
MINIMIZING THE NAMING FACILITIES REQUIRING PROTECTION
IN A COMPUTING UTILITY

SeBeo ¥:

x .

re Aye

= 3

Ce oo ED

It

Glenn FE. 4

ie situte of Technology
373)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Bt the

ai.u3ETTS INSTITUTE OF TECHNOLOGY

Julye 1975

Sighature redacted
Signature of Auther.__sesces

Department ov t. ., acyl Englneering, July 7, 1975
Signature redacted vennneees

_ BS —TIpgLls Supervisor

Wy. Olgnature redacted |,
Chalrman, Departmental Committee on Graduate Students

Archives
SARS. INST, TEcy

DEC 151975
Nem orRy

af

MINIMIZING THE NAMING FACILITIES REQUIRING PROTECTION
IN A COMPUTING UTILITY

Richard Glenn v-_. 1

SubmittedtotheDepartment of Electrical Engineering
on July 7s 1975 In partial fulfillment of the

requirements for the Degree of Master of Sclence.

ag
a mE

1
a

This thesis examines the varlous mechanisms for naming
the Information objects stored In a general-purpose computing
utilityy, and Isolates a basic set of naming faclijitles that wrust
be protected to sssure complete control over user Interaction and
that allow desired Intersctions among users to occur In a natural
NaYe Minlalzing the protected naming faclliltles consistent wlth
the functional objective of controlled, but natural, user
interaction contributes to defining a securlty kernel for a
general-purpose computing utility. The security kernel Is that
complex of programs that must be correct [ff control on user
interaction |s to be assured.

The Multlics systea Is used as a test case, and its
segment naming mechanisms are redesigned to recuce the part that
rust be protected as part of the supervisor. To show that this
smaller protected naming facility can still surport the complete
functionality of Multicsy a test Implementation of the design Is
perforaedes The new design [1s shoun to have a significant Impact
on the slze and complexity of the Multlics supervisor,

THESIS SUPERVISORS: Michael 0. Schroeder
JITLES Assistant Professor of Electrical Engineering

ACKNOWLEDGEMENTS

I would llke to express ay gratitude to my thesis

supervisors Michael Ds Schroedery for hls helpful suggestions and

juldance fthrouahout the conc~otjion and e~~-~utlon of this thesis.

Thanks are also due many other members of the Computer

Systems Research group at Nele.T.’s Project MAC for thelr helpful

comments and suggestionse In particular, I would (lke to extend

ny thanks to Doug Wells and D0Oavid Reed for thelr help In

Isolating two prer~arming bugs In the Initlal Implementation of

the design pr. cented In this thesis.

I would also llke to take this opportunity to thank my

sgirifriend, Clalres for her kind help and gentle understanding

during the past sonthse.

This research was performed In the Computer Systems

Research Division of Project MAC, an NM.I.T. Interdepartmental

Laboratorys and was sponsored In part by the Advanced Reseszrch

Projects Agency of the Departement of Defense under ARPA Order No.

2095 which was monitored by ONR Contract No.

080014=70-A-0362-080063 In part by the Alr Force Information

Systems Technology Applicatiors Office (ISTAO) and by ARPA under

ARPA Order No. 2641 which was monitored by ISTAQOS and In part by

Honeywell Information Systems, Ince.

JASLEOFCONJENIS

Sectlon

ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF FIGURES

Chapter 18
11
Le2
Led
lef

Introduction
Brief Statement of the Problem and Result
Related Nork
Background
Pitan of Thesis

Chapter | ~8 Name Space Management In a
Baslc Information Storage and
Global Machine-Oriented Names
Global User-0Orlented Names
Local Machline-Orlented Names
Local Descriptors
Local User-Orlented Names
Summary

Zed
208
Ped
2ele
2%
2eb
Pel

Computing Utility
Protection Model

Chapter ...
Se1
3¢2
33
Zola

? A Model of the Multlics System
Storage System Model
Information Protection Model
Address Space Model
Reference Name Space Model

Chapter IVS
bel
hel
he3

Redesign of the Security Kernel
Dependence on the Reference Name Manager
Source of the Dependence
Removal of the Dependence

he3el Overview of the Design
he3e2 Detalls of the Design
Removal of Pathname Processing

belkel Parameters to Ring Zero
bebe? Links
babel Internally Generated Pathnrom=c~
bebole Error Condl tions

Summary of the Design

Da Hi

ha5

Redesign of the Shell
Reference Name Manager Design
Pathname Resolution
Interface Compatibility

Chapter VIS Implementation
Bel Plan
be2 Ispact on System Complexity
be 3 Inpact on System Performance

P3ge

7
7
9

21
’5
‘9
51
IL

25
35
41
 aly
“6

+8
+9
1
54
54
>8
58
70
70
73
5
’é

77
r?
79
BI

35
35
37
39

Chapter VII?

Appendix
Appendlx
Appendix
Appendix
Appendix
Appendix
Append]x
Appendix
Appendlx

Pp
C

[J
LL

[eo
[e2
1.3

BIBLIOGRAPHY

Conclusion

Multlcs Known Segment Table
Proposed Known Segment Table
Proposed Address Space Manager Interface
Example
Slze of Programs
Performance (ata
Ring Zero Interface Complexity Data
The Address Space Manager Programs
Unimplemented Address Space Manager Functions

Reserved Switch
Copy Sultch
Transparency Sultches

>

95
37
38
39

101
103
105
108
126
126
127
L28

‘729

My

ListofFlgures

flgure

2-18

2-28

2-38

2=bt

2-58

kell

Global Machine-Orjented Nar 5

tiobal User~0Orlented Names

Local Machlne-Oriented Names

Local Descriptors

Local User-Orlented Names

Action of Inltiate_ for Directories

Page

0

IN

a|

*4

1 L

1

Intraduction

l.1 Brlel 1 Fo fap _~And Result

fhlis thesis Investigates the class of computing utlliity

rechanises that deal with naming Information objects within a

computing utititye Our goal is to understand the varlous

functions played by name Paces in contemporary computing

utilities and to decide which of these functions must be

protected to assure complete control over user Interaction. The

Multics system, which is a sophisticated computing utitjity, will

be used to test the valldity of our conclusions. (1) We will

ilnd that Multics protects several mechanisms that we claim reed

not be protected to assure control over user Interaction. To

substantiate our claim we will present a redesignofMulticsthat

allows these mechanises to be unprotected without sacrificing the

ability to control user Interaction. The resulting reduction in

the amount of code that must be protected to assure control over

user [nteractjon contributes to defining a security kernel for

Multicse

md

{1) The Multics system was developed as a prototype computing
utlilty by Honeywetld Information Systemsy Incey and M.I.T.°'s
Project MACe A complete bDIbllography of the Multlcs system may
be found In (M2).

lez Refated Work

The Muttics system [Cio C2, M2, 01, S31 Is an example

at a 2] ‘lecated state-of-the-art computing utiilty. As part

of a general [nvestlgatlion Into how one goes about the task of

certifying the security of large systems, the Computer Systems

Research Division of Project MAC at M.I.T. Ils attempting to

produce a certifliably secure version of the MHultics system, by

redesigning Multlics to mlnimize the collection of programs that

aust be correct to assure complete control over user

interactions. As a result, this collection of programs, the

Multics securlty kernel, has been steadily decreasing In size and

complexity A recent masters thesls (J1] describes how a Mul tics

security kernel! that does not Include a dynamic linking mecharlism

nas developed. This thesis reports the results of another effort

to reduce the size of the Mul tlcs security kernel.

le3 or
ol

A computing utltiity is any computer system, or network

>of Interconnected computlng systems, that provide general

computing services to a community of users. Among the nrost

important services provided by computing utititles are facitltles

that allow users to shares store, retrieve, and process

Informations To facliltate the emanjputation and sharing of

stored Information, computing utilities must support a multitude

— lp—

>f name Spaces. These name spaces, which maintain a

cor;aspondence between a collection of names and the Information

they denotes provide organization of the collections of

inforaation rr “ad In the systema.

We find many name snaces at all levels of a computing

utlliltye The base computers on which a computing utility runs

isplicltiy employ a name space that maps a set of integer names

{actually a set of representations of Integers) called addresses

infoaset of words of computer memory. Similarly, direct access

Rass storage devices such as magnetic disks and drums deflne a

hame space that maps physical storage addresses into records of

bitse At a higher level, most computer utilities support a name

space that allows Its users to denote filles of Information by

character string names such as “John's_flle”™. Detalled analysis

pf most sw n ; rcveals many other examples of rame spaces.

He have stated that a computing utility provides

information processing services to a community of users. Since we

have not placed any restrictions upon the ccmposition of this

user coamunlity, we must assume that these users harbor [Il will

toward each other or toward the computing utiilty ltself. This

118 wlll can manifest Itself In any of three ways. A malliclous

Jser alight attempt to uses modify, or prevent others from using

or modifying Information In the computing utility. Even In a

computing utltilty shared by a non-mallclous user community, one

 4 0)

user might accldently compromise another user's information or

romputatione

Any general computing utility must prevent such

undesirable Interactions between Its users. To this end It rust

gecure 1lts users agalnst ynauthgrized use, modiflcatlon, or

denial ot use of the Informatjlon they process In the computing

utilltye This requires that the computing utlilty Implement an

aythorlzatlon mechanism that allows those user-Iinformation

Interactions that are fo be permitted to be specifled. The

information supplled to the system through thls authorization

pechanlse must then be used by an access control mechanism that

Intercepts at) user-Information Interactions and verifles that

they are suthorlizedo

The presence of access authorlzation and control

nechanlisas In a computing utility does not prima facle secure its

users from haraful, uncontrolled interactions with other users of

the computing utliitye It must be established that these

protection mechanisms do Indeed perform thelr Intended task

without errore It further must be established that these

Information protection mechanlsas cannot be subverted, damaged,

or clréumventede Only then may users of the computing utility

process sensltives Irreplaceable, or timely Information with

© ~~mnable freedom from fear for ts security.

