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ABSTRACT

Tae effects of alternative resource allocations in
stochastic service systems can be difficult to predict.
Diverse, and sometimes conflicting, measures of performance
for the operational effectiveness of these systems complicate
the search for effective allocations. This report describes a
class of models which estimate multiple operating
characteristics for systems in which the identities of both
the customer and server are important is determining the
effectiveness of response. Important applications of these
results are found in police, ambulance, and fire services.
These public safety systems comprise a class of spatially
distributed queuing systems that are discussed at length in
various parts of the thesis.

The starting point for the analysis is the continuous
time Markov "hypercube" model, an M/MI/N ueuing model which
identifies the busy or idle status of each server in its
(2**N)-element state space. A generalization of the hypercube
model is given in conjunction with a procedure for determining
dynamic allocations of servers to customers which minimize
time-averaged costs of assignment. For spatially distributed
systems where the cost of assignment is given by response
distance, the optimization yields little improvement when
compared to the strategy which dispatches the closest
available unit to each call for service, but does result in
substantial improvements in workload imbalance among the
servers. The solution procedure for the optimization problem
is a considerable simplification of previous derivations.

For systems in which expected service times are a
function of both customer and server, an approximation
procedure is developed for estimating steady-state
performance. The procedure offers an inexpensive and
relatively simple alternative to simulation as a means for
analyzing these systems. The approximation is compared with
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several analytic models and is found to yield estimates within
a few percent of the exact values for most measures of system
performance. Applications of this procedure to spatially
distributed systems for which travel time is a significant
component of overall service time are presented.

An iterative procedure which seeks the optimal locations
for facilities providing service under conditions of
congestion is developed for spatially distributed systems. As
opposed to previously developed deterministic location models,
the stochastic interaction of the response facilities is
explicitly considered in determining locations which minimize
either average response distance or more complex
geographically derived variables. Computational experience is
given.

The use of the approximation procedure and location model
is demonstrated in determining the optimal locations of
ambulances for an emergency medical system. Special
consideration is given to the evaluation of the use of
specialized mobile coronary care units as a means for reducing
the risk of death following certain coronary emergencies.

THESIS SUPERVISOR: Richard C. Larson
TITLE: Associate Professor of Electrical Engineering

and Urban Studies
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Chapter 1. INTRODUCTION

A. Background: Emergency Services

During recent years, there has been an increasing

interest in applying the techniques of Operations Research to

problems arising in the public sector (Ref. 46 and 16). One

important application of this kind of analysis is to the

provision of emergency services such as fire, police, and

emergency medical systems. This report is an effort to

identify some of the problems arising in the spatial design of

emergency services and to develop models which can be used to

answer questions concerning the appropriate allocation of

resources for such systems.

In order to address these issues it is necessary to

understand both the objectives of these services and the

operational characteristics which will determine whether those

objectives can be met. Although there would be little

disagreement that these services are intended to provide some

degree of protection to the public, it is not easy to relate

an objective of this generality to specific, quantifiable

performance measures. In order to design a system which will

provide acceptable service, there must be a consensus as to

"acceptability."

Past research efforts have emphasized such

characteristics as response time or queuing delays as measures
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of system effectiveness. These quantities can be iirectly

related to the operation of these services as satilly

distributed gueuing s ytems. In part, the same emphasis will

be continued here. However, the models lescribed below are

designed to incorporate more general measures of system

effectiveness as a function of both the spatial and queuing

aspects of these services.

This kind of analysis can be very difficult.

Particularly in large urban environments, emergency services

must be viewed as dynamic probabilistic systems. Demands for

service are not deterministic, but require a description which

is probabilistic in both time and space. An immediate

consequence of this non-leterminism is a corresponding

uncertainty as to the availability of resources at a random

instant. When an immediate response is important, as is the

case in emergency services, the response unit which would

normally be assigned to provide service might not be available

because it is servicing a previous demani. If that service

cannot be interrupted, or peremptgd, some alternative response

must be made. This type of probabilistic behavior should be

considered when answering questions of resource allocation.

In addition to the problem of merely describing the

dynamic behaviour of these systems, the relation between

alternative allocation schemes and the desired performance

must also be considered. Is there an optimal allocation of

resources? If performance is defined in terms of multiple
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objectives, how should conflicts among these objectives be

resolved? What are the procedures for determining answers to

these questions?

In summary, the general problem that we address here is

the provision of services in a stochastic environment. Our

empahsis is on the development of models which allow for the

simultaneous consideration of multiple performance measures

for system effectiveness. This development has two facets.

The initial issue is an adequate description of the dynamic

operating characteristics of these systems for a given

configuration of resources. The second area deals with

problems of resource allocation. If we can describe how a

system behaves, can we determine those designs which result in

improved performance?

B. Objectives

The class of systems which we consider can be

characterized in general terms as queuing systems with

distinguishable servers and classes of customers. Although

much of the development contained in the following chapters

will be given in this general framework, it is instructive to

analyze each part of this nomenclature as it relates to the

provision of emergency services.

"Queuing" implies that there is some contention for

resources. For example, if your house catches fire, you would

probably prefer that the closest fire house immediately
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dispatch all of its apparatus to deal with your immediate

need. In practical terms, those particular units may be

currently engaged elsewhere and some alternative response is

required. This could take the form of a response by another

unit or a queuing delay if no units were available. The

design of a fire system should reflect these kinds of

considerations.

This example points up another important feature of these

systems; that is, the distinct identity of the responding

unit. For spatially distributed systems, the response units

might be distinguished solely on the basis of their location.

More generally, the individual units could have specialized

skills which could make them more or less appropriate for

assignment in particular situations. An example presented in

Chapter 7 distinguishes between standard ambulances ani mobile

coronary care units for response to certain coronary

emergencies.

These same distinctions of locality and appropriateness

of response can be applied to demands for service. When there

is an empahsis on response time, a police department is going

to choose a car for dispatch at least partially on the basis

of proximity. Again, this choice can also be influenced by the

nature of the demand for service. The response to a report of

a robbery in progress in likely to be very different from that

to a complaint of a stereo playing too loudly.

The models which are described below are designed to
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incorporate the stachastic nature of the arrival of calls for

service and a suitable response by the system providing

service based on the current availability of resources and the

particular demand for service. For the special case of

spatially distributed systems, the acceptability of response

can be defined in terms of geographic variables, such as

response time, or more complex measures for system

performance. Instead of only using quantities relating to the

process of delivering service, the formulations permit an

emphasis on the outcomes of providing that service (Ref. 64) ;

that is, did the patient live? was the fire extinguished? was

the thief apprehended? An example in Chapter 7 focuses of

some of the effects an ambulance system can have on the risk

of death associated with certain medical emergencies.

Because the response of these systems to each alternative

configuration is difficult to predict, an attempt is made to

do more than just describe their operation. Procedures for

optimizing certain measures of performance will be given. In

specific terms, the procedures deal with either the allocation

of servers to customers, or, for spatially distributed

systems, a determination of the optimal location for response

units with respect to specified performance measures.

C. An Outline of Contents

The contents of this report can be divided into three

areas: a review and summary of models for stochastic services
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(Chapters 2 and 8),, methodological developments (Chapters 3,

4, 5, and 6), and an example of the application of some of the

newly developed models (Chapter 7).

In chapter 2, we review the literature as it pertains to

resource allocation for queuing systems with distinguishable

servers in the context of emergency services. Particular

attention will be paid to the "hypercabe queuing model"

developed by Larson (Ref. 41 and 36). The flexibility and

philosophy of the hypercube formulation typifies much of the

development contained here.

In spatially distributed systems, a central issue in

resource allocation is the determination of appropriate

locations for facilities. Both deterministic location models

and their stochastic variations are examined for their

applicability to problems arising in stochastic service

systems. Particular attention is paid to models which

incorporate some of the queuing aspects of spatially

distributed systems.

In Chapter 3, we review the formulation of the hypercube

model as used in the analysis of police operations. A

generalization of this continuous time Markov model to include

other than spatially distributed systems is presented in

conjunction with a procedure to determine the assignment of

servers to customers which minimizes the expected cost of

service. Predictions from simple models for determining

average response distance for spatially distributed systems
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are compared with data generated by the hypercube model for a

specific region.

Chapter 4 develops alternative models in response to some

limitations of the hypercube model. These models are used to

explore the effect of various service time assumptions on the

operating characteristics of queuing systems with

distinguishable servers. Although these models have limited

practical applicability because of associated computational

difficulties, they provide counterexamples to two interesting

conjectures and suggest a steady state characterization for a

much wider class of systems.

A location model for use in spatially distributed queuing

systems is developed in Chapter 5. The location model

incorporates the interaction among the service units in a

manner to improve the location of each unit on the basis of

its particular spatial responses. Since the location of the

response units can affect the queuing behavior of the system,

an iterative procedure for determining the optimal positions

is given. The iteration involves successive improvements in

unit positions through the alternate use of a descriptive

model for analyzing current unit locations and the location

model for improving these locations. For applications to the

location of emergency medical units, the model is modified to

allow constraints on maximum response time. For police

operations, similar modifications to include preventive patrol

are given.



Using a result derived in Chapter 4, we develop in

Chapter 6 an approximation procedure for analyzing systems in

which service times depend on both the server and the class of

customer. This procedure is similar to that developed by

Larson for the hypercube model (Fef. 40). This technique is

particularly useful in analyzing spatially distributed systems

for which travel time is a significant portion of the overall

service time. In these circumstances, the travel time depends

on both the initial location of the response unit and the

spatial origin of the call for service (customer). We

conclude this chapter by comparing the approximation procedure

to previously developed analytic models.

Chapter 7 is the culmination of the preceding

development. An example of the use of the locational model

and approximation procedure is presented in the context of

locating emergency ambulances. The flexibility of the models

is demonstrated by first locating standard ambulances to

minimize average response time and then evaluating the

addition of a specialized mobile coronary care unit. The

latter example utilizes work recently completed by Cretin

(Ref. 13) in modeling the risk of pre-hospital death following

certain coronary emergencies. This analysis focuses on a more

direct measure of a system's effectiveness than a surrogate

such as response time; that is, the risk of pre-hospital death

following a myocardial infarction.

Chapter 8 contains a summary and recommendations for

-18-



further research.

D. Notation

The notation used for both equations and variables

corresponds closely to that of a high level programming

language such as PL/I or FORTRAN. Insofar as possible,

variables are given mnemonic names (such as AWL for average

workload). The mneionic will be indicated in the text by

underlining as in the previous example.

Subscript lists and the arguments of functions will

follow the associated variable name in brackets, f and 1. For

example, the i-th component of the vector V will be deLoted by

V~i}. An arbitrary component of V is sometimes denoted by

V[-}. The entry in the i-th row and j-th column of the matrix

M is denoted by Mfi,j). M(i,-) denotes the i-th row of M.

Similarly, the function F evaluated at t has value F(t).

Parentheses in equations are used only to indicate the order

of operations.

Unless altered by the use of parentheses, the precedence

of arithmetic operations is exponentiation (**), followed by

multiplication (*) and division (/), and then addition (+) and

subtraction (-).

In conditioning indices for summations, i:V~i}=j is read

"those indices i such that the i-th component of the vector V

is equal to j."

A glossary of variable names and mnemonics is given in
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Appendix A with an indication as to the location of the first

use of the variable in the text.



Chapter 2. LITERATURE REVIEW

A. Introduction

There is a substantial literature on queuing and

optimization of stochastic systems. The reader is referred to

Ross (Ref. 50), Karlin (Ref. 32), Cox and Smith (Ref. 12) or

Feller (Ref. 17 and 18) for a general discussion of these

subjects. Our purpose here is to review a specific subset of

this literature. In particular, we will look at methodologies

and applications which are oriented toward the provision of

emergency services, which we view as spatially distributed

queuing systems.

The literature which is relevant to the discussion given

here can be divided into two categories. The first, which we

refer to as the set of predictive models, is largely concerned

with the analysis of a service system with a specified level

and configuration of resources. The objective of these models

is to incorporate the stochastic elements of demands for

service and availability of response units into a description

of the dynamic operating characteristics of the system. Some

of these models are purely descriptive, while others

incorporate optimization techniques to determine the

allocations of fixed resources which result in the "best"

performance of the system.

The second category deals with models for determining the
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otimal location of facilities in spatially distributed

systems. The distinction between these two groupings is not

always precise, but it has the advantage of closely

paralleling the development given in the subsequent chapters.

B. Predictive Models

The predictive models to be discussed here are designed

to estimate the operating characteristics of a system as a

function of the spatial and temporal distribution of demands

for service, the number and placement of response units, and a

service discipline for assigning servers to customers

(demands). For spatially distributed systems, an additional

imput is given by a description of the local geography.

Needless to say, it is very difficult to incorporate all of

these variables into a single model. Although simulation

techniques have been applied to these systems with some

success (Ref. 41 and 43), our emphasis will be on analytic

models.

There are many models dealing with particular facets of

the operation of emergency services. Perhaps the most

comprehensive single work in the field is Urban Police Patrol

Aaaltii by Larson (Ref. 41). The specific issues addressed

by Larson include travel time models (for example, the effects

of barriers or one-way streets to travel time); preventive

patrol (including models for the probability of intercepting

crimes in progress); and sector design (with an analysis of
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fixed position versus mobile units and the effects of

overlapping sectors). Although these models are developed in

the context of police operations, they have some general

applicability to the analysis of other spatially distributed

emergency.services.

Other examples of models for specific aspects of system

performance are the "square root laws" postulated by Larson

(Ref. 41) and Blum and Kolesar (Ref. 2) for predicting average

response distance in spatially distributed systems. We will

examine these models in more detail in Chapter 3.

Chaiken and Larson (Ref. 5) have compiled an excellent

survey of techniques for resource allocation in emergency

services (through 1972). Their paper notes many of the models

for specific aspects of a system's performance and contains an

extensive bibliography. Although many of these models are

quite useful, there are recently developed models which are

more interesting from our viewpoint.

One such model was developed by Hall (Ref. 211 for

analyzing a service system consisting of police and emergency

medical vehicles. This semi-Markov model partially

incorporates the effects of travel time by utilizing different

service time distributions for responses of greater than and

less than one mile. Although an exponential distribution

satisfactorily describes the service time distribution for the

particular system examined by Hall, it is not clear whether

the model would be analytically tractable for other
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distributions. In Chapter 6, we develop a procedure which

explicitly incorporates travel time as one component of the

overall service time.

Insofar as the topics to be discussed here are concerned,

one of the most important developments was the Markov

"hypercube queuing model." This modeling approach was

suggested initially by Larson (Ref. 39) and then detailed by

Campbell (Ref. 3). The model explicitly incorporates the

probabilistic nature of the arrival of calls and their

subsequent service in a framework including the interaction of

mobile or fixed units in a spatially distributed system.

Initial numerical difficulties encountered by Campbell were

largely overcome by an iterative procedure devised by Larson

(Ref. 36). Problems related to the sheer size of the model

have been solved by an approximation scheme developed by

Larson (Ref. 40).

Although the hypercube model has been used mainly in the

context of urban police operations (Ref. 38, 30, 14, and 8),

Jarvis and Larson (Ref. 29) suggest alternative uses for the

model. The generalization of the model given in Chapter 3 is

developed in that spirit.

A typical use of models such as the hypercube is the

evaluation of alternative system configurations. Since the

model produces estimates of many differenct aspects of system

performance, the user can base his evaluation of the system on

a subjective estimate of its overall effectiveness. If the
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performance is not deemed satisfactory, then changes in

configuration can be made and the system re-evaluated. This

kind of iterative improvement can be difficult for several

reasons.

In the first place, some level of expertise is required

of the user in order to know what kinds of changes in the

system are likely to produce the desired results. As noted by

Larson and Stevenson (Ref. 42), some quantities, such as

travel distance, are largely insensitive to changes in the

configuration of a spatially distributed ;ystem and thus o

not lend themselves to significant improvement in a simple

manner. Finally, as noted by Chelst (Ref. 7), some

performance measures, for example travel time and workload

imbalances, cannot in general be optimized simultaneously.

Implicit in this discussion is the assumption that

resources are not unlimited. At least in partial response to

considerations such as these, models which determine optimal

allocations of the available resources have been developed.

For example, Swersey (Ref. 55) has developed a Markov decision

model for determining how many fire-fighting units to dispatch

to an alarm. Part of the information considered in this

decision is the frequency of false alarms and the congestion

in the system.

Similar techniques for allocating servers to customers in

fire operations have been developed by Ignall (Ref. 25).

Specifically, allocation schemes which minimize response
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distance subject to constraints on workload imbalances are

determined. Although this formulation includes queuing

phenomena, its general applicability is limited by the

assumption that exactly one half of all the response units are

assigned to any particular call for service (although not

necessarily the same half).

Carter, Chaiken, and Ignall (Ref. 4) developed a

procedure for determining response areas to minimize response

distance for two fixed position emergency units and noted that

the optimization procedure also improved the workload

imbalance between the two units. An algorithmic procedure for

determining the optimal response areas for more than two units

was given by Jarvis (Ref. 28) utilizing Markov decision

theory. A generalized version of the algorithm is given in

Chapter 3 with a much simplified development of the main

results of the solution procedure.

For spatially distributed systems, the question of how to

allocate response units to demands for service is conplicated

by the additional question of where to locate the response

units. Models for solving these allocation-location problems

are referred to simply as location models.

C. Location Models

There is a substantial literature on location models.

Cooper (Ref. 10) and Revelle, Marks, and Liebman (Ref. 49)

have surveyed a large class of deterministic economic models.
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Typically, these models determine locations for facilities

which minimize average Euclidean or rectilinear distances from

sources of supply to points of demand and can include

constraints on capacity and feasible allocations. Included in

this class of models are the network formulations surveyed by

Odoni (Ref. 48). A frequent objective in network problems is

the minimization of the maximum distance between any source

and demand point. This problem is treated by Handler (Ref.

22) among others.

The difficulty in using these location models for

stochastic service systems is due to the deterministic

assumptions underlying their formulation. For example,

although links between points of supply and demand may have

finite capacities, the supply facility is always available to

meet demands subject to those fixed capacity constraints.

Deterministic location models have been proposed as a

method for locating emergency facilities by several authors.

Toregas, Revelle, Swain, and Bergman (Ref. 58) use an integer

linear programming model to determine the minimum number of

facilities required to meet constraints on maximum distance to

a facility. Modifications to determine those locations which

minimize weighted response distance are discussed and some

computational experience is presented. Formulations of this

type lead to the classical set covering problem (Ref. 20) or

variations on the p-median problem (Ref. 48). An application

of these ideas is given by Keeney (Ref. 33) in determining
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district boundaries for facilities. The set covering problem

is used by Walker (Ref. 60) to determine allocations of fire

apparatus to fire houses.

Several different solution procedures have been proposed

for solving the p-median problem. These include a modified

branch-and-bound procedure suggested by Jarvinen, Rajala, and

Sinervo (Ref. 26) and a heuristic technique devised by Shannon

and Ignizio (Ref. 54). Comparative computational experience

using some of these procedures has been reported by White and

Case (Ref. 63).

The applicability of these models and their associated

solution procedures to the location of emergency service

facilities is limited by the assumption that the facilities

are always available to provide service. In general, this

condition is satisfied only under circumstances of limited

interaction between the response units or very low

utilizations of the service. An example of the use of these

models when these conditions are satisfied is given by Jarvis,

Stevenson, and Willemain (Ref. 31) in determining ambulance

locations.

There are some techniques which incorporate time varying

demand in determining facility locations. Wesolowsky and

Truscott (Ref. 62) and Scott (Ref. 52) have developed dynamic

programming models for facility location when demands are

known but are not constant in time. Again, these models have

limited applicability in stochastic systems.

-28-



mirchandani (Ref. 44) and Chapman and White (Ref. 6) have

considered location problems which allow uncertainty in the

time or distance between the service facility and the

customer. Chapman and White address a crucial issue in

applying these models to spatially distributed queuing

systems; that is, the availability of a server to a randomly

chosen customer. Although they give an algorithm for

determining server locations in a queuing environment, no

computational experience is given. The authors state that

their procedure is too difficult to use except under very

special circumstances. The models developed by Chapman and

White appear to be more useful in a reliability context where

the availability of a service facility is independent of all

other facilities.

In summary, there appear to be no location models which

have general applicability to spatially distributed queuing

systems, although some of the procedures described above are

useful in particular situations. In spite of this lack of

general models, specific location problems have been analyzed.

Savas used a simulation model to evaluate alternative

ambulance locations in New York (Ref. 51) and concludes that

dispersion of the fleet is more cost-effective than location

at a central facility such as a hospital. The quantities of

primary interest in this study were expected response and

service times.

Using empirical travel time data, Hogg (Ref. 23)
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determined allocations of fire units and the location of fire

houses to minimize travel time to the scene of an incident.

Although the formulation allowed the dispatch of multiple

units to a fire and based the allocations on this sort of

cooperation, it is assumed that the demand for service is low

enough that the units are always available for dispatch.

