ('j;) , and the current deoci-
sion rules of the other teammates (remember utility is non-addi-
tive). The teammate 1 knowing other members tentative decision
funotiona try to maximize his expected net utility, paying for
his actions at the given rate ?\"-c(u_\-.) by adjusting his tentative
decision function by the expected posterior marginal net utility
Eiu...lsa} ~A7 (4;). The teammate reports his new decision funo-
tion back to the planner, who now must make three kinds of adjuste
ment, First, the planner adjusts the s&mount of resource assigned
to teammate 1, b; Z'.t by ad justing :;" acoording to the expeotsd
net utility of per umit action as, E% »(4;)3 - ¥ b, Second, the
planner adjuststhe shadow price of the ith decislon funetion by
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its exceas demand on the quota, «(;(4;)-§;. Third, the planner
ad justs the shadow price of resource according to the excess
demand made on 1t by the quota system,b‘g-cu The modified shadow
rrices and decision rules are redistributed to the teammates
and the prooess begins anew,

Stability of the procedure again depends on the concavity
of the utility function, We have previously mentioned that if
the ranges of information variables are not discrete and finite,
the differential equation system must be treated in more abstract
spaces then Euclidian m-space and not all finite dimensional
result carry over, As a result we will state a convergence
theorem only with discrete, finite J;.

Suppose the random veriables can take on only a finite num-
ber of values:
(132) ©®=16,,..,0¢3%
(133) Y= 840, 40 3.
Since each teammate must seleot only r; values for his action,
each one dcorresponding to an element of?ﬁ,let us denote the deci-
sion function by the ry-vector
(134) (i, Qi) = (&1 (Y50), .., % (950)).
Similarly the shadow price funotion can be written a&s ry-vector
(135)  (Nigy .o Nir ) = (0 i), -, 2 aie))).
If at iteration T there are approximate solutions qieift),gi(t),
Nig; (T), ¥(T) for i=1,..,N, e3=1,..,7y, the gradient process is
defined by the following finite syatem of first order non-linear
differential equations
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Yo ¥y

(136) 2% (D) ““'“ D=5 Y Y Ug (G, V)., Be O, Ge.,)
eysi

€g=1 =y
'F(eealj|&|7 (' ,HN‘Z“‘B|@ ) Ale (t) .--,”, ei'—",..‘,\f'-
(137) —'i—i_ = z Nie, (-t)¢ L‘ile ) - K(t‘) b; (=L, N

(138) AAD) {o i€ Aie (D=0 and a;. (X) ¢ g )

dc ‘e {t) z.tlh otherwuise
(139) A_\L(l‘ = b’ g(0) ~e.

The following stabllity theorem can bte made for the quota team

l"-‘! N Qs

N l

problem with discrete, finite random varjables,

Theorem: If U(a,,..a,,6) i3 twice differentiable and striectly
concave in &1,..,85 for all © and 01. - g.,h,e s % for
1i=1,2,,..,N 3 €y=1,2,,.,vy 18 a saddle point for the above
problem then
(a) the solution a]e.‘sfn?\;e.‘w ¥ 18 unique
(b) for any initial values the solution of (136) - (139)

exists and 18 unique,and
(¢) the saddle point is globally asymptoticly stable,

Proof: The proof follows the previous stability theorem in almoet
all respects, so details will not be presented,

As an example suppose & firm produces two goods a; and ap.

The goods are produced by two departments specializing in the

corresponding good and are sold later in the week, The price of

goods are fixed at 4, and A, but there 1s uncertainty about the
general economy, If a depressalion occurs before the goods are 8olAd,
the markets disintegrate and no goods can be sold (prices don't
ad just dommward). If the economy remains healthy, the firm can

sell all its output at the given prices, the state of economy ia



181

represented by 9¢19,,6,3=10,1{, The first department gets an economic

foresasts y, ¢ 34,,4..{ where Yey 18 a prediotion of “bust” and

Y.. 18 a predlotion of "boom”, Iimllarly the second gets a

different economic forecast 4,€ $%,.,4:...The two forecast have &

Joint conditional probability

(150) P (Yie) Dem 18) = TR, R=t2; m=4,2; =12

or 6, S.

(as1) d8Ie) = TT= [awped: [T T
['ﬂu 1+ Y n] . TT,',_ Tr,:'_
[ae,92]: | e T
L4 Yeal: L-Tf.lL (L

The team's subjective prior distribution of © 18 (G )=py , b=\, 2
or written along the dlagonal of a matrlix
(142) $(6) = P = (E‘ ;’1)'.
The joint probebility of ¥1,y2,O is therefore H(4,0) =TI P

The team produces goods (a;,a,) at a total cost .f
(143) C(4,,2.) =% ¢,a2+c,a,9,+4 ¢,,a2,
The firm faces a constraint on machinery
(144) ba tb,a, < C,
and i1s foroed to introduce a quota systenm
(145) q, <« Z, and Qa; & £,
in ordsr to guarantee the machinery constraint is not violated.
The department's decision funoction 18 & veotor of actions corre-
sponding to the disorete information values

