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ENERGY DEMAND MODELING
by
Pavid Walter Peterson

ABSTRACT

The first part of this study establishes a unified set of techniques
for the estimation and validation of nonlinear, dynamic, time-varying
models, with special reference to models and data typical of the social
sciences. The techniques are called Full-Information Maximum Likelihood
via Optimal Filtering (FIMLOF)., The basics of FIMLOF are adapted from
advanced engineering techniques of system identification and verification;
additions and variations are created to deal with special problems of
cross sectional data, unknown initial conditions, missing data, and bad
data points, FIMLOF is demonstrated *o apply to a wide range of model
and data structures outside the scope of traditional techniques.

The feasibility of FIMLOF is examined in the context of simulation
experiments, as a preliminary exercise. The methods and software are
seen to yield expected theoretical results on a simple first order
system, FIMLOF is also seen to work correctly on a high order, nonlinear
system where other methods fail, '

The FIMLOF techniques have been implemented in a user-oriented
computer program, called the General Purpose System Identifier and
Evaluator (GPSIE), in order to make the tools of FIMLOF more accessible,
both to engineers and social scientists.

The second part of the study describes the use of FIMLOF (via GPSIE)
in the development of a model of fuel demand in ‘he residential~-commercial
sector of the U.S. 1In addition to the estimation of parameters, the
methods are shown to yield sensitive validity tests, and insight for
model improvement., A new technique for bad data identification and
robust estimation is demonstrated.

TIESIS SUPERVISOR: Fred C. Schweppe
TITLE: Professor of Electrical Engineering
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Chapter 1

OVERVIEW and MOTIVATION

The process of modeling may be thought of as a three~stage
iteration:

1. Hypothesize a mathematical structure

2. Estimate unknown parameters

3. Test the model for consistency with data
If the model fails step (3), the modeler returns to step (1)
to hypothesize a new structure.

This thesis develops and implements -some advanced
methods for performing steps (2) and (3) of the above
iteration. The  methods are based on the method of full
information maximum likelihood, via optimal filtering
(FIMLOF). FIMLOF, and related techniques, allow the steps
of estimation and validation to be performed for a much
wider range of model forms than has been possible using
traditional tools. Therefore, the methods also contribute
to step (1) of the iteration, by removing traditional
constraints on model specification. Figures 1-1 and 1-2
give an overview of the capabilities of FIMLOF and the types
of models to which the FIMLOF methods apply.

Although the the new techniques can be used to improve

on or check the results QT other statistical methods, the
l

|



PARAMETER ESTIMATION:

o] Estimate all parameters in a model, including characteristics
of driving and measurement noise,
o Estimate some parameters, taking others as known a priori.

CONFIDENCE TESTS (VALIDATION):

o] Test for consistency between model and data.
o Choose among alternate models (hypothesis teeting)
FEASIBILITY:
o Determine if the estimation of parameters in a model is
possible, using given data
o Determine the kind and amount of data needed to estimate

unknown parameters to a given accuracy (via experiments
with simulation data).

STATE ESTIMATION, SIMULATION, AND FORECASTS:

o Estimate unknowr inputs and the state trajectory
o Simulate the model (deterministic or noise-driven)
o Compute confidence bounds on forecasts

BAD DATA DETECTION AND ROBUST ESTIMATION:
o Detect presence of bad data
Locate specific bad data points
Eliminate the bad data from the sample
Automatic compensation for bad data: robust estimation

[l o]

Figure 1-1

Capabilities of FIMLOF and GPSIE
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5.

6.

7e

FIMLOF and GPSIE Operate Under
Conditions Of:
Nonlinearities in model dynamics
Nonlinear measurement functions.
Measurement error (errors in variables)

Mixed sampling intervals (can, for example, estimate
a weekly model, using monthly and yearly data.

Missing data (without sacrificing other data at the
same sample time).

Models with unmeasured endogenous variables,
Cross-sectional, time series mixed data,

Unknown characteristics of equation errors and
measurement noise,

Figure 1-2
Applicability of FIMLOF and GPSIE



- 8 -

most promising contribution of FIMLOF is its ability to deal
statistically with model and data structures which 1lie
outside the range of applicability of the other methods.

The methods were developed as part of a larger effort
[Baughman, 1974] to model the demand for fuels in the
residential commercial sector of the U.S. economy. There
were three motivations which led to the development:

1.  Models were being hypothesized, based on economic
and engineering theory, which were not linear in
the parameters, and which could therefore not be
estimated with ordinary least squares (OLS), or
other traditional single-equation methods.

2. Much of the available data on fuel consumption and
fuel prices seemed to contain significant amounts
of measurement error (errors in the variables);
some evidence [Senge,1974] indicated that OLS and
GLS could be sensitive to measurement error,
yielding invalid and misleading results.

3. In the long run, it was felt desirable to be able
to add to the models expectations and other
variables, fop which no direct measurements were
available. The new methods showed promise, from
their application in engineering situations, of
being able to deal with models containing
unmeasured endogenous variables,

This thesis reviews the method of full information
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maximum likelihood via optimal filtering [Schweppe, 19651,
develops and extends the method for application to dynamic
social models. The operation of the FIMLOF methods is
demonstrated both in controlled simulation experiments and
on real data in the modeling of energy demand.

The success of the resulting techniques is promising
enough that the software wused 1in this thesis has been
generalized and made publicly available, in the form of a
program called the General Purpose System Identifier and
Evaluator (GPSIE). GPSIE is described in [Peterson, 1974].

Chapter 2 of this thesis describes the mathematics of
the FIMLOF techniques, their relation to other methods, and
their intuitive basis.

Chapter 3 reviews some key examples of the experimental
results used to test the wvalidity of the new methods.
Results using GPSIE are compared with Senge’s experiments
[Senge, 19T74].

Chapter 4 discusses some possible implications of the
FIMLOF techniques on the hypothesis of model structures.

Chapters 5 and 6 describe the application of FIMLOF to
models of energy demand in the residential commercial
sector, Chapter 5 describes some results on a preliminary
structure which was rejected when it failed to pass various
consistency tests., Chapter 6 describes a somewhat more
successful result with a revised model.

Chapter 7 gives a brief summary of some of the key
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results of the work.



Chapter 2
FIMLOF FOR NONLINEAR DYNAMIC SOCIAL MODELS

This chapter describes full-information maximum
likelihood via optimal filtering (FIMLOF) for wuse in
estimation and consistency testing of dynamic social models.
Section 2.1 defines a standard form and nomenclature for the
class of nonlinear stochastic dynamic models to which FIMLOF
may be applied. Section 2.2 establishes the generality of
the standard form -- it 1is shown that a great variety of
model forms can be reduced to the standard form., Section
2,3 develops the mathematics of FIMLOF as applied to the
standard form., Section 2.4 gives an intuitive
interpretation of the mathematics of FIMLOF, and describes
its relation to other methods. Section 2.5 1lists several
useful properties of the likelihood surface and filter time
series at the maximﬁm likelihood point. These properites
are used as the basis of several tests of consistency
between models and data. Section 2.6 develops new methods
for the detection and identification of bad data, suggests
robust estimation algorithms based on the methods. Section
2,7 concludes the chapter with a description of the
implementation of FIMLOF in a computer program called the

General Purpose System Identifier and Evaluator (GPSIE).
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2,1 Standard Model Form.

GPSIE deals with modelé which can be reduced to (or
suitably approximated by) the following form:
x(n) = £(x(n-1), u(n), w(n), n)
z(n) = h(x(n), v(n), n)
n=1.,.N,
where

x(n) is the vector (dimension Kx) of state variables of
the system. State variables may be informally
defined as the "memory" of the system. The future
behavior of the model depends only on the present
values of the state variables and the future values
of exogenous inputs. The examples and guidelines
of Section 2.2 should clarify the idea for most
readers not already familiar with state variables;
for further details, the reader may consult
[DeRusso, 1965] or [Minsky, 1965]. The "initial
conditionQ" of the state variables, x(0), are
assumed to be uncertain, with expected value x, and
covariance'iﬁ

z(n) is the vector (dimension Kz) of measurement data
at time index n. "!n" is simply the index of
time-points for which there is data -- it 1is not
assumed that the data is evenly distributed in
time.

f 1is a vector-valued nonlinear function, called the
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state function. It may, of course, be linear,

u(n) is a vector function of n (time), called the
exogenous input vector, or the control input. Its
dimension is Ke; it may be absent, in which case
Ke=0,

w(n) is an unknown vector input, assumed to be a white,
Gaussian (normal) process. The mean of w(n) 1is
assumed to be zero; its covariance matrix is called
Q(n). Note that the dimension of w may differ from
that of x.

h 1is a vector-valued (dimension Kz), nonlinear
function, called the measurement function.

v(n) 1is an unknown vector-valued measurement error,
assumed to be a white, zero-mean, Gaussian process.,.
Its covariance matrix is called R(n). Note that

the dimension of v may differ from that of 2z.

The standard model form is summarized in Figure 2-1.
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STATE EQUATIONS:
x(n) = _f_[_:g(n-l), u(n), w(n), n]

MEASUREMENT EQUATIONS:

1

2(n) g[gg(n),g(n), n |

INDEX OF DATA SAMPLES:
n-"—l,o..N

INITIAL CONDITIONS:

x(0) = N[z, 7V | x
EQUATION ERRORS (DRIVING NOISE):
wtw) = v [0, ow]
MEASUREMENT ERRORS
v(n) = N[g, _R.(n):)
LINEARTZATION ABOUT ESTIMATED STATE: {~ v +  io: (-1 ’—?
~ f o~ /'-'y”] ‘
f_(n) = 5 )( _l;l_(n) =,_.:. !
25t oS lsppny
3 e
9ln) = (;t“ Q () (j*’ pae bl |
‘) = U emwm( i
Winy: 0
ey v ! / |
4 {;: —.‘ kS ‘ d.-}' a u,( !(h)’— U r
R(n) = ( = AN () J’—“ ) -
- L,}_y S 4 _\_/ .
&/%rﬂhh far wie e .j
stenal A5 ]ter )
OP?’ / * N [_rg, g] denotes
- a normal, white process

with vector mean m and
covariance matrix C.

Figure 2-1

Standard Model Form
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2.2 Generality of the Standard Form.

The following subsections list common model types, and
discuss how each can be expressed in the standard form of
Section 2.1. The treatment here 1is brief; for more
details, the reader is referred to Chapter 3 of

[Schweppe, 19731].

2,2,1 STATIC SYSTEM.

By "static system" we mean single or multiple
measurements z of a constant x. The corresponding standard
form is achieved by setting w(n)=0 for all n and making f
the identity function. Then we have

x(n) = x(n=-1) =

1=
)
=]
o

z(n) = hlx(n), ¥(n)]

n
I~
~
]
I<
IS,

=
N
—

2;2,2 MISSING OBSERVATIONS.

Suppose that at sample (or samples) n, some of the
components of the measurement vector 2z(n) are missing. The
situation of missing observations arises often and in many
guises:

1. Changed measuring methods. This case, which often
arises in social data, means that some of the
measured variables are available only after a given
point in time.

2, Different fregencies of sampling. Some variables,

for example, might be measured monthly, others



yearly.

3. MultiDlexgd measurements. In physical systems, we

may have a single measuring device which 1looks at
different variables or groups of variables in
rotation. For example, we might have data on one
variable for odd ﬁ, and another variable for even
n.

y, Simple missing observations. Due to loss of

records, typographical errors, or malfunctioning
sensors, some data points (possibly scattered) may
be simbly unavailable, or may be considered too
unreliable to use.

The missing data phenomena are all, in essence, a
special case of a time-varying measurement function h. If,
for example, no data is available at n=3, then h(3)=0.
Similarly, if the first component of z(5) is missing, then
h;5)=0. Methods for dealing with missing observations are

discussed more fully in later sections.

2.2,3 NO MEASUREMENTS AT ALL OF SOME VARIABLES.

This case is already inherent in the standard form.
Note that z(n) need not be of the same dimension as x(n).
The general measurement function h also allows a single
measurement (component of z) to be a function of several
components of x.

2.2,4 PERFECT MEASUREMENTS.
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If some of the data is presumed to be error-free, simply
set the appropriate elements of R to =zero, indicating zero

measurement error for the corresponding component of z.

2,2,5 MODEL ERRORS.

The 1input wuncertainty w(n) may represent not only
exogenous random inputs to the system (weather, etec.), but
may also be used to represent the uncertainty associated
with the model formulation, Components of w added to an
equation may be used to represent the (lack of) precision of

that equation.

2,2,7 KNOWN INITIAL CONDITIONS.

In some cases, x(0) can be assumed to be known
perfectly. In this case, one sets j’ = 0. For single
components of x(0) known perfectly, the corresponding row

and column of }? should be set to zero.

2,2.8 COMPLETELY UNKNOWN INITIAL CONDITIONS.

To approximate the case of unknown initial conditions,
it is usually best to set 'Hf very large. For most cases,
this method suffices, If, however, an unusually precise
formulation is required, x(0) may be modeled as if it were
known perfectly, but with the unknown components to be
estimated as unknown parameters. In this case, the

corresponding components of’Yf should be set to zero.
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2,.2,9 NONZERO-MEAN UNCERTAINTY.
If it 1is desired to model w(n) and v(n) as non-zero
mean, simply incorporate the mean values as part of the

exogenous input u(n). For example, take the scalar model

x(n) = a*x(n-1) + u(n) + #(n) ,
where
E{&(n)} = k
By suitable definition of u(n) and w(n), we get the

standard form

x(n) = a*¥*x(n-1) + u(n) + w(n)
where

u(n) = G(n) + k

w(n) = &(n) - k

2,.2.10 NON-WHITE UNCERTAINTY.

If, as 1is often the case, one wishes to model w(n) or
v(n) as time-correlated processes, this can be done by
modeling, for example, ®%(n) as the output of a dynamic
subsystem driven by a white process w(n). A common choice
for the subsystem is the first order linear model

#(n) = p*a(n=-1) + w(n) ,
where p may be set a priori or may be included as an unknown
parameter to be estimated. Such subsystems must then be
incorporated in the state function part of the standard-form
model, by including ®#(n) as a component of the state vector

x(n),
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2.2, 11 NON-GAUSSIAN UNCERTAINTY.
Less common than the non-white case, but still possible,
is the «case in which w(n) or wv(n) is modeled as a
non-Gaussian process., In general, the desired effect can be
achieved or approximated by taking, for example, &(n) to be
the output of a nonlinear subsystem driven by white,

Gaussian noise.

2,2.12 COMPLETELY UNKNOWN INPUT.

Sometimes it is desirable to model the input disturbance
w(n) as a completely unknown (Fisher) process. An excellent
approximation to this condition can often be made by setting
the appropriate components of Q(n) to be very large. The
rigorous way would be to treat w(n) as known and estimate
all N¥Kw components as unknown parameters. This method,

however, is usually too expensive to be practical.

2.2,13 UNCERTAIN MEASUREMENT OF EXOGENOUS INPUTS.

The standard form assumes that the model-input vector
u(n) is known perfectly. In some cases, however, u(n) is
instead measured with error, Consider a model in which the
measurements of the exogenous input is

@(n) = u(n) + e(n),
where u(n) is the true, but unknown, input, and e(n) is the
corresponding measurement error. Assume, for example, a

model of the form




- 21 =
x(n) = A(n)x(n-=1) + u(n) + w(n)

In this case, we get the standard form

x(n) = A(n)x(n-1) + 4(n) + #@(n),
where

g(n) = u(n) + e(n)

g(n) = w(n) - e(n) .

Similar transformations can be made whenever the
measurement of u(n) is invertable; that is, if the true
input u(n) can be expressed as a function of the measured

input G(n) and the measurement error e(n).

2.2, 14 LAGGED VARIABLES AND AUTOREGRESSIVE MODELS.