Fitzsimmons (Ref. 19) and Volz (Ref. 59) have developed

models for the allocation and location of ambulances. The

model developed by Fitzsimmons employs simulation techniques

for the analysis of queuing aspects and a heuristic search

routine to find optimal vehicle locations. Although it appears

that the queuing analysis of the model could be handled more

efficiently by a model such as the hypercube, the idea of

successively improving the location of response units employed

by Fitzsimmons (as well as Volz and Chapman and White) will be

used in Chapter 5.

optimal locations are determined by Volz under the

assumption of instantaneous relocation of all available

response units as the number of available units changes (at

the receipt of a call for service or the completion of a

service). If the system has such a small utilization that the

overhead associated with the relocation does not affect

performance, then the deterministic location models are

probably a more appropriate means for determining locations.

The difficulties associated with relocation appear

insurmountable for practical applications in systems with
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representative workloads.

D. Conclusions

Although many of the references cited above contain

elements which are useful in certain aspects of resource

allocation in stochastic service systems, none incorporate all

of the desired features. One of the most comprehensive

formulations is given in the hypercube model. In the

following pages, models are developed which combine the

flexibility of the hypercube model as a descriptive tool with

generalizations of the hypercube's service time assumptions.

An iterative procedure for response unit location is given

which utilizes these descriptive models and includes the

interaction among units in spatially distributed queuing

systems.

Perhaps one of the most important features of this

iterative procedure is exemplified by the spatial design of an

emergency response system on the basis of patient outcomes

rather than the usual measures of performance such as response

time. A major strength of the models developed here is an

emphasis on the inclusion of more general measures of system

effectiveness than simple geographically derived variables

such as travel time.
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Chapter 3. THE HYPERCUBE MDEL

A. Introduction: An Application to Police Patrol

As indicated in the introduction and literature review,

the problem of describing the response function for emergency

services is a difficult one. The recently developed

'hypercube' queuing model represents one of the most

comprehensive approaches to this task. In this chapter, we

summarize the development of the model in conjunction with an

example of its use in modeling police response.

Although much of the material in this chapter is

contained in the references, it is included here because it

forms the basis for much of the development in the following

chapters. We give a brief theoretical description in

conjunction with the police example, an optimization procedure

for certain aspects of system performance, and a summary of

applicable numerical techniques.

A.1 Police Response

Since the hypercube model has been used mainly in

describing police operations, that is the example used here.

The model focuses on the preventive patrol and emergency

response aspects of police units in a geographic setting.

Before discussing the exact model formulation, we give a

scenario of the police operations which we are trying to
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model.

We restrict our attention to an autonomous subset of the

overall police force and its particular geographic area of

responsibility. There are a certain number of mobile or fixed

patrol units (a2rveri) in the field which respond to calls for

service as assigned by a dispatcher. When a call arrives at

the dispatcher's desk, several events may occur.

If the call demands immediate attention, the dispatcher

chooses one or more units in the field and directs them to

respond to the incident. If the incident is not pressing, it

might be held, or gguj24 , for later response. This might be

particularly likely to occur if the system is congested.

Normally, the unit assigned to service the call would be

performing only routine preventive patrol which would be

preempted to provide the service. In fact, a unit servicing a

routine call might be assigned to another call in an emergency

situation, preempting its current service. A unit spends some

time providing on-scene service to a call and then returns to

preventive patrol.

While the preceding description is realistic for actual

police operations, we shall make a few simplifications. When

a call for service arrives, every unit is assumed to be either

jjay (currently providing service) and hence unavailable for

other service or free (currently on preventive patrol) and

available for service. If any unit is available, the call

receives immediate attention. A single unit is dispatched to
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provide the service. Calls are queued only if the system is

saturated; that is, all of the units are busy. In this case,

the call is either handled by some means external to the

system or held for later service when a unit becomes

available; service is never preempted. In the former case, the

call is lost from the viewpoint of the system being examined.

It is crucial to note that this scenario focuses on

unanticipated demands for service. Scheduled events, such as

meal breaks or administrative tasks, although very important

in actual operations, are ignored insofar as the model is

concerned. In addition, whether the calls represent real

emergencies is irrelevant. With respect to the response of

the system, they must be treated, at least initially, as

emergencies and receive an immediate response if possible.

There are many factors which may be considered in

choosing the particular unit which will respond to a call.

Since the call arrivals cannot be anticipated but must receive

immediate attention, the actual assignments will be a

probabilistic variation of an idealized assignment policy.

For example, the units in the field might be assigned to

patrol disjoint areas in order that each might to develop some

familiarity with a particular region. We refer to these

regions as sectors and the corresponding unit as the sector

car. Under most circumstances, we would like the sector car to

respond to all calls from its own sector. In practice, we

have to deal with the problem of which unit to assign when the
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sector car is busy. (Recall that no calls are preempted and

all calls receive immediate attention if there is an available

unit).

A reasonable solution to this problem is to dispatch the

closest available unit. In fact, preserving sector identities

may not be very important and we might always try to lispatch

the closest available unit. Usually there is some uncertainty

as to the exact positions of the available units and the

dispatch decision must be based on partial knowledge. (Larson

has addressed the implications of different levels of

locational information in Ref. 41). Implicit in this

discussion is the importance of minimizing the time until the

arrival of a unit at the scene of the incident. In some

circumstances, such as family disturbances, it may be

preferable to assign units with special skills in dealing with

a particular problem, even though they are farther from the

scene than another unit. In any case, it should be obvious

that the dispatch policy will have a great effect on the

availability of units, but that this effect is somewhat

complicated by the random nature of the arrival of calls.

The time that a unit spends servicing a call is another

source of uncertainty in the dynamics of the police system.

In general, the time that a unit spends providing service

consists of several components, none of which are

deterministic. There may be dispatch delays which depend on

the work level of the dispatcher. The component of the service
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at the scene of the incident could easily depend on the exact

nature of the call. In addition, for geographically

distributed systems, the travel time to and from the scene

must be considered. The uncertainty in this component of

service time arises from two sources: variations due the

travel conditions between two points in the region and

uncertainty as to the starting position of the responding

unit.

In summary, we are concerned with the response to calls

for service. This response depends on the particular dispatch

rule being used and on the availability 3f units. In turn,

the availabilities are uncertain due to the r'tndom arrival of

calls for service and nondeterministic service times. In the

next section, we give a more precise formulation of the system

dynamics in a framework which allows the use of an analytic

model for the system.

A.2 An Analytic Description of Police Patrol

As discussed above, we are focusing on the response

function for calls which are presumed to be emergent. For the

geographic area of interest, we assume calls arrive according

to a time-homogeneous spatial Poisson process (Ref. 35). In

particular, this implies that the arrival of calls is

independent of the availability of servers and the past

history of the system. Also, the time between successive

calls is distributed as a negative exponential random
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variable.

(The validity of the Poisson assumption is examined in

Ref. 39 for police operations. In fact, the arrival process is

generally not time homogeneous but can be expected to exhibit

time independence over non-overlapping intervals. This is not

suprising since the pooled output of a large number of sources

can be shown to be Poisson over small time intervals (Ref.

11). We use the steady state analysis as an approximation to

the actual time inhomogeneity).

An important advantage of the hypercube model is that it

preserves the separate identities of the servers, which may be

based on the presumed location of the units or on their

specialized functions. In either case, every server is

assumed to be in one of two states: either busy (unavailable

for service) or free (available for service). When a call

arrives, a single unit is chosen from those which are free and

is immediately assigned to provide service. In the event that

all servers are busy, the call is either lost or handled by

external means (zero line case) or queued until a unit becomes

available (ifinite line case).

The service time for each unit is assumed to be

distributed as a negative exponential random variable with an

expected value which may depend on the particular unit

providing the service, but not on the call being serviced.

Since calls are at least partially classified by their origin,

this assumption is not strictly correct. For geographically
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distributed systems, one component of the service time is

travel to the scene. This, of course, will depend on the

initial position of the server and the location of the call.

At least for police operations, an analysis by Larson

indicated that travel time is usually small compared to

overall service time and hence the complication caused by the

location of the incident can be ignored (Ref. 39). Even

though travel time may be short compared to the total service

time, it still has importance as a measure of system

performance.

For services in which travel time is a more significant

component of service time, as in emergency ambulance services,

these assumptions are unrealistic. We will return to this

problem in Chapters 4 and 6.

A.3 Performance Measures

There are several measures of performance which are

important in evaluating the effectiveness of police response

and patrol. While there has not been a great deal of work

concerning the relation of response time (the time from the

reception of the call to the arrival of a unit on the scene)

to crime prevention or interception, there is a consensus that

response time should be relatively low (Ref. 56). For the

purposes of developing a local identity or familiarization

with a particular area in preventive patrol, it may be

important to Kcep the fraction of calls which take a unit out
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of its sector as low as possible. In addition, both the

absolute unit workload (fraction of time a unit spends

servicing calls) and that workload relative to the other units

(wrkload imbalances) can be important administrative and

morale factors.

Both response times and workloads may be considered in

local and global terms. For instance, the overall response

time for a system may be very low but this performance may not

be acceptable because of inequities between different areas.

On a microscopic level, the fraction of calls which send a

unit to any particular part of the region might be of

interest.

The hypercube has seen its major application in terms of

police sector design. In this context, for a particular number

of units assigned to patrol a certain geographic area, the

sectors determine the preventive patrol patterns in the

absence of calls for service. The hypercube model is used to

predict the actual patterns of patrol and response under

various assignment alternatives for that sector design. These

patterns are given in terms of workloads, response times, the

probability of queuing, and intersector dispatches. The

reader is referred to References 3 and 40 for a more complete

discussion of this application. In what follows, we abstract

the general features of the hypercube formulation and give

examples of how this formulation may be applied to police and

other service systems.
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B. The General Hypercube Queuing Model

In this section, we give a general formulation of the

hypercube model for a system with distinguishable servers and

distinguishable classes of customers. The focus will be on

the development of assignment (dispatch) rules to minimize the

average cost of providing service when the costs depend on

both the class of the customer and the particular unit

providing service. This formulation is a generalization of the

model developed by Campbell (Ref. 3) for police sector design.

Jarvis and Larson indicate other applications of the

formulation and summarize the development in Ref. 28.

Although we focus on the zero line case here, the

modifications required to deal with infinite line capacity are

simple and are indicated as appropriate.

B.1 Model Assumptions and Notation

The hypercube model is a continuous time, finite state

Markov description of an N server gueuing system with

distinguishable servers. A state in the Markov process is

denoted by a binary vectr, VH (state vector, hypercube

model), of length N, where the j-th component of the vector is

zero if and only if server j is free (available for service)

in that state. (Note: the servers are indexed from 0 to N-1,

from right to left in the state vector). For convenience, a

state is often referred to by the integer associated with the

binary vector. Hence there are 2**N states, indexed from 0 to
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(2**N)-1 inclusive, where state i has binary representation

(3.1) VHfi,-} = ( VHfi,N-1}, VHfi,N-2), ... , VH[i,0} )

and

N-1

(3.2) i = VHIi,k} * 2**k

k=0

For example, with three servers, there are 2**3 or 8

states: 000, 001, 010, 011, 100, 101, 110, and 111. State 3,

binary 011, corresponds to units 0 and 1 being busy and unit

2, free. The state vector for that state is given by

VH(3,0}=1, VH(3,1}=1, and VH(3,2J=0; VH(3,-) = (0 1 1).

There are NC (number of customer classes) distinct

classes of customers. Customers of type j arrive for service

according to a Poisson process with parameter CR(j (gall

rate), j=1,2,...,NC, independent of all other customer types

and the state of the system. The total call rate CRT (sall

rate, total) is given by

NC

(3.3) CRT = CR(j)

j=1

For geographically distributed systems, the customer classes
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are defined in terms of geographic atoms or rgpgo tini aregs,

which partition the area of interest. In the police patrol

example, customers could be classified according to the atom

containing the origin of the call for service as well as the

actual type of incident reported; the N servers correspond to

mobile patrol cars.

B.2 The Steady State Equations

The Markov description of the hypercube model is

completed by specifying the transition rates. As is obvious

from the state space, transitions involve either an available

server becoming busy (an jward transition) or a server

completing service and becoming available (a dQwnward

transition). An upward transition corresponds to a customer

arrival and the subsequent assignment of exactly one server.

Such events occur at rate CR(j) for customer type j. The

total rate at which an upward tra:isition occurs depends on the

customer types serviced by a particular server in the state of

interest. This leads to the notion of an assignment rule.

For every state i (except the saturation state), there is

a vector POL(i,-} (palicy vector) of length NC where

POL(i,m)=n if and only if server n is assigned to customers of

type m in state i. (Note: this requires that the server be

available, i.e. VH~i,n)=O. Assignments are unique; randomized

rules are not allowed). Hence for states i and j where

VH(i,r)=VH(j,r} for r not equal to n and VHEi,n)=O, VH(j,n}=l,
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there is an upward transition from state i to state j with

rate R where

(3.4) R CR[m}

m:POLi,m)=n

Each server is assumed to have a service time which is

exponentially distributed with mean 1/RH (n) (service rate,

hypercube model) for server n, independent of the particular

customer being serviced or the past history of the system.

Therefore, a downward transition occurs from a state j to a

state i with rate RH(n} where VHi,r}=VHj,r} for r not equal

to n and VHj,n}=1, VHi,n)=0 (corresponding to server n

completing service).

State i is said to be adjacent to state j if a transition

from i to j is possible. Note that every state is adjacent to

exactly N other states corresponding to a change in the status

of each server. If PH(i) (steady state probability, hypercube

model) is the steady state probability of state i, a set of

2**N simultaneous linear equations can be solved to obtain the

PH(i}. Heuristically, the equations may be derived by

equating the rate at which a state is entered to the rate at

which it is departed (Ref. 15). The resulting gqIations of

detailed balance are written
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PHfi) * CRT*DEL +

j:VH[i,j)=1

+ j:IO

j:VH(i, j}=O

RFH(j}

j:VH(i,j) =1

PH(i-2**j) *[ CRfm}

m: POL (i-2**j, m) =o

PHfi+2**j) * RH ij)

for i=Ol,...,(2**N)-l;

where DEL is zero for i=(2**N)-i (all servers busy) and one

otherwise.

Any one of the equations in (3.5) is redundant and may be

replaced by a normalization constraint to obtain a unique

solution for the PH (-). This development assumes that calls

arriving during saturation (state s, s=(2**N)-l, all servers

busy) are irrevocably lost (or handled by resources external

to the system).

Infinite line capacity is easily handled in the same

framework; one simply adds the infinite tail associated with

an M/M/N queue. Equation (3.5) for i=s is modified to

N-1

PHfs}*(CRT + SRT) = CRT*PHs-2**j) + SRT*QP(1}

j=O

(3.5)

(3.6)



where QP(j) is the probability of j customers in gueue,

j=1,2,... and SRT (service Late, total) is the sum of the

RH(-). The equations for the QP(-) are

(3.7) QP(j)*(CRT + SRT) = CRT*QP(j-1} + SRT*QP(j+1)

for j=1,2,... and QP(0)=PH(s).

The addition of queueing just rescales the probabilities

obtained for the zero-line case (Ref. 36). State s corresponds

to all servers busy but no calls queued. In order for the

steady state probabilities to exist when queuing is permitted,

it is necessary that CRT be less than SRT. That is, the

system must be able to service calls at a greater rate than

that at which they arrive.

The hypercube model is parametrized by the state

dependent assignment rules. In practice, the choice of

assignments would be based on the state of the system and the

costs associated with the particular server-customer pair.

Explicitly, let Cfi,j) (cost of assignment) denote the

expected cost associated with assigning server i to a customer

of class j. In the context of police patrol analysis, the

cost term might be the expected time for unit i to reach the

location of atom j (focusing on the travel time component of

response time). Larson has considered several "standard"

dispatch rules for police patrol which incorporate a
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probabilistic description of the location of mobile units with

expected travel times between points in the geographic area

determining the cost of assignment (Ref. 41).

of course, our formulation is not restricted to the use

of travel times as the cost of assignment. For police

operations, the costs could be expressed in terms of zero-one

variables corresponding to a maximum acceptable travel time.

More generally, a utility function for response time, such as

developed by Keeney for fire operations (Ref. 34), could be

used to incorporate subjective preferences for response times.

In the case where the system includes specialized servers,

such as bilingual police officers, the cost structure might

ignore travel time entirely. Instead, the emphasis could be

placed on deriving the maximum benefit from the skills of the

specialized servers. This could mean dispatching a bilingual

officer across town for calls originating from particular

ethnic communities.

In Chapter 7, we will examine a system in which costs are

expressed in terms of the risk of death in certain medical

emergencies. The formulation relies on work by Cretin (Ref.

13) in which response time is one component in determining the

risk of dying after a myocardial infarction.

B.3 Computing Performance Measures

As noted previously, the hypercube model focuses

simultaneously on many performance measures for a system.
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Given a particular assignment rule, the equations of detailed

balance (3.5) can be solved for the steady state

probabilities. From the steady state probabilities it is easy

to compute the workloads, WL[iJ, or fraction of time server i

is busy, by

(3.8) WL{i} = PH (j}

j:VH(j,i}=l

the fraction of arrivals of customer class j handled by server

i, FSC(i,j} (fraction by server and customer)

(3.9) FSC (i, j) = PH(m)

m: POL [m, J} =i

and the system wide expected cost per customer, EC (expected

cost) ,

NC N-1

(3.10) EC = (CR(j}/CRT) FSZ{i,j} * Cfi,j)

j=1 i=

+ PH[s) * CSj)}

where CS~j) "ost during saturation) is the expected cost of a

call of type j arriving during a period of saturation and
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PH(s) is the probability of saturation. Note that one minus

the sum of FSCi,jJ over i is the fraction of calls of type j

arriving during a period of saturation; that is, PH(s). Other

quantities of interest are detailed in Campbell (Ref. 3)

Larson (Ref. 36).

The main drawback of Campbell's work was an inability to

deal with a system with more than six servers. By using an

iterative technique based on the structure of the model,

Larson (Ref. 36) extended the problem size that could be

handied by two orders of magnitude (roughly fifteen servers).

Even greater improvement in this area has recently been

achieved by Larson using an approximation method which will be

discussed in more detail in Chapter 5 (Ref. 40).

C. Optimization of Assignment Rules

As noted above, one quantity of interest is EC, the

average cost per customer. It is natural to ask if it is

feasible or advantageous to minimize this quantity by varying

the assignment rule.

This problem has been solved in closed form for the case

of a spatially distributed system with two emergency response

units by Carter, Chaiken, and Ignall (Ref. 4). For calls

arriving according to a spatially distributed Poisson process

and serviced by one of two fixed location units, the optimal

response area A for unit 0 is given by



(3.11) A = { x: D(O,x) - DfI,x) ( K j

where K is a constant which depends on the call distribution,

system geometry, and utilization (average workload) when RH{01

is equal to RH1). The D(i,x} are functions specifying the

cost (here travel time or distance) associated with unit i

servicing a call at location x. Note that in the model

formulation, only in the state with both units available,

VH(O,-)=(O 0), is there any choice as to which unit to

dispatch.

Small system size was the critical item in developing an

analytic solution for the two server case. The Markov process

haL only four states and may be solved for the PHi)

explicitly. By parametrizing the response areas by the

difference ia travel time or distance as in equation (3.11),

the average costs may be minimized by testing the boundary

conditions and extreme points of the objective function as a

function of that difference. Such an approach is impractical

for larger numbers of servers. Although possibly quite large

in number, the alternative assignment rules for a finite

number of customer classes are also finite. Sinze each

assignment rule yields an associated set of transition rates

and expected costs, standard techniques for minimizing

expected costs in Markov processes may be employed.
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C.1 Markov Decision Theory

Before dealing with the hypercube optimization problem,

we briefly describe the procedure for solving a Markov

decision problem. Probably the best known solution procedure

is due to Howard (Ref. 24). This technique, referred to as an

iteration in "policy space," can be adapted to deal with

either continuous or discrete time, finite state processes. We

restrict our attention to the discrete time problem

(successive call arrivals) as we are interested in the cost of

assignment events in the hypercube framework.

For the general H-state problem, define TCi,j,k)

(expected transtion cost) to be the expected cost of a

transition from state i to state j under policy k. (Policy

choices are made on a state by state basis). Define TP~i,j,k}

(transition probability) to be the one-step transition

probability of going from state i to state j under policy k in

state i. The unconditional expected transition cost from state

i under the application of policy k, ETC(i,k}, is given by

M

(3.12) ETCF,k} = ZTCiijk) * TP[i,j,k)

j=1

Finally, define CT to be the expected cost per transition in

the steady state operation of the system under a particular

policy scheme. The Markov decision problem is to find the
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policy scheme which minimizes CT.