(a2, ) = («, (9.}, dn(‘dn.” and (Qq, )= (“(2(‘51:),"‘:(‘51;)).
The teams problem is to select a11,812,821,.822 and (g3,q2) to
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maximize expected profits

(146) o= }: z (leql_ﬂ e.ﬁ —{-/b(-,_ m BJt ctl q|:- "Cllqlnqzm —‘lt'-*c'lzqn:n)wg& P

£- |z_!-l L

subjeot to A £ 9, 4=4,2 § Qe £ 9, , Mm=1,2

and bug, + bzg_& =c

Suppose teammate i knows only the teohniocal coeffteients o413,012,
bl and prices;.A price guided solution procedure 1s introduced
with a resouroe planner responsgible for generating shadow prices
for the decisions, Ay,XayN2; A2z, and for the machinery,¥X. A
iterative solution to the oconstrained-quota profit mazimizing
team problem is made, which 18 defined by the differential

equations(z)

(147) d a‘I&L___t') = 33—:1‘1 — A(‘_ (t)¢|(3|js =2

(148) thu_ T) - Ba;"-:n - ;\ZM(T-) cbg_((jsz m=\,2

(149) —fﬂ = 2 (D) bty X2 (D) bi(yiz) — ¥, =2
(150) € Me(e)=0 and age(T) "“Z‘(t)

dh,g(t { 224,72
a,, () - a(-r,) otherwise

(151) (o) i€ A-,_,.‘('t)=b and qzm(."—)“?nr_(t)
.‘ll!ﬂ-—-(ﬂ={ M=\, 2

dt
Azm(t) =g, (T) eatherwise
(z
(152) 4F2 = b, 40(0) + b gul) -c.
The exchange of information is analogous to the more general

formlation given above,

d. Decomposition Planning by & Team A traditionel team assump-
tion is that the utility function cannot be additively decomposed

inte functions that depend only on single member astions; i.e.

T

u(n 0) cannot be expressed as Z U’ (4.,9'] or identiocally, ‘3aq "_‘34 -il-' o,
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for all i, i¥i. The reason this non-separability assumption appears

s that the team problem oould otherwise be polychotimized into N

unrelated decision problems, one for eaoch of the team members,.

This polychotomy Gannot ocour in the Jjointly constrained team

problem even if utilities are additive; the jJoint constraint

requires coordination of decisions no matter what form the utility

funotion tekes, In the following we will explicitly assume that

utility 18 additive and study only the interrelationships of aoctions

through & Joint oconstraint. In addition we will meke the assumption

that the "planner” knows all components of utility funotion U'(a;,6).
The team faces a joint constraint on actions, which we will

write as

(153)  3.(a) + -+ Ju(ay) <.

The "planner” knows these functions ﬂibh\ as well as the resource

endowment ¢, The feam handles this inflexible joint constraint by

introducing quotas on the use of the scarce resource; that is a

vector §=(2'.,--,f,,) is selected so that

(154) ‘,'f' fi ¢

and the additional constraints

(155) 9;(q:) < f.

are added to the original problem., If this was the final speoifi-

cation of the team's problem, planning would not be required

becanuse the planner has all necessary teochnologlcal information

needed to Solve the problem. He would merely have to distribute

the optimal decision funotions to the team members, But this will

not generally be the final form of the oconstrained team problemj
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single-agent constraints have not be speoified. The 1th teammate

must select his action from a set of feasible individual actlons

which will be denoted by the vector of inequalities

(156) h,(a;) = (hj, (a:),.-., hiti(ql\)\r £ d; = (dil:'--)‘ift;y‘

The planner does not know the functions hy(a,;) and therefore ocan-
not solve the problem initially.

The final element of the theory problem i8 the probabllity
distributions, We will assume that the state of nature can take
only one of Yo values: @‘-'59”---,8.-93. The information variable
of the 1%h teammate can also take on only one of ry values, ;=
iﬂn,m,ﬂh}i. Because of the separable utility functions, the only
probabilities neededare &;(4il6)and $(6), The 1th teammate knows
both the conditional density of yy; given O and the density of €,
but not the conditional densities of other teammates, The planner
knows all the probability funotions.

In summary, the team's problem is to seleot the individual
decision vectors (4,11 Qr) =(=; (41, 4i(y:e))and quotas §==(£]r")fﬁ)
to maximiza expeoted utility subject the quota constraints on
aotions, the oconstraint on the jointly used resouroce and single-

agent constraints,

"\

(157) max W= 2 g u'(n.e“eee) ‘b'('ﬂ:e,‘eee) $(6, )+

e-=t Ee-.-.\

3T U (Qye,r Oey) DulUnenl Be, ) $(Oe,)