=D OL _

We Identify that subset of the mechanisms of

computing utlllty which must be correct In order to guarantee

the securjty of the Information contained In the computing

utility as [ts Security kernels Mechanisms not belonging to the

securlty kernel! of a computing utility are sald to belong to its

shells

Clearly the task of establishing the correctness of the

security kernel of a computing utility must Increase

monotonically with [ts size and complexity. For this reason It

would be advanta-eous to know which computing utility mechanisms

need be Included In the security kernel for Intrinsic reasons. A

mechanism has an Intrinsic need to be Included In the security

kernel of a computing systema if and only It It can be used by one

computation to Intluence another computation. The access

authorization and control mechanisms of a computing utility are

the two most obvious examples of mechanisms that must be Included

in 8 ‘security kernel. If a computing utility supports a shared

name space for ldentifylng stored Information, then this

pechanlsa, by virtue of Its commonality, also allows one

computation to Influence another and hence must be considered

part of the 1 "urity kernel of the computing utility.

Mechanisms that have no Intrinsic need to be protected

pften ere Included In the securlty kernet! of a systen. Common

~easons for Incorporating a mechanlsa In the securlty kernel of a

I

computing utility when it has no intrinslc need to be protected

include the desire to protect the mechanism from damage, the

desire to wninimize cross domaln calls, and tre need to protect

the mech” Vw bropuse some security kernel mechanism happens to

depend upon Its correct operation. The wnotivation behind

Including a mechanism In the security kernel of a computing

utility when lt has no securlty-related need to be protected must

be carefully analyzed, 8s the Inclusion of the mechanism In the

security kernel contributes to the complexity of the securlty

kernels Removing the mechanism from the security kernel would

have the advantage of lessening the task of estabilshing the

correctness of the security kernels This thesis will evaluate

the need for each of the major name spaces supported by a typlcal

computing utility to be Included In [ts securlty kernel. We will

use the knowledge thus accumulated to simplify the Multlcs

secur..ykernels

lel Plan no Thes]s

In Chapter II we present a model of a computing

utitltye. This model pays particular attention to those

mechanisms that sre Involved In naming Information stored In a

computing utititye. We begin by defining a very simple

Information storage and protection models Through successive

enhancement of thls model we arrlve at a model that we feel

represents tho . ‘oe 0f name. . ~ca mrncqgement In a contemporary

i a

computing utllijity. As we add each new name space to our model, we

consider Its basic rajson d*8tre, the advantages and

jisadvantages lt provides over the previous model, and most

importantly Its Iepact upon which name spaces ir the model must

be pr~tecCc ed as a part of the security kernel.

Chapter 111 begins our case study of name space

rana "ment In Multics. Me identify the major name spaces

Raintalned by Multics that deal wlth naming stored Information

and establish a correspondence between these nase spaces and the

name spaces of our model. Having established thls correspondence,

ne attempt to verity that no intrinsically shell functions, as

identlfled In our model, are implemented by the Multlcs security

kernels This investigation reveals that the Multlcs reference

Name Spacey, a name space used In resolving Inter-procedure

references, is lmplemented In the Multics security kernel

althoughIthasno Intrinsic need to be protected. The reasons

behind thls flaw In the wsodula,..y of the il

investigated.

In Chapter 1IV we develop a design that removes

reference nass m=" ‘ament from the securlty kernel of the Mul tics

systems In so doingy we also remove several functions related

to the managesent of the Muitics global naming hlerarchy from the

Multics security kernel. The most notable of these are that

function which allows the security kernel to name segments by

i. I

hierarchy pathnames and that function which allows multiple

paths In the Multics storage system hlerarchy fo deslgnate the

same objects In the course of removing these functions from the

securfty kernely our design drastically changes the Mul tics

security kernel Interface. Finally, we discuss the Ilmpact of

his design upon the security kernel.

Chapter V discusses the lmptications of our security

kernel design upon the Multlics shells We discuss the principles

Involved In deslgning a shel! resident reference name manager. In

the course of this presentation we uncover an important

consideration In moving any module out of the Multlcs security

kernels Specifically, Muitics security kernel procedures are

guaranteed to run to completion once Invoked. This allows them

to make ec~uvmptlions that would be invalid were they to be

executed In the Interuptable shell environment. Following this

discussion, we show how the functions of pathname resolution,

and storage system (Ink processing may be implemented In the

Mulitlcs shelte Finally, we discuss the need for simulating the

31d security kernel Interface.

In Chapter VI we discuss the results of a test

Implementation of the security kernel we have deslgned. This

test Implte~~atztlion allowed wus fo {--~~uyre of the Impact of our

§ *

design upon the complexity and performance of tre Mul tlcs system.

ie report this data along wlth a description of our test

implen-*2tlone

of ter VIX summer ne 1. ~ 4its of our thesis.

He have Included nine appendices In this thesis.

Appendix A detalls the structure of the data base for the current

Myuttlcs address space manager and reference name manager.

Appendix B shows the Impact of our design upon the structure and

content of thls data base. Appendix C summarizes the new address

space manager |[nterface proposed In thls thesis. In appendix 0D

we present an example of the use of this new Interface. Appendix

E summarizes the Impact of this thesls upon the size of the

Multics security kernels. In appendix F we report the details and

results eof our performance comparison between the standard

Multlics system and our test system. Appendix G summarizes the

effect ot our thesis upon the complexity of the Multics securlty

kernel Interface. Appendix MH presents the programs of our

redesigned address space manager for the reader®s perusal.

Appendix 1 discusses several functions supported by the current

Multlics address Space manager that, for the sake of simplicity,

were not co~</dered In the body of the the se.

t 2

Chagter 11
Nape_ ¥ “tt In ~~ © ting Utlillty

In this chapter we will develop a model of a computing

utilitys Our emphasis will be upon the roles played by name

spaces In contemporary computing utilities This model will be

developed by adding successive layers to a central model of

Information storage and protection. After we add each successive

aechanlsm or name space to this models we will present a graphlc

representation of the current state of the model. Each node In

these Llilustrations willl represent a class of names. The name

space binding one group of names to another group of objects or

names wlll be represented by an undirected line. If a name space

nus? be protected to control user Interaction, then the line

representing 1t will be constructed from the symbol “+*. If the

name space need not be protected It will be reprcsented by 2a llne

tomprsed of the symbol “+

261 “1 Made

Some baslc notlon of Inforsation storage and protection

aust be at the heart of any computing utillty model. In our

nodel the basic vessel of Information storage ls a seamente. In

theory, we dO not 7° “let the asount of Infcrmation a segment

47

may contalne. In practices, the amount of information a segment

may hold will be bounded by a combinatlor of hardware and

softuare (inltations.

Senmaents willl also serve as our basic unit of

information protection. Me require that any Information

protection must apply uniforaly to all information stored within

® segment. We wlll choose an access control tlst (ACL) based

information protection scheme for our model. The baslc

motivation behind this choice |s that Multics, our test case

fystemy "SCS 8Nn 7° = control lls? protection scheme.

He assume that an access control {Ilst [Is assoclated

with every segment. This access control (lst encodes the

suthorlity of each principal In the computing utility to use or

Rodlfy the contents of the assoclated segment. (1) MWe wlll

further assume that the computing utlilty supports the necessary

principal authentication and access suthorlzatlon mechanisms for

Ralntalning the contents of access control tists. He reaquire

that at sose point [In referencing any segment, Its assoclated

C+” gS control list be used to mediate that reference.

 I.

{1) We assume that the reader Ils famillar with such computer
science concepts 8S access, cepabliltles, domalrs, processes, and
princlpals (S&, Fil.

 += 4

2.2 Global M--hine OrjlentedNames

He willl nase » ~cgment and lts access control list by a

name that Is unique within the systems Thls names which we will

call a unlque ldentifler (UID), wlll be compact, ftlxed lencth,

and of high Information densityes The unique identifier naming a

segnenf and Its access control Ilst wlll be assigned when the

segment Is created and may never be changed. Once assigned, a

unique Lldentlfler wlll be valld for ali time, If we allowed a

unlque ldentifler to be reused after the segment [It names is

destroyeds then that ldentifler would not uniquely ldentlty a

segnente It would be difficulty If not Impossible, for a process

to distinguish between different segments, existing at mutually

exclusive points In time, named by the same inlque ldentifler,

4)

It should be noted that we have purposely excluded the

possiblility of having more than one unique [dentlifler bound to

the sane objects The reason for this ls the need to determine If

lwo segments are ldenticale If we guarantee that no two unlque

ldentitlers are bound to the same object, then we can declde If

‘uo senments are ldentical by comparing thelr unique lidentiflers.

I A AP.

(1) A dlscuss]lon of the need for computing systems to support
unlque identlfler name spaces may be found In Fabry {File

Lg.

Lacking thls guarantee, It IS not clear how a process could

dJeclde lf two secments were the s: me segment. (1)

Bue to thelr compact size, unique identifiers are well

sulted to efficient Implementation and manipulation by computing

hardwares We will assume, for the moment, that access control

wil} operate during the translation of unique ldentifler to

Sbjecta Certalniy this requires that the rame spaces that

assoclate unlque ldentiflers with objects and thelr assoclated

access control lists be protected. Otherwise a process could

circumvent the access control mechanisms of the system by causing

the unlque Jldentifler assoclated wlth any segment to name an

arbitrary access control list or equivalently, causing the unique

identifier assoclated with any access control (ist to name an

arbitrary segment. It Is therefore necessary that the securlty

kernel! exerclse complete control over the unique identifier to

pccess control lst and unique ldentifler to segment name spaces.

Since the security kernel must force these two name spaces to

forrespond, we will treat them as a single entity. Figure 2-1

ftlustrates this protected bINding mapping unique ldentliflers

into¢entsandthelr2

i 1

. control llstse.

“00> +#¢¢ <3FL/ACL>

Flgure 2-1t Global Machlne-Orlented Names

11) By equal we mean the lisp cenc-pt

” ip

of 2q {MG Jo

Ze3 Global Use~ r “ted Names

From the point of view of a human user, the unigue

identifler name space which we have defined tor naming segments

has four major lnherent dlsadvantages. The first disadvantage is

that humans are poor at dealing with high Informatlon density

namesSe Second, since unique identiflers must be assigned by the

system and not the user, they can have no mnemonic significarce.

IThirde the binding or meaning of a unique ldentifler cannot be

changed. The final dlsadvantage In the wutage of unique

identifiers by humans Is that It ls often convenient to allow

sultiple names In a name space to denote the same object. In our

nodel we have precluded the possibility of having two unique

ident, tlers name the same segment.

