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ABSTRACT "

Team Decision Theory
by James D. Hess

Submitted to the Department of Economics on May 1975
In Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

This thesis explores four topios in the theory of teams:
multiperiod team theory, sequential acquisition of information
by a team, optimal iterative approximations of the team deoision
functions, and planning by constrained teams,

Essay One addresses the question,"How can the team best use
its historic information?" In Bayesian decision theory informa-
tion is accumulated when the decision maker updates his beliefs
about the state of nature by replacing the prior distributions
by the posterior distributions. The informational differences
within the team prevents the construction of a team posterior
distribution. To facilitate the accumulation of information
"ex post communications" are added to the information structure to
summarize current knowledge within the team, Optimality conditions
are derived for multiperiod teams with either static or changing
environments, and with either intertemporally separable or non-
separable utility functions.

Second, the team may gather information one piece at a time
and control the amount of information gathered. If each obser-
vation and resulting communication is costly, the team should
only acquire information that increases the net expected payoff.
Essay Two develops an optimal stopping rule for stopping the
sequential acoumulation of information where the evaluation of
previous information is based on the ex post communications.

Third, the optimality conditions of team decision theory are
complicated systems of integral equations. Essay Three explores
approximate solutions of the team's problem. Drawing from the
theory of gradient algorithms in optimal control, an iterative
solution procedure is developed for the quadratic-normal team.
When both information and computation are costly, optimal amounts
of information and accuracy can be defined.

Fourth, constraints on decisions are particularly confounding
in a theory that combines both informational differences and
decentralized authority. Modifications of the team problem to
incorporate joint constraints are catalogued in Essay Four. If
the organization has internal differences in technological
knowledge, differences that cannot be readily eliminated, then
iterative planning mechanisms must extract pertinent data from
the knowledgeable members. The properties of such decentralized
procedures are studied in this essay.

Thesis Supervisors Paul A.Samuleson
Titles Professor of Economics
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ABSTRACT

TEAM DECISION THEORY

by James D. Hess

The theory of team decision making developed by J. Marschak

and R. Radner can be viewed as an extension of Bayesian stat-

istical decision theory to an organization with many decision

makers. Both theories study the use of information in mathemat-

ioal optimization under uncertainty, but team theory by its

multiperson nature also features informational differences, com-

munication, interdependence and cooperation. This thesis explores

four topics in the theory of teams: Multiperiod team theory,

sequential acquisition of information by a team, optimal itera-

tive approximations of the team decision functions, and planning

by constrained teams.

Essay one addresses the question, "How can the team best use

its historic information?" In Bayesian decision theory informa-

tion- is accumulated when the decision maker updates his beliefs

about the state of nature by replacing the prior distributions

by the posterior distributions. The informational differences

within the team prevents the construction of a team posterior

distribution. To facilitate the accumulation of information "ex

post communications" are added to the information structure to

summarize current knowledge within the team. Optimality conditions

are derived for a multiperiod team with either static or changing

environments and with either intertemporally separable or non-

separable utility functions.
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Second, the team may gather information one piece at a time

and control the amount of information gathered. If each obser-

vation and resulting communication is costly, the team should

only acquire information that increases the net expected payoff.

Essay two develops an optimal rule for stopping the sequential

accumulation of information where the evaluation of previous

information is based on the ex post communications.

Third, the optimality conditions of team decision theory are

complicated systems of integral equations. Essay three explores

approximate solutions of the team's problem. Drawing from the

theory of gradient algorithms in optimal control, an iterative

solution procedure is developed for the quadratic-normal team.

When both information and computation are costly, optimal amounts

of information and accuracy can be defined.

Fourth, constraints on decisions are particularly confound-

ing in a theory that combines both informational differences and

decentralized authority. Modifications of the team problem to

incorporate joint constraints are catalogued in essay four. If

the organization has internal differences in technological

knowledge, differences that cannot be readily eliminated, then

iterative planning mechanisms must extract pertinent data from

the knowledgeable members. The properties of such decentralized

procedures are studied in this essay.
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ESSAY ONE

Multiperiod Team Deoision Theory



9

MULTIPERIOD TEAM DECISION THEORY

I. BAYESIAN STATISTICAL DECISION THEORY

AND TEAM DECISION THEORY

a. Introduction The theory of team decision making developed

by Jacob Marschak and Roy Radner (1)is closely related to

Bayesian statistical decision theory. Both theories study the

use of information in the maximization of expected utility,

where utility is a function of the actions of the decision

maker and the uncertain state of nature. Both theories specify

optimal decision functions, which map sample information into

actions. Team theory can be viewed as the extension of Bayesian

decision theory to an interrelated group of decision makers.

What role does team theory play in economics? Marschak

and Radner used it as the theoretical basis for the study of

the optimal use of information within the group. The group

most often sited is the "firm" and most examples are couched

in terms of the business firm. Statistical decision theory

is essentially a theory of one decision maker, the "statisti-

cian," while team theory studies the joint decision making of

several individuals acting as a unit.

What is a team? Analogous to the common usage of the term,

a team is a group of people who have identical tastes and

beliefs. tastes referring to utility functions and beliefs

referring to subjective probabilities of the random variables.

The fundamental assumption of team theory is that each Indiv-
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idual maximizes the same group expected utility function where

expected utility is a product of the utility function and the

probability estimates. Team theory is a polar case of a game

against nature, with the opposite pole being the zero-sum game

of complete conflict. By moving to the extreme assumption of

identical tastes and beliefs, the ambiguities of general non-

zero-sum games disappear.

Each teammate controls a personal action variable and re-

ceives a personal sample statistic that is correlated with the

unknown state of nature (hence providing information about the

state of nature). Communication is allowed between teammates

according to a prescribed rule or information structure. In

fact this is the focus of the applications of team theorys

how valuable is communication to the team? The team decision

problem is a group problem not a set of individual decision

problems because the interaction of the actions taken by

different teammates affects the team utility; coordination

is desirable because cross partial derivatives of utility

with respect to different aotions are non-zero. A Joint choice

of individual decision functions must be made. The teammate

may implement his action personally, but he is not allowed

to construct his own decision function ignoring the others.

The economic theory of information solves the team decision

problem for particular information structures (such as decen-

tralized, centralized, partitioning into committees, or

reporting only exceptional cases) and compare the correspond-

ing optimal payoffs.
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b. Statistioal Decision Theory Bayesian statistical deci-

sion theory is constructed from the following basic elements.(2)

e a random state of nature

A i action variable

u(A,e) s utility function

Y a observation from random sample

o((Y) a decision function

0 (e) a prior probability density function of e

t(Y(O) conditional prior p.d.f. of Y given (9

The information provided by Y comes through the density funo-

tionc1CdN0). In the following ,O's will denote prior proba-

bilities and f's will denote posterior probabilities. Dif-

ferent densities will be denoted merely by the name of the

random variable in the parenthesis. To facilitate the com-

parison of statistical decision theory and team decision

theory the action variable will be taken as an N-vector

A=(ai,a2e..,aN)'. Hence the decision function is vector

valued ac (Y)= (&(t ... , a(N)11 The statistician wants to

select a decision functiono( to maximize expected utility'

(1) WK[43 = E(A(Y),el =.S 0S. (dOQa) cbU(Ie)<b(e)4Ae.

Only first order conditions will be discussed here 3 prob-

lems of existance and uniqueness of global optimality are

ignored and it is always assumed that utility is differen-

tiable and concave.

The optimal decision functions ... ,@L must satisfy

the following first order conditions for given Ya

(2) D= i-iLA ( ,1) (4) 4(9) A 6 1l#,2,... ,N.
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Dividing by @(Y) , the prior probability of receiving the

observation Ye

(3) < () = SW4tO)4S(eh e

and moving (3) within the integral, we can rewrite (2) ass

(4) 0 4q. (k(Y),8) 4'(O 14) A O 1@,2, .. ,N

where

(5) f( Y) =M Me 4e /4y.

-f(eiY) is the posterior probability of E given the observed

value of Y. The first order conditions (4) can be interpreted

as followas select for each Y the actions so that the expected

marginal utility with respect to aI given the observed Y is zero.

For any particular Y the decision &(N) can be found without

computing the entire optimal decision function aJ- It can

simply be chosen as the value of A that optimizes against the

posterior distribution f(e|y)

o. Tem Decision TheorZ The team consists of N teammates indexed

by i=12,..,N. Each teammate controls a personal action ai and

receives a personal information value y,, The basio elements of

the team problem are

o 1 random state of nature
Am(& ,9a2,..,aN)l actions of teammates

Yw(Yjy2t** 9YN)1 information of teammates

t(Ae19 a team utility function

C(e) a team prior p.d.f. of 9

4(V(G) a team conditional prior p.d.f. of Y given 0

OLMSI = Oki G( -# 0% a team decision function
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The individual information yj is a combination of personal obser-

vations and messages received by ith teammate from other members;

this will be discussed at length in the next subsection. The Ith

teammates action can only depend on his own information yj. The

ith individual will never know what value of yj the jth teammate

received. This critical restriction on the decision function is

all that analytically differentiates team decision theory from

statistical decision theory.

The individuals are all team players so they all desire to

select decision functions to maximize the expected team utility.

(6) W led = E Lud1uM)e) = SA (A(o(Y),ecP(Ybe') (l)A40.

Since the maximand is a functional and the instruments are func-

tions, the technique for solving the problem is analogous to the

calculus of variations. The first order conditions are actually

the Euler equations of a specific calculus of variations problem.

Again we will deal only with the first order conditions, will

assume differentiable, concave utility, and will ignore existence

and uniqueness questions.

Letat(ibe the optimal team decision function. All arbit-
A

rary decision functions can be written asoj<oC=(fl+)t jA

where ; is a constant and is a fnotion only of y. The

definition of optimality implies that WC4a 2. W('etEKj for all

arbitrary functions flN)IK,(i),...,4(i1 ,where E is a diagonal

constant matrix. That isWC+E# treated as a function of E is

maximized at E--1 for all arbitrary functions . The first

order conditions are

IE EvO
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where ;j

Reordering integration

(8) 0 = Sj,[SOS (Aq(a-(y)1e) 4('(y(e)+(G)4A)403 K Ij() c4j;

where Y(t) denotes the vector (yj,..,y ,yi+1''''IN

Use will be made of the following lemmao

Lemma sx -r(9 I(X) A = 0 for all arbitrary g(x) then t(x)EO.

In equation (8), g(x) corresponds to Xi(Li) and f(x) corresponds

to the bracketed integral. Hence for each yj the optimal decision

functions Q must satisfy simultaneously the followings

(9) 0 = e S,(i) .(A^,t.(Y ,e)< >( oo a ) wa voie61=1, 2, .. N.

Dividing by4';(j;), the prior probability of observing y

(10) CP;(.%) = So®St I+(I)'(0)A I) 40,

the first order conditions becomes

(11) O= j j5 1 Lq( Ye) fy tA), l (;)=e 1.1,2,..,N.

The density function

(12) fQW). OIIe) (=
is the joint posterior density of Y(i.), given the observed

value of yj. The conditions (11) are interpreted as seleotinga

so that the expected marginal utility with respect to a& given

the personal information yj is zero. We should compare the

conditions (11) for team theory with the corresponding ones for

statistical decisiontheory (4) and note the crucial differences

the restrictions on o4 oreated. Unlike statistical decision

theory, for a particular Y=(Yj,..,FN) the team action

(9)= (g1(9 ),... 2 N(1)) can gg be found without computing

the entire optimal decision function O'C). This is because the
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1 th teammate does not know the value of yi, j$1, and hence it

must be treated as a random variable.

d. Er Ante Communifle The team model of Marshack and Radner

allows communication among teammates before actions must be

selected. We assume that i runs a personal experiment which gives

him a sample value zi which is correlated with the true state of

nature through a conditional p.d.f. <k1 (4 tG) .Communication of

the results of thases experiments is represented by a message

matrix Y where y1 is the message sent to I from J. A communica-

tion structure is represented by a matrix function i7(7-) where

Yu(7A =y;(-aj) is the message sent to teammate i from team-

mate J when he observes the value zil

V11 0912- '0

The 1 th row of Y is the total message received by the ith team-

mate and the jth column of y is the total message sent by Jth

teammate. Typically the diagonal elements are of the form Ili(fll Z;-

If the personal sample experiments are independent so that

*(zje) = t1(f0i ) , we can compute the induced conditio-
jie

nal probability of the message matrix Y as follows a

(1'4) (YIO> 1T S h At)

where / inj) Is the set of all sample observations z

that would cause teammate j to send the messages (Ylj,..yNJ *
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The ith row of Y is what we have been calling yj and the p.d.f.

3(Yle) is what has been called O>(YI). Because the message Y is

sent before the team must select the action A, this communication

is denoted "er ante".
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II. MULTIPERIOD TEAM DECISION THEORY

WITH A STATIC ENVIRONMENT

a. Multiperiod Statistical Decision Thery For simplicity of

analysis I will make several assumptions about the multiperiod

problems, none of which affect the major result.

Assumptionsa

(a) T = 1,2 a two periods, superscripts denote period

(b) e'=2=e a environment is constant

(c) tA(AA,8)=LA(A',e> +A(Ato) a additive identical utility

(d) Perfect memory of past observations

The thrust of what follows is that the action in period

two can be selected by the statistician in three identical ways:

by constructing a decision function 0 4t(y'Z) to maximize

expected utility against the prior p.d.f. c O fl by waiting

for the observation Y1=7 and selecting a deoision functiontE(V)

to maximize expected utility against the posterior p.d.f. f(eI

or by waiting for both observations Y,2 and selecting an action

12 to maximize expected utility against posterior p.d. f.

f (8I72). Each of these procedures will result in the same

action for a given set of observations Y ,Y2

The statistician must take two decisions, one in each

period, based on two sample observations Y1 ,Y2 taken at the begin-

ning of each period one the optimal decision function ( W is

found by equation (4). The optimal decision for period two can be

construoted in three ways, differentiated by what information
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is assumed already known by the statistician. Just as identical

actions result from selecting a decision function against the

prior p.d.f. c4( or just a single action against the posterior

p.d.f, F(etN) in the single period case, each of these procedures

leads to identical actions in a period two.

Before period one's observation is known a decision func-

tion for twoQJ(YZ), can be selected that maps (Yl,Y2 ) into the

set of actions to maximize the expected utility:

(15) S S S® '(d-(V, G) 4>(Y',YzIG) 44e) 4641'AY-t

Alternatively the statistician could wait until YiIs known,

update his beliefs about 6, and then select a decision function

S(t.) to maximize expected utility against the posterior p.d.f.

of Y2

(16) Stjt4 u ( (9,&) f(G(') Aea'U-

Finally the statistician could wait until both Y and Y2 are known

update his beliefs about 09, and then select a single action A2to

maximize expected utility against the posterior p.d.f. of 0

(17) fe A(Ate 0) 41(61 M1,'I) 46.

In (15) A2 is explicitly a function of both observations

Y and Y2. In (16) A2 is explicitly a function of Y2 and impliotly

a function of Y through the density f(1t Il'). In (17) A2 is

implietly a function of Y and Y2 through the density f(Gli,1 Y21).

In all three oases the expliot-implict relationships between A2

and Y1 ,Y2 are the same because the first order conditions for

(15),(16),(17) are identical and are given by

(18) 0 -- S0 u (Ae) .e j ) 4e.

where
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('9)(t sfoH'M)= 0flO cP(', t I4L) c(e) .

b. Multiperiod Team Decision fTheir Four works on team theory

have included a time dimension. Charles Kriebel(3)specified a

multiperiod problem but assumed away difficulties by making 0

different in each period and independent of all past e * Charles

Ying(4 ) developed what he called an "adaptive team". Marsohak

and Radner(5) studied "dynamic teams" but focused on the prob-

lem of delayed information. Y.C. Ho and K.C. Chu(6 ) explored

team problems when present actions influence future information.

The above assumptions (a)-(d) will still hold. The team

must make two decisions, one in each period, based on information

provided at the beginning of each period. For period one the

optimal team rules '(Y') are defined by equation (11). After

period one's information Y1 is received, current team beliefs

about G should be f (1 i ') not 4t(e) but each teammate only knows his

own information y1 and no one knows the value of the entire mes-

sage matrix Y1. Not one teammate could compute- (G I )and hence

it cannot be used as period two's prior beliefs about (9. Each

teammate can compute f(ebj) and could then maximize expected

second period utility using -NG ') as the density of. 8, but if

this was attempted we would not have a team problem in period

two because of differences in beliefs. What should the toam do

in period two?

As long as the team model allows only ex ante communica-
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tions about the individual experimental results, the following

procedure is the optimal solution for two periods. The assump-

tion of perfect memory for the team problem implies that the

th 1
ith teammate remembers exactly what message y1 he received in

period one. In period two he can make a decision based only on

his two messages (yi, yj). The joint prior density of (YY 2, 9)

for all teammates is defined by 4E(Y', 1te6 = c hie'ttIG) cf(8-

The multiperiod maximand is the expected utility of both periods

against this prior p.d.f. a

(20) \JI"LVI,-) = E0()+(ov()eAO+A'2(.IY),e)1

=. feyfy u(eI(NI)e)tu(.-L(Y', y)elc'( ',Ye)i'dY0.

The decision function for period 'A has the restricted form:

(21) .z$N)=nt

Unlike the statistician the team cannot substitute a posterior

density of e for the prior density of period two. The team must

select a decision function &k at the same time it selects a

function '. The assumption of additive utilities implies that

the first order conditions of a are disjoint from those of 2,

but 2 is computed prior to period one as far asp.d.f's are

concerned. V is not changed between period one and two. The

first order conditions for 2(.1141) are given by the following

()0 = SqSjac; q 1 (&ZC(1e4qt)) .cY'(u) L I?)A4'f'U)AYN20) aiR

i = 12.,

where

(23) fU'(0VM teJ,fl = )e', t(e)<(9)

is the conditional p.d.f. of $ and the non-i two period informa-
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tion variables given of teammate i's observations in both periods.

These first order conditions (22) are to be distinguised

from the optimality conditions if the entire matrix Y1 was known

by all teammates prior to period two. In that case the posterior

p.d.f. e'W1 could be computed and the second period decision

function lt(V) would hare to satisfy

(24) o S 2 1 ) 1=192,..,N

where

(25) {(4IG),O1\l )= 4d('oO1e) cb(e)/ cf j q)

is the posterior probability of 9 and the non-i second period

Information variables given the known value of Y and the ith

teammate's information yi.

o. IntertemM al CgMM gatin The above formulation of multi-

period team theory excludes communication between periods other

than individual "memory," which is a personal internal communica-

tion. A more general framework for intertemporal communication

was suggested by Marsohak and Radner in the "dynamic" team model.

th bt%.e4
In the T period, messages are sent and received by teammates on

the past history of individual observations and messages. In its

most general form the message matrix YT is a function of the pre-

vious individual experimental outcomes X(T)=(Z1 O,Z2 ,.., zT), an

NxT matrix.

(26) yT=-T(LT)).

When the team makes only ex ante communications based on

a single communication function t(2) in each period but indivi-
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dual memory is allowed, this is modelled by choosing a intertem-

T T
poral communication structureT of the following form. JU

is a T-vector valued function, each element of which corresponds

to the message sent from j to I in one of the previous periods,

i.e.,

(27) 1

The Ith teammate makes his decision based on the information he

receives in period T, which is the set of all pAst er ante mes-

sages sent to him plus the current ex ante message about the our-

rent experimental observations ZT. For the case that the indivi-

dual experiments are independently drawn, the distribution of

the message matrix Y2 is given by

(28) 4tfle)= S(kzjf;(Z!Ie)$A 2! 4z

One should note that even if the ZTs come from independently

drawn random samples, in general the YTs will not be indepen-

dently drawn- 4W;', t I ) fth<i'(1 IG\ 41(4qtj ) -- because the jth

column of Y and Y2 both depend on z

In its most general form the intertemporal communication

makes multiperiod team theory analytically identical to single

period team theory. However, interesting insights into important

problems can be gained by studying various restrictions on the

functional form of j'. For example, Marechak and Radner study

the effects of delayed information when 0 4 changing, by making

information of the following form & YT icT(i(T-d)) where d is a

delay. We will now study the restrictions that must be made to



23

allow the team to behave as an adapting organization; that is,

one that modifies its beliefs about the random state of nature

as its life progresses.

d. Ex Post Communication For a single period team, communica-

tion aimed at constructing a team posterior p.d.f. ofe9,f(&IY1),

would be unnecessary since the only distibutions needed in the

optimality conditions (11) are computable from known information.

But when we introduce multiple decisions over time, the fact that

information for each teammate is different prevents the team from

computing posterior densities. The team model can be modified to

solve this problem by introducing a second set of communications

between teammates. This communication should be such that each

teammate gets the same information. Let us represent this commu-

nication by

(29) X1 =-XA/(a)

where x, is the message reofived by teammate 1. The messages are

the same for all teammates and depend on the observed samples

Z=(z 1 ,z2#.*@zN). Each message X has an induced probability, given

the state of nature, defined by

(30) h(KI S(Y-))21 ~4.

For every value of the message X, the posterior p.d.t. of eis givenb

(31) f(OjIK)-g ' ) ' 11ki) ck(e)Ae
Se 6 (Y41) 4> (6) A G

Because xi=x2=ses= XN=.X and the funotion/4(K)is the same for all

teammates, the posterior distribution for 8 given the message X

can be constructed; it is the same for all teammates,
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The communication X is not available to aid in the selec-

tion of an action variable but only to create a posterior p.d.f.

of e. We shall refer to/4(Z) as an "ex post" communication struo-

ture, as though X occurs after the decisions are made, The entire

team communication structure is represented by the two functions

?)(Z.) and,,4(2$the ex post and ex ante communioation functions,

The signal X can be a vector or matrix, so / oan be a

vector matrix valued function. The ex post communication struo-

ture defined by AtZ)= B (ZI implies that each teammate knows the

entire ea ante message matrix Y. The ea post communication struo-

ture '/A(i) = constant" provides no information since for all X,

00( = fall possible Z"Osj . Notice that the null information

structure implies that each member forgets his own personal

sample value zi.

For given (3 /4') the two period problem optimal team

procedure is as follows, For the first period the team selects

a decision function &'UI") to maximize

(32) U'(S'1 EL('(' u ),0)1= SSa(4'L3O)#Le)oY' 4G-

Optimal conditions for eQ are given by equation (11). After pe-

riod one is complete, the team calculates a new density fntion

for G by computing eIK) usint equation (31), where X is the

ex post message sent to all team members. The team selects a deci-

sion function tQM2  for period two to maximize

(3fl wt("23 EtLAtdN('),Q)1 4 ~lS$p 4(.(Nf),e) fQ(t, e i ) d tde .

Ths first order conditions for V09 are

(34) 0= Sfi 4 j(a(Y),0) f(0NZ),8I1}j) MG)'(i40 I,2,.,N
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where

(35) f(a e9tn)fV',K

is the posterior joint probability of Y2(i),& given the observed

ex post message X and the observed value of yi.

Implicitly, the value of A2 depends on X and hence on the

observed value of A . ForM(iC 9 (V), the optimal second period

conditions (33) are equivalent to those given by equation (24).

For null ex post communication, /A = constant, the conditions

specified by (33) are not equivalent to those in equation (22)

because null information implies loss of memory about the value

of zA.

Ex post communication can be expressed in Marsohak and

Radner's intertemporal communication notation as follows;

(36) Mt CVix))

The decision function for period two is a function of Y2 and is

selected to maximize the expected utility

(37) wc 1Wr 96l23I1 % usdNh\9)je) (w(IL ,oAeAxv
The first order conditions are given by

(38) 0 -- v) S Qq. (A(j, Xi a) ( e 1 i )494r(j), i=1, 29, .. , N.

which is identical to equation (34) hence both formulations

lead to identical decisions for given Y2Ox
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III. A TWO PERIOD TEAM EXAMPLE

a. Joint Production Under Price Unoertainty The organization

which will be modeled here as a team is a business firm which

produces on a day-to-day basis two commodities, q1 and q2, The

firm is divided into two production departments, each speciali-

zing in the production of the goods. Decision making is decen-

tralized in the sense that department one chooses the daily

output level of q1 without being directed by a central autho-

rity.

The firm does not know the prices pi and P2 it will

receive for its products when they are sold. Through past expe-

riences the two departments have identical subjective beliefs

about the probability that the market will set prices at any

particular levels. The departmental decisions about production

levels must be made without knowledge of the exact price because

the goods are not sold prior to production. The firm has a two

day work-week followed by a market day when the preceding days'

outputs are sold at the going market prices. On neither the

first nor the second work day will the firm know exactly what

prices will result on the market day.

This does not mean that the departments must decide. on

production levels based only on prior beliefs about prices. As

each work day begins, the individual departments read trade

newspapers, talk to prospective buyers and fellow businessmen,

etc. to gather information about the "market conditions" of
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their respective commodities. The inf'mation is summarized in a

single statistic which will be called the "price forecast". Using

this forecast as a guide to prices, the departments will make A

on production levels.

The decision of each department cannot be made ignoring

the possible decisions of the other department. The firm has some

resources such as floor space, machines or tools that are used in

the production of both commodities. As a result of these factors

the joint cost of producing at levels q1 and q2 is such that

?"cost/at3p2 -C. That is, cost cannot be additively

decomposed into two components cost (qj)+oost(q2).

The firm is a team and each department desires to select

an output level to maximize expected profits where profits are

TT = p1 q1 + p2q2 - C(qlq2 ) = P'Q - C(Q)

P = (p1 p21)';Q (q1 q2)';C(9) = cost.

The firm operates on a day-to-day basis, each day attempting to

maximize that day's profit Tf a P'IQt - C (91, t=1,2. It should

be noted that the profit is not realized until the products Q1+Q2

are sold at the prices P on market day, Cost functions are iden-

tical for each day and interest charges are neglected by assu-

ming zero interest rates. The total profits are the sum of the

two daily profits although each component occurs at different

times in the week -r1+2 =9r +jf2= p.(= 1 Q2)-C(ql)-C(Q2).

We have yet to introduce communication to the firm's

decision procedure. Each department observes a daily forecast

price zt which is oorrelated with the unknown price, P. Commu-
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nication is defined by a function 7 which maps Z=(z 1 ,z 2) into a

message matrix

Each department makes its decision on production level based on

its mesuages to maximize that day's expected profits.

Specific assumptionsabout the functions and variables

must be made so that the optimal decision functions can be calcu-

lated for particular communication structures. Let cost be a qua-

dratic function of output levels.

(39) C:(9) Cit +,ZCC = : 'jC
d Cz

The utility function is defined as the profits given this cost

function.

(40) U(Q,P) = P'Q-Q'CQ

Both department have the same prior joint p.d.f. for p1 and p2
and it is jointly normal with zero means and a variance-cova-

riance matrix 4 ), so that

(41) #(rPa) = ( zTf' (i-r' ePt it t ( P k p-Pa +p t .
It has been pointed that normality assumption about

prices are unrealistic because there would always be a positive

probability that prices are negative, an impossible event. In

particular, with zero means the probability of negative price is

exactly one half. We will ignore this serious objection because

we want to demonstrate the optimality conditions for multiperiod
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teams and normality with zero mean greatly simplifies calcula-

tions.

Each day the 1 th department observes a forecast price z1

which is distributed normally with variance=1 and mean=p1 .

(42) t I( iP) =4uc;APi)(zTr) IceFL (;-p;)) i =1,2.