Enit Egu
3i(qie,] & ?; V=0,2,..,N; @ =12, W

§:+u.n+?; £e

hi (qle-',) & dl i="zr‘) N') Q‘= "7'"" rl‘

The technological knowledge of each agent is as followa: the plan~

subject to
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ner knows the funotioms Ul,., uN, &, ..., 4y, B1s+¢s8 8Nd the
endowment ¢; the 1'P teammate knows the functions U, ¢51¢751'h1
and his endowment dy, Conversely, the technologloal ignorance of
each agent is as follows: the planner does not know any of the
funotions hy,..,hy nor the individual endowments d43 the 1 th

teammate does not know the UJ, ; g3:hy,d, for J{i nor the joint

endowment o, J
The solution procedure whioch will now be developed 18 based
on an algorithm whioh 18 called "vertiocal decomposltion?(B) The
Dantzig-Wolfe price guided linear decomposition was extended to
non=linear cbjeotives and constraints by Malinvaud, Weitzman
developed the quantity target guided "dual” decomposition proce-
dure, The vertioal decomposition algerithm is most olosely rela~
ted to Weltzman's work becsuse the planner’s “lndioes“ are
quantitative and the individual agent's "proposals” are shadow
rrices., The vertical decomposition procedure will be specified
in detall in its general form and then the team's partiocular
problem will be analyzed in the framework just construoted,
Suppose there is an organization with two units, the
"planner® and the "periphery”. The planner controls a variable'
¥ (not to be confused with 1ts previous use)., The organigations

problem 138 to seleot x and y to
(I) waximije Ulx) +V(4)
subjeet to (K + hi(y) s d

X,4 2o,

The planner knowe U,z and 4 but net Vv and h, whioh are known only
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to the periphery. If the planner knew
(11) Y(R) = max VIY)} sT. h(4)< 2, ya2o0
then he could solve the equivalent problem
(III) max Wx) + Y (?)
ST 90 +2 « 4
X20.

Theorem: if (X,$) molves problem (III) and J solves (II) for 2= 2

then L'i.q solves (I).
Prooft (¥,7) 1s feasible for (I) by construstion. The Kuhn-Tucker

conditions for (III) are
(158) WA Ul(X) = Ve q(R) '
(159) V¥ (2) =
where 'ﬁ' 18 the shadow price, The Kuhn-Tucker conditions for (TII)
are
(160) Vﬂv({h = Vyh(§)' P
where P 18 the shadow price . But by definition of W(?), P - V, V(%).
Henoe $=1T by (159), The conditions (158) and (160) are thus
written as
(161) T W(R) = sz(i)"ﬁ‘
(162) W,v(d) = Wy h(§)'T
But these are exactly the Kuhn-Tucker conditions for problem (1),
So (X,9) solves problem (I) with shadow price T . Q.E,D.

The planner does not know the funotion ¥(2) 80 he cannot
direotly solve problem (III) and then allow the periphery to
maximize ita utility subject to the quota 3 The vertisal decom-
position procedure builds an approximation to the funotion W(%)
8o that the planmner never has to know the funsations V(y),h(y).



187

Suppose the planner has at stage 8 an approximation of
W(2), denoted Ws(2), with the property that Vs(2) = V(%)
for all Z, The planner solves the psuedo-master problem
(163) max WU(x) + Ye(2)

s.T. g+ 2 £d,  Xx20
Let us denote the optimal values at stege s by {(xf,z%), The
planner tells the periphery that he must not use more than z8

units of the resource, so the periphery solves

(164) wmax V(y)
5T hiy)e 2% + T3

420
with optimal value y° and shadow priceT > At what stage 18 the
approximation acocurate enough to generate optimal actions?
Theorem: If V(45)=9¢,(29)then (X5, 4°) 18 optimal for the original
problem,
Proof: V{ ‘3") -‘-‘l’(?") by definition of ¥ (). The approximation is
everywhere greater than or equal to 'V (¥). Suppose that (x52%)is
" not optimal, that 18 U(x)+¥(2)>ulS)+¥(Ffor some(x,2)such that

%(K)’*% < 4. put then U(X1+ Py(2)2 U+ Y(E@) >u(xs) +1(J(2'5) = L&(K’)*‘WS(E‘)

which contradiots definition of optimal (X* 25) for the
psuedo-master problem, Q.E.D,
It the ap'proximation does not provide an accurate enough ploture
of Y(?),how 18¥s(2) modified by the plswner? The periphery
raeturns the shadow price TS and tte optimal value of utility
V(45) =W (2%).The planner uses this information to sherpen its

approximation by creating a new 4’3-!-1(2) defined by
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(165) Weut\RY = min L Ws(2), W52 + Y(23) ~Trs2%].
We will state without proof that if V(y) is concave and hi(y) is
convex then Y(¥)1s a ooncave function. The term T *2 +¢(23)-wr>=%
18 then a supporting hyperplane through the point (¥(2%),2%) will
the new approximation still be everywhere greater or equal to
V(=)
Theorems W(2) £ ¥, (%) for all 2.
Proof: By concavity of WI(%)
(166) W(R)-Y(2®) ¢ v, ¥(¥")(2-=2%)
The definition of W° as the shadow price of #° implies
(167) W(ZF) £ T2 +Y(IF) - T %25
Since by assumption W(2)ey, (), ¥(2) 18 less than or equal to both
terms in the definition of Y4 (2) and hence 18 less than or
equal to the minimum of the two., Q,E,D.
We now have a solution algorithm that tells us how the
rlanner generates new approximations, We have not specified how
the planner and periphery solve their constrained concave maxi-
mization problems at each stage, but we can imagine that they
use some procedure such as "steepeat ascent”,
This vertical decomposition algorithm would not be very
useful if it did not converge to the optimal results ';(,Q. 2 and T
Theorem: As S gets very large, Z° approaohess snd X° approaohea'ﬁ
if U and V are strictly conecave functions while g and h are
strietly convex functions.

