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ABSTRLCT

Tne effects of alternative resourcs allocations 1in
stochastic service systems can be difficult to przdict.
Diverse, and sometimes conflicting, wmeasures of performance
for the operational effectiveness of thes2 systems complicate
the search for =ffectivz allocations., This report dascribes a
class of models waich estimata multiple aperating
characteristics for systems in which the identities of both
the customer and s2rver are important is determining the
effectiverass of response. Important applications of these
results are found in police, ambulanze, and fire s=2rvices.
Thes2 puklic safety systems comprise a class of spatially
distributed queuing systems that are discussed at length in
various parts of the th=asis.

The starting point for the analysis 1is the continuous
time Markov ‘"hypercube" model, an M¥/M/N gueuingy nodel which
identifiss the busy or idle status of 2ach server in its
(2**N)~elem2nt state space. A gensralization of the hyparcube
model is given in coniunction with a procedure for determining
dynanic allocations of servers to customers wiaich minimize
time-averaged costs of assignment. For spatially distributed
systems where the cost of assignment is given by response
distance, the optimization yields 1littls improvement when
compared to the strategy which dispatches the closest
available unit to each call for service, but does ra2sult in
substantial improvements in workload imbalance among the
servers. The solution procedure for ths aptimization probles
is a considerable simplification of previous dzrivations.

For systems in which expected service times are a
functiorn o©f both customer and server, am approximation
nrocedure is developed for estimating steady-state
performance. The procedure offers an inexpensive and
relatively simple alternative to simulation as a means for
analyzing these systems. The approximation is compared with
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sevaral analytic mod=ls and is found to yield estimates within
a few percent of the exact values for most measures of systen
performance. Applications of this procedure *to spatially
distributed systers for which travel time 1is a significant
component of overall service tim= are presanted.

An itarative procedure which seeks the optimal locations
for facilities providing service ander conditions of
congaestion is developed for spatially 3distributaed systems. As
opposed to previously developed deterministic location models,
the stochastic interaction of the response facilities |is
explicitly considered in determining locations which minimize
either average CLespoNnse distance or nore complax
geograpnically derived variables. Computational expzrience is
given.

The use of the approximation procedurs and location modzsl
is demonstrated in determining the optimal locations of
ambulances for an 2pmergency medical systan. Special
consideration is given to the evaluation of the wuse of
specialized aohile coronary care units as a means for reducing
the risk of d=2ath following certain coronary emergenciss.
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TITLE: Associate Professor of Electrical Ernjineering
and Urban Studies
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Chapter 1. INTRODUZTION

A. 3Background: Emsrgency Services

buring recent years, there has be=n an incr=2asing
interest in applying the techniques of Op=rations Ressarch to
problems arising in the public sector (Ref. 46 and 16). One
important application of this kind af analysis 1is to the
provision of emergency services such as fire, police, and
emergency medical systenms. This report 1is 3in ezffort to
identify some of the problems arising in the spatial dssign of
emergency services and to develop models which can be osed to
ansvwer guestlions c¢oncerning the appropriate allocation of
resources for such systeas.

In order to address these issues it 1s necessary to
understand bDoth the objectives of thase services and the
operational characteristics which will d=termine whether those
objectives can be met, Although there would be 1ittle
disagreement that these services are intended to provide sone
degree of protection to the public, it is not easy to relate
an objective 0of +this generality to spacific, qgquantifiable
performance measures. In order to design a system which will
provide acceptable service, there must b2 a consensus as to
"acceptability.®

Past research efforts have emphasized such
characteristics as response time or gueuing delays as mz2asures

-11~-



of system 2ffectiveness. These guantities <can be directly
related to the operation of these services as spatially

distributed gueuing syste@s. In part, the same =mphasis will

be continued here. However, the models described beslow are
designed to 1incorporate more gensral measuras of systenm
cffectiveness as a function of both th= spatial and gqueuing
aspacts of these sarvices.

This kind of analysis can be very difficult.
Particularly in large urban environments, emergency servicss
must be viewsd as dynamic probabilistic systems. Demands for
service are not deterministic, but require a description which
is probabilistic in both +time and space. An immediate
consaguence of this non-isterminism 1is 3 corresponding
uncertainty as to the availability of resources at a random
instant. When an inmmediate response is importamt, as is the
case 1in emergency services, the responssz unit vhich would
normally be assigned to provide service aight not be available
because it 1is servicing a previous demand. If that service
cannot be interrupted, or preempted, somz alternative response
must be made, This typs of probabilistic behavior should be
considered when answaring questions of resnurce allocation.

In addition to the problem of merely d2scribing the
dynamic behaviour of these systems, the relation between
alternative allocation schemes and the desired performance
must also be considered. Is there an optimal allocation of
tesourcas? If performance is defined in terms of multiple
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objectives, how should conflicts among these objectives be
resolved? Wnat are the procadures for determining answars to
these questions?

In summary, the g=2neral problem that w= address hare is
the provision of services in a stochastic environment. Our
empahsis is on the development of models ¢hich allow for the
simultaneous consideration of m@multiple psrformance measurss
for system effectiveness. This development has two facets.
The initial issue is an adequate description of the dynamic
operating characteristics of these systems for a given
configuration of resources. The s=z2cond area deals with
problems of resource allocation. If we can dascribe how a
s3ystem behaves, can we determine those designs which result in

improved performance?

B. Objectives

The «class of systenms vhich we consider can be
characterized in general teras as gqueuing systers with
distinguishable servers and classes of customers. Although
nuch of +the development contained in the following chapters
will be given in this general framework, it is instructive to
analyze cach part of this nomenclature as it relates to the
provision of emergency services,

"Oueuing" implies that there is some contention for
resources. For example, if your house catches fire, you would
probably prefer that +the <closest fire house 1ipmediately
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dispatch all of 1its apparatus to deal with your immediate
need. In practical terms, those particular units may be
currently engaged elsevwhere and some alternative rasponse is
required. This could take the form of a respciuse by another
unit or a gueuing delay 1if no units w2res available. The
design of a fire system should reflect these kinds of
considerations.

This example points up another important feature of these
3ystems; that is, the distinct identity of the responding
unit. For spatially distributed systems, the response units
might be distinguished solely on the basis of their location.
More generally, the individual units could have specialized
skills which could mpake them more or less appropriate for
assignment in particular situations. An =2yxample pressnted in
Chapter 7 distinguishes between standacrd ambulances anl mobile
corohary care units for response to certain coronary
emergencies.

These same distinctions of locality and appropriateness
of response can be applied to demands for service. When there
is an empahsis on response time, a police department is going
to choose a car for dispatch at least partially on the basis
of proximity. Again, this choice can also be influenced by the
pature of the demand for service. The response to a report of
a robbery in progress in likely to be very different from that
to a complaint of a stereo playing too loudly.

The models which are described below are designed to
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incorporate the stachastic nature of the arrival of calls for
service and a suitable response by the system providing
service hased on the current availability of ressurces and the
particular demand <£for service., For ths special case of
spatially distributed systems, the acceptability of response
can be defined 1in terms of geographic variables, such as
response time, or more complex meisures for system
performance. Iustead of only using quantities relating to the
process of delivering service, the formulations permit an

o o e e e

emphasis on the outcomes of providing that service {Ref. 64);
that is, did the patient live? was the fire extinguished? was
the thief apprehended? An example in Chapter 7 focuses of
som2 of the effects an ambulance system can hava on the risk
of death associated with certain medical emergencies.

Because the response of these systems to each alternative
configuration is difficult +to predict, an atteapt 1is made to
do more than just describe their operation. Procedures for
optinizing certain measures of performance #ill be given. In
specific terms, the procedures deal with either the allocation
of servers to customers, or, for spatially distributed

s3ystemns, a determination of the optimal location for respoase

units with respect to specified performance measures.

C. An Outline of Contents
The contents of this report can be divided into three
areas: a review and summary of models for stochastic services
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{Chapters 2 and 8), methodological developments (Chapters 3,
4, 5, and 6), and an example of the application of some of the
newly developed models (Chapter 7).

In Chapter 2, we review the 1literature as it pertains to
resource allocation for queuing systems with distinguishable
servers in the context of emergency services. Particular
attention will be paid to the “hypercib2 queuing model"
developed by Larson (Ref. 41 and 36). The flexibility and
philosophy of the hypercube formulation typifies much of the
developmernt contained here.

In spatially distributed systems, a czntral issue in
resource allocation 1is the determination of appropriate
locations for facilities. Both deterministic location aodels
and their stochastic variations are =zxamined for their
applicability to problems arising in stochastic service
systens. Particular attention is paid to models which
incorporate sonme of the queuing aspects of spatially
distributed systems.

In Chapter 3, we review the formulation of the hypercube
model as used in the analysis of police operations. A
generalization of this continuous time Markov model to include
other than spatially distributed systems is presented in
conjunction with a procedure to determine the assignment of
servers to customers which mirimizes the expected cost of
service. Predictions from simple wmodels for determining
average response distance for spatially distributed systenms
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are compared with data generated by the hypercube model for a
specific region.

Chapter 4 develops alternative models 1in response to soame
limitations of the hypercube model. Thesz nodels are used to
explore the effect of various service time assumptions on the
operating characteristics of gqueuing systems with
distinqguishable servers. dlthough these models have limited
practical applicability because of associated computational
difficulties, they provide counterexamples to two interesting
conjectures and suggest a steady state characterization for a
mich wider class of systenms.

A location model for use in spatially distributed queuing
systems 1s developed in <Chapter 5. The 1location model
incorporates the interaction among the service units in a
manner to improve the location of each unit on the basis of
its varticular spatial responses. Since the location of the
response units can affect the queuing behavior of the systenm,
an iterative procedure for determining the optimal positions
is given. The iteration involves successive improvements in
unit positions through the alterrate use of a descriptive
model for analyzing current unit Jlocations and the location
model for improving these locations. For applications to the
location of emergency medical units, the model is modified to
allow corstraints on maximum Tresponse tinme. For police
operations, similar modifications to include preventive patrol
are given.
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Using a result derived in Chapter 4, we develop in
Chapter 6 an approximation procedure for analyzing systems in
which service times depend on both the server and the class of
customer. This procedure is similar +to that developed by
Larson for the hypercube model (Fef. U0). This technigue is
particularly useful in analyzing spatially distributed systems
for which travel time is a significant portion of the overall
service time. In these circunmstances, the travel time depends
on both the initial 1iocation of the response unit and the
spatial origin of the call for service (customer). We
conclude this chapter by comparing the approximation procedure
to previously developed analytic models.

Chapter 7 1is the culmination of the preceding
development. An example of the use of the locational model
and approximation procedure is presented in the context of
locating emergency aambulances. The flexibility of the models
is demonstrated by first locating standard ambulances to
minimize average yesponse time and then evaluating the
addition of a specialized mobile cororary care unit. The
latter example utilizes work recently coapleted by Cretin
(Ref. 13) in modeling the risk of pre-~hospital death following
certain coronary emergencies. This analysis focuses on a more
direct measure of a system!s effectiveness than a surrogate
such as response time; that is, the risk of pre-hospital death
following a myocardial infarction.

Chapter 8 contains a summary and recommendations for
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further research.

D. MNotation

The notation used for both eguations and variables
corresponds closely to that of a high level ©programeming
language such as PL/I or FORTRAN. Insofar as possible,
variables are given mhemonic names (such as AWL for average
workload) . The mnemonic will be indicated in the text by
underlining as in the previous example.

Subscript 1lists and the arguments of functions will
follow the associated variable name in brackets, { and }. For
2xazple, the i-th component of the vector V will be dernoted by
V{i}. An arhitrary component of ¥ 1is sometimes d=znoted by
V{-}. The entry in the i-th row and j-th column of the matrix
% is denoted by M{i,j}. M{i,-} denotes the i-th row of M.
Similarly, the function P evaluated at t has value F({t}.
Parentheses in equations are used only to indicate the order
of operations.

Unless altered by the use of parentheses, the pracedence
of arithmetic operations is exponentiation (**), followed by
multiplication (*) and division (/}, and then additionmn (+) and
subtraction (-).

In conditioning indices for summations, i:V{i}=7 is read
"those indices i such that the i-th component of the vector V
is equal to j."

A glossary of variable names and mpsmonics is given in
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Appendix A with an indication as to the location of the first

use 0f the variables in the text.
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Chapter 2. LITERATURE REVIEW

A. Introduction

There 1is a substantial 1literaturs on queuing and
optimization of stochastic systems. The reader is referred to
Ross (Ref. 50), Karlin (Ref. 32), Cox and Smith (Ref. 12) or
Feller (Ref. 17 and 18) for a general discussion of these
subjects. Our purpose here is to review a specific subset of
this literature. In particular, we will look at methodologies
and applications which are oriented toward the provision of
emergency services, which we view as spatially distributed
queuing systems.

The literaturz which is relevant to the discussion givan
here can be dividsd into two categories. The first, which we
refer to as the set of predictive models, is largely concerned
with the analysis of a service system with a specified level
and configuration of resources. The objective of thess models
is to incorporate the stochastic elements of demands for
service and availability of response units into a description
of the dynamic operating characteristics of the system. Sone
of these models are purely descriptive, while others
incorporate optimization techniques to determine the
allocations of fixed resources which result in the "best”
performance of the system.

The second category deals with models for determining the
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otimal Jlocation of facilities in spatially distributed
systems. The distinction between these two groupings is not
alwvays precise, but it has the advantage of closely

paralleling the development given in the subsequent chapters.

B. Predictive Models

The predictive models to be discussed here are designed
to estimate the operating characteristics of a system as a
function of the spatial and temporal distribution of demands
for service, the number and placement of response units, and a
service discipline for assigning servers to customers
(demands). For spatially distributed systems, an additional
imput is given by a description of the lcocal geography.
Needless to say, it is very difficult to incorporate all of
these variables into a2 single model. Although simulation
techniques have been applied to these systems with some
success {Ref. 41 and 43), our emphasis will be on analytic
models.

There are many models dealing with particular facets of
the operation of emergency services., Perhaps the most
comprehensive single work in the field is Urban Police Patrol
Analysis by Larson (Ref. 41)., The specific issues addressed
by Larson include travel time models (for example, the effects
of barriers or ope-way streets to travel time); preventive
patrol (including models for the probability of intercepting
crimes in progress); and sector design (with an analysis of

-22-



fixed position versus mobile units énﬂ the effects of
overlapping sectors). Although these models are developed in
the context of police operations, they have some general
applicability to the analysis of other spatially distributed
emergency services.

Other examples of models for specific aspects of systen
performance are the "“square root laws" postulated by Larson
(kRef. #1) and Blum and Rolesar (Ref. 2) for predicting average
response distance in spatially distributed systenms. We will
exanine these models in more detail im Chapter 3.

Chaiken and Larson (Ref. 5) have compilad an excellent
survey of technigues for resource allocation in eamergency
services {(through 1972). Their paper notes many of the models
for specific aspects of a systea's performance and contains an
extensive bibliography. Although nany of these modsls are
quite useful, there are recently developed models which are
more interesting from our viewpoint.

One such model was developed by Hall (Ref. 27} for
analyzing a service system consisting of police and emergency
redical vehicles., This semi~Markov model partially
incorporates the effects of travel time by utilizing different
service time distributions for responses of greater than and
less than one  mile. Although an exponential distribution
satisfactorily describes the service time distribution for the
particular system examined by Hall, it is not clear whether
the model would be analytically tractable for other

-23-



distributions. In Chapter 6, we develop a procedure which
axplicitly incorporates travel time as one component of the
overall service tinme.

Insofar as the topics to be discussed hare are concerned,
one of the most important developments was the Markov
“"hypercube gqueuing model.® This wmodeling approach was
suggasted initially by Larson {Ref. 39) and then detailed by
Campbell (Ref. 3). The model explicitly incorporates the
probabilistic nature of the arrival of calls and their
subsa2quent service in a framework including the interaction of
mobile or fixed units in a spatially distributed systen.
Initial numerical difficulties encountered by Campbell were
largely overcome by an iterative procedure devised by Larson
{(Ref. 36). Problems related to the sheer size of the model
have been solved by an approximation scheme developed by
Larson {(Ref. 40).

Although the hypercube model has been used mainly in the
context of urban police operations {(Ref. 38, 30, 14, and B),
Jarvis and Larson (Ref. 29) suggest alternative uses for the
modal. The generalization of the model giver in Chapter 13 is
developed in that spirit.

A typical use of models such as the hypercube is the
evaluation of alternative system configurations. Since the
model produces estimates of many differenct aspects of systenm
performance, the user can base his evaluation of the system on
a subjective estimate of its overall effectiveness. If the
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performance is not deemed satisfactory, then changes in
configuration can be made and the system re-evaluated. This
kind of iterative improvement can be difficult for several
reasons.

In the first place, some level of expertise is reguired
of the user in order to know what kinds of changes in the
system are likely to produce the desired results. As noted by
Larson and Stevenson (Ref. 42), some quantities, such as
travel distance, are largely insensitive to changes in the
configuration of a spatially distributed system and thus do
not lend themselves to significant improvement in a simple
manner, Finally, as noted by Chelst (Ref. 7y, some
performance measures, for example travel time and workload
imbalances, cannot in general be optimized simultaneously.

Implicit in this discussion is the assumption that
resources are not unlimited. At 1least in partial respoase to
considerations such as these, models which detarmine optimal
allocations of the available resources have bezen developed.
For example, Swersey {(Ref. 55) has developzd a Markov decision
model for determining how many fire-fighting units to dispatch
to an alarm. Part of the information considered in this
decision is the frequency of false alarms and the congestion
in the systen.

Similar technigues for allocating servers to customers in
fire operations have been develcped by Ignaill (Ref. 25).
Specifically, allocation schenmes which minimize response
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distance subject to constraints on workload imbalances are
determined. Although this formulation includes queuing
phenomena, 1its general applicability is limited by the
assumption that exactly one half of all the response units are
assigned +to amy particular call for service {(although not
necessarily the same half).

Carter, Chaiken, and Ignall (Ref. U) developed a
procedure for determining response areas to minimize response
distance for two fixed position emergency units and noted that
the optimization procedure also imsproved the workload
imbalance between the two units. An algorithmic procedure for
determining the optimal response areas for more than two units
vas given by Jarvis {(Ref. 28) utilizing Markov decision
theory. A generalized version of thes algorithm is given in
Chapter 3 with a nuch simplified development of the main
results of the solution procedure.

For spatially distributed systems, the gquestion of how to
allocate response units to demands for service is conplicated
by the additional question of where to locate the response
units. Models for solving these allocation-location probleas

are referred to simply as location models.

C. Location Mogdels

There 1is a substantial literature on location nodels.
Cooper (Ref. 10) and Revelle, Marks, and Liebman (Ref. #9)
have surveyed a large class of deterministic economic models.
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Tfpically, these models determine 1locations for facilities
which minimize average EBuclidean or rectilinear distances from
sources of supply to points of demand and can include
constraints on capacity and feasible allocations. Included in
this class of models are the network formulations surveyed by
Odoni {Ref, 48). A frequent objective in natwork problems is
the minimization of the maxigum distance between any source
and demand point. This problem 1is treated by Handler (Ref.
22) among others.

The difficulty in using these 1location models for
stochastic service systems is due to the deterministic
assumptions underlying their foremulation. For =axample,
a2lthough links between points of supply and demand may have
finite capacities, the supply facility is always available to
meet demands subject to those fixed capacity constraints.

Deterministic 1location mecdels have been proposed as a
method for locating emergency facilities by several aunthors.
Toregas, Revelle, Svain, and Bergman (Ref. 5B} use an integer
linear programming model to determine +the minimum nuaber of
facilities required to meet constraints on maximum distance to
a facility. Modifications to determine those locations which
minimize weighted response distance are discussed and sonme
computational experience is presented. Foranulations of this
type lead to the classical set covering problem (Ref, 20) or
variations on the p-median problea (Ref. 48). An application
of these 1ideas is given by Keeney (Ref. 33) 1in deteraining
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district boundaries for facilities. The set covering problem
is used by Walker (Ref. 60) to determine allocations of fire
apparatus to fire houses,

Several different solution procedures have been proposed
for solving the p-median problem. These include a modified
branch-and-bound procedure suggested by Jarvinen, Rajala, and
Sinervo ({Ref. 26) and a heuristic technique devised by Shannon
and Ignizio (Ref. 54). Comparative computational experience
using some of these procedures has been reported by White and
Case {Ref. 63).

The applicability of these mnodels and their asscciated
solution procedures to the leocation of emergency service
facilities is 1limited by the assumption that the facilities
are always available to provide service. In general, this
conditiorn 1is satisfied only under circumstances of 1limited
interaction between the response units or very low
utilizations of the service. &an example of the use of these
nodels when these conditions are satisfied is given by Jarvis,
Stevenson, and Willemain (Ref. 31) in determining ambulance
locations.

There are some techniques which incorporate time varying
demand in determining facility locations. Wesolowsky and
Truscott (Ref. 62) and Scott (Ref. 52) have develcoped dynamic
prograsming models for facility location when demands are
known but are not constant in time. Again, these models have
limited applicability in stochastic systenms.
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Mirchandani (Ref. 44%) and Chapman and White (Ref, 6) have
considered location problems which allow uncertainty in the
time or distance between the service facility and the
customer, Chapman and White address a c¢rucial issue in
applying these models +to spatially distributed queuing
systems; that is, the availability of a sz2rver to a randomly
chosen custoner. Although they give an algorithm for
determining server locations in a queulng environaent, no
computational experience is given. The authors state that
their procedure is too difficult to use except undsr very
special circumstances. The models developed by Chapman and
White appear to be more useful in a reliability context where
the availability of a service facility is independent of all
other facilities.

In symmary, there appear to be no location models which
have general applicability to spatially distributed queuing
systems, although some of the procedures described above are
useful in particular situations. In spite of this lack of
general models, specific location problems have been analyzed.

Savas used a simulation model to evaluate alternative
ambulance locations in New York (Ref. 51) and conclujes that
dispersion of the fleet is more cost-effective than location
at a central facility such as a hospital. The quantities of
primary interest in this study were expected respoase and
service times.