We will compare two ex antecommunioation struottires- no com-

munication and complete communication - defined by the following

communication functions,

no communications Y(0 !Jto

complete communication: Z

The information y. for no communication is distributed normal

with varianoe=1 and mean=pi. The information (Y 1 ,y12 ) is distri-

buted jointly normal with variancemoovariance(271 and mean (P,,rP)

i =1, 2.

b. Quadratic-Normal Teams Before continuing the two period

example we should state some theorems developed by Radner con-

cerning thb optimal decision rules for a team maximizing a quad-

ratio utility function when random variables are distributed

normal.

Theorem Is If a two member team's utility function is

U(A,e)= (4 +, +,. -4 

then the optimal decision functions i1 't,)0and'&t(jt)

must for all (yI3y2 ) satisfy the following conditions:

(43) <P,@(ljjMz7 zTryl P[ I 2. (1 L L
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Theorem 2. If the utility function of a two member team is that

of theorem 1 and the random variables 9 ,Ot, ju tlz

are normally distributed with E e,=Ef9..4=o) var-cou f,,l )

E.fL5 1 1013 =&IN ,EB e= ( )19.)=L, then

the optimal decision functions are linear in the infor-

mationa

where C, and AL are the solutions of the linear equation

Theorem 21 If the utility function of a two member team is that

of theorem 1 then the maximum expected utility is

Corollary 1.i If the utility funation of two member team is that

of theorem 1 and the random variables are distributed

as in theorem 2, the maximum expected utility is

In the example of the profit maximizing two product firm, we have

a quadratic payoff function with vi j=cu ,ij ; 1 and A= 0, also

the random variables a%,LM ',!e!3-. are distributed jointly nor-

mal; hence the optimal decision functions are linear in the infor-

mation.

30
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c. Optimal Decision On Day 1 On the first day the firm wants to

select a decision function & = r'(Y>dt) rj0 l'. to maximize

expected first day profits t P'Q-'L9. When there is no

communication the message y1 is the individual sample observation
1I

zi; therefore y has a p.d.f. like (43). The optimal decision

function will be linear:

(44b) T IL',)= K

The coefficients S and S2 are def by

(45a) '(m

(45b) 9i -ji ls- 1 1 C

or solving for the actual values:

(46a) (z 2 : -rcC) (nc1,c, ftgct

When ea ante communication is "complete" both departments get the

message vector (yj,yj) which has a p.d.f.

The optimal decision functions will be linear in the information

and of the following forms

(48b) . ,(,A: . St.' + ' 3m..

The coefficients are defined by

(49a) I4' . ( t ~eL ~

(49c) ( I-r -C )
(49d)t (t)(qt C t -
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or solving for the actual values 

( 50a) '°" I -'- C
1::2. (z-'1''1.) - C,:z.. ,rs" 

2. .. - .,
z. :J.. C.ll Cz.2- - �12.

(50b) 
..... ' ..L I C. :r z. y- - C,z.. ("2..- v'l.)
s 11.. l.f - '( z. C ' '1. '2. C.uC..1..-z. -

""'I _L I C" ( - c,1. (-z.- '( 1. ' (500) :s 't.. ( tt-,r 'L z. 
C11 C1."l. CI'\,. 

(50d) 
A( =- __L_ c ( I ( '?.-( '.Z.) - ('. ,'Z.
.s l. a. 'Z.. 

4-,
'2. "2.... 

c." c'l."1.. - CI "L. 

The maximum expected profits for no communication is given by 

(51) 
"TT"" ( [ � ,, -::: ..L � l + ..J.. s ( =. ..L ' ' n c:. .J Z. I "L 'Z. -z.. 

C. H + C'l . ."Z .. - .... (' C '1.. 

� Cu Cz.-z. - "" '1. C1 f
• 

The maximum expected profits for complete commun1oat1on is given b· 

( 52) Tlc. 1c. L &-- 1 ] = � (SI� -+ �!'") + � ( � ,\. +.s\\)

..L 

- 2..

It the correlation between p1 and p2 is zero (r=O) then knowledge

of one sample statistic provides no information about the other 
- ' -, 

oommodi ty' s price. In this case 1f cc >lf"nc<t1t the correlation bet-

ween Pi and p2 is perfect (r=l) knowledge of one sample statistic

does provide information about the opposite price and we cannot 
-, -, 

say that lfcc >"lT' ,.c tor all possible cost functions. 

d. 02t1ma1 Decision l2J: Da7 �Without� Post Commun1oat1on At

the beginning of the first work day eaoh department gathers infor-
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mation about the conditions of its respective market. The depart

ments pass on this information to the other part of the firm 

according to the ex ante communication function. The daily deci

sion on production levels is made and production 1s carried out. 

Suppose that at the end of the first business day the department 

heads simply go home without discussing "market cond1 t1or::.s" any 

further. The next day each department gets a new report on the 

probable prioe that it can sell its product. This is ueedas the 

basis for the ex ante communication 1n day two and nothing is 

said about yesterday's information. On the seoond day the depart

ments make their production deo1s1ons based on the message 

received on work day one (which they remember) and the message 

received on day two. The decision functions are of the form 

Q ,.= 0-
z.
(1 � Y

1
) = (��l'j: .��l, er!.(��' 'j�)) � The max1mand is the expec

ted profits for period two Tr 2
::: P'Q

z
-ql'c.Q2.. The optimal deoiston 

functions must satisfy 

(53&) 0"'�(1'.,'jD = "t ({: E{P.('1 1,,'i�l- C,-z. E(&-! l�'u '1�) I ':J!, j� J) 

(53b) �!(��,�!)=�({ Ei�tt.\'1� 1 'jit-Cu.Et��{'j: 7 'j�)\ Cj�,'j�J). 

y1 and Y2 come from independent random samples with the same 

distr1but1ons1 

( 54) cp( ye, y ?.f P) : cb, ( � ! lt>,) ¢,'L( 'i � IP"") q> 1 ( � � \ P,) �,: ( 1:il ' P�).

For the ex ante oommunioat1on structure "no communication;�� 

is distributed normal with variance=! and mean=pi, 
"t ... ,,'& ( ..L. 't' 2 ) C 5 5 ) <:p ; ( 1 i ( t> i ) = l ?.11' I • J P - 'l. ( ':I i - Pi) • 

t=l,2

The optimal decision function for no oommunioation will be !near 

and because of the identical distribution of yt and y: they will 



be of the following form:

(56a) r,(iM i %+j

(56b) C- (-, ' 7 1- 2=-),i

where the coefficients are

(57a) 2Y 23 rcv2c

(57b) S - = C
Cj-C ( -( if)t

The maximum expected second period profits are co"ihuted as

(58) Th - [ .- =34=t Cq+Cztz- fC-.

cit C z-Z ( 3vr er)t

For ex ante "complete communication7 y=(y ,yt), the optimal

solution is of the form

(59a)L,) = (J'+4) +ALiV+31

(59b) r-XY' l ie'0 +0' 'i l)
a AZ

where the coefficients Sf are the solutions of the simultaneous

equationsa

(60a) s it CijefZ - . ga)

(60b) 0. =$ . -- ia .2c1Ct I9-qrt

(60o) tA ,-- 2 -- .1

Solving these equations we get the values

(61) ) = . Ct(3-2.r') -z

z t .'a 9e f- C ( -
(61b) =-
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(61o) C - C -1(-1-.

(61d) C

The maximum expected profit for period two with oomplete commu-

nication is

(62) t5 = ( +AIL + V, 4 Pal)

zL . m (cLI+ c(3 32-V(szftC1Z.

e, Ex Post Communication Structures The above solution for

optimal output decision functions assumed that at the end of the

first day the departments did no more communication to come to a

consensus about the probabilities of future prices. Suppose we

now allow ex post communication, Two particular ex post communi-

cation structures will be studied herea "complete" ex post com.-

munication by only the team's "captain." If at the end of the

first day the decision-makers of each department play a round of

golf together and in the process give their colleagues the com-

plete picture of market conditions that they observed that mor-

ning, then the firm's ex post communication is "complete". Sup-

pose that at the end of the day the decision-maker for departmeft

one puts a message on the bulletin board near the exit summari-

zing the market conditions that department 1 observed that mor-

ning. All decision-makers in the other department read this
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message and th.4.s is the only information that they remember the

next day. The ex ante communication will be "no communication"

in this example. The two ex post communication structures are

represented formally by

/m(F-1= ( 4 o.-1 "complete" ex post communication

((4= (z,) "captain's message" ex post communication

To find the optimal decision function for day two when

the ex post communication was roomplete",the following equations

must be solved.

(63a) a- j(j2 ' --- L E' t cj2-enE lf j

(63b) T 4 R [,l t 9-C CI- .r (Ls",' )

After the beliefs are updated by the ex post information,the

variables continue to be distributed normally but the means of

(pl, p2)are no longer zero0 Radner shows that in this oase the

optimal decision functions are still linear in the information

but with the addition of a constant term1

(64a) - t ( )A-I Z S '( "+

(64b) O 4 (1 - - +v.

The optimal ooefficients ,S. must satisfy

(65e) c s J+ C . a

Solving thse equations

(66&) 9L=-- 1

C1% C rC%-L-.

(66b) ' --- T I



Given the above values of S, and ..,the constant terms and

V.2 must satisfy
A . A A

(67a) -i -I C 17- +2 -wx3 -d-r- Ct 19

(67b) C11-- 1 + C2, j :-t.&;. a( r ' (2.-' ) -- g-:: . c1-. ^ (?s-t 4 +r -

It is clear that the constant terms depend on the value of Y1 .

This is the implicit relationship between Y and Q2 that was

mentioned above.

When ex post information is the"team captain's" message,

the optimal solution is again of the form

(68a) G-g&) = I

(68b) 57(- 'L 7-.

The coefficients S3 and Sz. must satisfy the first order conditions

(69a) C1it +- C1 . =

(69b) I -zIt At - (-t4)

Solving these equations we get

(70a) - Cj.L C
S -LL 42,.

(70b) 4a. . Cu 3 s-r) '4-
3Cc et I-

Given these values, the constant terms V and -L. must satisfy

(71a) C- 1  + X,.

Again the constant terms depend on the ex post message
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IV. MULTIPERIOD TEAM DECISION THEORY

WITH A DYNAMIC ENVIRONMENT

a. Introduction In the previous section the environment was

static in the sense that the unknown state of nature did not

change in time. Only information and actions changed as time

passed. The next step is to study the multiperiod team decision

problem as the unknown random state of nature takes on different

values in each period.

We will begin with a two period problem although results

are easily extended to T periods. In each period a new state of

nature is believed to occur, first a then ok The team has a

set of "beliefs" about the unknown states of nature summarized

in the joint prior p.d.f. 4(0',e). Notice that if 8 and

are believed to be statistically independent,= (al(

then the two period team problem is diohotimized into single

period team problems.

Again assume total utility is additively separable in

time with identical single period utility functions,

(72) u(A', A oet) = (A(Aa) + (A,-).

In each period information is available to teammates through an

ex ante observation-communication system as specified above.

Decision functions for both periods are again of the restricted

forms

(7) 'AY) =r o selc( dA cion n n n

The team desires to select decision functionsb(' and 47 to maximize
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total eJpeoted utilitys

(74) w'[&,.d = 1Lkk'8 i-u(2e')j.

Before first order optimality conditions are derived, specifio

assumptions must be made about the information available to each

teammate in both periods.

b. Individual Memory Assume that the only intertemporal commu-

nication allowed is individual memory of past messages; that is,

in period two the ith teammate knows only the values of (yi, y2),

The second period team decision function is then defined by

(75) C<NN'1nt'del)0 1 =

The two information variables Y and Y2 are postulated to have

come from independent random samples so that the prior conditio-

nal joint density is

(76) 4(YftGe = cW(n(') 4t le)

Because 89 and et are not independent, knowledge of YP will pro-

vide information about the unknown et. (If e' and ftare indepen-

dent then the posterior p.d.f. of et given Y1 and Y2 is only a

function of y2 , g-f (&L-(1',z) = f (&i'f t), )

With these hypotheses about intertemporal communication

in mind, the two period team problem is to select 0001).and

q fa to maximize total expected utility.

(yr) W' tt- Se SS 'Za( (do(fle9) UiON't V-)1-) 4" (41e'

A
Let C and 1 denote the optimal team decision functions, Because

of the additivity of utility, first order conditions for % are
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At2
disjoint from those of6(. The first period team decision function

U'.) must satisfy simultaneously for all Y1

(78) 0 = seS (034q;(A('),8() {(U'(d,e'I'39dvciyw' i=1,2,..,N.

The density function

(C 1)t o') ct!7(e')(79) f( '(O1',b)Y=

S(C (91e)5t 4 0%It) 48ta
sef5 e ''le') (td,eA) deAetAY'(i) '

is the joint posterior density of Y1(1) and 0' given the observed

value of y4.

The second period's decision function ( V must for

all (yj y2) satisfy simultaneously:

(80) o= S (9ot(%((if) 6')-F (Vu),V(i,e'M',Q )det Vu)4(i)

for 1=1,2,..,N where the density function is the joint posterior

density of Y1 (i),Y2 (i) and 0t given tho values of the ith team-

1 2mate's observation in both periods - yi and y1 .

(81) f j (j et)

*Nn t at S l4'(Ve') 40(e',9et) AG'

the
Suppose there are T periods and~only intertemporal com-

munication is individual memory of the pruious observation. The

team decision function for the tth period is of the restricted

form:

If 8(01)., ) is the joint prior density of all T states of

nature, the joint prior density of (e09'') is given by
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(83) 4(ettl 1S9T)t 't9Tp~~y.el&.4 ~ t Le

The joint prior density of Yt,yt-1 and Otis given by

(84) <pt(t,- f 0 tGt) 4-t (t et(e) s - t-1 (yt-l( et-I) c(t ett) 4 oi-

With additive utility, the desires to selecto(t to maximize

expected utility.

(85) W'9L = ffSt s. (01("t-), et) <C*(19 *) 4(5 ~ O t og -

The first order conditions for o (NVC') are exactly

analogous to those of the two period problem.

(86) 0 S S L4;( 9 (NtNt),Ot) 9 (N Mt(~(),t )

where

(87) f(qt iItIi( It CtiV)

The reader can easily extend this T period problem to allow the

individual memory of the past r message for .. _ Z C--t-i.

c. Er Post Communication As long as 6 andE)t are not indepen-

dent, information concerned with' is indirectly information

about 0'. The team would like to update its beliefs about the

second period's random variables based on its information Yi.

As noted above this is impossible because no team knows the

entire value of Y1 . Ex post communication was introduced to

allow the team to adapt its beliefs according to its informa-

mation. The er post message X y/At-J received by all team-

mates is statistically distributed by the p.d.f.
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(88) K (,) = 1'(91) ( te') 4 '7 1.

Given the value of X all teammates update their beliefs by

computing the conditional joint density of Y2 and & given X18

(89), d p 7'.-- ( 1 6 2)A 0

_ 4st(Mftel S., k( i e')4i(e',)ae'

S6IS6L0' N1&) 4 (,e 4e''

The team selects a second period decision function to

maximize expected utility against the posterior p.d. f

(90) wSOJ S= t0 (A(C( , t), fyo ') N4

The first order conditions that the optimal decision function

dt(M) must satisfy are:
(91) = S .(f GA)fI1L'

The density function defined by

(92) { ( et K')

4 (Ll, v')

is the joint posterior density of Y2(1) and e given the ex post

message X and the ex ante individual message y2,



43

APPENDIX: UTILITY AND THE RATE OF CHANGES OF ACTIONS

Previously total utility was additively sep rable in time,

i.e.,r

In addition single period utility functions, Ut were the same for

all t=1,2,..,T, This latter assumption can be dropped without

changing the nature of the optimality conditions. For example, we

could introduce a rate of time preference 9 and define the tth
period's utility by

(94) LA '( R', 0 *) =- ( LA U( At),0i

Ih this case the optimality conditions would be identical to those

derived above. Athough the additive form of utility could be drop-

ped, a special type of additive utility has been found useful.

Many intertemporal economic problems (most notably "optimal econo-

mic growth") assume that total utility is additive in time but

also assume that the single period's utility is a function not

only of the policy instruments but of the rate of change of the

instruments. In the neoclassical optimal growth literature today's

utility is a function not only of the capital stock but also the

rate of change of the capital stock.

This new definition of total utility is
r

(95) f(ArA',. ATqence T)i= is da(+)l"(Aoeto the',at+

The first difference At-A t-1 Is the discrete analogue to the rate
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of change of actions. A rate of time preference has been added and

will play a role in the optimality conditions.

Let us begin with a static environment: t6'=-

Let us also begin with an assumption not yet exploreda all team-

mates forget the values of all their past message. The decision

for period t is based only on the single information Y t and no

intertemporal communications are made. The decision functions

t=,2,,..,T7 are selected to maximize

total expected utility:

(96) W (60'* *)OJ) = Ef if(ItF)_t( (c~

with 0 a given constant action

Denote the optimal decision functions by

All arbitrary decision functions can be written as 8 -

where is a constant diagonal matrix and is an arbitrary

team function of the same form as :Lt.- ) treated as a

function of At must be maximized at A= 0,t=1,2,.. T by the

definition of the optimality of at. The first order conditions

ares for all arbitrary gt

(97) 1 0 =1,2,..,N t=1,2,.,.,T

(98) 2W I=tE1' )~tj)jt

where.. U, denotes the partial derivative with respect to the ith

component of the current action and UN+l denotes the partial

derivative with respect to the ith component of the previous
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(99) ui.(9AI,e) =(99)q t LA (A01t 1&.-I, 9)

(100) t*Nti -A '

By reordering integrations and applying the lemma" (Ay

for all g(x) implies f(x)=O" and finally dividing by the margi-

nal prior density of y the first order conditions for optimal

team decision functions for all y4 the optimal decision functions

must simultaneously satisfy the following equationse

(101) o~ t.~ (Ait(a+(N*) A t4?_,)AtIJ
(101) -(ztt'SliGiS V0 S

+ tirr SV.0 SPjje 4Ni1 (ttI(ytl) at~u')109) -4k r'1 161tq9 '

= E~uj (jtQ ,.I' e)I 'ith+ (ttpY EP4N4;

for i=1,2,..,N; t=1,2,..,T.

Certainly the complete loss of memory of all past obser-

vations is an unrealistic assumption. Instead, suppose that each

teammate remembers the immediately prior message yt1 but no

other form of intertemporal communication is allowed. The deci-

sion functions will be of the form 't (f9'10(4(itN),,AQ (

The optimality conditions for the decision functions 1,..,T are

(102) 0= Spi S- Q, u; (f+(yA*t-a),*-Q(1t-t, I)e)

* (t)'j if5.jj..S0 L~ g*(ti 4  t t 4 -)

;(tty1fl j(Or 8 (SoQ 1 j4)*I~ta)nec~A
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for i=1,2,..,N ; t=1, 2 ,eeTs

This can be generalized to the individual memory of the

past r messages , ,.. -for g . z -I. For example

if the teammates can remember all their past messages (z= t-)

then the optimal decision functions must satisfy

(103)oe( i)*j7t(trE
for i=1,2,..,N , t-12,..,T.

Similar equations can be constructed when intertemporal

communication is not individual memory but ex post communication.

There is also no problem in extending the theory to a dynamic

environment where the state of nature changes each period.
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FOOTNOTES 

(l) J.Marsohak and R. Radner (1972).

(2) See any of the following• DeGroot(1970), Pratt, Ra1ffa, and

Schla1fer(1965), Ra1ffa(1968), Raiffa and Schla1fer(1961) 

or Savage(1972). 

(J) c. Kr1ebel(1968).

(4) C. Y1ng(1969).

(5) Marschak and Radner(1972), Chapter 7.

(6) Ho and Chu(1972).

(7) R. Radner(1962) or Marsohak and Radner(1972), page 168.
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ESSAY TWO

Sequential Team Decision Theory

And Optimal Stopping Rules
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SEQUENTIAL TEAM DECISION THEORY

AND OPTIMAL STOPPING RULES

I. SEQUENTIAL SAMPLING

a. Decision Rules and Stopping Rules In the introductory

discussion of statistical decision theory the information

variable was treated as a scalar, although it could have been a

vector of sample observations. Many statistical problems involve

a fixed number of observations, m, represented by the vector

,Y=-(yi,72g''ym)Pwhere the number of observations is a given

parameter. However, there are other statistical decision problems

where the number of observations is not fixed but is determined

by the statistician.

One class of such problems is called sequential sampling.

In these problems the statistician makes his observations one

at a time; after each observation he evaluates his total infor-

mation and decides either to continue gathering information

or to stop sampling and make a decision using only the previous

observations. Each observation provides information about

the unknown state of nature and increases expected utility.

Typically the cost of each observation is a constant, C. Net

expected utility is computed as the numerical difference between

expected utility and the disutility of the cost of information.

Many studies(2) have pointed out the special nature of this

additive utility assumption, but it greatly simplifies these
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complex decision problems. A sequential decision problem requires

the selection of two rules: the decision rule and the stopping

rule. If the sample terminates after m observationsthe decision

rule determines which action Is to be taken for each possible

vector of observations.

(j1) RA= Cmr(Y') M%)'j? ij

The stopping rule specifies after m observations Y=(y1,y2*-- m

whether sampling should be terminated and an action be chosen or

whether another observation ym+1 should be drawn. If the obser-

vations come from a set , the stopping rule generates a sequence

of subsets SM C JNhh"'j 1 called etopping sets. If

then sampling terminates. If (. .. yj"4 S, then another sample will

be drawn. These stopping sets can be used to construct another

sequence of sets called termination-at-m sets which define the

observations which will cause sampling to stop after m observations

but not before:

(2) mT5, rfl
where S k is the compliment of Sk&

The following is the total net expected utility of a sequen-

tial decision procedure with a maximum of B observations (possibly

infinite), where 0= (0(,..-0n) is the vector of decision functions

and T=(T,.,eTm) is the collection of termination-at-m sets:

(3) WcnpTl E{L4(elnti.n,'Ppn)?&9) -"1(Ac)J

fag

An optimal sequential decision procedure is a stopping
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rule and a set of decision functions that together maximize total

net expected utility, VlJ)#T. A fundamental property of the optimal

sequential decision procedure is that the decision function must be

optimal for each possible m-vector of observations. That is if sam-

pling stops after the m observations (y,..,ym), the decision for

each possible (yi,..,ym) must maximize expected utility against the

posterior p.d.f. of 9 given (y,.,y) Because of this property

the discussion of optimal sequential decision procedures focuses on

the optimal stopping rule, implicitly assuming that the decision

functions make optimal use of information,

b. Backward Induction If there is a finite limit on the number

of observations, the optimal stopping rule may be developed by a

procedure of backward induction.(3) The rationale for this techni-

que of solving the general sequential sampling problem is given

and will be formalized in the next subsection.

Suppose the utility is a function of the unknown state of

nature, 9, and the statistician's action A. The information varia-

bles yj are independent and have the same conditional p.d.f.

given a, *('sl). The statistician is allowed to take a sequential

sample of up to B observations. Each observation has a fixed

disutility U(C). The decision rule, eb maps a m-vector (y,..,ym)

into an action A. The prior p.d.f. of 8 is 4().

The initial question the statistician must answer is

should the first observation be taken or should a decision be

made based only on the prior beliefs about ? The answer depends
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on how the information in yi Is used. If yi Is observed,will

another observation y2 be drawn or will a decision be made using

just y1 ? If observations are limited to B, the final question

in this sequence of questions will be: if y1 ,..,y 1have been

observed, will the last sample yB be taken or will the decision

be made without this additional information ? The statistician

can usually find the stopping subset of 151'for which the final

observation should not be taken. Moving backwards a similar pro-

cedure can be set up for yl,..,yB-2 and so forth back to y1. Thus

"for each possible value of yl, the optimal continuation through-

out the remaining stages" 4 is known and the original question

resolved.

c. Bounded Stopping Rules Optimal stopping rules require the

construction of the posterior p.d.f. of 0 after the m observation

(YieY2eeeYm) are drawn.

(4) f (efl ,..ti4= W p(ie)io()/S 01r *)yIe)#(o) 4G.

The expected utility after sampling has stopped with m observations

is denoted

Implicitly the optimal action is a function of the observations.

Suppose the statistician has observed B-1 values YI,..,.Yn

and wants to know if the final variable should be observed. He

continues sampling if the expected utility of deciding based on

Y19''#YB-1 is less than not expected utility with the finaltbbser-
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vation, i.e.,

(6) WO(f (S IfLj,3--L-, 1)) <. Efj t/o(((L..,tis)fl i..,Li.4 (A(c).

Define the optimal expected utility when the current beliefs about

are -C(,... ) and when only one additional sample may be

taken by

(7) Wd(et 'X.,'js-jfl = Lw. Lj (eI ,. - ' j -) 6 f bW.Lf(e Hi., 9s))J

-LtA(C) ].

Backing up to the previous stage, the computed posterior

p.d.f. for 6 is f(8l3,...,js6-). The optimum expected utility given

the first B-2 observations,but not the last two, is

(8) \Wo (f(t i,--,s-)= gt LSQ(AR&){f(j 9 )...,j-.Z 2) 49.

The expected net utility of taking another observation is

(9) E lW I L3,.-> a 1) ... ) _---, - - (C).

The optimum expected utility for the remainder of the procedure

when the current beliefs about e are + (a14,--a -Zl) and when

at most two more samples can be drawn is

(10) WzM([fOj. 1>-> 8 -flJl a$ W A(a -

E IW,(Ve I ,, ..., 1)) M 
...,oa. -tAc

By induction the functions t48 (#(e)), Wg.1 (4(oI,)),...,

WO-M . 3m)) can be defined using the relationship

This provides the statistician with all the needed information

to establish a stopping rule.

Proposition 2-la If the prior p.d.f. of 9 is 4(O then\4s('WG))

is the total expected utility from the optimal sequential
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decision procedure in which not more than B observation can

be taken. Furthermore, for m=1,2,..,B-1 after the values

Y1,y2P' PY m have been observed and the posterior pd.f. of

8 becomes -f (9 -.., 3r4 the expected net utility from

the optimal continuation is 0,..C (a ( ,)).

DeGroot also states the optimal stopping rule as follows:

Proposition 2-2: Among all sequential decision procedures in which

not more than B observations can be taken, the following

procedure is optimal. If Uo (4(9)) \ 8g(4(eJ) a decision

is chosen immediately without any observations. Otherwise,

Y1is observed. Furthermore, for m=1,2,.,,B-1 suppose the

values Yliy2i''Ym have been observed. If

W%- (f (0 Ill-...,)) 9 a decision is chosen without further

observations. Otherwise ym+l is observed. If sampling has

not been terminated earlier, it must be terminated after

YB has been drawn.

d. Example: Maximum of Two Observations Suppose the statisti-

clan make at most two observations. The stopping rule must spe-

cify the conditions under which (1) no samples are made, (2) only

one sample is taken and (3) both samples are observed. The analy-

aie begins by computing the maximum expected utility if both

observation are made. The action A2 is selected to maximize expec-

ted utility against the posterior p.d.f.-,

This defines
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max S6 L(A',e)f(e(L3,,)so.

Under what conditions should the statistician observe the

second sample when he had already observed the value y ? If the

statistician does not observe the second sample then he must

select an action that maximizes expected utility against the pos-

terior p.d.f. f(9j).

(13) Wof(e(L)= rc % (I',e)- oI<)4&(0 .