For these reasons, any viable computing utitity rust

support a user-oriented name Space. Ideally thls name space

should bind arbitrary lengthy user-supplled character string

names to unique jdentlfiers, In practice, some upper bound Is

often placed upon the size of user-suppliled rames. In any

reasonable computing utliity this restriction must not force

users to use difflicult=-to-remember non-mnesonic names. To

promote and encourage Information sharlilngy thls name space

should be sharable by alt processes In the computing utility. If

hls were not the cc ~¢s then one user who wished to share

w=“Ho

_B

segment wlth another user would have to communicate the unlque

ldentifler of that segment to the other user. A shared

user-orienfed name space eases thls communication problem by

allowing users to ldentlfy segments in

communication by he w-=lonted Na; ~~.

A well known weakness of such a simple, unstructured,

global name space, which results from the need for a name space

to define a functions ls that two users may not name different

segments by the same name. If one user rames a segrent

"sauar~_root_orogram®, then no other user may use this name for

another segment. Perhaps the most severe manifestation of this

problem Is that a user may not choose a name for a segment

slthout knonledge of every nase In the global name space.

Another consequence of the global scope of the name

Space we are defining Is that [It provides a path of user

Interactions One user aight Intentionally mcdify a name to

unique ldentifler binding that another user was depending upon.

This constitutes an uncontrolled mallclous user Interaction since

it allows one process to cause another process to reference the

rong segments This In turn may cause an unsuspecting process to

fall or compromise the Integrity or securlty of sensitive

information to which lt has accesse It Is trerefore apparent

that the ablliity to change a global uc. . orlented name space must

be reguiated by the security kernel.

CL ‘»

One simple authorization scheme a computing utility

could adopt for Its global user-oriented name space Ils to allow

only the principal who created 8 name binding to modify that

pindinge Unfortunately, even such a primitive authorization

mechanism Is an unwieldy extension to the unstructured name space

we have detinede Such an extenslon would require that every name

binding In the name space have an associated principal name used

to authorize modifications of that name binding. It the name

space were structured Into meaningful collections of name

bindingse then a ‘more natursl authorization scheme based on

controltiing a process® ablilty to modify any of a related

collection of n7~~ bindings could be employed.

Hierarchical name spacess Such as the wuser-orlented

name spaces found In the Multics (Bis, 01) and UNIX [R2]

time-sharing systems, provide a powerful and natural solution to

both the naming conflict end authorization problems outlined

above. Since most name spaces found In contemporary computer

systems, such as the ublqultous “two-level™ file system (M31, may

be described as degenerate flred-depth hlerarchles, our model

wil) support? a hlercrchlical global user-oriented name Space.

Hierarchical name spaces provide thelr users wlth

powerful organizational mechanism. This mwmechanism encourages

logically related name bindings to be collected In a single

«Fg.>

directory or directory sub-tree of the tlerarchlcal name space.

For Instance, each user could place name bindings he creates In

distinct sub-trees of the rierarchy. Naming conflicts within a

piven directory are easily avolded by tocally restructuring the

hierarchical name space so that the conflicting name bindings

occur In dlfferent directories. The directory structure of a

hierarchical name space can aiso serve as the basis for a simple,

flexible mechanism tor controlling the modification of the name

bindings in the hlerarchical name space. The ablitity to use

and/or change the name bindings In a directory can be specifled

by an access control (lst on that directory. Authorization

control may also be delegated by allowing the access control

lists of a directory to speclfy which principal may modlfy the

access control lists of Its subedirectorlies. Flgure 2-2 extends

our model to Include both human-oriented and machlne-orlented

global name spaces.

USER ORIENTED
NAMES

MACHINE ORIENTED
NAMES

(PATHNAM "J1d>

Figure 2-28 Global User-(Cle ag Tr

rs ny

JELZACL>

2.4 Local Machine Orjlepted Names

Rt this polnt our model provides two very powerful

rechanisas for naming Information. One mechanism allows any

segment In a computing wutlilty to be denoted by a compact,

fixed-lengthy unique Ildentifler. The other naming mechanism

sllions segments to be named by arbitrary length character string

names Indicating the position oft a segment in a naming hlerarchy.

In common to both of these mechanises Is the fact that trelr

scope Js global they are shared by all users of the computing

utititve

An obvious lsplication of the scope of a unique

ldentifler 1s that [ft wmust be capable of representing as many

distinct segments as the computing utility could create

throughout 1ts entire (ife. Because the set of segments existing

at any one time will be a snall subset of all segments that rave

ever existed or wilt ever exist, our unlque ldentlfler name space

wil? be sparsely populatede For large systems with long

ilfetimesy, this unique ldentlifler name space will also be quite

larges Economics demand that such large, sparse mappings be

stored In 8 compact form requiring more sophlsticated accessing

methods than Indexing by unique ldentifler value. This need for

sophisticated retrleval metrods In conjunction wlth the large

potential slze of the unique lidentifler to segment mapplng tables

suggests that thls name space [|s difficult? to implement

a Pn

afticlentiy. As a result, contemporary ccmputlng hardware

provides a name space for addressing segments that 1s ruch

smaller and denser than the global unique jdentifler name space.

The Incrz.7"defficiencyofrepresentation and mapping of this

hame space Is achieved by restricting tre scope of the

Rachine--—-"~~-4a4 segment ldentiflerse.

fhe local machine-oriented name space In our model Is

patterned after the Multics segsent number name space. Like

unique ldentliflers, segment numbers are compact, flxed-fencth,

Rachine~oriented names. Unlike unique ldentliflers, relatively

few segment numbers are supported (1) and segment numbers are

locally dense so that simple, efficlent hardware translation

techniques can be usede Since segments will be ldentified to tre

base (level of the computing utility by segment number, we will

call as ‘At nupter nae Spree an address space.

There are many possible cholces for the scope of

segrent nuabers. A cooperating collection of processes could

share a common segment number address space. Segment numbers

could be private to a process, shared by all domains In that

processe Converselyy the scope of a segment number could be a

domalne It Is even possible to Imagine a system In which the

BCOD® O00. 7% 1% number ls ‘dlly restricted The choice of

i1) Multlcs supports a local, wachine-orlented
about four thousand segment numbers.

Name shbace Of

~ Py

which of these or other possible schemes for {lsliting the scope

of segment numbers ls appropriate for a glven computing utility

depends upon both the hardware on which (It must run and the

desired patterns of Interaction within the computing utility.

Ihe larger we allow the scope of a name space to be, the greater

the cost of translating names In that name space. Conversely,

the smaller we make the scope of a name Space, the fewer the

naming needs It can satisfy.

It we desire Inter-domaln communication to be

efticlent, then [t would be lnapproprlate to restrict the scope

of segment numbers to a domalne Were thls done, segments could

only be named In Inter-domain communication by unique identifier

ore worse still, pathname. Since these names are not directly

Usable by the dbase level hardware of the computing utility, they

would have to be mapped by the recelving domaln into lts segrent

number address space before the segment named could be

referenceds By siamllar reasoning, lf Inter-precess communication

occurs with high frequency In a particular computing utility then

that computing utility welght choose to share a segment number

adder , SPQ among a8 group of Wa ing po —

The choice of the scope of segment numbers represents

an encineering trade-off, He aust limlt the scope of segment

numbers $0 that they may be efficiently Implemented In hardware.

Additlonalty, the smaller the scope of a segment number the less

~~ PF

Its need to be protected. If an address space ls local tc a

protection domaine, then jit may be freely manipulated by that

domaln without compromising security. In ocrposition to the

efficiency considerations that welgh in favor of reducing the

scope of segment numbers [s the desire to make the scope of a

segment? number as f(arge 8s possible so as to make communication

between different computer systems, processes, domalns, and

roments in tine 8s efficient as possible. The desired

charzcierlistlcs and resources avallable to each computing utility

rust be carefully evaluated to determine the largest group of

interacting objects that can share an address space wltrout

Raking the 2r~-~g s~ ~~ vn ~tably large.

Routine communication between the security kernel

domain and other protection domains In a computing utility should

probablys for performance and modular programming reasons, be

performedbyusingsegment numbers to denote segments. This

requires that the ability to manlpulate the segment number name

space we have just deflned be controlled by the security kerrel.

This need for the security kernel! to control the manipulation of

an address space would not arise If address spaces dld not span

protection domalnss The reader should take note of the fact that

since segment numbers do not have global scope, our global

user-orjented name space cannot be Implemented by binding names

to segment numbers. Flgure 2-3 extends our mode! to Include the

protected binding of segment numbers to segments and their access

~ 4

control tlstse We also Include a protected binding between

segment numbers and unique ldentiflers. This blinding allows the

Identity of a segment named by a segment number to be

pstarljlshed,

USER ORIENTED MACHINE ORIENTED
NAMES NAMES

29

PEF

ER=-

YSTEM <PATHNA'

sD» 2 SPACE

Pigw.e 2=38

Local De int ors

~
» <UTID> ~~ <SEG/ACL>

GMD

Local Machlne-Orlented Nar en

Economics require that we refine the segment number to

access control (lst and segment translations depicted by our

nodele These translations must be performed upon every reference

lo a segments It Is thus essential that they be efficlertly

implementedes In {Hight of current computing technology, these

Iranstatlons mus? be performed In bhardware If we desire our

computing utlility to be economically feasible.

Contemporary computing hardware supports nelther the

ablilty to address arbitrary amounts of storage nor the abllity

to perform the necc. ary access control lst search upon every

~eterence to a ements. To solve these problems one frequently

 =» PQ=

finds two hlgh-speeds, hardware |ook-aside memories alding the

‘ors that lmplement a computing utility. One assoclatlve

nemory ®aps a segment number and comaln ldentifler Into a

hardware [ntarpratable representation of the doraln®s access to

the segment speclfled by that segment number. We will call the

entrles In thls assoclative memory protection descriptors (PCS).

The other assoclative memory maps a segment number Into an

addressing descriptor (ADS) that al tows the hardware to address

the re cation of a segment.

ws we have described look up the address of

a segment [In thelr addressing descriptor assoclative memory and

validate thelr authority to reference the segment with respect to

the appropriate protection descriptor found in thelr protection

descriptor associative memory. When one of these descriptors is

not found In Its assoclative memory, a hardware fault will be

recognizede At this point sottnare may Intervene and take the

g

approprjlate steps to load the n yg ~~ 2orlptors and restart

the faulted prograne.