Using enmpirical travel time data, Hogg (Ref. 23)
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determined allocations of fire units and the location of fire
houses to minimize travel time to the scene of an incident.
Although the formulation allowed the dispatch of multiple
units to a fire and based the allocations onr this sort of
cooperation, it is assumed that the demand for service is low
enough that the units are always available for dispatch.

Fitzsimmons {Ref. 19) and Volz (Ref. 59) have daveloped
models for the allocation and location of ambulances. The
model developed by Fitzsimmons employs sinmulation techniques
for the analysis of queuing aspects and a heuristic search
routine to find optimal vehicle locations. Although it appears
that the gqueuing analysis of the model cculd be handled more
efficiently by a model such as the hypercube, the idea of
successively improving the location of response units eamployed
by Pitzsimmons (as well as Volz and Chapman and White) will be
used in Chapter 5.

Optimal locations are determined by Volz under the
assymption of instantaneous relocation of all available
response units as the number of availables units changes {(at
the receipt of a call for service or the coapletion of a
service). If the system has such a small atilizationr that the
overhead associated with the relocation does not affect
performance, then the deterasinistic location modzls are
probably a more appropriate means for determining locations.
The difficulties associated with relocation appear
insurmountable for practical applications in systems with
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representative workloads.

b. Conclusions

Although many of the references cited above contain
2lements which are wuseful 1in «certain aspects of resource
allocation in stochastic service systems, none incorporate all
of the desired features., One of the wmost comprehensive
formulations is given in the hypercube @model. In the
following pages, models are developed which combine the
flexibility of the hypercube model as a doscriptive tool with
generalizations of the hypercube's service time assumptions.
An iterative procedure for respomse uanit location is given
vhich utilizes +these descriptive models and includes the
interaction among units in spatially distributed quemning
systenms. |

Perhaps one of the most important features of this
iterative procedure is exemplified by the spatial design of an
amergency response system on the basis of patient outcozmes
rather than the usual measures of performance such as response
time. A maior strength of the models daveloped here 1is an
emphasis on the inclusion of more general measures of systenm
effectiveness than simple geographically derived wvariables

such as travel time.
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Chapter 3. THE HYPERCUBE MODEL

A. Introduction: An Application to Police Patrol

As indicated in the introduction and literature review,
the problem of describing the response function for emergency
services 1is a difficult one, The recently d=aveloped
‘hypercube' gqueuing rodel represents one of the most
comprehensive approaches to this task. In this chapter, ve
summarize the development of the wmodel in conjunction with an
example of its use in modeling police response.

Although much of the wmaterial in this chapter 1is
contained in the references, it is included here becanse it
forms the basis for much of the development in the following
chapters., We give a brief theoretical description in
conjunction with the police example, an optimization procedure
for certain aspects of system performance, and a summary of

applicable numerical techniques.

A.1 Police Response

Since the hypercube model has been used mainly 1in
describing police operations, that is the example used here.
The model focuses on the preventive patrol and emergency
response aspects of police units in a geographic setting.
Before discussing the exact wmodel formulation, we give a
scenario of the police operations which we are trying to
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model.

We restrict our attention to an autonomous subset of the
overall police force and its particular geographic area of
responsibility. There are a certain nuaber of mobile or fixed
patrol units (gservers) in the field which respond to calls for
service as assigned by a dispatcher. When a call arrives at
the dispatcher's desk, several events may occur.

If the call demands immediate attention, the dispatcher
chooses one or more units in the field and directs them to
respond to the incident. If the incident is not pressing, it
might be held, or gqueued , for later response. This might be
particularly 1likely to occur if the system 1is congested.
Normally, the unit assigned to service the call would be
performing only routine preventive patrol which would be
preempted to provide the service. 1In fact, a unit servicing a
routine call might be assigned to another call in an eaergency
situation, preempting its current service. A unit spends some
time providing on-scene service to a call and then returms to
preventive patrol.

While the preceding description is realistic for actual
police operations, we shall make a few simplifications. When
a call for service arrives, every unit is assumed to be either
busy {currently providing service) and hence unavailable for
other service or free (currently on preventive patrol} and
available for service. If any unit is available, the call

receives immediate attention. A single wunit is dispatched to
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provide the service. Calls are queued only if the systenm is

turated; that is, all of the units are busy. 1In this case,

. . S e s

n

ind

he call is either handled by some means external to the
system or held for later service wh2n a unit becomes
available; service is never preempted. In the former case, the
call is lost from the viewpoint of the system being examined.
It is crucial to note that this scenario focuses on
unanticipated demands for service. Scheduled events, such as
meal breaks or adainistrative tasks, although very iamportant
in actual operatioms, are ignored insofar as the model 1is
concerned. In addition, whether ¢the calls rapresent real
emergencies is irrelevant. With respect to the response of
the system, they must be treated, at least initially, as
emergencies and receive an immediate response if possible.
There are wmany factors which may be considered 1in
choosing the particuylar unit w«hich will respond to a call.
Since the call arrivals cannhot be anticipated but must receive
immediate attention, the actual assigaments will be a
probabilistic variation of an idealized assignment policy.
For example, the units in the field might be assigned to
patrol disjoint areas in order that each might to develop some
familiarity with a particular region. We refer to these

regions as sectors and the corresponding unit as th2 sector

car. Under most circumstances, we would like the sector car to
respond to all calls from its own sector. 1In practice, we
have to deal with the problem of which unit to assign when the
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sector car is busy. (Recall that no calls are preempted and
all calls receive immediate attention if there is an available
anit).

A reasonable solution to this vproblem is to dispatch the
closest available unit. Im fact, preserving sector identities
may not be very important and we might always try to 3ispatch
the closest available unit. Usually there is some uncertainty
as to the exact positions of +the available units and the
dispatch decision must be based on partial knowledge. (lLarson
has addressed the implications of different levels of
locational information in Ref. 417). Inplicit in this
discussion is the importance of oainimizing the time until the
arrival of a wupit at the scene of the incident. In sonme
circumstances, such as family disturbances, it may be
preferable to assign unitsiuith special skills in dealing with
a particular problem, even though they are farther from the
scene than another unit. 1In any case, it should be obvious
that the dispatch policy will have a great effect on the
availability of  units, but that this =2ffect 1is somewhat
complicated by the random nature of the arrival of calls.

The time that a unit spends servicing a call is another
source of wuncertainty in the dynamics of the police systen.
In general, the time that a unit spends providing service
consists of several components, none of which are
deterministic. There may be dispatch delays which depend on
the work level of the dispatcher. The component o>f the sarvice
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at the scene of the incident could easily depemnd on the exact
nature of the call. In addition, for geographically
distributed systems, th2 travel +time to and from the scene
must be considered. The uncertainty in this component of
service time arises from tvwo sources: variations due ‘the
travel conditions between two points 1in the region and
uncertainty as to the staiting position of the responding
unit.

In summary, we are concerned with the response to calls
for service. This response depends on the particular dispatch
rule being wused and on the availability >f units. In turno,
the availabilities are umncertain due +to the random arrival of
calls for service and nondeterministic service times. 1In the
next section, we give a more precise foraulation of the systen
dynamics in a framework which allows the use of an analytic

model for the systenm.

A.2 An Analytic Description of Peolice Patrol

4s discussed above, we are focusing on the response
function for calls which are presumed to be emergent. For the
geographic area of interest, we assume calls arrive according
to a time-homogeneous spatial Poisson process {(Ref. 35). 1In
particular, this implies that the arrival of calls is
independent of the availability of servers and the past
history of the system. Also, the time between successive
calls is distributed as a negative exponential vtandom
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variable.

(The validity of the Poisson assumption is examined in
Ref. 39 for police operations. In fact, the arrival process is
generally not time homogeneous but can be expected to exhibit
time independence over non-overlapping intsrvals. This is not
suprising since the pooled output of a large number of sources
can be shown to be Poisson over small time intervals (Ref.
11). We use the steady state analysis as an approximation to
the actual time inhomogeneity).

An important advantage of the hypercube model is that it
preserves the separate identities of the servers, which may be
based on the presumed location of the units or orn their
specialized functions. In either case, every server |is
assumed to be in one of two states: eithar busy {unavailable
for service) or free (available for service). When a call
arrives, a single unit is chosen from those which are free and
is inmediately assigned to provide service. In the event that
all servers are busy, the call 1is either lost or handled by
external means (zero line case) or gqueued until a unit beconmes

available ({infinite line case).

The service time for each unit is assumed to be
distributed as a negative exponential random variable with an
expected value which may depend on the particular unit
providing the service, but not on the call being serviced.
Since calls are at least partially classified by their origin,
this assumption 1is not strictly correct. For geographically
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distributed systees, one component of the service time |is
travel to the scene. This, of course, will depend on the
initial position of the server and the location of the call.
At least for police operatiorns, an analysis by Larson
indicated that travel time is usually small compared to
overall service time and hence the complication caused by the
location of the incident can be ignored (Ref. 39). Even
though travel time may be short compared to the total service
time, it still has iwmportance as a measure of systen
perforeance.

For services in which travel time is a more significant
component of service time, as in esergsncy ambulance services,
these assumptions are unrealistic. ¥e will return to this

problem in Chapters 4 and 6.

A.3 Performance Measures

There are several measures of performance which are
impartant in evaluating the effectiveness of police response
and patrol. While there has not been a great deal of work
concerning the relation of response time (the time from the
reception of the call to the arrival of a unit on the scene)
to crimpe prevention or interception, there is a consensus that
response time should be relatively low (Ref. 56). For the
purposes of developing a local identity or familiarization
with a particular area in preventive patrol, it wmay be
important to xeep the fraction of calls which take a unit out
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of its sector as low as possible. In addition, both the
absolute unit workload (fraction of time a unit spends

servicing calls) and that workload relative to the other units

{wvorkload imbalances) can be important adainistrative and

morale factors.

Both response times and workloads may be considered in
local and global terms. PFor instance, the overall response
time for a system may be very low but this performance may not
be acceptable because of inequities between different areas.
On a microscopic level, the fraction of calls which send a
unit to any particular part of the reqgion might be of
interest.

The hypercube has seen its major application in terms of
police sector design. In this comtext, for a particular number
of units assigned to patrol a certain geographic area, the
sectors determine the preventive patrol patterns in the
absence of calls for service. The hypercube model is used to
predict the actual patterns of patrol and response under
various assignment alternatives for that sector design. These
patterns are given in terms of workloads, response times, the
probability of queuing, and intersector dispatches. The
reader is referred to References 3 and 40 for a more complete
discussion of this application. 1In what follows, we abstract
the general features of the hypercube formulation and give
examples of how this formulation may be applied to police and
other service systems.
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B. The General Hypercube Queuing Model

In this section, we give a general formulation of the
hypercube model for a system with distinguishable servers and
distinguishable classes of customers. The focus will be on
the development of assignment (dispatch) rules to minimize the
average cost of providing service when the costs d4espend on
both the <class of the customer and the particular unit
providing service. This formulation is a generalization of the
model dewveloped by Campbell (Ref. 3) for police sector design.
Jarvis and Larson 1indicate other applications of the
formzlation and summarize the development in R=f, 28.
Although we focus on the zero line case here, the
modifications required to deal with infinite line capacity are

simple and are indicated as appropriate.

B.1 Model Assumptions and Not.tion

The hypercube model is a <continuous time, finite state
Markov description of an N server gJuedaing system with
distinguishable servers. A state in the Markov process is
denoted by a binary vector, VH (state vector, hypercube
model), of length N, where the j-th component of the vector is
zero if and only if server j is free (available for service)
in that state. (Note: the servers are indexed from 0 to N-1,
from right to left in the state vector). For convenience, a
state is often referred to by the integer associated with the
binary vector. Hence there are 2**N states, indexed from 0 to
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(2#*N)~1 inclusive, where state i has binary representation

(3-’) Vf‘l[i,-} = ( VH{i,N“}, VH[i,N—z}, s ne g VH{i,O} }
and

N-1
(3.2) i= Z VH(i,k} * 2%*k .

k=0

For example, with three servers, there are 2#%*3 or 8
states: 000, 001, 010, 011, 100, 101, 110, and 1%11. State 3,
binary 011, corresponds to units 0 and 1 being busy and unit

2, free. The state vector for that state 1is given by

YH{3,0}=1, VH{3,1}=1, and VH{3,2}=0; VH{3,-} (0 1 1.

There are NC {number of customer classes) distinct
classes of customers. Customers of type j arrive for service
according to a Poisson process with parameter CR{j} (call
rtate), j=1,2,...,NC, independent of all other customar types

and the state of the systen. The total call rate CRT (call

rate, total) is given by

NC

(3.3) CRT = Z CR {3} .

3=1

For geographically distributed systems, the customer classes
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are defined in terms of geographic atoms or reporting areas,
which partition the area of interest. In the police patrol
example, customers could be classified according to the atom
containing the origin of the call for service as well as the

actual type of incident reported; the N servers correspond to

mobile patrol cars.

B.2 The Steady State Eguations

The Markov description of the hypercube model is
completed by specifying the transition rates. As 1s obvious
from the state space, transitions involve elther an available
server becoming busy (an upward transition) or a server

completing service and Dbeconing available {a downward
transition). An upward transition corresponds to a cuastomer
arrival and the subsequent assignment of exactly one server.
Such events occur at rate CR{j} for customer type j. The
total rate at which ap upward trausition occurs depends on the
customer types serviced by a particular server in the state of
interest., This leads to the notion of an assignment rule.

For every state i {except the saturation state), there is
a vector POL{i,-} {policy vector) of length NC where
POL{i,n}=n if and only if server n is assigned to customers of
type m in state i. (Note: this requires that the server be
available, i.e. VA{i,n}=0. Assignments ars unique; randomized
rules are not allowed). Hence for states i and Jj where
VH{i,r}=VH{j,r} for r not equal to n and VH{i,n}=0, VH{i,n}=1,
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there is an upward transitionm from state i to state J with

rate R where

H

(3.4) R

Z CR {m} .

m:POL{i,m}=n

Each server 1is assuned to have a service time which is
exponentially distributed with mean 1/RH {n} (servics rate,
hypercube model) for server n, independent of the particular
customer being s2rviced or the past history of the systenm.
Therefore, a downward transition occurs from a state j to a
state i with rate RH{n} where VH{i,r}=VH(j,r} for r not equal
to n and VH{i,n}=1, VH{i,n}=0 (corresponding to s=rver n
completing service).

State i is said to be adjacent to state j if a transition
from i to j is possible. Note that every state is adjacent to
exactly N other states corresponding to a change in the status
of each server. If PH{i} (steady state probability, hypercube
model) is the steady state probability of state i, a set of
2*%*N simultaneous linear equations can be solved to obtain the
PH{i}. Heyristically, the equations may be derived by
equating the rate at which a state is entered to the rate at
which it 1is departed {(Ref. 15). The resulting equations of

datailed balance are written

T



(3.5) PH{i] * [CRT*DEL + z: RH {5} J

jTVE{i, 5} =1

= Z PH {i-2#%x*1} *[ Z CRIMI}

JeVH{i,j}=1 m:POL {i-2%%*j,m} =7

+ Z PHf{i+2%*4} * RH {j}
j:vH{i,]}}=0

for i=0,1,...,(2%*N)~1;

where DEL 1is zero for i=(2**N)-% (all servers busy) and one
othervise.

Any one of the eguations in (3.5) is redundant ani may be
replaced by a normalization constraint to obtain a unique
solution for the PH{-}. This development assumes that calls
arriving duripg saturation (state s, s=(2%¥%N)-1, all servers
busy) are irrevocably lost {or handled by rescources external
to the systenm).

Infinite line capacity is easily handled in the sanme

framework; one simply adds the infinite tail associated with

an M/M/N gueue. Equation (3.5) for i=s is modified to
N-1

(3.6) PH {s}* (CRT + SRT) = Z CRT*PH {s-2%%4} + SRT*QP (1}

3=0
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vhere QP(j} 1is the probability of j customers 1in gueue,
j=1,2,... and SRT {(service rate, total) is the sum of the

RH{-}. The equations for the QP{~} are

(3.7) QP {j} * (CRT + SRT) = CRT*QP{j—1} ¢ SRT*QP({j+1}

for j=1,2,... and QP {0} =PH{s}.

The addition of queueing just rescales the probabilities
obtained for the zero-line case {(Ref. 36). State s corresponds
to all servers busy but no calls gueusd. In order for the
steady state probabilities to exist when queuing is permitted,
it is npnecessary that CRT be less +than SRT. That is, the
syster must be able to service calls at a greater rate than
that at which they arrive.

The hypercube model is parametrized by thas state
depeﬁdent assignment rules. In practice, the <choice of
assignments vould be based on the state of the system and the
costs associated with the particular server-customer pair.
Explicitly, 1let C{i,j} (cost of assignment) denste thea
expected cost associated with assigning server i to a customer
of class j. 1In the context of police patrol analysis, the
cost term might be the expected time for unit i to re=ach the
location of atom j (focusing on the travel time component of
response time), Larson has considered sa2veral “"standard®

dispatch rules for police patrol which incorporate a
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probabilistic description of the location of mobile units with
expected travel times between points in the geographic area
determining the cost of assignment (Ref. 41}).

of course, our formulation is not restricted to the use
of travel times as the cost of assignaent. For police
operations, the costs could be expressed in terms of zero-one
variables corresponding to a maximum acceptable travel time.
More generally, a utility function for response time, such as
developed by Keeney for fire operations {(Ref. 34), could bhe
used to incorporate subjective preferences for response times.
In the case where the syster 1includes specialized servers,
such as bilingunal police officers, the cost structure might
ignore travel time entirely. 1Instead, the emphasis couald be
placed on deriving the maximum benefit from the skills of the
specialized servers. This could npean dispatching a bilingqual
officer across town for «calls originating from particular
ethnic cormunities.

In Chapter 7, we will examine a system in which costs are
expressed in terms of the risk of death in certain medical
emergencies. The formulation Telies on work by Cretin (Ref.
13} in which response time is one component in determining the

risk of dying after a myocardial infarction.

B.3 Computing Performance Measures
As noted previously, the hypercube mddel focuses
simaltaneously on many performance measures for a systeam.
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Given a particular assignment rule, the =2quations of detailed
balance h(3.5) can be solved for the steady state
probabilities., Pro® the steady state probabilities it is easy
to compute the workloads, WL{i}, or fraction of time server i

is busy, by

(3.8) WL{i} = :E: PH{j} ;
j:vH (.1} =1

the fraction of arrivals of customer class j handled by server

i, FS5Cfi,j} (fraction by server and customer)

{3-9) FSC{i, 3} = Z PH {m} H

m:POL{m, J}=1

and the system wide expected cost per customer, EC (expected

cost),
NC N-1
(3.10) EC = :E: {CB (j} /CRT) * :E: "FST{i,j} * C{i,3}
j=1 i=0

+ PH{s} * Cs{j}

wvhere C5{j} ‘zost during saturation) is the expected cost of a

call of type j arriving during a period of saturation and
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PH{s} is the probability of saturation. Note that one minus
the sum of PSC{i,}} over i is the fraction of calls of type j
arriving during a period of saturation; that is, PH{s}. Other
quantities of interest are detailed in Campbell (Ref. 3}
Larson ({(Ref. 36}.

The main drawback of Campbell's work was an inability to
deal with a system with more than six servers. By using an
iterative technique based on the structure of the model,
Larson (Ref., 36) extenied the problem size that could be
handled by two orders of magnitude (roughly fifteen servers).
Even greater improvement in this area has recently been
achieved by Larson using an approximation method which will be

discussed in more detail in Chapter 5 (Ref. 40).

C. Optimization of Assignment Rules

As noted above, one quantity of interest is EC, the
average cost per customer. It 1is natural to ask if it is
feasible or advantageous to minimize this guantity by varying
the assignment rule.

This problzsm has been solved in closed form for the case
of a spatially distributed system with tvo emergency response
units by Carter, Chaiken, and Ignall (R=2f. 4). For calls
arriving according to a spatially distributed Poisson process
and serviced by one of two fixed location units, the optimal

response area A for unit 0 is given by
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{(3.11) A = { x: Df{O,x} - Dft,x} < K }

vhere K is a constant which depends on thz call distribution,
system geometry, and utilization (average workload) when RH({0}
is equal to RH{1}. The D{i,x} are functions specifying the
cost (here travel time or distance) associatel with unit i
servicing a call at location x. Note that in the model
formulation, only in the state with hoth units available,
VH{0,-}=(0 0), 1is there any choice as to which unit ¢to
dispatch.

Small system size was the critical item in developing an
analytic solution for the two server nas=. The Markov process
ha. only four states and wmay be solved for ths PH{i}
explicitly. By parametrizing the response areas by the
difference ia travel +time or distance as 1in egquation (3.11),
the average costs may be minimized by testing the boundary
conditions and extreme points of the objective function as a
function of that difference. Such an approach is impractical
for larger numbers of servers. Although possibly quite large
in aumber, the alternative assignment rules for a finite
number of customer <classes are also finite. Sinc2 each
assignment tule yields an associated set of tramsitisn rates
and expected costs, standard techniques for minimizing

expacted costs in Markov processes may be esmployed.
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C.! Markov Decision Theory

Before dealing with the hypercube optimization problen,
we briefly describe the procedure for solving a Markov
decision problem. Probably the best known solution procedure
is due to Howard (Ref. 24). ‘This technigue, referred to as an
iteration in “policy space,™ can be adapted to deal with
either continuous or discrete time, finite state processes. We
restrict our attention to the discrete tinme problem
(successive call arrivals) as we are interestel in the cost of
assignment evants in the hypercube framevork.

For the general M-state problen, dafine TZ{i,J,k}
(expected transtion cost) to be the expected cost of a
transition from state i to state j und2r policy k. (Policy
choices are made on a state by state basis). Define TP({i,i,k}
(transition probability) to be the one-step transition
probability of going from state i to state j under policy k in
state i. The unconditional expected transition cost from state

i under the application of policy k, BTC{i,k}, is given by

o

(3.12) BTC{i ,k} = ZTC[i,j,k} * TP{i,j,k} -

3=1

Finally, define CT to be the expected cost per transition in
the steady state operation of the system under a particular
policy schenme. The Markov decision problem is to find the
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policy scheme which minimizes CT.