Expected net utility if Y2 is observed at this stage is

(14) EL~((('4Ijj 4(c) m ) "'22''Lj') ~f(,4 L

The stopping set is then defined as

(15) 5= I , I Wo (f(Is,)) > E lt b(f(I%)it,))h13 -4c0s.

If y1 falls in the stopping set, no further observations are made6

The maximum net expected utility for the remainder of the prooe-

dure when y1 is known and no more than one additional observation

can be drawn is

(16) tJ(ftejjj- M= t-4(o0GI1l.)l E w.Lf(I91 Ljg)|t,, -. tc)].

Under what conditions should the statisticians even make

one observation ? If no observations are made , an action must be

selected to maximize expected utility against the prior p.d.f. 4(e)i

this defines

(17) WO(4e) ri x SoiLArie)#e) 4.

If a sample is taken it will either be in the stopping set or it

will not. The expected utility of the optimal continuation is

(18) Etd(f(eks,))i-Lc= S &A (.0 *(),1)+)+4 (e14e4As +

SA(II(.i )da d (J)b8j~' i
-u A c) - 4 (C) Proh(Itf$S,).I
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The optimal stopping rule is thus defined by the following

sequential decisionss

(a) If Wo(0(0)) > E4W(f(8j1 9 ))I -(A) ()then make no samples.

Otherwise make the first observation yi.

(b) If the first observation is in the stopping set S1 then

do not take another observation. If y1 is not in S, then

take exactly one more sample before making a decision

on the best action.,
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II. TEAM DECISIONS WITH SEQUENTIAL COMMUNICATION

a. Sgfuential Observations and Intertemporal Communication In

the chapter on multiperiod teams a decision making procedure was

studied which consisted of three phases: (1) the teammates obser-

ved the environment, (2) the teammates communicated the results

of their observations and (3) the teammates decided on their

optimal actions. Each period these phases were repeated. This

team model was general enough to include a fixed number of obser-

vations or communications; the observations zj could be vectors

and the communication functions 92i(j) could be vector-valued.

Let us call an observation and its corresponding communication

an information gathering operation, abbreviated IGO. If the

number of IGOs allowed before actions are chosen is an element

of the decision of problem and not a fixed parameter, the theory

of teams must be modified.

Suppose the team makes IGOs one at a time; after each

IGO the team evaluates its total information and decides either

to continue gathering information or to stop and make a team

decision using only the current knowledge. This sequential team

decision problem has two components. a series of decision func-

tions to determine what actions are taken for the given infor-

mation and a stopping rule which determines how much information

shall be gathered.

Care must be taken to differentiate sequential team

problems from non-sequential, multiple observation team problems.
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thus each teammate will independently give the same answer.

b. Interlm Actions and Opportunity Losses In the theory of team

decisions all communications and computations were accomplished

instantaneously. This could also be assumed for "sequential" team

theory but several interesting situations can be studied only if

communication becomes a time consuming operation. Suppose that each

IGO takes a finite, positive length of time to complete. At tie

end of the IGO an optimal action is selected and implemented, but

while the information was being gathered an opportunity may have

been lost because either no action was taken or the action that

was suboptimal.. If the number of IGOs is fixed this opportunity

loss is unavoidable because the team cannot change the length of

time it spends gathering information. However the sequential team

can determine how much time is spent gathering information because

it can select the stopping rule. The sequential team should recog-

nize such opportunity losses when it picks its stopping rule.

There are various ways that opportunity losses can occur

in sequential decision problems. Three specific schemes will be

studied in this chapter. First, it can be assumed that utility

is realized only at the end of the period instead of continuously

throughout the period. No opportuities are lost while information

is gathered. Second, a known interim action A can be effective

until a final decision is reached. As information is collected

tentative actions are proposed but not implemented until the team
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stops gathering information. Third,at each stage of information 

gathering the tentative actions based on the current knowledge 

oan be temporarily implemented. The effective actions ohanga as 

information accumulates. Onoe information gathering stops the 

final actions remain effective for the rest of the period. 

Two decision making prooedures not studied are�(l) Sup

pose that a change ineffective action creates a oost whloh lower 

utility. At the beginning of the period a historical 1nter1m 

action is in force. As information ls accumulated the team must 

deoide not only what ls the optimal action and whether or not 

more information should be gathered, but it must also decide 

whether or not to replace the interim action with the current 

tentative action. (2) Suppose the team oan not only choose how 

many IGOs it makes but also how many communioat1ons it makes ba

sed on each observation. The teammates oan not only oommun1oate 

the results of their observations but can also oommun1oate the 

result of their individual ex ante messages. 

o •. Assumptions The sequential team decision problem requires 

the introduction of several new components to team theorye For 

oonvienoe all assumptions about the old and the new oomponents 

of team theory will be presented here. 

Assumption 2-1• The length of the period of operation 1s a fixed 

time �. 

Assumption 2-21 the environment takes on an unknown·value 0 at 

.. 
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time t=O and is unchange for all time OA t& . The team's

prior p.d.f. for G Eis+1.0)-

Assumption 2-3: The ex ante communication function i= (E)Is the

same for all IGOs. The only intertemporal communication is

the ex post message X=t&4(O;the ex post communication func-

tion AM(Z) is the same for all IGOs.

Assumption 2-4 The sequence of team observation Z1,Z2 ,.., come

from independent, identically distributed random samples.

This, along with Assumption 2-3, implies that the distri-

bution of ex ante messages are independent and identically

distributed for each IGO with conditional p.d.f. t(N o).

Similarly all ex post messages are independent with the

same conditional p.d.f. k(KL&).

Assumption 2-5: Team actions implemented only after the ex post

message has been received.

Assumption 2-61 The cost of IGO is independent of the actual

messages sent and depends only on the functional forms I

and/AU). This, along with assumption 2-3, implies that

each IGO cost. a fixed Alount C =C (O)1A).

Assumption 2-7aThe time required to complete an IGO is indepen-

dent of the actual messages and depends only on the func-

tional formsul() and/4(-). (Notes computations of decision

functions and stopping rules are instantaneous.) This,

along with Assumption 2-3, implies that each IGO takes a

fixed time K_ K( -

Assumption 2-8t Utility is a function of the team action A, the
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unknown state of nature and the total cost of gathering

information. The utility will be additively separable as

follows U = U(A, 8) - U(Ctotal)e

From assumption 2-1 and 2-7 an absolute upper limit on the

number of IGOs is defined. Let m denote the number of IGOs; it

must satisfy the restiotion 0! m o MK /K

d. Stopping Rules Without Interim Actions A sequential team

makes a series of IGOs and after each one proposes a tentative

action. Exactly how does the team select these tentative actions?

When the team is about to make the mth IGO, it wants to maximize

expected utility given its accumulated information. All teammates

have observed and remembered the m-1 past ex post messages

X1,X2,..,Xm-1 and calculated the joint posterior p.dof. of the

ea ante message Ym and the state of nature 'B:

(19) f(VGK',.., yV) 4(nM 10) Fk(x'(e)}4(e)/ST[WIo)4wlo.

The team picks a decision function oC I)=n&7'I ),...o Q4))'io

maximize expected utility against the posterior p.d.f.f(1701X..'C').

The first order conditions the optimal decision functions

must satisfy are

(20) O.,,u 0= 1~W(M )9YdetTi.M4 (4. =1,.. N.

It should be noted that each individual decision function is

implicitly a function of the ex post message Xi;..,Xm-l. This

could be introduced expliotly by writing the decision function

as CN' V%..., X) and maximizing
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(21)OS .,!14"S' t4(1f''(7 K'.., x 9,e) 4ue)i (Qt)) ctde) AK--MA'i-eG

The two procedure lead to identical decisions for given values

of Ym,Xm,..,XI. Also notice that the mth decisions does not

depend on the mth ex post message Xm because X11 is received after

decisions are made. However Xm is used in all subsequent decisions.

At what point does the team decide whether or not to stop

the information gathering process and what information is used to

make such a decision? Suppose the team had made its mth observa-

tion and corresponding ex ante communication and each teammate

has selected a tentative action Qt ((%,K1..,XAfter the team

receives its ex post message Xm it must decide whether to stop

and implement the tentative A"',=cq,. 7 %-1 s) or to continue

gathering information. At this point in time all teammates know

the value of the ex post message Xl,X2,..,Xm (including Xm) and

the entire vector Amof a tentative actions(5)

The team establishes an optimal stopping rule by backward

induction beginning from the final IGO. Suppose that all B IGOs

have been made and a tentative action has

been selected. Because there cannot be another IGO this action

must be implemented and has a net expected utility

(22) W(& ax )S 0L4(K9e))-P(6IXW.,K')A0 - ((BC).

Back up to the B-1th IGO. The team has a choice of imple-

menting its tentative action X0-&8 ( 8-'Xit..,KX) or making one

more IGO. If ASis implemented, the expected net utility is

(23) Sge (A ' (NIx ,.., x8 ')be - (-C)
If the information gathering is continued the expected net utili-
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ty of continuation is

(24) E IW13\ Ia- '

Define the maximum expected net utility after B-1 IGO and with

at most one more IGO by

(25) W' SeOX~ K Ya L (e""' ''0)

Back up to B-2th information gathering sequence. The team
A- A^-'(IB-

has a choice of implementing its tentative action A = 4 .

or taking at least one more IGO. If A is imple-

mented the expected net utility is

(26)- Se(A(A'?fG)(Dk, )-1 ((O-)c).

If information gathering is continued the expected net utility

of continuation is

(27) Ej 8 [ I 1Y,.. g' j.

Define the maximum expected net utility after B-2 IGOs and with

no more than 2 more IGOs by

(28) WIBJAG t Vi r ~LA(9 B)dR )e Ix K,to-Loq

By induction we can define the maximum expected net Utili-

ty after m IGO with most B-m additional IGOs by

(29) W4. (., '= IIL[ &re~~~.,'4-Afrc)
EjWA I xt i...X

Finally let AA0 be the vector of team actions that maximizes expec-

ted utility against the prior density 4() ; i.e. , A satisfies

S I A;(A 9) 4() d 9 -= 0 , i=1,2,..,N. Define the maximum

expected utility if no more than B IGOs are made by
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(30) \WB5 =mq 1C (A,9)(e)& Elw l-.li]

These B+1 expected net utilities can be used to specify

the optimal team stopping rule without interim actions.

Proposition j-I If the team models satisfies Assumptions 2-1

through 2-8 and utility depends only on the final action

selected, the following stopping rule is optimal.

(0) If S u(A*e)c4e)4e> EPJ .Athe decisionA0 is

implemented without any information gathering. Other-

wise the first IGO is made.

(1) If S 0 4L(A'G)f(OI')so- (A.)f> Ew 1 U'S the action

A c t' is implemented without further information

gathering. Otherwise the second IGO is made.

(m) If Se (A ,9) -e I),I LA(PeN E . X0X1

the action A (', Y, ... , y is implemented without

further information gathering. Otherwise the m+ 1th IGO

is made.

(B) The action A (4 ... Q) is implemented if the

Bth IGO was made,

e. Stopping Rules With Interim Actions When the environment of

the team takes on a new value at the beginning of the period the

teammates begin looking for new values for their action variables.
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Current actions may be totally suboptimal with the respect to the

new state of nature. It is now assumed that the team receives

utility continuously throughout the period. As a result each IGO

creates two costs: (1) there is a cost C=C('7,1) associated with

the transmission of messages and (2) while information is being

accumulated the interim action A may be suboptimal; hence an

opportunity loss is incurred. (6)

If exactly m IGOs are made and then an action A~implemen-

ted for the rest of the period, the total utility for a given G is

(31) LA 6 = L(F,) Km n* L )( )- L4(Mr)

The team establishes an optimal stopping rule by backward

induction from the final IGO. Suppose that all B IGOs have been

made and a tentative action A=(, 'I ) has been
A 8

selected. By definition of optimality Aiis more valuable than

so A is implemented for the remainder of the period. The

additional net expected utility to be gained is

(32) Wg(^A x ..,K')A K)S0 A4Rse)c(e 1.Y.,KI)ae-Lu(Bc).

Back up to the B-1th IGO. The team has a choice of imple-

menting its tentative action -d(Na- K' - . K)

or continuing with A until the final IGO is completed. If A

is implemented, the expected net utility for the remainder of

the period is

(33) a (R',elf(IK;..,x8 )Ae -c(Ua-)C).

If the information gathering is continued the expected net

utility of continuation is

(34) tSQ (A(A ,G)4N 'IX0..., K'AB+ EfWi I ;.,-.
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Define the maximum expected net utility after B-1 IGOs with at most

one additional IGO by

(35) o i {(ejx'(A K-AK 99

-i((6-Sc), xe 14-1,e)4'e',., x'')4e +

Back up to the B-2th IGO. The team has a choice of imple-

menting its tentative action ( . ') or al-

lowing A to be in effect at least one more IGO, If ABZ is imple-

mented the expected net utility for the remainder of the period is

(36) (A- (-2)- S(A(0-70) (W10....,-Q-)

If information gathering is continued the expected net utility

of continuation is

(37) KS9  4(A, )(( 1 ',... E4 W ,~'\)&1~/..,AK'); S

Define the maximum expected net utility after B-2 IGOs with at

most two additional IGOs by

(38) 1a. (1 ;E.) e (A.0 Re4U

By induction define the maximum expected net utility

after m IGOs with no more than B-m additional IGOs by

- 0Me), sSu(A')c(eIK..,r)Ae + EjW.. 1 , ..YJAif.
Finally let A' be the vector of actions that maximizes

expected utility against the prior density 'Ne) . Define the

maximum expected utility when no information is known and with

at most B IGOs by
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(40) \ a = f X ( LA e j,)(9)Ia, v\AS.L(K,o)4(e)AO#K.E[i3&,11).

These B+1 expected net utilities can be used to specify the opti-

mal team stopping rule with interim actions.

Proposition 2-4: If the team model satisfies Assumptions 2-1

through 2-8 and A is the interim action, the following

stopping rule is optimal

(0) If t5 k Lk( A6) G) > vS(wA')Ve)etEt4$.then

the action is implemented immediately without

gathering any information. Otherwise the first IGO made.

(1) if (?- )SGL&(,e)F(oI ')A9-(Ac)S> A )-

EIWa IK'} then the action A (% is implemented

without gathering more information. Otherwise the

second IGO is made.

(in) If -(MSL(A,el) f(L,..4eflLA (p%%)s 0 1Ae(Ae)

fe'..,y)4e+EFwIC~JY',..,)" then the action > --. > f )

is implemented without further information. Otherwise

the m+ith IGO is made.

UA

(B) The action sK=-l(n%1.X , C) is implemented if the

Bth IGO is made,

f* Stopping RulesWi tjl.h Ada pting Interim Actions Again, each IGO

creates both a cost due to transmission and an opportunity loss

due to the time required to complete the communication. In this
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decision procedure the action in effect while information is

gathered is not a fixed interim action,R, but is the tentative

action of the previous IGO, A . This is very close to the multi-

period team model with a static environment in which the team

adjusted its decision according to its information; now the team

must decide when enough information has been accumulated.

The team establishes an optimal stopping rule by backward

induction from the final IGO. Suppose that all B IGOs have been

made and a tentative action AB -. B(YBKl has been selected.

Pis implemented immediately for the remainder of the period,

netting an expected utility

(41) v4(""' ) ..,) )=(A -14flS 0L(A a(ox%$fl -is)
Back up to the B-1th IGO. The team has a choice of imple-

menting its tentative action -' ~N ' for the

remainder of the period or allowing it to be effective only until

the final IGO is completed. If A- is implemented for the rest

of the period, the expected net utility is

(42) (A(-0K)s(A (A-Be){C(eIX ..,X I)ae - g((B-o C)

If information gathering is continued the expected net utility

of continuation is

(43)K-SAA e)+(b)49 EfwRIK ;'..., V'1.

Define the maximum expected net utility after B-1 IGOs with at

most one additional IGO by

(44) VVKiK; .,' sS0(A(A80E)'(&I X XK')G+
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By induction define the maximum expected net utility after

m IGOs with at most B-m additional IGOsby

(45 w(A M %KSe"IAA")(ewo...)te +

~ ~Iwof"+lx_, t m )49X

Finally let A8 be the vector of actions that maximizes

expected utility against the prior density 4(9). Define the maxi-

mum expected utility when no information is known and with at most

B IGOs by

(46) W = P5 (Al,8)4t\A +W'i(A)setA(Ac)<)(e14G, EfWM4J.

These B+1 expected net utilities can be used to specify the opti-

mal team stopping rule with adapting interim actions.

Proposition 2-5: If the team Assumption 2-1 through 2-8 and actions

are adjusted, the following stopping rule is optimal.

(0) If (A-K).S 6W(A2)4()A6 > E1J 1  then the decision

is implemented for the entire period. Otherwise the

first IGO is made.

(1) If ( -z'Q%4(ReW((K')4e- (4(C)> E(j4..J K'} then the

A

action A'= 11) is implemented for the remainder of

the period without gathering more information. Otherwise

the second IGO is made.

(i) If (A -(MtK)51A e)IT(K',..,xmhw u >e
then the action L ,.-., ) is implemented for

the remainder of the period without gathering more in-

formation. Otherwise the m+1th IGO is made.
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(B) The action A'=2(i)( ;.., K is implemented if the

Bth IGO was made,

g. Secuenttal Teams With A Maximum of_ Tw Observations This is

an example of a sequential team which can make at most two IGOs.

The team can do three things: (1) make a decision based only on

prior beliefs, (2) make a decision based on an ex ante message Y

or (3) make a decision an er ante post message X1 and an ex ante

massage Y2. The optimal stopping rules of propositions 2-3, 2-4

and 2-5 will be discussed with B=2 and stopping sets will be de-

fined for those three sequential decision procedures.

Take first the scheme without interim actions or opportu-

nity losses. If the first IGO has been taken and the team decides

to continue gathering information, the expected value of contin-

uation is

If the second IGO is not made, the expected value of implementing

the tentative action R' is

(48) SA4 A',eC(O149 -1V(c).

A stopping set for the first stage is the set of all cR, v') that

satisfy

(49)ISL 21i ,SR' 0 144L
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Maximum expected net utility for the rest of the decision proce-

dure is

(o)w; ct.lSeA(fY).f 9')AG -U(c), EPNI1X' I.

Define a conditional stopping subset of the ex post message for

each possible action by

(51) X1 ' )': (A (A, 0) f(e IK') A tA(C) E i Wi

If the team has a choice of implementing A or making another

IGO, the decision depends entirely on whether or not the ex post

message X1 fall in S101)-

Backing up to the stage 0, the team has a choice of making
A0

the decision A0 and receiving expected utility

(52) SLA Fo ) (q) A G

or making the first IGO. At this time the expected utility of

taking at least the first IGO depends on s'( '. The decision
A

1t

funtion ') is known but not tentative action A because

is not yet known. The conditional subset S1 are thus a function

of the observed value of Y and his is denoted s0() '0M')).

The expected net utility continuation is

(5j) El)IJ = SSe llS,(L&a'(vw) 8)us))Co ('V.V 1e) ct(eudKuJN1do+
S L S SrssY)(1a(LK9A2C)tti1)(Ve4e

If S4LA(We)NO )4O> EjWj then no information will be gathered.

Otherwise at least one IGO is made

Secondly, let us analyze a team with an opportunity loss

due to the suboptimality of the interim action A, If the first IGO

has been taken and the team decides to continue gathering informa-
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tion, the expected value of continuation is

(54) EjW ~ YJ = K S 0 LACf6t4 (24KS%SMTc(?kyt 1-.x~e)

-fY 9Y')4fae- (AZC).

If the second IGO is not made the expected utility of Implemen-

ting the tentative action A' for the rest of the period is

(55) (A -K) So L(9',)4'(G I 46-- A(C).

The maximum expected net utility for the rest of the decision

procedure is

(56) U1 =mq4(-i 5 (ge)-\ejsi)4e-(c), E ItX'IJ.

A stopping set for the first stage is the set of all (Z',K)that

satisfy

(57) (-K)%A(R e)',(eL.K' (e -(A(c),> K g( 0tA,R)4-f Me(+

LA-2K)SO S I LA a Y %~f ew)yt~~~c

Define a conditional stopping set for each A by

(58) '')- ':(-nf (R f(('4 - ((1)>KS8Q(XP9A91A l)d e

(X-ZK)_1. ( ;0102 , i X1 (0 )L-(ZC).

If a team has a choice of implementing or allowing to be

effective while more information is gathered, the decision de-

pends on whether or not the ea post message X falls in5'(R1I') .

Backing up to the previous stage, the team has a choice

of making the decision Aaeffective for the entire period and

receiving net expected utility

(59) A%(O,)(e)4

or allowing A to be effective while at least one IGO is made,

The expected utility of continuation is

(60) So0 &C((0)4(e)4e - EiWU1
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where

(61) EIL4 ST e eIgI5,I(N-K ) WAN,)- (0)(4(,X'le) +1)AX AIIAo

+Sa S&S1 QS1 ( ( (A -t) (VrKIjeYI Gc))

4>(M',K (8)~f 4>LZI&44)4x'Av'4lt e.
If A iS ( (*,6) 4(.ae > gS0(4(W,&)4t9)4tEfrtithen no information is

gathered. Otherwise at least one IGO is made.

Thirdly, suppose the sequential team can take as the

interim action the tentative action of the previous IGO. If the

first IGO has been taken and the team decides to continue gathe-

ring information, the expected net utility of continuation is

(62) KSe LA(', eC) -(e (K 4e (?-ZK -,.e(c) ( ' -

If the second information gathering operation is not made, the

expected utility of implementing for the rest of the period is

(63) (A-&Kc4(',G pe(x9 4 0 -LA.c).

The maximum expected utility at this stage with at most one addi-

tional IGO is

(64) VJ= K E0( A GW(e )eM-tmtxL(A -zK)SL(Ai',e)4(etX')4e -M(c),

(24))5 t4'NV;K ,e)-F(4N e i x')4 1 -4(Z c)iJ.

A stopping set for the first stage is the set of all (', x')

that satisfy

(65) (A -2wit L4($e'4ke9 deA -(C) >P(A -m-K)%I S Q31 l(N K9,O)

f(teV) A I"e - LA&C).

Define a conditional stopping set given V by

(66) tem hs a i -i)(Ap'e)f(i) A for(c) > rs o t)

595 (A 06A)- 4-LI 1) A I'LA 8- ( eJ

If a team has a choice of implementing Afor the rest of the
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period or allowing A'to be effective only while the final IGO

Is made, the stopping rule depends only on whether or not the ex

post message X1 falls in S (AV).

Backing up to the previous stage, the team has a choice

of making A effective for the entire period and receiving net

expected utility

(67) AS0LA(FO) #(1 040

or allowing A to be effective only while an IGO is made. The ex-

pected utility of continuation is

(68) US, ( (6tcP )4S + E
where

(69) Ejw =f , S() l) A(c)$4dj,1.8)<Le)A)(X'IY'IA&

+4SjIasJyI~),KM(&'),e)+-(h Z)k(&((t; '),e) -u(

4(Y1'jje) 4(r(e) 4( 4A t AA.

if -) >E then no information will be

gathered. Otherwise at least one IGO is made.
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III. AN EXAMPLE OF SEWUENTIAL TEAM DECISION MAKING

a. Joint Production With Quadratic Costs The organization model-

led in this example is a business firm producing two commodities,

Q=(q 1 ,q2)', when their prices, P=(pp2)1 ', are unknown.7) Costs

are quadratic C(Q)=Q'CQ=c11 q1 2 +2c 12q 1q 2 +c2 2qt which implies pro-

fits are also quadratic:

(70) T(QP) =P'Q - Q'CQ

The firm is divided into two departments, each specializing in

the production of one of the goods and each deciding on the out-

put level of their commodity, Both departments have identical

prior subjective beliefs about the probabilities of particular

prices and both departments are "team players" interested only

in maximizing total expected profits.

Each department i observes a price forecast z1 which is

correlated with the unknown price p1 . The firm makes ex ante

communications defined by the function 7f

(71) ~ ~ 7 l)(2 I(X10~.)

Only one particular ex ante communication function will be stud-

ied here - no ex ante communication:

(72) ( Y0 ~ ) ( i
That is, the departments keep their information to themselves. An

ex post communication is made based on the function /:
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(73) X -/41(Z).

Only one particular ex ante communication will be studied here -

complete ex post communicationa

( 74) K=( X II,YQL)=,A()h=(a_,7?2.) .

Thus each department knows both price forecasts ex post,

b. Noria Variables =d4fPoteror Distributions The random var-

iables P and Z are distributed normally. This contradicts the real

world fact that prices must be non-negativebut normality (along

with quadratic profits) implies linear decision functions which

makes computation simpler.

The joiny prior p.d.f. for p1 and p2 is a binormal density

with zero means and a variance-covariance matrixr 1.t
(75) 4(P,.,P1) = (z1r-' (i - tf) ep (t -+ (P7- iPlP +

The ith department observes a forecast z1 which has a normal dis-

tribution with mean=p1 and variance=1.

(76) t(;1PV4;La;Ipr)=(tw\ er(-401i-Pi)).

Hence the ex ante information y1 is also normal with mean=p1 and

variance=i.

The ex post message (xx 2 ) is distributed jointly normal with

man=(p1 ,p2 ) and varianoe-covariance= (.)
(78) I(%,t1 P) =(2Tr)~ e x p(-. (gI)Y- ( .-PL t).

The following posterior p.d.f. are used in calculating

optimal decision functions and stopping rules for the firm.
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(80)

2ot 4"

(82) -(-mWom- -trr 'QMOIL et p 4r

L 
i

Let superscripts denote different

(83) f(PUK KI aUY'T)j

i-qvt ~ I Ivar-coy matrix
?II

iX ~t WitW amean of P

3. a. avar-oy matrix

X')+r s mean o f P1

P27 it amean of P2

(85) kM f(I5,FKrfl'46-" t(P sh(etPcf)l;LIt':vaJ

ey,6?(--c up,
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3-2. IL r
S- - 1ti

-var-coy matrix

3= -' +-2 t a mean of p1

j --tVX') a mean of p2

?t.1 1zrrL +6Iir( 3 (tX.

(86) f(u : )=(TY 4I ecpQ-t .

it t(~+)4 ZAC6tv+ tZ mean of Y2

i+ i+X) a mean of 4

o. Cost and Time of Communication It now remain to quantify the

cost and time of communication by picking the functions C(9,A4)

and K(n,,) . Define a matrix such that 'Xrc0,and for itJ:

1 if department i sends an ex ante message to department J
1j '0 if department I does not send an er ante message to

department j

Define a vectorV=('Vg) such that
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1 if 9a,4/8Z; 4O ; i.e., the ex post message depend on z

o if 0,4|&zi =0.

Assume that all departmental observations, Zj, take place simul-

taneously and last an equal length of time tO. Each department

can make only one communication at a time. Suppose that each ex

ante message, regardless of its content, takes an equal length of

time to transmit T1 . Suppose that an ex post message takes a

length of time to transmit that depends linearly on4 ;Ij. Itf sending

and receiving cannot be done simultaneously, define a function

K(?) , as the time that will allow all departments to complete

their communicationsa

(8 8) K %,M) =rYo + T, M5$a 7 XX +t XJL tJI Y+

Suppose that each departmental observation cost C0 and each

ex ante message cost an equal amount Ci. Suppose also that the

cost of an ex post message depend linearly on how many observations

influence its value. The cost of an IGO is

(89) C (1 flm= NC0 tC4FTLX'" *C t V1.
In the particular case that N=2 and there is no ex ante

communication but complete ex post communication, we have the

following time and cost functions for an IGO:

(90) KF,l) 'tO + 2.Yz.