This problem is solved in an iterative procedure with two

phases: value determination and policy improvement. The value

determination phase for a particular policy scheme involves

solving the set of M simultaneous linear equations in SVi},

i=1,2,...,N, and CT,

(3.13) CT + SV[i} = ETCfi,k) + TPfi,j,k} * SVjJ

j=I

for i=1,2,...,N,

where SVfi) is the state value associated with state i under

that particular policy scheme. The set of equations in (3.13)

determine the SV variables up to an arbitrary constant. A

unique solution may be obtained by setting any one of the

SV(i) equal to zero.

The policy improvement routine uses the state values

determined from the value determination phase. In particular,

for each state i, we choose the policy k which is the minimum

in

M

(3.14) Min ETC(i,k) + TP(i,j,k) * SY(j)

J=1
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If k does strictly better in (3.14) than the previous policy k

(for any state),, the policy scheme obtained by replacing k

with k will result in a lower cost per transition. The value

determination phase is now reapplied to the new policy scheme.

This technique proceeds iteratively until it is not

possible to obtain a strict improvement in (3.14). At that

point the optimal policy has been obtained. The optimal state

values have the property that they satisfy

M

(3.15) SV[i} = Min ETC(i,k) + 5'TPfi,j,k)*SV(j) - CT

for i=1,2,...,M.

In fact, if there are numbers SV(11, SV(2), ... , SV(M)

satisfying (3.15), that is a sufficient condition to guarantee

that the minimizing policy scheme in (3.15) is the optimal

choice (Ref. 50). This result will prove useful in applying

Markov decision theory to the hypercube model.

C.2 Application of Markov Decision Theory to the Hypercube

Before expressing the choice of assignment rule as a

Markov decision oroblem, we make a slight digression. Several

alternative system descriptions are possible. We can look at

the optimization problem in terms of either an infinite or
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zero line system. In addition, the system may be treated in

continuous or discrete time. That is, we can focus on the

cost per assignment or the cost per unit time.

In the original formulation of the hypercube model, the

service rates for each server were identical. In that case,

by focusing on the number of busy servers, it is possible to

show that the hypercube model reduces to an M/N/N queuing

system (with either zero or infinite line capacity). The

important point to note is that this result holds regardless

of the assignment rule being used (Ref. 24). In fact, given

the steady state probabilities and average cost in any of the

system descriptions mentioned above, it is possible to write

the same quantities for all other descriptions in terms of

linear transformations whose parameters can be expressed as a

function of CRT, SRT, and PH~s}, the saturation probability

for the continuous time, zero line description.

The fact that PH~s) is independent of the assignment rule

implies that if a policy is optimal in one system description,

it must be optimal in every other description. An examination

of the development in Ref. 24 shows that the relation between

the steady state probabilities and average costs also holds

for the more general hypercube model in that the saturation

probability is the crucial quantity. Unfortunately, if the

RH~ij are not all equal, the saturation probability is no

longer independent of the assignment rule.

This fact can be demonstrated by a simple two server
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Figure 3.1 State transition diagram for a two server system.
CRT=1, RH(O)=b near zero and BH(1}=c much larger than
one. Assignment rule one sets a=1; rule two sets a=.
The saturation probability is not independent of the
assignment rule.
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example (See Figure 3.1). In this instance, unit 1 is assumed

to have a very long expected service time (RH(0) near zero)

and unit 1 has a very short service time (RH[1) large). For

convenience, we set CRT equal to one and consider only t16o

assignment rules. The first (a=1 in Figure 3.1) assigns every

call to unit 0 if possible. The second (a=0 in Figure 3.1)

never makes an assignment to unit 0 if possible. It is easy

to see that under the first policy the system will usually be

in state (01); server 1 free and server 0 busy.

Alternatively, the second policy will leave the system in

state (00) most frequently; both servers free. In this

instance, the probability of a particular number of servers

being busy is not independent of the assignment policy.

We now focus on the discrete time, zero line capacity

formulation of the hypercube model for the application of

Markov decision theory. The techniques, of course, are

applicable to the other descriptions as well. (It should be

noted that it is fairly easy to specify a two server system

for which the optimal policies differ between the zero and

infinite line case).

In order to apply the techniques of Markov decision

theory to the choice of assignment rules we have only to

specify the transition probabilities and expected transition

costs in the manner of section C.1. For the sake of

completeness, we allow self transitions in the saturation

state corresponding to the arrival of calls which are not
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handled by the system but which may contribute to the cost of

system operation.

The transition probabilities may be specified for any

state i, other than the saturation state s, as follows: Let A

be the total rate at which service is completed in state i.

That is,

N-1

(3.16) A= RH(m) * VHi,m)

m=O

If server n is free, hence VHfi,n)=O, it is possible to make

an upward transition to state j, where j=i+2**n. This event

will occur at rate B, where B is given by

(3.17) B = CR(m}

m:POL(i,m)=n

Then the transition probability from state i to state j,

calling the current policy k is

(3.18) TP(i,j,k) B / (A + CRT)

If server n is busy, VH(i,n}=1, then there can be a

downward transition to state j where j=i-2**n. the transition

probability is given by



(3.19) TP(i,j,k) = RH~nJ / (A + CRT)

Noting that only upward transitions (call arrivals) incur a

cost, we can write the expected cost of a transition from

state i by conditioning on the type of customer arrival as

NC

(3.20) ETC(i,k) = CRfm) * C(POL(i,m),m) / (A + CRT)

m=1

The description is completed by treating the saturation

state. For this state, we allow a self transition to occur.

This event has rate CRT. Hence

(3.21) TP~s,s,k} = CRT / (CRT + SRT)

which is independent of the assignment rule. From state s, a

downward transition to state j=s-2**n occurs at rate RH~nj and

with probability

(3.22) TP(s,j,k}J= RHfn} / (CRT + SRT) ;

again, independent of the policy. The cost of a transition in

the saturation state also takes a special form.

In this case, instead of using the C[i,j), the saturation

costs, CS(j}, are employed. As before, conditioning on the
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type of customer arrival and assigning zer@ cost to downward

transitions, we have

NC

(3.23) ETC(s,k} = CR(m) * CSfmj / (CRT + SRT)

m=1

also independent of the policy. With these definitions, we

can directly apply the techniques of Markov decision theory to

the problem of choosing assignment rules to minimize the

average cost per call.

The difficulty with this approach bezomes apparent after

examining a typical system. For an N server system, consider

the number of assignment alternatives in the zero state alone.

There are NC types of calls, each of which may be assigned to

any of the N available servers. Hence there are N**NC

distinct alternatives. For the moderate sized system of N=6

and NC=25 this number is roughly 10**19. Even under the

generous assumption that one of the evaluations reguired in

the policy improvement phase, equation (3.14), could be

computed in a tenth of a microsecond, a single iteration for

state 0 would take 10**12 seconds; roughly one hundred

thousand years. An alternative approach is indicated.
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C.3 A Characterization of Optimal Policies

One method for dealing with the large number of possible

assignment rules is to find some characterization of the

optimal policy. Of course, the more detailed the

characterization, the smaller the number of alternatives whtch

must be examined. One approach is to use the functional form

of the optimal policy given in equation (3.15).

We focus on a state i in which there is a policy choice.

That is, there must be at least two free servers. Denote

these servers by indices n and m. Let k denote the optimal

policy in state i. Let r be a particular class of customer

assigned to server n in state i under policy k. Consider the

alternative policy k which is the same as k except that a type

r customer is assigned to server m instead of server n.

Since k achieves the minimum in (3.15),, we have

(3.24) ETCfi,k) + TPfi,j,k} * SVj} >

ETC(i,k} + ZTP~iLj14) * SV[jJ

where in both summations, j indexes those states adjacent to

state i. Now, since policies k and k are the same except for

the assignment for type r calls, most of the terms on each

side of the inequality (3.24) cancel. After this



simplification, we are left with

(3.25) Cfm,r} + SVfi+2**mJ > C(n,r) + SVfi+2**n}

or

(3.26) Cfm,rj - Cfn,r} > SV(i+2**n} - SV~i+2**ml.

If for some call type q, we have that C(m,q} minus ,'n,q} is

strictly greater than C-m,rJ minus C~n,r} , then m cannot be

the optimal unit to assign to type q in state i.

This last result may be seen by supposing that server m

is optimal for calls of type q. Applying the same logic that

led to (3.26) we have

(3.27) C(n,g) - Cfm,q} > SV(i+2**m}j- SV[i+2**n}

> C(n,r) - C(m,r} .

The last inequality follows from (3.26) and contradicts the

assumed relation between the differences in cost of assigning

unit n versus unit m for call types q and r.

This result may be stated in a more symmetric form as

follows:

If C(m,g) - C(n,q} > C(m,r) - C(n,r} , then the
optimal assignment rule does not assign server a to
custorer type g and server n to customer type r in any
state where both servers m and n are available.
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Heuristically, if we were unwilling to incur the extra cost

Cfm,r} - Cfn,r) to assign server m to customer type r instead

of server n, to be consistent we should be unwilling to make

the same switch for customer type q and incur the larger

difference. The similarity between this result and that given

by Carter, Chaiken, and Ignall for two servers should be

noted. The proof given above, which is applicable to an

arbitrary number of servers, is a considerable simplification

of the original approach used by Jarvis (Ref. 24).

The practical significance of this result is largely

computational. Equation (3.25) can be used in the policy

improvement phase of Howard's algorithm to determine the exact

difference in cost of assignment that will minimize the cost

per transition at that step of the solution procedure. Units

are considered pairwise and only the current "best" transition

probabilities and expected transition costs need be retained

at any step of the iteration. A more detailed description of

the implementation of this solution scheme may be found in

Jarvis (Ref. 24).

The solution procedure devised by Jarvis is a variation

of a method detailed by Odoni (Ref. 47). Basically, this

procedure solves the Markov decision problem by successive

approximations in a dynamic programming framework which gives

monotonically decreasing bounds on the cost per transition.

The computational variation used by Jarvis is intermediate

between the dynamic programming procedure and Howard's
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"iteration in policy space."

Various implementations of the hypercube model have been

used over the past three years at the Massachusetts Institute

of Technology. Larson (Ref. 37) and Weissberg (Ref. 61) have

documented a set of hypercube programs which are designed

mainly for use by police planners with a minimum knowledge of

the theoretical foundations of the model. The general

hypercube model described above has been implemented in a

computer program by Jarvis (Ref. 27). This version includes

the optimization of dispatch rules. All of the programs are

written in PL/I and are in the public domain.

As an example of the computer costs associated with using

the model, the optimal dispatching problem for a system with

N=6 (servers) and NC=62 (customer classes) can be solved for

roughly two dollars using the time sharing option on an IBM

370/168. This amounts to less than 10 seconds of CPU time.

In the next section, we give an example of the use of the

hypercube model to find the optimal assignment rule for a

three server example. In the following section, the model is

used to generate average response distance data for comparison

to the "square root law" models which relate average response

distances to the average number of units available in a

geographic region.
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D. A Three Server Example

This example is included to illustrate the sort of

problem that may be addressed by the hypercube model. The

reader who is more interested in the specific application to

police patrol analysis should refer to Larson (Ref. 39, 40,

and 37).

D.1 A Description of a "Sample City"

our example deals with a spatially distributed system in

which we are interested in minimizing the average listance

traveled in response to a call for service. We consider three

fixed units, variously located in the famous vacation spa,

Sample City (See Figure 3.2). The area has been partitioned

into 16 atoms which serve as a basis for classifying the calls

for service.

Assume that unit 0, located in atom 1, can service calls

at a rate of 1 per hour. Unit 1, in atom 11, can service 1.5

calls per hour; unit 2, in atom 16, 0.75 per hour. Calls

arrive at a rate of 1.3 per hour with the spatial distribution

shown in Figure 3.2 and Table 3.1. Table 3.1 summarizes the

parameters of the system. These include the cost per call in

terms of travel distance (one way, arbitrary units), and the

call and service rates specifying the various distributions.

The cost for a call arriving during a period of saturation is

taken to be the same as the travel distance that would be

incurred by a unit stationed in atom 9. This cost may be
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Figure 3.2 A map of Sample City. The area is partitioned in
16 atoms, each shown with its index and the percentage of
the calls being generated from that atom.



Table 3.1 System parameters for the three server example in
Sample City. Costs of assignment ard service and call
rates are given below in tabular form.

A. Costs per assignment (C[i,j} and CS~jJ) with percentage
of calls from each atom (100*CRfj}/CRT):

ATOM j: CfOrj}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2.4
5.9
11.5
8.7
4.8
3.7
8.5
9.2
13.9
13.2
17.2
17.7
20.2
20.4
22.8
26.4

C{(1,j}J

17.2
16.1
14.7
11.3
12.4
13.5
8.7
8.0
4.5
4.0
2.1
4.1
3.0
6.4
5.6
9.2

C(2,j)

26.4
25.3
23.9
20.5
21.6
22.7
17.9
17.9
12.5
13.2
9.2
8.7
6.2
6.0
3.6
1.9

CSfj} %CR~j}

13.9
12.8
12.8
8.0
9.1

10.2
5.4
4.7
1.8
4.1
4.5
3.8
6.3
6.5
8.9
12.5

B. Service rates (RHfi)) :

RH[0}=1. 00 RH [1) =1.50 RH (2)=0. 75

C. Total call rate (CRT) and service rate (SMT):

CRT= 1.3 SRT=3.25
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thought of as the distance traveled by a centrally located

backup unit. The distances are approximately equal to the

right angle distance between atom centroids with respect to

the coordinate system of Figure 3.2. The atom call rates shown

in Table 3.1 are not the absolute call rates but are expressed

as a percentage of the total. Units always return to their

original location before servicing subsequent calls.

In the zero line case, the last assumption is immaterial;

it is crucial if calls are allowed to queue. Without the

assumption that units return to their original location before

dispatch, there is no simple way to calculate the cost of a

call arriving during a period of saturation (Ref. 36).

D.2 The Optimized Strategy

one reasonable assignment procedure is to always assign

the closest available unit to each call for service as it

arrives. The continuous time state transition diagram for

this assignment rule is shown in Figure 3.3. The closest unit

is easily determined from Table 3.1. This strategy can be

thought of as a myopic (or short-term) optimization. As is

often the case in Markov decision theory, the average cost can

be reduced by assignment rules which are not optimal in an

immediate cost sense but which better anticipate future

events. Table 3.2 is a summary of some system performance

measures as computed for two assignment rules: the myopic and

the optimal. Although not evident from Table 3.2, the only
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Figure 3.3 State transition diagram for the three server
example of section D, Chapter 3. The assignment rule is
to dispatch the closest available unit. In the diagram,

a=CR (1)+CR{[2)+CR[3}+CR{[4)+CR(5)}+CR(6)}+CR{(7}
b=CR(81+C R [9}+CRf[10)}+CR[(11)+CR{[12}+ CR (13)
c=CR(14}+)CR(15}+ CR{(16),
d=CR (8)+CR (10),
e=CR (9)+CR(11)+CR (12)}+CR(13);

as determined from Table 3.1.



Table 3.2 Summary of system performance for the myopic versus
optimal assignment rules.

MYOPIC

A. Steady State Probabilities

State: 0-000
1-001
2-010
3-011
4-100
5-101
6-110
7-111

0.2982
0.1981
0.0720
0.0922
0.1087
0.0886
0.0476
0.0914

OPTIMAL

(PH(i}):

0.3081
0.1595
0. 1048
0.0888
0.1118
0.0827
0.0543
0.0904

B. Cost per Assignment:

8.7335

C. Unit Workloads (WL(il):

Unit: 0
1
2

0.4703
0.3031
0.3363

D. Maximum Workload Imbalance:

0.1672

E. Fraction of Calls by Unit:

Unit: 0
1
2

8.6761

0.4214
0.3384
0.3392

0. 0830

0.3630
0.3510
0.1946

0.3239
0.3901
0.1956
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diffference in these rules occurs in state 000 and state 100.

In state 000, the optimal rule assigns unit 1 to calls

from atoms 3,4 and 7 even though unit 0 is closer. In state

100, atom 7 is assigned to unit 1 instead of unit 0. In every

other respect, the rules are identical. It should be noted

that the optimal rule decreases the probability of saturation.

This is consistent with the earlier remark concerning the

variability of the saturation probability for systems in which

the unit service rates are not identical.

The global cost per call is roughly the same for the two

rules. In fact, the optimal rule results in only a 0.66

percent decrease as compared to the myopic policy. This is

consistent with previous experience in using the optimization

for spatially distributed systems. Larson and Stevenson (Ref.

42) have investigated this type of problem and reach the

conclusion that travel time or distance in spatially

distributed systems is largely insensitive to changes in

system configuration.

There is one additional item to be noted in Table 3.2.

Although the global travel distance does not decrease very

much under the optimal policy, the maximum workload imbalance,

the difference between the busiest and least busy unit, has

been hdlved by the optimal policy. This effect is

characteristic of the optimal policy. In heuristic terms, the

improvement in global travel distance is made by avoiding

situations in which a unit must be dispatched the relatively
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long distance into an area normally covered by another unit.

In this particular example, unit 0 has basic

responsibility for the left corner of Sample City, an area

with a large internally generated workload. By occasionally

assigning unit 1 to respond to areas which are slightly closer

to unit 0, the workload of unit 0 is decreased. As a result,

fewer calls arrive when unit 0 is busy, therefore unit 1 is

not so often dispatched deep into the area normally covered by

unit 0. By incurring these slightly larger costs, the system

avoids the much larger differences. These results are similar

to those noted by Carter, Chaiken, and Ignall (Ref. 4) for the

two server case.

All other computational experiences to date for

geographically distributed systems have shown the same general

characteristic: the optimization procedure does not result in

a significant improvement in global expected travel distances

as compared to dispatching the closest available unit but does

decrease workload imbalances. Hence, the minimization of

response distances can serve as a surrogate for reducing

workload imbalances directly. (It should be noted that the

optimizaition can be expected to result ia larger imbalances

in travel distances. In some situations this increase may not

be significant (Ref. 28), but it should not be ignored).

The characterization of optimal policies might be used to

further reduce workload imbalances with a minimal increase in

average response distance by "over-relaxation." The workload
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of the least busy unit could be increasel by assigning those

calls which have a small difference in cost of assignment as

compared to the optimal policy. In certain instances, the

optimal policy itself can be perturbed in order to balance

workloads. If the optimization results in ties between pairs

of units for assignment to a type of call, any resolution of

those ties will result in the same average cost of assignment

(Ref. 24). This result may be utilized to decrease the

workload between those pairs of servers by making the

assignments to the server with the smaller workload.

As a final remark concerning the optimization, it should

be noted that it supplies very useful negative information for

spatially distributed systems. That is, the myopic policy

yields average travel distances which are very close to those

obtained from the long range optimum. This result will prove

very useful in Chapter 5. At the present time, it is not

known whether these remarks hold for the alternative cost

structures described in section B.2 of this chapter.

E. The Square Root Law for Response Distance

As we have seen in the previous example, the hypercube

model can be used to predict average response distance for

spatially distributed queuing systems. There is a class of

models, referred to as the "square root laws" for expected

response distance, for predicting this one performance measure

without using a complex model like the hypercube.
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The square root law was first postulated by Larson (Ref.

41 and 39) for estimating travel time and distance in police

operations. The hypothesis was that averaie response distance

is proportional to the inverse square root of the density of

response units within an area. For a particular dispatch rule

(Ref. 41), Larson estimated etpected response distance, ED, as

(3.27) ED = (2/3) * (1 + AWL) / (A/N)**O.5 ,

where AWL is the average unit workload; A is the area of the

region being considered; and N is the number of response

units. In (3.27), as congestion in the system increases, so

does the average workload and hence the expected response

distance. This phenomenon corresponds to the increasing

frequency of dispatches of distant units because the usual,

closer servers are unavailable. Larson found (3.27) to be a

good approximation for AWL less than seven tenths.

A similar model has been proposed by Blum and Kolesar

(Ref. 2). Using simple analytic models, such as those

proposed by Larson (Ref. 41 and 39) and Larson and Stevenson

(Ref. 42), as well as simulation and historical data, Blum and

Kolesar estimate ED as inversely proportional to the square

root of the expected number of available units in a region.

That is,

(3.28) ED = K / (N*(1 - AWL))**0.5
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where K is a constant of proportionality to be determined from

data from the particular region being examined. It is assumed

in the development of (3.28) that the probability of

saturation is negligible anM that the service times of the

units are roughly the same. Note that N*(1-AWL) is the

average number of available units within the region.

Since the validity of (3.28) has been based largely on

comparisons with simulation and historical data, the hypercube

model is an interesting alternative means for investigating

this particular square root law. Using data collezted by

Jarvis and McKnew (Ref. 30) for an area of 5.2 square miles

(62 atoms), expected travel distances were computed for two

situations. In the first, fifteen units were located more or

less uniformly over the region. The total call rate (for a

fixed service rate) was varied so that the average workload

increased from ten percent to almost eighty percent. A second

set of response distances was computed by holding the total

call rate constant and increasing the number of units from 2

to 13, with a corresponding decrease in the average workload

from fifty one percent to eleven percent. The results of

these computations are shown in Table 3.3 (3.3.A and 3.3.8

respectively).