Proof: The sequence SK% 27§ must have a 1imit point since it is
bounded, Suppose that a l1imit point is (X,2), Then Lim 1’,(’6)=t_ll(z),

q -5 oo
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the 1imiting form of the approximation, must satisfy ¥ (%) =¥ (T),

and let us denote VW(?) by . Assume that (X, 3) 18 different
from (},2). The definition of (X%, 2%) as the solution of the

psuedo-master problem implies
(168) U(x) + P(R) +TW(d-9(0-2) 2 UtV (R) +T(d-3(X) -3F)

R N _y Forall
£ WX+ Y(EF) +T(d~9 (%) -2) ¥, e,q"flr

The definition of (i,%) ag solution of the master problem implies
(169) u(x) + Y@+ T(d-30)-2) 2 d(?) +¥@) ¢ T(d-q(R)-2)
£ UR)+YR) 4T (4-9(R) - 2).

Since ¥5(?) 2W(3) 1t follows that Y(2) = ¢(2) 8o
(170) WO+ (R) +T(4-9(K-2) £ ULY) + ¥ () + T (4~ 5(x) -2).
Because the rirst inequality of (168) must hold for all ¥,%, T,
1t must hold for X,2,T. Combining with (170) we have
(171) UR)+ ¥R + T(A-4(})-2) ¢ WD +Y(D4T(4 -9(F) - Z)
but H-3(R)-220, W20 ana W (d~3R)-F)= O, whioh implies
(172) U(R) +¥(2) & WR) +¥(F)
Using the first inequallty of (169) in a symmetrioc manner with
(x,2,M=(X,2,T) , we oan show that
(173) W () + @ (F) 2 u(R) +¢ ()
which implies
(176) u X+ ¢¥3E) = u(R) +v ().
That is, (X, E) and (2,3) are e¢n the same indifference curve,

The second inequalities of (168) and (169) imply by first
setting W=7 then =T :
(175) o= W(d~9(®)-%F) & T(4-4(X)-2)
(176) 0= T(d-9(R)-2) & &F(d-9(R)-2),
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But since (¥, %) and (X, 3\ are on the same 1ndifference curve,
the first inequalities of (168) and (169) imply
(177) T (d-3@R)-) & T(4-9(¥)-3) = o

(178) T (d-9(¥)-3) ¢ & (4-9(R)-%) = o.
Therefore

(179) T(d-9@)-2) = T (d-9() - =0

(180) T (d~3(V-F)} = F(4-9(¥)-3) = o,

The conclusion is that W=7, or the slope of the indifference
curve at (X, %) equals the slope at (¥, ) . But since U and ¥
are strictly cocave, this implies (X,2)=(R 2) contradicting the
assumption, Q.E,D.

It should be pointed out that if v(y) and h(y) are linear (so
that ¥(2) 18 piecewise linear) then convergence will gocur in a
finite number of steps, Each step introduces a new "flat"” section
of $(2) and the number of flat sectlons is bounded.

The above vertical decomposition problem is the gimpliest
vergion, Certainly there is no diffioculty in adding more
"peripheries” so that the objective 18 to maximize W(X)+ i‘V"("}i)-
Equally clearly, there could be single-agent constraeints in addi-
tion to the joint constraint, If the problem 18 to maximize

(181) G (y) + ‘:‘ vi(y;)

s T. §IK) + hi(y,) e w; =, N
£ (9;) 2 b; =, N
£(x) b

KyBip-)Yn 2 0,

The planner then approximates m funotions defined as
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(182) W; ()= max Vily;) st hi(4;) €25, €540 £ by, . 20

by collecting supporting hyperplanes tangent to this surface,
In this more general formulation of the vertical decompo-

Bition problem we see the analogue of the gquota team problem

(157). The variable x corresponds to the quotas_f. the variable

¥y corresponds to the decision vector (311"'v31r1)" the endow-

ments wy; are zero in the team problem, while by playe the role

of dy and b plays the role of c. In the team problem U(X)= O,

Vity) = E3UN(%,0)3, 30 ==7;, hily;) = 4; (aie,)

'Fi("ii) = l‘\i(‘l.‘e.i) and () = ?; +--t fm-

The team's planner does not know the functions

(189) Vi(F)= max 3 5 Ui(ase,, 80,) Dldiey| G, ) b(8e,)

e‘i:] %z‘

subject to hi(qie;) <d, Ri=,7,.., ¥

Jie ) 8 &=z, v,

If he did, he could select E’ to maximize

N ~
(ass) ¥ W (§;)

izt N ~
subject fo Z' +-- + ?n & C
and then impose the optimal quotas on the teammates, who would
then select their own optimal decision vectors. If the planner
at stage T has an approximation of Y, (f:) such that \P;T'(f".)a ‘-F,- (fi‘)

for all f-. then he seleocts tentative quotas to maximize

(185) E‘ W;'I(i';)

subject to i'.'f-“‘i‘?n 2 G
These optimal quotas ff.—.(‘i::,__;i;)are gent to members, who maximize
expected utility subject to all its constraints plue the quota.