(91) C(9,A) = Z4+ Z C.

To complete the specification of the model, the disutility

function of the cost of communication must be specified. Let it

be linear in total cost with a unit coefficient. -U(Ctotal)=-Ctota
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The total utility function is then equal to net profits.

(92) Tnet= P'q-q'cQ - 0 .q,.

In this example the length of period is such that at most only

two IGOs can be made; i.e.,

(93) Z .- o *7- ^-x) < ? 4 3 (-'o+ 2 -rQ

d. Optimal Deois$on Funotjons If the firm makes only one IGO

and then decides on output levels, what is the optimal relation-

ship between ex ante messages and output levels? As derived in the

previous chapter they are linear functions of the ex ante messages.

(94a) ( = A

(94b) A a

where the coefficients are

(95a) 5 : = -. ZVCIL

(95b) J .L 'L

If both IGOs are made, the optimal decision functions are

linear in the ex ante messages and the ex post information,
A 1.4 A A 1 A I

where the coefficients tand ~tare

(97a) II=-' . -

(96b) L.. .1I)a

(1 )--) a ?a - +
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""\I 

" A 

Gl ven the values of s: and Sa the values of �" and tAz, are 

found by solving the simultaneous linear equations, 
A I\ -"" 

( 9 Sa) CI\ � u -+ ( ti. cl t, = Cu S � 
"' 

� - J.. ___L.. �-z.y
1. 

�i. (98b) e,-i.. .Au+ l,za. 4t1 - -a.. 6 -2, .... - e, z. ,_ "2.t� s a • 

The values of JTL'I. and l,1 are found by solving the simultaneous 

linear equations, 

e. Optimal Stopping Rules Without Interim Aot1ons Suppose that

the firm must make a single production run, producing both goods

q1 and q20 and then it sell the oommod1t1es at the prices estab

lished on the market day. Before beginning the production process 

the firm's departments can observe industrial reports, newspapers, 

etc. The time contraints are such that this information gathering 

can be done twice at meat before actual production must begin. 

This is a sequential team problem without opportunity losses. The 

communication system has been described above. 

If the first IGO has been made and the second one will be 

ma.de, the expected net profits of continuation is 

C 1 oo > E f 1f ! I ')C �, JC '2. ! : E i P ' a- & - a-'l. 'l r :z. f l(,1 , lC ! J - t.( (lo + �'L) 

- { (.A."X� 1. -t- ..A,2 x: X�+��z. X' .. 1��{ (s�+s!)
- 'f (Co+C.J

where i11 ,l
12

,i22 are constants that depend only on the parameter 

o
11

,c12,c22 and r. See the appendix for the specific values of all
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coefficient in these examples.

If the second IGO is not madethe expected net profit of

implementing the tentative output levels Q Vis

(101) E P $ Q 6 #, 19=2. t 7.- q 9 WOK-

where 2 1 and 2 are constants that depends only on Q % and r. It is

unprofitable to continue gathering information if

(102) Ei? t'C$' -$"c$ ',.(t bt) > E NVIK',,X '1.

The stopping set for each tentative action Q1 is defined by

(103) s'c$O') =f1, : L1

where D(X a) is a quadratic function of the ex post messages.

(104) Dt(10)'q) %1 4%Ux'K'twL j, 1

If the firm has a choice of implementing Q'or continuing the gath-

ering of information, it need only look to see if its ex post

forecast makes d(',KXC) positive.

Should the firm make even one IGO? If it does not, it must

pick output levels that maximize net profits against the prior

beliefs. The expected net profits of doing this is

(105) Ej-Pa$oC-oI

Because the prior mean of both prices is zero, the first order

conditions for 0 * requires that 0  *o.o Hence net profits of

making no observations is zero, If the net profits of making at

least one IGO is non-negative then the first observation should

be made.

There is an exact correspondence between ex ante and ex

post messages in this problems NI /(VE) ti(I'h?'.* The decision

of department one depends only on y, but, ex post, it knows the
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value of Y. Looking ahead before any observations made, the deoi-

sion to make one or two IGOs depends solely on the observed values

of y and y. Given the 1, Q'iIs determined exactly via the deci-

sion functionT ( ), and the ex post message X is determined

exactly by K1=Y1. The stopping rule depends only on Y1 and can be

formulated as followsa the coefficients in the function D are such

(106a) t = kil ''lt hi z-iz

(106b) 4 rg'+ hk 3 z

(1o 6c ) wL -- t . i , t , % + 6 *, s Z "

The function D can be rewritten, using X1=Y1 , as

(107) F(')= % S', t+1 i dS . + '+ -t

For a given ex ante price forecast Y1 the firm will make exactly

one IGO if F(Y)> 0. The firm will make two IGOs if F(Y 1)A 0. The

ret ; profits of making at least oi z IGO and not more than two IGOs is

(108) Ef1T'j S,J (P'('4'vc~'' (o~)4(~'4't
tS,, Sy2LSA 1y A2( yl 4 theX)

If 0 then the first IGO ahould be made.

f. Optimal Stoppinpg Rule With Adapt4.ng Interim Actions Suppose

that the firm can produce both goods continuously over the time

intervalo t tSA but can make at most two IGOs. At the end of the

production period all produced goods are sold at the same price.

If the firm decides to produce Q goods per unit time for length

of time T , the total profits for that period are

This is a sequential team with opportunity losses and adapting
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interim actions.

If the first IGO has been made and the second one will be

made, the expected net profits of continuation is

(109) (+ .'+ Ej-TXz .4,) 1-=
(X~t 1 ' (~ '1 ttQI' CL')+ (A -zt r-q r)-t(1s -,11 ;A

_AL - +Si )k

If the second IGO is not made, the expected profits of implemen-

ting Q'for the remainder of the period is

( 1 1 0 ) _ _r , - _' 7 Y I + -2j- C - 2 -( C o t c .

It is unprofitable to continue gathering information if (110) >

(109). The stopping set for each tentative action Q is defined as

(111) = jxt :f '.G-W j) >o

where Ga',X') is a quadratic function of the ex post messages:

(112) G-(X',K')= V11 X ' 2I+ v ?\K' -t-v. + I I-t +z ttVow.

If the firm has a choice of fixing outputs at Q1 for the rest of

the period or gathering more information, it need only look to see

if its ex post price forecast makes &(Y4,i) positive.

Should even one IGO be made? If no information is gathered,

the expected profits for the entire period is zero. If the firm

begins gathering information the expected profits of continuation Is

(113) EIW'I 4 =pS((Ar-.o-ZtP'&)4(P101t'c&A) -Z(Ct+C') 4(,1')4'4P

(pl, A fAQZ~e ).q (C 4Cj)) 4(Pn9A AY P

where

(114) N( ', 1 12L+S 1 2.-yj+ 0 .

If Ef1T>jO then the first IGO should be made.
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Appendi i Coefficients in Stopping Rules
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FOOTNOTES 

(1) S�e Wald(l947), BlackWell and G1rehiok(1954) and Jackson(1960).

<2) Ra1ffa and Sohla1fer(1961), Marsohak and Radner(1972) and

La.Valle(l968). 

(J) This argument ls drawn from DeGroot(1970) e 

(4) DeGroot,(1970), pp, 277-78.

(5) The knowledge of other teammate's tentative aotlons could be

used to guess what ex ante messages they received and 

hence, could provide 1nd1reot information about0. Just as 

ex post messages are not used in current dec1s1on making, 

it is assumed that the team does not readjust its actions 

to make use of this indirect information. 

(6) This formulation is derived from T.Marschak(l968).

(7) This organization is also studied in the essay on mult1period

teama. 
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ESt XY THREE

.TTERATIVE TEAM DECISION THEORY
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ITERATIVE TEAM DECISION THEORY

I. INTRODUCTION

This essay examines one way the team might solve its deci-

sion problem. As noted in Essay One the optimization problem

involving information is a infinite dimensional problem in general.

The objective function, expected utility, is a functional and the

instrument of optimization is a function defined on a set which

generally has an infinite number of elements. In statistical deci-

sion theory the complexity of the problem can be reduced signif-

icantly by waiting until the information is known and then solving

a scalar posterior problem. This procedure cannot be used in team

decision theory because at no time before actions are selected

will the teammates have identical information; therefore a poste-

rior density cannot be computed and the problem cannot be reduce

to a N-dimensional optimization. The differences in information

force the optimality conditions to take on a "Nash equilibrium"

character; the ith teammate makes the optimal use of his informa-

tion given the optimal decision rules of all other teammates. But

how do the other teammates know their optimal decision rules if

the ith teammate is still computing his rule? The team's person-

by-person optimality conditions are generally a system of N integ-

ral equations in N functions which must be solved simultaneously

to get the best decision functions. How is this system solved?
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Imagine that eaoh teammate knows all the features of the 

team's problem -- utility function, oommun1oation function, 

conditional distribution of all observations and prior distri

bution of the state of nature. F.aoh teammate oan therefore 

express the integral equations that define the person-by person 

optimal decision rules of other teammates in order to select his 

optimal action, he can compute all N optimal decision rules by 

solving the system of integral equations. Since there are assumed 

to be no differenoes in tastes and beliefs, each teammate's solu

tion of the person-by-person conditions will be the same decision 

rules derived by any other teammate. However, the solution of the 

person-by-person optimality conditions may be very difficult. 

Even the easiest team model with quadratic utility and normal 

random variables, the solution of the person-by-person optimality 

conditions requires the inversion of a N-by-N matrix. In more 

complicated problems the integral equations may have no analytic 

solution. Therefore, the strong assumption that all teammates 

know all features of the problem still does not make the general 

problem tractable. 

Suppose that the teammates are not quite as knowledgeable; 

perhaps the teammate 1 knows only those portions of the team 

problem that enter in the 1 th person-by-person optimality condi

tion. If the utility function can be written 

U(R,e) = "f:_ U i (qi,e) i--I: t U ij (e1;,C1J,0) + U0 (A,8) 
1:1 \•1 J•I 

it might be true that the 1 th teammate only knows the functions 

u1,u11,ui2, •• ,uiN and uo. In this case no teammate can express
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all the integral equations which define the decision functions, 

and therefore direct solution of the team problem is impossible. 

What prevents the teaJ:ll from pooling all their knowledge and. th�n 

solving the system of integral equations? Unless the utility 

functions can expressed in a small number of parameters, it may 

be very expensive to pool the information. In addition, the 

utility functions may be only implicitly known by the teammates, 

in the theory of the firm, a firm may know its technology but 

not its production function, which requires a previous maximiza

tion 

These are two reasons that an iterative solution to the 

team problem may be requireds direct solution may be cumbersome 

and costly or direct solution may be impossible due to technolo

gical decentralization. This essay analyses one iterative solu

tion procedure for a quadrati�-normal team problem. Since this 

procedure is based on the gradient algorithm, section II outlines 

the gradient procedure for functional problems� Section III shows 

how the procedure is formulated in a decision context with a 

single decision maker. Finally, section IV studies the iterative 

solution of the team problem. 
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II. OPTIMIZATION BY STEEPEST ASCENT

a. Gradient Methods Jn Calculus Consider the problem of finding

an unaonstra1ned maximum of a function f ( ')f.,Jr:2.,�·-, �) . A neces

sary cond1 tion for a point �., ... ,,'i") to be a local maximum 1s that

the partial derivatives vanish at that point as followsr

ll - if - .li. -
< 1 > ax, - o, ax1 - o, ... 'a"" - o.
If f (x,, ... , .x...,) is a concave function these conditions are both

necessary and sufficient for (')(..\7 ... ,Xn ) to be a maximum.

How do we find this point (� 1, ••• 1�"') ? We have n equations 

that can be solved simultaneously for the values of then variables 

X,, ... , ><.,-, • However in many cases the functional forms of the partial 

derivatives of .f(j,, ... ,')(�) make such a solution computationally 

difficult and expensive. As a result numerical methods are used 

to determine the optimal values of 1',, ... , �'WI • The most straight

forward numerical method 1s that of gradient or steepest as<!ent. 

Gradient methods are iterative algorithms that begin with 

an approximate solution Xf,X:, .. 1 1<� and move successively closer 

to satisfying the optimality conditions (1) • .Ea.ch coordinate is 

varied separately in suoh a way as to increase f(1',, ... ,x ... ) .If "'t' 

is the iteration number, the gradient method requires 

(2) xt'' - ><"f have the same sign as � {)(�, ... ,>(�) i-: 1,2., ... ,V'\ 

where the vector cH,,ff
s
, ... ,fi") evaluated at -r 1s the gradient 

off. If adjustments take place cont1n1uously, the requirement 

( 2) 

( '.3} 

1s replaced by the differential equat1ons1
,:. 

cl�; - 1. .i:£. {X-c X,:)
d 't. - �i a>Ci i 1•••1 WI 
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where A; is the adjustment speed.

There are many variations of this hill climbing technique.

At each step the change in x is the direction of the steepest

slope at that point on the hill. The value Of deter-

mines the magnitudes of the change. If ( is strictly

concave then the gradient process (3) converges to the maximum

pointX11)....,K, although in general the converges becomes slower

the nearer the process gets to the optimum. There are other numer-

ical methods, such as Newton's method, that involve higher order

derivatives which converge faster near the optimum but may not

have stability properties like the gradient method. This chapter

will deal only with generalized gradient processes,

b. Gradient Methods of Solution In Optimal Control There is a

wide literature on the generalization of gradient algorithms to

problems of optimal control. (1) The decision and team theory prob-

lems can be looked at as special examples of optimal control

theory and, hence, a summary of the gradient methods for optimal

control are presented here.

Consider a system of differential equations

(4) X -= f Y, ., t

where X is the n-vector of state variables and 4(+) is the m-

vector control function. The optimal control problem is to choose

the control LAO to transfer the initial state Xo0 Ko) in accord-

anoe with (4) to a final value at time T in such a way as to

maximize the functional
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(5) wu4 =t(UTtT), + SJ(, LA t)c t.

The optimal control must satisfy the necessary conditions of

Pontryagina

Pontryagin's Maximum Principles Let e*(i)be an optimal control and

e(+) its corresponding state trajectory. Then there exist

adjoint functions ('-C-1).,P-%(+ such that

(a) The functions Kt"tand ?P(+) satisfy the Hamiltonian sys-

31L. - aELtem of differential equations - a e ' I a x
wherelA, the Hamiltonian, is d(XP1PL4-)= Ltf'

(b) A(+)maximizes $O(4P,, t), that is for allt

(x. P, U*+)=

(c) At the terminal point (T,Y/(T)the tranaversality condi-

tions hold-p(T)=;1*2)N

The necessary conditions reduce to the following equations

(5) 3-= =-F ,. -, X (i) = Xo

(6) p- ('+.=E'-=.-
(6) aax ax 2

(7) AtAL+÷2E' P =oau aw aM
The gradient procedure begins with an arbitrary control L(t)

and corrects the non-optimality by adding a function SUfOto the
A

control U (+) such that

(8) TI.a+&14>T.

Let X be the state trajectory found by solving (5) withCA=L . Let
A A

K+X denote a similar solution of (5) with LA -z(+ (CA,

(9) (n+ax) = f(X-tAXIfU,+, (t)+A(to)w .

It follows that

(10) AQK f+X+4,A&t)--FU( 4),a aX(t)=o
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Making a Taylor series approximation of the right-hand side of

(10) we linearize the differential equation to find

A

How does the value of the objection change when Q is modified?

A linear approximation is

(12) ssT= ~V+ST]ya( fl I X f1 cit

Making use of substitutions from (6), (7) and (11) and remembering

(T) =aand 4X(to)=o, equation (12) becomes

3) S[T =T _M

where aq is the gradient of i with respect tot4. If the change

in control,S54 , is chosen so that IT is positive then we can

increase the value of the objective functional. One way of doing

this is to choose 614 such that

(14) PA=A LI -A> 0)

where A is analogous to the speed of adjustment. The change in

performance is given by

(15) o a( swzS7 4 4 a

These first-order gradient methods usually move the value of

the objective functional up rapidly the first few iterations, but

as the optimal control is approached, the speed of convergence

slows dramatically, Second-order algorithms are available analo-

gous to Newton's method that converge more rapidly but which are

computationally more difficult and which can diverge if the

initial control is not near the optimum

r, Varlational Derivatives in the Calculus gf Variations The

calculus of variations can be considered a subproblem in the the-
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ory of optimal control. Indeed, it can be easily shown that Pon-

tryagin's maximum principle implies the Euler and Legendre neces-

sary conditions of the calculus of variations. Because the previous

derivation of optimal team decisions was analogous to the calculus

of variations, gradient methods of the calculus of variations.

Hence, the gradient method in the notation of the calculus of var-

iations will be presented rather than depend on the formulation

given above for optimal control theory.

Suppose we desire to select the function X(4f to maximize

(16) -TC1 =ST)1( ,*,t) At.

Assume t(+) is incremented by NWl), which is different from zero

only in the neighborhood of a point t. Dividing the increment of

the functional,ZEX+h3K -wK3 , by the area AU lying between the

curve h(4) and the t-axis, we obtain the ratio

(17)CY-

Let4w- go to zero in such a way that both maxlh(t)( and the length

of the interval in which N(+ Is non-vanishing go to zero. If the

ratio (17) converges to a limit, this limit is called the varia-

tional derlti e of the functionallLY at the pointtE and is

deoJ y(2)denoted by gy . The principal linear part of the variational

derivative is

(18) (X,, - T (K

= r W0+, *UI), )),)T).

The Euler necessary conditions of the calculus of variations

require the extremal to satisfy

(19) I=0 fa ot 0T.
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If the function x is veotor-valued,KUQ(Il(),- -K (+)),a oon-

cept analogous to the gradient can be introduced. In addition,

the functional can be a multiple integral. The variational gra-

dient when X is an n-vector and t is a m-vector can be defined

as follows.

We want to select functions Mt2(,..,t4Xkt,,..,4...(,+t,..,tM

to maximize the functional

(20) ~TrX',..,x}J- S'--- . V X .V",t.t,,)CAtj

where V X'R,.--,tm), -.- ,A (t,...ti-i).

Suppose we give . an increment Vi' (t ,--,t,). The change

in the functional is

(21) AT -TLIK'',.0-kAJ+] -wX',..,K

A linear approximation of AT around K,.., fVt,---,VX is

(22) AT~ ~= sT's'.M-

Let us make the notationL = X4. Noting that

a4 ;tp.we rewrite equation (22) as

(23) A 3-Sr.S r

A-t

The term 1Nt AL ?)Is the divergence a x: and the divergence

theorem states that if r is a boundary of the region of Integra-

tion then

aL;aa'r at

The arbitrary W(t,,..,t,4 oan be selected to vanish on this boundary

I' sothat
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c 25) s�· .. · s�.., o"' (Z�t h;) ,;{ t, ... ci<t,., -= o.
J 

Hence the change in the functional is 
n Ti 

m .:a!.;[:_ 
AJ"" =?. S '···ST'"'(Ixi- � a�· �t.)\.,

i
(t,, .. .,t,.,)4t,···4t.."'.

I '=' 0 0 J - I ''l.i .I 

The generalized Euler conditions are 
' - M a z.r -

Ix• � ax\ at. - o i.. 21, z. , ... ., n. 
J"2. ' +,i ,I 

The principle linear part of the variational partial der1vattve 

of a multiple integral functional is 
� - • - w,,, a"2.I 

(26) .(ti -I)( 1 �a"·'dt• lQ.IJ'l.., .. ,n.
I '" ' "tj :.., 

Suppose the number of functions equals the number of indepen-

dent integrands, n=m, and suppose the functions are restricted so 

� that the-----rth integrand, x'1t,,�tr"\)-= X-itti)-. -
Then the variational partial derivative is 

.L.:!.. rT, ., S'f'I'\ ( I � � 'J.T ) it . <'' .. .l 1:. 
(27) ()(' = J

o 
··l•r· 0 1-i - r=, axtat

,; 
0\ ,· \J '"' � 

where the notation" (i) 11 implies the 1 th integral does not appea.r. 

d. Gradient Solution in� Calculus 2f Variations As in the

gradient procedure of optimal control theory, the gradient proce

dure for the calculus of variations begin with an arbitrary func-
A 

t1on 1'f+\ and corrects 1 t by adding a function cf x.H) that increases 

the objective functional. rri;k ls positive then increasing Klt) 

will increase :r, and irf:/t is negative then decreasing °RCt) will 

increase J. One way. to do this is to specify the 6°J(.C-f) function as 

follows; 

(28) J"xH·)-.A flit
Jc>o for all o I::. t � T 

where 

(29) };It: ==T�(;<+l,i<+),t)--ft Ix(�U�,�(-\\, t)
.. . 

� =- F ( it+), iH), Kl+), i) 
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and A is analogous to the speed of adjustment.

If we denote the iteration byt, the change in the tth Ite-

ration is defined by

(30) O~'- F (kO, s flt
or if the adjustment is continuous

(31)AXLA = 'A V I()FI+ (0,t)
ant'

If T is strictly concave in K and X then it appears that the gra-

dient process is convergentP The process converges to an extremal

that satisfies the Euler equations. Again we should notice that

as we get closer to the optimum, the magnitude of g-Xdecreases

and hence the speed of approach decreases. A second-order method

could prevent this slowdown.
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III. ITERATIVE SOLUTIONS IN STATISTICAL DECISION THEORY

a. Gradient Solutions with Quadratc _Utility and Normal Densities

Statistical decision theory is related to the calculus of varia-

tions in that the objective is a functional and the instrument of

optimization is a function. It differs from the trAditional calcu-

lus of variations problem in that the felecity does not depend on

rate of change of the decision function and the functional is a

double integral where one integrand does not affect the decision

function. The optimality conditions of decision theory are anal-

ogous but not identical to the Euler equations of the calculus of

variations. Variational derivatives differ from those developed

above. We will express the variational derivative in its general

form below, but the remainder of the section will focus on the

special case where utility is quadratic and random variables are

normally distributed.

The statistical decision theory problem is to select a deci-

sion function d.(3) to maximize expected utility'

( 32) WCl =So L(K()43) 4(j t1)4+ (e9 j

where is a sample value distributed conditionally by 4((O and

-e is the unknown state of nature distributed 44O). The expected

utility can be rewritten to look like

(33) w c1li ISU(Ci)0)4(:S1)49)4 81

The variational derivative of WC&J is defined for each 3 as

dl$t ck u*se, 1CCocsioe) c&I~~~G
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The optimality conditions thato( must satisfy are equivalent to 

f� /
'l 
� 0 for all ':i·

We will now make the assumptions that utility is quadrattc 

and random variables are normally distributed. 

(JS) l..t(A>a)-: 2,.-M AS -1 R
-a.

(J6) q,{�\8) = (1rrrt ejp(- _j:i: (c._j-a)2 ) 

c J 7 ) ct, { e) = 
c 2 rrf!: , 'tC. p (-1: a -i. ) •

Under these assumptions optimal decision rules will be linear 1n 

the ,.nformation variable 

( JB) � ( �) == a '1 .

Hence the only functional forms that need appear in the gradient 

process are linear and we oan adjust them by adjusting the slope 

ooefflclent. The decision function of the'?: iteration 1s denoted 

The variational derivative for each 'j is then defined by 

(40) f.;\� = S8 (2.,A-fB - 2.t<
fc

'j) <P(� \e) <l>le)c:(a

= Se { 2�e- 2/q-r!.'3) f(el':i) de · 4'('l)

= 2 (µ E {el�J - f Q-e'j) q>('-j) 

= '2. ( }4 m8 � - f q 't�) � L '1)
= 2 � 4L,) (A�e -gt.\�) 

wherel'W\9 is the constant such that Ef8l'j1=V'l\8 "j , in this example 
- _J..
.... e - 1 • 

If f;> > 0 then we want to increase the value of oC...,:: (�)-= ct�'j. 

If {.
'-' 

� O then we want to decrease the value of et."-= (�)-:4--c=� .. For 

a particular�, the sign of � depends only on the four coeffi

cients ,M ,"'e ,f and q,"l::. • The gradient adjustment process can be 
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defined by the difference equation 

c 41 ) a.. "t:·t-1 - a� -=- f. ( .,4-4 "19 - .z c:t--= ) 

whereE>o1s a parameter analogous to the speed of adjustment. 

The solution of th1a diff�rence equation if the initial decision 

function is a(.
0('i)-= 4° <j is 

( 42) Q. "t: = (i o ( \ - � f y
r. 

+ p.tW\a ( l - ( \ - Et) 1:) .

If ct0
= o and ni8

-= � then the solution is 

<4J> '\'l:-= 1t" <'-<,-fr)�).
If f > o and �9 � I then LI H Q,:. 

= a , the value of a.. that
6 T+o0 

maximizes expected utility. Also note that 

( 44) L\ M c::,"c+\_a ,::- = LI� f)'( �e< \ - ( 9)
"[_ = o.

'1: "? DO 1: ""7 _,,. C, 

That 1s, the adjustment process slows down as it gets closer to 

the optimum. Second-order methods could improve the speed of 

convergence. 

If we treat the gradient adjustment process as a continuous 

procedure then the action coefficient should be adjusted according 

to the differential equation 

(45> �.t� = 2 <1"'�6 -r<;t't:). 
The solution of this first order differential equation wl th <ll(O) == q 0

is 

(46) 

- •t1:: ..... - ( I - e- f,r,:).Q 't = Q o e ... , 
b 

It Cl0 = o and "'a-= i: then the solution is 

(47) Q 't = -ft Cl - e-•i
""t ).

If t">O thenL.'"'"1: =q, the value of ct that n:ax1m1zes expected 
"C.-

utility, Also notice that 
� .L!!t. -t! t ""t. (48) LIM 1(-i; = LIM ., e. =. o.

1:.-+ oO 'C -,. oO 
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The adjustment process slows down as it approaches the opy1mum. 

b. Optimum Number of Iterations With the above formulation of

the gradient solution of the statistical decision problem, let

us look at the problem of selecting the number of iterations to

complete before fixing the decision function. Suppose each suc

cessive approximation of the decision function costs C units of

utility. The decision maker will select an optimum number of

iterations of the adjustment process to maximize net expected

utility.

( 49) NET \.J [o(.1:.] =- W («.""CJ - l "t..

The value of -c•picked should satisfy 

(50) W[o(r+ ']-W(.oi..1:*) f. l. � WL.c.i:�]-W[o!.�*-•].

If we imagine that the adjustment process is continuous,an app.rox

ximate solution to this problem is to take -c.* to be the nearest

integer to the number ,: that satisfies

(51) ���:! = e..
This states that the marginal increase 1n expected utility from 

refining the decision function should equal the marginal cost of 

refining the decision function. 

How do we express W[°C1
] as a function of 1:'? If utility is 

quadratic and random variables are normal with E{eJ = O, then

�coe.�J will depend only on the variance and covariances of 8 

and � • If a0 = o then 

C 52) W («l:] -=- E \ 2..1'4a�� 6 - 7 ( cft)
z. 

� 2 � 

;.£ {"Z.C.O\l(c.& 9)( 1-e.-�f '"t ) -1: VQ't'('1)(,-e-1fCi)
2.