This problem is solved in an iterative procedpre vith two
phases: value determination and policy improvement. The value
determination phase for a particular policy scheme involves
solving the set of M simultaneous linear equations in SV({i},

i=1,2,-.-,ﬁ, and CT'

M
(3.13) CT + SV{i} = ETC{i,k} + }E: TP{i,j,k} * SV{i}

iz 1

for i=1,2,...,H4,

where SV{i} is the state value associated with state i under
that particular policy scheme. The set of equations in (3.13)
determine the SV variables up to am arbitrary constant. 12
unique solution may be obtained by setting any one of the
SV{i} equal to zero.

The policy improvement routine uses thé state values
determined from the valus determination phase. In particular,
for each state i, we choose the policy k which is the minimunm

in

M

(3. 14) Min ETC{i,k} + TP{i,j,k} * SV {j}
in | )3
3=1
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If k does strictly better in (3.14) than the previous policy k
{for any state), the policy scheme obtainad by replacing k
with k will result in a 1lower cost per transition. The value
determination phase is nov reapplied to thz nev policy scheme.

This technique proceeds 1iteratively until it 1is not
possible to obtain a strict improvement in (3.14). At that
point the optimal policy has been obtained. The optimal state

values have the property that they satisfy

|

(3.15) SV{i} = Min [ETC{i,k} 3 Z TP{i,j,k}*¥SV(j} - CT
13
j=1

for i=1"2'...'u‘

In fact, if there are numbhers SV{1}, SVi2}l, +.. , SV{M}
satisfying (3.15), that is a sufficient condition to gnarantee
that the minimizing policy scheme in (3.15) is the optimal
choice {Ref. 50). This result will prove useful in applying

Markov decision theory to the hypercube model.

C.2 Application of Markov Decision Theory to thes Hypercube
Before expressing the choice of assignment rule as a

Markov dacision problem, we make a slight digression. Several

alternative system descriptions are possible. We can 1look at

the optimization problem in terms of either an infinite or
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zero line systen. In addition, the system may be treated in
continuous or discrete tinme. That is, we can focus on the
cost per assignment or the cost per unit tinme.

In the original formulation of the hypercube moiel, the
service rates for each server were identical. In that case,
by focusing on the number of busy servers, it 1is possible to
show that the hypercube model reduces to ar ¥/M/N dueuing
system (with either =zero or infinite 1line capacity). The
important point to note is that this result holds regardless
of the assignment rule being used (Ref. 24}. In fact, given
the steady state probabilities and average cost in any of the
systen descriptions mentioned above, it is possible to write
the same quantities for all other descriptions in terms of
linear transformations whose parameters can be expressed as a
function of CRT, SRT, and PH{s}, the saturation probability
for the continuous time, zero line description.

The fact that PH{s} is independent of the assignment rule
implies that if a policy is optimal in one system description,
it must be optimal in every other description. An examination
of the development in Ref. 24 shows that the relation between
the steady state probabilities and average costs also holds
for the more general hypercube nodel in that the saturation
probability is the crucial guantity. Unfortunately, if the
RH{i} are not all egqual, the saturation probability is no
longer independent of the assigament rule.

This fact can be demonstrated by a simple two server

-53-



Pigure 3.1 State transition diagram for a two server systenm.
CRT=1, RH[D}=b near zero and RBHf1}=c wmuch largar than
one. Assignment rule one sets a=1; rules two s=2ts a=0.

The saturation probability is not independent of the
assignment rule.
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examnple {See Figure 3,1). In this instance, unit 1 is assumad
to have a very long expected service timz (RH{0} near zero)
and unit 1 has a very short service time (RH{1} larg=2). For
convenience, we s2t CRT equal to one ani consider only two
assignment rules. The first (a=1 in Pigurs 3.1) assigns every
call to wunit 0 if possible. The second (a=0 in Figures 3.1)
never makes an assignment to unit 0 if possible. It is easy
to see that under the first policy the system will usually be
in state (01} ; server 1 Efree and server busy.
Alternatively, the second policy will 1lsave the system in
state (00) most frequently; both servers free. In this
instance, the probability of a particular number of servers
being busy is not independent of the assignment policy.

We now focus on the discrete tiae, zerol line capacity
formulation of the hyparcube model for the application of
Markov decision theory. The techniques, of course, are
applicable to the other descriptions as well. (It should be
noted that it is fairly easy to specify a two server systenm
for vwhich the optimal policies differ between the =zero and
infinite line case).

In order to apply the techniques 3>f HMarkov decision
theory to the <choice of assignment rules we have only to
specify the transition probabilities and expected transition
costs in the manner of section C.1. For the sake of
completeness, we allow self +transitions in the saturation
state corresponding to the arrival of calls which are not
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handled by the system but which may contribute to the cost of
system operation.

The transition probabilities may be specified for any
state i, other than the saturation state s, as follows: Let A

be the total rate at which service is completed in state i.

That is,
N-1

(3.16) A = Z RH (m} * VH{i,2} .
a=0

If server n 1is free, hence VH{i,n)}=0, it is possible to make
an upward transition to state j, where j=i+2*%*n. This event

will occur at rate B, where B is given by

(3.17) B = Z CR {n} .

m:POL (i,u}=n

Then the transition probability from state i to state {,

calling the current policy k is
(3.18) TPf{i,j.,k} = B / (A + CRT) .

If server n is busy, VH{i,n}=1, then thare can be a
downwvard transition to state j where f=i-2%*n, The traasition
probability is given by
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(3.19) TP{i,j,k} = RH{n} / (A + CRT) .

Noting that only upward transitions (call arrivals) incur a
cost, we can write the expected cost of a transition fronm

state i by conditioning on the type of customer arrival as

NC
(3.20) ETC{i,k} = Z CR{m} * C{POL{i,m},n} / (A ¢ CRT)

r=1

The description is completed by treating the saturation
state. For this state, we allow a self transition to occur.

This event has rate CRT. Hence
{(3.21) TP{s,s,k} = CRT / (CRT + SRT)

which is independent of the assignment rule. From state s, a
downward transition to state j=s-2%*n occurs at rate RH{n} and

with probability
(3.22) TP{s,j,k} = RH{n} / (CRT + SRT) ;

again, independent of the policy. The cost of a transition in
the saturation state also takes a special fora.

In this case, instead of using the C{i,j}, the saturation
costs, CS{j}, are eaployed. As before, conditioninrg on the
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type of customer arrival and assigning zern cost to downvard

transitions, we have

NC

(3.23) ETC{s,k} = E CR{m} * CS{n} / (CRT + SR ,
n=1

also independent of the policy. With these definitions, we

can directly apply the technigues of Markov decision theory to
the problem of choosing assignment rules to ninimize the
average cost per call.

The difficulty with this approach bezomes apparent after
examining a typical system. Por an N server system, consider
the number of assignment alternatives inp the zero state alone,
There are NC types of calls, each of which may be assigned to
any of the N available servers. Hence there ars N*#NC
distinct alternatives. For the moderate sized system of N=6
and NC=25 this number is roughly 10%%*19, Even unler the
generous assumption that one of the evaluations reguired in
the policy improvement phase, equation (3.1%), could be
computed in a tenth of a microsecond, a single iteration for
state O vould take 10**12 seconds; roughly one hundred

thousand y=ars. An alternative approach is indicated.
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C.3 A Characterization of Optimal Policies

One method for dealing with the large number of possible
assignment rules is to find some characterization of the
optimal policy. of course, the mors detailed the
characterization, the smaller the number of alternatives which
must be examined. One approach is to use the functional fora
of the optimal policy given in equation (3.15).

We focus on a state 1 in which there is a policy choice.
That 1s, there must be at least two free servers. Denote
these servers by indices a and wm. Let k denote the optimal
policy in state i. Let r be a particular class of customer
assigned to server n in state i under policy k. Consider the
alternative policy k which is the same as k except that a type
r customer is assigned to server m instead of server n.

Since k achieves the minimum in (3.15), we have

(3.24) ETC{i, ,k} + Z TP{i,j,k} * SV[j} 2
:
ETC (i,k} + ZTP{i,j.m « sV(§} .
j

vhere in both summations, J indexes those states adijacent to
state i. Now, since policies k and k are the same except for
the assignment for type r calls, most of the terss on each

side of the ineguality (3.24) canzel. Aftar this
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simplification, we are left with

{3.25) C{m,r} + SV{i+2**n} > C{n,r} + SV{i+2%*q}
or
(3.26) C{m,r} - C{n,r} > SV{i+2%*n} - SV([i+2**m].

If for some call type g, we have that C{m,q} wminus C{n,q} is
strictly greater than C{m,r} minus C¢{n,r}, then m cannot be
the optimal unit to assign to type q in state 1i.

This last result may be seen by supposing that server m
is optimal for calls of type g. Applying the same logic that

led to (3.26) we have

(3.27) Ci{n,q} - C{m,q} > SV[i+2**m} - SV {i+2**n}

v

C{n,r} - C{m,r} .

The last inegunality follows from (3.26) and contradicts the
assumed relation between the differences 1in cost of assigning
unit n varsus unit m for call types q and r.

This result may be stated in a more syammetric form as

follows:

If ¢{m,q} - C{n,q} > Cf{m,r} - C{n,r} , then the
optimal assignment rule does not assign server m to
customer type q and server n to customer type r in any
state where both servers m and n are available.
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Heuristically, if we were unwilling to iaocur the extra cost
C{m,r} - C{n,r} to assign server m to customer type r instead
of server n, to be consistent we should be unwilling to make
the same switch for customer type g and 1incur the larger
Aifference. The similarity between this result and that given
by Carter, Chaiken, and Ignall for two servers shounld be
notead, The proof given above, which 1is applicabls to an
arbitrary number of servers, 1is a considerable simplification
of the original approach used by Jarvis (Ref. 24).

The practical significance of this result is largely
computational. Equation (3.25) can be used in the policy
improvement phase of Howard's algorithm to determine the exact
1ifference in cost of assignment that will &minimize the cost
per transition at that step of the solution procedure. Units
are considered pairvwise and only the current "best™ transition
probabilities and expected transition costs need be retained
at any step of the iteration. A more detailed description of
the implementation of this solution scheme may be found in
Jarvis (Ref. 24).

The solution procedure devised by Jarvis is a variation
of a method detailed by o0Odoni (Ref. 47). Basically, this
procedure solves the Harkov decision problem by successive
approximations in a dynamic programming framework which gives
mohotonically decreasing bounds on +the cost per transition.
The computational variation used by Jarvis is intermediate
between the dynamic programming procedure and Howard's
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"jteration in policy space."

Various implementations of the hypercube model have been
used over the past three years at the Massachusetts Institute
cf Technology. Larson (Ref. 37) and Weissberg (Ref. £1) have
documented a set of hypercube programs which are designed
mainly for use by police planners with a minimum knowledge of
the +theoretical foundations of the model. The general
hyparcube model described abova has been implement2d in a
computer program by Jarvis (Ref. 27). This version includes
the optimization of dispatch rules, All o2f the programs are
written in PL/YI and are in the public domain,.

4s an 2xample of the computer costs associated with using
the model, the optimal dispatching problem for a system with
N=6 {servers) and NC=62 (customer classes) can be solved for
roughly two dollars using the time sharing option on an IBM
370/168. This amounts to less than 10 seconds of CPU time.

In the next section, we give an example of the us2 of the
hypercube model to £find the optimal assignment rule for a
three server example. In the following sa2ction, the model is
used to generate average response distance data for comparison
to the "square root law" models which relate average response
distances to the average number of units available in a

geographic region.
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D. A Three Server Exaample

This example 1is included to 1illustrate the sort of
problem that may be addressed by the hypercube model. The
reader who is more interested in the specific application to
police patrol analysis should refer to Larson {Ref. 39, 40,

and 37).

D.1 A Description of a "Sample City"

our example d=als with a spatially distributed system in
which ve are interested 1in minimizing the average distance
traveled in responrse to a call for service. We consider three
fixed units, variously located in the famous vacation spa,
Sample City (See Figure 3.2). The area has b=2n partitioned
into 16 atoms which serve as a basis for classifying the calls
for service.

Assume that unit 0, located im atom 1, can service calls
at a rate of 1 per hour. Unit 1, in atom 11, can service 1.5
calls per hour; umit 2, in atom 16, 0.75 per hour. Calls
arrive at a rate of 1.3 per hour with the spatial distribution
shown in Figure 3.2 and Table 3.1. Table 3.1 summarizes the
parameters of the system. These include the cost per call in
terms of travel distance (one way, arbitrary units), and the
call and service rates specifying the various distributions.
The cost for a call arriving during a period of saturation is
taken to be the same as the travel distance that would be
incarred by a unit stationed in atonm 9. This cost may be
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Figure 3.2 A map of Sample City. The area is partitioned in
16 atoms, each shown with its index and the percentage of
the calls being generated from that atonm.
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Table 3.1 Systen parapeters for the thres server example in
Sample City. Costs of assignment apd service and call
rates are qgiven below in tabular fora.

A. Costs per assignment {Cfi,j} and CS{j}) with percentage
of calls from each atom (100%CR{j} /CRT):

RTON 7J: c{0, 3} c{t, 3} c{2,3 Cs{j} %CR {j}
1 2.4 17.2 2b.l 13.9 14.3
2 5.9 16.1 25.3 12.8 11.4
3 11.5 14.7 23.9 12.8 6.7
i 8.7 11.3 20.5 8.0 7.6
5 4,8 12.4 21.6 9.1 9.5
6 3.7 13.5 22.7 10.2 7.6
7 8.5 8.7 17.9 5.4 7.6
8 9.2 8.0 17.9 4.7 5.7
9 13.9 4.5 12.5 1.8 2.9
10 13.2 4.0 13.2 4.1 4.8
11 17.2 2.1 9.2 4.5 2.9
12 17.7 4.1 8.7 3.8 1.9
13 20.2 3.0 6.2 6.3 1.0
14 20.4 6.4 6.0 6.5 1.9
15 22.8 5.6 3.6 8.9 4.8
16 26 .4 I 1.9 12.5 9.5
B. Service rates (RH{i}):
RE{0}=1.00 RH{1)=1.50 RH {2} =0.75

C. Total call rate (CRT} and service rate (SRT):

CRT=1.3 SRT=3.25
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thought of as the distance traveled by a centrally located
backup unit. The distances are approximately equal to the
right angle distance between aton centroids with respect to
the coordinate system of Figqure 3.2. The atom call rates shown
in Table 3.1 are not the absolute call rates but are expressed
as a percentage of the total. Units always return to their
original location before servicing subsequant calls.

In the zero lina2 case, the last assumption is immaterial;
it is crucial if calls are allowed to gueue. Without the
assumrption that units returr to their original location before
dispatch, there 1is no simple way to calculate the cost of a

call arriving during a period of saturation (Bef. 36).

D.2 The Optimized Strategy

One reasonable assignment procedure is to always assign
the closest available unit to each call for s=rvice as it
arrives. The continuous time state transition diagram for
this assignment rule is shown in Pigure 3.3. The closast unit
is easily deterpined from Table 3.1, This strategy can be
thought of as a myopic (or short-term) optimization, As is
often the case in Markov decision theory, the average zost can
be reduced by assignment rules which are not optimal in an
immediate cost sense but which better anticipate future
events. Table 3.2 is a summary of some system performance
measures as computed for two assignment rules: the myopic and

the optimal. Although not evident from Table 3.2, the only
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Figure 3.3 State transition diagram for the threa server
example of section D, Chapter 3. The assignment rule is
to dispatch the closest available unit. In the diagram,

a=CR{1}+CR {2} +CR {3} +CR {4} +CR {5} +CR {6} +CR {T},
b=CR{8}+CR {9} +CR{10} +CR {11} +CR{12} +CR {13},
Cc=CR{14} +CR{15)} +CR{ 16},

d=CR {8} +CR {10},

©=CR {9} +CR {11} +CR {12} +CR{13} ;

as determined from Table 3.1.
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Table 3.2 Summary of system performance for the myopic versus
optimal assignment rules.

MYOPIC OPTIMAL

3. Steady State Probabilities (PH{i}):

State: 0-000 0.2982 0.3081
=001 0.1981 0.1595
2-9210 0.0720 0.17048
3-01 0.0922 0.0888
4-100 0.1087 ¢.1118
5-101 0.0886 0.0827
6-110 0.0476 0.0543
7-111 0.0914 0.0904

B. Cost per Assignment:

8.7335 8.6761

C. Unit Workloads (WL{i}):

Unit: O 0.4703 0.4214
1 0.301 0.33848
0.3363 0.3392

. Maximum Workload Imbalance:

0.1672 0.0830

E., Fraction of Calls by Unit:

Unit: O 0.3630 0.3239
1 0.3510 0.3901
2 0.1946 d. 1956
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diffference in these rules occurs in state 000 and state 100.

In state 000, the optimal rule assigns unit 1 to calls
from atoms 3,4 and 7 even though unit 0 is closer. In state
100, atom 7 is assigned to unit 1 instead of unit 0. Imn every
other respect, the rules are identical. It should be noted
that the optimal rule decreases thz probability of saturation.
This 1is consistent with the earlier remark concerning the
variability of the saturation probability for systems in which
the unit service rates are not identical.

The global cost per call is roughly the same for the two
rules. In fact, +the optimal rule results in only a 0.66
percent decrease as compared to the myopic policy. This is
consistent with previous experience in using tha optimization
for spatially dAistributed systems. Larson and Stevenson (Ref,
42) have investigated this type of problem and reach the
conclusion that traval time or distance in spatially
distributed systems 1s largely insensitive to changes 1in
system configuration.

There is one additional item to be noted in Table 3.2.
Although the global travel distance does not decrease very
much unnder the optimal policy, the maximum worklpad imbalance,
the difference bhetween the busiest and least busy uanit, has
been halved by the optimal policy. This effect is
characteristic of the optimal policy. In heuristic terams, the
improvement 1in global travel distance 1is made by avoiding
situations in which a unit must be dispatched the relatively
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long distance into an area norrally covered by another unit.

In this particular example, unit 0 has basic
responsibility for the left corner of Sample City, an area
with a2 large internally generated workloaid. By occasionally
assigning unit 1 to respond to areas which are slightly closer
to unit 0, the workload of unit 0 is decresased. Aas a result,
fewer calls arrive when unit 0 is busy, therefore unit 1 is
not so often dispatched deep into the area normally covered by
unit 0. By incurring these slightly largsr costs, th2 systea
avoids the much larger differences. These rssults are similar
to those noted by Carter, Chaiken, and Ignall (Ref. 4} for the
two server case.

A1l other computational experiences to date for
geographically distributed systems have shown the same general
characteristic: the optimization procedure does not rasult in
a significant improvement in global expected travel distances
as compared to dispatching the closest available unit but does
decrease workload imbalances. Hence, the gminimization of
response distances can serve as a surrogate for reducing
workload imbalances directly. (It should be noted that the
optimizaition can be expected to result in larger imbalances
in travel distances. In some situations this increase may nost
be significant (Ref. 28), but it should not be ignored).

The characterization of optimal policies might be used to
further reduce workload imbalances with a minimal increase in
average response distance by Mover-relaxation." The workload

~70~



of the least busy unit could be increasel by assigning those
calls which have a small difference in cost of assignment as
compared to the optimal policy. In <certain instances, the
optimal policy itself can be perturbed in ordsr to balance
workloads. If the optimization results 1in ties between pairs
of units for assignment to a type of call, any resolution of
those ties will result in the same average cost of assignment
{Ref. 204). This result may be atilized to decrease the
workload between those pairs of servars by making the
assignments to the server with the smaller workload.

As a final remark concerning the optimization, it should
be noted that it supplies very useful negative information for
spatially distributed systens. That is, the myopic policy
yields average travel distances which are very close to those
obtained from the 1long range optimum. This result will prave
very useful in Chapter 5. At the present time, it 1is not
known whether these remarks hold for the alternative cost

structures described in Section B.2 of this chapter.

E. The Sguare Root Law for Response Distance

As we have seen in the previous evample, the hypercube
model caun be used to predict average response distance for
spatially distributed queuing systems. There is a class of
models, referred to as the "square root laws" for expected
response distance, for predicting this ore performance measure
without using a complex model like the hypercube.
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The square root law was first postulated by Larson (Ref.
41 and 39) for estimating travel time and distance in police
operations. The hypothesis was that average r2sponse 1istance
is proportional to the inverse square root 2f the density of
response units within an area. For a particular dispatch rule

(Ref. 41), Larson estimated evwpected response distance, ED, as

(3.27) ED = (2/3) * (1 + AWL) / {A/N)**0.,5 ,

wvhere AWL is the average unit workload; A is the area of the
region being considered; and N is the number of response
units. In (3.27), as congestion in the system increases, soO
does the average workload and hence the expected response
distance, This phenomenon corresponds to the increasing
frequency of dispatches of distant nunits because th2 usual,
closer servers are unavailable. Larson f£found (3.27) to be a
good approximation for AWL less than seven tenths.

A similar model has been proposed by Blum and Kolesar
(Ref. 2). Using simple analytic =models, such as those
proposed by Larson (Ref. 41 and 39) and Larson and Stevenson
(Ref. 42), as well as simulation and historical data, Blum and
Kolesar estimate ED as ianversely vproportional to the sguare
root of the expected number of available units in a ragion.

That 1is,

(3.28) ED = K / (N*{1 - AWL))#*%0.5 ,
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where K is a constant of proportionality to be determined from
data from the particular region being examined. It is assumed
in the development of (3.28) that the probability of
saturation is negligible ani that the service times of the
ynits are roughly the sane. Note that N¥(1-AWL)} 1is the
averag2 number of available units within the region.

Since the wvalidity of (3.28) has besn based 1largely on
comparisons with simulation and historical data, the hyparcube
model is an interesting alternative means for investigating
this particular square root law. Using data collectz2d by
Jarvis and McKnew (Ref. 30) for an area of 5.2 square miles
(62 atoms}), expected travel distances were computed for two
situations. In the first, fifteen units were located more or
less uniformly over the region. The total call rate ({for a
fixed service rate) was varied so that the average workload
increased from ten percent to almost eighty percent. A second
set of response distances was computed by holding the total
call rate constant and increasing the number of wunits from 2
to 13, with a corresponding decrease in the average workload
from fifty one percent to eleven percent, The results of
these computations are shown in Table 3.3 {(3.3.4A and 3.3.B
respectively).