Often, models contain lagged variables. For example,
consider the scalar model

x(n) = a*x(n-1) + b*x(n-3) + w(n)

where x(n-3) is x(n) lagged three time steps. Such models
are converted to standard form by augmenting the state
vector and state function to include a simple model of the
lagging process. In the example, the equivalent standard

form is the three-state model

x1(n) = a*x1(n-1) + b*¥x2(n-1) + w(n)
x2(n) = x3(n=1)
x3(n) = x1(n-1)

Substitution quickly demonstrates that x2(n=-1) is

~equivalent to x1(n-3).
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2.2.15 CONTINUOUS DYNAMICS.

Continuous~time dynamics (differential equations, rather
than difference equations) must always be approximated as
discrete-time systems if they are to be simulated on a
digital computer. A wide variety of integration schemes
exist to simulate the continuous dynamics between data
points.

2.2;16 REGIONAL (CROSS-SECTIONAL) DATA.

Often (especially in social modeling) , data from
several separate but similar systems are used to estimate
parameters in a single model. For example, a model of water
use in part of the U.S., might be applied to ten years of
data collected separately in each of 15 counties. The model
might then be a function of both time and location. Such a
model can be converted to the standard form by concatenating
the data and being careful to make all the appropriate model
changes at the transition from one region to the next. To
make the job easier for the user, GPSIE includes options for

the handling of cross-sectional data in convenient form.

2,2,17  MOVING AVERAGE MODELS (LAGGED INPUTS).
Consider a typical moving-average model of the type
x(n) = a*w(n) + b*w(n-1) + c¥w(n-=2) .
Such models can usually be reduced to the standard form by

state augmentation:
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x1(n) b¥x2(n-1) + c*x3(n-1) + a*w(n)

x2(n) w(n)

x3(n) x2(n-1)

2.2.18 IMPLICIT STATE FUNCTION.
In economics, one often encounters equations of the
form:
f(x(n), x(n=1) ., . . ) =0,
in which the state vector x(n) cannot be expressed as an
explicit function of its previous value x(n-1) and the

exogenous inputs wu(n) and w(n). While the FIMLOF method
C)l(hl
d X(n-1)
method does not require that the computation be analytically

requires that x(n) and be computed from x(n-1), the
explicit. Thus, in the extreme case where explicit
. . a X(n .
expressions for neither x(n) nor X=——gcan be derived, both
P x(n) W') ’
can be computed numerically. For example, x(n) could be
computed by Newton’s method [see any book on numerical
analysis], and the partial could be computed by taking
finite perturbations in x(n) and wusing Newton’s method to
compute the corresponding x(n) vectors, from which the

partial may be approximated via finite differences:
0 X (n) \ N )\'J-(V\,Xkln—u)ﬂ) - >{J (n)
3 5(*\'055: A T

The FIMLOF method, as a side benefit, often removes the

need to use implicit formulations in economic models (see

Chapter 4).
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2.3 Mathematics of FIMLOF.

This section summarizes the computation of the 1log
likelihood function for the standard form model defined in
Section 2,1, For a more detailed treatment, see
[Schweppe, 1973,pp 286-288].,

The 1likelihood function is computed one point at a
time. That is, for each different model (or, equivalently,
each different value of the vector of unknown parameters)
the data are processed once to yield the 1log likelihood of
that model, To find the maximum likelihood parameters,
then, the parameters are varied according to a hill-climbing
algorithm (nonlinear optimization).

The computation of the log likelihood for a given model

is as follows: define

* T
z(1)
3 >
_n - * .
z(n) |
For any set of unknown parameters (or, equivalently, for
an hypothesized model j), 2z is a random vector with

—h’
J
probability density function pj(gr\). The 1log likelihood
function 5 (n) is defined as
€ (n) = In{pj(z,)}
By Bayes’ rule,
. - 4 * £ [
pi(z,) = pi(2)*pi(z iz )

J = n J ThA =h-
or, taking the log of both sides,
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€ (n) = E(n-1) + In{p;(z iz, )}, E(0) =0 (%)

n -
v

?
Z(nz l )} 3  the

It remains to compute 1nf{p " -

J

computation is performed by the optimal filter. Define
}
J,(n) = z(n) - Z(nin-1)

2, (nin-1) = E{§(n)5,(n)}

2(nin-1) = E{z(n)lg,

Under the assumption that the probability densities are

gaussian, we have IPJ(g(n)Lén»') =
~7
[_(_27?) Zde‘t{gz (n [h"l)}] exf’vz(—il 3, gz (n/n—:)_éi.(n)}

where KZ is the dimension of z(n). Substituting this result

into (*), we get 2;("\) - 2?()1-!) _ Kz /n (2,1?)
-1
/ .
—In[det § Z,na-0f] = S () 2 () Syl

The remaining undefined terms Z(n|n-1) and g;(n{n-l) are
computed by the optimal filter, the equations of which are
given in Figure 2-3.

For more details, see [Schweppe, 1973] and

[Kalman, 1960].

2,4 Intuitive Interpretation and Relation To Other Methods.

This section gives a simple example of the method
outlined mathematically in the above section, to explain the
intuitive justification for the FIMLOF method, and to give
some insight into the relation between FIMLOF and OLS, WLS,

and other standard econometric methods.
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‘.7r€d;'cfed state: g(l’lf'n-.): f[f(""l”“),l«i(n)]
Pred,meu.)‘i.n'c’menf: 2(""’") - h[?.‘:(“'""\)]

resduals: S, (n]n-1): 2 - g(“ [ -1)

l)redac'l"e’o( state _SJMV" :_F(n)_‘z‘{n—l/n-')f(n) + C;’(Vl)

C ovar @nee.

. o ~ ~s 5
P?edlcm’j meas._' i}-z(hln'q: ’j(")%v"‘l"") U“‘”L\‘”)

( oveiriance.
-
normalized  precdicted ~ <
measurement vesiduali v B, (nln-1) = _2__—3 (_S;_(n/h =)

-1
-1 S~
updafec( state ECLE [Z (n]a=0) f/j(h)_f\f(ny H(")J

covariance

~ -
filter jc‘(fr: : E{n) = ;Zx‘h[n-') _l’_‘(n\ /:-Z (nln -1)

dated state - A ) )
l/lPe:‘f”yfm,)((, . 2_(,(”/’1)=__7_C(hlh ) '(‘bln) _'_S_z(h”1“)

/‘-’E) i g[n) = f(n—n) - z! /h [_d@‘f [22 (n[n-n)}]
| ke lrncoc

14 -
- éz(hl“"") ,ZZ (M]h~\) gz(hlh-l)

!
2

}n.?‘ll"f‘, o Role)= X, = oY= W ,

C()nﬁ(‘l tonjg - P —
E(9) = 0.

Figure 2-3

Equations for the Optimal Filter
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Consider the data graphed in Figure 2-4, and suppose we
hypothesize the data to have been generated by the system

x(n) = rx(n=1)
z(n) = x(n)

where r is an urknown parameter we wish to estimate from the
data. Since the hypothesized system is completely
deterministic, and the data of FIgure 2-4 is "clean," we may
do a good job of estimating r by simply taking the ratio
between a few successive values of z(n). However, the
purpose of this example 1is to illustrate, in a simple
environment, a more roundabout way of estimating r which
will work not only in the simple case, but in much more
complicated situations. The essence of the more complicated
method, which we shall develop into FIMLOF, is to guess a
value for r and simulate the equations, and measure the
error between the simulated data 2Z(n) and the actual data
z(n) of figure 2-4, The estimate of r is then chosen as the
guessed value which minimizes the error between the actual
and simulated data.

There are several ways of doing the simulation; we
here discuss three ways. One is obvious but quickly leads
to trouble in less 1ideal situations, the second 1is
equivalent to ordinary least squares, and the third will be

FIMLOF,

2.4,1 NAIVE SIMULATION,
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Let us assume that we initialize the system at the
first data point z(1) and perform the iteration
X(n) = PR(n-1)
Z(n) = %(n)
for n=1...N. We may now measure the error by taking the sum
of the squared errors at each data point.. The NS sum of

squared errors, also called the loss function, is denoted as

N
J = [z(n)-2(n)]
Ny

In this nonpathological case, the error will be zero if we

J:

guess r correctly. We may guess close to the right r
perhaps more efficiently and methodically by using a good
hill-climbing algorithm, but the essential idea is to guess
until we are satisfied that no smaller error can be found.
However, in less sanguine cases, such as the system
x(n) = rx(n-1) + w(n), w(n)=N[0,Q]

the naive simulation method may give minimum error for a
completely wrong guess of r, since the real system may
"drift" away from the deterministic trajectory, under the
influence of the driving noise w(n). We shall carry the

argument further after introducing a method that works

better.

2.4,2 ORDINARY LEAST SQUARES (OLS).
When driving noise w(n) is introduced, we can in

general obtain better estimates of r by re-initializing the

SEERERR e = DESPREEERL R .,_A_
e -
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system at each data point. That is, we use the iteration
%(n) = Pz(n-1)
Z(n) = %(n)
and compute the OLS summei}error (loss function) J° as
J*=> [z(n)-2(n)]

In the case with dgibing noise w(n) and covariance Q
introduced above, it is easy to see that as n increases, the
covariance of x(n) (and z(n)) approach a steady state value
of

E{x*(n)} = E{z*(n)} = Q/(1-r*)
Assuming that r<1, the naive simulation (NS) method will
yield, for large n, negligible ﬁkn), and the covariance of
x(n) will be 2lose to its 1limiting value of Q/(1-r%). Call
the n for which the system 1is approximately in steady state
i, and let us compute the contribution to the error terms
for large n>>fi under the two methods of estimation. We
define E{AJ(n)} as the expectation of the increment in the
loss function J due to the n_th sample of data z(n).
For the OLS case, we have
E{AJ"(n)}ols = E{(r-f) z*(n=1) + w*(n) + 2w(n)(r-#)z(n=-1)}

= (r-F) E{x%(n-1)} + Q

= (r=$)"Q/(1-r?) + Q
It 1is clear from the 1last expression above that the
expectation of the OLS loss function J° is minimized by f=r,
and that any #P#r adds to the loss function by a stochastic

amount with constant positive expectation. Thus the
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estimate £ which minimizes J° is consistent.

For the naive simulation (NS) case, a similar analysis
yields

E{AJ(n)}ns = E{[z(n) - #"x(0)]")

= E{x*(n)} - 2E{#"x(0)x(n)} + E{#¥"x2(0))
= Q/(1-r?) - 2x*0)8%" + ¥ x™(0)
= Q/(1-r*) - p¥"x™(0)
But for large n, this reduces to
E{AdJ(n)}ns = Q/(1-r%), n>>1

which is independent of p! Thus, for noise driven systems,
the naive simulation method in effect ignores most of the
data, while the OLS method yields a consistent, unbiased
estimate,

However, the OLS method also breaks down when
measurement noise v(n) ("error in the Variaﬁles") is
present in the system [Wonnacott,1970]:

x(n) = rx(n-1) + w(n)

z(n) = x(n) + v(n)
The next section describes how FIMLOF incorporates the
desirable features of both NS and OLS to compensate

simultaneously for w(n) and v(n).

2.4.3 FIMLOF.
The intuitive interpretation of FIMLOF presented here
is best understood by first putting the NS and OLS methods

in a common framework. Each method consists of the

i B e e s e v




- 32 -
following iteration:

1. Compute a predicted measurement Z(nin-1) by

simulating the model one time step from time n-1
to n.,

2, Square and accumulate the error term (residual):

z(n)-2(nin-1).

3. Reinitialize the model to prepare for the next

simulation step (set x(n) in the model to some
X(nin)), and go to step 1.

The only difference between NS and OLS is in Step 3 of
the above iteration. NS "reinitializes" by leaving the
model state at the value obtained 1in the previous
simulation, ignoring the data z(n). That is, NS omits step
3 of the iteration. In contrast, OLS ignores the previous
state of the model completely, and reinitializes the model
at z(n). Thus, in OLS, Step 3 of the iteration is
completely data-based, while for NS it is model-based.

The advantage of OLS over the naive simulation method
(NS) may be interpreted as follows: when a large w(n)
abruptly moves the system far from 1its former state, the
naive simulation method "stays put" and thereby accumulates
large fallacious errors; whereas the OLS method, via its
reinitialization at the data point, "follows" the system as
it drifts under the influence of w(n).

But with the addition of measurement error v(n) in the

above system, OLS may run into a problem similar to that
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encountered by NS in Section 2,4,2, That is, a large v(n)
may trick OLS into reinitializing at a z(n) far away from
the true state of the‘system x(n), leading to large errors,
even with perfect parameter guesses.

Thus, we are in a dilemma. The naive simulation method
does not go far enough in taking into account the data by
repositioning the model; but OLS may go too far,
reinitializing at z(n) which may be far from the true state
of the system. The essence of FIMLOF 1is to strike an
optimum balance bethen the two extremes, by basing the
reinitialization on explicit assumptions about the variances
of the two error sources. If the equation error w(n) has
large variance Q, and the measurement error v(n) has small
variance R, then FIMLOF behaves 1ike OLS, ignoring the
prediction of the model and repositioning at the new data
z(n)., In the opposite extreme, with large R and small Q,
FIMLOF behaves much 1like the naive simulation method,
relying on the model predictions to maintain a steady course
through the error-prone data. The reader may verify these
limiting cases by examining the equations fo Figure 2-3 for
large Q and for large R. In the general case, where w(n)
and v(n) have arbitrary rariances, the equations of the
optimal filter reinitialize the system at the best Bayesian
estimate of x(n), given all previous information
z(1)...2(n).

AT this point, the reader may object that the prior
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knowledge of the variances of v(n) and w(n) used to make the
Bayesian estimate may be unavailable a priori. In this
case, one simply adds the variances of v(n) and w(n) to the
list of unknown parameters to be estimated. An important
feature of FIMLOF is the ability to extract from the data
information (when it is present) about any aspect of the
standard model form, including structural specification
(through parameterization of structure) and the

characteristiecs of the error processes.

2.5 Consistency Tests.

The FIMLOF method yields some powerful statisties for
evaluating parameter estimates and overall consistency of
the estimacted (or hypothesized) model with the data. The
next two subsections desc:ibe these tests. Section 2.5.1
discusses tests that derive directly from the 1likelihood
surface; Section 2.5.2 describes some especially valuable

tests that are based on the optimal filtering mathematics.

2,5.1 USE OF THE LIKELIHOOD SURFACE.

Two properties of the log likelihood surface are useful
in locating and interpreting parameter estimates.

1. At the global maximum of the 1log 1likelihood
surface, which determines the FIML estimates of unknown
parameters, the hessian matrix of second partials, as

computed by finite differences, gives an approximation to
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the Fisher information matrix. The square roots of the main
diagonal terms of the inverted hessian, then, measure the
standard deviation confidence bounds of the parameter
estimates. One may be tempted to use these confidence
bounds to compute T statistiecs for the parameter estimates.
But in the nonlinear framework, such statistices could be
misleading, since a zero parameter can be quite significant
and important. For example, consider the following model
with a single unknown parameter 0:

x(n) = 8f(x(n-=1)) + (1-8)g(x(n=1))

Here, an estimate of 6=0 is very significant indeed, since
the estimate indicates that the structure defined by the
function g 1is the most likely. So, for example, we might
estimate & to be .01, with standard deviation .05. The T
statistic would be 0.2 which might be interpreted as an
insignificant estimate, where in the context of the model,
the estimate and 1its standard deviation imply very
significant conclusions. In conclusion, the FIMLOF method
is capable of computing a traditional statistic, but in the
general context of nonlinear systems, the statistic itself,
under traditional informal interpretation, may be
misleading.

2, A little known but highly useful fact is that at
the maximum, the vertical change in the 1likelihood surface
corresponding to a two standard deviation horizontal

displacement from the maximum corresponds to a change in the
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log likelihood of -2.