The member returns the maximum expected utility that it could
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obtain given if (= ‘V;(f;‘) )and the expected shadow price of the
quota, T, If W (FF)=W¥"(JF) for all 1, then the planning
problem 18 solved, Otherwise the approximation 18 improved:
(186) Wi (T:) = min LW (T), =g+ Wi (3%) -WTF §+ ]
The procedure will converge if utilities are strictly convex
funotions, and in a finite number of steps in the linear oase.

This seotion began with an arguement that non-separable
utility is not important when the team faces joint constraints.
Therefore the decomposition &lgorithm was stated with additively
separable utility, This seotion ends with the note that separable
utility i1s not absolutely necessa 'y for a well behaved algorithm.
Decomposition prooedures of the price guided type exist for non-
additive utility functions of the form
(187) U(ay,.., qu,8)= X u'(a;,0)+ E E iifa, 0, 6). ")
In these price guided decomposition algorithms the planner must
not supply & price at each stage for the jointly constrained
resources but also a tentative decision on ay,..,ay. The individual
agents need to know approximately what actiong the other members
may take in order to coordinats their own actions to maximize
u;(q;,e)+j‘?u;5(qi,qj'9) in the subsdiary problems. In the vertical
decomposition algorithm, in addition to imposing tentative quotas,
the planner would need to announce tentative decisions 8o that
peripheries ocould coordinate their proposals, The planner would
then approximate the functions V;(ii,q‘,..(il..,qau) defined by
(188) w; (7, a,..1i).., ) = max Efui(a;,e6) +Z u'ifa; a;,e)3

subjeot to h;(q;) £ 4;

gila;) £ Z.
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By looking at supporting hyperplaces tangent to its surface,

e, Quantity Gulded Gradient Planning by & Quota Team In the
price guided gradient procedure, the planner announced the tenta-
tive price of the resource, In a team problem the "prioce” was a
price funation, A" (4;) , which told the ith tesnmate how mueh
he would have to pay for his action if he ocbeerved information yj.
The member modified his current decision function proportional to
the difference between his poaterior expeoted marginal payoff
given y; and the marginal ocost, h?z(ﬁ{). and returned this propo-
sed decision funotion to the planner, The price functions played
the role of guiding "indices” while the decision funotion were
the adjusting “"proposals® of the individual membera, Two modifi-
oations of this soheme will be made in this subsection,

First, the planner will guide the searech for optimal deoi-
sion rules by telling the individuals how much of the resource
they will be allowesd to use, The teammates will then try to make
the bosat use of their information without using more than their
allotment of the rescurae, The teammates answer the plamner's
Quota allocation with the prioce at whioh they would have purchased
that quantity of the resource, Roles have been switohed, The plan-
ner's indices are now quantity quotas and the teammates proposals
are shadow prioces,

Second, the teammate does not merely make & small adjust-
ment in the direotion of steepest ascent, He imredistely selects

optimal decision rules in a quantum jump, In effeot shadow prices
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have an infinite spesad of adjustment. A similar kind of &ssumption,
could be made for the teammate's behavior in the price gulded gra-
dient; gliven the shadow price of resources, ths teammats would
then select actions to equalize the posterior expeoted marginal
utility and the shedow prioce, rather than just decrease their
difference, It has been made olear by Arrow and Hurwioz(5) that
instaneous adjustment can lead to undefined solutions (in fact,

1t usually will in a purely linear ocase), However, if the initial
position 18 close enough %Yo the equilibrium this difficulty will
not be important,

The team wants to select a vector of declision funotlons
L(11=(%(4,),..., % (4n))' and a quota vestor q = (q1,.0,ay)* to
solve the following problem
(189) max W = ETu(«(y),8)3

subject to «(Y) £z for each ‘(6'5
blg =¢
r »{(¥) =(A.('j.),..JJ\,..('3u)) are multiplier functions corresponding
to o((‘l)ég and § 18 a soalar multiplier corresponding to b'g=¢,
the Kuhn-Tuoker person-by-person rules for optimal &,?,R'S’ are
(190) 0= E3U4 (X(Y),014;3 - A;ly;)  Foreach y; €Y;
(191) o= EfR;(4;)3- § b;
(192) o =« ?i -‘:(i (3;)5 Si(tj-,)_eo for @ach 4 ¢ Y,
(193) o = R;j(4:) (§, -~ (y;)) for @ach y;eY;
(19%) o = ¢ - b2,

Suppose at iteration T the decision rules are . (4;), the
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quotas are 7"'- and the shadow price of the resouroce is ft. The

quantity gulded gradient procedure is defined by the following

information flows and correotive actions,

(a) The planner announces the tentative decision functions for
each teammate, [ (4;) and informe the teammate of hims quota,
g