Table 3.3 also gives the expected response distance as

predicted by (3.28). The root mean square difference between

these estimates and those given by the hypercube model is

0.105, corresponding to 15 percent of the average response
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Table 3.3 Expected travel distance as computed by the
hypercube model (HM) and the Blum-Kolesar estimate (BK)
from equation (3.28) for various numbers of servers (N)
and average workloads (AWL).

N AWL BK

3.3.A N=15 constant.

15
15
15
15
15
15
15
15
15

0.100
0.200
0.300
0.400
0.497
0.588
0.667
0.731
0.782

0.365
0.402
0.452
0.520
0.608
0.710
0.816
0.914
0.999

0.403
0.428
0.457
0.494
0.540
0.596
0.663
0.738
0.819

3.3.B N*CRT/SRT=1.5 constant.

13
11
9
7
5
3
2

0.115
0. 136
0. 167
0.214
0.296
0.433
0.517

0.401
0.456
0.509
0.646
0.817
1.056
1. 269
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distance for this particular set of data. It should be noted

that the use of (3.28) requires that K be determined from

available data, whereas a model such as (3.27) predicts

average response distance directly from simple geographic

variables. For this particular example, a least squares fit

gives a value of 1.48 for K. Two-thirds of the square root of

the area of the region is 1.52. This one example is an

argument for combining (3.27) and (3.28) to estimate average

response distance by

(3.29) ED = (2/3) * (A / (N*(1 - AWL)))**0.5

The response distances from Table 3.3 are plotted in

Figure 3.4 as a function of the average workload. The figure

shows fairly close agreement between the Blum-Kolesar

estimates and the values computed by the hypercube model

except when the workloads are large (greater than 0.6) or the

number of units is small (less than 4).

Although this one example does not establish the validity

of the square root law, it does indicate the usefulness of the

hypercube model as an alternative to simulation or historical

data for verification of other models. The example also

suggests that particular performance measures can often be

adequately estimated without resorting to complex models.
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F. Summary

In this chapter, we have introduced the ideas which are

basic to modeling emergency response. The emphasis has been

on the use of the hypercube model as it is applied to police

patrol analysis. At the time of this writing, initial

implementation activities in several police departments were

underway (Ref. 38 and 14). Many of the references cited here

deal with this issue in much greater detail than is

appropriate here.

To date, the hypercube model has been used largely as a

descriptive tool. In this context, the optimization has seen

little practical use. The model is typically used by a

planner to analyze various modes of system operation and then

to chose the best on the basis of his 3wn priorities.

Such usage involves tradeoffs between workload imbalance

and travel time; between local and global performance. Larson

(Ref. 40) and Jarvis and McKnew (Ref. 29) deal with this

problem at length for large and small scale police operations

respectively. Two techniques have recently been developed to

facilitate the use of the hypercube model. One of these is an

interactive program developed by Weissberg (Ref. 61) which

allows the planner to use the model without knowing either the

technical details or its particular computer implementation.

Chelst (Ref. 7) has developed programs which automatically

search for configurations which decrease workload or travel

time imbalances for geographically distributed systems.
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In practical terms, the optimization example given above

does not really address the problem which we would like to

solve. Instead of being given the location of units and

determining optimal dispatch rules based on those locations, a

more realistic approach is to determine the optimal location

for a fixed number of units. This problem is addressed in

Chapter 5.

An additional area of investigation concerns the travel

times associated with geographically distributed systems. In

Chapters 6 and 7, we incorporate travel time explicitly into

the service times and examine systems in which travel times

can be directly related to outcome measures of system

performance. This work is motivated by systems such as

emergency ambulance services in which travel time is a

substantial part of the total service time. In such systems,

the service time can depend on both the server and the

location of the call.
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Chapter 4. GENERAL SERVICE TIME MODELS

A. Introduction

As noted above, the major deficiency of the hypercube

model, at least conceptually, is its inability to incorporate

more general service time assumptions. This particular

difficulty has two facets. In the first place, the service

time distribution cannot make the same intuitive appeal to

being "memoryless" as the arrival process. This is most

evident if the service time consists of two or more distinct

components, such as travel to the scene and on-scene service

for spatially distributed systems.

In addition, at least on first inspection, the service

distributions considered to this point do not allow the

flexibility one would like in describing the behavior of more

general service systems. While we can specify server

dependent service times, in many situations it is more natural

to specify times for the type of incident being serviced. For

example, for a single volunteer fire department serving a

community, one would like to specify service time at least as

a function of the severity of the fire or rescue call. In the

case of spatially distributed units, the service time could

easily depend on both the server and the call type. This

chapter introduces that level of generalization.
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B. Alternative Continuous-time Markov Models

For all of the objections voiced above, the hypercube

model is still attractive in that it is analytically tractable

by way of the theory of Markov processes and the other

procedures outlined above. For that reason, we first consider

models which can be placed in that framework. The first of

these arises from an effort to incorporate travel times

explicitly; the second allows for server and call type

specific service times with exponential distributions. In

part, each is motivated by a result due to Sevast'yanov (Ref.

53). That is, the steady state probabilities in an M/K/N:O

queuing system are the same as for an M/3/N:O system if all

servers have identical service times in each system.

The interesting question is whether this result can be

extended to problems with distinguishable servers and more

general service times. If this is the case, a Markov

hypercube-type model would be sufficient for all steady state

calculations.

Before addressing the general problem, we consider two

situations in which continuous-time Markov models can be used.

In the first, which we call the "convolution model," service

times are sums of exponentially distributed random variables

depending only on the server. In the second, the exponential

model, service times are again exponentially distributed but

now may depend on both the server and the call type.
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B.1 Formulation of the Convolution Model

on a gross level, when we consider spatially distributed

systems, there are two major camponents to service time:

travel and on-scene time. If we assume that each of these

times can be characterized by possibly server dependent

exponential distributions, the system can be modeled as a

continuous-time, discrete-state Markov process. In the

hypercube model, each state specified information as to the

availability of each server. In this more general convolution

model, the state space details availability by a '0' if the

server is free, a '1' for a server in the first component of

service, and a '2' for the second or last component of

service.

Specifically, for an N server system, an element of the

state space will be denoted by an N-vector, VC (state vector,

convolution model), where the i-th element of VC is 0 if

server i is free, 1 if server i is in the first component of

service, and 2 if server i is in the second component of

service. We will consider only the zero line capacity case.

For this system, there are obviously 3**N states. As

suggested by the hypercube model, if we view a vector in the

state space as the ternary expansion of an integer between 0

an4 (3**N)-1 inclusive, we have a natural ordering of the

states. We use either notation as is convenient.

Let RC (service rates, convolution model) denote the N by

2 matrix of service rates for this system. That is, RC(i,j)
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is the rate at which server i completes the first component of

service if j is one; the second for j equal two. Using the

same notation as Chapter 3 for the call rates and assignment

preferences associated with the call types and making the same

independence assumptions, we write the detailed equations of

balance for the steady state probabilities PC(-) (steady state

Rrobabilities, gonvolution model) as:

(4.1) PC(i} * [ CRT*DEL +

Li,1}) +RC

j:VC(i,j}=1

j:VC(i,j}=

J:VCfi,j)=2

j:VC(i,j}=1

j:VCfij=2RC(j,2)]

PC(i+2*(3**j)} * RC[j,2)

PC i-3**j) * RZfj,1)

PC~i-3**j) * C~m)]

m:POLi-3**j,m)=j

for i=O,1,...,(3**N)-1.

In (4.1), DEL is one except for those states i in which

every server is busy (VC(i,n) greater than zero for every n),

when it is zero; VC(i,-) is the N-vector ternary expansion of

the integer i; CR[i) (gall rate) is the call rate for customer
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type i; CRT (call rate, total) is the sum of the CR(-J; and

POL(i,-) is taken to be the assignment vector associated with

the availability of servers given by state i.

B.2 Formulation of the Exponential Model

The expnential model allows for exponential service

times with means being a function of call type and server. Let

REfi,jJ (service rates, txponential model) be the service rate

for server i and call type j. (RE is an N by NC matrix. NC

is the number of call types). Now the state space will

specify server status by a 'O for a free server and a 'J',

j=1,2,...,NC, for a server busy with a customer of type j. For

the zero-line case, this state space has (NC+1)**N elements

and we make the usual association between the vector and

integer representation.

In a similar fashion, we can write the equations of

balance for the steady state probabilities, PEf-} (steady

state probabilities, gxponential model) as:
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(4.2) PE(i * CRT*DEL + REE[jI, VEiui}

j:VE(ij) > 1

PE i+m*(Nr_+1)**j * RE(jm1

j:VE i,j}=O 1<mNC

+CRfm} * PE(i-m*(NC+1)**j)

j:VE(ij)=m > 1

for i0,I,...,((NC+I)**N)-I.

where VEfi,-} is the N-vector (state vector, exponential

model) associated with state i and DEL is one except for those

states i in which every server is busy (VE~i,n} not equal to

zero for every n), when it is zero. CRT and CR(-} are as in

Equation (4. 1) .

It should be noted that these two models are not being

presented as particularly useful formulations for real

problems. Both require a large amount of storage and time in a

computer implementation for other than very small systems.

However, computations with these exact models for even small

systems can suggest more general hypotheses and provide

counter-examples for some postulates.

B.3 A Convolution Example

The details of the convolution model are best shown by an

example. This example will also be used to test the

hypothesis as to whether Sevastlyanov's result can be extended
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to systems with distinguishable servers having different

service distributions. In order to do this, we compare the

convolution model to a hypercube formulation with the same

expected service time for each server. More precisely, if c

and d are the respective rates at which a unit completes the

first and second components of service time, the expected

service time for that server is just the sum of the

reciprocals of c and d, that is 1/c + 1/d. The corresponding

rate of service for the hypercube is the reciprocal of this

number; with this correspondence each unit has the same

average service time in either model.

For this example, set N=2, NC=2, and CRT=3 with CR1=a

and CR(2)=b. The service rates are given by the 2 by 2 matrix

RC with

c d

(4.3) RC =
e f

The state transition diagram for the convolution model is

given by Figure 4.1 when server 0 is preferred for call type 1

and server 1 for call type 2. Again we denote the steady

state probabilities by PC[-}, but here it is convenient to use

the vector notation for the state space. Thus, the state

space has eight elements: 00, 01, 02, 10, 11, 12, 20, 21, and

22.

The variables for the hypercube model are denoted by the
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Figure 4. 1 State transition diagram for the convolution
example of section B.2. Numerical results in Table 4.1
for a=1, b=2, c=1, d=2, e=3, and f=4.



same notation as used in Chapter 3. In particular, the rate

of service for the zeroth unit is (1/1 + 1/2)**-1 or 2/3.

With PH(-) being the steady state probabilities for the

hypercube, the hypothesis is that

PH(00}= PC (00},
PH{01} = PC(01} + PC[02),
PH(101 = PC(10} + PC(20},
PH(11) = PC(11} + PC(12} + PC(21) + P{22}

For this particular example, the steady state

probabilities for the hypercube are compared with those for

the convolution model as aggregated above (see Table 4.1).

The difficulty with this comparison, and several others which

were made for more complicated systems, is one which often

arises in numerical work. That is, when is the result of a

complicated calculation zero? Can the differences shown in

Table 4.1 be explained by roundoff errors? For a particular

system of linear equations, this difficulty can be overcome by

using all integer arithmetic (Ref. 20).

For the values given above, the exact solution procedure

gives PH(00} to be 384/2983 or 0.128729 and PC(00) as

10824/84733 or 0.127742. The values are clearly different and

hence Sevasttyanov's result cannot be extended to systems in

which the unit service times are not identical. It should be

noted that some effort was required to establish the

counterexample. Other computational experience has indicated
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Table 4.1 Numerical results for the example of Section B.3.

+ PC(02)

+ PC(20)

+ PC(12) + PC(21} + PC(22}

-88-

PH (00)
PC (00)

PH (01}
PC (01}

PH [10}
PC(10})

PH [11)
PC [11}

= 0.129
= 0.128

= 0.262
= 0.263

= 0.123
= 0.124

= 0.486
= 0.486



that it is difficult to distinguish the steady state values

computed by the two models although they are, in general,

different. We will make some use of this observation in

Chapter 6.

B.4 An Example Using the Exponential Model

As with the convolution model, this model can be more

easily understood by way of example. To this end, consider a

two-server, two-call type example with CR(1J=a, CRf2)=b. The

service rates are given by the 2 by 2 matrix RE with

c d

(4.4) RE =
e f.

When unit 0 is the preferred server for call type 1 and unit 1

is the preferred server for call type 2, the state transition

matrix is given by Figure 4.2. For example, state (02)

corresponds to unit 0 busy on a call of type 2 and unit 1

free.

The equation of balance for state 20 is given by

(4.5) (a+b+f)*PE(20} = b*PE(00) + c*PEE21} + d*PE[22)

This particular example can be used to show that the

characterization of optimal assignment rules developed in

Chapter 3 for the hypercube model does not hold for the
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Figure 4.2. State transition diagram for the example of the
exponential model in section 8.3.
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exponential model.

For the two-server case, the theorem states that if

C(O,1) - C(1,1) is greater than CfO,2) - C(1,2), then the

optimal policy cannot have type 1 assigned to unit 0 and type

2 assigned to unit 1 in the same state. (Recall that C[i,j)

is the cost of assigning server i to a call of type j). To

provide the counterexample, consider the present example with

a=b=l, d nearly zero, and c,e, and f arbitrarily large. Here,

we specify C by

01

(4.6) C =
k 1+2k

where k is an arbitrary positive constant.

With the service rates as given above, if unit 0 is ever

assigned to a call of type 2, then unit 1 will service almost

all of the calls. Since CR{1)=CR(2), the expected cost per

call is approximately (k+1+2k)/2. Since the service rate for

unit 1 is very high for either type of call, if unit 1 is the

preferred unit for both types, we get the same approximate

cost per call.

Now, if unit 1 is preferred for call type 2 and unit 0 is

preferred for call type 1, since c and e are large, the

approximate cost per call is (0+1+2k)/2; a smaller cost than

that obtained with any of the other policies if k is greater

than zero. The counterexample is completed by noting that
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C[O,1} - C(1,1} = -k is greater than C[O,2) - Z(1,2) =

1-(1+2k) = -2k.

Although both the convolution and the exponential models

can provide insight into the behavior of systems with

distinguishable servers, neither is attractive from a

computational point of view or as the general sort of model we

would like to develop. In the next section, we derive a steady

state result for the exponential model which has an intuitive

appeal. We then show that the result holds in a more general

setting.

C. The Equilibrium Equation

Recall from the discussion of performance measures in

Chapter 3 that the fundamental variables were the fraction of

calls of each call type handled by each server. For server i

and call type j, this quantity was given by FSC[i,j) (fraction

by server and customer), an N by NC matrix. Any performance

measure in the hypercube model could be calculated from FSC,

the call rates, and the service rates. The exponential model

allows us to focus explicitly on these quantities as its state

space includes information concerning the type of call being

serviced.

C.1 A Derivation for the Exponential Model

Let BUS~i,j} denote the event that server i is busy on a

call of type j. The probability of this event is given by
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(4.7) Pr( BUS~ij) ) = PE}k)

k:VE(k,i)=j

It is a straightforward, if somewhat tedious, problem to

calculate the sum in equation (4.7) by summing (4.2) over the

indicated states.

In equation (4.2), any CR[-}*PE(-} term will be referred

to as an upward transition term and a product of the form

RE(-,-)*PE[-) will be a downward transition term. For any

upward term on the LHS of (4.2), we can identify the same term

on the RHS in exactly one other state equation. Consider the

CRf[m}*PE(k) term from the LHS. Since we have an upward

transition term, at least one element of VEfk,-) is zero. Let

n be the preferred unit for call type m is state k. Then

equation (4.2) for state k+m*(NC+1)**n is the only state

equation which has a CR~m}*PEfk) term on the RHS. Thus, all

upward terms from the LHS cancel with the same term on the

RHS. (Note that the correspondence is unique).

Similarly, any upward term on the RHS cancels with a LHS

term unless it is of the form CR(j)*PEfk) where VE~k,i)=0. No

terms of this type appear on the LHS because of the

conditioning in the sum of (4.7). Factoring out the CR(j}, we

are left with a sum of state probabilities on the RHS which is

exactly the probability that server i is assigned to a random

call of type j.

The downward terms are treated in a similar fashion. For
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a term of the form RE(n,m)*PE(k) on the LHS (hence VE[k,nJ=m),

the same term appears on the RHS of (4.2) for state

k-m*(NC+1)**n. The only exception is for terms with a

multiplier of RE(i,jJ. These terms do not appear on the RHS

again because of the conditioning in the sum of (4.7).

Recalling that FSC(i,j) is the probability that a call of type

j is assigned to server i, we have

(4.8) RE(i,j * Pr{ BUS(i,j) = CR(j} * FSC~i,j}

In spite of all the manipulations leading to (4.8),, the

result is almost obvious. The probability that server i is

busy on a call of type j is equal to the rate at which the

server is assigned such calls, CR[j)*FSC(ij), times the

expected service time per call, (RE i,j})**-1. Not too

suprisingly, this relation holds for a much wider class of

systems than that described by the exponential model.

C.2 The General Service Time Problem

As noted above, equation (4.8) can be derived in a more

general setting than the exponential model. We will focus on

the event that server i is busy on a call of type j; that is,

the event BUS(i,j). This distinction is made because the

results will be used in systems having distinguishable servers

and call types. As before, CR(j) is the call rate for type j

and FSC~i,j) is the probability that a random call of type j
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is answered by server i in the steady state.

In addition, define TSC~i,j) (service time by server and

customer) as the expected time that server i spends in

servicing a call of type j. We make the following assumptions

regarding the arrival and service processes:

(i) The arrival process is independent of the state of
the system as given by server availability.

(ii) The arrival process is an honest renewal process;
that is, the successive times between arrivals of any
particular type of customer are mutually independent and
identically distributed and the successive interarrival
times are finite with probability one. in addition, we
assume that the distribution has a finite mean.

(iii) The service times are independent of the arrival
times and the state of the system and have finite means
and variances. The service time are small enough
relative to the arrival rates that a steady state
distribution exists for the system.

It is very important to keep in mind that these assumptions

refer to an arbitrary server-customer pair.

The probability of the event BUSfi,j) in the steady state

is just the expected fraction of time that server i spends on

calls of type j over an infinite time horizon. This value can

be calculated using the theory of renewal processes (Ref. 50)

and the weak law of large numbers (Ref. 17).

Let the random variable X[m} be the time between the

(m-1)-st and the m-th arrival of call type j. Define the

random variable YfmJ as the time server i spends in servicing

the m-th arrival of a call of type j. Note that in the steady
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state, Yf-) is zero with probability 1-FSC(i,jJ (corresponding

to unit i not being assigned to service a random arrival of

type j) and has mean TSC[i,j) when conditioned on the event

that unit i is assigned to service the m-th arrival. Finally,

let n(t) denote the number of arrivals of type j in the time

interval from zero to t. With this notation, we can write

aft)

(4.9) Pr{ BUSi,j) = E lim Y(k)/t J
t-to* k=1

If the successive values of Y(-) where independently

distributed, it would be a simple matter to treat (4.9) using

the theory of renewal reward processes (Ref. 50).

Unfortunately, the Y[-} are not independent. For example, if

unit i is always assigned to an arrival of type j if that unit

is available, then knowing that Y(m) is zero implies that unit

i was busy at the m-th arrival (if the service time has no

impulse component at zero). For general service times, unit i

is more likely to be busy at the (m+1)-st arrival of type j

then it would be in the steady state and hence Yfm+1) is more

likely to be zero than a random arrival of type j.

The limit in (4.9) can be calculated using the weak law

of large numbers (Ref. 17). We rewrite the limit as
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n [t) n(t)

(4.10) lim Yk)f/t = lim (Y(k} /nft)*(n(t)/t).

t+w k= 1 t-,mo k=1

Writing E(X} as the expected value of [ij (identical for all

i), nft}/t converges to 1/EfXJ for large t with probability 1

since the arrival process is a renewal process (Ref. 50). In

addition, nft) goes to infinity with probability one. Hence,

we are left to calculate

M

(4.11) lim 1Y(k) / N.

M.o0 k=1

Even though the Y(k) may not be independent, we can

compute (4.11) by using a result from Feller (Ref. 17). That

is, if the covariance between Y[k) and Y(m) converges

uniformly to zero as the absolute value of k minus m goes to

infinity and the Y(-) have fin Le variances, then the weak law

of large numbers still holds for (4.11). Since all service

times have finite means and an equilibrium distribution

exists, with probability one the system will have all servers

free infinitely often (Ref. 50). Since two values of Yf-) are

independent if the event that all servers are free intervenes

between the two associated arrivals of type j, we have the

covariances equal to zero after a sufficiently large number of
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arrivals.