Table 3.3 also gives the expected rasspoanse distance as
predicted by (3.28). The root mean square difference between
these estimates and those given by the hypercube model is
0.105, corresponding to 15 percent of the average response
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Table

3.3 Expected travel

hypercube model
from equation (3.28)

distance
{HM) and the Blum-Kolesar
for various numbers of

and average worklecads (AWL).

3.3.2

3.3.B

=

15
15
15
15
15
15
15
15
15

13

[SS R VVIRE, RN IV, ]

AWL

N=15 consta

0.100
0.200
0.300
0.400
0.497
0.588
0.667
0.731
0.782

N*CRT/SRT=1.5 constant.

0. 115
0.136
0. 167
0.214
0. 296
0.433
0.517

nt.
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0.365
0.u02
0.452
0.520
0.608
0.710
0.816
0.914
0.999

0.401
0.456
0.509
0.646
0.817
1. 056
1. 269

as

computed by the

0.403
D.u28
0.457
0.494
0.540
0.596
0.663
0.738
0.819

0.u437
0.481
0.541
0.632
0.79¢
1.136
1.508

estimate (BK)
servers (N)



distance for this particular set of data. It should be noted
that the use of (3.28) requires that K b= determined fron
availahle data, whereas a moedel such as (3.27) predicts
average response distance directly from simple geographic
variables. For this particular example, 3 least squares fit
gives a value of 1.48 for K. Two-thirds of the square root of
the area of the region is 1.52. This one example is an
argument for combining (3.27) and (3.28) to estimate average

response distance by

{3.29) ED = (2/3) * (A / {(N*{1 - AWL}}) *¥*0.5 .

The response distances from Table 3.3 are plotted in
Pigure 3.4 as a function of the average workload., The figure
shows fairly close agreement between the Blum-Kolesar
estimates and the values computed by the hypercube nodel
except when the workloads are large (greater than 0.6) or the
number of units is small (less than 4).

Although this one example does not establish the validity
of the square root law, it does indicate the usefulness of the
hypercube model as an alternative to simulation or historical
data for verification of other mod2ls. The example also
suggests that particular performance measures can oftsn be

adegquately estimated without resorting to complex models.
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Figure 3.4 Bxpected response distance as predicted by the
hypercube model ( ) and the Blum-Kolasar estimata (+) as
a function of the average workload. The regions of
largest disagreement are for large workloads (B) or small
N (A).
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F. Summary

In this chapter, we have introduced the ideas which are
basic to modeling emergency response, The emphasis has been
on the use of the hypercube model as it is applied to police
patrol analysis. At the time of this writing, initial
implementation activities in several police departments were
underway (Ref. 38 and 14). Many of the refarences cited here
deal with this issue in m@much greater jetail than 1is
appropriate here.

To date, the hypercube model has been used 1larg=ly as a
descriptive tool. In this context, ths optimization has seen
little practical use., The m@model is typically us2l by a
planner to analyze various modes of systee operation and then
to chose the best on the basis of his own priorities.

Such usage involves tradeoffs between vworkload imbalance
and travel time; between local and global performance. Larson
(Ref. 40) and Jarvis and McKnew (Ref. 29) deal with this
problem at length for large and small scale police operations
respectively. Two techniques have recently been developed to
facilitate the use of the hypercube model. One of these is an
interactive program developed by Weissberg (Rz2f. 61) which
allows the planner to use the model without knowing either the
technical details or its particular computer implementation.
Chelst (Ref. 7) has developed programs vhich automatically
search for confiqurations which decrease workload or travel
time imbalances for geographically distributed systeas.
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In practical terms, the optimization example given above
does not really address the problem which we would 1like to
solve. Instead of being given the location of units and
determining optimal dispatch rules based on those locations, a
more realistic approach 1is to determine the optimal location
for a fixed number of units. This problem is addressed in
Chapter 5.

An additional area of investigation concerns the travel
times associated vwith geographically distributed systemps. 1In
Chapters 6 and 7, we incorporate travel time explicitly into
the service times and examine systems in which travel times
can be directly related to outcoae @measur2s of systea
performance. This work 1is motivated by systems such as
emergency ambulance services in which travel time is a
substantial part of the total service time. In such systeas,

the service time can depend on both the server and the

location of the call.
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Chapter 4. GENERAL SERVICE TIME MODELS

A. Introduction

As noted above, the pmajor deficiency of the hypercube
model, at least conceptually, is 1its inability to incorporate
more general service tiame assumptions. This particular
difficulty has two facets. In the first place, the service
time distrihbution cannot make the same iatuitive appeal to
being "memoryless" as the arrival ©process. This is most
evident if the service time consists of two or more distinct
components, such as travel to the scene and on-scene service
for spatially distributed systesms.

In addition, at least on first inspection, the service
distributions considered to this point do not allow the
flexibility one would like in describiang the behavior of more
general service systens. While we can specify server
dependent service times, in many situations it is more natural
to specify times for the type of incident being serviced. Por
example, for a single volunteer fire department serving a
community, one would like to specify service time at least as
a function of the severity of the fire or rescue call. In the
case of spatially distributed units, the service time could
easily depend on both the server and the call type. This

chapter introduces that level of generalization.
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B. Alternative Continuous-time Markov Models

For all of the objections voiced above, the hyparcube
model is still attractive in that it is analytically tractable
by way of the theory of Markov processes and the other
procedures outlined above. PFor that reason, we first consider
podels whick can be placed in that framework. The first of
these arises from an effort to incorporate travel times
explicitly; the second allows for server and call type
specific service times with exponential distributions. In
part, each is motivated by a result due to Sevast'yanov (Ref.
53}, That is, the steady state probabilities in an M/¥/N:0
queuing system are the same as for ar M/53/N:0 system if all
servers have identical service times in each system.

The interesting question is whether this result can be
extended to problems with distinguishable servers and more
general service times. If this 1is the case, a HNarkov
hypercube-type model would be sufficient for all steady state
calculations.

Before addressing the general problem, we consider twvo
situations in which continuous-time Markov models can be used.
In the first, which we call the “convolution model," service
times are sums of exponentially distributed random variables
depending only on the server. In the second, the exponential
model, service times are again exponentially distributed but

nov may depend on both the server and the call type.
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B.1 Fornmulation of the Convolution Model

On a gross level, when we consider spatially distributed
systems, there are tvo major components to service time:
travel and on-scene time. If we assume that each of these
times can be characterized by possibly server dependent
exponential distributions, the system can be modeled as a
continuous—time, discrete-state Markov process. In the
hypercube model, each state specified information as to the

availability of each server. In this more gensral convolution

model, the state space details availability by a *0' if the
server is free, a '1' for a server in the first component of
service, and a '2' for the second or last component of
service,

Specifically, for an N server system, an =2lement of the
state space will be denoted by an N-vector, VC (state vector,
convolution model), where the i-th element of VC is 0 if
server i is free, 1 if server i is in the first component of
service, and 2 if server i is in the second component of
service. We will consider only the zero 1line capacity case.
For this system, there are obviously 3*%*§ states. As
suggested by the hypercube model, if we view a vector in the
state space as the ternary expansion of an integer between 0
anq {3**N)~1 inclusive, wvwe have a natural ordering of the
states, We use either notation as is convenient.

Let RC (service rates, convolution model) denote the N by
2 matrix of service rates for this systepr. That is, BRC{i,d}
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is the rate at which server i completes the first component of
service if j 1is one; the second for j equal two. Using the
same notation as Chapter 3 for the call rates and assignment
preferences associated with the call types and making the saame
independence assumptions, we write the detailed egquations of
balance for the steady state probabilities PC{-} (steady state

probabilities, coavolution model) as:

{4.1) PC[i} * CRT*DEL +
Z RC(§, 1+ Z RC (3,2}
J:VC{i,j}=1 j:vC{i,jI=2

Z‘ PC{it2* (3%*%3)} * RC(],2}
j:vC(i,3=0

+ Z PCfi-3%%*j} * RC{j,1}
j:vC{i,ji=2

Z PC {i- 3%} *[ E CR[m}]

j:vC{i,j}=1 m:POL {i-3%%7, n} =

e

fOl‘ i=0,1,...,(3**“) -1.

In (4.1), DEL is one except for thoss states i in which
every server is busy {(V¥C{i,n} greater than zero for every n),
when it is zero; VC{i,-} is the R-vector ternary expansion of

the integer i; CR{i} (call rate) is the call rate for customer
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type i; CRT ({(call rate, total}) is the sum of the CR(-}; and
POL({i,~} is taken to be the assignment vector associated with

the availability of servers given by state i.

B.2 PFormulation of the Exponential MNodel

The exponential model allows for exponential service
times with means being a function of call type and server. Let
RE{i,j} (service rates, exponential model) be the service rate
for server i and call type i. (RE is an N by NC matrix. NC
is the nuamber of call types). Now the state space will
specify server status by a '0' for a free server and a *j',
j=1,2,4+4+08C, for a server busy with a customer of type j. For
the zero-line case, this state space has (HC+1) **N elements
and we make the usual association betweea the vector and
integer representation.

In a similar fashion, we can write the equations of
balance for the steady state probabilities, PE{-} (steady

state probabilities, exponential model) as:
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(4.2) PE{i} * | CRT*DEL + E RE {§,VE{i,j}}

J:VELi, 3} 2 1

- z: | ZPE{im*(N:M)**j}*RE[ch}

j:VE{i,§}=0 1<m<NC

+ Z CR{m} * PE{i-m* (NC+1) **7j}

J:VE{i,j}=m 2 1
fOI’.‘ i=0,1,--.,((ﬂc+1)**u}"1.

where VE{i,-} 1is the N-vector (state vector, exponential
model) associated with state i1 and DEL is one except for those
states 1 in which every server is busy (VE{i,n} not egual to
zero for every n), when it is zero. CRT and CR{-} are as in
Equation (4.1).

It should be noted that these two models are not being
presented as particularly useful formalations for real
problems. Both require a large amount of storage and time in a
computer inplementation for other than very small systeas.
However, computations with these axact models for even small
systems can suggest more general hypotheses and provide

counter-examples for some postulates.

B.3 A Convolution Example

The details of the convolution model are best shown by an
example. This example will also be used to test the
hypothesis as to whether Sevastt'yanov®s result can be extended
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to systems with distinguishable servers having different
service distributions. In order to do this, we compare the
convolution model to a hypercube formulation with the same
expected service time for each server. More precisely, if c
and 4@ are the respective rates at which a unit completes the
first and second components of service time, the expected
service time for that server is just the sum of the
reciprocals of ¢ and 4, that is 1/c + 1/d. The corresponding
rate of service for the hypercube 1is the reciprocal of this
number; with this correspondence each anit has the same
average service time in either model.

For this example, set N=2, NC=2, and CRT=3 with CR{1}=a
and CR{2}=b. The service rates are given by the 2 by 2 matrix

RC with

]

(4.3) RC

The state transition diagram for the coavolation model 1is
given by Fiqure 4.1 when server 0 is prefarred for call type 1
and server 1 for call type 2. Again we denote the steady
state probabilities by PC {-}, but here it is convenient to use
the vector notation for the state space. Thus, the state
space has eight elements: 00, 01!, 02, 10, 11, 12, 20, 21, and
22.

The variables for the hypercube model are denoted by the
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Figqure 4.1 State tramsition diagram for the convolution
example of section B.2. Numerical results in Table 4.1
for a=1, b=2, c=1, d=2, e=3, and f=4.
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same notation as used in Chapter 3. In particular, the rate
of service for the =zeroth unit 1is (1/1 + 1/2)**-1 or 2/3.
With PH{-} being the steady state probabilities for the

hypercube, the hypothesis is that

PH {00} = PC {00},

PH{01} = PC{01} + PC[02},

PH {10} = PC {10} + PC{20},

PH{11} = PC{11} + PC{12} + PC{21} + P {22} .

For this particular example, the steady state
probabilities for +the hypercube are compared with those for
the convoluation model as aggregated above (see Table &.1).
The difficulty with this comparison, and several others which
were made for more conplicated systems, is one which often
arises in numerical work. That is, when is the result of a
complicated calculation zero? Can the differences shown in
Table 4.1 be explained by roundoff errors? For a particular
system of linear equations, this difficulty can be overcome by
using all integer arithmetic (Ref. 20).

For the values given above, the exact solution procedure
gives PH{00} +to be 384,2983 or 0.128729 and PC{00} as
10824/84733 or 04127742, The values are clearly different and
bence Sevast'yanov'!s result cannot be extended to systems in
which the unit service times are not identical. It should be
noted that some effort was required to establish the

counterexample. Other coaputational experience has indicated
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Table 4.1 Numerical results for the example of Section B.3.

PH {00} = 0.129
PC {00} = 0.128
PH (01} = 0.262
PC{01) + PC[02} = 0.263
PH {10} = 0.123
PC{10} + PC {20} = 0.124
PH {11} = 0.486
PC{11} + PC{12} + PC{21} + PC(22} = 0.486
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that it is difficult to distinquish the steady state values
coaputed by the two models although they are, in general,
different. We will make some use of this observation in

Chapter 6.

B.4 An Example Using the Exponential Model

As with the convolution model, this model can be more
easily understood by way of example. To this end, consider a
two-server, tvo-call type example with CR{1}=a, CR{2}=b. The

service rates are given by the 2 by 2 matrix RE with

(4.4) RE

When unit 0 is the preferred server for call type 1 and unit 1
is the preferred server for call type 2, the state transition
matrix is given by Figure 4.2. For example, state (02)
corresponds to unit 0 busy on a call of type 2 and unit 1t

free.

The equation of balance for state 20 is given by

(4.5) (a+b+f) *PE {20} = b*PE{00} + c*PEf{21} + d*PE(22} .

This particular example can be used to show that the
charvacterization of optimal assigament rules developed in
Chapter 3 for the hypercube model does not hold for the
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Figure 4.2, State transition diagram for the example of the
exponential model in section B.3.
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exponential model.

For the two~server case, the theorer states that if
c{0,1 - C{i,1) is greater than C€§0,2} - C({1,2}, then the
optimal policy cannot have type 1 assigned to unit 0 and type
2 assigned to unit 1 in the same state. {Recall that Cf{i,{}
is the cost of assigning server i to a call of type j). To
provide the counterexample, consider the present example with
a=b=t, d nearly zero, and c,e, and f arbitrarily large. Here,

ve specify C by

{4.6) C =
k 1+ 2k

where k is an arbitrary positive constant.

With the service rates as given above, if unit 0 is ever
assigned to a call of type 2, then upit t will service almost
all of the calls. Since CR{1}=CR{2}, the expected cost per
call is approximately (k+1+2k)/2. Since the service rate for
unit 1 is very high for either type of call, if unit 1 is the
preferred unit for both types, we get the same approximate
cost per call.

Now, if unit 1 is preferred for call type 2 and unit 0 is
preferred for call ¢type 1, since ¢ and e are large, the
approximate cost per call is (0+142k)/2; a smaller cost than
that obtained with any of the other policies if k is greater
than zero. The counterexample is completed by noting that
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c{0,1 -c{¥,1} = -k 1is greater than C{0,2} - CT{1,2} =
1-{1+2k) = -2k.

Although both the convolution and the exponential models
can provide 1insight into the behavior of systems with
distinguishable servers, neither is attractive fron a
computaticnal point of view or as the gereral sort of model we
would like to develop. In the next section, we derive a steady
state result for the exponential model which has an intuitive
appeal. We then show that the result holds in a3 more general

setting.

C. The Equilibrium Equation

Recall from the discussion of performance measures in
Chapter 3 that the fundamental variables were the fraction of
calls of each call type handled by each server. For server i
and call type j, this quantity was given by FSC{i,j} (fraction
by server and customer), an K by NC matrix. Any performance
measure in the hypercube model could be calculated from FSC,
the call rates, and the service rates. The exponential nmodel
allows us to focus explicitly on these guantities as its state
space includes information concerning the type of call being

serviced.

C.1 A Derivation for the Exponential Model
Let BUS{i,j} denote the event that server i is busy on a
call of type j;‘ The probability of this event is given by

-92~



(4.7) Pc{ BUS({i,§} } = Z PE {k} .
k:VE({k,i} =]

It is a straightforvard, if somewhat tedious, problea to
calculate the sum in equation (4.7) by summing {4.2) over the
indjicated states,

In equation (4.2), any CR{-}*PE{~-} term will be referred
to as an upward transition term and a product of the fore
RE{-,-}*PE(-} will be a downward tramsition term. For any
upward term on the LHS of (4.2), we can identify the same tera
on the RHS in exactly one other state equation. Consider the
CR {m} *PE({k} term from the LHS. Since we have an upward
transition term, at least omne element of VE{k,-} is zero. Lzt
n be the preferred unit for call type m is state k. Then
equation (4.2} for state k+m*(NC+1)#*#*n is the only state
equation which has a CR{m}*PE{k} term on the RHS. Thus, all
.upward terms from the LHS cancel with the same term on the
RHS. (Note that the correspondence is unigue}.

Similarly, any upward term on the RHS cancels with a LHS
ters unless it is of the form CR{j} *PEfk} where VE{k,i}=0. WNo
terms of this +type appear on the LHS because of the
conditioning in the sum of (4.7}). Pactoring out the CR{j}, we
are left with a sun of state probabilities on the RES which is
exactly the probability that server i 1is assigned to a random
call of type ij.

The downward terms are treated in a siwmilar fashion. For
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a term of the form RE{n,m} *PE{k} on the LHS (hence VEf{k,rn}=g),
the same term appears on the RHS of (4.2) for state
k-~m® (NC+1) **p, The only exception is for terms with a
multiplier of RE{i,di}-. These terms do not appear on the RHS
again because of the conditioning in the sum of (4.7).
Recalling that PSC({i,j} is the probability that a call of type

j is assigned to server i, we have

{(4.8) BE{i,j} * Pr{ BUS{i,j} } = CR{j} * PSC{i,it .

In spite of all the manipulations leading to (4.8), the
result is almost obvious. The probability that server 1i is
busy on a call of type J is equal to the rate at which the
server 1is assigned such calls, CR{j}*PSC{i,]j}, times the
expected service time per call, (RE{i,j})=**-1. Kot too
suprisingly, this relation holds for a much wider class of

systems than that described by the exponential model.

C.2 The General Service Time Problea

As noted above, equation (4.8) can be derived 1in a more
general setting than the exponential model. ¥e will focus on
the event that server i is busy on a call of type j; that is,
the event BUS{i,j}. This distinction 1is made because the
results will be used in systems having distinguishable servers
and call types. As before, CR{j} is the call rate for type jJ
and FSC{i,j} is the probability that a random call of type j
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is ansvered by server i in the steady state.

In addition, define TSC{i,3j} (service time by server and
customer) as the expected time that server 1 spends in
servicing a call of type j. ¥We make the following assumptions

regarding the arrival and service processes:

(i) The arrival process is independent of the state of
the system as given by server availability.

(ii) The arrival process is an honest renewal process;
that is, the successive times between arrivals of any
particular type of customer are mutually independent and
identically distributed and the successive interarrival
times are finite with probability one. 1In addition, ve
assume that the distribution has a finite mean.

(iii) The service times are indespendent of the arrival
times and the state of the syster and have finite means
and variances. The service time are small enough

relative to the arrival rates that a steady state
distribution exists for the systen.

It is very important to keep in mind that these assumptions
refer to an arbitrary server-customer pair.

The probability of the event BUS{i,j} in the steady state
is just the expected fraction of time that server i spends on
calls of type j over an infinite time horizon. This value can
be calculated using the theory of renewal processes (Ref. 50)
and the weak law of large nusbers (Ref. 17).

Let the random variable X{m} be the time between the
(m~1)-st and the m—-th arrival of call type 3j. Define the
random variable Y{m} as the time server i spends in servicing
the m-th arrival of a call of type j. Note that in the steady
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state, Y{-} is zero with probability 1-FsC{i,j} (corrasponding
to unit i not being assigned +to service a random arrival of
type j) and has mean TSC{i,3j} when conditioned on the event
that unit i is assigned to service the m-th arrival. Pinally,
let nft} denote the number of arrivals of type j ia the time

interval from zero to t. With this notation, we can v¥rite

n{t}
{4.9) Pr{ BUS{i,j} } = E { lim :E: Y (k) /t J .
t—2o0 k=1

If the success.ve values of Y{~} where independently
distributed, it would be a simple matter to treat (4.9) using
the theory of reneval reward processes (Ref. 50} .
Unfortunately, the Y{-} are not independent. For example, if
unit i is always assigned to an arrival of type j if that unit
is available, theu knowing that Y{m} is zero implies that unit
i was busy at the a-th arrival (if the service time has no
impulse component at zero). PFor general service times, unit i
is more likely to be busy at the (m+1)-st arrival of type j
then it would be in the steady state and hence Y{mr+1) is more
likely to be zero than a random arrival of type j.

The limit in (4.9) can be calculated using the weak law

of large numbers (Ref, 17). We rewrite thes linmit as
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n {t} n {t}
(4.10} lim :z: Y(k}/t = lim :E: (Y (ki /n{t}) *(n{t}/t).

tew k=1 t2° k=1

Writing E{X} as the expected value of X({i} (identical for all
i), n{t}/t converges to 1/E{X} for 1large t &dith probability 1
since the ar.ival process is a renewal process {Ref. 50). In
addition, n{t} goes to infinity with probability one. Hence,

we are left to calculate

(4.11) lia :E: Y{k}] / M .

Even though the Y({k} may not be 1independent, we can
compute (4#.71) by using a result from Feller {(Ref. 17). That
is, if the covariance bhetwvesan Y{k} and Y{mn} converges
uniformly to zero as the absolute value of k minus m goes to
infinity and the Y{-} have fini:e variances, then the weak law
of large nuabers still holds for (4.1 . Since all service
times have finite means and an equilibrium distribution
exists, with probability one the system will have all servers
free infinitely often (Ref. 50). Since tup values of Y{-} are
independent if the event that all servers are free intervenes
between the two associated arrivals of type Jj, we have the
covariances equal to zero after a sufficiently large number of
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arrivals.