Clearly the securlty kernel must control the

manipulation of the protection descriptor and addressing

descriptor name spacese This Is necec sary since there exists a

one-to-one correspondence between addressing descriptors and

protection descriptors which must be maintained to preserve the

integrity of the systeam®s access control! mechanismse Flgure 2-4

» fl a

refines our previous model! by supplanting the protected segment

number to segment and access control list mapping by the four

prot ~*3d # "Hings decribed above.

USER ORIENTED MACHINE ORIENTED
NAMES NAMES

pT YSTEM CPATHNAMT

PER-ADUORESS SPACE

PE =J0MAIN

lgure 2-4L1

5 L°
 a

1
a

g SEGNO> ¢ <ALS>

LOCal J¢ criptor

"GJACE »

i

Me have seen that efflclency conslderatlions require our

aodel to support a lilmitedescope, machlne-orjiented name space. It

is onfty natural to consider whether there would be any advantages

in our model also supporting a user-oriented name space of

jjlalted €¢ »o. The answer ls, qul te emphatically, ves.

Like the segment number name space we have definec, a

ysereorlented name space of (local scope would be easier and

faster to search than Its global counterpart. But more Important,

it would provide a private name tn-cte that could be manipulated

» we

arbitrarily wlthout worrying about [Interactions with processes

outside of the scope of the name space. This latter abltlty Is

wn "yy In providing modular pr--ramajing facliitliese.

It is clear that a program should not code into itself

the unique (identifler or even the pathname of another program,

such as a square root programe, that [It wishes to call. This

premature binding between modules would require that the first

program be changed and recompiled If a new and better square root

program was added to the computing utlilitye The caller of a

Equare root program does nots, In general, wish to be bound to a

particular souare root programe If the cholce of which routire a

procedure Ils to call can be delayed until the call [Is made, then

ie galn auch flexiblilitye.

He call a name that one program uses to refer to

another pronras a 1a nape (01) 1ft [ts meaning Is only

defined In relation to a focal name space. Such a local

user-orjlented name space Js called 8 reference name space. One

way to Implement a space of reference names Is to maintain a (ist

ot reference name to segment assoclations (011). Another

rechanismaforreallzingareferencenamespace,foundInerany

contemporary computer systems (Ji, Ill, Involves searching an

prdered ist of speclfled directories, called search rules, to

resolve Inter-program references. Reference names provide a very

Jyseful mechanism for combining sro-rotely concelved subsystems

$F

and testing new subsystems all ot whose components rave yet to be

arjitten by allowing reference name to segment binding to be

defered until the components of a subsystem are combined for

pxecutlone

In our model, each domain wilt have a private reference

name space. This minimizes the problem of naming conflicts and

allows each protection domain to operate wltrout regard to the

reference names used In other domains. A further advantage of

per-domaln reference names [Ss that they need not be explicltly

protected or controlled by the security kernel. Since reference

names are private to a protection domaln, each domaln may freely

aanlpulate Its own reference name space. All that Is requirec is

that the reference names of each protection domaln be stored In 2a

segment accessible to only that protection domain. If reference

names spanned oprotfectlon domalns, It would be necessary for a

securlty kernel mechanism to control the manipulation of

reference names to prevent one domaln from exerting uncontrolled

Influence over another domain through the manipulation of

reference names. Flgure 2-5 shows the relationship of the

unprotected reference name space to the other name spaces

jescridbed so tars

 qf 8%

USER ORIENTED MACHINE GRIENTED
NAMES NAMES

PER=-CYSTEM <PATHNAME>

PERe= nni_3S SPACE

 Aa zZUTD> r &

cSEGNO> + <ACS»>

tSEG/ACL>

>

2.7

PEF+JOMAIN CSRETCENET"TE NAME> 1

1
-r

¥

| Pe Be i User-0Oriented Names

Sur arty

In thls chapter we have Investigated the basic roles

played by name spaces In a typical computing utility. Of the

eight name spaces we have descrlbedy, only the per-doraln

reference nase space may be excluded from the security kernel

without Jeopardlzing the abllilty of the computing utility to

control user Interactlonse The critical difference between the

reference name spaces which can be uncontrolled, and the other

seven name spaces we have considered, which must be controlled,

is that the reference name space Is not common to multiple

protection environments. Since It cannot be used by one

protection domain to exert Influence over another protection

domalng It nec *d not be len(emrrnted In the security kernel.

4%-

Cheater 111

A_Modelof1the Mis AAs Systen

Before apprerchling the speclfic problem of detinirg a

securlty kernel for the Multics system that does not support

UNnNecer "ary Name sp’ce manacenent mechanisms, we will present a

detallied model of the Multics system and show Its correspondence

with our general computing utility model. Qur Multics model

contains four components: a storage system models an information

protection model, an address space model, and a reference name

model These models wilt contaln sufficlent acetal) to allow the

reader who Is unfamlilar with the implementation of Multics to

cor e..cnd the Imnortant detallis of the design we wlll present.

2e¢4 oo

The Multlcs storage systea (1) manages two dlstinctiy

different types of objects called segments and directories.

These objects are organized Into a singie system-wide tree

structure that Is known as the storage system hlerarchye. This

hierarchy implements the systes®s human-oriented global name

spaces The Internal nodes of thls hlerarchy are directory

objects. Each dlrectory object ls Itself composed of a named

-
 ol ——

(1) A wore complete description of the Multics storage system
than wlll be presented In this section may be found In Organick
[01) and Bensoussan (81).

5 9

collection of entries, one for each Immediately Inferior segment

or directory In the hlerarchy and one for eech (lnk In the

directory. Links are psuedo-objects In the hlerarchy that allow

an object to appear to reside at several distinct nodes In the

hjerarchye To accomplish this, the directory entry of a link

contains the pathname of another object or link In the hlerarchy

that Js to be considered as the target object of the linke The

dlrectory entry of a segment or directory object contalns rany

important attributes of the object. Among these ettributes ares

a system=ulde unlque ldentiflery a collection of human-readsbte

names for the object that are unique within the dlrectory, an

access control liste and a fllie map for the object that allows

the Sv=tem tO access the objects

Each dlrectory In the Multics hierarchy Is stored In a

v@ Segment. Many advantages accrue from supporting a

hierarchical name space whose directories are laplemented in

separate segments. These advantages are closely Interrelated.

Firsts since each directory contains only a small fractlon of the

total name bindings represented by the hlerarchy, lt may be

searched much more quickly than a corresponding single segment

Ileplenentation of the whole hierarchy. Finding a name In a

hierarchically organized name space requires sezrching only those

directories defined by the prefixes of the nane. In general,

this will represent a substantlal savings In search time.

> 4,

Secondy the corponent names In a directory may be viewed as

ash

unitorms, unstructured names. Finally, the nares in a directory

ran be r~"=%*jvely small and yet stlil be unique.

As we have mentioned, a practical computing utility

cannot? assume that al) users ulil be benevolent with respect to

thelr manipulation of a global, shared name space. We must assume

that some users through mallce or accldent, wlll attempt to

delete or wmodify name bindings that other users are depending

upone If this global name space ls to be useful, then users must

be able to control or at least know who may change the name

bindings that are of interest to theme Controlling who may read

Ihe name bindings In a particular directory of a shared name

space Js aiso desirable since the names in a directory right

[her ves constitute sensitive Information.

~ ~nts are the basic unit of access control In

Multlcss 1t 1s only natural to control the manipulation of the

names In a directory by the Multics segment access control

nechanjisase. Thls epproach 1s quite attractive since It allows

the name bindings In a name space to be crprotected without

Introducing any new, speclal purpose access control mechanisms.

The access control (lst of a dlrectory specifies which principals

nay read and write Its representation. In this way, the normal

access control and authorization mechanisms of Multics

automatically provide a certaln degree of contro! over the

manipulation of names In Its hlerarchical name space. Multlcs

«7?

actually provides finer access control on directorles than Is

afforded by Its hardware enforced access cortrol mechanlse by

encansulating directories and a set of system-supplled procedures

which sanipulate directories in a protected subsystem (Sil. The

prr~adures [In thls protected subsystemy, which must be a part of

the security kernely exercise control over the use and

ranipulation of the name bindings In a directory.

If we assume that the root directory of the hierarchy

is Its own parenty then every object In the Multlics storage

system has 8 unique parent directory. Furttermore, since the

hierarchy has the structure of a tree and names of directory

entries are unlque within that directory, we can specify an

arbitrary object In the hlerarchy by an ordered list of entry

namesSe Such a specification Is called a pathname. The first

component of a pathname names an entry within the root directory,

nd each additional name specifies an entry wittin the directory

speclfled by the (lst of names that preceeded It. B8y conventlon

ne take the name of the root to be the null name, and we write

the pathnang 8¢ Dg coe Qq as Tor a™Qe

A leat node of the Multlcs hlerarchy can be elther an

empty directorys a links, or a segment. Segment objects, which

ire lmplemented directly dy the Multlcs hardware, are primltive

objects In whlch programs and data are stored.

-fK

In our general computing utility model a directory

entry consists of one name to unique ldentlifier mapglng stored In

a directory of the user-oriented hlerarchical name space. The

Issue of where to store the access control (lst and other

attributes of a segment or directory, which was not addrcssed by

our general modely was resolved In Multlcs by merging this

Inforaatlon with the entrles of [Its hlerarchical name space.

This scheme has three lmportant consequences. First, because 3a

directory entry contains the attributes of the segment it names,

ho two directory entries In the hierarchy are allowed to describe

the same segment. (1) This requires that an entry contain all

synonyas of the object |t describes. In our general computing

utltlty model! thls was not necessary since there was no penailty

sssoclated with allonuing multiple entrles (single name to unique

identlfler mappings) to denote the sane object.