Applying the weak law of large numbers to (4.11), that

quantity converges in measure (Ref. 18) to

M

(4.12) limE E( Y~k) J / N

M--* 0ok= 1

where E(Y(k)J is the expected value of Y(kJ. In the limit as

M goes to infinity, this expected value is just FSC(i,j} *

TSC~i,j}; the probability that unit i services type j in the

steady state multiplied by the conditional expected service

time.

Collecting these results, we write (4.9) as

(4.13) Pr( BUS(i,jj ) = TSC(i,j) * FSC(i,j) / E(X)

In particular, if the arrival process is Poisson, E(X) is the

reciprocal of the call rate and (4.13) becomes

(4.14) Pr( BUS(i,j} J = CR~j) * TSC(i,j) * FSCfi,j) .

For the remainder of this work, unless specifically

stated otherwise, the arrival process will be Poisson and the

conditions leading to (4.14) will be assumed to hold. Equation

(4.14) will be used as the cornerstone for further analysis of
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queuing systems with distinguishable servers.

While this eguation does not constitute a very deep

theoretical result, its importance should not be

underestimated. The conditions leading to its formulation are

not stringent. As will be shown in succeeding chapters, this

result will allow us to deal with quite general systems.
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Chapter 5. OPTIMAL FACILITY LOCATION

A. Introduction: Models for Location

As mentioned at the end of Chapter 3, the optimization

technique developed for the hypercube model does not really

address the central issue in the allocation of emergency

service units. Instead of optimizing dispatch rules for a

given set of server locations, we would like to determine the

optimal initial location of such units. As noted in Chapter

2, there has been a considerable amount of research in the

area of facility location. Although some of the concepts are

relevant to the location of emergency facilities, the models

are generally inappropriate for our particular problem.

A.1 Economic Models

A good deal of the literature on facility location deals

with questions of warehouse location and transportation

problems, hence the term "economic models." The survey papers

by Cooper (Ref. 10) and Revelle, Marks, and Liebman (Ref. 49)

reflect this emphasis. Typically, the problem is to determine

the most economical configuration of sources of supply

required to meet a specified distribution of demand. Included

are Cooper's "generalized Weber problem" and the special

techniques for networks discussed by Revelle, Marks, and

Liebman. Costs are usually expressed in terms of time or
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distance and there may be capacity constraints which can force

some interaction among the sources.

The difficulty with using these approaches for the

location of emergency service units follows from the

deterministic assumptions underlying the model formulations.

The location and level of the demand is assumed known and the

sources are always available to provide services or supplies.

These comments notwithstanding, some of the techniques have

been applied to the provision of emergency services as noted

below.

A.2 Models for Emergency Services

The main problem in applying the deterministic location

models to emergency services is an inadequate description of

the cooperation between the units. As noted in Chapter 3,

simple rules for the assignment of servers to customers can be

followed only approximately because of the unavailability of

servers. The variability in demand, service times, and unit

availability all combine to produce complicated interactions

between the units. However, if the arrival rate of calls for

service is sufficiently low, there may be little or no

interaction between the units. In this case, either the

network center or median problems as described by Odoni (Ref.

48) or the set covering formulation used by Jarvis, Stevenson,

and Willemain (Ref. 31) may be appropriate for solving a

location problem.
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When the interaction among the servers is important,

descriptive models (such as the hypercube) can be used for

facility location on a trial and error basis. In fact, it is

exactly this sort of approach which was discussed in Chapter

3. An initial guess is made as to an appropriate system

configuration and that configuration is evaluated by the

hypercube model. The user then tries certain system changes

in an attempt to get the desired levels of performance. With

a little practice and some understanding of the assumptions

underlying the model, it is not difficult to effect particular

changes at least on a semi-quantitative basis. The main

difficulty with this procedure is that it requires some level

of expertise and could be expected to become increasingly

complicated for larger systems.

In recognition of this problem, Chelst (Ref. 7) has

developed computer algorithms for balancing workloads and

travel distances using the hypercube model. It is this sort

of approach that we take here. The objective is to develop an

algorithmic procedure for facility location which incorporates

the flexibility of the hypercube model into the description of

the system.

B. Optimal Location of Response Units

The deterministic location models mentioned above can be

useful in the location of emergency units, particularly under

conditions of negligible congestion. When the interaction
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among the servers is important, we would like to incorporate

that information into the decision as to the location of the

units.

For example, Table 5.1 contains some additional

statistics from the three server example of Chapter 3, Section

D. Using the FSC(i,j} and the fraction of calls from each

atom, we can calculate the fraction of calls which are

serviced by other than the first preferred (closest) unit.

Overall, slightly more than one third of the calls for service

must be handled by the second or third preferred response unit

because the closest unit is unavailable. (Under the

assumptions of Chapter 4 concerning the arrival of calls for

service, if calls of type j are assigned to unit i when it is

available, then the worklcad of unit i, WL[iJ, is precisely

the fraction of type j calls which can be expected to arrive

when unit i is busy. These calls must be serviced by another

unit. See Ref. 38). As shown in Table 5.1.B, over sixty

percent of the responses by unit 1 were to calls which would

have been serviced by another unit had that other unit been

available.

This kind of information can be included in the decision

as to where to locate unit 1. With these response patterns,

the average distance traveled by unit 1 in response to a call

for service is 9.94 if the unit is stationed in atom 11. If,

however, the unit were stationed in atom 8, its travel

distance under the same responsg pttern would fall to 6.78, a
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Table 5.1 The extent of inter-unit cooperation in the example
from Chapter 3, Section D.

A. Fraction of calls from atom j
(FSC~i,j)) and the fraction
atom (CR(JI/CRT):

which are serviced by unit i
of calls coming from each

Atom j: FSC(0,j}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0.526*
0. 526*
0. 526*
0. 526*
0.526*
0. 526*
0. 526*
0. 120
0.048
0. 048
0.048
0.048
0. 048
0.048
0.048
0.048

FSC{1,j)

0.287
0.287
0.287
0.287
0.287
0.287
0.287
0.694*
0.694*
0.694*
0.694*
0. 694*
0.694*
0. 197
0.197
0.197

FSC(2,j)

0.092
0.092
0.092
0.092
0.092
0.092
0.092
0.092
0.164
0.164
0.164
0.164
0. 164
0.661*
0. 661*
0. 661*

CR fj}/CRT

0.143
0.114
0.067
0.076
0.095
0.076
0.076
0.057
0.029
0.048
0.029
0.019
0.010
0.019
0.048
0.095

* denotes FSC[i,j} for the unit closest to atom j.

B. Fraction of calls serviced by each unit for
not the first preferred unit.

Unit 0:
Unit 1:
Unit 2:

which it is

0.0575
0. 6201
0.4463

overall: 0.3581



reduction of roughly thirty percent. It is this sort of

improvement that we would like to make in the location of the

units. If we are given the level of cooperation between the

units; in particular, a description of the frequency with

which a unit is dispatched to different atoms; we can locate

each unit to best reflect its particular mix of responses.

For the moment, we assume that we are given the FSC~i,j}.

These could have been determined by the hypercube model,

simulation, or historical data. Whatever the source, we can

use these quantities to determine the location of units which

best anticipates their overall usage. It is crucial to note

that these locations will reflect the same ass jnment rule-

which was used to determined the exact extent of the server

interaction; that is, the FSC(i,j).

B.1 A Location Model including Server Cooperation

Rather than formulate the location model in terms of

travel time or distance, we use the general cost structure

developed for the hypercube model. (Note, however, that we

are using the costs in the context of spatially distributed

systems). In particular, ve assume that the cost of service,

formerly denoted by C(-,-), can also depend on the 2i2t-i2 of

the responding unit prior to its dispatch. (We still assume

that the unit returns to its initial position after completion

of any service).

For the three server example of Chapter 3, each server
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could be in any one of 16 distinct positions, each

corresponding to an initial location in one of the 16 atoms.

In general, we assume there are P possible positions, and let

UP[i,p) (unit Rosition) denote the probability that unit i is

in position p. By allowing a probabilistic description of the

position of each server, we can include such situations as

police preventive patrol. For spatially distributed systems,

we can model either fixed location or mobile units where the

UP(i,p) detail the frequency with which each unit occupies a

particular location.

The cost of assigning unit i from position p to a call of

type j will be denoted by CPfi,j,p) (cost of assignment with

unit positions). The expected cost of assignment can be

written in much the same way as equation (3.10) by

conditioning on the type of call, the unit providing service,

and now the additional information concerning the position of

the unit. In a fashion similar to that used in describing the

position of mobile patrol units in the police context, the

probabilistic description of unit position will be assumed

independent of the state of the system or the arrivals of

calls for service. However, as will be shown below, the

actual mix of locations chosen for a particular server will

depend on the call rates and the unit's response distribution.

Writing EC as the expected cost per call we have
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N-1 NC P

(5. 1) EC. 2CP(ijp) * Pr(ij,pj

i=O j=1 p=1

NC

+ Pr{S) * 2CS[j)*CRfj)/CRT

J=1

where Pr(i,j,p} is the probability that a call chosen at

random is of type j and answered by unit i from position p; S

is the event that all servers are busy when a call arrives,

hence Pr(S} is the saturation probability; and CS~j) is the

cost associated with an arrival of a type j call during a

period of saturation.

To simplify the notation, define FCjj (fraction of galls

from each class) by

(5.2) FC~j) = CR(j) / CRT , for j=1,2,...,NC.

(Recall that calls are assumed to arrive according to a

Poisson process). Since the position of a server is

probabilistically independent of the arrival process, we can

write

(5.3) Prfi,j,pJ = UPi,p) * FC(j) * FSC(i,j}J
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That is, the probability that a random call is of type j and

answered by unit i from position p is the probability that

unit i is in position p times the probability that a random

call is of type j times the probability that server i responds

to a call of type j. It is crucial to note that we are

assuming that we know FSC(i,j) for all i and j. That is, the

extent of inter-server cooperation has been determined

(perhaps by the hypercube model) and we want to choose the

positions of the servers in order to reflect that interaction.

Again, to further simplify the equations (at the risk of

complicating the notation), define FTfi,j) by

(5.4) FT(i,j} = FC~j} * FSC(i,j

for i=0,1,...,N-1; j=1,2,...,NC.

FTfi,j} (fraction of total service) is the probability that a

call chosen at random will be of type j and answered by server

i. We now rewrite (5.1) as
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N-1 P NC

(5.5) EC = 2 2uPi,p) * CPi,j,p) * FTfi,j)

i=o p=i j=1

NC

+ Pr{S) * FCOj) * CSj)

j=1

It is now evident that the expected cost per call is linear in

the UP~i,p). By adding normalization constraints for each

server and defining CO[i,p) as the coeffi.cient of UP(i,p) in

(5.5), the choice of the position for each server can be

expressed as a linear programming problem which seeks to

minimize the expected cost per assignment.

Since the saturation term in (5.5) is constant with

respect to changes in the UP[i,p) for a fixed dispatch rule

and service times, it can be ignored in the objective function

of the linear program. As noted below, if a change in the

dispatch strategy is indicated by a change in the location of

the units, it is possible for the saturation probability to

change. (See Chapter 3). It is possible that the change in

saturation probability could result in a larger cost per call

than the original configuration. For practical problems, the

probability of all units being simultaneously busy can be

expected to be of the order of a few percent. Between

reasonable dispatch schemes, the saturation probability varies
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only slightly and system performance would be worsened only if

saturation costs were much larger than normal assignment

costs. of course, if a change in positions resulted in

worsened performance, the original configuration should be

used.

The linear program derived from (5.5) is written

N-1 P

(5.6) Minimize z = E E UP(i,p) * C0fi,p)

i=0 p=1

P

Subject to UPfi,p) = 1 for i=0,1,...,N-1,

p=1

UP(i,p} > 0

Since the constraint equations in (5.6) include no terms

of the form UP{i,p} + UP(j,r) for i not equal to j, the linear

program can be solved by considering each unit separately. In

this case, the optimal solution for unit i is obtained by

setting UP(i,p) equal to zero except for UP(i,2) equal to one,

where CO(i,g} is the minimum of the CO(i,pj over all positions

p-

This was exactly the procedure which was applied to the

three server example of Chapter 3. For this problem, the

CP(i,j,pJ terms depend only on j and p: the location of the
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call for service and the initial position of the responding

unit. For the response pattern given by Table 5.19 the travel

distance per call for service is minimized by moving unit 0

from atom 1 to atom 5, unit 1 from atom 11 to atom 8, and unit

2 from atom 16 to atom 14. (See Figure 3.2).

With these changes in location, the average travel

distance for unit 0 drops from 6.52 to 4.88; for unit 1, from

9.94 to 6.78; and for unit 2, from 10.38 to 8.70. The global

average travel distance, incorporating the saturation costs,

changes from 8.73 to 6.70; an improvement of over 23 percent.

This should be compared with the 0.66 percent improvement

resulting from the use of the optimal dispatch rules for the

original unit locations when compared to closest available

unit dispatching.

To this point, we have assumed that we are given the

extent of inter-server cooperation for a particular dispatch

rule (in the previous example, through the use of the

hypercube model). We have used this information to reposition

units in order to best anticipate their usage under that same

dispatch rule. The crucial observation is that a change in

the location of the units can lead to a change in the dispatch

strategy.

For example, from the results of Chapter 3, we know that

closest available unit dispatching rule comes very close to

achieving the minimum expected travel distance which would be

obtained from the optimal assignment strategy. If the
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application of the location model results in a change in unit

positions, then we can expect to further reduce travel

distance by determining the closest available unit assignment

using the new unit positions. We detail this iterative

improvement technique in the next section.

B.2 An Iterative Procedure for Facility Location

The procedure for determining the optimal location of

response units is given by the flow chart of Figure 5.1. A

reasonable choice is made as to an initial set of locations

for a fixed number of units. We determine an appropriate

dispatch strategy based on these initial locations and then

apply some descriptive model (perhaps the hypercube model) to

determine the extent of inter-unit cooperation. This

cooperation is expressed in terms of the FSCfi,j).

Using the FSC(i,j) and the CP(i,j,p) (the costs of

assignment conditioned on the type of call, the servicing

unit, and the unit's initial location), we relocate the units

whenever such a relocation will result in a decreased average

cost per call. If the position of the units does change, we

use their new locations to determine a new dispatch strategy.

If this strategy is different from the one used for the

previous iteration, we use the descriptive model to determine

new FSC~i,j) and apply the location model again. This

procedure is used iteratively until there is no change in

either unit positions or dispatch strategy between two
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Figure 5.1 Flow chart for an iterative procedure for
determining the optimal location of response units under
conditions of congestion and cooperation among the
servers.
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successive iterations.

We illustrate the procedure by determining the optimal

location for four response units to be positioned within a

grid of 100 atoms. Figure 5.2 shows the atom locations and

gives the initial position of the units at the points (0,0),

(0,3), (3,0), and (3,3) of the grid.

The hypercube model is used to determine the FSC(i,j).

The cost of assigning a unit at node (x,y) to a call from node

(w,z) is given by the absolute value of x minus w plus the

absolute value of y minus z; that is, the right angle distance

between the two points. (We assume Cartesian coordinates and

unit distance between the points of the grid). Finally, the

call rates for all nodes (atoms) are assumed identical and

very small compared to the service rate for each server (also

assumed to be identical). These last assumptions are

equivalent to assuming neglible cooperation among the servers.

We determine the assignment rule on the basis of the

closest available unit. (We allow ties in the choice of

assignment, corresponding to a randomized dispatch rule (Ref.

36), in order to preserve the symmetry of the problem).

Figure 5.3 traces the iteration as it utilizes the

hypercube model and then the location model. For each

iteration, there are two numbers; the first gives the average

travel distance for the system with the indicated unit

locations and closest available unit dispatching. The second

number is the average response distance when the units are
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Figure 5.2 Geographic description of a four-server, 100-atom
system to illustrate the facility location iteration.
Locations are specified in terms of Cartesian
coordinates. Initial positions: (0,0), (0,2), (2,0), and
(2,2) denoted +.
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relocated to best reflect their spatial assignments (still

under the same dispatch rule).

For example, with the initial locations (iteration 1),

the average response distance is 5.80. This can be decreased

to 3.70 by respositioning the four units at (0,0), (5,0),

(0,5), and (5,5). (Note that one unit does not move). Figure

5.3 indicates that these new unit locations result in a

further decrease of response distance to 3.20 when the

dispatch policy is changed to reflect the new positions.

After four iterations, the units reach a stable

configuration and no further improvement can be made. The

optimal locations are exactly.those which would be expected by

symmetry arguments for the situation in which the workload of

each unit is close to zero.

The same iteration scheme can be used to relocate servers

in order to reflect an increased workload. For the same four

server system as above, suppose we increase the average

workload to 0.5. The average travel distance becomes 4.45

units. The location model moves each unit one step closer to

the center of the area with a resultant decrease in the travel

distance to 4.18 units. (See Figure 5.4). When the average

workload is increased to 0.9, the optimal positions for the

units move another step toward the center. The average travel

distance decreases from 5.18 to 4.92 with this move.

In this instance, the dispatch strategy remains the same

because of the symmetry of the region. The units are relocated
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Figure 5.4 Use of the location model to reflect increased
un1it workloads. The units move toward the center of the
region in order to anticipate the increasingly likely
event of dispatch uniformly distributed over the region
(in the limit as workloads approach unity). Opt imal
locations are shown for an average workload of 0.0 (A),
0.5 (B), and 0.9 (C).
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to reflect the increased probability of a dispatch to a node

outside of the unit's own "quadrant." As expected, as the

dispatches for each unit become uniform over the entire

region, the optimal location of the units shifts toward the

center of the area.

The procedure described above focuses only on minimizing

the cost of assignment. In some situations, additional

factors may be important in the location of facilities. We

consider two examples taken from police and emergency medical

services.

C. Constraints on Unit Location

The model for improving unit locations given above has

two features which may not be desirable in certain

circumstances. The objective is the minimization of the

expected cost per assignment. As noted in Section A of this

chapter, we might like to include some constraints on maximum

response time for spatially distributed systems. In addition,

the form of the linear program (5.6) results in integer

solutions for the decision variables. In the context of

police preventive patrol, a fractional solution, corresponding

to random mobile patrol, would be preferred. Both of these

difficulties can be treated in the same programming framework.
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C.1 Limiting Maximum Travel Time

Suppose there is an "acceptable" level of cost associated

with each type of call. We want to choose the position of

units in order to guarantee at least a minimum level of

acceptable responses for each type of call. Define MAC[J}

(maximum acceptable cost) as the largest cost of assignment

that is acceptable for a customer of type j. Let MAF~j)

(minimum acceptable fraction) be the smallest fraction of

acceptable responses to type j calls which we will tolerate.

For example, the EMSS Act (PL93-154) specifies (as one

criterion for acceptable service in urban areas) that 95

percent of all calls receive a response in ten minutes or

less. In our notation, we would set MACfm) identically equal

to 10 minutes and MAF(j) identically equal to 0.95. The costs

of assignment are expressed in terms of response time (for the

loss system, there are no queuing delays) and we seek to

determine locations for ambulances in order to minimize

response time subject to the constraints on maximum response

time.

We can obtain an acceptable level of response for all

types of customers by adding the following constraints to the

linear program given by (5.6):
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N-1 P

(5.7) 23 E FAfi,j,pJ*UP(i,p) > MfFfj}

i=0 p=1

for j=1,2,...,NC,

where FA(i,j,p) is the fraction of acceptable responses to a

call of type j by unit i in position p. FA[i,j,p} is given by

FSC(i,j) if CP[i,j,kJ is less than or equal to MAC(j);

otherwise, it is zero.

As noted above, for the particular case of ambulance

location, the acceptability of a response might be defined in

terms of a maximum travel time. The addition of (5.7) to the

linear program forces some equity in service among calls from

different locations. It also complicates the solution

procedure. The UPfi,p) variables are now coupled and the

optimal solution of the linear program can not be expected to

be integer. Since non-integer solutions are associated with

mobile units, the linear program is modified to an integer

linear program by requiring that UP(i,p) be zero or one

(corresponding to fixed location units).

Instead of the NC local constraints given by (5.7), we

can use a single global constraint by setting a lower bound,

K, on the overall fraction of acceptable responses. The

constraint is written
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NC N-1 P

(5.8) X1: >222FCfj)*FAfi,j,p}*UP[i,pJ > K

j=1 i=O p=1

We will have more to say about the actual use of these

constraints in Chapter 7.

In the design of police preventive patrol, fractional

solutions to the linear program are actually desirable.

C.2 Police Preventive Patrol

The integer solutions obtained from (5.6) do not reflect

the other function of the police service; that is, preventive

patrol. We would like to add constraints which provide for

preventive patrol while reflecting the response to calls for

service. (It is interesting to note that the integer solution

to (5.6) implies that response time is minimized by fixed

rather than mobile units. See Ref. 41). For the remainder of

this section, we focus on mobile units.