The derivation is based on the often valid
approximation [Edwards,1972] that the log likelihood surface
at its global maximum (if it exists) is roughly quadratic.
We approximate the surace, then, by a Taylor series,
discarding all terms above the quadratic. Let E’qz) be the
log likelihood evaluated for the vector of parameter values

X, Let &% be the values of the parameters which maximizeg,

Then by the Taylor series approximation, 'zf’
= ()g -x* l X e ,d\ | X -
E (%) =€(x*) +.(7§£(z< )y ") S ()

But at the maximum of the likelihood function, the gradient
is zero, and the hessian of the log likelihood serves as the
negative of the information matrix, or error covariance
matrix of the estimated barameters.zac Thus,
E ) Bex) = -—21@505)'; (ax¢) |

where zix is the error covariance matrix of the paramete.:
estimates ‘;_(, and A% is the displacement vector & - ¥, Now
let X be two standard deviations from X¥, Then by
definition, & 1lies on the "two-sigma" error ellipsoid

defined by

The "two-sigma" log 1likelihood change of -2 is
especially wuseful, because it is an absolute difference,
independent of units of measure in the data, scaling

factors, and computer word lengths. The "two sigma two"
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result is of use both as a check on the standard deviation
estimates on the parameters, but also as a basis for
stopping rules in the hill climbing routines. If, after a
"major" iteration of a search routine (what is "major"
depends on the search algorithm) the log likelihood has not
increased by something of the order of magnitude of 2, it
may be a sign that most of the gains to be made have been
made and that further searching will achieve only
insignificant adjustments of the parameter estimates.
Certainly, for example, once the maximum has been "boxed in"
(as when a linear search has passed over the maximum and
seeks to locate the maximum more precisely), little is to be
gained from trying to gain another .01 increase in the log
likelihood (of course, for some search algorithms which
require very precise linear searches, it may be desirable to
push the search accuracy to the 1limits of the computer word
length). But in general, the "two-sigma-two" property makes
the likelihood surface easier to maximize than an arbitrary

surface,

2.5,2 CONFIDENCE TESTS FROM THE OPTIMAL FILTER.

When the model wused in the optimal filter is a "true"
model, the normalized predicted residual process é;(n{n-1)
of the filter should be a white process of constant unit

variance and normal distribution. Since these properties of

the residual process are not used directly in maximizing the
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log likelihood, they provide an independent test of model
validity. The resulting tests are especially useful, since
they are 1) sensitive to small errors in model
specification, and 2) are not guaranteed to pass, even at
the global maximum of the likelihood surface. Furthermore,
the filter residuals, unlike the residuals from OLS, should
be white, normal, and constant unit variance even for
nonlinear, time-varying, and cross sectional models.
Therefore, if used properly, these tests can be applied in
all uses of FIMLOF,

Two methods are useful in testing for the whiteness of
the residual process. First, a Durbin-Watson statistic%%ay

be computed for each component of the measurement vector

_( ): Ead ~ - >
20 | N[5y - Synn)]
D\Ni = Z ~2
n=2 ‘Szi(“)

A second test is useful both for comparison with the
Durbin-Watson statisties, but also for checking to see if
the unit variance property"is‘present in the residuals. The
test consists of computing several correlation matrices on

the residuals, defined as follows:
‘ /:,—:J ~ ~ 7/
RUY = 7 > I S n i)
n=u

If the model is "true" then R(0) should be approximately
equal to the identity matrix, and all other R(j) should be

approximately equal to the =zero matrix. The standard
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deviations of each component of the various R(j) can be
easily computed ¢
.- .2- - e ‘n'/ elements of /\’{L\))

= meain cltagg oneg
()Ie(o)~l. /{I; ( j )

[

e Y;; (off -cliag =l !
L1

1 - .
T ! ! il £ A ) , # 0
UK("')ilc = g/;_;‘: /_j_i (al/ elements o A {J s J \

The derivations are as follows. For the diagonal terms
of R(0), y ,
var{R(0); } = E{[(1/M)3r"(n) - 1] }
= 3/NT (2/Nz)(§/) - (2N/N) + 1
= 3/N +[(N=1)/N]-2 + 1 = 2/N
For the off-diagonal terms of R(0), .
var{R(O)U-}, i4J, =~E{[(1/N{£s r;(n)ﬁi(n)]l}
= (/8% 2 Elg (n)rj(n))
- (1NN = /N
For all terms of R(j), j>1, the follgying holds:
var{R(j), } , 3>1, = E{[(1/N)%§J;;(n)rk(n-j)]2}
= (1/N7)(N-3)
= (1/N) = (§/N7)
This last variance becomes 1/N if the circular correlation
is used, where the 1last j-1 residuals are used as lagged
residuals for the first j-1 terms of the full summation
n=1..,.N,
Note that in the general format of the nonlinear model

and data structure, the number of samples of data for each

component of z may be different (the index n refers %o
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existing samples, not to time intevals!), so that in the
general case, few components of the R(j) would have the same
standard deviations, Thus, it is wuseful to normalize the
R(Jj) matrices, and print out matrices P(j) in which each
component ofﬂf(j) gives the number of standard deviations by
which the corresponding component of the corresponding B(j)
differs from its expected value:

B(3), = (ROI)y -ELR() D)/ 0k,
The resulting matrices P(j) provide a complete and readable
test statistiec, which has a uniform interpretation,
regardless of data sampling distributions, model formats, or
scaling factors.

In practice, it is often seen that P(0), P(1), P(2),
and 2(3) provide a sufficient test of the residual process.
The sensitivity of the test is such that, for "real" data,
the test should be considered passed if the terms of P(J)
have absolute magnitudes of less than four or five.
Experiments with monte carlo simulation data, in which the
same model used to generate the data is used in the optimal
filter, it is not uncommon to see components of P(j) greater
than 2. Most experience to date indicates that the test is
quite sensitive,

The correlation matrices R(j), however, should not be
discarded; they are particularly useful for diagnostic
analysis in case a validity test fails. The main diagonal

terms of the R(j), for example, constitute a spectral
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analysis of the residual process. The R(j), may lend
insight into where to improve a model, and may be more
easily interpreted for cross-sectional data, where the
residuals may contain a bias component which is a white
process among the regions, but constant within each region.
An example of such analysis is given in Chapter 6.

The white, normal, and constant unit variance property
of the normalized predicted residuals éz.(n{n-1) leads to
another powerful test of model validity: the sum of the
squared normahized predicted residuals (this sum is referred

to as the SUMSQ statistic in this thesis and in GPSIE) is a

chi square variable w1th known mean and varlance
/

SUMSQ = Z 5 () é(n)- > bw7— () S(n)

n= "’l
Thus, when a (possibly local) maximum of the likelihood

surface is found, a comparison of SUMSQ with its expected
value provides a quick indication of whether the global
maximum has been found.

Examples of these tests in application to real déta are

found in Chapter 6.

2.6 Bad Data Detection and Robust Estimation.

The process of validation applies to data as well as to
models. It is a mistake in any field to estimate or test a
model using data that has not been examined for
typographical errors, sensor failures, and other common

sources of bad data. We so far in this presentation have
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assumed that the data was correct, and that the model
required estimation and validation. 1In this section we take
the complementary approach of assuming that the model 1is
reasonably accurate, but that there are scattered errors in
the data.

We define "bad data" in the following way. First,
consider errors in the measurement data z(n)., Since we
hypothesize that the "correct" data contains error v(n), we
think of bad data as containing errors which which deviate
strongly from the statistical model defining v(n) as a
normal white process with covariance R(n). Specifically, if
the normal data vector is

2(n) = hl{x(n),v(n),n]
as in the measurement data of the standard model form of
Figure 2-3, then a bad data point is defined by the
following model:
z(n) = hlx(n),¥(n),n] + e

J
where g} is a column vector of all zeros, except for the

j-th component, which is one. The scalar b is assumed to be
large enough in absolute value so as to clearly depart from
the expected range of error introduced by v(n). Errors
which are small enough to be consistent with the
characteristics of the y(n) process are called noisy data,
rather than bad data; we shall discuss the distinction later

in Section 2.6.4.

FIMLOF makes possible a variety of powerful techniques
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for bad data detection and identification. The bad data
detection problem is to discover that a bad data point
exists; the bad data identification problem is to isolate
the location of the bad data point to a particular component
of a particular data vector. The methods to be discussed
below are all based on defining residual processes such that
the residual component corresponding to the bad data point
will be readily aparent to the casual observer or to a
watchful computer program. Specific methods and their

residual processes are derived in the following subsections.

2,6.1 NORMALIZED PREDICTED MEASUREMENT RESIDUALS (NPMR).
The normalized predicted measurement residuals g;
(nin-1) (henceforth sometimes referred to as NPMR) are the
residuals used to compute the correlation matrices P(j) of
Section 2.5.2. Under an accurate model and data errors
conforming to the assumptions of the model, the NPMR process
should have constant unit variances under all conditions,
including time-varying models, cross-sectional data,
nonlinear dynamics, etc. A bad data point will wusually,
then, reveal its presence (but not 1location) via one or more
components of éz (nin-1) with absolute values of greater
than, say, 3 or 4, Unfortunately, there is no guarantee
that the large residual components of NPMR will correspond

to the source of the bad data, since each component of the

normalized residual vector is a 1linear function of all
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components of the unnormalized residuals, in the general
case, Thus, the only practical response upon detecting an
exceptional component of NPMR is to examine all the data at
the appropriate sample time(s), hoping that the error in the
original data will be aparent. There are two problems with
this procedure:

1. The Bad data point may not be readily apparent in
tables or graphs of the original data, since the
bad data derives not from an absolutely 1large
error, but from an error large compared with the
modeled wuncertainty. Thus, a 5% error in data
assumed or estimated to be .1% accurate would be a
bad data point. But if the dynamics of the system
or vagaries of driving noise are of the order of
5% of the data values, it would be difficult, if
not impossible to see the bad point in a graph of
the single series. Only meticulous comparison of
many data graphs would reveal the problem,

2, The second problem with the manual procedure of
tracking down bad data from large components of
NPMR is that the procedure cannot be readily
mechanized. Thus, human intervention is required;
such 1intervention may be impossible in some
situations, -and in any case should be optional
rather than required.

In conclusion, the procedure of scanning the NPMR for
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components Qith absolute values greater than 3 or 4 is
useful for bad data detection, especially in relatively
small samples, but does not allow bad data identification,
nor can it be reduced to a robust estimation algorithm,
except for the rather crude and wunnecessary method of
discarding all data at thé sample time for which bad data is
detected.

The following two sections describe residual processes
which can be wused for both bad data detection and bad data

identification.,

2.6.2 NORMALIZED UPDATED RESIDUALS (NUMR and NUSR).

This section defines two residual processes useful for
both bad data detectiion and identification. The normalized
updated measurement residuals NUMR reveal and locate bad
data in the measurement vectors z(n). The normalized
updated state residuals NUSR reveal and locate bad data
assoclated with individual components of the state vector
(primarily via exogenous input data). The treatment here is
brief and informal; for mathematical details of the
derivation of NUMR and NUSR, see Appendix C of this thesis.

The NUMR process is also dencted as r,(nin), and is
defined by the following equation: |

-y A -y
r,(nin) = [diag(Z, )] R [z(n) - Z(nin)]
Similarly, the NUSR process is denoted as gx(n}n), and is

defined as:
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) -1

£ (nin) = [diag(H'Z,(nin-1)H}] Z,(nin-1)[&(nln=1) - £(nin)]
The NUMR and NUSR processes interact with each other,
and must be considered together. They have two wuseful
properties:
1. First, both NUMR and NUSR have constant unit
vafiance. That is, each component of NUMR and
NUSR has a constant standard deviation of one,
under all circumstances, as long as the model is
valid and the data conforms to the model. Thus,
one or more components of NUMR or NUSR with
absolute value greater than 3 or 4 is a reliable
detector of the existence of a bad data point
somewhere at the corresponding sample time.
2. In addition, it can be shown (Appendix C) that at
a sample time involving a bad data point, the
component of NUMR or NUSR with the maximum
abtsolute value corresponds to the component of
z(n) or x(n) which is in error. For example, a
typographical error in the first component of z(3)
may, depending on the model structure, cause
several components of both r, (nin) and gx(n:n) to
exceed the acceptable 1imit (say, U4). But the
component with the largest absolute value
identifies the specific component of z(3) or x(3)

which contains the typographical error. (In the

case of x(n), the error might be in an exogenous

gg
;
!
|
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input tc the equation determining the component of
x(n)).

These properties of NUMR and NUSR make it possible to
write computer programs which automatically identify and
delete bad data points, and allow the efficient screening of
data sets for questionable entries. As their use in Chapter
6 shows, they can also be useful in model validation and

model improvement.

2,6.3 ROBUST ESTIMATION.

Several features of FIMLOF make possible some new
methods of robust estimation, closely related to the above
ideas. We here define robust estimation to be an estimation
method which 1is insensitive to occaisonal large errors in
the data (bad data points). The new methods take advantage
of the vresidual processes described above, and of the
ability of FIMLOF to deal with missing data.

One method of robust estimation using FIMLOF consists
of a two-step iteration:

1. Identify bad data points, using NUMR and NUSR.

2, Convert the bad data points to missing data points

and reestimate.
A less rigorous way is to weight the exceptionally large
residuals by some small fraction in computing the likelihood

function. The unit variance property of the three residual

processes discussed above make the weighting schemes more
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effective than when they are applied to the data itself or
to residual processes with nonconstant variance. The
properties of NUMR and NUSR help avoid the common pitfall of

downweighting some good data along with the bad.

2.7 Implementation: GPSIE.

The various FIMLOF-based techniques discussed in this
chapter have been implemented in a computer program called
the General Purpose System Identifier and Evaluator (GPSIE),
GPSIE is a large precompiled program which, when coupled
with a small program describing the particular model of
interest, can be used to load data, compute likelihoods via
optimal filtering, search for maxima in the 1likelihood
function, compute the validity statisties discussed above,
and plot the results, GPSIE embodies a large number of
options for dealing with special cases and for maintaining

efficient computation in various circumstances, For more

details on GPSIE, see [Peterson,1974] and [Peterson,1975].
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Chapter 3

FEASIBILITY OF FIMLOF AND GPSIE

The techniques described in Chapter 2 are relatively
new. What evidence is there that the methods work? This
chapter cites some FIMLOF results from engineering, and
describes simulation work done by the author to test the
methodology of FIMLOF as implemented in GPSIE. Section 3.1
describes some results for engineering systems using FIMLOF
or approximations thereof, Section 3.2 gives some results
of GPSIE on a simple first order system, to illustrate some
of the techniques wused to check out the software. Section
3.3 gives the results of the application of GPSIE to noisy
data simulated by a high order, nonlinear dynamic model of a
firm. The results are compared with those obtained by Senge
[Senge, 1974] on the same model and data, using OLS and GLS.
Section 3.4 concludes the chapter with some informal

conclusions on the reliability of FIMLOF and GPSIE.

3.1 Early Results In Engineering.

The mathematics of FIMLOF were first developed by

Schweppe [Schweppe,1965] in the context of engineering

communications and control systems. Applications of the
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full FIMLOF method, however, have been few, possibly because
of the computational costs, and the availability of
special-case simplifications, such as those used by Masiello
[Masiello, 1973]. The application by Moore and Schweppe
[Moore,1972] on the estimation of unknown parameters for the
control of nuclear power plants provides an instructive case
study, in which some light 1is shed on problems of
aggregation and sources of numerical error in the FIMLOF
method. The FIMLOF estimation of aircraft parameters by
Mehra and Tyler [Mehra,1973] prcvides another confirmation
of the feasibility of the methods in the engineering
context.,

The applications to date in the engineering field have
been for systems which differ in several ways from social
system:

1. Engineering systems are usually modeled as
continuous differential equations, via Newton's
laws, witn the structure well specified a priori.
The major question in structural specification is
not so much equation form, but level of
aggregation, In contrast, econometric modelers,
because of the paucity of theoretical specification
of equation form, are "cursed" with great
flexibility in choosing model structure.

2. Data for engineering systems tends to be available

over many time increments; in contrast to the few
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time increments available for social systems. For
example, wind tunnel data or flight-recorder data
may be avaiilable for thousands of seconds, while
economic data extends for a few tens or hundreds of
time steps of one month or one year. The value of
the data for estimation and validation depends on
the model structure (particularly the time
constants, or eigenvalues of the state transition
matrix), the number of pime steps sampled, and the
distribution of the samples over time. However, it
is a safe generalization that engineering data is
usually of greater effective 1length than data from
social systems.