Applying the weak law of 1large numbers to (4.171), that

quantity converges in measure (Ref. 18) to

M

(4.12) linm :z: Ef Y(k} } / M

M->00 k=1

where E{Y{k}] is the expected value of Y{k}. In the limit as
M goes to infinity, this expected value is just PFSC{i,j} *
TSC{i,j}; the probability that unit i services type 3j in the
steady state multiplied by the conditional expected service
time.

Collecting these results, we write (4.9) as
(4.13) Pc{ BUS{i,j* } = TSC{i,j} * PSC({i,j} 7 E{Xx} .

In particular, if the arrival process 1is Poisson, E{X} is the

reciprocal of the call rate and (4.13) becones
(4. 14) Pr{ BOS{i,j} } = CR{j} * TSC{i,j} * PSC{i,i} -

For the remainder of this work, uanless specifically
stated otherwise, the arrival process will be Poisson and the
conditions leading to (4.14) will be assumed to hold. Equation
(4.14) will be used as the cornerstone for further analysis of

-98-



gueuing systems with distinquishable servers.

While +this eguation does not constitute a very deep
theoretical result, its importance should not be
underestimated. The conditions leading to its foraulatiom are
not stringent. As will be shown in succe2ding chapters, this

result will allow us to deal with quite general systeas.
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Chapter 5. OPTIMAL FACILITY LOCATION

A. Introduction: Models for Location

As mentioned at the end of Chapter 3, the optimization
technique developed for the hypercube model does not really
address the central issue in the allocation of emergency
service units. Instead of optimizing dispatch rules for a
given set of server locations, we would like to determine the
optimal initial location of such units. As noted in Chapter
2, there has been a considerable amount of research in the
area of facility location. Although some of the concepts are
relevant to the location of emergency facilities, the models

are generally inappropriate for our particular problesm.

A.1 Economic Models

A good deal of the 1literature on facility location deals
with gquestions of warehouse location and transportation
problems, hence the term "econcomic models." The survey papers
by Cooper (Ref. 10) and Revelle, Marks, and Liebmar (Ref. U49)
reflect this emphasis. Typically, the problem is to determine
the most economical configuration of sources of supply
required to meet a specified distribution o5f demarnd. Included
are Cooper's "generalized #Weber problem" and the special
techniques for networks discussed by Revelle, Marks, and
Liebman. Costs are usually expressed in teras of time or
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distance and there may be capacity constraints which can force
some interaction among the sources.

The difficulty with using these approaches for the
location of emergency Service units follows from the
deterministic assumptions underlying the model formulations.
The location and level of the demand is assumed known and the
sources are always available to provide services or supplies.
These comments notwithstanding, some of the techniques have
been applied to the provision of emergency services as noted

below.

A.2 HModels for Emergency Services

The main problem in applying the deterministic location
nodels to emergency services is an inadequate description of
the cooperation between the units. As noted in Chapter 3,
sinmple rules for the assignment of servers to customers can be
folloved only approximately because of the unavailability of
servers. The variability in demand, service times, and unit
availability all conmnbine to produce cogplicated interactions
between the units. However, if the arrival rate of calls for
service is sufficiently 1low, there may be 1little or no
interaction between the units. In this case, either the
netvork center or median problems as described by Gdoni (Ref.
48) or the set covering formulation used by Jarvis, Stevenson,
and W®illemain (Ref. 31) may be appropriate for solving a
location problenm.
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when the interaction among the servers is important,
descriptive models (such as the hypercube) can be used for
facility location on a trial and error basis. In fact, it is
exactly this sort of apprcach which was discussed in Chapter
3. An initial guess is made as to an appropriate systen
configuration and that confiquration is evaluated by the
hypercube model., The user then tries certain system changes
in an attempt to get the desired levels of performance. With
a little practice and some understanding of the assumptions
underlying the model, it is not difficult to effect particular
changes at least on a semi-guantitative basis. The main
difficulty with this procedure is that it requires some level
of expertise and could be expected to become increasingly
complicated for larger systems.

In recognition of this problem, Chelst (Ref. 7) has
developed conmputer algorithas for balancing workloads and
travel distances using the hypercube model. It 1is this sort
of approach that we take here. The objective is to develop an
algorithmic procedure for facility location which iancorporates
the flexibility of the hypercube model into the description of

the systen.

B. Optimal Location of Response Units

The deterministic location models mentioned above caa be
useful in the location of emergency units, particularly under
conditions of negligible congestion. When the interaction
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among the servers is important, we would 1like to incorporate
that information into the decision as to the 1location of the
units.

For example, Table 5.1 contains sone additional
statistics froam the three server exaaple of Chapter 3, Section
D. Using the FSC{i,j} and the fraction of calls from each
atom, we can calculate the fraction of «calls which are
serviced by other than the first preferred (closest) unit.
Overall, slightly more than one third of the calls for service
must be handled by the second or third preferred response unit
hecause the closest anit 1is anavailable. {Under the
assumptions of Chapter 4 concerning the arrival of calls for
service, if calls of type j are assigned to unit i when it is
available, then the worklcad of wunit i, WL{i}, 1s precisely
the fraction of type j calls which can be expected to arrive
when unit i is busy. These <calls must be serviced by another
unit. See Ref. 38). As shown 1in Table 5.1.B, over sixty
percent of the Tresponses by unit 1 were to calls which would
have been serviced by another unit had that other unit been
available.

This kind of information can be included in the decision
as to where to locate unit 1., With these response patterns,
the average distance traveled by uanit 1 in response to a call
for service is 9.94 if the unit 1is stationed in atom 11. If,
however, the unit were stationed in atom 8, 1its travel

distance under the same response pattern would fall to 6.78, a

-103-



Table 5.1

A.

B-

The extent of inter-unit cooperation in the example
from Chapter 3, Section D.

Fraction of calls from atom j which are serviced by unit i

(FSC{i,j}} and the fraction

atom (CR({j} /CRT):

Atom j:

OO SN E WA -

10
1
12
13
14
15
16

FSC (0, 3] FSC (1,3}
0.526% 0.287
0.526% 0.287
0.526% 0.287
0.526% 0.287
0.526% 0.287
0.526% 0.287
0.526% 0.287
0.120 0.694*
0.0u8 0.694%
0.0u438 0.69u*
0.0u8 0.694*
0.048 0.69u4%
0.048 0.69ux
0.048 0.197
0.0u48 0.197
0.0u8 0.197

of calls

FSC(2,]}

0.092
0.092
0.092
0.092
0.092
0.092
0.092
0.092
0.164
2.164
0.154
0.164
0.164
0.661%*
0.661%
0.661%

coring from

CR {j} /CRT

0.143
0.114
0.067
0.076
0.095
0.076
0.076
0.057
0.029
0.048
0.029
0.019
0.010
0.019
0.0u8
0.095

* denotes FSC({i,j} for the unit closest to atom 7.

Fraction

Unit O:
Unit 1:
Unit 2:

Overall:

of calls serviced by
not the first preferred unit.

0.0575
0.6201
0.4463

0.3581
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reduction of roughly thirty percent. It is this sort of
improvement that we would like to make in the location of the
units. If we are given the 1level of cooperation between the
units; in particular, a description of the frequency with
wvhich a unit is dispatched to different atoms; we can locate
each unit to best reflect its particular mix of responses.

For the moment, ve assume that ve are given the PSC{i,j}.
These could have been determined by the hypercube model,
simulation, or historical data. Whatever the source, we can
use these guantities to determine the location of units which
best anticipates their overall usage. It is crucial to note
that these 1locations will reflect the same assignment rule.

which was used to determined the exact extent of the server

interaction; that is, the FSC{i,j}.

B.1 A Location Model including Server Cooperation

Rather than foramlate the location nodel in terms of
travel time or distance, we use the gensral cost structure
developed for the hypercube model. (Note, however, that we
are using the costs in the context of spatially distributed
systems). In particular, we assume that the cost of service,
the responding unit prior to its dispatch. (de still assame
that the unit returns to its initial position after completion
of any service).

For the three server exzample of Chapter 3, each server
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could be in any one of 16 distinct positions, each
corresponding to an initial location in one of the 16 atoas,
In general, we assupe there are P possible positions, and let
UP{i,p} (unit position) denote the probability that unit i is
in position p. By allowing a probabilistic description of the
position of each server, we can include such situations as
police preventive patrol. PFor spatially distributed systenms,
we can model either fixed location or mobile units where the
UP{i,p} detail the frequency with which each unit occupies a
particular location.

The cost of assigning unit i from position p to a call of
type j will be denoted by CP{i,j,p}] (cost of assignment with
unit positions). The expected cost of assignment can be
vritten in nuch the sane way as eguation (3.10) by
conditioning on the type of call, the unit providing service,
and now the additional information concerning the position of
the unit. In a fashion similar to that used in describing the
position of mobile patrol wunits in the police context, the
probabilistic description of wunit position will be assumed
independent of the state of the system or the arrivals of
calls for service. However, as #ill be shown below, the
actual mix of locations chosen for a particular server will
depend on the call rates and the unrit's response distribution.

Writing EC as the expected cost per call we have
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N-1 NC P

(5.1} EC = Z Z Z CP{i,j,p} * Pr{i,j,p}

i=0  §=1 p=1

NC
+ Pr{s} * Z'csm*catj}/cnw .
=1

where Pr{i,j,p} is the probability that a call chosen at
random is of type j and answered by unit i from position p; S
is the event that all servers are busy whep a call arrives,
hence Prf{S} is the saturation probability; and CS{j} is the
cost associated with an arrival of a type j call duaring a

period of saturation.

To simplify the notation, define FC{3j} (fraction of calls

from each class) by

(5.2) FC{3i} = CR{j} / CRT , for j=1,24e-4,40C.
(Recall that calls are assumed to arrive according to a
Poisson process). Since the vposition of a server 1is

probabilistically independent of the arrival process, vwe can

¥rite

(5.3) Pr{i,j,p} = UP{i,p} * FC{j} * PFsC{i,]j) .
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That is, the probability that a random call is of type j and
answered by unit i from position p is the probability that
unit i 1is in position p times the probability that a randon
call is of type j times the probability that server i responds
to a call of type 3j. It 1s crucial to note that ve are
assuming that we knov PSC({i,j} for all i and j. That is, the
extent of inter-server cooperation has been determined
(perhaps by the hypercube model) and we want to choose the
positions of the servers in order to reflect that interaction.

Again, to further simplify the eguations {at the risk of

complicating the notation), define FT{i,j} by

(5.4) FT{i,3} = FC{j} * FSC{i,]j}
fOI i=0'1'.ao'N-1; j=1'2,..oguc.
FT{i,j} (fraction of total service) 1is cthe probability that a

call chosen at random will be of type j and answered by server

i. ¥We now rewrite {5.1) as
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NC

N~1 P
(5.5) EC = D uegip # D criiLdepy * PTG
i=0 p=1 §=1
NC
¢ Pr(s) * Z FC{j} * CS {4} .
j=1

It is now evident that the expected cost per call is linear in
the UP{i,p}. By adding normalization constraints for each
server and defining COfi,p} as the coefficient of UP{i,p} in
(5.5), the choice of the position for each server can be
expressed as a linear programming problem which seeks to
minimize the expected cost per assignment.

Since the saturation term 1in ({5.5) is constant with
respect to changes in the 0OP{i,p} for a fixed dispatch ruale
and service times, it can be ignored in the objective function
of the 1linear program. As aoted below, if a change in the
dispatch strategy is indicated by a2 change in the location of
the units, it is possible for the saturation probability to
change. (See <Chapter 3). It is possible that the change in
saturation probability could result in a larger cost per call
than the original configuration. For practical problems, the
probability of all units being simultaneously busy can be
expected to be of the order of a few percent. Betveen

reasonable dispatch schemes, the saturation probability varies
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only slightly and systee performance would be worsened only if
saturation costs were puch larger than normal assignasent
costs. 0f course, if a <change in positions resulted 1in
worsened performance, the original configuration should be
used.

The linear program derived from (5.5) is vritten

N-1 P
(5.6) Minimize z = Z E UP{i,p} * CO{i,p}
i=0 p=1
P

Subject to E Upf{i,p} = 1 for i=0,1,...,8-1,

p=1

UP{i,p} 20 -

Since the constraint egquations in (5.6} include no teras
of the form UP{i,p} + UP{j,r} for i not equal to j, the linear
program can be solved by considering each unit separately. 1In
this case, the optimal solution for wunit i is obtained by
setting UP({i,p} equal to zero except for UP{i,p} equal to one,
where CO{i,p} is the miniwum of the CO{i,p} over all positions
p.

This was exactly the procedure which was applied to the
three server example of Chapter 3. For this problem, the
cP{i,j,p} terms depend only on § and p: the location of the

-110-



call for service and the initial position of the responding
unit. For the response pattern given by Table 5.1, the travel
distance per call for service is minimized by moving unit 0
from atom 1 to atom 5, unit 1 from atom 11 to atom 8, and unit
2 from atom 16 to atom 14. (See Figure 3.2).

With these <changes in 1location, the average travel
distance for unit 0 drops from 6.52 to 4.88; for unit 1, from
9.94 to 6,.78; and for unit 2, from 10,38 to 8.70. The global
average travel distance, incorporating the saturation costs,
changes from 8.73 to 6.70; an improvement of over 23 percent.
This should be compared with the (.66 percent improvement
resulting from the use of the optimal dispatch rules for the
original unit locations when compared ¢to closest available
unit dispatching.

To this point, wve have assumed that we are given the
extent of inter-server cooperation for a particular dispatch
rule (in the previous exzample, through the use of the
hypercube model). We have used this information to reposition
units in order to best anticipate their usage uader that same
dispatch rule. The crucial observation is that a change in
the location of the units can lead to a change in the dispatch
strategy.

For example, from the results of Chapter 3, we know that
closest available unit dispatching rule comes very close to
achieving the minimum expected travel distance which would be
obtained from the optimal assignment strategy. If the

-111-



application of the location model results in a change in unit
positions, then we can expect to further reduce travel
distance by determining the closest available unit assignment
using the new unit positions. We detail this 1iterative

improvement technique in the next section.

B.2 An Iterative Procedure for Facility Location

The procedure for determining the optimal location of
response units is given by the flow chart of Figure 5.7. A
reasonable choice is made as to an initial set of locations
for a fixed number of wunits. We determine an appropriate
dispatch strategy based on these initial locations and then
apply some descriptive model (perhaps the hypercube model) to
determine the extant of inter-unit cooperation. This
cooperation is expressed in terms of the FSC{i,d}.

Using the PsC{i,j} and the <CP{i,j,p} (the costs of
assignment conditioned on the type of call, the servicing
unit, and the unit's initial location), we relocate the units
whenaver such a relocation will result in a decreased average
cost per call. If the position of the units does change, we
use their new locations to determine a new dispatch strategy.
If this strategy is differeant from the one used for the
previous iteration, we use the descriptive model to determine
new FSC{i,j} and apply the location nmodel again. This
procedure is used iteratively until there is no change in
either wunit positions or dispatch strategy between two
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INITIAL

UNIT LOCATIONS

DETERMINE SPATIAL

RESPONSE UNDER CLOSEST

AVAILABLE UNIT DISPATCH

REPOSITION ODNITS TO

REFLECT RESPONSE PATTERN

CHANGE 1IN

POSITIONS?

Figure 5.1 Flow chart for an iterative procedure for
determining the optimal location of response units under
conditions of congestion and cooperation among the
servers.
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successive iterations.

We illustrate the procedure by deteraining the optimal
location for four response units to be positioned within a
grid of 100 atoms. PFigure 5.2 shows the atom locations and
gives the initial position of the units at the points (0,0},
(0,3}, (3,0}, and (3,3} of the grid.

The hypercube model is used to determine the PSC{i,j}.
The cost of assigoning a unit at node (x,y) to a call from node
{w,z) is given by the absolute value of x minus w plus the
absolute value of y minus z; that is, the right angle distance
between the two points. (We assume Cartesian coordinates and
unit distance between the points of the grid). Finally, the
call rates for all nodes (atoms) are assuged identical and
very small compared to the service rate for each server {also
assymed to be identical). These last assumptions are
equivalent to assuming neglible cooperation azmong the servers.

We determine the assignment rule on the basis of the
closest available unit. (¥e allow ties in the choice of
assignment, corresponding to a randomized dispatch rule ({Ref.
36), in order to preserve the symmetry of the problen).

Figure 5.3 traces the iteration as it utilizes the
hypercube model and then the location model. For each
iteration, there are two numbers; the first gives the average
travel distance for the system with the indicated wunit
locations and closest available unit dispatching. The second
number is the average response distance when the units are
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Pigure 5.2 Geographic description of a four-server, 100-atom
system to illustrate the facility location iteration.
Locations are specified in teras of Cartesian
coordinates. Initial positions: (0,0), (0,2), (2,0), and
(2,2) denoted +.
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Figure 5,3 Results of successive applications of the location
and hypercube model to the systerm given in Figure 5.2,
The diagram shows the successive movements of each unit
{+) at each iteration. For each iteration, the average
travel distances for the current dispatch policy are
shown before and after the units are relocaterd,
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relocated to best reflect their spatial assignments (still
under the same dispatch rule}.

For example, with the 1initial locations (iteration 1),
the average response distance is 5.80. This can be decreased
to 3.70 by respositioning the four units at (0,0}, (5.,0),
(0,5), and (5,5). (Wote that one unit does not move). Figure
5.3 indicates that these new unit locations result in a
further decrease of response distance to 3.20 when the
dispatch policy is changed to reflect the new positions.

After four iterations, the anits reach a stable
configuration and no further improvement can be made. The
optimal locations are exactly.those which would be expected by
symmetry arguments for the situation in which the workload of
each unit is close to zero.

The same iteration scheme can be used to relocate servers
in order to reflect an increased workload. For the same four
server system as above, suppose we increase the average
workload to 0.5. The average travel distance becomes &.45
units. The location model moves each unit one step closer to
the center of the area with a resultant decrease in the travel
distance to 4.18 units. (See Figure 5.4). When the average
workload is 1increased to 0.9, the optimal positions for the
units move another step toward the center. The average travel
distance decreases from 5.18 to 4.92 with this move.

In this instance, the dispatch strategy remains the sasme
because of the symmetry of the region. The units are relocated
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Figure 5.4 Use of the location model to reflect increased

unit workloads. The units move toward the center of the
region in order to anticipate the increasingly likely
event of dispatch uniformnly distributed over the region
(in the 1limit as workloads approach unityl). Optinal
locations are shouwn for an average workload of 0.0 (A),
0.5 (B), and 0.9 (C),
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to reflect the incrzased probability of a dispatch to a node
outside of the unit's own "gquadrant.® As expected, as the
dispatches for each unit become uniform over the entire
region, the optimal location of the units shifts toward the
center of the area.

The procedure describaed above focuses only on minimizing
the cost of assignment. In some situations, additional
factors may be important in the location of facilities. We
considar two examples taken from police and emergency medical

services.

C. Constraints on Unit Location

The model for improving unit 1locations given above has
two features vhich may not be desirable in certain
circumstances. The objective is the nminimization of the
expected cost per assignment. As noted in Section A of this
chapter, we might like to include some constraints on maximum
response time for spatially distributed systems. In additioen,
the form of the linear program (5.6) results 1in integer
solutions for the decision variables. In the context of
police preventive patrol, a fractional solution, corresponding
to randon mobile patrol, would be preferred. Both of these

difficulties can be treated in the same programming framework.
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C.1 Limiting Maximum Travel Time

Suppose thare is an "acceptable™ level of cost associated
with each type of call. We want to choose the ©position of
units in order to guarantee at 1least a ainimur level of
acceptable responses for each type of call. Define MAC{]j}
(paximum acceptable cost) as the largest cost of assignaent
that 1is acceptable for a customer of type j. Let MAF({i}
(rinimum acceptable fraction) be the smallest fraction of
acceptable responses to type j calls which we will tolerate,

For example, the EMSS Act (PL93-154) specifies (as one
criterion for acceptable service 1in urban areas) that 35
percent of all calls receive a response in ten minuntes or
less. In our notation, we would set MAC{m} identically equal
to 10 minutes and MAF{j} identically equal to 0.95. The costs
of assignment are expressed in terms of response time (for the
loss system, there are no queuing delays} and we seek to
determine locations for ambulances in order to minimize
response time subject to the constraints on maximum response
time.

We cap obtain an acceptable level of response for all
types of customers by adding the following constraints to the

linear program given by (5.6):
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N-1 P
(5.7) z }: PA{i,j.p} *UP (1,0} > MAF(J}

i=0 p=1

for 3=1,2,...,H8C,

where FA{(i,j,p} 1s the fraction of acceptable responses to a
call of type j by unit i in position p. FA{i,j,p} is given by
FSC({i,j} if cP{i,j,k} 1is 1less than or egual to MAC{i};
otherwise, it is zero.

As noted above, for the particular <case of ambulaace
location, the acceptability of a response might be defined in
terns of a maximum travel time. The addition of ({5.7) to the
linear progran forces some equity imn service among calls fronm
different locations. It also complicates the solution
procedure. The UP{i,p} variables are now coupled ard the
optimal solution of the linear program can not be expected to
be integer., Since non-integer solutions are associated with
mobile units, the linear program is modified to amn integer
linear program by requiring that ©UP{i,p} be zero or one
(corresponding to fixed location units).

Instead of the NC local constraints given by (5.7), wve
can use a single global constraint by setting a lower bound,
K, on the overall fraction of acceptable responses. The

constraint is written
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NC

N-1 p
(5.8) >, E Z FC () *PA (i, J,p} *UP (i, p} > K

j=1 i=0 p=1

We will have mnore to say about the actual use of these
constraints in Chapter 7.
In the design of police preventive patrol, fractional

solutions to the linear program are actually desirable.