Since the workload of unit i, WL[i), is defined as the

fraction of time spent in servicing calls, unit i has the

remainder of its time, a fraction 1-WL[i}, for preventive

patrol. When UP~i,p} is interpreted as the fraction of

preventive patrol time spent in atom p, we would like to

specify the fraction of preventive patrol effort to be

allocated to atom j. For example, we might want the effort to

be roughly proportional to the fraction of calls originating
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from atom j.

The total preventive patrol effort available from all of

the units is the number of units, N, times one minus the

average unit workload. Allowing some slack in the preventive

patrol required for each atom (for example, seeking a minimum

of 100*X percent of the target level), preventive patrol can

be specified by the constraints

N-1

(5.9) (1-WL(i}) * UPfi,pj > X * FC(p) * N * (1-AWL)

i=1

for p=1,2,...,NC,

where AWL is the average workload of the units. (If (5.9) is

used with an equality constraint and no flexibility in the

level of preventive patrol effort, the patrol allocations are

usually unacceptable. A typical solution will divide the

preventive patrol of a unit between widely separated atoms or

allocate a miniscule amount of its patrol to several disjoint

atoms).

This constraint can result in overlapping areas of

preventive patrol. This condition can be avoided by adding

0-1 constraints which allow only one unit to patrol any given

reporting area. The result is a mixed integer linear program.

Needless to say, the degree of difficulty in solving (5.6)
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increases as further constraints are added.

In addition to constraints on preventive patrol, the

equity constraints from the preceding section could also be

incorporated. The intent here is not to delineate all

possible constraints, but to indicate the degree of

flexibility of this model.

D. Summary

The model developed in this chapter allows the position

of units to be chosen in a manner which reflects the level of

cooperation between the units. This interaction is specified

by the FSC(i,j), which were assumed to be given. In that

context, these values for a three server example were obtained

by applying the hypercube model to an initial set of unit

locations.

The optimal location for the units is determined by using

the location model alternately with a descriptive model (in

these examples, the hypercube model), to choose successively

improved unit positions and dispatch strategies. To this

point, we have avoided computational difficulties such as

local minima or the failure of the iteration to converge to a

stable configuration.

Since there are only a finite number of possible unit

locations, requiring strict improvement in the average cost

per call at each stage guarantees that the iteration will

converge. It is possible that convergence will be to a local
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minimum, as observed in using some deterministic location

models (Ref. 6). An obvious procedure for avoiding this

difficulty is to solve a particular problem with several

different initial configurations. Convergence to local minima

has not been a problem in the author's experience except in

special circumstances.

For example, if the iteration is applied to the four

server example of Section B.2 with a total call rate of zero

(WL(il identically zero, no interaction among the units), a

non-optimal local minimum is reached after two iterations.

This is due in part to the extreme symmetry of the example.

Rven in this case, if any unit workload is greater than zero,

the local minimum disappears. This symmetry is not typical of

real geographies.

For all of the examples above, the hypercube model has

been used to incorporate the spatial characteristics of the

system and to determine the FSCi,j). In the next chapter, we

present an approximation procedure for loss systems with

distinguishable servers which incorporates the flexibility of

the hypercube model in a framework which allows for unit and

customer specific service times.

-125-



Chapter 6. AN APPROXIMATE ANALYSIS OF THE
GENERAL SERVICE TIME MODEL

A. Introduction

Although the hypercube model is quite comprehensive for

the analysis of queuing systems with distinguishable servers

and classes of customers, there are two important situations

which can make its use inappropriate. The first of these

concerns the computational effort involved; the second has to

do with the service time assumptions of the model.

The computational difficulty becomes apparent after an

examination of the "size" of the hypercube model, where size

is taken to mean computer storage and time requirements. The

earliest implementation of the hypercube model could

accomodate at most six servers because of numerical

difficulties (Ref. 3). As noted in Chapter 3, Larson

increased this number to fifteen by exploiting the structure

of the model (Ref. 36). Even so, a system with 10 servers and

100 classes of customers, not unusual for police applications

in urban areas, requires roughly 360 thousand bytes of storage

in the implementation described by Jarvis (Ref. 27). (Recall

that calls can be classified on the basis of location for

spatially distributed systems).

The model assumption that is troublesome concerns the

service time distribution. As formulated, the hypercube only

allows server dependent service times. As noted above, such a
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description would appear inadequate for systems in which the

major component of the service time is travel. For these

systems, we would like to be able to specify service time as a

function of both the server and the type (location) of

customer. In addition, the exponential form of the service

time may not be appropriate for some systems.

The first problem has been solved by Larson for the case

in which the service times for each unit are identically

distributed. The method of solution employs an approximation

procedure which avoids the large state space associated with

the hypercube and which appears to give the same results

(within a few percent error) as the exact model (Ref. 40).

The exponential model described in Chapter 4 allows

server and customer dependent service times. Unfortunately,

the size of the model is even more restrictive here than with

the hypercube. For example, the three server example for

Sample City would have roughly sixty-five thousand states (the

hypercube only 8). Again there is the additional problem that

the service times are exponentially distributed. This

distribution was chosen because of its analytic tractability,

not because it represented situations often found in real

problems.

In this chapter, we give an approximation procedure which

is aimed at solving both of the problems mentioned above. The

procedure is based in large part on the approximation

procedure given by Larson. In fact, the actual approximation
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is almost exactly that used by Larson. The contribution of

this work is to apply that approximation technique to a wider

class of systems.

B. An Approximation Procedure

The steady state equation derived in Section C.2 of

Chapter 4 forms the basis for the development of the

approximation procedure. Before describing the procedure

itself, we review the relevant notation and model assumptions.

B.1 Notation and Assumptions

The assumptions and notation used here are consistent

with that developed in the previous three chapters. We

restrict our attention to the loss system. Calls arriving

during periods of saturation are either lost or handled by

means external to the system under consideration.

The system consists of N servers, indexed from 0 to N-1,

and NC classes of customer, indexed from 1 to NC. Arrivals of

customers of type j are distributed according to a Poisson

process with rate CR(j), independent of all other classes of

customer and the state of the system. The total rate at which

customers arrive is denoted by CRT. If server i is assigned

to a call of type j, the service time is independent of the

state of the system or the time of the arrival. The expected

service time is finite and is given by TSC[iJ}.

If FSC(i,j) is the probability that a random call of type
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j is serviced by unit i, and BUS(i,jl is the event that server

i is busy with a call of type j, then the long term

probability of this event is given by equation (4.11),

restated here as

(6.1) Pr{ BUS(i,j} ) = CR{J} * TSC(i,j} * FSC~i,j)

Since WLfi}, the workload of server i, is just the

probability that server i is busy in the steady state

operation of the system, we can write an expression for the

workload by conditioning on the class of customer being

serviced. That is,

NC

(6.2) WLfi) = Prf BUSi,j) }

j=1

NC

= ]CR{jJ * TSC(i,j} * FSC(i,jJ

j=1

B.2 Fixed Preference Dispatch Rules

If we know the FSC(i,j}, equation (6.2) can be used to

determine the unit workloads. In fact, all of the system

performance measures for the loss system can be written in

terms of the call rates, the service times, and the FSC terms.
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(A detailed list of performance measures can be found in

Reference 36. The costs associated with system operation are

given in equations (5.2) and (5.4) of Chapter 5. It should be

noted that the saturation probability, Pr{S), is given by one

minus the sum of FSCfi,j) over j for any i).

We would like to relate the FSC terms to the workloads of

the units and then use equation (6.2) to solve for the

workloads and FSCfi,j). This was the procedure used by Larson

for "fixed preference" dispatch or assignment rules.

A fixed preference assignment rule is a state independent

strategy. For each type of customer, the units are ordered on

the basis of their relative merit or cost with respect to

servicing a call of type j. When a call of type j arrives, we

dispatch the first preferred server for type j if it is

available; otherwise we choose the second preferred unit; if

that unit is unavailable, the third preferred; and so on. An

example of such a fixed preference rule is given by the three

server system used in Chapter 3. The rule used in that case

was to dispatch the closest available server.

A fixed preference rule will be specified by an NC by N

matrix, DP (dispatch preference), where DP(j,k) is the k-th

preferred server for a call of type j. A rule which will

often be used is the myopic optimum. In this case, DPfj,1}

achieves the minimum in
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P

(6.3) Min UP(i,p) * CP(i,jp} ,
i __

p= 1

where UPfi,p} is the probability that server i is assigned

from position p and CPfi,j,p) is the associated cost of

assignment. DP(j,2) achieves the minimum in (6.3) when i

equal to DP(j,I) is excluded. The remainder of the DPj,-)

are determined in a similar fashion.

The FSC(i,j) take a very simple form for fixed preference

dispatch rules. Suppose that server i is the k-th preferred

server for calls of type j. Then the probability that i is

assigned to a random call of type j is the joint probability

that the first k-1 preferred servers for type j are all busy

and that server i is free. Let B(i) denote the event that

server i is busy. F(i) will be the complementary event; that

is, server i free. Since the arrival process is independent

of the state of the system, the workload of server i is given

by

(6.4) WL(i} = Pr( B}i)} = 1 - Pr( F(i)

Using the dispatch preference matrix, DP, we can write

FSCi,jJ as

(6.5) FSC(i,j} = Pr( BfDP(j,1},...,BfDPfj,k-1),F~i} 1.
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(Recall that i is the k-th preferred unit for call type j).

If the status of the servers were independent, we could

write the probability of the compound event in (6.5) as the

product of the probabilities of the separate events. Larson

(Ref. 40) has examined this assumption for M/M/N systems

(identical servers).

B.3 Systems with Identical Servers

We reproduce the main results of Larson's work as it is

crucial to the approximation procedure. Even in the symmetric

M/M/& system, the status of the servers is not independent.

For the infinite line capacity case, Larson shows that the

probability of k servers being busy, given that a randomly

selected server is busy, is given by

(6.6) k * Pr~k busy servers) / U , k=,1,...,N,

where U is the total call rate multiplied by the average

service time (identical for all servers) and divided by the

number of servers, N. This quantity will be referred to as

the utilization of a system. For the M/M/N queuing model with

infinite line capacity, U is equal to the average workload of

the servers. Equation (6.6) states in precise terms the

qualitative remark that knowing one server is busy biases the

distribution of the number of busy servers in the direction of

more busy servers. Hence the availability of the servers is
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not independent.

We return to the case of zero line capacity (the loss

system). Consider the problem of sampling the status of

randomly selected servers without replacement. Let A(k)

denote the event that the first k selected servers are busy

and that the k+1-st is free. Larson shows that

(6.7) Pr[ A ()( = QN,U,k) * (AWL**k) * (1-AWL)

where AWL is the average workload of the units and 2, as a

function of the number of servers, utilization factor, and k,

is a correction factor which gives the equality in (6.7).

Equation (6.7) is a sort of quasi-independence statement

regarding the status of the units. Q(N,U,k) is given by

N-1
(N-j) * (N**j) * (U** (j-k))

(6.8) Q{N,U,It) = 

j=k

PO * (N-k-i) !
*

((1-PN)**k) * N! * (1-U*(1-PN))

for k=0,1,...,N-1,

where PO is the probability of all servers being free and PN

is the probability of all servers being busy. A recursive

procedure for the calculation of the correction factors is
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given in Appendix B. Reference 40 contains tables and graphs

of the terms. For general reference, Q[N,U,0} is identically

1. only for low utilizations (less than two tenths) and large

k (greater than 5) is Q(N,U,k} very different from 1.

It should be noted that although these results were

derived for the M/M/N loss system, they also hold for the

M/G/N system since the steady state probabilities for the two

systems are the same (Ref. 53).

B.4 The Approximation Technique

The approximation technique developed by Larson employed

the relation suggested by (6.7) above in connection with fixed

preference dispatch rules. In particular, although the status

of the servers is not independent, the joint probabilities are

treated as though they were. The correction term is used as a

scaling factor for the product of the workloads to give the

correct result for systems with identical servers.

For example, in a six server system, the probability that

servers 1 and 3 are busy and server 5 is free at the time of a

call for service would be approximated by

(6.9) Pr(BfJ,B[3},F[5J=Q[NU,2)*WL[1)*WL(31*(1-WL(5}).

In (6.9), U is given by (CRT*TA)/N where TA is the average

service time over all calls not arriving during a period of

saturation. approximation procedure developed by Larson
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assumed that the average service time for all calls was TA,

independent of the server or the customer class.

As discussed by Larson (Ref. 40), this approximation to

the exact hypercube model yields estimates for the performance

measures which are generally within a few percent of those

calculated by the hypercube. The advantage of using the

approximation instead of the exact model is that the size of

the system of equations to be solved grows linearly with the

number of servers rather than exponentially. As will be shown

below, the approximation requires the solution of a set of

nonlinear equations. Solved in an iterative fashion, the

computations are actually no more involved than the linear

steady state equations derived for the exact model (See

(3.5)).

We apply the same sort of approximation technique to the

general service time model described in the first part of this

section. The notation is slightly simplified by defining an N

by NC unit order matrix, UO, where if server i is the k-th

preferred unit for calls of type j, then UO[i,j}=k. With this

definition, we rewrite (6.5) as

(6.10) FSC(i,j)=Pr (B[DP(j,1B,...,BfDP[j,UOi,j}j-1)),Fi))

In much the same manner as Larson, we approximate ?SC(i,j} by
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(6ell) FSC[ivj) z No Ur UO ( ic JI -1 ) * (1-WL [i) )

uo [is J)-l

TT WL(DP[jvk))

k=l

Substituting (6,, 11) into (6.2), we have

NC

(6el2) WL (i) CR(j) TSC[iejl Q[NvUrUofirjl-l)

j= 1

uo (ip ji - 1

k=l

* (1-WL fil I * WL[DP(jrk)l

Equation (6.,12) can be solved for WL(*1 to obtain

WL fil = X fil / ( 1 +X (ij ) v i=Ovl**e9vN-1;

where X[i) is qiven by
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NC

(6.14) Xf{i} = CR (j})*TSC (irj)*Q(N,U, UO (itj)-1)

j=1

UO(i,j)-1

* TI' WLfDPjk)

k=1

our intent is to use equations (6.13) and (6.14) in a

"linear iteration" technique (Ref. 9) to solve for the

workloads of the units. After determining the workloads,

(6.12) can be used to determine the FSC(i,j) terms and hence

to obtain estimates for the performance measures associated

with the system. In order to apply this procedure, we need an

initial solution to start the iteration.

One such solution can be derived by assuming that there

is no cooperation between the units. (This starting solution

corresponds to FSC~itj) equal to one for i equal to DP(j,1);

otherwise, FSC~i,jJ is zero). We first compute an initial

value for the average service time TA (used in evaluating the

correction factor) by

NC

(6.15) TA >2PCjI * TSC(DPfj,1),jJ

j=I
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(Recall that FC(jJ is the fraction of calls of type j). The

initial value of the units' workloads is given by

(6.16) WL~i} = CR[j) * TSC~i,j}

j:DP(j, 1}=i

The initial value of U used in the correction factor is given

by (CRT*TA)/N.

Each iteration involves using the current estimate of the

workloads to compute the X(iJ term for each unit i according

to (6.14). The new estimate of the workloads is obtained from

(6.13). The new estimates of the workloads are then used to

compute a new average service time according to

N-1 NC

(6.17) TA = 2 aFC~j)*TSC(i,j)*FSC(i,j)/(1-P(SJ) ,
i=O j=1

the FSCfi,j) being determined from equation (6.11). The

utilization for the next iteration is obtained by setting U

equal to CRT*TA/N.

The iteration is continued until a convergence criterion

is satisfied; for example, the maximum relative change over

all the unit workloads being less than one per.ent.

of course, there are a great number of questions to be

asked concerning the validity of the approximation described
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here. In the next section some of these issues are explored.

C. Computational Experience

Since the approximation technique described above reduces

to that developed by Larson when the servers have identical

service times (with the slight difference noted below), a few

remarks on the accuracy of Larson's procedure are appropriate.

That procedure has been found to yield estimates for the

performance measures which are generally within a few percent

of the values computed by the exact hypercube model. As the

total call rate becomes smaller in relation to the average

service time or as the number of units increases, the

approximation increases in accuracy. Finally, as the units

become more similar in workload, the accuracy increases. At

least in part, the last remark might be expected since the

approximation is exact for the N/f/N loss system with

identical servers. (It should be noted that the approximation

technique developed by Larson can also be applied to the

infinite line capacity system).

The difference in Larson's approximation and that

described here has to do with a normalization constraint

employed by Larson. For the M/N/N system, the average

workload of the units can be computed independently of the

particular dispatch rule used (Ref. 28) and used to scale

successive workload estimates. As noted in Chapter 3, with

different unit service times, this result does not hold for
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the hypercube model and consequently cannot be employed in the

iteration scheme developed here. For the remainder of this

chapter, we deal only with the approximation procedure for

general service times as given above.

In trying to give some indication of the accuracy of the

approximation technique there is one striking difficulty;

there are not very many models with which to compare it. Two

obvious candidates for future validation research are

simulation models and data collected from the actual operation

of a system. In the interim, the approximation can be

compared to some of the models developed in Chapters 3 and 4.

Since the approximation closely parallels Larson's work

on the hypercube model with identical unit service times,

there is no need to pursue that comparison here. There

remains the hypercube model with server dependent service

times, the convolution model, and the exponential model (See

Chapter 4). Since all computational experience to date has

indicated that the convolution model is very closely

approximated by the comparable hypercube model (Section B.2,

Chapter 4), we focus our attention on the hypercube and

exponential models.

As noted in Chapter 4, the state space associated with

the exponential model is very large; (NC+1)**N elements for a

system with N servers and NC customer classes. The

computational difficulty -in dealing with this model was

compounded by the author's use of an interpretative computer
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language for the solution of the steady state equations. The

net result is that systems with more that three servers and

three classes of customers became prohibitively expensive (in

the present computer implementation) to use for extensive

examples.

From Larson's work, we expect to have the most difficulty

in describing systems with a small number of servers and

widely varying service times. (The latter tends to make the

servers "more distinguishable"). In order to test the

approximation in such an extreme set of circumstances,

computations were performed for a three server, three customer

class example with the exponential model. The system

parameters are summarized in Table 6.1. Note that the ratio

of service times is as large as ten to one and that the

dispatch preference matrix used (DP) results in a five to one

ratio in the frequency of calls for which units 0 and 1 are

first preferred.

For this sort of extreme situation, the average

percentage error in the workload estimates was less than one

percent at either end of the call rate range, roughly five

percent for less extreme values , and then as high as fifteen

percent at an average workload of 0.281. It should be noted

that the cost of running the approximation technique was

roughly one tenth of that for the exact exponential model.

This fraction could be expected to decrease as the number of

units increases since the problem size in the approximation

-141-



Table 6.1 Summary of system parameters for a three server
example of the exponential model. Total call rates (CRT)
in the range of 0.01-7 to 1.20 corresponding to an average
server workload of 0.014 to 0.928.

0 1 2
DP = 1 2 0

2 1 0

0.416 0.058 0.379
RH = 0.058 0.474 0.109

0.379 0.109 0.530

FC(1} = 0.536
FC(2) = 0.107
FC(3}J= 0.357

Computations were performed for the following values of CRT
(shown with the computed average workload, AWL, for each
value of CRT).

CRT AWL

0.017 0.014
0.086 0.098
0.120 0.162
0.171 0.281
0.286 0.540
0.400 0.700
1.200 0.928
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grows linearly rather than exponentially. This example does

suggest that some caution be employed when using the

approximation for systems with widely varying service times,

although the difference in cost and size of the two approaches

really leaves no choice for large systems. (For systems with

less variance in the service times, say up to five to one, the

approximation has yielded estimates for both workloads and the

FSC(i,j) with relative errors below two percent).

As noted, the approximation does yield good results as

compared to the exact hypercube model with identical service

times. This is also the author's experience in examining

systems with server dependent service times. To give some

idea of the accuracy of the approximation, we will compare it

in some detail to the three server example used in Chapter 3.

In this problem, the range of average service times is two to

one and the range of call rates which are first preferred

varies by as much as four to one between two of the servers (0

and 2).

Figure 6.1 is a graph of the maximum percentage

difference between the approximation and the exact hypercube

model compared over a range of utilizations from 0.05 to 0.95.

(Recall that the utilization, U, for the hypercube model, is

given by CRT/SRT; SRT is the total service rate). A more

detailed comparison of the workload data is presented in Table

6.2 for the same system.

As indicated by Table 6.2 and Figure 6.1, the
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Figure 6.1 Maximum percentage difference in the values of the
unit workloads as calculated by the approximation versus
the hypercube model. The utilization, U, is CRT/SRT.
Example given for three servers in Sample City.
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Table 6.2 Unit workloads as calculated by the approximation
procedure and the exact
utilization, the top row is
by the approximation. The
hypercube model.