3. Counterbalancing the above feature of data
availability, a much broader selection of measured
variables may be available for social models. In
social systems, most model variables have some kind
of data available, while in engineering systems, it
is not unusual to have only a small fraction of the

endogenous variables measured,

3.2 Results On A First-Order System.

The following FIMLOF results on a first-order, linear
system illustrate some of the power of the method, and also
serve as a confirmation of the GPSIE software, since for

this simple system, analytical estimates of the hessian of
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the log likelinood surface are available for comparison with
the numerical results.

The following system is used to generate simulation
data, wusing random number generators to supply the
stochastic variables:

x(n) = s*x(n-1) + w(n)

z(n) = x(n) + v(n)

x(0) = 3
W(l’l) = N[O,Q]
v(n) = N[O,r]

s=.75, q=1, r=1

In interpreting the following results, it is important
to keep in mind the extreme amounts of noise present, both
in the dynamic equation, and in the measurements z(n). In
general, as the following figures confirm, the errors are
larger in magnitude than the variables themselves. Figure
3-1 shows a graph of the "true" (as opposed to estimated)
values of x(n) for n=1...21; Figure 3-2 shows the same
samples of the measurements z(n). It should be emphasized
that the estimations to follow in no way have access to the
"true" data shown in Figure 3-1. The only data available to
the filtering equations are the data z(n) shown in Figure
3-2.

Two estimations were performed, using 100 and 1000 data
points (the first 31 of which are shown in Figure 3-2).

GPSIE was used to estimate values of parameters s,q, and r,
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Since simulation data was used, the estimates may be
compared with the "true" values of the parameters; since the
system has a simple structure, we may derive analytically an
approximation of the hessian (second partial) of the
likelihood surface with respect to the single parameter S,
and = compare the resulting value with those computed by
GPSIE.

Figure 3-3 shows the results for the 1000 data-point
sample, The estimates of all three parameters are quite
close, Note the ability of FIMLOF to operate correctly in
the face of "errors in the wvariables" -~ that 1is,
measurement error in variables on the right-hand side of the
difference equations, without the use of instrumental
variables. The FIMLOF algorithm is also capable of using
information from previous time steps, via lagged endogenous
variables, to separately estimate the variances of the
equation error and measurement error. Note that these
estimates of variances are max like estimates of parameters
in an explicit stochastic model, rather than "sample
variances" in the conventional sense. The lower precision
of the variance estimates, as compared with the structural
parameter estimate, is typical of max 1like estimates of
dynamic systems,

The validity statisties shown in Figure 3-3 strongly
support, as might be expected, the hypothesis that the model

is consistent with the data. The Durbin-Watson statistic is



- 56 -

no. of data points 1000

parameters s q r
true values .75 1 1

estimates .75 .97 1.1

std. errors .04 .20 L7

log likelihood -932.88

SUMSQ 989

exp. val., of SUMSQ 997

std. dev. for SUMSQ by, 7

Durbin-Watson statistic 2,01

normalized correlation matrices
(no. of std. dev. from exp. val.):

P(O) -053
P(1) -0.1
P(2) 1.0
P(3) ~-0.1

std error of s at
true values of parameters 024

expected std. error of s at
true values of parameters .021

Figure 3-3

Estimation and Validation Results,
First-Order System,
1000 Data Points.
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excellent, as are the normalized correlation matrices (the
normalized correlation test is considered "good" if all the
terms have absolute values less than about 4; if all terms
have absolute values less than 2, as is the case here, the
test passes easily, both for whiteness and unit variance).
The final two terms in Figure 3-3 provide a check on the
GPSIE software, For the s parameter in this particular
system, one can compute an asymptotic expected value for the
standard error of the parameter s, as measured by the
inverse of the second partial derivative of the log
likelihood surface with respect to s, evaluated at the true
values of the parameters. In this case, the expected value
is .021, and the numerical result is .024. Considering the
many approximations involved, the match is good. This test,
of course, has 1limited usefulness in 'real" estimation
situations, where the expected value of the standard error
cannot be computed analytically, and where the true values
of the parameters are not available. In such cases, the
second partial derivatives (hessian matrix) of the 1log
likelihood surface are computed at the maximum likelihood
point (as opposed to the unknown "true" point). Figure 3-3
shows that even in the best of circumstances, the
approximation should only be taken as an order of magnitude
estimate of the standard error, since the standard error of
s at the max 1like point 1is .04; at the "true" parameter

values, .024,.

) A e ACTVARIG e T A
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In summary, the results shown in Figure 3-3 indicate
that the technique 1is numerically sound, and that accurate
estimates can be made in the face of considerable equation
error and measurement error, without resort to instrumental
variables, and without prior knowledge of the relative or
absolute sizes of the error processes.

Figure 3-4 shows results analogous to those of Figure
3-3, but for only 100 data points. Considering the
domination of the system by error processes (see Figures 3-1
and 3-2), the results are excellent. The estimates of the
error variances are quite approximate, as indicated by the
standard errors, but the structural parameter s is estimated
quite accurately, and the validity statisties strongly
support the hypothesis that the model is consistent with the
data.

3.3 Feasibility Tests--High-Order, Nonlinear Systems.

The tests in the preceding section lend support to the
FIMLOF method and the GPSIE software, but the only
conditions of the tests which could not be considered benign
are the large error variances. In this section, we conduct
a similar test, for a more realistic model. The conditions
of the experiment are chosen to allow comparison with the
work of Senge [Senge,1974]. Senge estimated parameters from
noisy simulation data generated by a nonlinear, dynamic

model of the firm [Forrester,1967]. The model consists of 9
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Durbin-Watson statistic

normalized correlation matrices
from exp. val.):

(no. of std. dev.
P(0)
P(1)
P(2)
P(3)

std. error of s at

true values of parameters

expected std. error of s at
true values of parameters

Figure 3-4

100

» 75 1
» 15 .76
» 16 .69
-85.0

101

Estimation and Validation Results

First-Order System,
100 Data Points.

591"
.55
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dynamic diffence equations, defining 9 state variables, 7 of
which are measured. Senge simulated the model, using random
number generators to introduce both equation errors and
measurement errors (errors in the variables), in differing
amounts, In the particular experiment compared below, Senge
introduced equation errors ranging from 6% to 60% of the
mean of the endogenous variables, and obtained excellent
estimates of the 13 system parameters, using OLS and GLS.,
However, when Senge introduced 10% measurement error on the
7 measured endogenous variables, he obtained large errors in
the parameter estimates. Figure 3-5 shows the results Senge
obtained, compared with the estimates obtained with GPSIE
under the same conditions. The results indicate that FIMLOF
techniques, as implemented in GPSIE, may yield accurate
results, even in the presence of system nonlinearities and
measurement error which may cause difficulties with simpler
estimation techniques. The OLS estimates shown in Figure
3=-5 would require reestimation by means of addtional data or
some other method; the FIMLOF technique leads somewhat more
directly to correct estimates.

The above comparison should be interpreted only as a
( somewhat trivial) confirmation of the computational
integrity of GPSIE, since no violation of the mathematical
basis of FIMLOF was introduced. The failure of OLS under
the circumstances 1is 1less surprising, since the method

assumes accurate measurement of the equation right-hand-side
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parameter true GPSIE OLS
name value est. estimate
SEM 400 392 4349
SED1 -.0281 -,029 -, 430
SED2 -, 0295 -.0295 .096
SED3 .00228 »00228 -,0074
PCF1 .61782 ,615 3.7117
PCF2 -. 13244 -, 132 -.T4891
CEF1 -.0698 -.0693 .03966
CEF2 12442 . 1245 -, 14609
CEF3 -.08138 ~-.0813 . 13853
CEFY .027704 . 02704 -.03144
DRAT 1 » 97 1.3
SAT 20 19.85 18.5
Figure 3-5

Comparison of Estimation Techniques for
Ninth-Order Nonlinear System with Errors In Variables
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variables, which were measured with 10% error in the
experiment., Senge is continuing his research to deal with
more realistic conditions; it is expected that a future area
for productive research would be to extend such comparisons
of estimation techniques to gain an understanding of
relative merits and efficiencies, and to sketch the
boundaries of the conditions under which various methods

fail.
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Chapter 4

SOURCES OF MODEL STRUCTURE

This chapter discusses the first step in the three-step
process of model building: hypothesizing a model structure.
The hypothesis of a model structure is seldom discussed in
print; the model structure 1is often taken as given, and
analysis proceeds from that point. We discuss the building
of model structure here for two reasons:

1. The techniques of estimation and hypothesis
testing discussed 1in this work apply to the
general class of nonlinear dynamic wodels. That
is, the models need bhe neither linear nor linear
in the parameters. For these¢ linear models, the
distinction between structure and parameters is
clear, but for the general class of models
discussed in this thesis, the distinction between
structure and parameter becomes fuzzy. In
nonlinear models, parameters may take on qualities
commonly associated with structure.

2, The second reason for discussing the formulation
of model structure is that the ability to deal
with a wide <class of structures leads to methods
of model formulation which entail more freedom
than is commonly available to econometric model

builders., The methods developed in this thesis

¢ R A e P e
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give the econometric model builder more freedom of
choice both in what variables to include in the
model, and the way in which the variables
interact.

4,1 Structure vs. Parameters: Estimating Structure.

Before discussing methods for hypothesizing model
structure, we shall define what we mean by "structure", vs.
"parameters.," For time-invariant 1linear systems, the
distinction is clear: the system must be (by definition) of
the form

x(n) = Ax(n-1) + Bu(n) + w(n)
where A and B are constant matrices, x(n) is the state
vector at time n, u(n) is a vector of known inputs, and w(n)
is a white, normal process of mean 0 and covariance Q. In
this case, the parameters are simply the constant
coefficients of thé‘ matrices A, B, and Q. A similar
definition can be made in the case of systems which are
linear in the parameters. For example, in the system
Yy = Xb
where y is a vector of outputs, X is a matrix of variables
which may be functions of exogenous inputs and of lagged
values of y; b is defined as the veclor of parameters.

In general nonlinear systems, however, we shall have to

offer a more general definition of parameters:

A parameter in a nonlinear system is a constant

exogenous input to the system.
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By the above definition, a parameter in a nonlinear
system may enter the system in any nonlinear way. The
parameter may be known or unknown, but it is always asserted
(in this thesis) to be a constant whose value is not
determined by the rest of the system. Note that the above
definition is superficially incompatible with the idea of
"time varying" parameters discussed in the 1literature; see
Section 4.4 for a reconciliation. It is obvious that very
few model constructs can be asserted to be '"genuinely"
constant, but we define parameters as those things chosen by
the modeler to be represented as constant over the time base
treated by the model.

The above definition may seem reasonably clear, but it
has the following drawback, for which there may be no
remedy: in nonlinear systems, parameters may take on
qualities usually associated with structure. For example,
consider the system

x(n) = 6£(x(n-1)) + (1-0)g(x(n-1))

By any reasonable definition, 8 would be considered a
parameter 1in the above equation. But 8 determines the
structure of the system. If @ = 0, then the system has the
structure determined by the function f; if 6 = 1, then the
system structure is determined by the function g.

Therefore, we must be careful in applying the usual
connotations to the terms "structure" and '"parameter" when

dealing with nonlinear systems. By the above sort of model
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building, we may estimate parameters which de facto result
in the estimation of structure.

The estimation of structure (as in estimating © in the
above system) may be thought of as a kind of continuous
hypothesis test. The maximum-likelihood value of 8 may be
thought of as selecting the most likely structure from the
range of structures implied in the above equation.

It 1is 1important to reemphasize here that neither
parameters nor structure can be usefully estimated from
merely numerical data and thin air. Estimation always
entails a choice from a range of alternatives. A well
hypothesized model defines a range of plausible alternatives
consistent with the purposes of the study at hand. The
ability to estimate structure increases, rather than
decreases, the role of experience, logic, and theory in

model building.

4,2 Hypothesizing Model Structure.

Most of the tools of estimation commonly wused by
econometricians today restrict the model builder to
structures which are linear in the parameters. The problem
of structure hypothesis, then is reduced to two axes of
freedom: 1) what variables to include in the model, and 2)
what functional manipulations to perform on the data before
they are introduced into the linear structure.

The usual techniques also require that every variable in
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a model must measured by an available data stream of a
common sampling frequency, coupled with the automatic
structuring of the model in the 1linear in the parameters
format, leads to the possibility of model formulation
dominated by the constraints of the estimation techniques.

The techniques described in this thesis extend the
freedom of the model builder to include the following kinds
of considerations and choices:

1. Variables (endogenous) may be included in the
model for which there is no data. For example,
expectations and other difficult to measure model
constructs may be explicitly included in the
model.

2, Data of differing sample frequency may be applied
to the estimation and evaluation of a single
model, without the use of interpolation or
deletion of data. For example, monthly,
quarterly, and yearly data may all be used at once
to estimate parameters in a single econometric
model, w

3. The timeainterval of the model need not correspond
to all or any of the data sampling intervals. For
example, a weekly model may be estimated wusing
monthly and yearly data. Thus, numerical
instabilities arising from large time steps may be

avoided. Continuous models may be estimated using
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discrete data.

4, Measurement errors in data may be taken into
account without the use of instrumental variables;
the characteristics of measurement error may be
-estimated.

5. Unknown parameters may enter 1in the model
formulation 1in any nonlinear way. The modeler
need not spend ﬁime attempting to approximate the
theoretically correct model by a linear form.

The above freedoms in the specification of model
structure may raise questions about where model structure
comes from. Lurking in the background of the model building
process are the influences of plausibility tests, practical
experience, and theoretical considerations, which 1lead the
researcher to try out some regressor combinations suggested
by theoretical causality, and to reject other combinations
as unreasonable a priori. These "background" considerations
and limitations, used to constrain the options considered in
model formulation, become the dominant considerations in
modeling under the structural freedoms introduced by FIMLOF,
Therefore, it is appropriate to discuss the various sources
of model structure,

There are three sources of model structure: 1) Explicit
theory, 2) Limitations imposed by data and numerical
techniques, and 3) Implicit theory.

Explicit theory consists of general model structures
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which are commonly accepted as useful or "true," Newton's
laws of mechanics provide the standard example of an
explicit theory, widely used in engineering and the physical
sciences for the formulation of dynamic models.
Unfortunately, the truism holds that explicit theories as
general and useful as Newton’'s are lacking in the social
sclences,

Limitations imposed by data and numerical techniques,

as discussed above, have had a considerable constraining
influence on models in the social sciences. One of the
purposes of this work is to reduce these 1limitations. As
mathematics, computational power, and the collection of data
continue to develop, we may expect these limitations to
diminish further, and become less influential in the
formulation of models in the social sciences.

Implicit theory consists of the informal and intuitive
plausibility tests used by both physical and social
scientists to select and reject model formulations a priori.
Implicit theory may be thought of as a collection of (often
unstated) guidelines, ranging from simple consistency to
matters of purpose and scientific taste. For example, a
common guideline in model formulation is the implicit theory
that the model should reduce to the proper limiting cases,
when parameters are pushed to extreme values. To some
extent, such guidelines are trite and obvious; from an other

point of view, they 1lack precision. Discussions of such



- 70 -
ill-defined bases of model formulation are understandably
avoided in the literature, but as the limitations imposed by
data and numerical techniques are lessened, it will become
increasingly important to recognize and state our implicit
theories, A tentative list of informal theories is included

as Appendix B of this thesis to illustrate the idea.

4,3 Simultaneous Equations (Implicit Functions).

Econometric models sometimes contain simultaneous
formulations which reduce to the implicit dynamic form
glx(n),x(n=1),...1 = 0,
instead of the standard forn, in which x(n) can be
explicitly computed:
x(n) = f[x(n-1),...1.
Although FIMLOF techniques can be used directly on the
implicit formulation (see Section 2.2.18), the greater
freedom of model formulation and data processing allowed by
FIMLOF may reduce the need for implicit formulations in the
first place.