Seconds the unique ldentlfler to segment name space of

sur general computing utility model exists In Multics only as a

collection of Individual wmapplngs scattered throughout all

dlrectory sco ments In the hierarchye This renders the fask of

locating a segment glven Its unique identifier prohibitively

expensives HOwevers Multlics does use unique ldentifiers to

jacititate the determination of whether two objects denoted by

jltferent p2thnames are In fact the same object.

 ii

(1) I? this rule were not obeyed, then the system would be faced
with the error-prone task of majntalining ldentlcal, but separate,
coples of the attributes of a segment.

gy

Third, because the access control list of an object Is

stored In the obdblect®s superior directory, it Is not possible to

have the acress control Ilst on that object arbitrate access to

the object Independent of the sccess control (ists on the

object®s superior directorlieses To see that this Is true all we

need do [ls consider the following scenario of a process

attempting to reference a segment. Assume that the access

control (ist of the segment specifles that the process is

authorized to reference the segment, but that the segments

directory entry resides In a directory to which the process has

no accesse The system ls faced with a paradox. If It allows the

process to reference the segment, then It must allow the process

lo use information In the segment’s directory entry. But the

process Is not authorized to use information In the directory

containing the entrys Thus, If the system permits the process to

reference the segment, then It must violate the authorization

specltled In the access control list of the contalning directory.

Conversely, If the system does not peralt the process to

reference the segment, then It sust violate the authorization

speclfled In the access control (lst of the segment. This

dilemma will De discussed In detall In the next chapter.

»%s 0} =

3e2 InformationProtection Model

The active agent of computation In Multlcs Is a

processe A process may execute Instructions In any of eight

protection domainse numbered from 0 to 7. These domalns have the

property that a process® access rights to objects In the storage

system while executing in domain n are a subset of Its access

rights white executing In domain n-i. Domains that are so

constrained have been named rings (S2)e To ldentlfy the user on

whose behalf a process Is executing Instructions, the system

assoclates with each process an unforgeable principal name. This

access control name ls used to establish a grocess® rights to

sece*g dl “orles and senments In the storage system hierarchy.

Assoclated with esch segment and directory in the

storage system hierarchy ls an access control (ist which, In

conjunction wlth the access control name and ring of execution of

3 process, completely determlnes the access rlghts of that

process to the object. The access control list In the directory

entry of an object encodes the access mode or rights each

princlpal 1s to have to the assoclated object In a given

protection tinge (1)

{1) In the current Multlcs Implementation both & segment®s access
control (lst and Its ring brackets must be considered to
determine the access rights of a principal to the segment in a
glven ringe Since thls level of detall Is wunlsportant for our
purposese we will Imagine that a segment®s access control list
alone Js sufficlent to determine access.

When a process attempts t0 reference a segment or

directory, the system evaluates the process® access modes to the

target object. Conceptually, thls Involves searchlng the access

control (ist of the objects This Information ls used to valldate

the oprocess® right to performs a given operation upon the segment

or directorye In the case of evaluating access to segments,

Multics relles upon the hardware assoclatlive memories described

in our general mode! to make sccess validation efficlent.

For segments the valld access modes are ready write,

and execute. These access modes are enforced directly by the

Multics hardware. The valld access modes for directories are

status « the right to read the attributes of the entries In the

directory} modify - the right to change the attributes of the

entries In the directory} and append = the rlcght to add new

entries to the directory. Olrectory access modes are

10 yy enfe""~d by the "vl Ics security kerrel.

Linksy which are not full fledged objects in the

Muttics hierarchy, are not glven an access control list,

Insteads access to read the contents of a tlnk [Is granted to any

process that has status permission to the 1ink®s contalrlng

directory.

 w»

The process of a normal user execites In protection

ring four. This allows the process to access only those segments

and directories to which it has non-null access In ring four or

some higher numbered ring. In order to access a storage system

object accessible to the process only In rings numbered (ower

than fours a user process must enter an appropriate lower ring.

This may be done only by calling a procedure which ls designated,

by Its access control (lst, as a gate Into that rings When such

a gate procedure Is calledy the process enters the Inner ring.

By virtue of Its having entered an Inner ring, the access rights

of the process may Increase. When the process returns from the

gate procedure, It reenters lts previous ring of executlon and

relinquishes the access rights It gained on entry to the lower

ringe To put teeth into this protection mechanism, the storage

system manager will not allow a process to create a gate Into a

ower ring than the ring the process ls currently executing in.

Inls Insures that only procedures authorized to run In an Inner

ring may c¢¢ te gates Into that ring. (1)

The Multlcs system takes advantage of this ring

protection mechanismtoprotectIts security kernel programs and

data bases from tampering by shell procedures. This Is

accomplished by setting the access control (lists of securlty

kernel pr ~g8 and data bases to Indicate that they may be

—

{1) More complete descriptions of the Multlics protectlon
mechanisms may be found In Saltzer [53)y Schroeder {S21, and
Organlick (01).

 zg '

accessed only by processes executing In protection ring zero.

Entry points In the security kernel whlch are caltlable by the

shell are declared to be gates Into ring zero.

ja AC

The Multics system assoclates an address space with

each pr ss (Bile The functlon served by thls address space Is

lo provide a mapping from a sesall set of virtual addresses,

called segment numbers, that can be directly transliated by the

Hultlics hardware, onto the auch larger set of obj)ects In the

Multics hlerarchy. This segment number address space corresponds

to the local machline-orjiented name space defined In our general

toaputing utliity model. In the Multics system every process Pras

8 potent]lal address spnce of several thousand segment numbers.

The binding of a segaent number to a storage system

objects which Incorporates a storage system object Into an

address spacey Is called Initiations The effect of Initiatirg a

storage system object Is to make the representation of that

object appear directly addressable by the hardware of the Multics

rachinge. Since Multics relles upon addressing and protection

descriptors, such as those described In our computing utility

nodel¢ to Implement hardware references to segments, only a

Iractlon ot the hardware segment number to segment mappings

implled by a process’ address space need exist at any glven

£" N oily

Instance. AS In our computing utltity model, the Multlics security

kernel handles faults caused by attempting to use missing

descriptors by reloading the missing addressing or protectlon

descriptor and restarting the faulted process. The unbinding of

a storage system object from a segment number, whlch removes the

pblect from the process® address space, Is called termination.

our discussion way have lead the reader to the

conclusion that a process may have several segment numbers bound

to the same storage system object. Actually, this Is not

permitted by the address space managers. During the Initiation of

an object, the address space manager locates thre dlrectory entry

5f the object from which Jt fetches the system-wide unique

identlfler of the objects This Identifier Is looked up in a

per-nprocess table (1) that maps unique ldentiflers Into segment

humberse It the unique ldentifler Is found In thls table, then

the object 1s already In the address space of the process. This

being the casey the Initiation primitive returns an Indication to

this effect as well as the segment number that Is bound to the

objects This Scheme has several advantages. First, It helps a

process conserve Its segment numbers - a very scarce resource.

Seconds It permits a process to test the ldentity of two objects

In Its address space by comparing the segment numbers asslgned to

these obdlectse. Flnally, 1t simplifies the m 1 zement of the

Multlcs virtual senory.

{1) See appendlx A.

a"

 als Referen- or * ~aceModel

He have asserted that (ocal user-oriented name spaces

in 8 computing utility need not be part of Its securlty kernel,

This claim not withstanding, the Multlics supervisor Implements a

reference name space for every ring of every process. These name

spaces provide a mechanism for mapping character string names

into segment numbers and vice versa. In the current Mul tics

ispliementation only segments may be assigned reference names.

fhe security kernel |[tself does not use reference names for

normal segments. I? does however misuse [ts wunlque ablilty to

assign reference names to the segsents with which It [mplements

directory objects. (1) Speclfically, the Multics supervisor uses

the reference name manager to assoclate the hlerarchy pathnames

of Initlated directories with the segment number of the segment

containing the representation of the directory. As we will see In

the next chapter, this presents problems when directory objects

are renameds This problem ull! be dir-vezed In great detail In

the ensuing chapters.

fhe address space manager and reference name manager

share 3 common dats base In the current Multics Implementation.

This combined data bese ls called the Known Segment Jable and Is

{1) In non-securlity kernel! domalns dlrectory objects are
and may not be accessed as segment objects.

sealed

=Tar

documented In appendix A. The reader who Is unfamliar with the

structure and contents of the KST Is urged to review this

naterlale Additional information on the Multics reference name

nanager may be found In Organlick (01) and Bensoussan (81l.

wa FT -=

ChapterIV

Ue An 1gn

The Multics desligrers recognized the advantages of

sere ting the modules of a computing utlitlty Into a security

kerne! and a shell. As a consequences Multlcs 1s more fortunate

than most existing computer systems as regards its securabllity.

By construction most modules of the Multlcs system are not

permitted to execute In protection ring zeroe Thls bulk of code,

ahich ls part of the Multics shell, Is thus prevented by the

Multlics protection mechanisas from tampering with those programs

and data that are only accessible from protection ring zero.

These protected programs constitute the Multics securlty kerrel.

Rithough the Multics shell dwarfs the security kernel in

comparison, the modules of the Multics security kernel are still

quite numerous as well as complex. The object modules of the

Hultlcs security kernel presently represent approximately one

hundred and titty thousand machlne Instructions, These

Instructions Implement |[n excess of two hundred shell callable

functions as well! as a host of Implicit system services such as

demand paging.

He wll} present a redesign of the current Multics

securlty kernel that wlll enhance lts certifliabitlity by reducing

its <sjlze and number of external interfaces. AS a side effect, we

EN Vo —

will also Improve the modularity anc coding of the area of the

system we wlll investigate. Our design wil! eliminate the need

for the Multlics security kernel to support reference name

management, This requires that we carefully redesign and

remodularize ring zero so that It ls Independent of the reference

name managers This is nececsery since a security kernel must not

depend upon the correctness of procedures outside of the kernel.

Before getting into the detalls of our design, we will

Investigate the reason behind ring zero®s current dependence on

Ihe reference nar:

be1

? IF Yager

1 - an rt ~=~qaemen?

Nhite there does not appear to be any Intrinsic reed

for the HMultics security kernel to support reference name

manacenents [ts removal from ring zero is compl lcated by the fact

that the Multics address space manager uses the facllilitles of thre

reference neaee manager to malntaln an assoclatlon between the

pathnanmes of dlrectorles It has Inltlated In a process and the

segment numbers of these directories. The address space manager

uses these assoclatlons to aveld having to repeatedly resolve

Identical directory pathnames Into segment numbers. Since the

securlty kernel must not depend upon a wmechanlsm outside the

security Xernely It 1s nr- ary to decouple the address space—

aanager from the reference name mznager before the latter can be

removed from ling zero.