C.2 Police Preventive Patrol

The integer solutions obtained from {5.6) do not reflect
the other function of the police service; that is, preventive
patrol. We would like to add constraints which provide for
preventive patrol while reflecting the response to calls for
service. (It is interesting to note that the integer solution
to (5.6) implies that response time is @minimized by fixed
rather than mobile units. See Ref. 41). For the remainder of
this section, we focus on mobile units.

Since the workload of unit i, WL{i}, is defined as the
fraction of time spent in servicing calls, unit 1 has the
remainder of its time, a fraction 1-WL{i}, for preventive
patrol. When UP{i,p} 1is interpreted as the fraction of
preventive patrol time spent in atom p, we would like to
specify the fraction of preventive patrol effort to be
allocated to atom j. For exanple, we might want the effort to
be roughly proportional to the fractiomr of calls originating
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from atom .

The total preventive patrol effort available from all of
the units is the number of units, N, times one minus the
average unit workload. 3allowing some slack in the preventive
patrol required for each atom (for example, seeking a mininmum
of 100*X percent of the target level), preventive patrol can

be specified by the comnstraints

N-1
(5.9) Z {(1-WL{i}) * UP{i,p} > X * PFC{p} * N * (1-AWL)

i=1

for p=1,2,...,NC,

vhere AWL is the average workload of the units. (If (5.9) is
used with an equality constraint and no flexibility 1in the
level of preventive patrol effort, the patrol allocations are
usually wunacceptable. A typical solution will divide the
preventive patrol of a unit between widely separated atoms or
allocate a miniscule amount of its patrol to several disjoint
atoms) .

This constraint can result in overlapping areas of
preventive patrol. This condition can be avoided by adding
0-1 constraints which allow onrly one unit to patrol any given
reporting area., The result is a mixed integer linear program.

Needless to say, the degree of difficulty in solving (5.6)
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increases as further constraints are added.

In addition to «constraints on preventive patrol, the
equity constraints from the preceding section could also be
incorporated. The intent here is not to delineate all
possible constraints, but to indicate the degree of

flexibility of this model.

D. Summary

The model developed in this chapter allows the position
of units to be chosen in a manner which reflects the level of
cooperation between the units. This interaction is specified
by the FSC({i,j}, which were assumed to be given. In that
context, these values for a three server example were obtained
by applying the hypercube model to an initial set of unit
locations.

The optimal location for the units is determined by using
the location wmodel alternately with a descriptive model {in
these examples, the hypercube model), to choose successively
improved unit positions and dispatch strategies. To this
point, we have avoided computational difficulties such as
local minima or the failure of the iteration to converge to a
stable coafiguration.

Since there are only a finite number of possible urit
locations, reguiring strict improvement in the average cost
per <call at each stage gquarantees that the iteration will
converge. It is possible that convergence will be to a local
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minimum, as observed 1in using some deterministic 1location
models (Ref. 6}. Arn obvious procedure for avoiding this
difficulty 1is to solve a particular problem with several
different initial configurations. Convergence to local ainima
has not been a problem in the author's experience except in
special circunstances.

For example, if the iteration 1is applied +to the four
server example of Section B.2 with a total call rate of zero
(WL{i} identically zero, no intervaction among the units), a
nop~optimal local minimum 1is reached after two iterations.
This is due in part to the extreme symeetry of the example.
%ven 1in this case, if any unit worklocad is greater than zero,
the local minimum disappears. This symmetry is not typical of
real geographies.

For all of the examples above, the hypercube model has
heen used to incorporate the spatial characteristics of the
system and to determine the FSC{i,j}. In the next chapter, we
present an approximation procedure for loss systems with
distingquishable servers which incorporates the flexibility of
the hypercube model in a framework which allows for upit and

customer specific service times.
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Chapter 6. AN APPROXIMATE ANALYSIS DF THE
GENERAL SERVICE TIME MODEL

A. Introduction

Although the hypercube model is quite comprehensive for
the analysis of queuinqg systems with distinguishable servers
andl classes of customers, there are two important situations
which can make 1its use 1inappropriate. The first of these
concerns the computational effort invelved; the second has to
do with the service time assumptions of the Fodel.

The computational difficulty becomes apparent after an
examination of the M"size" of the hypercube nodel, vhere size
is taken to mean computer storage and time requirements. The
earliest implementation of the hypercube model could
accomodate at most S1X servers because of naumerical
difficulties (Ref. 3j. As noted in Chapter 3, Larson
increased this number to fifteen by exploiting the struacture
of the model {(Ref. 36). Evenh so, a system with 10 servers and
100 classes of customers, not unusual for police applications
in urban areas, requires roughly 360 thousand bytes of storage
in the implementation described by Jarvis (Ref. 27). (Recall
that calls can be classified on the basis of location for
spatially distributed systens).

The model assumption +that is trounblesome concerns the
service time distribution. As formulated, the hypercube only
allows server dependent service times. As noted above, such a
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description would appear 1inadequate for systems in which the
major component of the service time 1is travel. For these
systems, we would like to be able to specify service tipe as a
function of both the server and the type (location) of
customer. Irn addition, the exponential form of the service
time may not be appropriate for some systeams.

The first probles has been solved by Larson for the case
in which the service times for each unit are identically
distributed. The method of sclution employs an approximation
procedure which avoids the large state space associated with
the hypercube and which appears to give the same results
{¢ithin a few percent error) as the exact model (Ref. 40).

The exponential model described in Chapter 4 allows
server anrd customer dependent service times. Unfortunately,
the size of the model is even more restrictive here than vith
the hypercube. For example, the three server example for
Sample City would have roughly sixty-five thousand states {the
hypercube only 8). Again there 1is the additional problem that
the service times are exponentially distributed. This
distribution was chosen because of its analytic tractability,
not because it represented situations often found in real
problems.

In this chapter, we give an approximation procedure which
is aimed at solving both of the problems mentioned above. The
procedure 1is based 1in large part on the approximation
procedure given by Larson. 1In fact, the actual approximation
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is almost exactly that used by Larson. The contribution of
this work is to apply that approximation technique to a wider

class of systenms.

B, An Approximation Procedure

The steady state equation dJderived in Section C.2 of
Chapter 4 forms the basis for the development of the
approximation procedure. Before describing the procedure

itself, we review the relevant notation and model assumptions.

B.1 Notation and Assumptions

The assumptions and notation used here are consistent
with that developed in the previous three chapters. He
restrict our attention to the loss system. Calls arriving
during periods of saturation are either 1lost or handled by
means external to the system under consideration.

The system consists of N servers, indexed from 0 to KN-1,
and NC classes of customer, indexed from 1 to NC. Arrivals of
customers of type j are distributed according to a Poisson
process with rate CR({j}, independent of all other classes of
customer and the state of the system. The total rate at which
customers arrive is denoted by CRT. If server i is assigned
to a call of type j, the service time is independent of the
state of the system or the time of the arrival. The expected
service time is finite and is given by TSC{i,Jj}.

If FSC{i,j} is the probability that a random call of type
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j is serviced by unit i, and BUS{i,J§} is the event that server
i is busy with a «call of ¢type J, then the 1long ternm
probability of this event 1is given by eguation (%.11),

restated here as
(6.1) pr{ BUS{i, 3} } = CR{j} * TSC{i,j} * FsCfi,j} .

Since WL{i}, the workload of server i, is Jjust the
probability that server 1 is busy in the steady state
operation of the system, we can write an expression for the

workload by coanditioning on the class of customer Dbeing

serviced. That is,

NC

D pri Bus(i,i) )

j=1

(6.2) WL {i}

NC
:E: CR{j} * TSC{i,j} * FsC(i,j} .
3=1

t

B.2 Fixed Preference Dispatch Rules

If we know the BFSC(i,j}, equation (6.2) can be used to
determine the unit workloads. 1In fact, all of the systen
performance measures for the loss systeg can be written in

terms of the call rates, the service times, and the PFSC terms.
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(3 detailed list of performance measures can be found in
Reference 36. The costs associated with system operation are
given in equations (5.2} and (5.4) of Chapter 5. It should be
noted that the saturation probability, Pri{Sj}, is given by one
minus the sum of PSC{i,j} over j for amy 1ij.

We would like to relate the FSC terms to the workloads of
the wunits and then use equation ({6.2) to solve for the
workloads and FSC{i,3j}. This was the procedure used by Larson
for "fixed preference®" dispatch or assignment rules.

A fixed preference assignment rule is a state independeat
strategy. FPor each type of customer, the units are ordered on
the basis of their relative merit or cost with respect to
servicing a call of type j. When a call of type j arrives, we
dispatch the first preferred server for type j if it is
available; otherwise we choose the second prefecrred unit; if
that unit is unavailable, the third preferred; and so on. An
example of such a fixed preference rule is given by the three
server system used in Chapter 3. The rule used in that case
vas to dispatch the closest available server.

A fixed preference rule will be specified by an NC by N
matrix, DP (dispatch preference), where DP({j,k} is the k-th
preferred server for a call of type j. A rule which will
often be used is the myopic optimum. TIn this case, DP{j,1}

achieves the minimum in
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P
{6.3) Min UP(i,p} * CP{i,j,p} .
¥ ’

p=1

where UP{i,p} 1is the ©probability that server i 1is assigned
from position p and CP{i,j,p} 1is the associated cost of
assignment. DP {j,2} achieves the minimum in (6.3) when 1
equal to DP{j,1} is excluded. The remainder of the DP([j,-}
are determined in a similar fashion.

The FSC({i,j} take a very simple form for fixed preference
dispatch rules. Suppose that server i is the k~th preferred
server for calls of type j. Then the probability that 1i is
assigned to a random call of type j is the joint probability
that the first k-1 preferred servers for type j are all busy
and that server i is free. Let Bfi} denote the event that
server i is busy. F{i) will be the coaplementary event; that
is, server i free. Since the arrival process is independent
of the state of the system, the vworkload of server i is given

by
(6.4) WL{i} = Prf Bfi} } = 1 - Pc{ F{i} } .

Using the dispatch preference aatrix, DP, we can vrite

PSC{i,j} as

(6.5} FSC{i,j} = Pr{ B(DP{js1}}see-,B{DP{j, k~1}},F{i} }.
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(Recall that i is the k-th preferred unit for call type j).

If the status of the servers were independent, we could
vrite the probability of the compound evant in (6.5) as the
product of the probabilities of the separate events. Larson
(Ref. U40) has examined this assumption for M/M/N systems

(identical servers).

B.3 Systems vwith Identical Servers

We reproduce the main results of Larson's work as it is
crucial to the approximation procedure. Even in the syammetric
4/M/N system, the status of the servers is not independent.
Por the infinite line capacity case, Larson shows that the
probability of k servers being busy, given that a randomly

selected server is busy, is given by

(6.6) k * Pr{k busy servers} / 0 , k=0,1,..-,H,

where U is the total «call rate multiplied by the average
service time (identical for all servers) anrd divided by the
number of servers, N. This quantity will be referred to as
the utilization of a system. For the M/M/N queuing model with
infinite line capacity, U 1is equal to the average workload of
the servers. Eguation (6.6) states in precise terms the
qualitative remark that knowing one server is busy biases the
distribution of the number of busy servers in the direction of
more busy servers. Hence the availability of the servers is
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not independent.

We return to the case of zero line capacity (the loss
system). Consider the problem of sampling the status of
randomly selected servers without replacement, Let Ak}
dencte the event that the first k selected servers are busy

and that the k+1-st is free. Larson shows that
(6.7) Pr{ Afk} } = Qf{N,U,k} * (AWL**k) * (T-AWL) .

vhere AWL is the average workload of the units and D, as a
function of the number of servers, utilization factor, and k,
is a correction factor which gives the equality in (6.7).
Bquation (6.7) is a sort of quasi-independence statement

regarding the status of the units. Q{N,U,k} is given by

N-1
(N=3) * (N**j) = (U**(j-k))
{6.8) QfN,U,k} =
{(i-k)!
j=k
PO * (N-k-1)1
*x

({1-PN)**k) * N! *x (1-U%(1-PN))

fOL‘ k=0,1,...,“-1,

where PO is the probability of all servers being free and PN
is the probability of all servers being busy. A recursive
procedure for the calculation of the <correction factors 1is
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given in Appendix B. Reference 40 contains tables and graphs
of the terms. For general reference, Q(N¥,U,0} is identically
1. Only for low utilizations {less than two tenths} and large
k (greater than 5) is Q{N¥,U,k} very different froa 1.

It should be noted that although these results vwere
derived for the M/M/N loss system, they also hold for the
M/G/N system since the steady state probabilities for the two

systems are the same (Ref. 53).

B.4 The Approximation Technique

The approximation technigue developad by Larson employed
the relation suggested by (6.7) above in comnection with fixed
preference dispatch rules. 1In particular, although the status
of the servers is not independent, the joint probabilities are
treated as though they were. The correction term is used as a
scaling factor for the product of the wvorkloads to give the
correct result for systeas with identical servers.

For example, in a six server system, the probability that
servers 1 and 3 are busy and server 5 is free at the time of a

call for service would be approximated by

(6.9) Pr{B{1},B{3},F{5})=0Q{N,U, 2} *¥WL (1} *WL {3} * (1-WL {5} ).

In (6.9), U is given by {CRT*TA)/N whers TA is the average
service time over all calls not arriving during a period of
satnration., approximation procedure developed by Larson
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assumed that the average service time for all calls was TA,
independenrt of the server or the customer class.

As discussed by Larson (Ref. 840), this approximation to
the exact hypercube model yields estimates for the performance
measures which are generally vithin a faw percent of those
calculated by the hypercube. The advantage of using the
approximation instead of the exact model is that the size of
the system of egquations to be s&lved grows linearly with the
numrber of servers rather than exponentially. As will be shown
below, the approximation requires the solution of a set of
nonlinear egquations. Solved in an iterative fashion, the
computations are actually no wmore involved than the 1linear
steady state equations derived for the exact model (See
(3.9)).

We apply the same sort of approximation technigue to the
general service time model described in the first part of this
secticon. The notation is slightly simplified by defining an N
by NC unit order matrix, UO, where if server i is the k-th
preferred unit for calls of type j, then U3§{i,j}=k. With this

definition, we rewrite (6.5) as
(6.10) F5C{i,3j}=Pr{8(DP{j,1}},...,B{DP{j, UO{1L,J}-1}},F{i}} .

In nuch the same manner as lLarson, we approximate PSC{i,3j} by
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{(6.11) FSC{i,]j} 0f{ N,U,UO0({i,3}-1 } * (V1-WL{i})

uo {i,33-1

« TT  woeg.xn .

k=1

Substituting (6.11) into (6.2), ¥we have

NC
(6.12) WL{i} = E CR{j) * TSC{i,j} * Q{N,0,80i,5}-1)
=1
go{i,dj}-1
RCE IR TR I BRI Y LAY
k=1

Equation (6.12) can be solved for WL{i} to obtain

(6.13) WL{L} = X(i} / (1+x{i}), 1i=0,1,...,N-1;

where X{i} is given by
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RC

(6. 14) X{i} = ) CR{I}HTSC(L,I}*Q 0N, 0,006, 3)-1)
j=1
00 (i, 5} -1
* I I WL{DP{j,k}} .
k=1

Our intent 1is to use equations (6.13) and (6.14) 1in a
“linear iteration" technique (Ref. 9) to solve for the
worklcads of the units. After determining the workloads,
(6.12) can be used to determine the FSC{i,j} terms and hence
to obtain estimates for the performance measures associated
with the system. 1In order to apply this procedure, we need an
initial solution to start the iteration.

One such solution can be derived by assuming that there
is no cooperation between the units. (This starting solution
corresponds to ¥SC{i,j} equal to one for i egual to DP{j,1};
otherwise, FSC{i,j} is zero). We first coapute an initial
value for the average service time TA {used ir evaluating the

correction factor) by
NC

(6.15) TA = :z: PC{j} * TSC{DP{], 1.5} -
3=1
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(Recall that PC[{j} 1is the fraction of calls of type i). The

initial value of the units' worklcads is given by

{6.16) WL{i} = :E: CR{j} * TSCfi,j} -
j:DP {j, 1} =1

The initial value of U used in the correction factor is given
by (CRT*TA) /N.

BEach iteration involves using the current estimate of the
workloads to compute the X{i} term for each unit i according
to (6.14). The nev estimate of the workloads is obtained fronm
{6.13). The new estimates of the workloads are then used to

compute a new average service time according to

N-1 NC
(6.17) TA = :E: :E: FC {3} *TSC (i, j} *FSC (i, i}/ (-2 {5}) .
i=0  j=1

the PFSC{i,j} being determined from eguation (6.11}). The
utilization for the next iteration is obtained by setting U
equal to CRT*TA/N.

The iteration is continued until a convergence criterion
is satisfied; <for exaaple, the maxinmum relative change over
all the unit workloads being less than one perzent.

0f course, there are a great number of guestions to be
asked concerning the validity of the approximation dascribed

=138~



hera. 1In the next section some of these issues are explored.

C. Computational Experience

Since the approximation technique described above reduces
to that developed by Larson when the servers have identical
service times (with the slight difference noted below), a few
remarks on the accuracy of Larson's procedure are appropriate.
That procedure has been found to yield estimates for the
performance measures which are generally within a few percent
of the values conputed by the exact hypercube model. As the
total call rate becomes smaller in relation to the average
service time or as the number of units increases, the
approximation increases in accuracy. FPinally, as the units
become more similar 1in workload, the accuracy increases. At
least in part, the last remark might be expected since the
approximation is exact for the M/M/N loss system with
identical servers. (It should be noted that the approximation
technique developed by Larson can also be applied to the
infinite line capacity systesa).

The difference in Larson's approximation and that
described here has to do with a normalization coastraint
empioyed by Larson. For the M/B/N system, the average
workload of the units can be computed independently of the
particular dispatch rule used (Ref. 28) and used to scale
successive workload estimates. As noted in Chapter 3, with
different unit service times, this tesult does not hold for
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the hypercube model and consequently cannot be employed in the
iteration scheme developed here. Por the remainder of this
chapter, we deal only with the approximation procedure for
general service times as given above.

In trying to give some indication of the accuracy of the
approximation technique there is one striking difficulty;
there are not very many zodels with which to compare it. Two
obvious candidates for future validation research are
simulation models and data collected from the actual operation
of a systen. In the interim, the approximation can be
compared to some of the models developed in Chapters 3 and 4.

Since the approximation closely parallels Llarson's work
on the hypercube mwmodel with identical unit service times,
there 1is no need to pursue that comparison here. There
renains the hypercube model with server dependent service
times, the convolution model, and the exponential aodel (See
Chapter 4). Since all computational experience to date has
indijcated that the convolution model is very closely
approximated by the comparable hypercube model (Section B.2Z,
Chapter 4), we focus our attention on the bhypercube and
exponential models.

As noted in Chapter 4, the state space associated with
the exponential model is very large; (NC+1)**N elements for a
system with N servers and NC custorer classes. The
coaputational difficulty "in dealing with this mnodel was
compounded by the author's use of an interpretative computer
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language for the solution of the steady state equations. The
net result is that systeams with more that three servers and
three classes of customers became prohibitively expensive (in
the present computer implementation) to use for extensive
examples.

From Larson's work, we expect to have the most difficulty
in describing systems with a small number of servers and
widely varying service times. (The latter tends to make the
servers '"more distinguishable®). In order to test the
approximation in such an extreme set of circumstances,
computations were performed for a three server, three customer
class example with the exponential model. The systen
parameters are summarized in Table 6.1. Note that the ratio
of service times is as large as ten to one and that the
dispatch preference matrix used (DP} results in a five to one
ratio in the frequency of calls for which units 0 and 1 are
first preferred.

Por this sort of extreme situation, the average
percentage error in the workload estimates was less than one
percent at either end of the call rate range, roughly five
percent for less extreme values , and then as high as fifteen
percent at an average workload of 0.281. It should be noted
that the cost of running the approximation technigue was
roughly one +teanth of that for the exact exponential model.
This fraction could be expected to decrease as the number of
units increases since the problem size in the approximation
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Tablie 6.1 Summary of system parameters for a three server
example of the exponential model. Total call rates ({CRT)
in the range of 0.017 to 1.20 corresponding to an average
server workload of 0.014 to 0.928.

0o 1 2
pp= 1 2 O
2 1 0

0.416 0.058 0.379
RE = 0.058 0.474 0.109
0.379 0.109 0.530

FC{1} = 0.536
FC{2} = 0.107
FC{3} = 0.357

Computations were performed for the following values of CRT
{shown with the computed average workload, AWL, for each
value of CRT).

CRT ANL
0.017 0.014
0.086 0.098
0.120 0.162
0.171 0. 281
0.286 0.540
G.400 0.700
1.200 0.928
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grows linearly rather than exponentially. This exanpie does
suggest that sone caution be employedl when using the
approximation for systems with widely varying service tinmes,
although the difference in cost and size of the two approaches
really leaves no choice for large systems. (For systeas with
less variance in the service times, say up to five to one, the
approximation has yielded estimates for both workloads and the
PSC{i,j} with relative errors below two percent).

As noted, the approximation does yield good results as
compared to the exact hypercube model with identical service
times. This is also the author's experience in examining
systems with server dependent service times. To give some
idea of the accuracy of the approximation, we will compare it
in some detail to the three server example used in Chapter 3.
In this problem, the range of average service times is two to
cne and the range of call rates which are first preferred
varies by as much as four to one between two of the servers (0
and 2).

Figqure 6.1 1is a graph of the maximum percentage
difference between the approximation and the exact hypercube
model compared over a range of utilizations from 0.05 to 0.95.
(Recall that the utilization, U, for the hypercube model, is
given by CRT/SRT; SRT is the total service rate). A more
detailed comparison of the workload data is presented in Table
6.2 for the same systen.

As indicated by Table 6.2 and Pigure 6.1, the

-143-



a7
o]

2.0 -
15 ~
1.0
0.5
o b 1 ' L T ! Y T T T =
0.) 0.2 0.3 o4 oS 0% 5. o% o9 7.0 u

Figure 6.1

Maximum percentage difference in the values of the
unit workloads as calculated by the approximation versus
the hypercube model. The ytilization, U, is CRT/SRT.
Example given for three servers in Saaple City.
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Table 6.2 Unit
procedure and the exact
utilization, the top row is
by the approximation. The
hypercube model.