For example, the implicit form may arise from the
assumption that an economic system is in equilibrium. But
the economic market being modeled, like most markets, may be
prone to cycles and exogenous shocks (disturbances) which
make it difficult to assume a priori an equilibrium
condition, Under FIMLOF, it is possible to model the full

disequilibrium structure of the market, and, via parameter
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estimation in a nonlinear structure, determine the degree to
which equilibrium 1is achieved. This approach is made
possible by the ability of FIMLOF to estimate models which
1) have several time steps between data points, so that, for
example, a model with weekly equilibrating dynamics could be
estimated on monthly and yearly data; and 2) contain
unmeasured variables, such as expectations and perception

lags, which may cause disequilibrium.

4,4 Time-Varying Parameters.

The definition of parameters as constant exogenous
inputs (Section 4.1) seems to be at variance with the notion
of time-varying parameters, such as

x(n) = bx(n-1) + w(n),
where b may vary over time in some unpredictable fashion.
This subsection describes two approaches to the time-varying
parameter problem which are facilitated by FIMLOF

techniques.,

4,4,1 PARAMETERIZATION OF PARAMETERS.

One approach to the time-varying parameter problem is
to parameterize the parameter variation. For example, one
may replace the above first order system with the following
second order system, in which the time-varying parameter
becomes a state variable:

x(n) = b(n)x(n-1) + w(n)
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b(n) = 6b(n) + v(n)
Where the approach 1is to use FIMLOF to estimate 6, and use
optimal filtering to track b(n) over time. The contribution
of FIMLOF 1is in the estimation of the parameter 8, as the
above system is neither linear in the parameters nor fully
measured (no data, obviously, is available on b(n)). The
computational feasibility of the approach is in this case
untried, but the full-information aspects of FIMLOF suggest
that the above approach might be a prc.uctive area of

enquiry.

h,y,2 FAULT DETECTION.

An alternative approach to time-varying parameters
would be to model the parameter as piecewise constant,
éstimate its value over a relatively short period of data,
and then monitor the validity stuatistics from the optimal
filter to look for indications that the model no longer is
consistent with the data. When the validity test fails,
"fault detection" is said to have occurred, and reestimation
of the parameter(s) is called for. Note that this method
can be used both with reference to the original time varying
parameters, such as b above, or on second-order parameters,
such as o. For an example of this approach, see

[Moore, 1972].
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Chapter 5

ESTIMATION AND REJECTION OF A PRELIMINARY MODEL

This chapter describes the use of GPSIE in estimating
parameters and testing the validity of a preliminary model
of fuel demand in the residential commercial sector. After
much exploraticn, the model was rejected. Section 5.1 gives
a brief overview of the model structure and its background.,
Section 5.2 describes the estimation results and validity

statistics, which led to the rejection of the model.

5.1 Preliminary Model Structure.

The model structure described here is a tentative
structure developed by Baughman and Joskow [Baughman, 1973].
The model describes the demand for natural gas, fuel oil,
and electricity in the residential commercial sector of the
U.S,, as a function of fuel prices, income per capita, and
capital costs of o0il and gas furnaces. The dynamic
structure of the model is defined by the following three

equations:

E(n) = B¥E(n-1) + Fe*MSD(n)
G(n) = B*¥G(n-1) + Fg*MSD(n)
O(n) = B*¥0(n-1) + Fo*MSD(n)

where E(n), G(n), and 0(n) are the demands for electricity,
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gas, and o0il 1in year n, measured in BTU’s. The B
coefficient represents the lag effects in fuel demand, due
to two sources: finite depreciation times for
fuel-consuming appliances, and the psychological and
perception delays inherent in consumer decisions. Thus, for
example, B=.9 would, in a rough way, correspond to an
appliance lifetime of about 10 years, since ceteris paribus
one tenth of demand would disappear each year unless
replaced by the installation of new or replacement
appliances. Included in the 10 years are psychological
effects, so that a given B would imply a lifetime somewhat
longer than the physical lifetime of the appliances.

MSD (Market Sensitive Demand) represents the number of
BTU s of fuel demand "up for grabs" each year. MSD is the
sum of replacement demand and new demand from growth. The
replacement demand is defined as

(1-B)E(n-1) + (1-B)G(n=-1) + (1-B)0(n=1)
which 1is equivalent to assuming that all depreciated
appliances are replaced, possibly by an equivalent appliance
burning a different fuel. The growth in demand (which may
be negative) 1is due to changing population and income
growth,

The equations for the fuel market shares Fe, Fg, Fo are
in a logit-type form:

Fe = 1/TM

Fg GM/TM
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Fo = OM/TM
where
OM = exp(-AA¥Po + AB¥Pe + AC)
GM = exp(-AD¥Pg + AB¥*Pe + AE)

™ = 1 + GM + OM
where TM, GM, and OM are defined only for convenience of
notation; AA,AB,...AE are parameters to be estimated; and
Po, Pe, and Pg are fuel prices.

The preliminary model defined above meets several basic
tests of model specification. For example, the fuel market
shares F; always sum to one, and a fuel whose price becomes
very large is reduced to zero market share., While
relatively simple in form, the structure embodies some key
features of the dynamics of interfuel competition.

Note that the preliminary model is not, however, linear
in the parameters. The model can be converted to a linear
in the parameters form only be setting B to zero, and
normalizing the gas and o0il equations by the electricity
demand:

G(n)/E(n)

Fg/Fe = GM
0(n)/E(n)

Fo/Fe = OM
Taking the natural logarithm of both sides yields the linear
form
1n{0(n)/E(n)}
1n{G(n)/E(n)}

-AA%¥Po(n) + AB¥Pe(n) + AC

-AD¥Pg(n) + AB¥Pe(n) + AE

Thus, we achieve a linear-in-the-parameters model, but only
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by eliminating the dynamiecs. Setting B=0 is equivalent to
assuming that the original model is always in equilibrium,
or to asserting that fuel demands will repond immediately
(within one year) with full effect to changes in fuel
prices. For example, the resulting model asserts that
existing stocks of gas furnaces, water heaters, and clothes
driers will have 1little or no influence on next years’
consumption of natural gas.

The unreasonableness of the static, 1linear 1in the
parameters model was one of the prime motivations for
developing GPSIE., The next section describes the estimation
work on the above preliminary model, which led to the
rejection of the model and to the 1improved model described

in Chapter 6.

5.2 Estimation of the Preliminary Model.

Two kinds of estimations were performed on the
preliminary model before GPSIE was applied to it. First,
the model was estimated in its linear form (with B=0), using
single equation techniques (OLS and WLS). In addition,
estimation was attempted for the model with B>0 using
simultaneous equation estimation. The 1latter method is a
technique much like the "OLS the hard way" method described
in Chapter 2. The fuel consumption variables are
initialized at the data n_th data point, and are simulated

forward one time period. The residuals (differences between



- 77 -
the simulated variables at the (n+1)_th period and the data
at period n+1) are squared, added to the accumulated total
of squared residuals, and the equations are reinitialized at
the (n+1)_th data values, and the iteration is repeated.
The sum of the squared residuals is then minimized by
nonlinear optimization (inverse hill climbing, or
unconstrained minimization). Unfortunately, this method
yielded an estimate of B greater than one, an a priori
absurd value.

The strategy with GPSIE was to first hold B=0 while
estimating the remaining parameters, as a check on the OLS
estimates for the static model. Then GPSIE would be used to
estimate all the parameters (including B) in unconstrained
maximization of the 1likelihood function. Validity tests
were performed at important checkpoints.,

A PL/I subroutine was written, defining the preliminary
model in GPSIE-compatible format, with the potential search
space of parameters B, AA, AB, AC, AD, and AE.

GPSIE requires assumptions about the measurement error
in the data, and the equation errors. These were initially
supplied as parameters based on judgement. It was intended
to estimate these ‘error variances by including them as
unknown parameters, but the preliminary model was rejected,
as we shall see, on other grounds before that stage of
investigation was reached. The standard deviation error of

each of the three fuel-split equations was assumed to be 5%.
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The standard errors 1in the fuel consumption data were
assumed to be (based on extensive experience with the data)
to be 5% for the electricity data, 15% for the natural gas
data, and 40% for the o0il data. The rather high error
estimate for the o0il data was well justified. The oil
consumption data (as supplied by the Bureau of Mines) is
known to suffer from consideﬁable errors, Jue Lo erratic
reporting, and due to occaisonal confusion in the field as
to whether to report the consumption as commercial or
industrial. The error is especially noticeable 1in states
where consumption of fuel oil is low, such as the midwest.
Figure 5-1 gives a good example of the kinds of seemingly
large errors that can occur in such data. It is difficult
indeed to believe that the consumption of oil in Texas fell
by half in 1961, stayed fairly constant for several years,
‘and then abruptly doubled in 1969, Thus, the large initial
estimates of measurement error for oil.
First, the six parameters to be estimated were set to

the values estimated via OLS:

parameter OLS value
B 0
AA 4,84
AC 5.12
AD 1.13
AE ,857

At these initial OLS estimates, the log 1likelihood was

e e i i

PRSI,
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Figure 5-1

0il Consumption in Texas, 1960-1969
‘ Residential and Commercial Sectors
(Source: "Shipments of Fuel 0il and Kerosine,"
Bureau of Mines Mineral Industry Survey)
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computed using GPSIE, It was =-43,934, The sum of the
squared normalized residuals SUMSQ was 77,900, but its
expected value was only 1470, with a standard deviation of
54, The huge discrepancy between SUMSQ and its theoretical
value is a strong indication of inconsistency between the
model (with the OLS parameters) and the data. The large
SUMSQ suggests that either the model is inaccurate, yielding
large residuals, or that the equation and measurement errors
have been understated. The generous error assumptions make
the 1latter possibility unlikely, so we take the SUMSQ
validity test as a strong negative, in consonance with the
prior judgement that the dynamic effects of appliance stocks
are important in fuel consumption. In addition, the
correlation matrices P(j) (see Chapter 2) were computed to
test the whiteness of the normalized residuals. The
whiteness statistics, like the SUMSQ test, indicated a gr--s
inconsistency between model and data., Of the 36 elements of
the P matrices, the smallest term was 73, indicating a
cross-correlation 73 standard deviations higher than its
expected value. The other terms were even worse, ranging to
a maximum error of 2,084 standard deviations.

Next, various searches were performed to find
parameters of higher 1likelihood. The parameter B was held
constant at various values, and the other parameters were
varied to find the maximum likelihood, given the fixed value

of B. In all cases, the gains in 1likelihood were small
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compared to the gains to be found by varying B itself. For
example, with B held at zero, the other parameters as a
direct comparison with the OLS results. Although this
procedure yielded 50% reductions in the estimates of AB and
AD, the log likelihood increased only about 10%, to -39,846,
The SUMSQ statistic at this point had been drasticaly
reducéd to 2941, but this was still 27 standard deviations
away from 1its expected value of 1470. The whiteness
matrices still had no terms within the acceptance band of 4
standard deviations, and the maximum term was 1581 standard
deviations. These results were strong evidence against the
hypothesis B=0.

To illustrate the great sensitivity of the system to
changes 1in B, consider the results of a one dimensional
search along B, holding the other parameters constant at the
values obtained in the search with B=0. The log likelihood
surface with respect to B was found to have a smooth,
unimodal shape with a clear maximum at B=1.05! At this
point, the log likelihood was =-6421, with SUMSQ statistic of
2941 (off by "only" 27 standard deviations). The whiteness
test matrices were also greatly improved, with 33% of the
terms falling within the 4-sigma acceptable band, and a
maximum deviatio of 50 standard deviations. 1In spite of the
seemingly absurd value of B=1.05, these statistics indicated
a strong preference over other values of B, For example by

holding B constant at the plausible value of B ., and

s e e
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searching over the other parameters, the maximum log
likelihood was 12,909, a factor of 2 worse. At B=.9, the
search over the other parameters converged at a log
likelihood of -9,100.

Finally, all six parameters were searched
simultaneously, leading to a maximum log 1likelihood of

-5,524, The final parameter estimates were:

parameter OLS estimate FIMLOF estimate
B (0) 1.09
AA 4,84 5,29
AB »253 2.42
AC 5,12 6.44
AD 1.13 2,53
AE .857 1.71

At the FIMLOF parameter values, the SUMSQ was 1165, off 5
standard deviations from its expected value of 1464, a
significant discrepancy but not beyond ..hope, especially
since a search over the error variances would be warranted.
The whiteness test was similarly close, if not completely
satisfactory: 81% of the terms were within the UY4-sigma
band, and the maximum error was 10 sigma.

There remained, however, the mystery of the 1large B.
Why would a physically absurd value be estimated as most
likely to be consitent with the data? A solution to the
mystery was suggested when the hessian of the log likelihood
surface was computed at the estimated point. The hessian

turned out to be singular, because perturbations along the
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parameter AB (coefficient on the Electricity price) created
zero change in the likelihood. Further exploration revealed
that, within machine precision, all values of AB above the
"estimated" value of 2,42 were equally likely, After some
examination, a quick calculation revealed that the maximum
likelihood values of AB had in common the feature that they
were large enough to give electricity a zero market share at
historical prices. Further examination revealed that the
two seemingly absurd results combined to yield a reasonable

picture., A large AB and a B>0 cause the model to reduce to

the following limiting case:

OM >> 0
GM >> 0
Fe = 0
™ = OM + GM
E(n) = B¥E(n-1)
G(n) = B*¥G(n-1) + Fg*(1-B)*[E(n-1)+G(n-1)+0(n-1)+growth]
0(n) = B*¥0O(n-1) + Fo*(1-B)*[E(n-1)+G(n-1)+0(n-1)+growth]

Note that the equation for electricity demand has become
completely uncoupled from the exogenous inputs and from the
rest of the system. For the estimated parameters,
electricity demand grows by a constant fraction (9%) each
year, no matter what happens to the prices of any of the
fuels. Gas and o0il are thereby left to fight over the

remaining market sensitive demand, which is equal to
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(1-B)*¥[E(n-1)+G(n=-1)+0(n-1)+growth]
However, since B>1, the market sensitive demand is negative.
Both gas and oil, 1like electricity, are given, by B>0 a
constant percentage increase in demand, but then some of
that increase may be taken away, via the negative
market-sensitive demand.

In retrospect, the result is internally consistent.
The only consumption data of high confidence 1is the
electricity consumption series, These are without
exception, smooth exponential growth curves, growing without
fail at about 9% per year. Thus, the model matches the
electricity data almost perfectly. The model may do a much
poorer job at matching the noisy oil and gas data, but GPSIE
has been "told" (and rightly so) not to take the oil and gas
data as-seriously as the accurate electricity data. Thus,
to some extent, the gas and oil equations, with their
backwards response to prices, are weighted out of the
likelihood computation.

At this point, a host of improvements in the model and
interesting estimation experiments suggest themselves.
Enough flaws had been uncovered 1in the basic model
structure, however; to Jjustify repairing the structure
before indulging in more estimation and validity testing.

The "failure" of the preliminary model was included
here because it illustrates some of the power and insight of

the FIMLOF method, by which one may gain not only tests of
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model validity but also some idea of how to remedy the
situation.