'1. t .:.J, 

:: ft ( 2.(1-e-1t 1: ) - ( I - e-•t't f'"). 
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The marginal expected utility of more adjustment in the decision 

function is 
C 5 3 ) cl � «:;' 1 == -k t: 14 � e- 2. 't �

The optimal number of 1 terations is the value of 'l: that sa tisf1ea 
-2.Cf'"'t. 

( 54) "'i" E )'I -a. e. � = C .
This number is 

(55) 1:= 1" (�'2�)*i. 
Noting the faot that .e:gC > O we see that increasing the marginal 

cost of adjusting the decision function lowers the optimal nu.m-
il - I 

ber of 1 terat1ons since ac -= '21:r C • Increasing the impact of the

state of nature on utility (increasing JC) increases the number 

of iterations because this increases 

and the optimal decision coefficient 

the d.1stance between Q
o = o 

'3-.A.. - -z.z .

c. � Joint Selection of the Amount sd:_ Information� ,!h!! �ccu-

racy of� Decision Function Suppose the statistician can not

only select the number of iterations the gradient approximating

process makes but oan also select (non-sequentially) the number

of observations. These two d<1�isions cannot be made independently

because they both affect expected utility in complex ways. In

creasing the number of samples may or may not lead the statis

tician to less refined decision functions. Such tradeoffs will

be studied here.

The statistician can draw some number of random samples, s>

where each observation� is identically distributed 

< 56) �{1 \e) � (1.v)--t. e.Jp (-t.(�-a)'l. ). 
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The state of nature is again distributed normally according to

equation (37). LetT=(t..) be the vector of observed samples.

Then the joint p.d.f. of 'Oand&D is

(57) (815)= (zrrlktL eXP(-i EJ 4'3' 1E v I)

where

- va- coV

An important element in the following calculations is the expected

value of 0 given4s

(58) E40hL'..J,&t,9s - t9l-

The optimal decision function will again be linear in the infor-

mation:

Because of the symmetry of the 1's each ooefficient 4' is the

same as all others, so

(60) ;t(W)1s= (Y+t9+--+9).

Suppose that we have an approximate decision function oV() =q(cgt..tj5).

what is the expected utility of such a decision function?

(61) WJt"(ff 2-E Q (3'+--+js) - +- + S)
S55

-t4q coV(&,j') -. t Cou (Lj',cj')

. 1/4 2.g t(St+S).

What is the optimal number of observations for a particular dec!

sion function .(Y)l',('t..ej)assuming observations are costleas?

It is the integer 2 that satisfies

C62) WaS9)I a \W L(f(l)3 3 -or tiI s.
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As an approximation this oould be the the nearest integer to the 

number that satisfies

{6J) £\Wi�('f S)J = 2.;t-(� - rll�(2s+1) = o ..

This number ls 

(64) S::. � --L . 
:a. :z. 

Obviously the optimal oho1ce of the deo1s1on function depends on 

the number of observations. If the optimal value of a. 1s 

(65) ac s) = 
(s�)z 

then 

(66) 
JW(�{'IS)] - � _L - � > 0, 

d CS 6 (s°"\) 
If the observations are costless then an infinite number should

be drawn. If each observation has a cost of K utility units then 

the net utility of a deo1sion function oC.(.�S)=q (':1'+ ···+<js) is 

(67) NET W(a'(,S)] = \JloC.(1�)] - S �. 

The optimal number of observations for a fixed value of ct. 1s the 
A 

integers that satisfies 

(68) W[cl(�s-t,)] -W[all�l)J � t'\k W[at('(s)] - W[al(.,'(i-•)].

We might approximate this result by takings as the nearest integer

to the number s'tt that satisfies

(69) c:I W[«( V*J] - IL 

c:I. s - ., .
This number is

( 70) S "' - � - .JL - ...1..
- r.. -zr"

'2.. 

'2 

Again if a is adjusted to take aooount of the change .ln ..s then 

(70) is incorrect. The correct condition is

( 71 ) cl w ( � ( '(S�J] - � I 
:: Kcl 5 - t (S�+l)

z.

which yields a number 
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(72) S %&= - -I .

Now let us introduce gradient solutions of the S-observation

statistical decision problem. There is no conceptual difference

from the formulation of the previous subsection. The variational

derive from each Yis defined by

S W Cat(VAJ

2Q44 E e1% q t..f sflU )

The gradient adjustment process can be defined by the differential

equation

(74) Jt S.,

If the initial value oftis zero then the solution of this

equation is

(75) 't

If each iteration in the gradient process costs a fixed amount C

utility units, then the net utility is

(76) NET W L.'rLU]- w LC'LY)1 - Ct-SK
.-L S(l2(Ie?(ft) eQ. "tt  ccs

We can approximate the optimal integer solution by selecting the

nearest integers to the numbers Sandt*that satisfy the marginal

conditions

at(??a) A-I

(77b) a S ) K.

The Hessian of WLY.(Y'XI evaluated at t S is

(s8) at"ra I1(?8)g mmr

as s t C %rI+(s*) sF41
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which is a negative semidefinite if

(79) z !\(s (S*t) g K > C.

We will assume that this holds at the point ( ST, t ) and hence

this is a local maximum,

If the price of additional information is changed, the direc-

tion of the response is determined by

(80) 5IGN c)K ~ at"I

(81) SIkcrN i -Lr sIGCr At&. L 0

This is not a surprising result; increasing the marginal cost of

information lowers the amount of information acquired and increases

the attention paid to that information. If the marginal cost of

refining the decision function increases, the response is

(82) slM = SN 'a 5* .>.0

(83) $IsM0 r lt r

Again, these results corresponds to expectations.
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IV. ITERATIVE TEAM DECISION THEORY

a, Gradient Solutions with Quadratic Utility and Normal Densities

The team decision problem is to select a team decision function

Q(() = ... ,0di))to maximize the team's expected utility

(84) V/lo0 = S S 4()o(,&) t(lIG)4(e)cA1e oN

where is the information variable distributed conditionally by

4P019) and e is the unknown state of nature distributed 4().

The variational partial derivative of WE with respect to c(.j) is

(85) Jci)&G AO(iL(o tS e)49 &(V

where ..=3 ., , . . The optimality conditions that

oM (0 must satisfy are equivalent to

(86) g y0  for each possible L ,

We will make the assumptions that utility is quadratic and

random variables are normally distributed. The ex ante communica-

tion system is completely decentralized, so no teammate communi-

cates the results of his personal sample. Other information struc-

tures could be used in the study of iterative teams but the calcu-

lations become complicated.

(87) L4(AO) = 2. 4' A8 -FVQA q positive definite

(89) 4(M&(
jut

(90) 4b(o) = (2 .Tr t epA

Under these assumptions optimal decision rules are linear in the

information variables.

(91) Al iS =th-,N
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Thus the only functional forms that need to be explored in a gra-

dient process are linear and the only parameters that need to be

adjusted are the slope coefficients (4%). After 't iterations

of the adjustment process the decision functions are denoted

(92) ( d = 7 j I t*,N-

The variational partial derivative for each in the quadratic-

normal problem is

where V%; and mjy are the constants such that E j9 and

EfI I1=rr ti jS . In thi s example "'e; and .-

If~ > then we want to increase the value of

Similarly, if $ 0 then we want to decrease the value of

SI L For a particular 'jj, the sign or depends

only on the coefficients /4l1iI,.Igs ; i..,iM qv 4 odT,.., M.

The gradient adjustment process can be defined by the difference

equations

where t 1 O is the speed of adjustment. It should be noted that

if each individual i computes his own change in his decision

function using (94) then he does not need to know the values of

the parameterlsyi , ,-) nratt.oW--,A Ase1. The teammate

could actually be ignorant to the team's objective function as

long as he knew the coefficients related to himself.
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We express the system of differenoe equations in (94) in

matrix notation as follows

( 95) A c' "= l-G Am 0o r Al-' A I --O+ V

where

(96) V = IA/.Me A.L/4tMG -, E /aiMMN)

(97) Ef ,R".1 aEt aIowMj
E U- 151C' 9 II 0" nil

If the initial decision functions are

(98) d i) = 47O4) i i =I..,N

then the solution to (95) is

(99) A' -T( - A' 4+ (T -E- C--'V.

If 0= Mew.i 4=rM = : then the solution is

(100) AT = (r-Ai-t

where

(101) '24F -' - .

at Xt%. -z a
- - . . Q + DIAcr Qi DIACV9

- . . 7ijpn
0

The stability of (100) depends on whether the largest eigenvalue

of -is less than unity. If non-diagonal elements of H

are negative and E< for all i , thenl-tli is a positive matrix.

If, in addition, i has a dominant diagonal or

(102) 2-fj -- r > , -, . N

then the solution (100) is stable and converges to the optimal value

(103) A .

a
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Irrespective of the sign patterns of N , if' is small enough so

that

(104) ; t SN

then the solution (100) is stable and converges to the optimal

value defined in (103), The largest elgenvalue ofttIA cannot

exceed the column sum ofIAAor(4 )

(105) A '--

Inequality (104) implies that the maximum sum is less than unity,

Suppose the gradient adjustment process is continuous

rather than discrete; the coefficients are adjusted according to

the system of first-order differential equations

(106) -

Under the assumptions -=LF and Y 1 0 Mgj= this system

of equations is

(107) A ~E 2 ?_ .

The matTx N is the sum of' and the diagonal matrix with the

same elements as the diagonal of 9. Since q is positive definite,

4 is positive definite. The general solution to the system of

differential equations is of the form

(108) ri = T elMA.

whereX; is a eigenvalue ofr41 and MA1 is its corresponding eigen-

vector. The convergence of the solution depends on the signs of

the elgenvalues. If N is positive definite then its eigenvalues

are positive. The eigenvalues of-Ill aret-1 times the elgenvalues

of and hence A;40, % . convergence is assured.

Let 1'%=[-- MQ )be a N-by-$ matrix with the Ith column equal to
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I. Define a vector of exponential functions e- ( -.. ,;,r

A particular solution to the system (107) Is

(109) A -A

The total solution to the system (107) is therefore

(110) Y H rM

Notice that the system converges to A/4 which are the coefficients

which satisfy the person-by-person optimality conditions, The

decision function after 'Z iteration is

(111) Y(A' =Y %4-1 -Y Me

where we have put the vector of information variables along the

diagonal of a diagonal matrixY.

(112) rL4- - - 4

0 L

b. Optimum Number of Iterations Suppose the iterative process

of approximating the optimal team decision function is a costly

process. If each iteration lowers utility by C utility units, the

team would like to select an optimum number of iterations, t , to

maximize net expected team utility

(113) Et Wt"3 =Wito.tJ-C-.
A

TheT selected should satisfy

(114) W W(Lotri -w L - - !CsW C] - I-WE -tIJ.

If the adjustments take place continuously as in (107), we can
k0

make an approximate solution to this problem by taking Z to be
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the nearest integer to the number-E that satisfies

(115) 4W - a

At this point the marginal increase in expected utility from im-

proving the team decision function should just equal the marginal

cost of improving the decision function.

How do we express \sJajas a function oft? If utility is

quadratic and random variables are normal as in (87)-(90) then

WE6.J will depend only on the variance and covariances of

and G:

(116) v[L-] = Ei"' M - of-()'Qd U 1

= E tsiA'YA t e .- A'YQY19'L

= 2y'te t - t -c'IHA

where N is defined in equation (101). The rate of change of WLAtJ

with respect tot is computed as

(117)A4 AzAt 4FfC

= f yt4e> -2IA H C+A HAT
using the definition of the adjustment process (107). The solution

path is

(118) A>

and (117) reduces as follows

(119) 4W- '( t~ -(-

=E(he t ie~ lct
E

e= T
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where J.. is a diagonal matrix of eigenvalues.

The rate of change of Wti.t is of the form

(120) LIW J _.-(4, --+e .+

The optimal number of iterations is then the root of the equation

(121) 4e +Ae~r +---+ 4  (m = s c.
The root of this equation will define a maximum because

is concave in T ; concavity can be proved as follows

(122) 2 AE (MtlULA - 4

Define a vector X as

(123) X=(MeX-)

Then . is a quadratic form in K (

(124) " nA..'tX.

If t.; is a eigenvalue of:dlI then (A0? is an eigenvalue oft~f

If N is positive definite then hi 4 0 which impliesQ)34COand

hence N is positive definite. The quadratic form (124) will thus

Le negative no matter what valueX takes and r C 4 0 , which

implies W is concave.

If the cost of adjusting the team's decision function changes,

the response of the optimal number of iterations will be in the

opposite direction;

(125) -as /AJ A 0.

'ad 4ct'

c. Opportunity Losses and the Optimal Number of Iterations Sup-

pose the iterative process of approximating the optimal team deci-

sion function is time consuming. While the team is computing its
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TA so that

(127) -j----- aE (A(ftG)ID+ (L--rx)h-Wft " D .O

This implies a first-order condition for C*

(128) ) e 2(L-Dr)T*)A -_DA,,Me%1 A ( DN'$ t DI

which is of the form

(129) (All ++0(T.M) Q c+ -- -(+ CAM T. Con-sfant > 0

where i > 0 . (We assume the upper limit on it . - 'D , plays

no role in finding the root to equation (129).)

The first-order condition (127) is a maximum if JLOK

is concave in t- This concavity can be proved as follows.

(130) -t (ML-D-t - D

The components of the right-hand side of (130) cre signed by:

(131) .W.(3 : 0 by equation (124).

is positive definite by its rlation to the positive definite

matrix 9 ; thereffore

(132) YQZ iLMA)Ate (Me~t) >0

Hence

(133) & A -

Comparative static results can also be established. If the

marginal cost of iteration of the adjustment process increases then

the optimal number of iteration decreases. If the speed of itera-

tion is changed the response of N is

(134)A40

since Q and W are positive definite. If the length of the period

that is unchanged is increased then the optimal number of iterations

increases since
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(135) c~ -C-t C-) (- 4,r) eO

Finally, sinceE(4(KA,eAq95 if the interim action is selected

to have a higher payoff, then the number of iterations increasesa
(136)CArP = b 1

ci E j {().A .

Now looking at the opportunity loss of the second specific-

ation, suppose that the tentative team deoision function V(CU is

use4to select a temporary action. The total net expected utility is

(137)- WO i S . \jL As +(L--D r)W [C3 --C.

The first order condition that tt must satisfy are

(138) 4iW LO(*WQC4 z0t tJto-t(L-DT*)d L DWIE*>C- = 0

The first order conditions is of form

(139) (L--zT') dert '-tff (c-DC %) sneMt4= CE

The total net expected utility is concave int since

( 1 4 0 ) d t4 _a t )=L- D T,) f l A Ja tct 3
jC- 2.44T. 0

Comparative static results that follow are

(141) 2 .5 - =

(142) as! Wc ti --j/ CL.SCl )at.A ArtL

(143) -= - A t

d. The Joint Selection of the Amount of Information and the Team

Decision Function Suppose that the team can not only select the

number of iterations in a gradient process of approximating the

optimal team decision function but can also select (non-sequen-

tiall) the number of information gathering operations it makes

before an action is implemented. The two decisions must be made
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jointly because of the complicated structure of the problem.

The teammates can observe some number of random samples, S

and receiving the S corresponding ex ante commuication. The prob-

ability distribution of each observation and ex ante communication

function is assumed to be identical for each IGO. As a result the

individual messages are identically distributed according to

(144) 4( A\) = (ar) tes.p(-Q(i, e ) IZ)Z...,N; A=i,,.., s.

The state of nature is again distributed normal with mean=zero and

variance=one. The important values in the iterative process are

(145) E 1911 , s- +-+

(146) E

(147) COYeAj1 = i-

(148) Var (jI-,g') =-2.

(149) dov 0 i~ g = 1

The optimal individual decision functions will again be

linear in the individuals information and because of the symmetry

of the sample

(150) Qik,..14 j7 S) I q+ ( -5 + .0 IsIZ.,..,N
S

The tentative decision functions should thus be linear in 'Vk
S

i.e. oCC(g,..., 1 )q= ft4*A If each IGO costs an equal amount

K in utility units, the net expected utility with 5 IGO's and

decision function*e((t) is

(151) N ET W .0L(1s)3= c 5)j-5K =E[2p/'Y1A a- AA s Asi-s K

where Ass5 __- - -> Y

S

(152).-.

Yg t't :1
V. . t$~j
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(153) NErWI@((1) z= 2 s/4'A s-sAs'FAs - K

(154) F= 5L4 DAGQ.

The optimal number of IGO's is the integer 5 that satisfies

(155) ErWLw"&g'3 HI1 W oc(t') for all S.

This might be approximated by picking the nearest integer to the

number * that satisfies

(156) (s* 'A S A As-AA's(A& OA =

This number is

(15?) s* -<vAz'A -fls'flAcrQ Afs ')/ZAs'Q9As.

It should be pointed out that A5 is just an arbitrary vector of

coefficients in the above analysis; the optimal vector of coeffi-
A A-t

oientsA5 is a function of the number of observations: As =IF/

where F is a matrix that is a function of S and Lv This dependence

was not accounted for in (156).

Now let us introduce gradient solutions to this multiple

observation team theory. The gradient of W w-M1%) is defined by

The adjustment process to be studied is
(159) Y.

where

(i6o) Qn lii2' '-

t2 + (4z /F

_LI_
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The system of differential equations is rewritten as

(161) 'F , 4.

If the eigenvalues of F are denoted (PPN)fl then the

solution to (161) is

(162) FI +r e

whereet is a vector of exponential functions (C ,., c ) and

M is the matrix of corresponding eigenvectors. The particular

solution F is the coefficient vector which satis fies the

person-by-person optimality conditions.

The team decision function after iteration is

(163) c(t) =Y= A YW>' tY-McA

If each unit of iterations in the gradient process cost a fixed

amount of C utility units and each IGO costs an equal 1 units,

the net utility of taking S observations and running t iterations is

(164) NET W (Is)3 = \s - SK - Ct

= E m'Y, At e -fi' I, Q Y, A --
= s A -F -ic -c-c

We can approximate the optimal integer solution by selecting the

nearest integers to the numbers S* and - t that satisfies the

marginal conditions

-awtCeN~Is)j -.
(165) -- WEI

(166) a sW ctK

In this general formulation, comparative static results are hard

to derve because of the complex form of WbttLY,)] in equation (165).
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FOOTNOTES

(1) A good introduction is Mufti(1970), also see Bryson and

Denham(1962), Bryson and Ho(1969), Kelley(1969), Lasdon,

Mitter and Warren(1967), Luenberger(1969), chapter 10,

Luenberger(1972), Mitter(1969) and Stein(1953).

(2) Gelfand and Fomin(1963), pp. 27-29. No particular distinction

is made between the competing technical definitions of the

variational derivatives, Gateaux and Frechet, since we are

not using them to develop analytic results. See Luenberger

(1969) chapter 7.

(3) The differential equations (31) is defined not on a finite

dimensional space but some finite dimensional Banach space.

Difficulties arise in such an extension; see the appendix

to Essay Four,

(4) I would like to thank Professor Solow for this result,

Let M=(Mia) and let A be any eigenvalue of M. The corres-

ponding eigenvector X must satisfy AX; migXj. Let X be

the component of X with largest absolute value; then

thus Id t !.

(5) These are analogous to those developed in the chapter on

sequential teams and optimal stopping rules,
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ESSAY FOUR

PLANNING BY A CONSTRAINED TEAM
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PLANNING BY A CONSTRAINED TEAM

I. CONSTRAINED TEAM DECISION MAKING

a. Solution Difftoulties with Joint Constraints on Actons Team

theory studies the use of information in making decisions in a

multi-member organization that faces a risky environment. The

basic elements of team decision theory are identical to those of

Bayesian statistical decision theory with the critical exception

that members base their individual actions on different informa-

tion. I will outline the theory of team theory noting the simila-

rities and differences between it and Bayesian decision theory.

In this presentation single agent constraints will be introduced

and shown to be easily handled by team theory. However, when joint

constraints are introduced that bind the actions of decision

makers, difficulties occur which require modification of the team

problem. The remainder of this section catalogues a few of the

most obvious modifications that will allow a team to solve its

constrained maximization proble.

The team consist of N teammates, indexed by i=1,2,..,N. Each

teammate must select an action, ai, which may be a vector. The

unknown state of nature is represented by the variable e and it

has a team priori probability density Ik(6)s Utility depends on

all teammates' actions and the state of nature, U=U(ala2t..,aN,)

Each teammate i independently observes a separate statistic, Zip
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which is correlated with the unknown state of nature via a condi-

tional density function #Q(-1ie). Notice that in Marschak and Radner's

termS, this information may be "noisy"; that is, more than one value

of zi is possible for a particular value of the state of nature

9 . These observations are the basis for communication since

teammate i does not know the value zi observed by teammate J. A

communication structure is defined as a matrix of communication

functions, 780:

'lii '$~.17Th c') ?Tht(?iT )

where =='j; (1; is a message sent to i from j when j

observes the sample value zj. This message matrix Y is random with

conditional probability

(2) 44Y195 5j* ( IS;Oi ()N

where (\ "( is the set of all sample values zi that would

cause the jth teammate to send the messages (Y1j.y2j.,.yNj).

Each teammate uses his messagesyj=(yjj,..,yN)' to select his

action aj. This is represented by the individual decision functions

S--eti('j;). It is important to notice that the action at does not

depend on the information yj for Ji. This is all that analytically

differentiates team decision theory and Bayesian statistical deci-

sion theory. Denote the vector of decision functions o((k, 11)

..a (I1)1. The teammates want to select their individual decision
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functions for a given communication structure to maximize the

team*s expected utility.

(3) ELd&e(M),eY S 0 S"((),) cGe)4(b)Jt4.

Radner's person-by-person necessary conditions require the optimal

decision functionso') to satisfy at each yi the followings

(4) 0so Sj i Lq 9(0) -F(), I(i |% I t-1ckI Ii) a j

where Y(i) is the message matrix with the ith row deleted and the

posterior density is -f(971i(Iui%)=4I)#IO)/t) . These necessary

conditions are interpreted as selecting &. so that the expected

marginal utility with respect to ai, given the personal message

yg is zero for each possible message. One should notice the

"Nash-equilibrium" nature of the person-by-person conditions; The

ith teammate must know a in order to select his optimal action.

Therefore, the team must select optimal decision functions ex ante

and cannot just select optimal actions ex post.

In the above presentation we have assumed differentiability

of the utility function and assumed ai can be any real number. Sup-

pose however, that the action at had to belong to some subset of

the real lines

(5) si. 0

How would the team select decision functions to maximize team

expected utility while simultaneously satisfying the single agent

constraints on actions? Define a vector of multiplier functions

and then find a saddlepoint of the Lagrangian

(7) LLtPFJ = E4LAA( ),G)J -jlP G(Y (4M)
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where COr((N))= (1(&t9),.---9n(O(NVn))) , Notice that L is a

functional and the instruments of optimization are functions. The

person-by-person saddlepoint Kuhn-Tucker conditions are

(8) E t;(2(O),)HJ - P- (ib ;(%h1O))= 0

(9) jL6 = -"i( ) - 0 , $

(10) O f3 =P1(4i 3i ( 1fl ~

for each 3 6 i=i,2,..,N.

If U is strictly concave and differentiable and g is oonvex and

differentiable, the above conditions are both necessary and suffi-

olent for (,S to be a saddlepoint. We see that there is no

conceptual difficulty in the introduction of single agent cons-

traints to the team problem.

The team may find that the vector of actions of its members

is constrained because of limited resources or technological

transformations. A general formulation of such constraints would

be g(aj,..,aN, 0 )tO, but in this chapter we will deal with the

particular constraint

(11) b'A a .biai a C

where o is a fixed scalar denoting resource endowment and b is a

vector of "resource use" coefficients. Notice that this linear

constraint is independent of the state of naturea; that is, the

state of nature neither influences the endowment nor the technical

coefficients. The important feature of this constraint is that it

binds the joint team action A.

'he constrained team problem for a particular communication

structure is to seleot the N individual decision functions to

maximize expected team utility while satisfying the joint consi-



133

traint with certainty

(12) ft E g(()3

subject to 6"'M) 6 C for all E13

The major question is how to guarantee that the constraint is

satisfied for all possible information variables. (2)

For particular set of N individual decision functions,

random variable P , defined by

lAs(13) 4 h'oUY)l=x: 6ioe es1

has a probability density function that can be computed given

the joint density 4('$)..). Denote the p.d.f. of 'Pby h(.P)
and the corresponding cumulative distribution by [it, where

hW =H)'Q=H . If the joint densi ty of yl,9.*. ,,yN has "infini te tails"

which only asymptotically approach zero then the cumulative

distribution ofT? might look like this

The important feature is that H(T) only asymptotically approaches

1. For any value of c, H(C)is the probability that 6tM) C. or

verbally, H(c is the probability that this decision function

would use less of the resource than the t -am's endowment. What

should be clear is that, in general, the -probability of constraint

violation, i i4(c), is positive for all o. If an unlikely event

should occur (a statistical outlier is observed) then the teamutes

will select actions that are incompatible with the limited endow-

ment of resource.
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In previous chapters "team" decision theory and Bayesian

"statistical" decision theory have been presented side-by-side

to emphasize their analytic similarities and differences. Do the

above difficulties arise in "constrained" statistical" decision

theory? Not There is only one decision-maker in statistical

decision theory and hence there can be no difference in information

or problem of coordination. In statistical decision theory the

only type constraint possible is "single-agent" because there is

only one agent. Any constrained problem can be solved using the

above Lagrangian methods.

Viewed from another perspective, suppose the ith teammate

wants to select his action al so that his action is not that

final "straw that breaks the camel's back." How much of the

resource is still available for his personal use? The remainder

of the endowment when the other teammates take their share is

(14) c -6 (tjj)

Because y3 is not known by teammate 1, from his viewpoint the

remaining resource is a random variable and no matter how small

he selects a1 , he still might provide that the final "straw".

As an example, suppose there is a two member team with a

utility function

(15) Lt (q1% > a) 27, Oq,4 gZtOQt-,=- Q--Z(%q - ,.

and Jointly normal random variables where

(16a) E1%93}=- 'j, , Ef8I9,.j = itj

(16b) Ejf.*g(3= j' jjIE I c, It) = 52, 
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with Wb',j' given scalar parameters, and the joint constraint

(17) 40 2

The constrained team problem is to

(18) a4 E 1A1 et,%)+ .( t t,e1 A t,.) - g' oi 1 F og - ,<t,)

ILA-
subject toc<1 (4t1-+f-o(t&3) for all y1 ,y2 -

Form the Lagrangian

(19) L EI z14GO (j) + /4 .. g .C(L% )tA (gnP t92-9'ge 4) OL N,Y)

Because of the quadratio-normal assumptions, the optimal decision

functions are linear, and so are the Lagrange multipliers:

The first order necessary conditions are

(21) O=4 '-r s-d a t-1

(22) O A . -. .1 A

(23) 0 h +t% -Par aQ c #nA ja.

The only solution to these conditions are4,oOand 2 ,,tO. In other

words, the only way. to satisfy the constraint with certainty is

to make the action independent of the information (in this case

the constant action is zero).

In sammary, three aspects of the jointly constrained team

problem seem to be incompatible, (1) independent selection of

actions by the different teammates, (2) different random informa-

tion variables for each teammate and (3) an inflexible joint cons-

traint on teammates' actions that must be satisfied with certainty.