U WL {0}
0.05 Approx: 0.0955
Bxact: 0.0955

0.20 Approx: 0.3009
Exact: 0.3006

0.35 Approx: 0.4369
Exact: 0.4362

0.50 Approx: (0.5339
Exact: 0.5327

0.65 Approx: 0.6058
Exact: 0.6042

0.80 Approx: 0.6603
Exact: 0.6587

0.95 Approx: (0.7026
Exact: 0.7013
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workloads as calculated by

the approximation
hypercube model, PFor each
the set of values calculated
bottom row is from the exact

WL {1} WL {2}
0.0270 0.0351
0.0270 0.0354
0. 1447 0.1554
0.1445 0.1593
0.2663 0.2901
0.2668  0.2946
0.3708 0.4134
0.3721 0.4153
0.4557 0.5143
0.4579 0.5135
0.5234 0.5927
0.5267 0.5907
0.5776 0.6531
0.5821 0.6510



approximation gives a very accurate estimsate of the unit
workloads. The quantities of most interest are the FSC{i, ]},
the fraction of calls of type § answered by unit i. Instead
of presenting all of these numbers for different utilizations,
we cohncentrate on a single value, U=0.35. It was this
utilization which gave the maximum percentage difference
between the values of FSC calculated by the approximation and
the exact model. Table 6.3 details the values for this
example. An examination of the travel distances shown in Table
3.1 will reveal that there are only four distinct preference
lists for the particular rule which dispatches the closest
available unit. Atoms 4§, 8, 11, and 16 are representative of
those four preferences.

The largest percentaqge difference in Table 6.3 occurs at
FSC{0,8}. This happens to be for a unit which 1is the second
preferred for that particular atom. The percentage difference
is somewhat misleading as the FSC[i, 3} terms associated with
the first preferred server are clearly the most important in
calculating performance measures for the systen. It was
generally the case for all of the utilizations that the
largest percentage differences were associated with dispatches
of the second or third preferred unit.

Table 6.4 1is an attempt to give soms indication of the
seriousness of deviations in the PSC terms. The first coluan
gives the maximum percentage difference calculated for PFSC
teras associated with the dispatch of a first preferred unit.
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Table 6.3 Values of PSC{i,j} as calculated for the three
server example with a utilization of 0.35. The maximua
percentage difference between corresponding values occurs
for PFscC(0,8} (16.6 percent). This was the largest
percentage difference encountered over all the
utilizations tested. The values shown below correspond to
the four distinct rows of the dispatch preference matrix.
The top row is from the approximation; the bottor froa
the hypercube model.

Atom j: FSC {0, j} FSC{1, i} F5C (2,7}
1 Approx: 0.5631 0.2799 0.0770
Exact: 0.5638 0.2817 0.0840

8 Approx: 0.1309 0.7337 0.0770
Exact: 0.1123 0.7332 0.0840

1 Approx: 0.04086 0.7337 0.1651
Exact: 0.0405 0.7332 0.1557

16 Approx: 0.0406 G.1858 0.7099
Exact: 0.0405 0.1835 0.7054
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Table 6.4 Measures of the relative error in the FSC{i,3} as

calculated by the approximation procedure and the
hypercube model. For each utilization, Column 1 1is the
maximum percentage difference in the PSC terms for first
preferred dispatches. Column 2 is the mpaximum absolute
difference in the two sets of values divided by 1 minus
the saturation probability for that utilization.

U: Column 1 Column 2
0.05 0.03% 2.7%
0.20 0.46% 1.5%
0.35 D.6U% 2.0%
0.50 0.32% 2.0%
0.65 0.41% 1. 8%
0.80 0.70% 1.6%
0.95 1.08% 1.3%
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The second c¢olumn 1is the ratio of the maximum absolute
difference 1in the values of PSC{i,j} as calculated by the
approximation apd the hypercube to the fraction of calls
receiving service (one minus the saturation probability). As
is readily seen from the data, only one estimate of FSC for a
first preferred dispatch is in error by more than one percent.
Although the second column is roughly constant at two percent,
it should be remeabered that these are maximum relative
differences over all the FSC{i, j}.

It 1is very important to note that the approximation
procedure, at least for this 1last set of examples, yields
results which are very close for the types of dispatches which
contribute most to the calculation of performance measures for
the system; that is, dispatches of the first and second
preferred units for each type of customer. It 1is clesar that
the approximation requires further validation. O0f particular
interest would be bounds on the maximum relative errors or
some characterization of the type of systee which does not
lend itself to the use of the approximation.

These comments notwithstanding, the author maintaians that
the approximation 1is a good technique for describing these
types of loss systems with distinguishable servers and classes
of custonmers. It would appear to be particularly useful ip
the context of spatially distributed systems in which travel
time is a significant portion of the overall service time. As
a final note, the approximation is an analytic technique which
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is easy to iaplement and inexpensive to run in a computerized
version. Some estimates of computer costs will be given for

the examples of the next chapter.

D. A NWote on Service Times

We would 1like to examine the differences in workloads
which can be attributed to the type of service tinme
information available. For example, the original hypercube
formulation included service times which were independent of
the customer and server. The hypercube as formulated 1in
Chapter 3 allows the service time to depend on the server but
not on the +type of customer. Finally, the approximation
procedure for the general service time mrodel permits service
times to be a function of both the class of customer and the
server.

The gquestion raised here is exactly how @much of this
information is necessary to adequately describe these systess.
For the remainder of this secticn, suppose that the FSC{i,ij}
are known.

Givem the call rates , service times, and response
pattern, the workload of unit i is calculated as in eguation

(6.2} restated here as
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NC
(6.18) WL{i} = ZCB{]‘} * TSC{i,j} * PSC{i, i} .

3=1

Suppose we compute the mean service time for a «call
ansvwered by unit i for the given response pattern. We define

TU{i} (service time by unit), for i=0,%1,...,8-1, by

NC NC
(6.19) TUG) = ) TSCEL, JIFT(L, I}/ Y erin
i=1 j=1

where FT{i,j} is given by eguation (5.5) and is the overall
fraction of calls that are of type j and answered by unit i.
The denominator of (6.19) divided by (1-P({S}) is egqual to the
fraction of all calls not arriving during a period of
saturation which are serviced by unit i.

Now we consider the system with the same ré;ponse pattern
as above except that service times are only server dependent

and are given by (6.19). Substituting (6.19) into the RES of

(6.18) we get

NC NC

TU(i) * z CR (3§} *PSC {i, }

Z CR{j}*TU (i} *PSC{i, j}
i=1 j=1
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NC
Z TSC{i,j} *FT {1, j} *CRT
j=1

KC
Z TSC {i, j} *PSC {i, j} *CR (j}
=1

where the last sum 1is seen to be WL{i} when compared to
{6.18) . The result of these manipulations is to say that if
the correct average unit service time is used in the general
service time wodel in place of the aore detailed
server-customer specific service times, we still get the
correct unit vorkloads.

In exactly the same manner we can compute the overall
average service time as in (6.17) and substitute that valuge
for the TSC({i,j} in (6.18). Define FU{i}, the £fraction of

calls serviced by unit i, by

NC
(6. 20) FU (i} = ZFC{}'] x PSC{i,§} / (1-P{S}) .
3=1

If we substitute TA for TSC{i,j} in the RHS of ({6.18), we get
(N*AWL*FU (i}). This quantity is not equal to the workload of

unit i unless the average service times for each unit are
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equal. (Note: summing this tera and dividing by N does yield
the correct value for the average worklicad, AWL}.

The remarks above are 1interesting in 1light of a model
developed by Bernstein and Thomas (Ref. 57). Their approach
is to 1incorporate travel time information £for spatially
distributed systems by using Larson's approximation procedure
in an iterative marner. An estimate of TA is made for the
system, the FSC{i,j} are computed for that service time, and a
new estimate of TA is obtained via (6.17). This procedure is
repeated until a convergence criterion is satisfied. Since
the values of FSC{i,j} depend only on the unit workloads in
the approximation scheme, it would appear that such a
technique could be used to incorporate travel tipes for
spatially distributed systeas if the iteration wutilized unit
specific service times, TU{-}, rather than the global service

time, TA.

E. Sensitivity Analysis

The approximation can be easily adapted to determine
first order effects of changes 1in the systeam configuration.
For example, Chelst (Ref. 7) has developed algorithms for
balancing workloads and travel times using Larson's
approximation. Such algorithms often require the coamputation
of the change in response patterns of workloads resulting fronm
changes in the dispatch preference matrix. We will focus on
one particular kind of change in the dispatch preferences as
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an example of a simplified computation procedure.

We restrict our attention to calls of type j, where X is
the k-th preferred server for type j and y 1is the k+1-st
preferred. That is, DP(j,k}=x and DP{j,k+1}=y. ¥e conpute
the change in PsSC{x,j} and PsSC{y,j}, denoted by X and Y
respectively, if wunits x and y are reversed in the dispatch

preference list. PSC{x,j} is given by

k-1
(6.21) FSC{x,3} = Q(N,U,k=1}*(1-WL{x}) * TT WL{DP({j,1i}} -

i=1

The values of X and Y are computed on the basis . of the
first iteration of the approximation starting with the initial
workloads, WL{i}, i=0,1,...,N-1. The next iteration yields
the following expression for the fraction of calls of type ]

answered by unit x under the revised dispatch policy.

k

(6.22) X+FSC{x,3j} = Q(N,U,k} * (1-WL{x}) * l I gL{1} .

i=1

The change for unit x, X, is computed fron (6.21) and (6.22)

as

(6.23) X = FSC{x,3j} * (Q{¥,U,k}*WL{y})/Q@N,U,k-1} - 1 .
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Y is computed similarly as

(6.24) Y = FSC{y,3} * OQ{N,U,k-1}/(0{N,U,k}*¥L{x}) - 1 .

Using (6.18), the first order change in the workload of
unit x caused by this change in the dispatch rule will be
CR{j} * TsC{x,3j} * X. The change in the workload of unit y
will be CR{j} * TSCfy,3} * Y. (Note: these computations
reflect the changes which will occur in the first iteration of
the approximation procedure as applied to the equilibrium
workloads derived under the initial dispatch rulej.

We apply these concepts te the example begun in Chapter
3. The optimal rule derived there dispatched unit 1 to a call
from atom 7 instead of dispatching the <closer aunit 0.
Although the syster wide expected travel distance did not
change greatly, the workload imbalance was halved. Applying
the results developed above to this system, with x=0, y=1, and

ij=7, we have

Given: CR{7}=0.099, TSC({0,7}=1.0, TSC[1,7}=0.567.
Compute: PFSC{0,7}=0.5273, FSC{1,7}=0.2853.

WL {0}=0.4727, WL{1}=0.3033.
X=-0.4019, Y=0.4845.

The workload of unit 0 decreases to 0.4329 and that of unit 1
increases to 0.3353. The maximum workload imbalance can bhe
expected to decrease from 0.16%9 to roughly 0.10. A4 more
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precise coaputation yields a fipal imbalance of 0.13.
Similar techniques can be applied to the determination of the
marginal costs of changes in assignment strategy.

This chapter concludes the methodological developments.
Briefly, vwe have developed several continuous time Markow
rodels for service systems with distinguishable servers and
classes of customers. One of these models, the hypercube, was
used in conjunction with a location model in order to
determine the optimal positions for response units in
spatially distributed systens.

This present chapter details the application of an
approximation procedure for computing the steady state
characteristics of systems in which the service time depends
on both the server and the class of custoa=ar. In the next
chapter, we use the approximation procedure and the location
nodel to treat a spatially distributed system in which travel
time is a significant portion of the overall service time.
The example is intended to demonstrate the flexibility of

these models.
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Chapter 7. APPLICATIONS TO THE LOCATION OF
EMERGENCY MEDICAL VEHICLES

A. Introduction

The purpose of this chapter is to demonstrate the use of
some of the models developed in the preceding chapters. In
particular, we would 1like to use the location model to
optimize the positions of response units in an enviroament in
which inter-unit cooperation is important. An energency
medical system (EMS) was chosen for several reasons.

We have focused on emergency service systems and ve
continue that enphasis here. The descriptive rodels,
including the hypercube model and the approximation procedure,
incorporate the emergency aspects of the service (immediate
response if a unit is available and unpredictable arrivals of
calls for service) with a comprehensive treatment of local
geography (including impediments to +travel, placement of
units, and the spatial distribution of calls for service).
Since the hypercube model has seen extensive use 1in police
applications (Refs. 38, 30, 14, and 8), we prefer to
demonstrate the use of the approximation procedure developed
in Chapter 6 in an E#S application.

In addition, the approximation procedure incorporates a
more accurate description of service time for ambulance
systems than the hypercube model. In spatially distributed
systems, at least one element in the classification of

-157-



customers is the location of the incident. As a result, the
expected service time for an arbitrary call has a component
which depends on both the server (the location from which it
is dispatched) and the customer (locational origin of the
call). That component is the travel time to and from the
scene of the indident. Recall that the hypercube formulation
allouws server but not customer dependent service times. (0f
course, any system with spatially distributed respoanses will
exhibit the same server and customer dependence in its5 service
times, For urban police forces, this component is usually
small compared to the overall service time. See Ref. 39).

The examples given here are intended to demonstrate the
use of the models, not to arrive at general conclusions
concerning the optimal location of ambulances. The models are
specifically designed to include local 1information such as
peculiarities of geography and the spatial distribution of
calls for service as well as the particular placement of
response units (ambulances) and facilities (hospitals). For
these reasons, the models can be expected to produce results
which reflect the characteristics of the specific problen
being examined.

¥e address two problems dealing with the location of
epergency medical vehicles. The first is a straightforwvard
location problen. How do we locate ambulances in order to
minimize the global expected response time for a region vaen
there are constraints on maximum response time?
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The second problem is somewhat more complicated. How is
the performance of an emergency medical response systea
affected by the addition of specialized units such as mobile
coronary care units? Before dealing with either of these
questions, we spend some examining the components of service
time time for ambulance response and relating these components

to the particular geography of Sample City.

B. Relating Service Time to Local Geography

Both examples of this <chapter are formulated 1in the
context of the geography of Sample City. 0f course, the
techniques have general applicability. In order to use the
approximation procedure and the 1location model, we have to
specify service times and assignment costs for the system.

Ambulance service times consist of several distinct
components (Ref, 31). These are travel to the scene, on-~scene
service time, travel to a hospital, time for the transfer of
the patient at the hospital, and return to base (Figure 7.1).
We assume that the total service time includes the travel time
in returning to the base; that 1is, no vehicles are dispatched
from the hospital. Ipitially, we seek to =minimize expected
response time; the time from the reception of a call until a
unit arrives at the scene of the incident. The two components
of response time are the dispatch delay time and travel time
to the scene (Figure 7.1}.

We assume that calls arriving when all units are busy
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Figure 7.1 Components of service and response time for

energencey epedical response vehicles in the case of no
queueing delays.
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{saturation} are serviced by Bmeans external to the systen.
Hence the dispatch delay time has no corponent related to
gqueuing delays but consists entirely of the time from the
receipt of a call until a response unit is notified and that
unit starts to travel to the scene of the incident. During
periods of congestion, radio egjuipped units could be
dispatched directly from the hospital. For this exanmple, we
assume that all dispatches begin at the response units' home
base.

Ve include 1local geography in the service time
description by classifying customers according to the origin
of the call for service. If a call arrives from a point x and
server i is assigned to that call, the expected service time
is determined by adding the dispatch delay, on-scene, and
hospital transfer times to the various travel time components.
If unit i is located at point y and the hospital at 2z, these
components are travel time from y to x {travel to the scene),
X to z (travel to the hospital), and z to y (return to base).

We partition Sample City into sixteen geographical atonms,
each representing a differeat class of customer (NC=16). In
general, the number and size of the atoms for an area are
determined by the requisite detail in locational information.
(See, for example, Ref, 30). We define an NC by NC matrix TT,
with elements TT([i,j} equal to the <travel time from ator i to
atom j. In practice, this matrix would be determined either
from empirical data or by calculating the distance from atom i
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to atom § and dividing by an effective average travel speed
for that pair of atoms (or for the whole regiomn).

The former approach is more realistic (and also nmore
expensive) in that it allows specific comsideration of local
travel characteristics. For the sake of simplicity, we adopt
the latter approach here. Table 7.1 summarizes the geographic
characteristics of Sample City (see alsc Fiqure 3.2). We
assume that the distance from atom i to atom j is given by the
right angle (rectilinear) distance from the center of atom i
to the center of atom 3j. Por 1 equal ¢to j, we take the
average intra-atomn travel distance to be one-half the square
rooct of the area of the atom (Ref. 41).

The specification of the expected service times is
completed by giving the nonp~travel time components of service
time and an average travel speed. ¥We use miles and minutes as
the units of distance and time. For these examples, we assume
a delay time, DT, of 2 minutes; an on-scene service time, 055,
of 10 minutes; a hospital trapsfer time, TRN, of 5 minutes;
and a travel speed, TS, of 0.5 ailes per minute (30 ailes per
hour) . Finally, we assume the region contains a single
hospital, located in atom 5. (The values 0f the service time
corponents given here were chosen to be representativa of ENS
systems. No particular significance should be attached to any
of these values. See Ref. 31 and 13).

As an exabmple of a response and service time calculation,
suppose that unit 0 is located in atom 1. ¥e compute
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Table 7.1 Atom centroids and areas for Sasple City with the
fraction of calls generated by each atonm
(PC{35}=CR{j}/CRT). All distances expressed in amiles.
See Figure 3.2.

ATON  X-COORD  Y-COORD AREA  EC*100
1 2.5 6.0 13 14.3
2 6.0 3.6 10 1.4
3 9.5 1.5 9 6.7
4 9.8 4.6 1 7.6
5 6.5 6.8 13 9.5
6 4.0 8.2 6 7.6
7 8.0 9.0 7 7.6
8 10.6 7.1 10 7.6
9 12.9 9.5 7 2.9

10 10.5 11.2 12 4.8
11 12.3 13.4 10 2.9
12 14.6 11.6 7 1.9
13 14.6 15.1 4 1.0
14 17.1 11.8 6 1.9
15 17.0 14.3 12 4.8
16 18.1 16.8 8 9.5
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TSC{0,8}, the expected service time for umit 0 responding to a

call from ator 8, as the sum of

(1) Travel +time to the scene: 18.4 minutes. {The
distance frop atom 1 to atom 8 is equal to (10.6-2.5)
plus (7.1-6.0) or 9.2 miles. Divide by T5=1/2).

(ii} On-scene service time: 10 minutes.

(iii) Travel to the hospital: 8.8 ainutes, {The
distance from atom 8 +to atom 5 is equal to (10.6-6.5)
plus (7.1~6.8) or 4.4 giles, Divide by T5=1/2).

(iv) Transfer time at the hospital: 5 minutes.

(v) Travel in vTeturning to base: 9.6 minutes. {The

distance from atom 5 to ator 1 is equal to (6.5~2.5) plus
{6.8-6.0) or 4.8 miles. Divid by TS=1/2).

The total service time 1in this case is 51.8 minutes. The
response time for this call is the dispatch delay time (2
minutes) plus the travel time to the scene (18.4 minutes); or
20.4 minutes.

In general, if unit i is located in atom p, and a single

hospital is located in atom h, we can write TSC{i, j} as

(7.1) TSC{i,j} = TT{p,j} + 0SS + TT{j,h} + TRN + TT(h,p)}.
Since Wwe seek to minimize average response time, we identify
the costs per call with the response time and write CP{i,Jj,p},
the "cost" of assigning unit i from atom p to a2 call froa aton

j. aS
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(7-2) cP{i,3,p} = DT + TT{p,J} -

Note that the cost of assigning unit i to a call froa atom j
depends only on the location of unit i.

The specification of the system 1is completed by giving
the call rates. The spatial distribution was given in Figure
3.2 and repeated in Table 7.1 (FC{j}). de set CRT egual to
0.8 calls per hour or (0.8/60) calls per minute.

With this description, we can wuse the approximation
procedure to determine the operating characteristics of the
system by specifying the number and location of the response

units.

C. Locations Mipnimizing Response Time

In order to apply the location model, we have to
determine the response pattern associated with an initial set
of unit locations. A reasonable choice is to position three
units at atoms 1, 10, and 15. The characteristics of this
configuration are shown in Table 7.2. With these locations,
the average workload (AWL) is 0.267, and the average response
time is 12.5 minutes.

6ne additional guantity shown in Table 7.2 1is the
fraction of calls receiving an “acceptable" respoase. A
response is considered acceptable if the response time is less
than thirty sinutes. {(Although the choice of thirty minutes
is sopewhat arbitrary, that is the figure mentioned by the
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7.2 Response characteristics for three units as
initially located. Section 7.2.2 contains statistics
computed for the region as a whole; section 7.2.B
contains statistics particular to each response unit,
Unit 0 is positioned in atom %t; unit 1, in atom 10; and
unit 2, in atom 15,

7.2.4A Region-wide statistics.

Average unit workload (AWL): 0.267

Average response time {minutes): 12.6

Average service time (minutes): 62.7

Saturation probability (P{S}): 0.041

Fraction of calls with acceptable response: 0.954

7.2.8 Workload (WL({i}), fraction of calls (PU{fi}), and
average response and service times for each unit.

UNIT WL{i} EUfi} RESPONSE SERVICE
0 0.25 0. 41 10.8 46.3
1 0.31 0.38 14.0 62.4
2 0.25 0.20 13.7 97.2

=166~



EMSS Act (PL93-154) ).

Table 7.3 summarizes the results of the optimal location
procedure as applied to the 1initial unit positions given
above, The optimal configuration is reached after one
iteration. Unit 0 is repositioned at atom 5; unit 1, at atonm
8; and unit 2, at atom 15. The average response time is
reduced tc¢ 10.3 minutes, a reduction of 18.5 percent as
compared to the initial locations.

The optimization of response times also resulted in
improved performance in several other areas. By decreasing
response times, the average service time is reduced and the
average workload decreases almost 12 percent. In addition,
the fraction of calls which must receive backup service (those
arriving during periods of saturation) decreases slightly from
four to three percent.