(b) The 1*h teammate takes the decision funotions of the other
teammates as fixed but igrnores the tentative deolsion func-
tionaT(4) . Instead the tesmmate selects a new decision
funotion O(?hh('j-.) to maximize the team's expected utility
glven the other deolsion funotions «;“(4)subjest to the
quota, That i8 he seleots ot?dtto

(195) max E% U (&F(W,),, AT (Y,), aF(yn), 6)3F

subject o uk'f“'t(tj;) Sgi for each 4, & Y,

(6) In solving his constrained maximization problem, the ith
teammate must compute & shadow price function 7\?41(‘1;)
corresponding to the quota constraint, The il teammate's
proposal to the planner 18 the expected increase in team
utility if an extra unit of the reaource vasg given to the
gth teammate,

(196) €% Xf“‘t (4,) 3 /b= Pt'.“tand his decision function o«F*%(4/)

(d) The planner uses the shadow prices of the individual quotas
to adjust the allocation of resources scoording to

x o
(97 b S~ (e E peyc), (6

(e) The planner announces the new deoision funetions d?’“ and

Td T
i

new quotas b, g and the proocedure returns to (b) and

repeats,
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The quota guided gradient proocedure can be expressed ag the
following set of Kuhn-Tuoker person-by~person conditions for
<} (4;) and system of differential equations
(198) O = EfUq, («¥({),0)(y;3 - AF(y;)
(199) o4 gF —=;7(y)
(200) 0 & AF(Y)
ATl) (gF-270Y))
(202) b;%xg= ( Ef’ff“‘” -5 f E“g'(m)i).

' =

(201) o

d
The adjustment of the quotas can be interpreted as shifting
resources toward those teammates whose expeated inorease in team
utility per unit resource is above the average. An interesting
point to note 1s that

(203) fli (b gx +--+ by ¢ay= % b, AT

- ’ A'C

-7 E1arw)} ~Ly ¥ EL hs:(mﬁ
i b'l i i .I

= 0,

If the original allooation of the resources was reaslble,b'z°=¢1
then the quotas will remain feasible, The decision funections
are oontinuous ad justed to optimizZe given the ourrent quota
system, The procedure 1s also oconvergent to the optimal guotas
and decision rules in the case of disorete, finite range of

random veriables

Theorem: The solution algorithm converges to the optimal deoision
functions < (\)and optimal quotas i when the random variables
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have discrete, finite ranges.,

Proof+ Define the Lagrangian for the original problem by

(204) L= ,??Z—J\ (__,??M(q.e, ,Oney, Be,) P(Uie,,..., Yue, Be,) +
N ¥,
iz'-;l ei 7‘39; (B|quet\¢(‘j|‘el) + X (C" blg)

Define a Lyapunov function as the difference beiween L(Q,f\, f, f)
and L(2F gt AT ¥Y) and notice that L[«5% {5 A%, &™) is a

non-deoreasing function of T

(205) G5 = T (E28Ua, 1916, -2 8 )b (i) 250 +

DALY AR )4> (i) Lhiei + % (T M5, $:(4ie,) -b) 485
+ (c b z")
But C-b'g% =0 at all stages T
(206) E?‘lq-(ﬁ;e.}w\f,ﬁo at all stages T
(207) (g™ -%e, )M 0at all stages T
Hence
208) 4L = T (T AT dildie)-b;) 48
= ¢332\ % = 2
=T EUE) & (7 E45) =o coratt =

Hence the Lyapunov 18 non inoreasing, Q,E,D.

Without attempting to enter the ideologiocal dialogue as %o
whether prices or quantities ahould be the suiding force in an
sconomic organization or system, 1t should be pointed out that in
practioe of quantity targets are much more prevelant than shadow
prices in plamning proocsdures. The planners typically allocate
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resources tentatively then seek information as to what direction
the allocation should be shifted to improve the organizations
payoff,

f. Appendix: Convergence of Gradjent Methods in Abstract Spacea(7)

The team problem in 1ts general form requires the sgelection of
functions to maximize a funotional, and therefore a gradient
solution procedure generally defines a continuum of differential
equations, The analysis of the convergence of a gradient algorithm
must be based not on the theory of finite dimensional differential
equationg but on the theory of differential equations 1n abstract
spaces, This appendix doe8 not pretended tc euclidiate concrete
results; rather it shall state some conjectures on this toplo.

Because the team problem 18 a variational problem, gra-
dient convergence will be discussed in terms of related problems
of optimal control and the calculus of variations. Suppose the
following optimal control problem i8 to be solved
(209) max JTIT(xu,t)dt

sT. x=F(y,u,t)

x(o), Y(T) given,
A gradient solution procedure for this problem 18 defined by
U(t; T _
(210) 2357 = Hu (X (), U (kT),P(;7))  octeT

wherei4q 18 the partial derivative with reapect to U of the
(]

Hami1tonian H=T(x 4 +PL(tut), The multiplier function P and

state function X will optimally satisfy

(211) K = -g—"-; = f(¥,u,+)
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(212) #=-38 =-T,-p€x

The team problem is formulated more like the calculus of varia-
tions' problem

(213) max S0 T(x, X, ) d+ ), X(T) Gwen.