The remainder of this section looks at how the constrained team
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problem can be modified by varying each of these three components

to make solution well defined. At eaoh step, many variations could

be used and this is not an attempt to Oatalogue all interesting

modifications of the constrained team problem. For particular prob-

lems, other equal interesting modifications might suggest themselves.

b. &Mig gdJe CQnatlintg The team is not run by some orni-

potent central authorityg individual teammates choose the actions

that they think are best and, because of the "teas" assumptions of

identical utility and probability functions, these independent deol-

stone are optimal from the organizations viewpoint. But Independent

decision making makes coordination diffioult. We begin by looking at

one way the independence of the decision makers oan be reduced so

that the Joint constraints can be satisfied with certainty.

Suppose that the actions of the toaates must be chosen from

single-agent constraint sets CL that are bounded from above by M.

Further suppose that the corresponding upper bound on b'A is less

than- or equal to the resource endowment, Li ; M C* Then no team-

mate will select an action that pushes the resource use beyond the

resource endowment. Or from teanate i's viewpoint, the minimum

amount of the resourse remaining for his use, C -L b, M; is

greater than the maxinum amount of the resource he could use and

still resuin feasible, buMif, If this situation occurs then the

Joint constraint on the actions can be effectively ignored by all

teammates (the shadow price of the resource will be zero). However,

this upper bound N may not be a part of the original team problems
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a be the set of all real numbers, an unbounded set. Hence, we

might have to construct artificial upper bounds which we will call

Definitions We call q=(q1 ,*,qN)' a sXecwa Yt2S. if

Rather than allowing the individual teammate to select any

action, we will add the single-agent restriotions

(24) a 1 Iv4,2, .. ,N

where q is a quota vector. This quota vector is a discretionary

variable and should be selected in conjunction with the decision

functions to optimize the constrained team problems

(25) m1iieE .L4 ( k , Gl

subject to oQ() '- for each e1

and b' 1 c*

Assuming ooncavity and differentiability of U, we can charaoterize

the optimum by the saddlepoint of a Lagragian defined using multi-

plier functions ?(9=(A(j,,...)(gj)and soalar multiplier 6:

(26) LC-gAI3 I E'ico.cN),e) + Ej My)'g.

The KuhnTucker conditions ares

(27) E j(2M),)1%;i,- A i ( O-=o for eaoh

(28) --- = o
(29) l- Mij; , NIQDaO for each <j;EJj

(30) ( -e t(j) A*;( =o for each 4J1 9

(31) j-- =c b'gao, 20 and(C -6'g)Y=O.
These oonditions have the following Interpretations

(a) For each possible message y1 , set the posterior expected
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marginal utility with respect to a1 equal to the shadow price

of the Ith quota given y.

(b) Set the expected shadow prioe of the ith quota equal to the

resource oost per unit of the Ith quota.

(o) The action must satisfy the quota and if the action is striot-

ly less than the quota, the quota's shadow prioe is zero.

(d) The quotas must satisfy the resouroe constraint, We will as-

sume this constraint "bites", so S > 0.

It should be noted that for particular y,y3 we can have ct(eijecg1

and cj (';) = gj, yet the ith teammate cannot announce that he has

excess resouroes and shift the resouroe to teammate J. In other

words it is quite possible that the actual observations of the in-

formation will lead to A i (I3) = 0 and k (%'>o 0. In a sense, this

means the decisions maybe inefficient; that is, useful resouroes

maybe wasted. That in the price the team must pay if it wants at

least partially independent decision saking based on different

information to satisfy joint constraints with oertainty.

As an example of how quotas might be used, imagine a multi-

product firm that produces two goods a1 and &2 for sale next month

at prioes /41 and /4 a . However for various reasons the national

esonomio picture might flange In the interims if a depression oc-

ours, no goods can be sold but if a upswing ocours, any number of

goods can be sold. The firms revenue is thus

(32) (A4: 4:+,42. %419

where * O 0 means a depression

and 9=e1.u means a upswing.
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The firm's two decision makers,one for each good, agree that boom

or bust are equally likelys4 (0O=O)r+(Ot)rat1 . The two decision makers

are not the best judges of macro economic events, so each decision

maker independently consults a macro forecast. teammate 1 looks at

the St. Louis equation and teammate 2 looks at the Fed-MIT-Penn

model. Naturally with such ideologically divergent maoro models,

the two teammates refus to talk to each others so there is no

communication about macro forecasts. To be fair to both model,

we will assume that both models are equally good at predicting

<P(ew= bust+e=o) = c$(;=hoomnI(0=0)
q

for 1-1,2.

We also assume the two predictions are independent so that

[.J=dflestlio b ust]:
Ou] 116 1

Lt" busl I 6 M141 lt

We will assume the joint cost of producing a1 and a2 is quadratics

(34) C(a1,a2 ) a1 + aa 2 + a2

We will assume both prices equal one,1,=M.=tA.Finally we shall

assume that there is only one machine-day available and that it

takes two units of machine-time for one unit of either good (the

goods are infinitely divisible). There is a joint constraint

(35) 2 q+ .24L&-

If we denote the decision rules as follows %-=c(,(%.btsfl,

qtL' = kJ%= becom , a'=e4.(3.,= btvf , q%. =-(,L a= %booon),1
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then the problem is one of selecting a vector of actions,not a oon-

tinuous function. If there was no constraint on actions, the optimal

decisions would be

1because of high probability of bust

because of high probability of boom
(36) aa

0--i because of high probability of bust

18 because of high probability of boom.

In the quota constrained optimum, both departments are oon-

strained to 1/4 units of their goods (notice the symmetry of the

problem) and the optimum decisions are

> -
(37) 'kv '- of

The constraint binds the decisions when the macro forecasts say

"boom" and, as a result, optimum actions for the opposite forecast

increase. In the unconstrained case the maximum expected profits
_L

are g while in the quota constrained case, maximum expected pro-
7t"-

fits are 672L, a drop of about 5%. The shadow price of machinery is

412. so an additional unit of machine-time would increase expeo-

ted profit by about 12%. Notice that m 2g 1% + 2q = :L

but also note that Vin Z tQ+2.Q1 =S4 -1. That is, while the

constraint on machine time is satisfied with certainty, we can

clearly have extra machine time which could be put to profitable

use.
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c. Decision Making with Identioal Information The team's general

inability to coordinate actions to satisfy an inflexible joint con-

straint is a result of the independent individual decision making

based on different information. The previous subsection on quotas

restricted the independence of decision makers and this subsection

now drops the assumption of different information. J.S. Jordan(4 )

has studied the necessary conditions for an information structure

to be "constraint adequate," that is, information sufficient to

guarantee thtt the constraint will not be violated by a decision

rule. As an example, if information variables are "noiseless"

(there exist functions =v);8(O) such that the partition ofE3induoed

by'li is identical for all 1) then the information structure will

be constraint adequate. As we will modify the information structure

so that all the actions which are bound by a joint constraint are

selected using identical information . Some teammates must ignore

potentially useful information and other teammates must receive

additional information to equalize knowledge.

Suppose each teammate i controls several action variables,

aie,.,aimi. and recives a message vector (yI1,..,yiN) Without

any loss of generelity, let us assume that the first element in

each member's action vector refers to the use of a limited

resource. These actions are jointly constrained by

(38) E ;x = b'V A' C..

If there was no problem of coordination, the Ith teammate would

select each of his m1 actions using all his information; that
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is, his decision functions would be of the forms

(39) c% = clI (ji(,...,9iN), -. 4, 1i;n ;= O(M1 ;ii..., ju.

However, the first component of each teammate's vector of actions

is bound by the inflexible constraint, so let us postulate that

there is an information variable y* which is known to all teammates,

This variable may be a subset of the individual message vectors or

a specially constructed message. It is assumed that each toammate

uses only this information y* when selecting the jointly constrained

action:

(40) cI = i- i,..,N.

If we denote the vector of functions (Si,..,(n) by O0 then the

constrained team problem is to select individual decision functions

to maximize the team's expected utility subject to constraint on

resources:

(41) sE 14( O(R ),d.(1),--, (L), 0

subject to bl(9) !Sd for all y.

We can define a Lagrangian for this problem with a multiplier

function A (j*) LA Ef{LA ((*),...ct Q(jI)e)J+Ef (j*)(c.-b'M(9)g

The Kuhn-Tucker conditions are then expressed as

(42) E 1 (a )I KA(t)b; 0 for each y*

(43) -Jr L -3 .for each yi1 AM2,. ,mi

(44) ftb6i*) o, QQt. )2to for each Y*

(45) (c0b6'~jI))A(9) =0 for each y*

If U is differentiable and concave in actions then these conditions

are both necessary and sufficient for optimality of the constrained

problem.
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As an example suppose there is a firm that produces three

goods and is divided into two production departments. Department

one independently selects the output levels of goods al 1 and a1 2

while department two picks thN output level of good a2. The goods

are produced for sale next month and while relative prices are

known (we will assume all goods have equal prices) the aggregate

price level may inflate or deflate randomly. If we let 0 denote

the price level next month, the firms revenue from producing

quantities a11,a12 ,a2 is

(46) (all + a12 + a2)S

The firm's two decision makers agree that the price level is dis-

tributed Gaussian-normal with an expected value of zero and vari-

anoe of one. Department one, because it controls several variables,

consults two price forecast, the St. Louis equation and the

F-N-P model, before it selects its output levels. Department two

only.observes the F-M-P forecast of price level. Both independent

forecasts give unbiased Gaussian-normal forecasts of e with

variance equal to 1.

(47) S()= N(O,i)

(48) C$>(-t.&) N=K(91) 1 forecast of F-M-P model

(49) OP (2j9)= N(91 ) ?2 a forecast of St. Louis equation

The joint cost of producing a1 1,a12,a2 is quadratic

(50) C(al1 ,a12,a2 ) . al1
2 +a1 2

2 +a2
2 +a1 1 a2 + &12&2

Finally, assume that goods ati and a2 use machinery while a11 does

not and there is only one machine-day available. Both goods a11

and a require one nahine-day for one unit of output, so the firm
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Because of the constraint on machine time department one

agrees to select the output of a11 using only its F-M-P forecast

variable j but will use both z, and z2 to pick a12, In the

linear-quadratio normal team problem optimal decision functions

are linear in the information variables and in this particular

constrained problem the optimal output rules are

(51) t 1 0a.,) = - I- iL-+..L +
62.

& (') =6 L

Notice that for all forecast from the F-M-P model, the firm does

not violate its resource endowment of machinery. The expected pro-

fits are-''-.If the first department made its decision on a11 based

only on zl but there was no constraint on machine-time, expected

utility from optimal deoision rules would be - If there was no

constraint and the first department used all its information in

selecting both al 1 and a1 2 then the expected utility fron optimal

decision rules would be aq * This loss in utility due to restric-

ting the information stucture for constrained variables is analo-

gous to the loss in utility when quotas reduce the efficienoy of

the decision making, seen in the previous subsection.

One final comment on the procedure of selecting all jointly

constrained actions using identical informationa this has appeared

in the team literature in a slightly modified form. Groves and

Radner(5), in their study of the allocation of resource in a team,

introduce a "resource manager" to the constrained team problem
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and give him the power to select how much of a soaroe resource

each teammate will get. The resource manager acquires information

about the environment in the same way that other team members do

and uses that information to select the optimum allocation of the

resource. Because the members of the team have identical tastes

and beliefs, giving them the same information as the resource

manager and requiring them to use only that information in selec-

ting their portion of resources will lead formally to an iden-

tical resource allocation as the resource manager's allocation.

d. Penalty Fuflgns nd Joint Constraints What are the realities

underlying our mathematical formulation of joint constraints on

actions? The constraint b' ( C has represented an immutable fact of

nature for the team, such as the fixed volume in a warehouse. The

team can only store a finite number of goods in a warehouse and

thur the warehouse volume constraint must be satisfied with certain-

ty. This example was selected deliberately to strain the meaning

of the term "immutable". Almost all immutable constraints are

slightly dec4ive because of the unmentioneK time period under

consideration, Given suitable time almost all inflexible constraints

on resources can be flexed; more warehouses may be built or addi-

tions made to old ones. In order to "flex" constraints, time and

effort must be expended, usually at a progressively higher cost

the more the constraint is flexed or the more rapidly it must be

done. Additional resources can be purchased at a premium if the

organization needs more than it was originally endowed. This sub-
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section will study the constraine team problem when decision

makers have complete independence and different information but

when the oonstraint may be flexed by paying a penalty for extra

resources.

Let M(b'A-c:r) may be a family of penalty functions indexed

by r which tells how big penalty (in utility measure) the team

must pay for excess demand for the limited resource, Ideally we

would like M(x;r) to be positive and increasing for positive

excess demand, x, and if x is non-negative then M(xlr)=O. Thus,

the more resource demand exceeds the endowments the bigger is

the penalty, and if resource demand is less than endowment then

no penalty is charged. The index r is an index of sterner punish-

ment ifg->0for all x > o. A piecewise linear example is seen belows

M (X; r)

The team wants to maximize the unconstrained difference

between expected utility and expected penalty, rather than the

jointly constrained expected utility.

(52) max EIM (<(M, 9)j - E M ( 61M x-C-; )-.

The person-by-person necessary conditions that optimal decision

functions O&; must satisfy are

(53) O= E tt Ci ,o)k 6- El t1d(b'&(N[C;')I -

for each ji e j; i-1,..,n,

This states that for each message, the ith member must select an
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action that sets posterior expected marginal utility given the

message equal to the posterior marginal penalty per unit of the

ith action given the message.

In the above formulation of M it was said that "ideally" we

would like M to be zero for XEO and positive thereafter. This

is an inconvient restriction computationally (and analytically if

H is not differentiable at the origin) and in examples we will

only approximate these properties. For example, two convement

penalty functions are linear, M(x r) = rx, and linear-quadratic,

M(xir) = 2rx + r2x2 . These two will be used later because they

do not complicate the quadratic-normal team problem which is a

useful example. To see this let us use both linear and linear-

quadratic penalty functions to solve a constrained quadratio-

normal team problem.

Suppose we have a two member team with a linear-quadratic

utility function

.1 t,O0q1  t4Q.g 1  .tg1 a

Assume the information variables and state of nature are Gaus-

sian-normal with posterior expected values

(54) E l ( -G yE leilu '

The constraint is kA C.

Begin with a linear penalty function, M(b'A-cor) = 2r

(b'A-O). The optimal decision rules will be linear in the infor-

mation variables: I SY I%, ,

The person-by-person optimality conditions require &,and &
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to satisfy

(55) o = m, EeU I -)(a3+,) -tiz (atE1(Jlt^t rb,

(56) 0-= At.E lYta -gz(Rt?.) -t( t EI,(9JI Y,) w bz.

The optimal values of the slope and interoept ooefficients of the

decision funotions are therefore:

(57)

(58) -r " ''- - b

Notice that the constraint only affects the intercepts of the de-

cision functions and not the slopes. The endowment of the resource,

c, does not affect the decision at all.

Now suppose the penalty function is linear-quadratio, M(x;r)=

2rx + r2z2 . The person-by-person optimality conditions require the

linear decision functions , and Q7- satisfy

(59) 0 =/4, Et9II} - c? (t^ j,+ , fz ) -- ( hEj, .,)

(60) a3 =mutEIG-15jja ( 5  ~ a(~E ,~3tt

The optimal values of the coefficients are

(61) = -

(6)vc) tt AIL

With linear-quadratic penalty functions the slopes of the decision

functions depend on the constraint and the amount of the resource

endowed, c, helps determine optimal actions.
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II. PLANNING PROCEDURES

a. The jniua: Problem In this chapter it will be assumed that

the organization's task Is to solve a constrained maximization

problem. While other alternatives have been studied, such as goal

attainment or satisficing, the approach of constrained maximization

is consistent with the basic team decision problem which is the

focus of this chapter.

Suppose there are N+1 agentes N firms and the planning board.

The firms are indexed i=1,2,..,N. There are m commodities indexed

by the subscript k=i,..,m. Final consumption of good k is denoted

0 k while net output of good k by firm i is denoted xki. If the

firm produces good k then 1 ki is positive and negative if it oon-

sumes the good. Net demand for good k is designated dk, where

(63) dk = -k k

Vectors of the variables are defined as

d = (di,..,dm)' * ck = (=01,e*Om)l' ' '1 =(xjq*,xMi

The vector of not outputs by firm I must represent technically feas-

ible transformation of inputs into outputs which is represented by

a set X, the set of all technically feasible outputs available to

firm 1. It is assumed that there are initially wk units of good k

available to the organization, and net demand must not exceed the

initial resouroe, dk! wk. Preferences between final demands for

goods are represented by a utility function Uo).

The planning problem is to select a set of values of the vectors

do,xl,..,xN to
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(64) Max U(o)

subject to d = c-?Ii w

xieX;, I - 1,..,N.

A planning procedure is a iterative process for the solution

of the organizations constrained maximization problem. Given an

arbitrary initial approximating solution, the planning procedure

specifies how it must be modified to produce a better approximation.

The planning board transmits "prospective indices" to the firmsa

these prospective indices, denoted PT-(where r is an index of the

stages of procedure), summarize the current approximating solu-

tion. The firms use these indices to compute an answer or proposal.

The sequence of prospective indices-proposals ultimately terminated

ahA the final approximating solution to the constrained maximization

problem becomes the organization's "plan".

The size of the organization's constrained maximization prob-

lem, measured by the number of commodities or the complexity of the

technology, is generally very large. This makes it impossible for

the planning board to gather all the information needed to solve

the problem by itself. As a result planning procedures are typical-

ly informationally decentralizedl that is, the planning board does

not pool all the information and solve the constrained maximization

by itself, but it delegates responsibility for parts of the problem

to the firms. Generally the planning board knows only the objective

function and the organization-wide oonstraintu,while the firms know

only their own production possibilities.

The remainder of this section presents several of the better



151

known iterative, decentralized planning procedure for constrained

maximization problems. These procedures will be used later as the

basis for planning procedures by decentralized teams,

b. Lange-arw-Hurw cz Tatonnement Procedure The main conclusion

of the economic theory of socialism is that optimal plan of the

organization should satisfy the same marginal equalities as those

resulting from equilibrium in a perfectly competitive situation.

The traditional model of how markets reach their equilibrium

positions postulates that prices "gro e" toward equilibrium by

adjusting according to excess dem t The first formulation of a

planning procedure, by Lang$i), was uased on Walras's "tatonne-

ment" process. The essence of the tatonnement process is that an

auctioneer prices for all goods, receives supply and demand bids

from firms and consumers based on the quoted prices, and then

adjust prices by increasing the price of goods which had an excess

demand and vice versa. Lange's procedure was studied in a rigorous

manner by Arrow and Hurwiez(2) and their work provides the basis

for this subsection on tatonnement planning procedures.

The planning board replaces both the consumer and the auc-

tioneer. The plan deals only with the production side of the orga-

nization and the planning board's utility function is a surrogate

for the individual preferences of the consumers. The prospective

indices of the planning board are the prices for each of the

commodities, P = (P)7-...,Pm)'. The firms' proposals are their net

production vectors, 1i=(l1i,,Zmi) The initial prices PO are
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arbitrary and may be those resulting from some previous plan. The

procedure from stage t is defined by

(a) At stage r , the ith firm maximize its profits, T subject

to tX being feasibleXteX; and reports net output Q to the

planning board.

(b) The planning board finds the final consumption that maximizes

the difference between utility and cost of consumption,

U (CT-)-P

(c) The vector of net demands for all goods is. = .

The planning board increases the price of goods who's net

demand exceeds resource availability:.

where K is a speed of adjustment coefficient. These prices are

announced to the firms and the procedure begins again.

As an example of a tatonnement planning procedure let us

study an activity analysis model of production. Suppose we denote

the Ith firm's sale of operation by xI and the amount of good k

produced by firm i at soale xi by gki(xi). The net output of
N

good k is thus Zgk(xi). The resource allocation problem is

stated as

(65) Max U(oi,.,0m) subject to c* - Y) .k k=1,2,..,m.

The Lagrangian for this problem is

(66) L = L4(CId.,.) \+ ~&+~~jtKYk

where ?M is the shadow price of the k good. The optimal conditions

are specified as

(67) -- -! SO ,equal to 0 if Ca>0
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(68) -AA k4 , equal toO? If(->o

(69) c - $1 ; . equality if w > o.

A tato-nement planning procedure would be specified by the

following sequence, beginning at stage 7- with shadow prices

k=1, ..m.

(a) Firms maximizes profits at prices A4 , profit = jI '

subject to Kf o this leads to first order conditions

T- ', wtk equality if > 0.

(b) The planning board finds final consumptions that maximizes

the difference between utility and the cost of consumption

at price 4, u ciyy-f )- ?C

This leads to conditions 0) with equality if

e& >0.

(o) The planning board adjusts prices according to not demand

for goods (0 if 4cA and cA 7 l(i)W

-A ~ K(C-L 3&,(YD)otherwise .

c. Dantziw-Wol- afatd Decomg4ion Linear programming has

been the precursor of many developments in theoretical eoonomics.

A technique for solving large linear programs developed by Dantzig

and Wolfe(3), was used in a more general context by MalinvaudQ4)

to study iterative planning procedures. The linear programming

technique is called "decomposition" and will be presented here,

followed by Malinvaud's planning process.

Suppose we want to maximize a linear function which can be
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dichotomized into a function of two sets of variables Pf'X + P2

where X = (Xi,.eZm)' . Pj, = 'ee**'im 1' ' Y =MYi,*'yn)' and

P2 = (P2l*-,P210- P2n)* The linear constraints can be divided into

three sets, (1) constraints on both X and Y, (2) constraints only

on X, and (3) constraints only on Y.

(70) t\9(-- . 16a s constraints

(71) AK b a t constraints

(72) 1t S a u constraints

There will be provisional shadow prices for each constraint

denoted TI,.,TTi,.T , 14,+,4It.4

Now suppose that the problem is too large computationally to

be solved all at once. If there is a sequence of activity vectors

known to satisfy the last t + u constraints, XI, ... , 4
then any linear combination of those vectors will satisfy the last

t + u constraints. Denote a particular linear combination by

_C ,AA-*

(7k) X:r A

These vectors can lie anywhere in the convex hull of the corre-

sponding sequence of vectors

con str a i nts FtY 4 bi

colivex hall

A smaller linear program will now be solved&a select weights

Aft , Y to

(?5) rAAveP' Pit "
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su.bjcc:1" -to 

1:. ,,4 .& -= i. , ,µ .. .=?: 0

,._ 
i �. -= ..i , x--k ;::.. o .

When this problem is solved, shadow prices will exist for thee 

joint constraints, denoted 1f t:=(1r�) .. ,ir;). These are used to modify 

the objective functions ot two smaller subeidiary problem. The 

two subsidiary problems to be solved are 

( 76) MO.X ( P, - A I Tf
-C ) )( "t:-t t

s.t.

and 

( 77) �a.)( ( P2 - A-i. Tf,:) 'f -c+ 1

-s. t. A2. '1 -c-t l � b
2. 

.

These two problems Will result ln vectors x!, and i : .. , 
that are added to the sequenoe ot activity veotors and & new 

joint 11n�•r program ta solved. The process iterates until 

• Beoauae of the tinito number

of extreme points and convex nature ot the constraints, the proce

dure stops atter a finite number of iterations. 

The Maltnvau4 planning procedure generalizes the Dantzig

Wolte deoompos1 tion problem by making the objeot1 ve tunctior1 

aoncave, denoted U(c1, •• ,cm), and the individual constraints 

convex. The pro"blem 111 stated as 

(?8) M41t (A(C!,, ... ,C!,..) 

s.+. c. - L X· � \J . ' 
I,:: C 

X· EX· I I 
i-1-z N , , .. ) 
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where U is a conoave r rd Xis convex. The prospective indioes at

stage T- are the prices of the commodities, P = ( F),..., P45).

The firm's proposal at stage c is a vector of net outputs that

belong to its technology. The planning is defined at stage t- by

the following rules:

(a) The ith firm maximizes profit at the prioes P, profit =uPtXi

subject to Xi belong to the technology L 1 . This optimal

vector is X;;

(b) Th6 planning board treats the individual technology as the

convex hull of the past sequence of not outputs

IFN
The planning board solves the subsidiary problem

(79) MaK A'-)

)(~ e)C I ) - .-LO N;
(o) From the subsidiary maximization problem, the planning board

has shadow prices for each good which are used as the prospeo-

tive indices in the next iteration, Pc

d. Weftzan'a -Df DecoMiftlu The Dantzig-Wolfe-Malinvaud

planning procedure builds up an approximation of the firms techno-

logy from the inside of the set of feasible not outputs. A dual

prooedure developed Br weitzman(5) builds an approximation of the
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technology trom the out.aide. The 1ntereet1ng dist1notion betw9en 

the two 1s that Mal1nvaud's procedure ls prloe guided 1n the 

sense that the prospective 1nd1oes are tentative prloes tor the 

commod1t1es while the Weitzman procedure is guided by output 

targets suggested tentatively by the planning board, 

Suppose that at stage "17 the planning board has an estimated 

set ot teohnolog1oally feasible net outputs.tor firm 1, denoted 

X�suoh that the true technology 1S contained in x�. 1.e. 

x i � X;. It the planning board learns a new t'eas1 ble point xt·H

on the boundary or xi and shadow prices (ir�', ... ) lT�' ) that

represent the marginal products at that point on the boundary, 

then the planning board can get a better estimate of Xi by the set 

( 80) Xi
t:+I 

= X! () i X l Tf "C-+C 'X !=: ir
'C+I 

IX. �"t-\1 .

The oonstruotion of approximating technologies Ulling this tech

nique ls the basis for Weitzman'& planning prooedure.

Betore speo1t71ng the formal planning prooedure we must 

det1ne a useful oonoept. We say that a production point �i ls 

•ett1o1ent with respeot to a target quota q1•Cq11,••,q1m)" if

..... X 
"""' 

�i � c. and )(.i:: [i and there exist a pOS1 tive veotor l\: SUOh

ttiat ?, ''-� � � 'x; tor a11 'I., f: Xi , i� � t,.

Xi.; 

---------- t,, 

The prospeotive indices at stage� ot the planning board 
' "T.. will be target quotas to each tlrm, ii . The firm's proposals 
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at stage ~ of the planning procedure will be a - efficient not

output A and the corresponding prices TiTt' that specify the

marginal product at Ka * The planning procedure follows these rules

(a) At stage ~C if target quota is not producible then the ith

firm reports any j- efficient point <" and price vector

~T t

(b) The planning board updates its set of feasible production

possibilities X X=t% f I TT t"X ! IT" I X

(o) The planning board solves the following problem for optimal

target quotas.

(81) map 4 d

The optimal values for t are proposed in the next stage

as target quotas.

While the Malinvaud process builds up a polyhedral approximation

of the technology everywhere interior to the true technology,

Weitzman's process oreates an approximation of Xj by the building

an envelope of supporting hyperplanes,

c. '. 9antftj Target Gradient Prgcedure In practice the

indices of planning boards are quantitative input-output targets

rather the prices suggested by Lange, Arrow, Hurwioz, and Malinvaud.

Weitzman's procedure is one procedure whose basic indices are

quantitative targets. Heal has also developed a planning procedure,

based on the gradient method, which uses quantitative indices
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rather than prioes. 6 ) Heal's procedure has two desirable proper-

ties that do not hold for the gradient procedure of Lange- Arrow-

Hurwioz namely: (1) at any stage of planning, the tentative plan

is feasible and (2) the objective funotion inoreases mongtonloa1ly

at each iteration.