The optimization procedure was applied with the
additional constraint that at least 95 pzrcent of the calls
have a response time of less than thirty minutes. For this
particular example, this was not a binding constraint. Tables
7.2 and 7.3 also give some perforaance characteristics
particular to each unit. Por this example, the optimization
also resulted in some workload smoothing.

The iterative location procedure has the following
general effects. The relocation of units is toward positions
vhich are centrally 1located within the region. If the
hospital is also centrally located, the decrease in response
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Table 7.3 Response characteristics for three units optimally
located. Unit 0, at atog 5; unit 1, at atom B8; unit 2,
at atom 15, Region-wvide and unit-specific statistics are
given.

7.3.2 Region-wide statistics.

Average unit workload {(AWL): 0.235

Average response tiwme (minutes): 10.3

Average service time (minutes}: 54.7

Saturation probability (P{S}): 0.030

Fraction of calls with acceptable response: 0.951

7.3.B Unit-specific statistics.

UNIT RL{i} FUfi} BESPONSE SERVICE
0 0.22 0.46 8.6 37.8
1 0.23 0. 34 11.8 52.4
2 0.25 0.20 11.6 96.4
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time associated with the repositioning of the units is
accompanied by a corresponding decrease in the time required
for the units to return to base from the hospital. These two
effects combine to reduce the overall sarvice times of the
units with a resultant decrease in their workloads. As the
worklcads are lessened, the probability of all units being
busy simultaneously is also reduced. The net effect {is an
overall improvement in the performance of the systen.

It is important to recall the distinctive characteristic
of the location model being used here. The units are not
positioned in order to minimize the average distance from a
call source to the closest unit. The 1locations incorporate
the information regarding the frequency with which other tkan
the closest unit provides service (dues to the unavailability
of that unit).

For this particular example, e sought to minimize
response time. In the next section, we illustrate the use of
the same models in evaluating specialized wunits; in

particular, mobile coronary care umits.

D. Location of Specialized Response Units

Thus far, we have used response time or travel distance
as a proxy for @wmeasuring the effectivensss of an emergency
response. In this section, we focus on a more intaresting
measure of effectiveness for certain m2dical emergeacies;
namely, the risk of pre-hospital death from ventricular
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fibrillation following an acute =myocardial infarction. e
¥ill not go 1into detail concerning the specific aedical
characteristics of this type of emergency, but utilize the
work of Cretin ({Bef. 13) 1in estimating the risk of death
following a myocardial infarction (MI).

We supmarize a much simplified version of <Cretin's work
here. Again, our intention is to demonstrate the us2 of the
models, not to include all of the detail which might be
required in an actual case study. All references in this
section to the model of the risk of pre-hospital death are
taken fron Cretin (Ref. 13) unless specifically noted
otherwise.

In sipple terms, we wish to calculate the probability
that an individual suffering a heart attack (specifically an
MI) dies of ventricular fibrillation before reaching a
hospital. The basic result, as developed by Cretin from
clinical data, is that the risk of death, BRD(T}, in time less
than or equal to T ainutes following an MI, if npo medical

intervention occurs, is given by

W e A

(7.3) RD(T} = 1 - EXP {-(0.222)* [1-31{9{-—(0.015) *'.n] },

where EXP is the exponential function. Taking the Llimit of

(7.3) as T goes to infinity, we have the probability of death

following an MI as approximately 0.199 if no action is taken.
Suppose we have the following options in redesigning the
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ambulance response system of the previous section. §e can
obtain a relatively expensive mobile coronary care unit (MCCU)
to replace one of the three present vehicles or we can use the
same amount of money to obtain an additional standard
amhulance. The question is whether better performance would
be obtained from two standard vehicles and one MCCU or four
standard vehicles. We make the following assumptions
concerning the operation of the systen.

We assume that ten percent of all calls represent MI's.
(Again, this 4is taken as a representative value. See Ref.
45). The difference in treatment of these emergencies between
an MCCU and a standard ambulance, insofar as the pre-hospital
response of the emergency medical system 1is concerned, 1is
entirely accounted for by the difference in treatment during
the period from the arrival of a vehicle at the scene until
the arrival of the patient at the hospital. #¥e ogverstate the
difference between an MCCU and a standard vehicle by assuming
that an individual is at risk from the time of the MI until an
MCCU arrives at the scene. If the response is by a standard
vehicle, the patient is at risk for the additional period of
on-scene service time plus the time for the trip to the
hospital. This is equivalent to assuming that a standard
vehicle has no treatment capabilities; it only provides
transport. An MCCU is assumed to provide perfect treatment:
there is no risk of death after it arrives on the scene.

The two Qdifferent periods of risk are shown in Pigure
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7.2. Note that in either case the patient is at risk before
the emergency is reported and during the response time of the
unit assigned to the call.

The system with four standard vehicles is assumed to
operate as 1in the previous section. ¥e locate the four
vehicles in order to minimize the region wide response time.
With these locations, we calculate the risk of pre-~hospital
death for the coronary emergencies. The crux of the
evaluation insofar as coronary emerdencies are concerned is
vhether the addition of an extra standard vehicle can reduce
the average response tige sufficiently to offset the advantage
of the treatment offered by the MCCU.

If the system has an MCCU, we alter the optimal location
model in the following manner. ANy coronary emergency will be
attended by the NMCCU if it is available. The only time the
MCCU is dispatched to another type of eaergehcy is when all
standard vehicles are unavailable. Except for these two
situations, all «calls are serviced by the <closest available
standard vehicle. (We assume that it is possible to
distinguish all coronary emergencies wvhen the incident |is
reported) .

Under this dispatch policy, we use the decoupled linear
program given by (5.7) to choose the optimal positions of the
units. The standard vehicles are located with the objective
of minimal response time to all calls. The MCCU is located in
order to minimize the risk of pre-hospital death for those
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Pigure 7.2 Period of risk for an NI victim when attended by
an mobile <coronary care unit (MCCU) or a standard
ambulance having no treatment capabilities.
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coronary emergencies serviced by the MCCO. (Note: we are not
locating units to minimize the overall risk of pre-hospital
death for MI victias). This risk depends on both the patient
delay and the response time of the NMCCU. Patient delay refers
to the time between the onset of symptoms and the time at
which the emergency is reported.

Let PD{t} denote the probability of a patient delay of t
minutes. Labeling the NCCU as response unit 0, the optimal
location for the unit under the response pattern PT{0,-} is

found by ainimizing

17.4) Z PT {0, j} * Z PD {t} * RD[ t + DT + TT[p,A{j}}}
i t=0

over the position of the unit, p. The sum over j is for those
calls which are MNI's; the A{j} are the associated aton
locations. (The patient delay distribotion is assumed to be
discretized to an integral number of minutes). The expression
given in (7.4) 1is the risk of pre~hospital death conditioned
on the location of the MCCU (p), the patient delay (t), and
the event that the MCCU responds to the coronary emergency
{from atom A{3j}).

With the exception of the dispatch policy and the slight
change in the location model to accomodate the minimization of
response time for standard vehicles and the risk of
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pre~hospital death for coronary calls serviced by the MCCU,
all other parameters of the system as described in Section B
remain the same, save two. Since the MCCU provides smore
extensive service, we assume it has an on-~scene service tiae
of 15 minutes versus 10 minutes for a standacrd vehicle. In
addition, we now have 32 classes of customers (NC=32); the
classification being based on location (16 alternatives) and
the nature of the emergency (coronary or other).

Before evaluating the alternative systeas, ve have to
specify patient delay; the time fror the omrset of symptoms
until an arbulance is called. As noted by Mogielnicki,
Stevenson, and Willemain for a fire rescue sguad in Caabridge,
Massachusetts, patient delay is often considerably larger than
typical ambulance response tiaes (Ref. 45). Hence, we
evaluate our two alternpatives first with zero patient delay
and then with the nean patient delay of slightly more than
four hours as described by Cretin (Bef. 13)., The distribution
for non-zero patieat delay is shown in Figure 7.3.

Tables 7.4 and 7.5 supmarize the operating characteristic
of the response system with and without the MCCU respectively.
It happens that the optimal location of the MNCCU does not
change when patient delay is considerad so these results hkold
independently of the two particular distributions of patient
delay used as examples here., With tvo standard vehicles and
one MCCU operating under the dispatch policy as described
above, the optimal locations for the standard vehicles are in
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Figure 7.3 Cumulative distribution function for patient
delay; the time bhetween suffering an MI until calling for
an ambulance. (Ref. 13}.
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atoms 5 and 10. The MCCU should also be located in atom 5.
Although the MCCU is positioned only on the basis of the
coronary calls to which it responds, it should be noted that
it answers 90 percent of the coronary calls.

We note that the expected response time for the three
vehicle system is 13.6 ainutes as compared with 10.3 minutes
for three standard vehicles optimally 1locat2d and 8.8 minrutes
for four standard vehicles. The adidition of the MCCO has
clearly worsened overall response,. The reduction in response
time which can be obtaimed by dispersing three respoanse units
over the region has been negated by the addition of the MCCU.
The responses of standard vehicles are most frequently within
their own local vicinity. Since the MCCU responds to coromary
emergencies on a region-wide basis, it is centrally located
and the positions of the remaining standard units are adjusted
to respond to non-coronary calls throughout the region.

Insofar as response to MI's is concerned, the NCCU offers
a definite improvement. With zero patient delay, the risk of
pre~hospital death for MI's drops from (0.086 with four
standard vehicles to 0.052 when the MCCU rsplaces two of those
vehicles. These figures should be compared with the risk
associated with zero response time (0.0) and infinite response
time (0.199). If we express the risk of death in terms of the
expected number of deaths per year, a risk of 0.086 implies
60.3 deaths per vyear; a risk of 0.052, 36.4% deaths; a
difference of 23.8 lives saved per year.
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Table 7.4 Response characteristic for twd> standard vehicles

and one MNCCU. The MCCU, unit 0, is located in atom 5;
the standacd vehicles, in atoms 5 (unit 1) and 10 ({unit
2). In addition to the region-wide and unit specific
statistics, the response times and fraction of
appropriate responses is given for coronary and all other
calls (APPROP in 7.4.C). An appropriate response is
defined by the dispatch of the M8CCU to a coronary call
and a standard vehicle to all other calls.

-
7.4.A4 Region-wide statistics.

Average unit workload (AWL): 0.24

Avaerage response time {(minutes): 13.6

Average service time (minutes): 54.8

Saturation probability (P{S}}: 0.029

Fraction of calls with acceptable response: 0.9%40

7.4.8 Unit-specific statistics.

ONIT RL{i} PUfi} BESRONSE SERVICE
0 0.12 0. 16 15.4 56. 4
1 0.28 0.50 1.2 43,1
2 0.31 0.33 16.2 71.7

T7.%.C Statistics for response to MI and all other
emergencies.

CALL RESPONSE APPROP
NI 13.4 0.90
OTHER 15.2 .92
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Table 7.5 Response characteristics for four standard vehicles
located to minimize region-wide response time. Unit 0 is
positiopned at atom 1; unit 1, at atom 5; unit 2, at atonm
10; and unit 3, at atom 15.

7.5.A4 Region-wide statistics.

Average unit workload (AWL): 0.18

Average response time (minutes): 8.8

Average service time (minutes): 5i4.1

Saturation probability (P{S}): 0.006

Fraction of calls with acceptable response: (.99

7.5.B Unit-specific statistics.

UNIT FLfi} EDfi} BESPONSE SERVICE
0 0.13 0.24 6.8 42.3
1 0.20 0.39 3.3 39.2
2 0.18 0.22 10.8 62.8
3 0.20 0. 15 7.4 97.4
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The same computations were made using the empirical
distribution for patient delay given by PFigure 7.2
Considering patient delay alone, the risk of pre-hospital
death in these circumstances is 0.133 with zero response time
and, as before, 0.199 with infinite response time. There is
clearly much less room for improvement in this situation.
With four standard ambulances, the risk of pre-hospital death
is computed to be Q.161; with the HNCCU, 0.150. These risks
convert to 112.8 and 105.1 deaths per year respectively, a
difference of 7.7 lives saved per year.

The results of these computations indicate the Kkind of
conflicts which must be resolved in determiping the allocation
of resources in an emergency service. If an MCCU is added to
the EMS systen, perfo;mance improves with respect to a subset
of the population being serviced, but the overall response
characteristics of the systemn are worsened. There are several
guestions which nRmust be answered in order to choose between
the alternative configurations.

In the first place, is the decrease in the risk of
pre-hospital death really significant? On a percentage basis,
there is clearly less improvement vwhen the effects of patient
delay are included in the analysis. Since the difference in
the service provided by a standard ambulance and an MCCU was
overstated, it would be hard tc argue that the difference in
risk is significant in this case. Even 1if patient delay is
zero, there is some gquestion as to whether a decrease in
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pre-hospital mortality contributes substantially to an
increase ir subsequent life-time expectancies. This issue is
addressed in some detail by Cretin (Ref. 13).

The differences in response to other than coronary
emergencies can be even more difficult to evaluate. At least
for MI's, we have some measure of the effectiveness of
response; for other emergencies, it 1is pot clear what benefit
is to be obtained from an average response time of 8.8 minutes
{four standard vehicles) versus 13.6 mwminutes (two standard
vehicles and the MCCU). Aan additional consideration is the
fraction of demands for service which have a response time of
less than thirty minutes; these are 94 percent and 99 percent
respectively. In practice, these conflicts must be resolved
on the basis of subjective preferences.

Although this evaluation of these systess does not yield
purely objective answers for all of the questions which may be
raised, it 1is hoped that this type of analysis will help to
remove some of the uncertainty associated with the effects of
various alternatives. For this particular example, if the
patient delay is distributed as in Pigure 7.3, the most cost
effective alternative might be a system with three standard
vehicles; the funds for an MCCU or additional vehicle being

used in an education program designed to reduce patient delay.
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E. Summary

As noted above, the purpose of the preceding examples is
not to reach specific conclusions but to indicate the use of
the models developed in the preceding pages to evaluate the
consequences of alternative system designs. one striking
ability of the formulation given here is the incorporation of
very different measures of a system's effectiveness. For
exasple, the same programs were used to locate vehicles in
order to minimize response time and to dstermine the optimal
location of the MCCU under a very different cost criterion.

As a fipnal note, all of +the results of this chapter wvere
obtained at an expense of approximately twenty dollars. It is
difficult to relate this quantity to CPU time since the
computations were performed uwsing an interpretive language,
APL {Ref. 1), under the Time Sharing Option on an IBM 370/168.
Based on other experience, one-minute of CPU time on that
machine using a language such as PL/I or FORTRAN is almost
certainly an extreme overestimate of the conmputation time

required.
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Chapter 8. CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER RESEARCH

In the preceding chapters, models for queuing systenms
with distinquishable servers have been developed and presented
in connection with applications +to spatially distributed
queuying systenms. The major developments include a procedure
for determining optimal assignment rules in the Markov
hypercube queuing model; an approximation procedure for the
steady-state analysis of 1loss systems in which expected
service times are a function of both the server and the class
of customer; and an iterative procedure for dstermining the
optimal locations for response units in spatially distributed
queuing systems.

To date, the hypercube model has been applied only to
spatially distributed systems in which the cost of assignment
is given by the expected travel time to the scene of the
incident. As noted in Chapter 3, the optimization procedure
applied to this cost structure yields very little improvement
in average travel distance as compared to the "dispatch the
closest available unit" strategy. At least for spatially
distributed systems, the disadvantage associated with the
copplexity of the optimal rule would appear to offset its
benefit in the reduction of travel tinmes.

However, that result does provide useful information.
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That is, the simpple, fizxed preference rules determrined on the
basis of proximity yield average response times which are near
the optimum for that system confiquration. The most useful
result of the hypercube analysis could very well be the
application of similar technigues to other systeas.
Applications in comnunications and mediciome are suggested by
Jarvis and Larson (Ref., 29). Since the optimization was
formulated in terms of a general cost structure, it could be
applied to these new applications with, perhaps, more
significant results than those obtained for spatially
distributed systens.

The location model and approximation procedure offer much
promise but also require a substantial amount of further
investigation. Insofar as the approximation is concerned, an
issue of immediate concern is 1its robustness or applicability
in describing widely wvarying systens. One approacah for
r2solving this question wnight be ¢the use of a set of
simulation experiments. At the present time, there appear to
be no analytic models substantially different from those
presented here which might serve as a basis for validation.
As an alternative to simulation, the approximation could be
compared to historical data if that data was sufficiently
detailed and reliable.

An interesting alternative to the above would be the
development of apalytic bounds on the error associated with
the approximation. A possible approach to this problem might
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include some restrictions on the service time distributions.
As formulated, only the error in the estimates of the FSC
terms need be bounded. These compents notwithstanding, the
computational experience with the approximation has been good.
In addition, that procedure is a simnple, inexpensive
alternative to simulation as a means for explicitly
incorporating travel time into a queuing analysis of spatially
distributed systens.

There are no analytic problems with the 1location model
per se., In 1its simplest form, the location model reduces to
choosing the nmirimum of a finite set of numbers. #hen
constraints such as those developed for police preventive
patrol or maximum travel time are included, the location model
must be solved as a linear or integer linear progran
respaectively. Neither of these problems presents serious
computational difficulties.

The main gquestion relating to the location wmodel deals
with its use in conjuanction with various descriptive models to
determine optimal 1locations for response units in spatially
distributed systems. There is no quarantee that the iterative
proéedure will not converge to a local minimum. In practice,
it would appear advisable to use the algorithm with several
different iamitial conditions in order to have some confidence
that a global minimum has been reached. Local minima have not
been a problem in the author's experience except in situations
in which the distance between contiguous atoms 1is comparable
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to the overall dimensions of the region being examins2d or in
problems exhibiting a gresat deal of symmetry.

In summary, the location model and the approximation
procedure offer solution procedures to problems which could be
treated only in part previously. Although these procedures
require further investigation, initial =xperience has been
ancouraging. The approximation procedure produces estimates
within a few percent of those derived from exact analytic
mnodels except where mean service times are very dissimilar.
The use of the iterative location model to determine optimal
locations for response units has not been coeplicated by
convergence to local ainima. Finally, both procedures are
very inexpensive to use, An application of the algorithas to
problems arising in large wurban systems is not expected to
require m@more than a mpinute or two of CPU time on 1large

computing machines.
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APPENDIX A

An alphabetical list of variable names and mnemonics with the
section {S) or equation (E} where the variable is first used.
AWL: average unit vorkload; S3.E
B: event that a server is busy; E6.4
BUS: server busy with specified customer; S4.C.1
C: cost of assignment; S3.B.2
CO: objective coefficient in location model; E5.6
CP: cost of assignment given unit position; S55.B.1
CR: c¢all rate for each customer class; S53.B.1
CRT: call rate, total; E3.3
CS: cost for a customer arriving during saturation; E3.10
CT: expected cost per transition; E3.13
DP: dispatch preference matrix; S6.B.2
DT: dispatch delay time; S7.8B
E: expectation of a randos variable
EC: expected cost per customer; E3.10
ED: expected response distance; S3.E
ETC: expected transition cost; E3.12
F: event that a server is free; E6.4
Fh: fraction of acceptable responses; S5.C.1
PC: fracticn of calls from each atom; ES5.2
FSC: fraction of responses by server for each class; E3.9
FT: fraction of total services by server and class; ES5.0
FU: fraction of calls serviced by each unit; E6.20
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LHS: left hand side
MAC: maximum acceptable cost; S55.C.1
MAF: minimum acceptable fraction; 55.C.1
N: number of servers; S53.B.1
NC: number of customer classes; S53.B.1
0SS: on-scene service time; S7.B
PC: steady state probabilities, convolution model; E#.1
PD: probability of patient delay; S7.D
PE: steady state probabilities, exponential model; E4.2
PH: steady state probabilities, hypercube model; E3.5
POL: state policy vector, hypercube model; 53.B.2
Pr: probability of an event
Q: correction factor; E6.8B
RC: service rates, convolution model; S54.B.1
RD: risk of death following an MI; E7.3
RE: service rates, gxponential model; S4.B.2
BH: service fates, hypercube model; S3.B.2
RHS: right hand side
S: saturation event, all units busy; S5.B.1
s: saturation state, hypercube model, (2**N)-1; S3.B.2
SBT: service rate, total; E3.6
S5V: state value; E3.13
TA: average service time; E6.17
TC: transition cost; S3.C.1
TP: transition probability; 53.C.1
TRN: hospital transfer time; S7.B
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TS: average travel speed; 57.8B
TSC: expected service time by server and customer; S4.C.2
TT: inter-atom travel time matrix; S7.B

TU: average service time by unit; E6.19

U: utilization; S6.B.3

Uo: unit preference order matrix; S6.B.4

UP: probability of unit positions; S5.B.1

VC: state vector, convolution model; S4.B.1

VE: state yector, exponential model; S4.B.2

VH: state vector, hypercube model; E3.1

WL: server workload; E3.8
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APPENDIK B

A recursive procedure for the calculation of the correction
factors, QN,U,k}, where

N-1
(N-F) * (N#%j) * (U%* (§~k))
(6.8) QfN,U,k} = E —
(-k) !
j=k

PO * (N-k-1)!

((1-PN) **k) * N! * (1-U*{1-PN})

Define
N
SH = :E: ({U*N) **xj) / J!
j=0
PR = {(U*N)*xN}) / N!

PN = PR / SM

PO 1/ s .

pefine H, G, and F recursively by

H{N,U,0}
H{N,U, k+1}

PR / (N*U)
H{N,U,k} / U

G(N,U,0}
GEN,U,k+1}

(SM - PR) / N
N* (G{N,U,k} - H{N,U,k}) / (N-k-1)

0ot
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P{N,U,0}

SN * (1-U* (1-PN))
FN,U,k+1}

N * (F(N,U,k} -~ G{N,U,k}} / (N-k-1)

KR

for k=0,1,...,8~-2,

Then

PO * P{N,U,k}
QfN,U.k} =

(1-U*{1-PN))} =* ({1-PN} *xk)

for k=0’1'...'nt1.
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