— ili LE

reference

The dependence of the address space manager upon the

name manager manifests [Itself in the recursive

procedure find_ which the address space manager uses to resolve

directory pathnames into directory segment numbers. This

resolution 1s necessary since the hardware base of the system

only Implements references to storage system objects by segment

nusbere When find, Is Invoked to determine the segment number

lor a directory, It calls the reference name manager to map the

pathname [tt Is glven, Interpreted as a reference name, into 2a

segment numbers If the pathname ls a reference name known In

ring zero eof the process, then flnd_ returns the assoclated

segment number as the segment number of the directory. (1) If

the pathname Is not a known reference name, then find_ splits the

pathname Inte a pathname of the parent directory of the target

directory and the directory entry name of the target directory.

It then calls itself recursively to obtain a segment number for

the parent directory. Using this segment number to reference the

parent dlrectory, find_ attempts to Inltlate the target

directorys If It succeeds, 1t calls the reference name manager

to bind the pathname of the target directory, as a reference

namee to the sv aent nun . lgned to the tarcet dlrectorye.

(1) AS we wlll see latery this can cause problems since this
segment nuaber may no longer be bound to the directory speclfied
by following the pathname find_ was glven step by step through
the dlrectory hlerarchy.

 2+ dgJF“»

This thesis suggests a radlcal change In the ring zero

address space manager, The essentlal result of thls change is

that find_, 8s described above, need no tonger be called by ring

teroe This allous both find_ and reference name management fo be

remaved fron ring zero.

he 8

One of the basic tenents of the Multics protection

Rechanism 1s that a process should be unable to detect the

existence of a storage system object to which It has no access.

(1) A second basic tenent of the Multics protection mechanism Is

that the access control list of an objJect should be the sole

specitler ot access to the object. (2)

 EE E——

{1) Ne will consider that If a process has access to the parent
of an object then [ft has suffliclent access to determine the
existence of the objects The reason for this will be discussed
|aters

{2) This tenent was not originally embodled In the Multlics deslisan
and represents a (lesson (earned the hard way. Originally a
process® access to an object mas a function of three different
access control listse The first (1st was part of the directory
entry of the object and corresponds to the access control list we
now havee The second 11st was part of the object®s parent and
was common to atl entries In the directory. The last list was a
one per system master access control (ist. The result was a very
complex access evaluation mechanisa that allowed an unwary user
to Increase a principal®s access rights to an object by removing
that principal from one access control llst when hls Intention
was actually to deny the princlpal access to the object. The
complexity of thls mechanisa so confused users that many of them
did not attempt to use the system provided protection mechanism.
Nith the current Multics design a user needs only review one
access control lst to determine who has access to a given

segment.

-_—

These tenents have made the determination of whether a

process should be peraltted to Injitlate an arbltrary directory

quite difflculte This difficulty stems from the fact that the

access control Iist of an object and its physical storage map

reside In [ts parent. Since we wish the access control list of an

object to exercise complete control over access to that object,

we must permit a process to inltiate alt superiors of accessible

segments Independent of access to these superlorse. But this

violates our second tenent.

Multics attempts to resolve the conflict outlined above

by not permitting a process running outside of ring zero to

initiate a directory. Since a process cannot read the access

control {lst of a segment untll its parent Is known, the system

stiil must permit processes, while executing In ring zero, to

initiate directories that they may not have the right to know

existe By causing the initlation of these superior dlrectorles to

oecur In a singles indivisible ring 2ero call, the system could,

In principles prevent securlty leaks, This could be accomplished

by terminating those intermediate directories that had to be

Initlated only to find that the process had no access to the

teralinal se~menty before returning to the calter. Unfortunately,

the current system does not do so. As a result, any process can

determine the existence of any postulated directory by attempting

to Inltiate any arbltrarily named descendent (which need not

 dy %

exist) of that dlrectory and observing how many segment numbers

were allocated by ring zeroe Thls ls possible tecause all rings

share @ common address space.

It would be relatively easy to correct the

implementation flaw In the Multlcs address space manager polnted

put above. However, the system would still have to be very

careful to avold compromising Information. For example, suppose

a process fllled up Its address space intertionatly and then

called ring zero to Initiate >secraet>xe. If ring zero was not very

corefuly It mlght cause the process to die due to Its inability

to find an unused segment number to bind to >secrety If and only

It >2ecret existede This would aliow the existence of . secret to

pe Inferred by whether or not the process dled.

The Inability of a process to inltlate directories In

outer rings directly has fled to many needlessly complex

mechanisas for manipulating directories. In additlon, It has

forced us always to refer to directories by pathname In the

security kernel! interface. Not only is this Inefficient, but it

has led to ring zeros dependence upon find_. If we could

inltlate directories directly outside ring zeros then the ring

rero jntertace could take a segment number Instead of taking 3

r>athname 8S @ dirccstory specifler. Since ring zero would no

28 X-

longer need to call filnd_e It could move out of ring zero, along

wlth reference name mc ~rement, without ccmpromising the security

pf ring zero.

be3

5 > + 1

Le

43

TA

T's nN

Ne propose allowing directories to be Inltlated by

proc: f e~ecuting In atl rings. As was noted earlier, the

basic problem to be solved Is that of cecldling whetrer a

proc~~s should be allowed to Inltlate a directory to which lt has

no expliclt access. There are essentlally four schemes for

raking thls decisions The first scheme Involves recognizing that

it the access control (list of a directory ls to completely

express access to that directory, then we must make explicit the

now *hldden™ permission fo Initlate a dlrectory if some

descendent of the directory ls accessible to the process. The

obvious way to accomplish this Is to Invent a new directory

access mode called “iInltlate™s This mode would allow the named

principal to Initiate a directory and to use the Information it

contalns that Is relevent to accessing descendents of that

directorye This makes the declslion of whether or not a process

should be allowed to Initiate a directory quite simple. If the

process has non-null access to the directory, then [ft may

injtlate It. Otherwise, It may not.

 Ny

fhis scheme does not meet our requirement that the

access control (lst of an object completely express whlch

procerses may access that objects The only way to correct this

deficlency Is to couple the access control list on an object with

the access control (ists on all superlor directorles, so that

when a process Is glven access to an object [It Is also glven

Initlate access to alt superior directorles of that object.

ihen a process subsequently Is denled access to an object, the

security kernel must remove any Initiate permisslon that the

process had to the superior dlrectorles of the object and that

resul ted solely from its having access to the object,

Determining which Inltlate perrisslons should be removed Is very

difficult, potentlally requiring that the entire directory

hlera~Chy be examined.

A second way to declde whether a process may [Initiate a

directory Is to search the hlerarchy subtree rooted at that

directory. If the process has non-null access to any member of

this subtree then the process should be allowed to Inltlate the

directory In questlon. Naturally, this scheme Is far too

inefficient to consider serlousiye.

A third method of declding whether a process may

inltlate a dlrectory [Is to require non-null access to the

jirectoryes This scheme has the disadvantage, chzred by the first

 > Wy wa

scheme dlscussedy, of preventing the access control list of a

ilrectory or segment from belng the sole arbiter of access to

that directory or segment. In order to Inltlate a segment, a

process would need non-null access to the superiors of that

segment.

He propose a fourth solution to the problem of

Inltlating directories, Instead of worrying about whether or not

3 process has the right to Injtlate a directory, let us allow all

processes to Initiate any directory = whether or not it exists.

The key to this scheme Is preventing the process from detecting

any difference between an Initiated directory trat does not exist

and an [nltlated directory that exists but that the process Fras

hot proven lts rlght to know exists. How thls Is to be done will

be discursed later.

The ring zero ade -s space manager interface resulting

Irom this approach seems quite naturale RINg zero no longer

concerns Itself with pathnamese Instead, It accepts directory

segment numbers for directory specliflerse To allow thls sctreme

to bootstrap ltself, we will ceflne the segment number of the

parent of the root to be zero. Initiation of segments and

directorles ullil be controlled by the procedure |[njtlate_ that

wlll accept 8 par.r-?er spercifing uh "her 5 “nt or dlrectory

is to be Initiated.

aby, -

The rationale behind distinguishing directory and

segment Inlitlatlon 1s that a process usually has a preconcelved

idea about the type of the object It wishes to Initiate. When

reality does not support this preconceived ldea, the process Is

usuallyInerrorsForcing the process to make expllcit the type

ot object It ils expecting allows ring zero to Immediately catch

many such errors, preventing a careless process from bumbling

along thinking alt ls well only to dle when lt attempts to access

a directory as a segment or vice versa. Naturally, 1t would be a

security violation for the kernel to report a type violation to a

process that has no rlght to know whether the directory or

segnent named actually exists. If a segment or directory should

be und~tectable to a processs then the securlty kernel must treat

it In ® manner consistent with the type speclfled In the initiate

call ren: rCless of Its actual type.

To complete our new ring zero address Space manager

interface we must define a new termination primitive. This

primitive will accept two arguments. The first argument specltles

the segment number to be terminated. The final argument is a

status codes It should be noticed that this primitive may be

called wlth elther a segment or directory segment number. In the

case of terminating a directory, one constraint [Is enforced.

Since the system reculres that a known segment®s parent also be

known, teralnate_ wili not terminate a directory with krown

inferjlorse.

Ho >uy yg -

be 302 DetallisoftheDesign

50 far everything seems rosy. Thls scheme seems to

remove many functions from ring zero and to simplify the ring

zero [InterfaceInthebargain. Where is the hltch? Do we get all

this tor free? The answer 1s, of course, no. He have glossed over

one Important points In order to decouple directory and segment

initlatlon we must be able to successfully cloak the physical

initiation of directories from a process’ detection until it has

established [ts right to know of the existence of the dlrectory.

As was pointed out earlier, this need for deception Is Intrinsic

to the hierarchy structure and functlonallty of the Multics

systems Hhile this design makes the system®s need to deceive the

user more obviouse It Is not responsible for the required decelt.

He will cal) a directory detectable If a process has

established Its right to know that the directory exists.