WL(0}U

0.05 Approx: 0.0955
Exact: 0.0955

hypercube model. For each
the set of values calculated

bottom row is from the exact

VL (1)

0.0270
0.0270

0.20 Approx: 0.3009 0.1447
Exact: 0.3006 0.1445

0.35 Approx: 0.4369
Exact: 0.4362

0.50 Approx: 0.5339
Exact: 0.5327

0.65 Approx: 0.6058
Exact: 0.6042

0.80 Approx: 0.6603
Exact: 0.6587

0.95 Approx: 0.7026
Exact: 0.7013

0.2663
0.2668

0.3708
0.3721

WL [2)

0.0351
0.0354

0.1554
0.1593

0.2901
0.2946

0. 4134
0.4153

0.4557 0.5143
0.4579 0.5135

0.5234 0.5927
0.5267 0.5907

0.5776
0. 5821

0.6531
0.6510
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approximation gives a very accurate estimate of the unit

workloads. The quantities of most interest are the FSC(i,j),

the fraction of calls of type j answered by unit i. Instead

of presenting all of these numbers for different utilizations,

we concentrate on a single value, U=0.35. It was this

utilization which gave the maximum percentage difference

between the values of FSC calculated by the approximation and

the exact model. Table 6.3 details the values for this

example. An examination of the travel distances shown in Table

3.1 will reveal that there are only four distinct preference

lists for the particular rule which dispatches the closest

available unit. Atoms 1, 8, 11, and 16 are representative of

those four preferences.

The largest percentage difference in Table 6.3 occurs at

FSC[O,8}. This happens to be for a unit which is the second

preferred for that particular atom. The percentage difference

is somewhat misleading as the FSC(i,j} terms associated with

the first preferred server are clearly the most important in

calculating performance measures for the system. It was

generally the case for all of the utilizations that the

largest percentage differences were associated with dispatches

of the second or third preferred unit.

Table 6.4 is an attempt to give some indication of the

seriousness of deviations in the FSC terms. The first column

gives the maximum percentage difference calculated for FSC

terms associated with the dispatch of a first preferred unit.
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Table 6.3 Values of FSC(i,j) as calculated for the three
server example with a utilization of 0.35. The maximum
percentage difference between corresponding values occurs
for FSC(0,8} (16.6 percent). This was the largest
percentage difference encountered over all the
utilizations tested. The values shown below correspond to
the four distinct rows of the dispatch preference matrix.
The top row is from the approximation; the bottom from
the hypercube model.

Atom j: FSC(0,jJ FSCf1,j) FSC(2,j)

1 Approx: 0.5631 0.2799 0.0770
Exact: 0.5638 0.2817 0.0840

8 Approx: 0. 1309 0.7337 0.0770
Exact: 0.1123 0.7332 0.0840

11 Approx: 0.0406 0.7337 0.1651
Exact: 0.0405 0.7332 0.1557

16 Approx: 0.0406 0.1858 0.7099
Exact: 0.0405 0.1835 0.7054
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Table 6.4 Measures of the relative error in the FSC(i,j) as
calculated by the approximation procedure and the
hypercube model. For each utilization, Column I is the
maximum percentage difference in the FSC terms for first
preferred dispatches. Column 2 is the maximum absolute
difference in the two sets of values divided by 1 minus
the saturation probability for that utilization.

U: Column 1 Column 2

0.05 0.03% 2.7%

0.20 0.46% 1.5%

0.35 0.64% 2.0%

0.50 0.32% 2.0%

0.65 0.41% 1.8%

0.80 0.70% 1.6%

0.95 1.08% 1.3%
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The second column is the ratio of the maximum absolute

difference in the values of FSC(i,j) as calculated by the

approximation and the hypercube to the fraction of calls

receiving service (one minus the saturation probability). As

is readily seen from the data, only one estimate of FSC for a

first preferred dispatch is in error by more than one percent.

Although the second column is roughly constant at two percent,

it should be remembered that these are maximum relative

differences over all the FSCi,j}.

It is very important to note that the approximation

procedure, at least for this last set of examples, yields

results which are very close for the types of dispatches which

contribute most to the calculation of performance measures for

the system; that is, dispatches of the first and second

preferred units for each type of customer. It is clear that

the approximation requires further validation. of particular

interest would be bounds on the maximum relative errors or

some characterization of the type of system which does not

lend itself to the use of the approximation.

These comments notwithstanding, the author maintains that

the approximation is a good technique for describing these

types of loss systems with distinguishable servers and classes

of customers. It would appear to be particularly useful in

the context of spatially distributed systems in which travel

time is a significant portion of the overall service time. As

a final note, the approximation is an analytic technique which
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is easy to implement and inexpensive to run in a computerized

version. Some estimates of computer costs will be given for

the examples of the next chapter.

D. A Note on Service Times

We would like to examine the differences in workloads

which can be attributed to the type of service time

information available. For example, the original hypercube

formulation included service times which were independent of

the customer and server. The hypercube as formulated in

Chapter 3 allows the service time to depend on the server but

not on the type of customer. Finally, the approximation

procedure for the general service time model permits service

times to be a function of both the class of customer and the

server.

The question raised here is exactly how much of this

information is necessary to adequately describe these systems.

For the remainder of this section, suppose that the FSCfi,j)

are known.

Given the call rates , service times, and response

pattern, the workload of unit i is calculated as in equation

(6.2) restated here as
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NC

(6.18) WL (i) = CR(j) * TSC(ij) * FSC(i,j)

j=1

Suppose we compute the mean service time for a call

answered by unit i for the given response pattern. We define

TU(i} (service time by !nit), for i=0,1,...,N-1, by

NC NC

(6.19) TU[i} = TSC (i, j)*FT (i,j)} / FTf(i,j),

j=1 j=1

where FT(i,j) is given by equation (5.5) and is the overall

fraction of calls that are of type j and answered by unit i.

The denominator of (6.19) divided by (1-P[S}) is equal to the

fraction of all calls not arriving during a period of

saturation which are serviced by unit i.

Now we consider the system with the same response pattern

as above except that service times are only server dependent

and are given by (6.19). Substituting (6.19) into the RHS of

(6.18) we get

NC NC

CR (j}*TU(i}*FSCi,j} = TU[i} * CR(j)*FSC(i,j}

j=1 j=1
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NC

Fa TSC(i,j}*FTfi,j)*CRT

J=1

NC

E TSCfi,j}*FSC i,j}*CR(j}

J=1

where the last sum is seen to be WLfij when compared to

(6.18). The result of these manipulations is to say that if

the correct average unit service time is used in the general

service time model in place of the more detailed

server-customer specific service times, we still get the

correct unit workloads.

In exactly the same manner we can compute the overall

average service time as in (6.17) and substitute that value

for the TSC(i,j) in (6.18). Define FU(i), the fraction of

calls serviced by unit i, by

NC

(6.20) FUfi} z FC(jJ * FSC(ij) / (1-P(S))

j=1

If we substitute TA for TSC(i,j) in the RHS of (6.18), we get

(N*AWL*FU(i)). This quantity is not equal to the workload of

unit i unless the average service times for each unit are
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equal. (Note: summing this term and dividing by N does yield

the correct value for the average workload, AWL).

The remarks above are interesting in light of a model

developed by Bernstein and Thomas (Ref. 57). Their approach

is to incorporate travel time information for spatially

distributed systems by using Larson's approximation procedure

in an iterative manner. An estimate of TA is made for the

system, the FSC~i,j) are computed for that service time, and a

new estimate of TA is obtained via (6.17). This procedure is

repeated until a convergence criterion is satisfied. Since

the values of FSCfi,j} depend only on the unit workloads in

the approximation scheme, it would appear that such a

technique could be used to incorporate travel times for

spatially distributed systems if the iteration utilized unit

specific service times, TUt-I, rather than the global service

time, TA.

E. Sensitivity Analysis

The approximation can be easily adapted to determine

first order effects of changes in the system configuration.

For example, Chelst (Ref. 7) has developed algorithms for

balancing workloads and travel times using Larson's

approximation. Such algorithms often require the computation

of the change in response patterns of workloads resulting from

changes in the dispatch preference matrix. We will focus on

one particular kind of change in the dispatch preferences as
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an example of a simplified computation procedare.

We restrict our attention to calls of type j, where x is

the k-th preferred server for type j and y is the k+1-st

preferred. That is, DP(j,k)=x and DPfj,k+1=y. We compute

the change in FSCfx,j} and FSC(y,j), denoted by I and Y

respectively, if units x and y are reversed in the dispatch

preference list. FSC~x,jJ is given by

k-1

(6.21) FSC[x,j} = Q(N,Uk-1}*(1-WL(x}) * T WLfDP[j,i)

i=1

The values of I and Y are computed on the bapis. of the

first iteration of the approximation starting with the initial

workloads, WL(i), i0,1,...,N-1. The next iteration yields

the following expression for the fraction of calls of type j

answered by unit x under the revised dispatch policy.

k

(6.22) X+FSCfx,j} = Q(NUk * (1-WLfx}) * WLfi)

i=i

The change for unit x, X, is computed from (6.21) and (6.22)

as

(6.23) X = FSC(x,j) * (Q(N,U,k}*WL~yf)/Q(N,U,k-1) - 1
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Y is computed similarly as

(6.24) Y = FSC(y,j) * Q[R,U,k-1)/(Q[N,U,k)*WL~x)) - 1

Using (6.18), the first order change in the workload of

unit x caused by this change in the dispatch rule will be

CR~j) * TSC[x,j} * X. The change in the workload of unit y

will be CR[j) * TSCfy,j) * Y. (Note: these computations

reflect the changes which will occur in the first iteration of

the approximation procedure as applied to the equilibrium

workloads derived under the initial dispatch rule).

We apply these concepts to the example begun in Chapter

3. The optimal rule derived there dispatched unit 1 to a call

from atom 7 instead of dispatching the closer unit 0.

Although the system wide expected travel distance did not

change greatly, the workload imbalance was halved. Applying

the results developed above to this system, with x=0, y=1, and

j=7, we have

Given: CRf7}=0.099, TSC[0,7)=1.0, TSC[1,7)=0.67.

Compute: FSC[0,7}=0.5273, FSC[1,7}=0.2853.
WL(01=0.4727, WLf1)=0.3033.
X=-0.4019, Y=0.4845.

The workload of unit 0 decreases to 0.4329 and that of unit 1

increases to 0.3353. The maximum workload imbalance can be

expected to decrease from 0.169 to roughly 0.10. A more
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precise computation yields a final imbalance of 0.13.

Similar techniques can be applied to the determination of the

marginal costs of changes in assignment strategy.

This chapter concludes the methodological developments.

Briefly, we have developed several continuous time Markov

models for service systems with distinguishable servers and

classes of customers. One of these models, the hypercube, was

used in conjunction with a location model in order to

determine the optimal positions for response units in

spatially distributed systems.

This present chapter details the application of an

approximation procedure for computing the steady state

characteristics of systems in which the service time depends

on both the server and the class of customer. In the next

chapter, we use the approximation procedure and the location

model to treat a spatially distributed system in which travel

time is a significant portion of the overall service time.

The example is intended to demonstrate the flexibility of

these models.
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Chapter 7. APPLICATIONS TO THE LOCATION OF
EMERGENCY MEDICAL VEHICLES

A. Introduction

The purpose of this chapter is to demonstrate the use of

some of the models developed in the preceding chapters. In

particular, we would like to use the location model to

optimize the positions of response units in an environment in

which inter-unit cooperation is important. An emergency

medical system (EMS) was chosen for several reasons.

We have focused on emergency service systems and we

continue that emphasis here. The descriptive models,

including the hypercube model and the approximation procedure,

incorporate the emergency aspects of the service (immediate

response if a unit is available and unpredictable arrivals of

calls for service) with a comprehensive treatment of local

geography (including impediments to travel, placement of

units, and the spatial distribution of calls for service).

Since the hypercube model has seen extensive use in police

applications (Refs. 38, 30, 14, and 8), we prefer to

demonstrate the use of the approximation procedure developed

in Chapter 6 in an EMS application.

In addition, the approximation procedure incorporates a

more accurate description of service time for ambulance

systems than the hypercube model. In spatially distributed

systems, at least one element in the classification of
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customers is the location of the incident. As a result, the

expected service time for an arbitrary call has a component

which depends on both the server (the location from which it

is dispatched) and the customer (locational origin of the

call). That component is the travel time to and from the

scene of the indident. Recall that the hypercube formulation

allows server but not customer dependent service times. (Of

course, any system with spatially distributed responses will

exhibit the same server and customer dependence in it service

times. For urban police forces, this component is usually

small compared to the overall service time. See Ref. 39).

The examples given here are intended to demonstrate the

use of the models, not to arrive at general conclusions

concerning the optimal location of ambulances. The models are

specifically designed to include local information such as

peculiarities of geography and the spatial distribution of

calls for service as well as the particular placement of

response units (ambulances) and facilities (hospitals). For

these reasons, the models can be expected to produce results

which reflect the characteristics of the specific problem

being examined.

We address two problems dealing with the location of

emergency medical vehicles. The first is a straightforward

location problem. How do we locate ambulances in order to

minimize the global expected response time for a region when

there are constraints on maximum response time?
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The second problem is somewhat more complicated. How is

the performance of an emergency medical response system

affected by the addition of specialized units such as mobile

coronary care units? Before dealing with either of these

questions, we spend some examining the components of service

time time for ambulance response and relating these components

to the particular geography of Sample City.

B. Relating Service Time to Local Geography

Both examples of this chapter are formulated in the

context of the geography of Sample City. Of course, the

techniques have general applicability. In order to use the

approximation procedure and the location model, we have to

specify service times and assignment costs for the system.

Ambulance service times consist of several distinct

components (Ref. 31). These are travel to the scene, on-scene

service time, travel to a hospital, time for the transfer of

the patient at the hospital, and return to base (Figure 7.1).

We assume that the total service time includes the travel time

in returning to the base; that is, no vehicles are dispatched

from the hospital. Initially, we seek to minimize expected

response time; the time from the reception of a call until a

unit arrives at the scene of the incident. The two components

of response time are the dispatch delay time and travel time

to the scene (Figure 7.1).

We assume that calls arriving when all units are busy
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(saturation) are serviced by means external to the system.

Hence the dispatch delay tine has no component related to

queuing delays but consists entirely of the time from the

receipt of a call until a response unit is notified and that

unit starts to travel to the scene of the incident. During

periods of congestion, radio equipped units could be

dispatched directly from the hospital. Fr this example, we

assume that all dispatches begin at the response units' home

base.

We include local geography in the service time

description by classifying customers according to the origin

of the call for service. If a call arrives from a point x and

server i is assigned to that call, the expected service time

is determined by adding the dispatch delay, on-scene, and

hospital transfer times to the various travel time components.

If unit i is located at point y and the hospital at z, these

components are travel time from y to x (travel to the scene),

x to z (travel to the hospital), and z to y (return to base).

We partition Sample City into sixteen geographical atoms,

each representing a different class of customer (NC=16). In

general, the number and size of the atoms for an area are

determined by the requisite detail in locational information.

(See, for example, Ref. 30). We define an NC by NC matrix TT,

with elements TT(i,j} equal to the travel time from atom i to

atom j. In practice, this matrix would be determined either

from empirical data or by calculating the distance from atom i
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to atom j and dividing by an effective average travel speed

for that pair of atoms (or for the whole region).

The former approach is more realistic (and also more

expensive) in that it allows specific consideration of local

travel characteristics. For the sake of simplicity, we adopt

the latter approach here. Table 7.1 summarizes the geographic

characteristics of Sample City (see also Figure 3.2). We

assume that the distance from atom i to atom j is given by the

right angle (rectilinear) distance from the center of atom i

to the center of atom j. For i equal to j, we take the

average intra-atcm travel distance to be one-half the square

root of the area of the atom (Ref. 41).

The specification of the expected service times is

completed by giving the non-travel time components of service

time and an average travel speed. We use miles and minutes as

the units of distance and time. For these examples, we assume

a delay time, DT, of 2 minutes; an on-scene service time, OSS,

of 10 minutes; a hospital transfer time, TRN, of 5 minutes;

and a travel speed, TS, of 0.5 miles per minute (30 miles per

hour). Finally, we assume the region contains a single

hospital, located in atom 5. (The values of the service time

components given here were chosen to be representative of ENS

systems. No particular significance should be attached to any

of these values. See Ref. 31 and 13).

As an example of a response and service time calculation,

suppose that unit 0 is located in atom 1. We compute
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Table 7.1 Atom centroids and areas for Sample City with the
fraction of calls generated by each atom
(FC(jJ=CR(j)/CRT). All distances expressed in miles.
See Figure 3.2.

ATOMN -COORD Y-COORD AREA FC*100

1 2.5 6.0 13 14.3
2 6.0 3.6 10 11.4
3 9.5 1.5 9 6.7
4 9.8 4.6 11 7.6
5 6.5 6.8 13 9.5
6 4.0 8.2 6 7.6
"77 8.0 9.0 7 7.6
8 10.6 7.1 10 7.6
9 12.9 9.5 7 2.9

10 10.5 11.2 12 4.8
11 12.3 13.4 10 2.9
12 14.6 11.6 7 1.9
13 14.6 14.1 4 1.0
14 17.1 11.8 6 1.9
15 17.0 14.3 12 4.8
16 18.1 16.8 8 9.5
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TSC(0,8}, the expected service time for unit 0 responding to a

call from atom 8, as the sum of

(i) Travel time to the scene: 18.4 minutes. (The
distance from atom 1 to atom 8 is equal to (10.6-2.5)
plus (7.1-6.0) or 9.2 miles. Divide by TS=1/2).

(ii) on-scene service time: 10 minutes.

(iii) Travel to the hospital: 8.8 minutes. (The
distance from atom 8 to atom 5 is equal to (10.6-6.5)
plus (7.1-6.8) or 4.4 miles. Divide by TS=1/2).

(iv) Transfer time at the hospital: 5 minutes.

(v) Travel in returning to base: 9.6 minutes. (The
distance from atom 5 to atom 1 is equal to (6.5-2.5) plus
(6.8-6.0) or 4.8 miles. Divid by TS=1/2).

The total service time in this case is 51.8 minutes. The

response time for this call is the dispatch delay time (2

minutes) plus the travel time to the scene (18.4 minutes); or

20.4 minutes.

In general, if unit i is located in atom p, and a single

hospital is located in atom h, we can write TSC(i,j} as

(7.1) TSC(i,j} = TT(p,j} + OSS + TT(jh) + TRN + TT(h,p).

Since we seek to minimize average response time, we identify

the costs per call with the response time and write CPfi,j,p),

the "cost" of assigning unit i from atom p to a call from atom

j, as
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CP~i,j,p} = DT + TT(p,j}J.

Note that the cost of assigning unit i to a call from atom j

depends only on the location of unit i.

The specification of the system is completed by giving

the call rates. The spatial distribution was given in Figure

3.2 and repeated in Table 7.1 (FC[j}). We set CRT equal to

0.8 calls per hour or (0.8/60) calls per minute.

with this description, we can use the approximation

procedure to determine the operating characteristics of the

system by specifying the number and location of the response

units.

C. Locations Minimizing Response Time

In order to apply the location model, we have to

determine the response pattern associated with an initial set

of unit locations. A reasonable choice is to position three

units at atoms 1, 10, and 15. The characteristics of this

configuration are shown in Table 7.2. With these locations,

the average workload (AWL) is 0.267, and the average response

time is 12.5 minutes.

One additional quantity shown in Table 7.2 is the

fraction of calls receiving an "acceptable" response. A

response is considered acceptable if the response time is less

than thirty minutes. (Although the choice of thirty minutes

is somewhat arbitrary, that is the figure mentioned by the
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Table 7.2 Response characteristics for three units as
initially located. Section 7.2.A contains statistics
computed for the region as a whole; section 7.2.B
contains statistics particular to each response unit.
Unit 0 is positioned in atom 1; unit 1, in atom 10; and
unit 2, in atom 15.

7.2.A Region-wide statistics.

Average unit workload (AWL): 0.267
Average response time (minutes): 12.6
Average service time (minutes): 62.7
Saturation probability (P(S)): 0.041
Fraction of calls with acceptable response: 0.954

7.2.B Workload (WL(i}), fraction of calls (FUfi)), and
average response and service times for each unit.

UNIT 1 FIL RESPON4SE SEVICE

0 0.25 0.41 10.8 46.3
1 0.31 0.38 14.0 62.4
2 0.25 0.20' 13.7 97.2
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ENSS Act (PL93-154) ).

Table 7.3 summarizes the results of the optimal location

procedure as applied to the initial unit positions given

above. The optimal configuration is reached after one

iteration. Unit 0 is repositioned at atom 5; unit 1, at atom

8; and unit 2, at atom 15. The average response time is

reduced to 10.3 minutes, a reduction of 18.5 percent as

compared to the initial locations.

The optimization of response times also resulted in

improved performance in several other areas. By decreasing

response times, the average service time is reduced and the

average workload decreases almost 12 percent. In addition,

the fraction of calls which must receive backup service (those

arriving during periods of saturation) decreases slightly from

four to three percent.