How would the gradient solution of this problem relate to the
above formulation for optimal control? Noticing that in this
oasge k::F(KJﬁ+’= U , we can see that

(218) 34 = T (% k,4) + Pt)

Integrating P(¢) = ~-Ly~-Pfu = ~Tyx backwarde we have

(215) Bi(t,t) - IX + S‘Z—I‘( d ¢

2T
T —
S.{. (Ixﬁfé__l-i) A+

]

or

(216) 3—%‘—.*(._‘3 = Ix(xu;t),i(i-,-t),t-)—-a";Ig(x((-;ﬂ,iG,-ﬂ,t),
Thus the gradient solution of the caloulusg of variations defines
a differential equation on some space of funotions %(t), What
problems do we have if, as in the above case, this space 18
infinite dimensional (such as a general Banach space over the
real numbers)? Unfortunately many of the strong results of
finite dimensional system of differential equations do not carry
over to Banaoh spaces of infinite-dimensions, For example,
Peano's theorem in n-dimensional Euclidean space,"If X = €(x,t)
then continuity of € in the neighborhood of (¥o,ts) implies the
existence of a local solution,” oannot be genaralized to %the
infinite-dimaensionsal oase.(B) The underlying difficulty in this
example 18 that the infinite-dimensional closad unit ball is not

necessarily compact.
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This last fact haeg dlisturbing impliosations beocause the stabi-
1ity theorem underlying Lyapunov's Second Method requires the mini-
mization of the Lyapunov funotion over a closed ball around the
singularity.(g) If the ball is compaoct then a minimum must exist
by the Welerstrass theorem. However, Lakshmikentham has shown that
"many problems conocerning the behavior or solutions of ordinary
differential system ocan be made to depend on scalar differential
equationa".(lo) The following extension of Lyapunov'’s method to
infinite dimensional Banach spaces i8 based on the dependence bet-
ween the infinite dimensional problem and a roalar problemn,

Let ueB , where B 13 Banach space over the field of real
numbers and t€JI=[t,,c0) , A Cauchy differential equation iB
(217) 44 = £(t,u) € = to

Ulte) =Uo
where f1 J x B> B,
Assumption 1:1VeC[RpxB R], a funotional, ana for (t,x,),(+ v )e R, +R
(218) (V&%) -V )| & L) X, ~xell
where L(1120 and 18 continuous,
Assumption 2: There exists a funotion 4¢ CIR R, Rlsuch that for
each (t;x)eR ¥R
(219) 9t V(e X)) 2 L&"_:,,“Pt (V(+th,x+h €& X)) - V£ X)).
Assumption 31 For each (+.‘r:)e R R, the maximal solution ¥(+te,vs)
of the sealar initial value problem: v = q(+,¢) and (o) =ve,
exists in the future,
Assumption 4: €(+,0)=0, 3 (+,0)=0, V(+,0)=0 t<Ry-

Assumption 51 There exists a functionb:R*R.such that b (r1>0
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and B(lIxll) < V(+,x) (£ x)«Ry*¥B
Theorem: Ifr=0 1a asymptotically atable for v =q(&,), ¥(ta)= Vo
thenu=01s asymptotiocally stable for U = f(t,u) ulte)=u, . (12)
The finite-dimensional analogue of the calculus of varia-
tions problem a? to select {(¥,..., ) to
(220) max T= T T(xe,Kariit)s  Xo, Kr given.
The gradient solution algorithm for this problem at stage T 18
defined by
(221) X _(7) = T4 (RdT), Xgyy (), &) 4 Ia(x, (D), KelT), £-1).
Theoremt If T(X+X,,+) 18 striotly concave in X¢ and Kiq
for all+ and there exists a unique optimum (X,,. X+ ) then
the gradient procedure for any initial vector (¥|UfL.U,XTH(O))
converges to the optimum,
Proofs Either D=3 {x(0)-XU" oxr D =I(R)-T (1)) 18 easily shown to
be a Lyapunov funotions,
The following conjecture 1s merely stated, Its truth seems likely
in view of the above two theorems, but has not be verified by the
author,
Conjeoture: If T(x,% 1) 18 strictly conocave in ¥,% for all + and
twlce difforentiable and if there exists a unique extremal
to the calounlus of variations problem then the gradient
solution for any imitial function x{t;s) converges to the
extremal satisfying Euler's equation.
Getting back to team theory, it is conjectured that striot
concavity of Mﬂ-,&\ in A for all ® is sufficient for convergence

of gradient solutions of the team's problem to the decision rules
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that satisfy person-by-person optimality conditions., Exploration

of this propcsition is ocurrently being carried out by the author.
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FOOTNOTES

Seotion 1

(1) Marschak and Radner (1972), page 60,

(2) To be more precise, the constraint must be satisflied almost

everywhere, i.,e,, except on a set of measure zero.

(3) See J.S. Jordan (1973), and M.J. Beckmann (1958), for the
theory and application of quotas in a team problems,

(#) ;.s. Jordan (1973).

(5) T. Groves and R. Radner (1972).