Chapter 6 presents a reformulated model which stands up

better under scrutiny.
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Chapter 6
RESULTS ON IMPROVED FUEL DEMAND MODEL

Following the difficulties with the preliminary model
described in Chapter 5, Baughman and Joskow formulated a new
structure for fuel demands in the residential commercial
sector. The structure is shown below. An equation is shown
below. To eliminate estimations based on growth 1in total
demand modeled as a completely unknown input, an equation

describing total energy demand has been added:

. Income . ,
eherth = exp JAT +BT Seputat. T T # (min. 1L‘J”"/"")
popalatom

leet . c‘*‘yh xZ
[popu’at- +(av. price }‘ ( )
+ DT+ area + BT ( ‘ ) PQP (-1

(¢.1)

The above equation (6.1) defines total energy demand per
capita, as a function of income per capita, minimum annual
temperature, population density, and average fuel prices.
The dynamic effects of appliance stocks and perception
delays are incorporated 1in the model, but in a nonlinear,,
exponential expression, rather than the 1linear lag of the
preliminary model. Simulation experiments have shown tha%
the dynamic behavior of the new lag formulation is similar

to the previous formulation, but the new formulation has the
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advantage of being linear 1in the parameters, through the

following transformation:

€re neemc ’
In ( eneryy ) = BT R T w(min ten)

')g_), ID;_,/.’)‘,

Ol _ - ENeEt /-'
e DT + 2 ET (v price) + F t%/,q()u:l{{'.)._}6 2)

Since the above equation determines total fuel demand,
only two more equations are required to determine the
separafe demands for gas, o0il, and electricity. The
following equations determine the relative consumption

levels for the three fuels?
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The variables in the revised model are defined as
follows. Gas consumption is measured in "effective BTU s",

which are defined as one-half the actual number of BTU’'s of
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gas consumed, in order to make the units of gas consumption
commensurate with the measure of electricity consumption.
The "effective BTU" formulation represents heat value wasted
in gas furnaces and water heaters, through venting of
combustion products. The formulation also has the effect of
making gas prices more comparable with electricity prices,
since electricity generation involves a similar heat loss in
generation and transmission processes., Similarly, oil
consumption is measured in effective BTU’'s, equal to half
the actual BTU content of o0il consumed. Electricity
consumption 1is measured in BTU’s as the heat content of
actual electric sales., All fuel prices are then measured in
dollars per effective BTU. Population is.measured as the
number of people per region; personal income in dollars per
year in the corresponding regions. Areas are simply the
number of square miles in each region. The maximum
temperature is defined as the average temperature in the
warmest 3 months of the year in the region of interest;
minimum temperatures are the average temperature in the
coolest 3 months of the year. The average fuel price used

in equation (6.2) is defined as

9((54‘(9(() Prlic.) + o”*‘(o 4" Hr(tﬂ} + ded,*(e/&{_ :Or,)

(¢.2)

As in the preliminary model, the data used to estimate

av. Pn'( e =

‘9aj + ot +—e!€cfrkj%7

the model 1is a mixture of time series and cross sectional
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data. For the revised model, we used data from 1967 to
1972, measured annually, in the 48 continental United
States, plus separate data for Washington, D.C. (See
Section 5.2 for a discussion of the interpretation of the
use of cross sectional data).

For estimation of the above equations using GPSIE, the
dynamics of the model were represented 1in the 1log linear
form shown in equations (6.2) to (6.4). That is, the state

vector of the dynamic system was defined as

Gl + Beal * éfﬂ) ]
/h ( /-_,o,j);([d.ﬁAh (h) )

X(n) = /n (5:'{"’/5"‘))

/n (/B(n)//é (n) )

(6.6)
The data used to estimate the model, however, was left in
unaltered form. That is, the data vectors of measurement

data z(n) were defined as

[ Gt ]

Z(n)y = O (»)
o (6.7)

E ()
-

e

where the consumptions are measured in actual BTU's
consumed, rather than the "effective BTU 's” defined above.,
The formulation therefore required a somewhat involved

measurement function

z(n) = hix(n),v(n)]
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to relate the state variables to the unprocessed measurement

data., The measurement function is
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A tempting alternative would be to process the data and use
measurement data which correspond to the state vector. The
more complex route was taken to allow direct comparison of
the 1likelihoods computed for the revised model with any
other model based on the same data. The log~linear form was
maintained to allow the use of WLS estimation, but other
models, via estimation with GPSIE, might be in a more
natural form, with state variables which are more simply
related to consumption measurements. One advantage of the
maximum likelihood method is the ability to directly compare
any two 1likelihoods computed on the same measurement data
z(n), no matter how disparate the forms of the explanatory
models or the nature of the exogenous inputs to those

models.,

6.2 First Estimation -- A False Start.
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The revised model of Section 6.1 was completed with a
simple model of equation errors and measurement errors, and
estimated using GPSIE., The resulting estimates, while not
so absurd as those for the preliminary model of Chapter 5,
seemed to be of unreasonable magnitude, and several problems
were encountered with the validity tests. This "false
start" with the revised structure is briefly described in
this section because it provides the motivation for several
of the features and procedures described in Chapter 2 and
applied in the remaining sections of this chapter.
The equation errors were formulated as in the
preliminary model, as normal, white processes of 2zero mean
and standard deviations which were fixed fractions of the

initial conditions of the left hand variables. That is,

\

O

b. Xx(o)
Wy [
where x(n) 1is the system state variable, w(n) are the
equation errors, and b are the parameters which determine
the proportionality of the errors.

The measurement errors were similarly hypothesized as
additive normal white processes, of standard deviations
proportional to the measurement data corresponding to the
initial conditions in each region. That is, based on 1967

data, The equations were:

Ov. = C} Z;(o) [§(°v):l‘767 c/m‘:x]

- - 1
A
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The resulting model contained 20 parameters to be
estimated. Fourteen of the parameters describe the
structure of the model dynamics; six parameters described
the equation errors and measurement errors described above.
The fourteen structural parameters were initially set to the
values estimated using WLS [Baughman & Joskow,1975]; the
error parameters were set based on prior judgement as
follows., Standard deviations of each equation error was
taken as 10% of the initial conditions of the corresponding
state variable. The error in measuring gas consumption was
taken as 2.5% of the 1967 consumption in each region, oil
measurement error was taken as 5%, and electricity
measurement error as 0.5% of 1967 consumption.

Maximum-likelihood estimates for the parameters were
then computed, using a Powell search [Zangwill, 1967].
Figure 6-1 compares the initial parameter values and the max
like estimates, along with some of the key validity
statisties. Althcugh the search improved the likelihood by
a factor of three, there are several suspicious features
which deny the validity of the resulting model.

First, the JSUMSQ statistic is 2/3 its expected size,
nearly 30 standard deviations too small. The small size of
SUMSQ is an indication that something may be wrong with the

structure or the estimates of the stochastic parts of the
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DEFINITION

additive const., total energy

coeff. on pers. income, total energy

temperature coeff., total energy

population density coeff., total energy

coeff. average price, total energy

coeff. lagged term, total energy

additive constant, G/E

additive constant, O/E

price coefficient, both equations

max. temp. coeff., G/E

max. temp. coeff., O/E

min. temp. coeff., G/E

min. temp. coeff., O/E

lagged term coeff., both equations

% std.
% std.
% std.
% std.
% std.
% std.

dev., gas consumption data
dev., 0il consumption data
dev., electricity cons. data
error, total energy equation
error, G/E equation

error, 0/E equation

Figure 6-1

WLS

-1.54
2.89
-1.20
.937
-4.88
.839
.070
.208
-.137
-1.50
-2.20
-2.20
-6.30
.897

Preliminary Estimates for Revised Model

FIMLOF

-1.86
2.22
-1.21
1.73
-14.4
.783
.084
127
-.067
-1.23
-2.20
-2.02
-5.58
.923

123
.284
.0005
.02
415
.360
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model (equation and measurement errors), since the computed
covariance of the residuals is apparently larger than the
sample variance of the residuals. Similarly, the residuals
themselves may be, for some reason, too small. As we shall
see in Sections 6.3 and 6.4, both effects were present in
this case, The tests on the whiteness of the residuals cast
still mocre doubt on the estimated model. The Durbin Watson
statisties [Durbin, 1955] for gas, oil, and electricity were
1.91, 0.63, and 0.46, indicating that the oil and
electricity residuals were far from being a white process.
In contrast, however, the normalized correlation matrices,
as shown in Figure 6-2, seemed superficially to indicate
acceptable properties~- 94% of the terms were within 4
standard deviations of their expected values, and the
maximum error was 4.4 standard deviations. However, the
largest errors were found on the main diagonal of P(0), and
all were strongly negative. These results were all
consistent with the hypothesis that the residual covariance
matrix was too large, in spite of the excellent convergence
of the Powell search at the estimated values shown in Figure
6-1.

A further reason to doubt the estimated results was
found in the parameter estimates themselves. The estimate
of the parameter ET in particular seemed too large, as it
implied an elasticity of total energy demand with respect to

price of 1,8, via the calculation shown in Figure 6-3.
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Figure 6-2

Whiteness Tests for Preliminary Estimates
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Figure 6-3

Calculation of Elasticity of Energy vs. Price



- 97 -
An additional trouble with the preliminary estimates
was discovered in looking at scatter plots of fuel
consumption vs., price. Several "outliers" were found (data
points lying far outside the distribution determined by the
ma jority of data points). Although such points constituted
as small fraction of the total data, it was feared that the
large apparent anomalies of these few points might be
enough to distort the results.
The following three sections discuss the analysis of
these various validity tests, and describe the improvements
made in the model and data as a result.

6.3 Detection and Response To Bad Data.

The scatter plots mentioned in the last section
precipitated the search for major errors in the data, but
additional methods were required to efficiently locate the
problem data. Scatter plots are inherently limited to two

dimensions, and the equations of the model related several

data series at once, Thus, three additional approaches were
used to search for bad data points.

Farst, the normalized predicted measurement residuals
(NPMR) for the three measurement variables were plotted,
using GPSIE. These residuals, given correct data and an
accurate model, should have a constant variance of one. All
residuals of magnitude greater than 1.5 were marked as
suspicious, and the data at the corresponding year and

region were examined, (The unusually tight standard of 1.5
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standard deviations was made necessary by the fact that the
residuals seemed to be overnormalized by too large a
covariance matrix). A glance at the plotted residuals also
indicated that the variance was not constant across the
regions (indicating cross sectional heteroskedasticity).
This observation prompted the corrections discussed in
Section 6.5.

Second, a similar analysis was performed, using the
NUMR and NUSR residuals described in Section 2.6. These
normalized updated residuals proved effective in 1locating
several bad data points which were not apparent from the
other methods used.

Third, all the data series were plotted and examined
visually, to check for unusual time variation in a single
series. This method is the least susceptable to automation,
but it proved to be effective, both in analyzing data errors
and in developing a feel for the system being modeled.

All suspicious data points found by the above methods
were checked against their sources. The errors were found
to fall into three categories:

1. Many errors were simple typographical mistakes,
which were corrected to match the original data
source,

2, Some apparent errors in the data for New England
and the District of Columbia were due to

inappropriate distribution of aggregate data. For
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example, gas consumption prior to 1969 was
reported only for the combined total of Maine, New
Hampshire, and Vermont., In the data files, these
totals had been arbitrarily divided equally among
the three states. Similarly, some of the data for
Washington D.C. and Maryland were the result of
dividing aggregate data for the combined regions
by two. These difficulties were remedied by
re-aggregating the data into 46 regions Dby
combining Maine, New Hampshire and Vermont, and by
combining Maryland with the District of Columbia.
Extensive variables were simply added; intensive
variables, such as temperatures, varied so little
among the adjoining regions that averaging them
presented no problem,

Several remaining suspicious data points could not
be attributed to any overt error, but nevertheless
seemed unreasonable, For example, reported oil
consumption in Georgia follows an orderly trend,
except for the single year 1969, which seems
abnormally low (see Figure 6-5). Such anomalies
were especially numerous in the oil consumption
data where the market share of oil was 1low. In
cases where the discrepancy was especially large,
the data point was assumed.to be the result of

Y

some mistake in the reporting process, and was
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Reported 0il Consumption in Georgia
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replaced with the NODATA code which signals GPSIE
to skip the data point. One advantage of the
FIMLOF method is that single components of the
measurement vector z(n) may be deleted without
sacrificing remaining components of the vector at
that sample time. Six such data points were
deleted. There remained, however, an apparently
disproportional variation in reported gas and oil
consumption in the small-consuming states. This
variation led to a reformulation of the modeling

of measurement error, as described in Section 6.5.

6.4 Initial Conditions.

The mathematics of the optimal filter used in FIMLOF
assumes that the 1initial values of the state variables are
random variables with known mean and covarilance. In
practice, however, the 1initial conditions are completely
unknown, aside from the available data. The usual practice
in engineering applications is to set the initial conditions
to match closely the first piece of available data, and
perhaps set the initial covariance large enough so as to
express the modeler’s ‘"ignorance" of the true initial
conditions,

Almost any scheme, however, which uses the first sample
of output data z(1) to set the initial conditions will cause

the residuals at the first sample to be zero. First, the
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initial conditions must be fairly close to the true initial
conditions, so that the linearization of the filter will not
be about a trajectory far from the true state of the system.
This requirement rules out, for example, setting the initial
conditions to some arbitrary number unrelated to the system
at hand, such as setting x(0)=0. Thus the residuals are
likely to be somewhat small, since it is desirable to start
the filter "on track". Second, one may "cheat" by, for
example, initializing the filter at the first data sample,
but performing an integration to generage a typical sized
prediction error at the first sample. Thus, we set
x(0)=z(1), and then integrate to get X (1!0) and 2(1!0),
which will in general be different from z(1), because of the
dynamics of the system. However; in this case, any
estimation will tend toward a system that changes as little
as possible in the first time step, wunless the user
expresses low confidence in the first state estimate by
setting the 1initial covariance of the state to be large.
But the large covariance of the initial state will cause the
computation of a large covariance for the first predicted
residuals _(1/0), and the resulting normalized residuals
will again be close to zero., Thus, if the data used as z(1)
for computing the first residual 1is also used in some
reasonable way for setting the initial conditions of the
optimal filter, the contribution of z(1) to the likelihood

computation will be close to zero, and the first normalized
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predicted measurement residual, rather than being a random
vector with unit variance, will almost certainly be close to
zZero.,

Now in a typical engineering application of the optimal
filter, the above consideration will be of no practical
concern, since the initial predicted residual vector will be
only one out of, perhaps, several hundred or thousand
residuals. Neither the 1likelihood computation nor the
whiteness tests will be significantly affected. But 1in a
situation such as the energy data discussed in this Chapter,
we are using many short time series, and every fifth
residual vector is zero! Thus the SUMSQ statistic
described in Section 6.2 is inherently biased downward
(although not enough to account entirely for its abnormally
low value), and the whiteness and correlation statistics are
distorted.

Therefore, the application of FIMLOF to social modeling
requires either revised definitions of the various validity
statistiecs to take into account the above problem with
initial condicions under cross-sectional data or short time
series, or some better way must be found to set the initial
conditions of the filter. We have opted for the latter
approach here, and recommend it strongly to others. The
remainder of this section describes various ways of setting
the filter initial conditions which avoid the creation of

zero residuals.
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6.4,1 INITIAL CONDITIONS, USING Z(0).

One method for overcoming the above difficulties is to
set aside the first sample vector of measurement data for
use only 1in setting the initial conditions of the filter.
The first data vector is then called z(0), and is not used
directly in the 1likelihood computations., That is, z(0) is
used to determine X(0{0), but residuals arc computed, as
before, only for z(1)...2(N). The essence of the method is
to use z(0) to convert a completely unknown x(0) into a
Bayesian x(0) with an estimated mean and covariance.
Assume, for example, that

2(0) = Hx(0) + v(0),
x(0) is completely unknown
v(0) is N[O,R]
where the relation may be exact, or may derive from
linearization of the nonlinear standard form, If
dim{z(0)>=dim{x(0)} then we may compute
£(010) = [H'E'B] H'R'2(0), and
YV = coviz(0!0)} = [H'R'H]"
The resulting initial conditions are not truly Bayesian,
since we have only estimates of the mean and covariance of
x(0), rather than a priori known mean and covariance.
However, the result is clearly superior to the alternatives
discussed above, and in practice is usually a sufficiently

close approximation.
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The method described above is the one used for the
energy demand model of this Chapter, In this case, H=I, so
the equations reduce to

£(010) = z(0)
Y = R(0)

This method, however, breaks down if
dim{z(0)}<dim{x(0)}, since [H'R H] is then singular. The
estimate also fails, of course if ﬂ'ﬂﬂﬂ is singular for any

other reason.

6.4.2 INITIAL CONDITIONS, USING Z(1)...Z(N).

In case the method of Section 6.4.1 fails to yield
estimates of the desired accuracy, Two additional methods
are available which take advantage of all the available
data. Instead of separating out the first sample vector as
z(0), the first vector remains labeled z(1), and one of the
following two approaches is used:

1. The most direct and accurate approach is to set

“¥Y=0 and include the components of x(0) as unknown
parameters to be estimated.