Detectabliity may be established el ther by having non-null access

fo the dlrectorys by having non-null access to Its parent, or by

establishing the detectabllity of an inferior of the directory.

fhe reason that non-null access on the parent of an object

sstabllishes [ts detectablilty is that elther status, modify or

append peralssion to a directory ls sufficient to allow a process

lo detect If a postulated entry In that directory actually

N

existse It should be noted that the detectability of a directory

ls dependent on the process® history and the ring of execution.

R directory Is dcicctable by a process In rings zero

through the highest ring In whlch It has detectably Inltlated

some member of the tree rooted at that directory. This hlghest

detectable ring number of a directory Is kept In [Its KSTE. (1)

Ne wlll not attempt? to reset this fleld should a once detectable

directory subsequently becone undetectable. Not attempting to

reset the highest detectable ring fleld In the KSTE of an object

xhenJtbecomesundetectabletotheprocessmakessensesincethe

system has already admitted the existence of the directory to the

process. The process could have stored thinforesation elsewhere,

s0 1? would be of (lfttle use to deny the existence of the

directory. The record kept In the KST of the existence of the

directory wilt) naturally vanish when the directory Is terminated

or when the process ls destroyed.

Ne must prevent a process from detecting any difference

between an Initiated directory that does not exist and an

Inltiated exlstings but undetectable, directory. If a process

could detect a difference In these two cases then [It could

establish the existence of any postulated path in the hierarchy.

This would constitute a clear violation of security. To

accomplish this means abandoning the current one-to-one mapping

(1) See appendices A and |" by

oy way

that exists between occupied segment numbers and Initiated

segments and directories. Although we will stil! only allow one

segment number to be bound to a segment, we must allow multiple

segment numbers for the same directory.

fhe reason for this dichotomy between segments and

directories Is simple. Since the access control list of a

segment completely controls the right to Inltlate that segment

there Is no need to allow a process to Inltiate a segment to

which It has no access. This allows us to hide the physical

axistence of a segment from a process that has no right to know

of Its existence by returning the asblguous status code "nolnfo™

In response to an Initlate request. This simple mechanism falls

for directorles since we aust always allow a process to Initiate

an existing directory In case It has access to some Inferior of

that directory. This forces us to return more than one segment

humsber for a directory In some cases In order to prevent thre

process froma detecting the existence of physically Initiated but

logically und ‘ectadble directories.

There are two characteristics of Multlics that

hecessl tate our abandonment of the current one-to-one mapplng

between dlrectory segment numbers and directories. Flrst,

directories can have multiple entry names. If Initlate_ returned

the same segment number for two different entry names within a

given directory, then the process would know that these names

> Py iJ

both named the same directory. Thls coincidence of names would

establish the existence of the directory (1f tte directory did

not existe then how could It have two names?). To prevent the

colncldence of multiple names on a directory from revealing the

existence of the directory, we must return a new segment number

If a preoe~sg relnltiates a directory that [s still wundetecteble

with @ new name. In facty we wiil even return a new segment

number [ff It trles to Initiate an undetectable directory with the

same name tuice. If we returned the same segment number, then In

prder for directories that do not physically exist to appear the

same to the user ring, ring zero would have to remember the name

of every phoney directorye This Is a needless compllcation of

ring zero.

fhe second characteristic of Multics that forces our

abandonment of the one-to-one mapping between directory segment

numbers and directories Is that the segment nusbers of a process

are @ finite resource shared among all protection rings of that

processe AS we have commented earlier, the finite size of the

Multlcs shared segment number address space allows one ring to

detect the number of segment numbers belng used by all other

ringse This makes lt necessary to assign a new segment number

Nhenever an attempt [gs wade to Initlate an undetecteble

dlrectorye This sequent number must not be shared wlth another

>Y

ring so (ong as the directory remains undetectable. The need for

assigning private, per=-ring segment numbers to undetectable

dlrec?c™l1ts Ray be seen In the argurxent that follows.

Assume the sy-tes returned the same segment number when

asked to Inltlate a directory In two different rings. Assume

also that the directory 1s undetectable In the upper of the two

ringse What Is the system to do when asked to unblnd the segment

humber from the directory by the upper ring? It cannot unblind

the segment number and return It to the lst of free segment

numbers since a lower ring 1s using the segment number.

Unfortunately the ring that requested the system to terminate the

segment number can detect whether or not the system actually

returned the segment number to the free list so the system cannot

Just pretend to honor the teralnatlion request. If the segrent

number ls not freed then the ring can deduce that some other ring

has the directory Initiated. By an argument slallar to the one

glven In the previous paragraph the ring can conclude, from the

colnclidence of two rings having the directory inlitlated, that the

directory actually exists. Since segment numbers are a scarce

resources the system cannot take the easy out of not allowing

undetectable directorles to be teralnateds. As a result, Initliate_

aust assign 8 new segment number whenever It Initiates an

unde “ectable dir *

2 Ys

The reader should note that we have lgnored, up to now,

lhe praoablem of preventing a process from distingulshing between a

non-existent directory and an existent but undetectable directory

through observation and analysis of second order effects such as

the time required to Initiate or terminate a dlrectory. It Is

hard to predict In advance of Installation In the standard system

shat sor? of second order effects might be observed. The plan is

te Investigate thls problem following actual installation.

flalng differences can be easlly hidden by Inserting extra code

in the shorter path. Other dlfferences also probably are

di=oyisablee

This scheme wlll merrily allow a process to Initiate

vast trees of directories that do not exist. These directories

nit? be indistingulshable from real undetectable directories.

The potential sultipliclity of segment numbers for directorles

Ilmpliles that Jf we compare two directory segment numbers and find

them to be not equals then we cannot conclude that the objects to

which they are bound are not one and the same. Since processes

running outside ring zero cannot currently obtain segment numbers

lor directories, no user coda can be affected by this new

restrictions To allow processes t0 quickly determine If two

. are bound to the same object, tre system shouldsegment aur"

support a function for mapping a segment number Into the unique

ldentltleroftheobject to which It ls bound. Naturally, this

lunctlon must rcturn an error If the object 1s not detectable to

hE

the process. The system must also assure that it a process

attempts to reference through any directory pcinter in an outer

rings lt will get the same access violation whether or not the

segment number {ft role. aAcCed corresponded to a real or proney

directory.

Figure &-1 summarizes the actions performed by

Initiate, when mapping a directory [nto a process® address space.

fhe reader should note that a target object within a phoney

directory Is considered a priorl undetectable and a non-existent

target object Is considered detectable by a process If the

process has non-null access to the contalning dlrectory. The

abbreviation *hdr® used in figure 4-1 stands for the contents of

® KSTE®*s highest detectable ring fleldes We have omitted the case

shere the target [s a tink as thls case wlll be discussed tater.

arget ls detectable In ring of caller

target exists In hierarchy
|

»

RL

.arget already has a segment number

return values
»

» i ~f eta‘y
i

Tug &n- a

} fa Lm "%

10 «= « *no_Info*™ new
}1 @ =! "noentry”™ § none
jt ¢ 08 0 1 new
'4 4 ¢ Wma -® ~f of

2

ring oft caller
T= ~fan gf caller?

Flgure 4-18 Action of Initlate_ for Directorler

—- 1 &

Two possible objections we can see to thls scheme are

that 1t can potentlatly waste segment numbers and [It requlres

inspecting the parents access contro! llste A close examination

sf (igure &-1 Indlcates that there are only two mays to asslan

auiltiple secment numbers to a directory. The first way is to

reinitlate an undetectable directory. The second Is to Initiate a

phoney dlrectory. Nelther ef these operatlons should occur in

noraal operation They could, however, arise In an attempt to use

» alsspelied pathname. TO control this problem, the outer ring

varlant of find_ could terminate trose directories that might be

phoney If the terminal segment could not be Initlated. This would

prevent 8 habltual mlsspelier trom cluttering hls address space.

It seems that with thls additlon a process woulc¢ be obliged to go

sut of Its way In order to clutter its address space. If that Is

shat 1? wants fine. Even [tft a process wastes all Its segment

numbers, lt can + ccver by tee: ""flng no fonger needed segrent

AURherse

The apparent Inefficency of Inspecting the access

control (ist of the parent of a directory during Its Initiation

Is not serjous since It Ils normally not required. Only when a

process has null access to an object and has not previously

estabijshed detectability for that object Is It necessary to

inspect the access control (ist of the parent. (1)

i.

[1) In fact, the [(ireguency ul th which DrOCe 38 Iinitlates 3

nh

In the current system the address space manager and the

reference name manager share a data base. (1) The address space

Ranager takes sdvantage of Its abllilty to access the reference

name m2~"~er®s data base by scanning the per ring, per segment

hundbery {ist of reference names kept by the reference name

nanager to determine which rings of a process are still using a

particular segment numbers This Information Is used to prevent

one ring from terminating a segment number that ls still [In use

by another rings (2) Only [f all rings that Initlated the object

have terminated It can the segment number be unbound from the

objects Thus, we have the concept of Initiating an object In a

particular ring rather than the concept of Initiating an object

jiobatliy In all rings of a process. This scheme Is desirable

since all rings share the ad”Ls © "»e¢ of segment numbers.

directory to which |t has has no access Is low enough In Mul tics
that our test |mplementation does not check to see If a process
has previously established detectabliity for a directory to avoid
inspecting the access control (lst of the parent of the
directorye If the process has null access to a directory, then
Ne always check the process® access to the parent of the
directorye

{1) See appendix A.

{2) Since the address Space manager uses the presence of
reference names In a glven ring for a segment number to detect
that the ering Is stlil using the segment number, the current
initiation primitive must call the reference nase manager to glve
a segment a reference name In the appropriate ring each time the
segment Is Inltiatede The current Inltlate Interface supplles the
address Space manager with a reference for this purpose. A more
complete description of the relationship between the address
Space manager and reference names In the current system may be
found In Organick (011).