Section II

(1)
(2)
(3)
(&)
(5)
(6)

0. Lange (1936).

K. Arrow and L, Hurwiez (1960),
G. Dantzig and P. Wolfe (1960),
E. Malinvaud (1967).

M. Weitzman (1970).

G. M. Heal (1969).

Section III

(18) prrow and Hurwiocz (1960).
(1v) See the general formulation in the previous subsection on

"Deocision Making with Identical Information”,
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(2) This a system of first order linear differential equations

with constant coefficlients as can be seen by the following

calculations:
%3%,, = [P 6, (T + T ) tm, Pr o (T +T22) ] - €4 §,(910) @y (T)
=Cie (Mg, R+TE Ry Ay, (T) ~Ca (T P+ P) Qe (T)
'jaqh:” = D‘IP|6|(TRL.*‘W~:m) tM.P 6, (T + )] ~Cra %y (Yem ) A2em(T)
~ C2 (T, e, +T 2 Pz) a,(T) —Cra.('[rg‘ﬂp,'rvfml’-._) Q,,(T)
where &,(41,) = P, (Try,+T,'2) +P (e +T,)
amd b (Ym) = P (W +Thn) + Pe(Ti, v T3.).
(3) "Vertical decomposition” is the name M. Weltzman gave to a
solution algorithm for a particular linear programming problem
he used as an exercise in his course on Central Planning at
M.IWT, in 1975. I would like to thank Professor Weitzman for
his ¢1lp on the general formulation of the preblem,

(%) See A, Whinston (1966) or J.E. Hass (1972).

(5)
(6)

Arrow and Burwioz (1960), pp.50=51.

The ad justment of quotas in this manner 18 identical to the
gradient proocedure in G.M, Heal (1969),

(7) I would partiocularly like to thank H. Varian for disocussions
on this points. In addition, K. Arrow, Y.C. Ho and R. Solow
all provided comments on the topilec,

(8) See Ladas and Lakshmikantham (1972), pp.128-132 for counter-

examples,

(9)
(10)
(11)

Krieder, et, al, (1968), page 412,
Laockshmikantham (1964), page 392,
Ladas and Laokshmikantham (1972), pp.167-170.



205

REFERENCES

Arrow, K.J. and Hurwioz, L.,1960, "Decentralization and Compnta-
tion in Resouroce Allocation,” in R,W. Pfouts (ed.), Essays

in Eoonomics and Econometrics, Univ, of N, Carolina Press,
Chapel Hill,

Beockman, M,J.,1958, "Decision and Team Problems in Airline

Reservations,” Econometrica, pp.134-45,

Dantzig, G.B. and Wolfe, P.,1960, "Decomposition Prinoiples for
Linear Programs,” Operations Researgh, February.

Groves, T. and Radner, R,,1972, "Alloocation of Rosource in a Tesar
Journal of Eognomjo Thegry, June, pp.H415-441,

Hass, J.E.,1972, "Decomposition Processes and Their Use in Join%
Decision Making,” in M, Tuite, R. Chisholm, and M. Radnor (ede

Interorganjization Decision Making, Aldine, New York,
Heal, G.M.,1969, “"Planning Without Prices,” Reylew of Eognomioc

Studies, July.

Joxrdan, J,.3.,1973, “Information and Shadow Prices for the
Constrained Concave Team Problem,*” Discussion Paper No.57,
Center for Math., Studies in Econ, and Mng. Socienoce,
Northwestern Univ,

Kreider, D.L., Kuller, B.G. and Ostberg, D.R.,1968, Elementary
Differential Equatjions, Addison-Wesley, Reading, Mass.

ladas, G.E. and Lakshmikantham, V.,1972, Differoential Equations
in Abstract Spaces, Academic Press, New York,



206

REFERENCES

Lakshmikantham, V,,1964, "Funotional Differential System and
Extension of Lyapunov's Method,"” Jour. of Math, Anal, Applioc,
pp. 392-405,

Lange, 0.,1936, "On The Eoconomio Theory of Socialism,” Review of

Economie Studies, No.g 1 and 2,

Malinvaud, E.,1967, "Decentralized Procedures for Planning,” in

Malinvaud and M, Bacharach (eds.), Activity Analysis in the

Theory of Growth and Planning, Macmillan,

Marschak, J. and Radner, R.,1972, Econgmic Theory of Teams,
Yale Univ, Press, New Haven,

Weitzman, M,,1970, "Iterative Multilievel Planning with Production
Targets,” Eoonometrice, January, pp.50-64,

Whinston, A,,1966, “Theoretical and Computational Problems in
Organizational Decision-Making,” in J.R. Lawrence (ed,),
Operational Researgh and the Social Soilences, Tavistook

Public., New York,



207
BIOGRAPHICAL NOTE

James D, Hess was born February 9, 1949, in Ann Arbor, Michigan,
From Satellite High School in Satellite Beach, Florida, he
entered Princeton University in 1967. In 1971 he received,
simultaneously, 2 B.S.E. in Electrical Engineering and .n A.B.

in Eoonomics, He is married, with a three year old son, Clint,