2, A second approach that uses all the data to
estimate the unknown initial conditions is to use
the smoothing form of the optimal filter, such
that X(0{N) is computed in each pass through the
data [Schweppe,1973], [Jazwinski,1970].
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6.5 Modeling Measurement Error.

In searching for bad data points, it was observed that
the data for gas consumption and oil consumption seemed to
be excessively noisy in those states where the consumption
of the fuel in question was low. Thus, for example, in the
midwest and southwest, where fuel o0il is seldom used, the
0il data seemed to be particularly unreliable. In the WLS
estimates of the model, it was found that the use of OLS
(unweighted data) produced residuals of noticeable
heteroskedasticity. The situation was improved noticeably
by weighting all the consumption data by the square root of

the sum of oil and gas consumption. Thus,

G(n) = G(n)*¥SQRT[G(n)+0(n)]
0°(n) = O(n)*¥SQRT[G(n)+0(n)]
E’(n) = E(n)*¥SQRT[G(n)+0(n)]

This adjustment of the data, used in the WLS estimates,
was based on the assumption that the variance in the
consumption data was due to the variance of a multinomial
decision process [Theil, 1967], [Schweppe,1974], in which the
fuel prices and other exogenous inputs determine the
probabilities of the multinomial process, rather than the
decision being modeled as deterministic., A similar argument
led tc a change in the modeling of the measuement error in
the context of FIMLOF, For the estimation with GPSIE, we
observed that the large variance in reported consumption in

‘the small consuming states was unlikely to be due to
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multinomial variance in the appliance choice decisions. To
test this hypothesis, the theoretical variance of the data
was derived for a region with a small number of decisions.
The smallest number of decisions for which we could find
data was the installation of o0il furnaces in Kansas. In
1968, there were 12,350 oil furnaces in use in the
residential sector. There were U487 decisions to install oil
burners, including new homes (40), replacements (312) , and
conversions (135). The total market share of oil in the
residential sector in Kansas is 4%. A reasonable assumption
to make (since this computation is only to determine the
rough order of magnitude of the binomial variance) is that
the fraction of all decisions made for furnaces in 1968 was
also 4% for oil. This assumption is equivalent to asserting
that the market is roughly in equilibrium. Then the total
number of decisions would be 487/.04, or about 12,000
multinomial trials, 4% of which went to oil. Under a
multinomial model of fuel choice, the variance of the number
of decisions for oil is proportional to the total number of
trials:
var{no. of oil decisions} = 12000%f%*( 1-f)

where f is the probability of choosing o0il, which is
(roughly) 4%, This gives a variance in the number of
decisions for oil of 480, for a standard deviation of 22.
Since the reported consumption of oil depends on the total

number of furnaces in wuse, rather on just the new and
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replaced furnaces, this standard deviation should be
normalized by the 12,350 furnaces in wuse in Kansas in 1968,
yielding a standard error percentage of 0.2%! Thus, we
conclude that the 1large apparent variation in reported oil
consumption is probably not due to the variance associated
with the multinomial process model of fuel choice.,

However, a good argument can be made that the variation
in reported oil consumption can be attributed to errors in
the data collection process. The o0il consumption data, for
example, is based on the collection of forms by the Bureau
of Mines, as published in the BOM Mineral Industry Surveys.
The submission of these forms is in itself known to be a
somewhat random process. Forms may be 1lost or delayed;
consumption of an industrial firm may be reported as
commercial consumption, etc. The forms are collected not
from end users, but from producers and distributers, usually
at a prather aggregate 1level. Thus, 1if one models the
submission of forms to the Bureau of Mines as a random
process goverened by a binomial decision (unconscious?) of
whether to submit an accurate form in a given period. The
number of &rials each period is much smaller for this
decision, and could yield significant variance in the
reported consumption figures, even if the probability of
submitting an accurate form is high. Thus, it 1is a

reasonable hypothesis to model the measurement error in gas

and oil consumption as having a variance proportional to the
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size of consumption. This model is compared with the two
alternatives in Figure 6-6. The vagaries of reporting
consumption were assumed to be much less for electricity,
where the standard deviation was maintained as proportional
to consumption, as before.

The constants of proportionality between the variance
and the consumption figures were 1included as unknown
parameters to be estimated by GPSIE. 1Initial guesses of the
parameters were computed by visual estimates of the sample
standard deviations of several repersentative graphs of the

consumption data.

6.6 Filter Convergence.

Although experiments with simulation data indicated
that there were no numerical problems with the filter and
that the model structure was identifiable, an additional
numerical test was performed to make sure the filter was
behaving properly. The motivation for the test was the
observation that the measurement function of the model which
relates consumption data to the state variables was highly
nonlinear. Thus, the estimated state about which the
measurement function is linearized for the Riccatti equation
is important -- a small error in the estimated state might
lead to a significant error in the 1linearization matrices.
To test for the presence of 1linearization error, a local

iteration 1in the filtering equations was introduced, 1in
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WLS MODEL: *%* MULTINOMIAL MODEL USED TO MODEL
EQUATION ERROR VARIANCE AS PROPORTIONAL TO

CONSUMPTION; MEASUREMENT ERROR ASSUMED ZERO,

PRELIMINARY FIMLOF MODEL: *¥%¥ FOR BOTH EQUATION

ERROR AND MEASUREMENT ERROR, STD, DEVIATION

TAKEN AS PROPORTIONAL TO CONSUMPTION,

FINAL FIMLOF MODEL: #¥ VARIANCE OF MEASUREMENT

ERROR TAKEN AS PROPORTIONAL TO CONSUMPTION;
STD. DEVIATION OF EQUATION ERROR TAKEN AS

PROPORTIONAL TO CONSUMPTION.

Figure 6-6

Models of Variation in Gas and 0il Consumption



- 111 -
order to insure that the best estimate of the system state
was used as the linearization point, The iteration is due
to Breakwell and is taken from [Jazwinski,1970]. The
optimal filter with the local iteration is sometimes called
the "Iterated Extended Kalman Filter." To test for the
possibility of errors in the likelihood computation due to
measurement nonlinearity, the likelihoods computed with and
without the iteration were compared for several values of
the unknown parameters, The maximum change in the log
likelihood due to the introduction of the local iteration
was less than two tenths of one percent, indicating that the

measurement nonlinearity was not causing difficulty,

6.7 Final Estimation Results.

The changes and improvements in the model and data
described in Sections 6.3 - 6.6 were implemented. The model
was linked with GPSIE, and the log 1likelihood of the
parameters from the WLS estimation was evaluated. The log
likelihood of the WLS estimates was -2,543, which indicates
a factor of two improvement over the log likelihood of the
same parameters under the conditions of Section 6.2. The
differences between the two situations are 1) a new model
of the measurement error of gas and oil, 2) corrected data
files, and 3) an improved way of setting initial conditions
in the filter, wusing 1967 consumption data. The SUMSQ

statistic at the initial parameters, however, was 1,541,
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which is 23 standard deviations greater than the expected
value of SUMSQ=670.

To locate the maximum-likelihood parameter values, a
Powell search was initiated, starting from the WLS parameter
estimates. The search converged at the parameter values
shown in Figure 6-9. The 1log likelihood of the parameter
estimates was -1,155, a major improvement over the initial
parameter values obtained by WLS, Furthermore, the SUMSQ
statistic at the max like point was 680, quite close to the
expected value of 670 (the error of 10 1is less than one
third of a standard deviation).

The whiteness statistics shown in Figure 6-10 indicate
significant improvement over the corresponding statistics
from the estimates of Section 6.2, before the improvements
in model and data. The main diagonal terms of the
correlation matrix P(0) indicate that the normalized
residual series have sample variances close to the expected
value of one (indicating that the SUMSQ statistic is good
not only in the aggregate, but also on a component basis).
However, the relatively large main diagonal terms of the
remaining normalized matrices indicate considerable serial
correlation of the individual residual series, The
Durbin-Watson statistics confirm the presence of serial
corelation in each of the fuels. For a single time series,
these statistics would lead one to reject the present model

and look for missing lag effects operating over about 5 time
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No. Name Definition WLS FIMLOF
1 AT additive constant, total energy -1.54 -1.54
2 BT coeff. on pers. income, total energy 2.89 2.81
3 CT temp. coeff., total energy -1.20 -1.62
4 DT coeff. population density, total en. .937 113
5 ET price coeff., total energy eq. -4.88 -4.16
6 FT  coeff. of lagged term, total energy .839 .839
7 A additive constant, G/E equation .070 .038
8 B additive constant, 0/E equation .208 .038
9 C price coeff., both fuel split eq. -.137 -.029
10 D max. temp. coeff., G/E equation -1.50 -1.23
11 E max. temp. coeff., O/E equation -2.20 -1.47
12 F min. temp. coeff., G/E equation -2.20 -1.71
13 G min. temp. o
13 G min. temp. coeff., 0/E equation -6.30 -5.71
14 H coeff. of lagged term, both fuel eq. .897 .965
15 VARFZ1 var. of meas. error, G -- .45
16 VARFZ2 var., of meas. error, 0 -- .86
17 SDFZ3 std. dev. meas. error, E -- .003
18 EQEF1 fraction std. dev., total energy eq. -- .01
19 EQEF2 fraction std. dev., G/E equation -- .06
20 EQEF3 fraction std. dev., 0/E equation -- .06
log likelihood -2543 -1155
SUMSQ (exp. = 670) 1541 680
Figure 6-9

Parameter Estimates, Final Model
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steps (see Figure 6-11). However, in this case, an
alternative explanation is obvious -- each 5 time steps, the
sequence of residuals enters a new region, and acquires a
new bias, unrelated to the bias of the region preceding.
For zero time lag, one gets essentially the sample variance
of the residual component series, Let
r(n) = b(n) + d(n)
where r(n) is the residual (scalar component) at sample n,
b(n) is the bias of the region containing r(n), and d(n) is
the "delta" component which varies within the region. The
bias component b(n) is assumed to be uncorrelated across
regions, but constant within regions; thereore,
E{b(n)b(n)}, for jck
E{b(n)b(n-k)} = .
0, otherwise
where m is the j _th sample in a given region. Now by
definition, the correlation matrix main diagonal component
of R(m) is
r(n)r(n-m)
but the expectation of the above term is
E{r(n)r(n-k)} = E{b(n)b(n-k)} + E{d(n)d(n-k)}

since E{d(n)}=0. Now since the data in question has 5

samples per region, it is clear that
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'1, k=0
(4/5)E{b(n)b(n)}, k=1
E{r(n)r(n-k)} = § (3/5)E{b(n)b(n)}, k=2
(2/5)E{b(n)b(n)}, k=3
(1/5)E{b(n)b(n)}, k=4
0, k>4

For the gas consumption residuals, it appears that the
sample variance of b(n) is .4,; for oil, .67, and for
electricity, .6 (these numbers were computed as 5/4 times
the 1-step lagged correlation). Thus, roughly half of the
residual variance is due to cross sectional errors, and half
due to time series errors. In both cases, the error is a
combination of both equation error and measurement error.

In conclusion, the residuals exhibit serial
correlation, but all the serial correlation can be explained
by the cross sectional nature of the data. Thus, the model
can be considered to pass the whiteness of residuals test;
the excellent SUMSQ statistiec and variances of individual
residual components combine to lend great support to the

idea that the model is consisient with the data.
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Chapter 7

CONCLUSIONS

In this thesis, a variety of techniques for the estimation of
parameters and the testing of consistency of dynamic models with
respect to time series data are developed. Adopted from their
enqineering origins and developed for application to social and
econometric models, the techniques are referred to here under the
generic label, Full-Information Maximum Likelihood via Optimal Filtering
(FIMLOF). With suitable modifications and additions, it has been found
that FIMLOF estimation and validation techniques work well in the
realm of social modeling, despite the differences in purpose, model

structure, and data between social and engineering systems. The FIMLOF

techniques extend to a wide class of nonlinear, dynamic, stochastic

model forms the application of Fisher's principle of maximum likelihood:

Everything else being equal, we choose the system i
which gives the highest chance to the facts observed., L“

In particular, the experimental and theoretical developments leading
to this thesis demonstrate that the important tasks of parameter

estimation and validation can be performed under conditions of

¥ ) Nonlinearity of system dynamics and measurement functions
® Unmeasured variables and mixed sampling intervalg

e Highly corrupted data, including "errors in variables"

° Cross-sectional data

° Short time sequences of data
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The FIMLOF techniques have been implemented in a user-oriented
computer program, the General Purpose System Identifier and Evaluator
(GPSIE)., The GPSIE software enables the modeler to concentrate on
model construction and evaluation, without getting bogged down in
the writing of special purpose codes for filtering, likelihood
evaluation, etc. In addition to making available some new techniques,
GPSIE may make it easier for engineers and social scientists to use
and explore parts of the FIMLOF complex which, while not new, are
still relatively unknown and unavialable without great investment in
study and programming. GPSIE is a step toward making the powerful tools
commonplace,

In additior to extending maximum likelihood methods to a new range
of model structures, the FIMLOF techniques may provide a useful check
on other results, when applied to special-case model structures (such
as OLS applied to linear-in-the-parameters models).

The FIMLOF methods allow the extension of standard validity tests
to situations where the tests were not previously applicable; for
example, Durbin-Watson statistics may be computed for time-varying
models and for cross-sectional data. Additional tests are also made
possible, as well as new ways of interpreting the old tests.

The residual process of the optimal filter has been shown to lead
to some powerful methods of bad data detection and identification,

The Normalized Updated Measurement Residuals (NUMR) and Normalized
Updated State Residuals (NUSR), in additioa, show promise of being use-
ful for automated elimination of bad data, ;nd robust estimation,

Although not explicitly discussed in the thesis, it should also
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be pointed out that the FIMLOF and GPSIE techniques may also contribute
to social modeling by making routine the computation of statistical
confidence bounds on forecasts made with dynamic models. The confidence
bounds may serve not only as a further test of model validity (in
evaluating accuracy of forecasts), but also may help in pinpointing
areas most productive for the interpretation or improvement of a given
model.

Perhaps the most important contribution of FIMLOF and GPSIE to
social modeling is the degree to which the methods reduce the constraint§
on model formulation often associated with parameter estimation and
confidence tests. It should be emphasized that the methods presented
here, while powerful, should not be taken as automatic, sure-fire
tests of model validity. FIMLOF is "full informatian' only with
respect to numerical data, taken in the context of the specific model
structure chosen by the model builder. It is the obligation of the
model builder to create a model structure consistent not only with
numerical data, but also with prior knowledge, accepted theory, and
internal consistency., No matter how sophisticated the numerical
methods, the most likely model, by numerical standards alone, is the
"black box" model with so many parameters that it can be tuned to
duplicate all the numerical time series. The FIMLOF techniques extend
and complement, but do not supplant, the application of logic and
experience, It is hoped that social modeling may become more and
more dominated by logical consistency and realism, as the constraints

due to the mathematics of estimation and validation are lessened.
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Appendix A

GPSIE

GPSIE (General Purpose System Identifier and Evaluator) is a
precompiled program which consists of 1) matrix routines for computing
points of the log likelihood function, via optimal filtering (extended
Kalman filtering, with various iterations and other options special
cases and difficult problems), 2) several nonlinear-programming
algorithms for maximizing the likelihood function over the space
of unknown parameters, 3) auxilliary computation algorithms for
confidence bounds on estimates and forecasts, robust estimation,
error detection, etc., and 4) control logic for handling input, output,
simulation, options, and error recovery.

For each model, the user writes a subprogram which describes
the model of interest, its dimensions, and its linearization. The
user subprogram (for the first version of GPSIE) must be written
in PL/I, but subsquent versions are planned which will be FORTRAN-
baseds The user subprogram is compiled, linked with the precompiled
GPSIE, and loaded. GPSIE then accesses the user subprogram to
learn the dimensions of the model and data, the initial guesses

of any unknown parameters, and user options,

A,1 Features and Options,

SEARCH OPTIONS. Numerical maximization of the likelihood function

often requires versatility of approach. GPSIE includes as options
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the following search algorithms: Newton-Raphson, Gauss=Newton,
Davidon-Fletcher-Powell, and Powell (Zangwill modification), as
well as a manual search, in which the user specifies the sequence
of parameter values whose likelihood is to be evaluated.