Heal's planning method begins when the planning board proposes

an allocation of inputs between firms. At these inputs the firms

report the maximum output from these inputs and the marginal produc-

tivity of the inputs, given this information, the planning board

reallocates inputs, shifting resources toward uses where they are

more productive. The new allocation is used to begin another round

of planning

The essence of the procedure can be described by an economy

where there are no intermediate products; i*e., all firms produce

consumption goods from primary resources. Firms are indexed by

i = 1,2,..,N, while resources are indexed by j = 1,..,m. The

production of the ith commodity by the ith firm is denoted by the

production function

(82) Ci = {i (Yjt,.--,Ki

where Xis the amount of resoure .j used by firm i. Recognizing

the use of slack variables, the constraint on resource j is repre-

sented by the equality

(83) L j = 1,..,m.
6=1

The planning board proposes an arbitrary allocation of

resources amongst firms at stage t ,7(xC', which satisfies the

constraints (83). The firms use their technical knowledge to

report the maximum output from their inputs
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(84) Cj. . .-

and the marginal productivity of its input

(85) tY.

The planning board lowers the allocation of a resource to a firm

whose marginal social product is below the average marginal

social product for all uses of the resource, or formally

(86) -ctt v =-Et(sh

The procedure is defined so that

(87) X + Qt-t =

which means that the total use of a resource as inputs does not

exceed the amount of the resource available.

When the output of the firms can be used as inputs by

other firms, the planning procedure can be modified to include

these intermediate products. The only complication is that

average marginal social produotivities, which guide the reallo-

cation proordure, become computationally more difficult for the

planning board.

The non-price guided gradient procedure of Heal has proper-

ties that the price guided gradient procedure of Arrow-Hurwicz

does nots feasibility and monotonic increasing payoff. In order

to gain these advantages the procedure requj.rea the planning

board and firm to exchange more information and creates a compu-

tation problem for the planning board.
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III. PLANNING BY A CONSTRAINED TEAM

a. l'.h!! !!.!.!, Planning Pr2blem Thie seot!on explores procedures 

that a large t&am might use to derive 1te optimal strategies when 

actions are constrained. The size and complexity of some teams 

prevents any teammate or group or teammates from pooling all the 

useful information and finding the best decision funotion�. The 

team must have some program to elicit technological d&ta from the 

individual members and to modify prop0sed solutions based on that 

information. Several planning prooeduree developed 1n the litera

ture on centrally planned economies will be modified to f1t the 

structure or the partioular forms of the jointly constrained team 

decision problem. 

The solution procedure outlined here all involve exchange 

of data between the individual teammates and a "planner". After 

some number of iterations decision rules are selected that deter

mine the relationship between incoming signals about the uncertain 

environment and the actions taken by the team members. In some 

cases the final selection or an individual dec1a1cn rule 1s mild.a 

by the teammate and in others it 1& dictated by the planner. Once 

the final decision tu�ct1on is fixed the teammate aots only aooor

ding to hta rule and ts responsible only tor taking the 1nd1cated 

aotton tor his gtven signal. 

The important features ot the organization studied here are 

(1) complete agreement between the dec1s1on makers on a single

objective function (2) interdependence ot individual actions 
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through a non-additive objective function (3) decentralized author-

ity in decision making (4) differences among decision makers in

the signals about the uncertain environment and (5) joint

constraints on the actions of different members. The organization

is a "team" with non-additive utility and joint constraints. As

discussed previously, three components of the jointly constrained

team problem are incompatibles independent decision making, differ-

ent random signals and inflexible, joint constraints. As a result

the constrained team problem must be modified to guarantee its

consistancy, A few such modifications were discussed above. Using

these modified constrained team problems as a basis, several

planning algorithms will be defined and analyzed.

An essential part of the theory of team decisions is the

communication between teammates related to the unknown state of

nature. Signals are observed by individual teammate and intraorga-

nizational messages are sent in order to reduce the team's uncer-

tainty about the state of nature. These messages are sent after

decision rules are known and before actual actions must be seleo-

ted and implemented. In the iterative planning process, which

determines the rules relating signals-messages to actions, infor-

mation is also exchanged. This information does not reduce the

uncertainty of the state of natures instead it is related to

technological parameters which define the team's proble. Such

parameters are known by at least some members of the team and

are not considered part of the state of nature, Communications

about the state of nature and communications about technological
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p&r&metera difter another ways The former are generally direot 

member-to-member tranamtsaiona while the latter are between the 

planne1· and the individual teammmates. We will refer to oommun1.oa

t1ons d&,11ng with the state of nature as "messagen" and oommunl

oation dealing with teohnologloal parameters as "prospeottve 1nd1-

cea", if from the planner, or "proposala", lf from individual 

members. 

The iterative planning process mlght be thought of as a

oomputatlonal device by whtoh the team problem ls solved by dletr1-

but1ng teohnologtoal data to those who need. lt. Why doasn ° t the 

planner just gather all the information at one time, solve the team 

problem and announce the optimal dec1a1on rules? Otten teohnolog1-

oal information, while kno1111 by various teammates, ta hard to awn

mari�e or tabulate for use by other team members. Also, such sum

mary information may still be too voluminous and costly to be justi

fied. The planning prooedure economizes on teohnolog1cal cominun1oa

t1on by requiring the transmtsa1on of only "relevant" data. 

The team assumption that U(A,e) 1a the common ut111ty func

tion of all teammates implies that U(�>e) 1a "known"to all team 

•••bera .. However, judging from the person-by-person optimall ty 

oond1t1ons, the 1th team member needs to Jmou only h1• marginal 

impaot on utility u�
1
(A,8)in order to seleot his optimal aot1.ons 

given the optimal decision rules or the other teamaates. Knowl

edge of Ua1 does not neceaaar1ly imply knowledge or u. In the 

extreme oase of ad.di tl vely- deoomposable ut111 ty, U (A, 9) � � u i 
(t\i, e), 

all the 1th teammate must know in order to solve his part of the 
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problem 1e U i( qi, e) • 

It the team's utility tunot1on oan be written as 
. iJ 

(88) Ulf\,&):: � U'(qi,e)+ � 7 Lt (qi,"'J,&} + � 
0 (A,e) 

where u.,
ij = U'i , and it the 1th teammate knows only the functions 

l I i uj I u i 1. 1 l j N 
V\' , , ... , V\ 

and L,{ 
0 

� then the teammates have enough knowl-

edge to solve their parts ot the problem, but no single member has 

enough knowledge to generate a complete solution. 

In some oases the 1 th teammate may only know the above 

functions 1mpl1o1tly. An example is a t1rm which knows when any 

particular tentative "activity" 10 raasible but cannot translate 

this into a production function detailing the maximum feasible 

output trom given inputs. Even it the functions were known explio

tly, they may be too complex to be summarized in a small number 

ot parameters. The transmission or the entire set of functions 

ui,u i � .. . ,uiH may simply be too costly for oonsideration. Bow 

does the team solve its problem? The team must have some proce

dure tor exchanging relevant 1ntormat1on about the utility func

tion. Many similar procedures exist in the planning literature 

but they exclude either signalling about the uncertain environ

ment or externalites in the payott tunot1ona. We will modify 

some ot the prooedures to handle both the signals and externa

litea which characterize a team deo1s1on problem. 

b. Pr1oe Guided Planning l!z ��with Identical Intormat12n

The team consist ot N members, indexed by 1. Ekch team oontrola

a personal action a1 and. receives a personal information variable
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y1• Team utility is U(q,,. .. ,qN,e)where 9, the state of' nature has

a team probability density runot1on 4>le) 8 The team faces a 

joint oa.nstra1nt on the actions r:. bidij'(!., where o 1s the endow-,=, 
ment ot the resource and b1 measures the amount of resource used

per unit of the 1th action. There are no oonoeptual d1ff1oult1ea 

in introducing several joint conatrainta or allowing vector 

actions qi = (q," Q'-1.,···,qi "" .). For notational s1mpl1oity 1t will 
I 

be assumed a1 is a scalar and there is only one Joint constraint. 

As elaborated above the olaasioal team assumptions ot 

independent decision making by team.mates and different informa

tion are generally incompatible wi th inflexible joint constraint 

b' A!:. C • One way around this problem 1s to have the teammates 

u�e the same information when they select actions that are jointly 

oonstrained. Th1s mod1t1oation will be the form studied here. 

We will assume Yi• Yj • y is the oommon information variable 

w1 th a oond1 tional probab111 ty dens1 ty tunot1on ct, ( 'j l e) 

wh1ch is used by all truo,:matea to seleot their actions. The team� 

problem 1a to select decision tunct1ons o£(�)-= ( o<., ( '1), .. ·,°'-N (�))'to 

( 89) maximize W =- E \ u (o<.<.� \, e) J = S
8 

S"':t L.\(.c.«.";,e) �('ii&\ 4,le)J� at &

subject to b 1 c( ( lj) � C. for "11 '1 � �.

The optimality conditions require the 1ntroduot1on of a Lagrange

multiplier tunotton ) (�) and the deftn1t1on of a Lagrangian,

(90) L-=- E{Ula&.(�),e)J + E� 1'(�)(<:-b 1 c1.{�))).

If U 1s dtfferentlable and oonoave ln A, the following Kuhn-Tucker

peraon-by-peraon cond1t1one ar� both neoeaaary and sutt101ent for
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optimality.

Theorems (f) are optimal if and only if there exist a multiplier

functionA(1) such that

(91) E for eaoh E j IJ.-- H

(92) b'(3)&C, iL)y? o for each in'!

(93) (WANk)-c)U0j)-= o for each L3 e.

The interpretation of these conditions are as follows. select

decision functions so the posterior expected marginal utility

with respect to at given y equals the marginal cost in utility

units of the resource used by at. The resource demand must never

exceed the endowment for all possible information and if for some

information the endowment is not completely used, the shadow price

of the resource in utility terms must equal zero,

Suppose the conditions (91) - (93) are very complicated to

solve analytically or suppose, as discussed above, the technical

knowledge of U(A,8) is decentralized so that no team member has

enough knowledge to solve (91) - (93). Some iterative procedure

for exchanging technical knowledge must be used to elicit the

optimal decision rule, The method to be explored now is based on

the price-guided gradient procedure of Arrow and Hurwioz.(ia)

Suppose at stage t, the ith teammate has a decision funo-

tion cK (& and the planner has a shadow price funotion S)-

Typically these functions will not satisfy the Kuhn-Tucker person-

by-person. What the team would like to do is adjust the functions

to get higher up the expected utility "hill" and this can be done

by modifying each function by its corresponding variational par-
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tial derivative of the Lagrangian. Define a team gradient prooe-

dure at stage 1 by

(94) 4Li EI . ) jour all A, - ,oZ,.f..a
A T

(95) o if t )=o qr4 b.',()< c

t (b6 'o&(1n-c. OtharweFor WIl 4.

How exactly does the team generate such a gradient solution

processes? At stage the planner announces a shadow price func-

tion for the resource * (l . If the utility function was

additively decomposable, this would be all the information the

teammates would need to know to adjust their decision functions.

However, in the general case with externalities in the utility

the teammates must know the proposed decision functions of other

teammates. So we must also allow the planner to disseminate the

decision functions to teammates that require them. Given the

shadow price of the resource and the decision functions of other

teammates, the Ith teammate modifies his decision function by the

posterior marginal net utility and reports this back to the plan-

ner. The planner modifies the shadow price function by the excess

demand function for resources, taking account that it must never

be negative. The planner announces this shadow price function

and proposed decision functions and the process begins again. The

process will terminate when the planner finds the current deoi-

sion functions and shadow prices that 3atisfy (91) - (93).

It should be pointed out that while we have just define a

gradient process that adjusts decision functions, this could be

reduced to just adjusting an action vector. If the total problem

only involves decision functions that depend on y, there is no
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reason the team could not wait until the information y Is known,

Say , and then maximize posterior expected team utility

given J by selecting a vector of actions

The gradient solution of this posterior problem would be exaotly

like (94) and (95) except instead of adjusting at all j C Nd,
it would adjust only at . The reason this simplification

was not dono above is that in most cases the team will have other

actions not bound by a joint oonstraint and not selected based

on the common information y. In such a case the entire deoision

function o43) must be calculated because other decision makers

will not know y.(lb)

A question that ought to be answered about any solution

procedure is "Does the solution process converge to the optimum?"

In gradient procedures this is usually answered by treating (94)

and (95) as a system of first order, non-linear differential

equations InT.and evaluating the stability of any initial value

solution. Stability of differential equations is typically

analyze using Lyapunov's second method. However, it should be

noted that (94) and (95) is not a finite system of differential

equations in the general case, Notably ifI3 is a subset of the

real numbers that is countably or unoountably infinite, bounded

or unbounded, the differential equations Aill not be discrete

and finite in number. Suppose for example 'J =ot-1, the closed

unit interval, then (94) and (95) are actually a oontinuum of

differential equations. The applioability of Lyapunov's method

as well as existance and uniqueness resLIts will not necessarily
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carry over to these more general cases. The issues involved are

discussed in the appendix on "Convergence of Gradient Methods in

Abstract Spaces".

Suppose that'd is a discrete, finite set of real numbers

7-* and let 4hQ3,Ie be the probability that

-iA; e e r , given the state of nature. Then the team's prob-

lem is to select, not functions, but vectors of actions for each

teammate; let us denote the decision function by the r-veotor

The team problem is to select these vector of actions to

(96) "A tX50tA(e,--,qiee) 4Wso) ct(e)A

subject toL b< ie C e- 1,2,.., (a

We must now introduce a Lagrange multiplier vector A (A, --> A'

with each component corresponding to the identically numbered

element of 21 . If at some stage T- in the solution procedure the

teammates have approximatesolutions aie C)and the planner has

approximate shadow prices XeC.) then the team adjusts its deci-

sions and prices aecording to the following process

(97) = Aai e(s ,.. (->.,ee rQ j)4Ae -bi he( T

(98) o if Ae(tY)= 0 n4 Ae4e

Et L Zb;Cae()-c oflcvwge

For each C--,..., where f (9Ije) is the posterior p.d. f. of f

given tP'Je

In this problem we can give the following stability theorem

Theorem 1s If (c4E..,O'@ is striotly conoave and twice differen-

tiable in at,..,an for allO and Og,,ee i=i,..,N; esl,,.,r is
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a saddle point for the problem (96) then

(a) the decisions %e" i-1,..,N * e=1,.,r are unique

(b) the solution of the gradient algorithm (9?) and (98) for

any initial condition exists and is unique

(o) the solution of (97) and (98) for any initial conditions

converges to the saddle point.

Proofs Strict concavity of U implies there is at most one "peak"

of W and if &;d is a "peak" then it must be unique.

Since the Lagrangian is twice differentiable in both

ale and Ae, the gradient process must satisfy Lipshitz condi-

tions and will thus have a unique solution to (97) and (98)

for any initial decision functions and shadow prioes, Global

convergenoe will follow if a Lyapunov function can be found0

Let

(99) A =(all,..,alr,a21,.,aie ,..,aNr)'

and then $k at the function

(100) P(At),MT) 1 tU A(t)-(1 +t -II'A( 1(I!

The rate of change of D with respect to '- is

(101) t d(-c) -- N (-EY ( a )c-- A)+ t)' (A-t) - .

If L(A)Aj is the Lagrangian for this problem, the strict

concavity of U implies

(102) L ( AA ) - L(AA)4 4 L' (s-A)

and linearity of L in A implies

(103) L (A,t) - L(AI) = VL' ($-.).

Since a saddle point is defined as

(104) !.( A,3) A L (Al) K-LA,;0
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it is easily seen that

(105) 0 iL-L(A,

Since - L(A )(bAC)(A-) is non negative

if t=O and b' -C 40, it can be shown that

(106) -V/\L'LMt)- )Lt) (?C)-Kt).

By definition

(107) SVAL =- A
therefore -) is monotonically decreasing in T-.

(108) 6(t) 4V L'(fl() ) - AL'( (T) -$) <0.

Obviously D(t) is bounded below zero and equals zero if

and only if A(t)= M -)?= . Hence D is a Lyapunov function

and the saddle point is globally stable. iLLE.P,

As an example of how this price guided gradient procedure

might occur in practice, imagine a firm that produces N goods

ala2,.,taN. The firm is divided into production departments, one

for each good, which independently select the output level of

their good. Today's price of the Ith good, pi, is known by depart-

ment i but the goods will not be sold until tomorrow. In the

meanwhile general prices levels will have changed by some random

amount so that the revenue from LI units of good I will be P; O

where e is the general price level. Decision about Input levels

must be made without exact knowledge of'S, but macro forecasts

are available to predict the new price level. All departments

consult a company-wide price forecast Z before selecting outputs.

The cost of the joint product A - (al..,aN) is

(109) C(A) yA*QA
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where� 1a a positive defin1'1�e matrix. Departments apeo1al1ze 1n 

their own teohnology so that they know only the elements q11,••,q1N 

1n the coat ma·tr1x. In ad.di tlon to this. the departments all use 

machinery to produce the·lr goods and a f1:z:ed amount of' maohinery 

is available for use. The departments face a joint constraint 

(110) 

where b1 1s maoh1nery used per unit output ot a1 and o 1s the 

total machinery ava1labl3 to the firm. Again technical knowledge 

is decentralized so that b1 la known only to the 1 th department. 

The total mao�inery available is known only to the oorporate 

planner. 

The firm's objective is to maximize the firms ezpeoted 

profi ta by selecting output decision functions A = o( ( 1:, -== (o(, ( -e), 
I

oCa.('�), .. ,-'N(�)) to maximize 

(111) E \.,'I' ai.( � \ 8 - to(.(�)' q at.(�) J

subject to

b 1c{l:C l � c , for all roreoasts Z. 

There is no individual 1n the organization who knows all the 

parameters needed to solve this problem:!', Q, band o. Instead 

the corporate planner and departments engage in an iterative 

searoh tor the optimal output deo1a1on ruleR. If' E{Bl�J i!:. h'
4'

-'
,.c.t

then at the optimum all maohiner1 will be occupied. no matter 

what toreoaat 1s asde and the optimal output dao1s1on rules 

will be linear in the posterior e:z:peoted. prioe level, Ef 8 I?: 1.

Therefore the tlrm knows it need only look at linear deots1on 

rules and shadow prtoea 1n its search tor the optimum. 



The planner begins announcing an arbitrary price funotion

for machinery that is linear in E .IEJ-

(112) AT-(t) = v'E e13 + A

and arbitrary output decision functions that are linear in Eflf

( 113) cv-o( ? ) = A "rE1(1 Y -j+ Sc.

The department modify their output decision rule by the differ-

ence between posterior marginal profits and marginal cost of

machinery

(114) A; E'_ei3 - 1 ri cY(t) - b; At i)

or

(115a) A( -b

(115b) 4s5 - -;s

Notice that the ith department needs to know only parameters it

ought to know:/Ii.. b . It is not required to know

"1,Lk c6Orc, *C 4..$ . The department reports back to

the planner the new slope and intercept coefficients of its out-

put decision rule. (If bi's are to be known only to the depart-

ment and not the planner then a machinery demand function must

also be reported to the planners since demand for machinery is

1b(;(t),this would involve reporting only two parameters, b;1

and b; c . We will assume that the planner already knows bi

so he can construct the resource demand function.)

The planner uses the coefficients of the individual out-

put decision functions to modify the shadow price function for

machinery, He adjust the shadow price function by the excess

demand for machinery

-6tCtI)~C
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or

(116) . 6' A-

(117) A( =1 s

The new output and price funotional slope and intercept coeffi-

oents are announced and the process begins again, Notice that

the planner does not need to know/A or Q (or b as explained

above) in order to adjust the price of machinery. His only

required knowledge is of resource demand coefficients, 1b' A'

andb' ST, and the endowment of machines, o.

This adjustment process is decentralized in the sense that

it does not require that any individual reveal his technical

parametersdirectly. It is not in general monotonio,either in the

adjusting coefficients or expected utility. It is convergent to

the optimal decision rules although the rate of convergence is

a decreasing function of -C * To see how we derive this properties,

let us write the adjustment equations as a system of first order,

linear differential equations with constant ooefficients:

Am9 b A -+A
(C)8 6 - 0 o V, + \(0

(119) ( A e b( [

The solutions of these two independent sets of equations both

depend on the eigenvalues of the N+IxN+1 matrix

(120) B = ( < )

Since B is not a positive matrix, it can have imaginary roots
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and the solution may overshoot the singularity. However, if Q is

positive definite then B is negative definite if and only if

(B <0. The determinate of B can be shown to be equal to

-6'94 191 and hence 9 is negative definite. If B is negative

definite then the real parts of its eigenvalues of B are negative

and the solutions of (116) and (117) will converge. Simple calcu-

lation will show that 4V- 14 () BI ('satisfy

the Kuhn-Tucker person-by-person optimality conditions.

c. Price Guided Planning _ & Quota Team A N-member team faces

an inflexible joint constraint on actions 04iC and has decided

to introduce a system of quotas so that the constraint is satis-

fied with certainty. The team wants to select a vector of decision

functions o( ((sto(Mj)Y"and a quota vector q = (q, , ,0,qN)

to solve the following problem.

(121) Maximize W= E IL4A (S)e1

subject to

C for each I

b' e..

It is assumed that the joint constraint is binding so the inequal-

ity has been replaced by an equality in b 'I a f-P X..,(40

are multiplier functions corresponding to c((f)&( and d is a scalar

multiplier corresponding to b'g e, a Lagrangian expression is

defined by

(122) L s iffeAentible and strictly concave, theIA f(olg 

If U Is differentiable and strictly concave, the following Kuhn-



177

Tucker person-by-person rules are neoessary and sufficient for

optimality of c ,k, : For I =1,..,N

(123)= E j(t4( 1), q;i -(ij>= foreeacc cvt'i;

(124) 4Ef ( 3 -Xb; =Oat

(125) ErAi oLL94 z0 A j)0 for eac ji 3

(127) C - b 0.

These conditions are interpretable if we think of Ai (ii) as the

shadow price of the ith action and K as the shadow price of the

resource, both in utility units. The team must set posterior

expected marginal utilities equal to the shadow price of the

action, set expected shadow prices of actions equal to the margi-

nal cost of the resource, select actions that satisfy the quota,

set shadow prices equal to zero if the quota is not binding and

select quotas that completely use up the resource endowment.

If the solution of these conditions is either difficult

because of the complexity of the utility function and probability

densities or impossible because the technological knowledge is

decentralized within the team, an iterative exchange of knowledge

must be used to find optimal decision rules and quotas. We will

again study a modified form of the price guided gradient procew

dure developed by Arrow and Hurwicz.

Suppose at iteration T the decision rules are oQi ), the

quotas are gt , the shadow price of actions AT) and the shadow

price of the resource is ('. Since these functions and values

typically will not be optimal, they
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should be adjusted to get closer to the optimal. The gradient

method of hill climbing suggestsa step should be taken to get

closer to the saddle point by following the direction of steepest

ascent. This translate into the following adjustment equations

for i =1,2,..,N

(128) E'jL4(-(), eAt(4j' for a1 1je'M;A T_
(129) I. ES>L9)jiT

(13) ALo(1L

(130) A-f' T(9;> O 4- I& T)9 )=47

(131) e

How do these equations mirror real world actions and infor-

mational exchanges? The planner is responsible for the quotas and

all shadow prices; the teammate is responsible only for his deoi-

sion function. The planner informs each teammate what price he

must pay for a decision function, t (J;) , and the current deci-

sion rules of the other teammates (remember utility is non-addi-

tive)0 The teammate i knowing other members tentative decision

functions try to maximize his expected net utility, paying for

his actions at the given rate t' (;5i) by adjusting his tentative

decision funotion by the expected posterior marginal net utility

EjI1j1- -aht3 i1. The teammate reports his new decision func-

tion back to the planner, who now must make three kinds of adjust-

ment. First, the planner adjusts the amount of resource assigned

to teammate 1, b;f ' by adjusting g7 according to the expected

not utility of per unit action ai,EIINi )J101-Y6-. Second, the .

planner aLjusts the shadow price of the ith decision function by
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its excess demand on the quota, o t;(J;)-g;. Third, the planner

adjusts the shadow price of resource according to the excess

demand made on it by the quota system b'g-.. The modified shadow

prices and decision rules are redistributed to the teammates

and the process begins anew.

Stability of the procedure again depends on the concavity

of the utility function, We have previously mentioned that if

the ranges of information variables are not discrete and finite,

the differential equation system must be treated in more abstract

spaces then Euclidian m-space and not all finite dimensional

result carry over. As a result we will state a convergence

theorem only with discrete, finite Li.

Suppose the random variables can take on only a finite num-

ber of values:

(132) e6= f 8,...,rj

(133) q"d=i it',.-AIr.
Since each teammate must select only ri values for his action,

each one corresponding to an element of'U;,let us denote the deci-

sion function by the ri-vector

(134) ( --- >ij = (,(L j a), .,e;(;g)

Similarly the shadow price function can be written as ri-vector

(135) LN;1 .... Nir.) =(-A;1 Q 3i' '. i L~i

If at iteration M there are approximate solutions qie. L0, i CO,

Me,( Et A(T.)for i-1,..,N, ei=1,..,ri, the gradient process is

defined by the following finite system ot first order non-linear

differential equations
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i rrN

(138) -JO n %'e

(139) f- b'g1r..c .

The following stability theorem can be made for the quota team

problem with discrete, finite random variables.

Theorems If (A(A6,..,QuE) is twice differentiable and strictly

concave in at, .,aN for allS8 and Oe,, ,for

1=1,2,..,NI; ei=1,2,..,ri is a saddle point for the above

problem then
AA

(a) the solution 4ie.i ;iA e.. r is unique

(b) for any initial values the solution of (136) - (139)

exists and is unique,and

(c) the saddle point is globally asymptoticly stable.

Proof: The proof follows the previous stability theorem in almost

all respects, so details will not be presented.

As an example suppose a firm produces two goods a1 and a2,

The goods are produced by two departments specializing in the

corresponding good and are sold later in the week. The price of

goods are fixed at A4 and /Ah but there is uncertainty about the

general economy. If a depression occurs before the goods are sol4,

the markets disintegrate and no goods can be sold (prices don't

adjust downward). If the economy remains healthy, the firm oan

sell all its output at the given prices, the state of economy is
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represented by G10uzP=0,t.. The first department gets an economic

foreoastsA1,-eP-I,,L where , is a prediction of "bust" and

'%- is a prediction of "boom". Similarly the second gets a

different economic forecast L3.E 965,L7j. The two forecast have a

joint conditional probability

(140) tO(ixVR.,aiI(7 zrM=1 svt,z, mz;I i(,z
or e'

(141) t4TI,= TT= limi: '

11: Tr,'s T

a.,3a, '. Tt. VfA
L I t -L . : I MCIT7

The team's subjective prior distribution of E is 4(0&a)= e& =4t, 2

or written along the diagonal of a matrix

(142) <p(e) = P\

The joint probability of YjYZ0 is therefore t(,e) =rr

The team produces goods (ala2 ) at a total cost Af

(143) C(..qa,,q-..) ={ I +4C ,4 +- -a

The firm faces a constraint on machinery

(144) bi, + bi. e C),

and is forced to introduce. a quota system

(145) 4I, !1, 4 A 4.C-f

in order to guarantee the machinery constraint is not violated.

The department's deoision function is a vector of actions corre-

sponding to the disorete information values

The teams problem is to select a11,a12,aL2,a22 and (q1,q2) to
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maximize expected profits

(146) ~T~ YI E l( A 04 ,e - 'AP -C.'.jUP

subject to Al . t, A=it ; , t., wwz

and b, r, + . =C6-.