The optimization procedure was applied with the

additional constraint that at least 95 percent of the calls

have a response time of less than thirty minutes. For this

particular example, this was not a binding constraint. Tables

7.2 and 7.3 also give some performance characteristics

particular to each unit. For this example, the optimization

also resulted in some workload smoothing.

The iterative location procedure has the following

general effects. The relocation of units is toward positions

which are centrally located within the region. If the

hospital is also centrally located, the decrease in response
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Table 7.3 Response characteristics for three units optimally
located. Unit 0, at atom 5; unit 1, at atom 8; unit 2,
at atom 15. Region-wide and unit-specific statistics are
given.

7.3.A Region-wide statistics.

Average unit workload (AWL): 0.235
Average response time (minutes): 10.3
Average service time (minutes): 54.7
Saturation probability (P(S}): 0.030
Fraction of calls with acceptable response: 0.951

7.3.B Unit-specific statistics.

UNIT WLJ F JLU. RESPONSE SERVICE

0 0.22 0.46 8.6 37.8
1 0.23 0.34 11.8 52.4
2 0.25 0.20 11.6 96.4
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time associated with the repositioning of the units is

accompanied by a corresponding decrease in the time required

for the units to return to base from the hospital. These two

effects combine to reduce the overall service times of the

units with a resultant decrease in their workloads. As the

workloads are lessened, the probability of all units being

busy simultaneously is also reduced. The net effect is an

overall improvement in the performance of the system.

It is important to recall the distinctive characteristic

of the location model being used here, The units are not

positioned in order to minimize the average distance from a

call source to the closest unit. The locations incorporate

the information regarding the frequency with which other than

the closest unit provides service (due to the unavailability

of that unit).

For this particular example, we sought to minimize

response time. In the next section, we illustrate the use of

the same models in evaluating specialized units; in

particular, mobile coronary care units.

D. Location of Specialized Response Units

Thus far, we have used response time or travel distance

as a proxy for measuring the effectiveness of an emergency

response. In this section, we focus on a more interesting

measure of effectiveness for certain medical emergencies;

namely, the risk of pre-hospital death from ventricular
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fibrillation following an acute myocardial infarction. We

will not go into detail concerning the specific medical

characteristics of this type of emergency, but utilize the

work of Cretin (Ref. 13) in estimating the risk of death

following a myocardial infarction (MI).

We summarize a much simplified version of Cretin's work

here. Again, our intention is to demonstrate the use of the

models, not to include all of the detail which might be

required in an actual case study. All references in this

section to the model of the risk of pre-hospital death are

taken from Cretin (Ref. 13) unless specifically noted

otherwise.

In simple terms, we wish to calculate the probability

that an individual suffering a heart attack (specifically an

MI) dies of ventricular fibrillation before reaching a

hospital. The basic result, as developed by Cretin from

clinical data, is that the risk of death, RD(TJ, in time less

than or equal to T minutes following an MI, if no medical

intervention occurs, is given by

(7.3) RD(T} = 1 - EXP {-(0.222)* 1-EXP-(0.015)*T}

where EXP is the exponential function. Taking the limit of

(7.3) as T goes to infinity, we have the probability of death

following an MI as approximately 0.199 if no action is taken.

Suppose we have the following options in redesigning the
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ambulance response system of the previous section. We can

obtain a relatively expensive mobile coronary care unit (MCCU)

to replace one of the three present vehicles or we can use the

same amount of money to obtain an additional standard

ambulance. The question is whether better performance would

be obtained from two standard vehicles and one MCCU or four

standard vehicles. We make the following assumptions

concerning the operation of the system.

We assume that ten percent of all calls represent MI's.

(Again, this is taken as a representative value. See Ref.

45). The difference in treatment of these emergencies between

an MCCU and a standard ambulance, insofar as the pre-hospital

response of the emergency medical system is concerned, is

entirely accounted for by the difference in treatment during

the period from the arrival of a vehicle at the scene until

the arrival of the patient at the hospital. We overstate the

difference between an MCCU and a standard vehicle by assuming

that an individual is at risk from the time of the MI until an

MCCU arrives at the scene. If the response is by a standard

vehicle, the patient is at risk for the additional period of

on-scene service time plus the time for the trip to the

hospital. This is equivalent to assuming that a standard

vehicle has no treatment capabilities; it only provides

transport. An MCCU is assumed to provide perfect treatment;

there is no risk of death after it arrives on the scene.

The two different periods of risk are shown in Figure
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7.2. Note that in either case the patient is at risk before

the emergency is reported and during the response time of the

unit assigned to the call.

The system with four standard vehicles is assumed to

operate as in the previous section. We locate the four

vehicles in order to minimize the region wide response time.

With these locations, we calculate the risk of pre-hospital

death for the coronary emergencies. The crux of the

evaluation insofar as coronary emergencies are concerned is

whether the addition of an extra standard vehicle can reduce

the average response time sufficiently to offset the advantage

of the treatment offered by the MCCU.

If the system has an MCCU, we alter the optimal location

model in the following manner. Any coronary emergency will be

attended by the MCCU if it is available. The only time the

MCCU is dispatched to another type of emergency is when all

standard vehicles are unavailable. Except for these two

situations, all calls are serviced by the closest available

standard sehicle. (We assume that it is possible to

distinguish all coronary emergencies when the incident is

reported).

Under this dispatch policy, we use the decoupled linear

program given by (5.7) to choose the optimal positions of the

units. The standard vehicles are located with the objective

of minimal response time to all calls. The MCCU is located in

order to minimize the risk of pre-hospital death for those
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coronary emergencies serviced by the MCCI. (Note: we are not

locating units to minimize the overall risk of pre-hospital

death for MI victims). This risk depends on both the patient

delay and the response time of the MCCU. Patient delay refers

to the time between the onset of symptoms and the time at

which the emergency is reported.

Let PD(t} denote the probability of a patient delay of t

minutes. Labeling the MCCU as response unit 0, the optimal

location for the unit under the response pattern FT(0,-) is

found by minimizing

(7.4) FT(0,j} PD(t} * RD{ t + DT + TT(pA(j)

t=0

over the position of the unit, p. The sum over j is for those

calls which are MI's; the 4[j) are the associated atom

locations. (The patient delay distribution is assumed to be

discretized to an integral number of minutes). The expression

given in (7.4) is the risk of pre-hospital death conditioned

on the location of the MCCU (p), the patient delay (t), and

the event that the MCCI responds to the coronary emergency

(from atom A[j}).

With the exception of the dispatch policy and the slight

change in the location model to accomodate the minimization of

response time for standard vehicles and the risk of

-174-



pre-hospital death for coronary calls serviced by the MCCU,

all other parameters of the system as described in Section B

remain the same, save two. Since the MCCU provides more

extensive service, we assume it has an on-scene service time

of 15 minutes versus 10 minutes for a standard vehicle. In

addition, we now have 32 classes of customers (NC=32); the

classification being based on location (16 alternatives) and

the nature of the emergency (coronary or other).

Before evaluating the alternative systems, we have to

specify patient delay; the time from the onset of symptoms

until an ambulance is called. As noted by Mogielnicki,

Stevenson, and Willemain for a fire rescue squad in Cambridge,

Massachusetts, patient delay is often considerably larger than

typical ambulance response times (Ref. 45). Hence, we

evaluate our two alternatives first with zero patient delay

and then with the mean patient delay of slightly more than

four hours as described by Cretin (Ref. 13). The distribution

for non-zero patient delay is shown in Figure 7.3.

Tables 7.4 and 7.5 summarize the operating characteristic

of the response system with and without the MCCU respectively.

It happens that the optimal location of the MCCU does not

change when patient delay is considered so these results hold

independently of the two particular distributions of patient

delay used as examples here. With two standard vehicles and

one MCCU operating under the dispatch policy as described

above, the optimal locations for the standard vehicles are in
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atoms 5 and 10. The MCCU should also be located in atom 5.

Although the MCCU is positioned only on the basis of the

coronary calls to which it responds, it should be noted that

it answers 90 percent of the coronary calls.

We note that the expected response time for the three

vehicle system is 13.6 minutes as compared with 10.3 minutes

for three standard vehicles optimally locatad and 8.8 minutes

for four standard vehicles. The addition of the MCCU has

clearly worsened overall response. The reduction in response

time which can be obtained by dispersing three response units

over the region has been negated by the addition of the MCCU.

The responses of standard vehicles are most frequently within

their own local vicinity. Since the MCCU responds to coronary

emergencies on a region-wide basis, it is centrally located

and the positions of the remaining standard units are adjusted

to respond to non-coronary calls throughout the region.

Insofar as response to MI's is concerned, the MCCU offers

a definite improvement. With zero patient delay, the risk of

pre-hospital death for MI's drops from 0.086 with four

standard vehicles to 0.052 when the MCCU replaces two of those

vehicles. These figures should be compared with the risk

associated with zero response time (0.0) and infinite response

time (0.199). If we express the risk of death in terms of the

expected number of deaths per year, a risk of 0.086 implies

60.3 deaths per year; a risk of 0.052, 36.4 deaths; a

difference of 23.8 lives saved per year.
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Table 7.4 Response characteristic for twa standard vehicles
and one MCCU. The MCCU, unit 0, is located in atom 5;
the standard vehicles, in atoms 5 (unit 1) and 10 (unit
2). In addition to the region-wide and unit specific
statistics, the response times and fraction of
appropriate responses is given for coronary and all other
calls (APRP in 7.4.C). An appropriate response is
defined by the dispatch of the MCCU to a coronary call
and a standard vehicle to all other calls.

7.4.A Region-wide statistics.

Average unit workload (AWL): 0.24
Average response time (minutes): 13.6
Average service time (minutes): 54.8
Saturation probability (P(S}): 0.029
Fraction of calls with acceptable response: 0.940

7.4.B Unit-specific statistics.

UNIT

0
1
2

0.12
0.28
0.31

0. 16
0.50
0.33

RESPONSE

15.4
11.2
16.2

SERVICE

56.4
43.1
71.7

7.4t.C Statistics
emergencies.

RESPONSE

13.4
15.2

for response to MI and all other

APPROP

0.90
0.92
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Table 7.5 Response characteristics for four standard vehicles
located to minimize region-wide response time. Unit 0 is
positioned at atom 1; unit 1, at atom 5; unit 2, at atom
10; and unit 3, at atom 15.

7.5.A Region-wide statistics.

Average unit workload (AWL): 0.18
Average response time (minutes): 8.8
Average service time (minutes): 54.1
Saturation probability (P(S)): 0.006
Fraction of calls with acceptable response: 0.99

7.5.B Unit-specific statistics.

UNIT FLJfjj RESPONSE SERVICE

0 0.13 0.24 6.8 42.3
1 0.20 0.39 9.3 39.2
2 0.18 0.22 10.8 62.8
3 0.20 0.15 7.4 97.4
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The same computations were made using the empirical

distribution for patient delay given by Figure 7.3.

Considering patient delay alone, the risk of pre-hospital

death in these circumstances is 0.133 with zero response time

and, as before, 0.199 with infinite response time. There is

clearly much less room for improvement in this situation.

With four standard ambulances, the risk of pre-hospital death

is computed to be 0.161; with the MCCU, 0.150. These risks

convert to 112.8 and 105.1 deaths per year respectively, a

difference of 7.7 lives saved per year.

The results of these computations indicate the kind of

conflicts which must be resolved in determining the allocation

of resources in an emergency service. If an MCCU is added to

the EMS system, performance improves with respect to a subset

of the population being serviced, but the overall response

characteristics of the system are worsened. There are several

questions which must be answered in order to choose between

the alternative configurations.

In the first place, is the decrease in the risk of

pre-hospital death really significant? On a percentage basis,

there is clearly less improvement when the effects of patient

delay are included in the analysis. Since the difference in

the service provided by a standard ambulance and an MCCU was

overstated, it would be hard to argue that the difference in

risk is significant in this case. Even if patient delay is

zero, there is some question as to whether a decrease in
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pre-hospital mortality contributes substantially to an

increase in subsequent life-time expectancies. This issue is

addressed in some detail by Cretin (Ref. 13).

The differences in response to other than coronary

emergencies can be even more difficult to evaluate. At least

for MI's, we have some measure of the effectiveness of

response; for other emergencies, it is not clear what benefit

is to be obtained from an average response time of 8.8 minutes

(four standard vehicles) versus 13.6 minutes (two standard

vehicles and the MCCU). An additional consideration is the

fraction of demands for service which have a response time of

less than thirty minutes; these are 94 percent and 99 percent

respectively. In practice, these conflicts must be resolved

on the basis of subjective preferences.

Although this evaluation of these systems does not yield

purely objective answers for all of the questions which may be

raised, it is hoped that this type of analysis will help to

remove some of the uncertainty associated with the effects of

various alternatives. For this particular example, if the

patient delay is distributed as in Figure 7.3, the most cost

effective alternative might be a system with three standard

vehicles; the funds for an MCCU or additional vehicle being

used in an education program designed to reduce patient delay.
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E. Summary

As noted above, the purpose of the preceding examples is

not to reach specific conclusions but to indicate the use of

the models developed in the preceding pages to evaluate the

consequences of alternative system designs. One striking

ability of the formulation given here is the incorporation of

very different measures of a system's effectiveness. For

example, the same programs were used to locate vehicles in

order to minimize response time and to determine the optimal

location of the MCCU under a very different cost criterion.

As a final note, all of the results of this chapter were

obtained at an expense of approximately twenty dollars. It is

difficult to relate this quantity to CPU time since the

computations were performed using an interpretive language,

APL (Ref. 1), under the Time Sharing Option on an IBM 370/168.

Based on other experience, one-minute of CPU time on that

machine using a language such as PL/I or FORTRAN is almost

certainly an extreme overestimate of the computation time

required.
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Chapter 8. CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER RESEARCH

In the preceding chapters, models for queuing systems

with distinguishable servers have been developed and presented

in connection with applications to spatially distributed

queuing systems. The major developments include a procedure

for determining optimal assignment rules in the Markov

hypercube queuing model; an approximation procedure for the

steady-state analysis of loss systems in which expected

service times are a function of both the server and the class

of customer; and an iterative procedure for determining the

optimal locations for response units in spatially distributed

queuing systems.

To date, the hypercube model has been applied only to

spatially distributed systems in which the cost of assignment

is given by the expected travel time to the scene of the

incident. As noted in Chapter 3, the optimization procedure

applied to this cost structure yields very little improvement

in average travel distance as compared to the "dispatch the

closest available unit" strategy. At least for spatially

distributed systems, the disadvantage associated with the

complexity of the optimal rule would appear to offset its

benefit in the reduction of travel times.

However, that result does provide useful information.
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That is, the simple, fixed preference rules determined on the

basis of proximity yield average response times which are near

the optimum for that system configuration. The most useful

result of the hypercube analysis could very well be the

application of similar techniques to other systems.

Applications in communications and medicine are suggested by

Jarvis and Larson (Ref. 29). Since the optimization was

formulated in terms of.a general cost structure, it could be

applied to these new applications with, perhaps, more

significant results than those obtained for spatially

distributed systems.

The location model and approximation procedure offer much

promise but also require a substantial amount of further

investigation. Insofar as the approximation is concerned, an

issue of immediate concern is its robustness or applicability

in describing widely varying systems. One approach for

resolving this question might be the use of a set of

simulation experiments. At the present time, there appear to

be no analytic models substantially different from those

presented here which might serve as a basis for validation.

As an alternative to simulation, the approximation could be

compared to historical data if that data was sufficiently

detailed and reliable.

An interesting alternative to the above would be the

development of analytic bounds on the error associated with

the approximation. A possible approach to this problem might
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include some restrictions on the service time distributions.

As formulated, only the error in the estimates of the FSC

terms need be bounded. These comments notwithstanding, the

computational experience with the approximation has been good.

In addition, that procedure is a simple, inexpensive

alternative to simulation as a means for explicitly

incorporating travel time into a queuing analysis of spatially

distributed systems.

There are no analytic problems with the location model

per se. In its simplest form, the location model reduces to

choosing the minimum of a finite set of numbers. When

constraints such as those developed for police preventive

patrol or maximum travel time are included, the location model

must be solved as a linear or integer linear program

respectively. Neither of these problems presents serious

computational difficulties.

The main question relating to the location model deals

with its use in conjunction with various descriptive models to

determine optimal locations for response units in spatially

distributed systems. There is no guarantee that the iterative

procedure will not converge to a local minimum. In practice,

it would appear advisable to use the algorithm with several

different initial conditions in order to have some confidence

that a global minimum has been reached. Local minima have not

been a problem in the author's experience except in situations

in which the distance between contiguous atoms is comparable
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to the overall dimensions of the region being examined or in

problems exhibiting a great deal of symmetry.

In summary, the location model and the approximation

procedure offer solution procedures to problems which could be

treated only in part previously. Although these procedures

require further investigation, initial experience has been

encouraging. The approximation procedure produces estimates

within a few percent of those derived from exact analytic

models except where mean service times are very dissimilar.

The use of the iterative location model to determine optimal

locations for response units has not been complicated by

convergence to local minima. Finally, both procedures are

very inexpensive to use. An application of the algorithms to

problems arising in large urban systems is not expected to

require more than a minute or two of CPU time on large

computing machines.
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APPENDIX A

An alphabetical list of variable names and mnemonics with the
section (S) or equation (E) where the variable is first used.

AWL: average unit workload; S3.E

B: event that a server is busy; E6.4

BUS: server busy with specified customer; S4.C.1

C: cost of assignment; 53.B.2

CO: objective coefficient in location model; E5.6

CP: cost of assignment given unit position; 55.8.1

CR: sall rate for each customer class; S3.B.1

CRT: call rate, total; E3.3

CS: cost for a customer arriving during saturation; E3.10

CT: expected gost per transition; E3.13

DP: dispatch preference matrix; 56.B.2

DT: dispatch delay time; 57.B

E: expectation of a random variable

EC: expected gost per customer; E3.10

ED: expected response distance; S3.E

ETC: expected transition cost; E3.12

F: event that a server is free; E6.4

FA: fraction of acceptable responses; S5.C.1

FC: fraction of calls from each atom; ES.2

FSC: fraction of responses by server for each class; E3.9

FT: fraction of total services by server and class; E5.4

FU: fraction of calls serviced by each unit; 96.20
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LHS: left hand side

NAC: maximum acceptable cost; S5.C.1

MAF: minimum acceptable fraction; S5.C.1

N: number of servers; S3.B.1

NC: number of customer classes; S3.B.1

OSS: on-scene service time; 37.8

PC: steady state probabilities, gonvolution model; E4.1

PD: probability of patient delay; S7.D

PE: steady state probabilities, Exponential model; E4.2

PH: steady state probabilities, hypercube model; E3.5

POL: state golicy vector, hypercube model; S3.B.2

Pr: probability of an event

Q: correction factor; E6.8

RC: service rates, gonvolution model; S4.3.1

RD: risk of death following an MI; E7.3

RE: service rates, Qxponential model; S4.B.2

RH: service rates, hypercube model; S3.B.2

RHS: right hand side

S: saturation event, all units busy; 5.B.1

s: saturation state, hypercube model, (2**N)-1; 53.B.2

SRT: service rate, total; E3.6

SV: state value; E3.13

TA: average service time; E6.17

TC: transition cost; S3.C.1

TP: transition probability; S3.C.1

TRN: hospital transfer time; 57.B
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TS: average travel speed; S7.B

TSC: expected service time by server and customer; S4.C.2

TT: inter-atom travel time matrix; 57.B

TUl: average service time by unit; E6.19

U: utilization; 56.B.3

U0o: unit preference grder matrix; S6.B.4

UP: probability of unit positions; S5.B.1

VC: state vector, gonvolution model; S4.B.1

VE: state vector, exponential model; S4.B.2

VI: state vector, hypercube model; E3.1

WL: server workload; E3.8
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PO * (N-k-1) !

((l-PN)**k) * NO * (1-U*(l-PN))

APPENDIX B

A recursive procedure for the calculation of the correctioa
factors, Q(N,,Ukl,, where

N-1
(N-J) (N**j) (U** (J-k)

(j - k)
(6o8) Q(NgUekl -

j=k

Def ine

SM

j=o

((U*N)**j) / j!

PR = ((U*N)**N) N!

PN = PR SM

PO = 1 Sm

Define H. G. and F recursively by

H(Nourol PR / (N*U)
H[NvUwk+ll H(NeUck) U

G(NeUrO) (SM - PR) N
G(NrUsk+l) N * (G[N,?Urkl - H[N,,UFkl) (N-k-1)
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PO * F(NrUek)

(1-U*(l-PN)) * ((l-PN)**k)

F (Nr Ur 0) SM (1-U*(l-PN))
F(NrUek+ll N (F (N jU Fk) - G [Ne Ulk) (N-k- 1)

for k=O,, lfm es N-2e

Then

Q (Ne Usk) =

for k=Og lpe eo rN-le
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