LEAST-SQUARES INITIALIZATION, It is often helpful to first
approximate the maximum-likelihood solution via a least-squares
approach, which is computationally cheaper. GPSIE includes least=-
squares capaabilities as options.

STEADY~-STATE FILTER, It is sometimes desirable to assume the
optimal filter is in steady state after a given sample; either because
it is in steady-state, or to simplify computation early in a search
(much as in the least-squares initializations). GPSIE can compute
the steady-state filter gains "off-line", or may be set to assume
steady state during specified portions of the data. 1In addition,
for time~-invariant linear systems, the filter gain and residual
covariance matrix may be estimated directly as unknown parameters.

CROSS-SECTIONAL or REGIONAL DATA. Data, especially in social
systems, is often available from several systems operating in parallel
and sharing the same unknown parameters. GPSIE can process such data
conveniantly, through an option for dealing with mixed time-series
cross sectional data.

SIMULATION CAPABILITY. GPSIE includes noise generators and
control logic for simulating the model of interest and storing the
results. Deterministic simulatian, with computation of confidence

bounds, may also be done for forecasting and error analysis.
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COMPUTATION OF DERIVATIVES., GPSIE can compute both gradietn
and HEssian of the log~likelihbod function (with respect to unknown
parameters) by finite-differences, in order to handle the most
general casd, An optian is included for a statistical approximation
to the Hessian, which is computationally more efficient, but which
works well only under relatively benign conditions.

MISSING DATA and VARIABLE SAMPLING INTERVALS. GPSIE contains
featues for the convenient labeling of data points as "NODATA", to
be skipped over. This feature is not only useful for missing data,
robust estimation, and error detection, but also allows convenient
use of data of mixed sampling intervals, or of sampling intervals
different from the integration time-step of the model,

A PRIORI INFORMATION ON PARAMETERS. Parameters may be taken
as completely unknown; unknown, with a priori mean and variance;

or a priori known; or any combination thereof.

A.2 Major Limitations. In spite of its generality, GPSIE has

two major limitations, inherent in the use of the extended Kalman
filter:

1) 1In nonlinear systems, excessive noise in the data or initial
conditions, or a poorly observable system structure, may allow the
estimated state of the system to drift too far from the true state.
Under such conditions, the linearization of the filter may become
invalid., GPSIE includes local iteration options to test for and
compensate for divergence of the filter, but extreme forms may

invalidate the computations.
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2) The variable-dimensioning feature of GPSIE allows it to
handle systems of any reasonable size, but requirements of computer
time or storage may obviously become extravagant for some systems,

For example, estimation of 10 - 20 parameters for a system with 5 - 10
state variables may be expected to cost about $100. Hpowever, the

costs are significant only when repeated passes through the data

are reauired to search for maximum-likelihood parameters. Even
relatively large systems may be treated as a priori known (no

estimation of parameters) and tested for consistency with data, forecast
with confidence bounds, etc. Large systems may also be treated
suboptimally by splitting them into sectors of tractable size. This
method may sacrifice little if high-quality data is available for

the variables which are common to the sectors (the "linking" variables).
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Appendix B

INFORMAL TESTS OF MODEL VALIDITY

.soHuman activity must impose limits upon
itself. The more art is controlled,limited,
worked over, the more it is free.... Whatever
diminishes constraint diminishes strength.
The more constraints one imposes, the more
one frees one's self of the chains that
shackle the spirit. 52 Stravinsky, 1956

Mathematical model building operates under two distinct kinds
of constraints: 1) Constraints due to axioms of estimation mathematics,
computer size, costs, etc., and 2) Constraints of logic, consistency,
"scientific taste," etc, The former constraints are generally considered
nuisances, and much work (including this thesis) is devoted tc reducing
their influence. As the erforts to reduce the first kind of constraints
progress, the model builder is constrained instead by the second kind.
The second kind of constraints, however, are sometimes no constraints
at all, They are ill-defined, and every modeler is privileged to
a unique set of them,

The purpose of this appendix is to offer an example list of
informal tests of model validity, to illustrate what is meant by the
second kind of constraint, discussed above and in Chapter 4. The
tests range from trivial to sublime and grandiose., It is not implied
that the author's models pass all these tests.

The discussion of the tests is couched in terms of models of

social systems, but the generalization to other kinds of modeling is
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clear.,

B.l Pragmatic Tests.

Models, it may be asserted, should serve a useful purpose. Hence,
there are some pragmatic tests which ask whether the model achieves
that purpose. These 'pragmatic! tests can usually be directly applied
only after the model has been used (implemenfed), and even then
Aevaluation is uncertain, to say the least. ngever, thinking
about these tests during the process of making the model belps one
maintain an attitude toward purposeful, high-quality work.

TEST 1:; Does the modeling activity lead to improved real-world
systems (the ultimate pragmatic test).

TEST 2: Does the model correctly predict the direction of
change resulting from policy changes?

TEST 3: Does the model correctly predict the extent of change
resulting from policy changes?

(Note that tests 2 and 3 can be applied in two ways during the process
of model building and implementation: |
1. The model should be consistent with any policy changes
that have occurred historically in the system under consideration.
2, Policy changes suggested by the model may be implemented

on a trial basis, in limited (controlled?) experiments.,

-

B.2 Tests of Purpose.

A model's validity can be judged only with respect to a purpose.
Many of the tests listed here can be applied only in the context of

a clear and explicit purpose.



- 132 -

TEST 4: Does the model have a clear purpose? Specifically,
what are the symptoms (variables) that the model is to be used to
explain or modify? What experiments or policies do we want the model
to predict or explain the results of? The test of purpose is
a major constraint on the scope of a model. A clear purpose may provide
a priori criteria for excluding various ideas and variables from the
model; with no purpose to the model, any observed feature of reality
is fair game for inclusion.

TEST 5: The model should be formulated from a well defined
perspective., For example, a model of a firm from the perspective
of an investment banker will be dififerent from a model of the same
firm from the perspective of a productian manager., This test provides
a constraint on the level of aggregation. Just as a model without
a well-defined purpose (Test 4) is apt to become too ''wide" (dealing
with too many things), a model without a well-defined perspective
s likely to become too ''deep" (going into too much detail).

TEST 6: 1Is the model addressed to important questions and
problems? This test, like Test 1, is not usually associated with the
notion of validity. It instead represents an attitude, or a judgement
of "scientific taste.'" However, it is a test often applied (especially

to other people's models).

Be3. Tests of Variables and Structure.

Mechanisms in the model should correspond with '"real" mechanisms.
TEST 7: Every variable and parameter should have a precise

definition relating to things in the '"real world." This definition
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is intended to eliminate nameless parameters and other hard-to-evaluate
constructs from the model. The ideal is to have a transparent and
communicable structure, rather than a "black box" approach. (however,
in some applicatians, and for some purposes, the black box approach
may be best -- another instance of the subjectivity and inconsistency
of informal tests).

TEST 8: Look at the constants in the model: are they really
constant for the purposes of this model? No real-world parameter
is "really" constant., Making it so in the model is an assertion
that it changes slowly, compared with the dynamic behavior of the
model; or that changes in the parameter will not affect the conclusions
to be drawn from the study.

TEST 9: Consider the exogenous variables in the model, if any.
Are they, in fact, independent of all the other variables in the model?
Imagine that some or all of the endogenous variables are forced to zero;
is the exogenous variable still plausible under these circumstances?
Similarly, imagine system levels to take on huge values,

TEST 10: For each relationship, what is the corresponding real-
world mechanism? Seek to witness or sample the actual operation of
the system being modeled; avoid relying on verbal generalizatians only.

TEST 11: Look at critical points in functions and relationships;
points of steepest slope, inflection points, asymptotes, dips,
abrupt changes in slope or curvature should all have physical meanings

and plausible justificatians.
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Bo.4 Tests of Sub=Sector Behavior.

By sub-sector, we mean individual equations or groups of
equations which are closely connected in the model. Each sub-sector
or equation may be thought of as having inputs and outputs, which
may not be the case for a complete model with no exogenous inputs.
However, the same tests may be applied in the latter case, if parameters
are thought of as "inputs" {(see Section 4.1), and endogenous variables
as ''outputs.'

TEST 12: Imagine or simulate changes in the input variables,
especially sudden or large changes. The magnitude, transient
character, asymptotic behavior, and time phasing of the resulting
changes in the outputs should make sense and should be consistent
with past observations and time-series data, where appropriate.

TEST 13: The behavior of equations and sub-sectors should be
defined and should make sense for extreme values of input variables,
Are the outputs reasonable when the inputs are zero? When the inputs
are abnormally large? The behavior in the extremes, coupled with
an assumption or observatian of smoothness, may be a useful constraint

on the actual, mid-range operating region.

B.5 Tests of Model Behavior.

TEST 14: The simulation behavior of the model should not differ
in any significant way from that of the real system, when judged within
the purpose and perspective of the model. Note that the duplication
of historical time series via free-running simulation may not be part

of this test, depending on the purpose and aggregation of the model.
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For example, a cyclic model (say of commodity cycles), in which
exogenous shocks, such as weather changes are modeled as random
distunbances, may exhibit the same sort of cyclic behavior as the
real system, but the exact phase of the cycles will vary according
to the random inputs. Thus, the real system and model are liable
to show relative drift, sometimes being 108° out of phase, even for
a "perfect" model, However, the FIMLOF consistency tests still hold.

TEST 15: Are the time-phase relationships among the variables
correct?

TEST 16: Does the model, under simulation, do anything interesting
(unexpected or contrary to the obvious)? If so, why? Does the reason
make sense in terms of the real system?

TEST 17: Look at the abruptness of changes in variables, both
absolute and relative to changes in other variables, as at turning
points, etc.s Do these correspond with those seen historically in the
real system?

TEST 18: 1Is the model insensitive to variations in parameters

and inputs which the real system has been historically insensitive to?

B.6 Conclusions,.

The above list of informal modelevalidity tests is included only
as an illustration of the existence of such tests. In their present
form, they are, of course, vague, contradictory, and didactic. One
might wish them to be complete, consistent, wéll-defined, and

objective, Making them so is left as an exercise for the reader,
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Appendix C
BAD DATA DETECTION AND IDENTIFICATION

FOR DYNAMIC SYSTEMS

This appendix gives the formal derivation of the Normalized
Updated Measurement Residuals (NUMR) and Normalized Updated State
Residuals (NUSR) discussed in Chapter 2 and used in Chapter 6 tfor the
identification of bad data points, due to major typographical errors,
etc, The derivation holds strictly for linear dynamic systems; for
use in FIMLOF and GPSIE, the linear model is taken to represent a
nonlinear system, linearized about the trajectory defined by the
optimal filter, Thus, the technique applies approximately to nonlinear
systems under the same conditions discussed above for the extended
Kalman filter and the lacally-iterated filters implemented in GPSIE,

The usual filter equations (Figure 2-3) can be interpreted in
the following way (so far assuming no bad data points): both the
measurement data z(n) and the predicted state estimate g(n]n-l) may
be thought of as noisy measurements of the true state x(n). Since all
information from z(1)...z(n) is contained in z(n) and g(n)n-l), x(n)
must be considered completely unknown.

z(n) = Hx(n) + v(n)
x(n)n-1) = x(n) + §x(n[n-l),
where

Cov{x(n)}= E[X(n)xt(n} = R(n), and cov é_x(n, n-1) =-§,;(n n-1)
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We reduce the above equations to the following simplified but equival-

ent form:
Y = Ax + €, where

where . .

z(n) H (o)

Y= A = x = x(n

g(nln-l) I

and
R 0

U

covfe} = Bjg ¢} .0

0 gx(nln-l)
Consider the problem of estimating x given y, and checking for
bad data (via a large component of _). Using Fisher estimation
logic (see 35 , p. 134), since x in this context is completely unknown,
we get
£ = aa wlagly .
We define the standard (unnormalized) residuals r as
L=y-AX
- [z- st g e ]

-[1-awnn gt e (c.1)

We shall define the normalized residuals to be some linear function

of the u‘,pda+ec( residuals r. Denote the normalized residuals by r.-

r,=Mr= Wg (c.2)

where

W= M[1- é(é'f.’-'lg)‘lévg-l] (c.3)
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The objective now is to choose the matrix M so as to facilitate bad
data detection and identification (where bad data is to be defined
below). A suitable M must satisfy the following two conditions:
Condition I (unit variance)
E{EﬂEA} =1 for all sample times, except for

bad data points.

Condition II (identification of bad data)

Define Hj as the jth column of W, and ij as the kth element of Eﬁ.

e

We define "bad data'" as a large component of £, such that & may

Then we require

be approximated as

£ =,ij , /,\/{ lavg e

Ay
where
ej = column vector of zeros, except for the

jth element, which is 1.

Then

r = W, & for a bad data point.
-n  =j

Bad data detection will occur when one or more of the components of

I, is large, compared to its unit standard deviation., That is,

{r 1 >~3 for some j.
=n j

Condition II is motivated by the desire to achieve bad data

identification via the additional criterion that when bad data is

detected, the largest

r
-n

identifies the bad component of €.
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Now, from (C.2),

covjr } = Ejr zti =M| I - Aars” A) A'Jflj;’}

x [1 -0 Yacargs A) A}M'
[ﬂ - aar_ oy aw

- @ fer -0 gt o (c.4)
From (C.3),
AR B Ve N Xt | (c.5)
Define
N S, VN S Vet (c.6)
So (C.4 and C.5) become
E{_z;ns_l'_l} = MAlCw (Cc.7)
and
W= uor
Define
Lo
D. = dlagflf‘} = [L
e
and -~

|U.
A"
i)
fC '57
Sl
e
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We can now satisfy Conditions I and II if M is defined as

or

and from (C.8) )
] i ME}"
W= oA
LS N
WO
. ¢

(c.9)

(C.10)

The W defined by (C.10) can easily be shown to satisfy Condition II.

For example,

W

_lkn = r
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The fact that I: is positive semidefinite implies that

2
N
RN
oo

for all k.
Now we return to the original notation:
H R 0
Ak O
l’i 5 0 Z_X(nln-l)
-
R "H
{.)__'1& = |- é'gl _-_[ 5'5'1 Z;}nl n-l)]
S (n]n-1)
ﬂ
A_'_-lé_ = l{"l_l.-l_li + g;l(n[n-l)
wem™ = Z (afw
so
r 1 1 -1‘
R™ - R™H3 (n|n)H'R ~
= 2 He, |
o O —_ - - ( -'M - e -
[_1 = {E_xl(n)nul)
~ | -?_;l(nln-l)gx-(nf n)g;l(n}n-l)
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or
ro ‘Zl(n,n-l) T,
i ‘l T 12 (a |n-DE
where

2, {nfn-1) = B2 (a|n-1) H' + R

The equations of Section 2.6.2 fcllow, with

r (n|n)
I
- r (n’n)
q

Note that 2:? is not always defined. For example, let the jth column
of H be the zero vector 0, indicating that the jth state variable is

not directly measured. Then the jth diagonal term of 2:? is formally
equal to 1/0. But note that En(n/n) = D';

=T

normalized updated state residual NUSR Ex(n]n),

.(_\_:1 r(n), and for the

\
r (nin
(njn)

2;%:%;%n\n-l)[£(n]n-l) - gkn\n)]
- ﬂ'gl(nln-l) _éx(nln-l) .

]

Thus, for elements of x(n) not directly measured (via a zero column
of H), the corresponding elements of:é;l(nln-l)[:g(nln-l) - g(d n)]
are zero., It is not hard, then to show that the corresponding component
of r (n n) is indeterminate.

The physical inferpretation of the above situation is as follows,

If xj is not directly measured, then there is no redundancy on its
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measure, the only information coming from the indirect ''measurement'
g(n]n-l). But the derivation of Ex(nln) depends on the availability
of redundant information about x(n) and the errors £(n).
Thus, when a component of £x(n|n) is indeterminate, via the

1
nonexistence of all terms of sz

, then the undefined components of
r (n]n) should be set to any arbitrary number. In GPSIE, they are
q

set to zero.
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