Suppose teammate I knows only the technical coefficients 011,012,

bi and prioeA;.A price guided solution procedure is introduced

with a resource planner responsible for generating shadow prices

for the decisions, Y,>NXziAn, and for the machinery, K. A

iterative solution to the constrained-quota profit maximizing

team problem is made, which is defined by the differential

equations (2)

(147) d&(-A ) (03A

(148) (.,)-)=2( A'Z 1,2z

(149) l(T) Vjs) +X 2X ( -zt))(; T-')b; =2,t-

(150) )tf)M(T)= 0 a CI 4e(T )Z (Z)

Aq-t:.t) -g(-) otherwis e

(151) 4Atm( a I A,.,=CCPO CVA q r-) <gQc)

adT- f ktmP()g.tr 0-fhews

(152)- b .T-) + b gt) -c.

The exchange of information is analogous to the more general

formulation given above.

d. Decomvesition ePlanni h y a Team A traditional team assump-

tion is that the utility function cannot be additively decomposed

into functions that depend only on single member actions; i.e.

(A(A,e) cannot be expressed as L-LA'(q;,0)or identioally, - 0
t'
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for all di.. The reason this non-separability assumption appears

is that the team problem could otherwise be polychotimized into N

unrelated decision problems, one for each of the team members.

This polychotomy cannot occur in the jointly constrained team

problem even if utilities are additive; the joint constraint

requires coordination of decisions no matter what form the utility

function takes. In the following we will explicitly assume that

utility is additive and study only the interrelationships of actions

through a joint constraint. In addition we will make the assumption

that the "planner" knows all components of utility function

The team faces a joint constraint on actions, which we will

write as

(153) ac(4) 1--3 (%)A C.

The "Planner" knows these functions % (q;) as well as the resource

endowment c. The team handles this inflexible joint constraint by

introducing quotas on the use of the scarce resource; that is a

vector jj,.-() is selected so that

(154) . V S C

and the additional constraints

(155) 1;(q;) 4.;

are added to the original problem. If this was the final specifi-

cati'on of the team's problem, planning would not be required

because the planner has all necessary technological information

needed to solve the problem. He would merely have to distribute

the optimal decision functions to the team members, But this will

not generally be the final form of the constrained team problem;
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single-agent constraints have not be specified. The Ith teammate

must select his action from a set of feasible individual actions

which will be denoted by the vector of inequalities

(156) h,(q) B = hi c,.E., h4it; , - ->It i

The planner does Mnj know the functions hi(ai) and therefore can-

not solve the problem initially.

The final element of the theory problem Is the probability

distributions. We will assume that the state of nature can take

only one of Ye values: e=iQ,-...,erd- The information variable

of the ith teammate can also take on only one of ri values, -

Because of the separable utility functions, the only

probabilities neededare <45('iJ8and4(O). The ith teammate knows

both the conditional density of yi given 8 and the density of e,

but not the conditional densities of other teammates. The planner

knows all the probability functions.

In summary, the team's problem is to select the individual

decision vectors (% --r 'tir)=- quotas i'= t.-

to maximize expected utility subject the quota constraints on

actions, the constraint on the jointly used resource and single-

agent constraints.

(157) M%V Vi .i e, ='% 1 J e~c4(e)--

~ L uActCe) q0 tO(jneNjI Bee)Cgeca)
subject to al,,.N 1 Iz.,v

T th oc k l ef c gt..,N; --
The technological knowledge of each agent is as follows a the plan-
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ner knows the functions Ui,..,UN t41 .-74, 7 e * * * and the

endowment c; the ith teammate knows the functions UI, 4) C,g 1,hI
and his endowment di. Conversely, the technological ignorance of

each agent is as follows: the planner does not know any of the

functions hI,..,hN nor the individual endowments di; the Ith

teammate does not know the UJ,4tjg,h3 ,d3 for jtI nor the joint

endowment o.

The solution procedure which will now be developed is based

on an algorithm which is called "vertical decomposition'(3) The

Dantzig-Wolfe price guided linear decomposition was extended to

non-linear objectives and constraints by Malinvaud. Weitzman

developed the quantity target guided "dual" decomposition proce-

dure. The vertical decomposition algorithm is most closely rela-

ted to Weitzman's work because the planner's "indices" are

quantitative and the individual agent's "proposals" are shadow

prices. The vertical decomposition procedure will be specified

in detail in its general form and then the team's particular

problem will be analyzed in the framework just constructed,

Suppose there is an organization with two units, the

"planner" and the "periphery". The planner controls a variable

y (not to be confused with its previous use). The organizations

problem is to seleot x and y to

(I) Mdxrijig 14(y.) 4+ ('

stbeaci to + (A 41 (5 SA

The planner knows U,g and d but not V and h, which are known only
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to the periphery. If the planner knew

(II) P(flE P=Max Vj) s.r. hF)C o , J 0

then he could solve the equivalent problem

(III) rQ A LA(X ) * ( )

sT. 3(X) + e

)( 0.

If (A)

Therems IfU%A) solves problem (III) and j solves (II) for -e

then (Y A solves (.

Proofs (9V) is feasible for (I) by construction. The Kuhn-Tucker

conditions for (III) are

(158) V"( 2A) =V T(A)'fr

(159) V,(i) fTr
where T is the shadow price. The Kuhn-Tucker conditions for (II)

are

(160) vjv(q) Vk() IP
AA

where P is the shadow price . But by definition of I(&))l=V&P(z).

Hence =Iw by (159). The conditions (158) and (160) are thus

written as

(161) VxLA(W = Vx3(?)'IT

(162) vgv(q\ = V, h(3)'i

But these are exactly the Kuhn-Tucker conditions for problem (I).
A

So (, q) solves problem (I) with shadow price I Q.E D.

The planner does _.ft know the function 'V Aso he cannot

directly solve problem (III) and then allow the periphery to
A

maximize its utility subject to the quota R-. The vertial decom-

position procedure builds an approximation to the function Y(.C)

so that the planner never has to know the functions V(y),h(y).
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Suppose the planner has at stage a an approximation of

, denotedts(1), with the property that js(Q) WUJ,

for all Z. The planner solves the psuedo-master problem

(163) rv4% x ) + 9s
s,-T. 5 (Y') + 6 .2 0.

Let us denote the optimal values at stage a by (x5,z5 ). The

planner tells the periphery that he must not use more than z5

units of the resource, so the periphery solves

(164) qX (9 )

with optimal value ys and shadow pricelKT At what stage is the

approximation accurate enough to generate optimal actions?

Theorems If V55)@9Yj then (K,( 5 ) is optimal for the original

problem.

Proof: 'V) W(?t) by definition of %P(). The approximation is

everywhere greater than or equal to 4 (3). Suppose that (K, ri i s

not optimal, that is (Abc)+4 (0)>u(IYt()for some(X,Z)such that

3(g)+-4i 4J. But then Q(1t(s(0PL((C)Lt)>(X5)-4 (ts) = (X9)+- s

which contradiots definition of optimal (X,Z)for the

psuedo-master problem. Q

If the approximation does not provide an accurate enough ploture

of VP(*,how isYs(-) modified by the planner? The periphery

returns the shadow price ~1V and its optimal value of utility

V(LJS=%P5.The planner uses this information to sharpen its

approximation by creating a new 'Ys+1 (z) defined by
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We will state without proof that if V(y) Is concave and h(y) is

convex then 4'U)is a concave function. The term TF-- +t(t>W-5z

is then a supporting hyperplane through the point (PWt),9. ill

the new approximation still be everywhere greater or equal to

1P (:a) ?

Theorem: (?) S (~) for all .

Proof: By concavity of (1)

(166) PV(l)U- 5 )i 4 Y(r) -

The definition of W 5  as the shadow price of M- implies

(167) y(z) 4Tr5 ? +Y ().-r7-

Since by assumption +&()5P1 (46 ()Pis less than or equal to both

terms in the definition of Y 5.(~2- and hence is less than or

equal to the minimum of the two. jQD.

We now have a solution algorithm that tells us how the

planner generates new approximations. We have not specified how

the planner and periphery solve their constrained concave maxi-

mization problems at each stage, but we can imagine that they

use some procedure such as "steepest ascent".

This vertical decomposition algorithm would not be very
A A A A

useful if it did not converge to the optimal results X, 9, ? incA T-

S A

Theorems As S gets very large, 91 approaches 2 and X approaches K

if U and V are strictly concave functions while g and h are

strictly convex functions.

Proof: The sequence JY.,V must have a limit point since it is

bounded. Suppose that a limit point is (V0. Then Lim9,L.)=PI)
45- t4
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the limi ting form of the approximation, must satisfyij(i)=P(i),

and let us denote VWfi) b fl. Assume that CiA is different

from (1,$. The definition of (Y, F) as the solution of the

psuedo-master problem implies

(168) A (Kx) + v )t+r(j3( e)u( 4i(i + i- Tr(4 -S8

.. fOr 411The def+ti)+Tr(Aa) I

The definition of (^Y,4) as solution of the master problem implies

(169) r!6)Q+()+W(4-jC ) () +q/() +44_tt-i

4. u( ) +'(M+Tr (A-3(Y) - 2).

Since q'c W(4) it follows that I(~) L . (ic) so

(170) 40c4-W(t)t(4-(t-i) c o) +-T()ti(t jU.) -?).

Because the first inequality of (168) must hold for all 1(,r,~T,

it must hold for X,I,1T. Combining with (170) we have

(171) 4(2)*PL)tw(Aj(9)) e t 4i j4 -j(V0- )

but (ARY4? a , iio ! and W(i-cj(Y)q0 = which impli es

(172) ( ) t fV(l Q(El $(fl

Using the first inequality of (169) in a symmetric manner with

1k ,70, =-(K), ' ), we can show that

(173) (A (K) + Y M(i 6 U i -W (i)

which implies

(174) U (9)+ t

That is, (7, Z) and (93) are on the same indifference curve.

The second inequalities of (168) and (169) imply by first

setting T- then Tf=2W:

(175) 0= (4-3(7) -' )= ( .1

(176) 0 W -OL dI -1) 6f- -d
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But since (KZ) and (1, 2 are on the same indifference curve,

the first inequalities of (168) and (169) imply

(177) i(4j')2 ) iU&!!;R)-i) o

(178) Tr ' 4i -I 4 39'$ -0

Therefore

(179) W4 1 1 )T= (4-j(r)--)=o

(180) 'L4 ()-) =(.

The conclusion is that -TAq, or the slope of the indifference

curve at (i, ) equals the slope at (i, ) . But since U and V

are strictly cocave, this implies (_1,i)=(2,) contradicting the

assumption. Q.E.D.

It should be pointed out that if v(y) and h(y) are linear (so

that W(1) is piecewise linear) then convergence will occur in a

finite number of steps. Each step introduces a new "flat" section

of t(t) and the number of flat sections is bounded.

The above vertical decomposition problem is the simpliest

version. Certainly there is no difficulty in adding more

"peripheries" so that the objective is to maximize

Equally clearly, there could be single-agent constraints in addi-

tion to the joint constraint. If the problem is to maximize

(181) L (Y) Z v (9)

1 03z)n h afN

The planner then approximates mi functions defined as
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(182) Yj (_t) E MdX V i N J i i)&Ej,9i(J j66 ,teo

by collecting supporting hyperplanes tangent to this surface.

In this more general formulation of the vertical decompo-

sition problem we see the analogue of the quota team problem

(157). The variable x corresponds to the quotasj", the variable

yi corresponds to the decision vector (aii,..,air)', the endow-

ments w1 are zero in the team problem, while bi plays the role

of di and b plays the role of c. In the team problem A(Y,)=E 0,

The team's planner does not know the functions

(183) \iT)E ~ ~(ie,OIe 0 )(ieIeOkee)
e=1 %.t 0 4( iiIe

subjec tG Ohi(cliej) !44 Qei=9Zr

If he did, he could select to maximize

(184) N w1 (ti

subject -to to

and then impose the optimal quotas on the teammates, who would

then select their own optimal decision vectors. If the planner

at stage -c has an approximation of T; (i)suoh that N;tz!WL "ct)
for all ; , then he selects tentative quotas to maximize

(185) 1 Ti )
I-tg

subiec+ to Ca--+

These optimal quotas .. )are sent to members, who maximize

expected utility subject to all its constraints plus the quota.

The member returns the maximum expected utility that it could
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obtain given 4 ( 'V 3 (-))and the expected shadow price of the

quota, TFT. If ; (jj = ( for all i, then the planning

problem is solved. Otherwise the approximation is improved.

(186) wmi(fl w- r w L C(j7),wr;tj+ P;(g) -i T 7_J

The procedure will converge if utilities are strictly convex

functions, and in a finite number of steps in the linear case.

This section began with an arguement that non-separable

utility is not important when the team faces joint constraints.

Therefore the decomposition algorithm was stated with additively

separable utility. This seotion ends with the note that separable

utility is not absolutely necessa,'y for a well behaved algorithm.

Decomposition procedures of the price guided type exist for non-

additive utility functions of the form

(187) (M,..., CO$)=;)().

In these price guided decomposition algorithms the planner must

not supply a price at each stage for the jointly constrained

resources but also a tentative decision on al,..,aN. The individual

agents need to know approximately what actions the other members

may take in order to coordinate their own actions to maximize

'(q;, )+(4.1(q;j, qj19) in the subsdiary problems. In the vertical

decomposition algorithm, in addition to imposing tentative quotas,

the planner would need to announce tentative decisions so that

peripheries could coordinate their proposals. The planner would

then approximate the functions defined by

(188) WE(j;,)1,..+i).R4=-E ;e)+EuJ(4;,q,,e)j

subject to h;(q; 6 4;

jj~qC
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By looking at supporting hyperplaces tangent to its surface.

e. Qusntitr Qfl4d Gradient Plann a jt Ter In the

price guided gradient procedure, the planner announced the tenta-

tive price of the resource. In a team problem the "price" was a

price function, Ai (J0, which told the ith teammate how much

he would have to pay for his action if he observed information yj.

The member modified his current decision function proportional to

the difference between his posterior expected marginal payoff

given yj and the marginal cost, ~AT(33), and returned this propo-

sed decision function to the planner. The price functions played

the role of guiding "indices" while the decision function were

the adjusting "proposals" of the individual members. Two modifi-

cations of this scheme will be made in this subsection.

First, the planner will guide the searoh for optimal deci-

sion rules by telling the individuals how much of the resource

they will be allowed to use. The teammates will then try to make

the best use of their information without using more than their

allotment of the resource. The teammates answer the planner's

quota allocation with the price at which they would have purchased

that quantity of the resource. Roles have been switched. The plan-

ner's indices are now quantity quotas and the teammates proposals

are shadow prices.

Second, the teammate does not merely make a small adjust-

ment in the direction of steepest asoent. He immediately seleots

optimal decision rules in a quantum jump. In effect shadow prices
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have an infinite speed of adjustment. A similar kind of assumption,

could be made for the teammate's behavior in the price guided gra-

dient; given the shadow price of resources, the teammate would

then seleot actions to equalize the posterior expected marginal

utility and the shadow price, rather than just decrease their

difference. It has been made clear by Arrow and Hurwicz(5) that

instaneous adjustment can lead to undefined solutions (in fact,

it usually will in a purely linear case). However, if the initial

position is close enough Zo the equilibrium this difficulty will

not be important.

The team wants to select a vector of decision functions

&01) = ).-- ))' and a quota vector q = (q,..,qN) to

solve the following problem

(189) mqy. \W 4=L4U'(C),19)

su bjec+ to .(A) a5 t or itach Y e 1'

bt =.c

If ANA) (A,),.91n(Aj)) are multiplier functions corresponding

to c(MA and K is a scalar multiplier corresponding to b'g =0c.

the Kuhn-Tucker person-by-person rules for optimal A , ' are

(190) 0 E rA '( ),Sh3;J - ;fr etch j; c.J;

(191) o=nEj$1 ;(1S)j-Qb;

(192) 0 t j14( 1m) %e 1 .). o foreqch eJ

(193) 0 4(oreqck 5;' 1 j

(194) a C

Suppose at iterationC the decision rules are #5(1;), the
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quotas are and the shadow price of the resource is 9The

quantity guided gradient procedure is defined by the following

information flows and corrective actions,

(a) The planner announces the tentative decision functions for

each teammate, c (1;) and informs the teammate of his quota,

z'C
(b) The ith teammate takes the decision functions of the other

teammates as fixed but ignores the tentative decision funo-

tion(t(i). Instead the teammate selects a new decision

function 0' ('30 to maximize the team's expected utility

given the other decision functions e( (L2)subject to the

quota. That is he selects c<" to

(195) QE ( 01 ),., k "T),., (),N

st4bj c +t-to tq4t -L(5 :C

(c) In solving his constrained maximization problem, the ith

teammate must compute a shadow price function ); (tj)

corresponding to the quota constraint. The ith teammate's

proposal to the planner is the expected increase in team

utility if an extra unit of the resource was given to the

ith teammate,

(196) E IATAtj;)J /b;rP.ht tand his decision function et C4

(d) The planner uses the shadow prices of the individual quotas

to adjust the allocation of resources according to

(197) ; t= (PMPk At)( 6 )

(e) The planner announoes the new decision functions and

new quotas b rttand the procedure returns to (b) and

repeats.
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The quota guided gradient procedure can be expressed as the

following set of Kuhn-Tucker person-by-person conditions for

OCt (I) and system of differential equations

(198) o E (d(l),G);

(199) o. gf Q )

(200) 0 '

(201) a AT- (C) ( U -T(U3)

(202) NF

The adjustment of the quotas can be interpreted as shifting

resources toward those teammates whose expected increase in team

utility per unit resource is above the average. An interesting

point to note is that

(203) (b,"g +--+bN-4Y

= .E b ~J~ 1~i E C '5j

0.

If the original allocation of the resouroes was feasible,b'rgC

then the quotas will remain feasible. The decision functions

are continuous adjusted to optimize given the current quota

system. The procedure is also convergent to the optimal quotas

and decision rules in the case of discrete, finite range of

random variables

Theorems The solution algorithm oonverges to the optimal decision

functions (N)and optimal quotas i when the random variables
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have discrete, finite ranges.

Proofs Define the Lagrangian for the original problem by

(204)L t (A(A qe) -9' +

Define a Lyapunov function as the difference between L(a, )
and L tr,)3A t-X and notice that Lta] is a

non-deoreasing function of T-

(205) 4AT K ---- 46

+ A )

4 C-42t)All'

But c0b g Q at all stages C

(206) E. q;( eiYAj:=Oat all stages t

(207) (gc-;4.) Q- oat all stages t.

Hence

(208)(t e
7-L

Hence the Lyapunov is non increasing. jJ.Q.

Without attempting to enter the ideological dialogue as to

whether prices or quantities should be the guiding force in an

economic organization or system, it should be pointed out that in

practice of quantity targets are much more prevelant than shadow

prices in planning procedures. The planners typically allocate
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resouroes tentatively then seek information as to what direction 

the allocation should be shifted to improve the organizations 

payoff. 

fe AppendiXI Convergence .Q.f Gradlen� m_ethqds !J1 Abstract 2J?!Ces (?)

The team problem in its general form requires the selection of 

functions to maximize a functional, and therefore a gradient 

solution procedure generally defines a continuum of differential 

equations. The analysis of the convergence of a gradient algorithm 

must be based not on the theory of finite dimensional d1fferent1a.l 

equations but on the theory or differential equations 1n abstract 

spaces. This appendix: does not pretended to euolidi.ate concrete 

resultsa rather lt shall state some conjectures on this top1o. 

Because the team problem ls a variational problem, gra

dient convergence will be discussed 1n terms of related problems 

of optimal control and the calculus of var1ationsc Suppose the 

following optimal control problem ls to be solved

( 2 09 ) � � ¥ J T I ( )(, � > -f ) o\ t-
lA 0 

-i,T. )( -:: -f' ( 'I 1 \.4. 1 t) 
)( { 0) > °1 ( T) gl ven. 

A gradient solution procedure tor this problem 1s defined by 

auc-1-; -c., u 
) ) (210) a ""C. � nl.\ ( X (t; �), Lt (i:-;-c, P(i; t:.) o c. +LT 

where H� 1s the partial derivative with respect to U of the 

Hamiltonian tl:Ih,1t,,.)+P'{Ctc,14,t). The multiplier function P and

state function i will optimally satisfy 

( 211 ) K -= d l4 :: �(): 14 i-) 
0 p I I 
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(212) P .'- tt~P VX

The team problem is formulated more like the calculus of varia-

tions' problem

(213) M4 XUo)C4- g(), Wr) Gwen.

How would the gradient solution of this problem relate to the

above formulation for optimal control? Noticing that in this

case , we can see that

(214) jYj( 4

Integrating PU-) -Y P -K 4 -- x backwards we have

(215) aktT.)elF_

or

(216) ..X X;),(+;)io ~),.

Thus the gradient solution of the calculus of variations defines

a differential equation on some space of functions YSC-. What

problems do we have if, as in the above case, this space is

infinite dimensional (such as a general Banach space over the

real numbers)? Unfortunately many of the strong results of

finite dimensional system of differential equations do not carry

over to Banach spaces of infinite-dimensions. For example,

Peano's theorem in n-dimensional Euolidean space,"If i {MIJ+)

then continuity of 4 in the neighborhood of (0,0 t0 ) implies the

existence of a local solution," cannot be generalized to the

infinite-dimensional case.(8 ) The underlying difficulty in this

example is that the infinite-dimensional closed unit ball is not

necessarily compaot.
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This last fact has disturbing implications because the stabi-

lity theorem underlying Lyapunov's Second Method requires the mini-

mization of the Lyapunov function over a closed ball around the

singularity.(9) If the ball is compact then a minimum must exist

by the Weierstrass theorem. However, Lakshmikantham has shown that

"many problems concerning the behavior or solutions of ordinary

differential system can be made to depend on soalar differential

equations". (10)The following extension of Lyapunov's method to

infinite dimensional Banach spaces is based on the dependence bet-

ween the infinite dimensional problem and a scalar problem.

Let tAa5 , where S is Banach space over the field of real

numbers and tcI= tarol) . A Cauchy dif ferential equation i s

(217) . t "

4(ta) =(Ao

where ft J xB-tB.

Assumption 1: VECLRgI3, RJ, a functional, and for (t ), (t y)e ,4

(218) 1 V (+-, \N-\ 4 LL(.{.) |Ik1(, -..!CLI(

where ittla Cand is continuous.

Assumption 2: There exists a function j 8 Ilg9R,., Rjsuch that for

each (tK)Rtfl 9

(219) 3t ~,x)&Limrse((V(~ + (,x)-V(,x)H 4cog

Assumption 31 For each (t.,r.)ePksR, , the maximal solution r(t,t4)

of the soalar initial value problem. ir =(t'r) and f 0 t0 ,

exists in the future.

Assumption 41 4e(tO)EC, ;UFO'k(3, 4 (th=. teF .

Assumption 5. There exists a function b lttfOisuch that k'(r) > O
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and b(IIxJI) < V(f,x) (4,K)14tYB9

Thegorems If r = Is asymptotically stable for r r, r(&o)= r

thentto is asymptotically stable for C6 f(*(A) tQ)()-Z. A. -(11

The finite-dimensional analogue of the calculus of varia-

tions problem is to select (2V, .., 1) to

(220) vAV Y T (cjU 4-),veN

The gradient solution algorithm for this problem at stage -c Is

defined by

(221) $4z(-)= +OXt t0q+

Theorems I f TQX+,y 1 ,+) is strictly concave in 4 and ? t

for all+-and there exists a unique optimum ( I,-.., then

the gradient procedure for any initial vector (yi(v),.. gyo))

converges to the optimum.

Proofsi Either TUkI('t)-IL or 0 is easily shown to

be a Lyapunov functions.

The following conjecture is merely stated. Its truth seems likely

in view of the above two theorems, but has not be verified by the

author.

Conjeoture s If T1,0,) is strictly concave in x,i for all + and

twice difforentiable and if there exists a unique extremal

to the calculus of variations problem then the gradient

solution for any initial function y(+;o) converges to the

extremal satisfying Euler's equation.

Getting back to team theory, it is conjectured that strict

concavity of 4{(,&) in A for all 8 is sufficient for convergence

of gradient solutions of the team's problem to the decision rules
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that smt!sty person-by-peraon optimality oond1t1ona. Exploration 

of this proposition is currently being oarr1ed out by the author. 
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FOOTNOTES 

Seotlon I 

(l) Marsohak and Radner (1972), page 60.

<
2> To be more preolse, the constraint must be sat1st1ed almost

everywhere, 1.e., except on a set of measure zero.

(J) See J.s. Jordan (197J), and M.J. Beckmann (1958), for the

theory and appllcation of quotas in a team problems.

<4> J.s. Jordan (197)).

(5) T. Groves and R. Badner (1972).

Section II 

(1) 
o. Lange (19)6).

(2) K. Arrow and L. Rurw1oz (1960).
( )) 

G, Dantz1g and P. Wolfe ( 1960), 
(4) E. Mal1nvaud (1967).
( S) M. Weitzmsn (1970).
(6) 

G. M. Heal (1969), 

Section III 

(la) Arrow and Hurw1cz (1960). 
(lb) See the general formulation in the previous subsection on

"Decision Making wlth Identical Information"� 
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<
2
> This a system of first order linear differential equations

with constant coeff1c1euts as can be seen by the following 

calculations, 

�� = U<,P1 B,(11j1, + rr.,\.)+.,.tt, P-z&-a. (� t1f;-2 )]-en<p,l� 15l) G\1• Ci:)
C, ... 

- Ca L (n�, P, + rr� P-z.) "�, l-r:) -C, 1. (ir1'� P, t·lT:Z P11.) q.,_l. ( 1:)

f � ..... � V4 "J.. P1 &, ( rr,'... t- 'if�""') -t J4� P'l. 92 (TI';!.+ rr:-_)] -C·u. 41. ( 41"l") q 't.,.., ("�) 
- C,-z (tt;_!..,f:\ +1T� P"I.) C\u {-t.) -C1'l.llri.., P,+lf:;_.p"l. ) q,'2_< "l:)

'41here � 1 ( � 11.) ::. P 1 (ll"i,-+ 1T' _.\. \ "t- P""l.(lT :, +-'IT"}.,_ ) 
q� ct 4> z ( � i..-,) = P, l ir,'..., + 1r �..., ) 1" P'L(lr� ,.. IT! .... \ a 

(J) •vertical decompos1t1on" ls the name M. Weitzman ga.ve to a

solution algorithm tor a particular linear programming problem

he used as an exercise in his course on Central Planning at

M.I.T. in 1975. I would like to thank Professor Weitzman for

his ��lp on the general formulation of the problem.

<
4> See A. Whinston (1966) or J.E. Hass (1972).

(5) Arrow and Surwioz (1960), pp.50-51.
(6) The adjustment ot quotas in this manner ls 1dent1oal to the

gradient procedure in G.M. Heal (1969).

<7 > I would particularly like to thank H. Varian for discussions

on this points. In addition, K. Arrow, Y.c. Ho and R. Solow 

all provided comments on the topic. 

(B) See Ladas and Lakshmikantham (1972), PPo128-1)2 tor counter

examples. 

(9) Kried.er, et. al. (1968), page 412.
(lO) Laokshmikanthaa (1964), page .392.
(ll) !ad.as and Laokshmikantham (1972), PPo167-170.
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