+H-

Since reference names wlll no longer be kept In the

KSTe Some new mechanism must be Invented to supply Information

about which rings of a process are still using a glven segrent

numbers This Is easily accomplished by adding an elght blt tleld,

called ringss to each KSTE, If the IL th bit(0 origined) In this

fleld 1s on then the corresponding ring has the segment number

inltlatede This allons ring zero to detect when a segment number

may be physically terminated, thereby preventing one ring from

teralr "'ng a se~=~nt or directory that [Is being used by another

ring. i1)

Dur termination prialtive marks the segment number it

Is glven as free In [ts caller's ring of execution. If the

segment number Is Initiated In no other rings and lts inferior

count |S zero, then the segment number [s unbound from the object

and Its KSTE is placed on a list of free KSTEs. It should be

carefully neted that the termination primitive terminates a

single segnent nunrmberi It only PANOVES an object from the

process® address space If the last segment number for the object

Is teralnateds The reader should notice that because Initlate_

always assigns a private segment number when a directory ls

undetectably initiated, teralnate_ need not worry about revealing

the rd na of an vo
Fwd

r<table dlrectory.

| IST

{1) Appendlx B summarizes the content of the kncwn segment table
as we have redefined lt.

» y

bolp Removalof P-Prthname P- “ragsing

Ring zero®s ability to resolve a pathname Into a

segment number has been severely Impaired by our design. This

ablilitye which was embodied In the ring zero procedure find_,

depended upon ring zero®s ablilty to call the reference name

nanagers Speclficalliy, find. depended on the reference name

Ranager to wmalntain an assoclation between pathnames of objects

and the secaent number dound to the object. Fortunately, this

assoclation was only used to make find_ more efflcient. As a

resul ty we could redefine find_ In such a manner that It would

51111 operate correctly but would not take advantage of such an

ais~~~letlon between pathnames and <. igent numberce.

fo make filnd_ Independent of the reference name

aanagers alt we would need to do Is redefine find_ to Inspect the

pathname It was glven to see If It specified the root, lee. ">".

[ft it dlde then find_ would initiate the root, and return |ts

segment numbers (1) Otherwise find_ would strip off the last

component of the pathname and call Itself recursively with the

pathname of the parent of the target object to get Its segment

numbers Glven thls segment numbers, find_ would call Initiate to

(1) The systems freats the root directory as a special case. The
jocatlon of Jts physical object map as well 2s the rest of the
information that would reside In Its directory entry, If It had a
parent, Is embedded In the programs of tre system. Tnis
guarantees that the root may always be Initiated.

> A

Initiate the entry named by the component which was previously

removed from the pathname. For example, If find_ were called

with >a>d 1t would calt |[tself recursively to get a segment

number for »a¢ It would then call Initiate to get a segwrent

number for the object named b In the directory »a.

Nhile the procedure we have described Is correct, it

appnars to be quite Inefficlente This inefflclency suggests that

ue should elther give find_ a new assoclative memory or move it

aut of ring zero so that It can once again use the reference name

RaNagers Since glving find_ a new assoclative memory would add

code to ring zero which has no protection reason to be In the

security kernely this alternative Is untenable. Our approach

itd the: “cre be to rconove find. from ring zero.

The actual removal of find. from ring zero Is, of

itselty trliviale In the outer rings It can access the reference

name manager directly once agalne It can also access our new

inltlation primitive through a standard gate into ring zero. The

problema 1s that numerous programs In ring zero depend upon find_

to map pathnames into segsent numbers. Unfortunately, they

cannot? be sllowed to call our new tind_ In the cuter ring. To do

50 would jeopardize the security of ring zeroes To get ourselves

out of this dilemma, we wlll have to rerove almcst all uses of

sin G- id

pathnames from ring Zer Oe This In Jtselt represents a

substantial sliaplification of ring zeroe To accompllsh thls task

we sli consider the four major uces of pathnames In ring zero.

28441 »
Bae

fhe first class of przthnames used In ring zero that we

ni 10 consider consists of those pathnames that were passed Into

ring zero as an argument to a gate procedure. This class

repr~ nts the major use of psthnanmes in ring Zeros Fortunately,

It Is also the easlest class to remove from ring zero. Since

tind, now resides In the outer rings we will make the outer ring

responsible for transfating all opathnames that are currently

passed Info ring zero into segment numbers. We will then

redefine all ring zero gates that accept patPbnames as object

speciflers to accept segment numbers as object specifiers

Instead.

bead Links

The second class of pathnares used In ring zero are the

pathnases contalned In links Many ring zero programs, when they

discover that the object they are to act upon Is a I1lnk, are

defined to act Instead upon the ftarcet of the linke An example

ag “=p
r

of a ring zero function that Ils deflned to follow thls rule Is

the segment Inltlatlon primitive. (1) We propose that primitives

which are defined to follow links return a status code Indicating

that & tink has been encountered as well as the contents of the

iink ftselfs upon dlccovering that thelr target Ils a (ink.

Thls scheme requires that 1Iinks be readable In the

outer rings which raises the question of whate [If any, access

control should be placed on reading links. The approach taken In

the current system 1s to make links effectively readable by any

process that has non-null access to the terminal target of the

Iinke This scheme has an Inherent security flaw and ls therefore

unacceptables If some process can guess the pathname of an

axisting $lnk to whose target the process has access, then it can

prove the existence of the parent directorles oft that link by

initiating the target object through the links To eliminate this

security flaw we could place access control Ilists on |Ilnks,

thereby explicitly naming those processes which may read the

1inke The complexity of such a mechanism seems unwarranted when

welghed against [ts benetl is. The only access control! on the

target object of the lnk that 1s guaranteed ls speclfled by the

access control (lst of that object. Any access control specified

11) To prevent a process from causing ring zeros whlch Is masked
against Interrupts, from looping Indefinately following a circular
chaln of (lnkse each program that follows 1lnks keeps count of
the number of links 1t traverses during each invocation. If this
humber exceeds a certaln system-specifled threshold, then the
computation [ss aborted.

on 3 Iink may be avolded by referencing tre target oblect

directly and thus sarves only to protect the contents of the tink

jtselfs

rons that access to links must be controlled is

that the existence of a (ink [mplles the exlstence of Its

superjor directories and suggests the existerce of Its target.

He have chosen a simpler mechanism for controlling access to

{inks which, stthough not as comprehensive as a mechanism that

pssocjates a private access control ist with each Ilnk, meets

both of the needs for protecting links. We conslder a link to be

part of Its containing dlrectory, readable only by processes

having status permission on that directory. This scheme has the

virtues of being simple, easy to Implement, and plugging the

information hole that uncontrolled access to (inks provides In

the current systea. While this scheme does make one class of

currently legal uses of links 10tegatly, this r _iriction does not

seem too Severo,

To illustrate the scheme we have proposed, we wll}

outline the redesign of (Ink processing by the ring zero

Initiation primitive. When Iniftlate_. encounters a detectable

Jinks it wlll return the link and a status code that Informs the

puter ring procedure that a ¢ ink was encountered. (1) The outer

wi FER hiner

(1) As we have mentioned eartlers If an undetectable Vink is
encountered while attempting to Initlate a directory, the system
must treat that filnk as an undetectable, phoney directory.

y ~

ring procedure may then try the new path speclflec by the Inks

Since thls ls happening In an outer ring, we need nc longer Fave

» standard Interpretation of links. Since link processing wlll

be done In the user ring, the process may interpret links in any

sanner it choosese Nhy not (et links contain relative pathnames,

offsets, Or even arbltrary character strings? A link might even

specify a file residing In another computer system. The

important point |s that while the kernel may be the keeper of

Jinkss It does not interpret them. Naturally, the restriction on

link depths, which was Intended to keep ring zero from getting

into troubles vanlshcse

1 3

In a few C.SeSy ring zero generates and uses pathnames

Internaliy. These generated pathnames constitute the third

general class of uses of pathnases In ring zero. We witli further

partition thls class Into those pathnames that are generated only

during system Initialization and those

jenerated durlng normal system ¢-~"atlone.

uring the Inltlalization of the Mul tics system, the

need arises:toInltlateontheorderofonehundred or fewer

segmentsSe The reason the system must Initiate these segments Is

of little Interest to our thesis. We observe that since system

initiatizatlon Is an Infrequent operation (hopefully once a day

27X“up

or less) and the number of pathnames to be resolved Is quite

smalls we need not feel remorse at proposing a very lnefficient

pechanism to resolve these pathnamese In fact, as the reader has

undoubtedly gum~=ed, we propose that these pathrames be resolved

by calls to the Inefflclent version of find_ that we described

darllers

In the case of pathnames generated by ring zero during

hormal system operatione we cannot be quite so caval ler. Or can

ne? In feacty we cane A careful examination of ring zero reveals

that ten is 8 reasonable upper bound on the number of generated

pathnames that must be resolved In ring zero In the life of any

glven pr "$e

In tact, these internally generated pathnames are so

restricted that we have no need to even call our lnefficlent

tind_e Since they all are of tree depth at most three and all

components of these pathnames except possibly the last component

are constant for all time, we could expand the code of find. in

line ln the programs that use these pathnames. For example, If a

program needed to Initiate >pdd>my, then It would first Initiate

the roate Then, glven the segment number of the root, It would

Initiate pdde Flnallyy glven the segment number of pdd, It would

inltlate mye.

 Ww a

bo help Error_Condjitions

The tast and perhaps most troublesome class of

~~ uysed In ring zero are pathnames that are used to report

srror condlitionse There exist numerous Instances In the system

where a procedure detects an inconsistency or error condition

pssoclated wlth some segment or directory. For Instance, the

system may defect an. unrecoverable error while reading the

contents of a segment. Another example would be the detection

hat the doubly threaded (ist which chains the entries In a

directory together ls misthreaded. In error condltlons such as

lhesey the System writes a message Into the system log explaining

the problena. This message often contains a patrname that was

jenerated from the virtual address of the segment or directory in

which the error occured. Hhlle the exact algorithm for

jenerating a pathname from a virtual address Is of (tittle

interest to use thls algorithm dld depend upon the reference name

panager®s abliity to map a directory segment number into a

pathnameoftheodject it was bound toe.

Since we have argued that ring zero must not call the

puter ring name Space manager, we must propose a new algorithm

for waapplng a segment number Into a pathname. Many schemes are

possibles Howevery Since the error conditions we are talking

about may be presumed to be qulte rare, we will suggest a very

simples but lnetficlent, algorithm. Thls algorithm relies on the

rs-

fact that any virtual address may be mapped, by the known segment

tables Into the virtual address of Its directory entry. In the

directory entry can be found a name for the segment. This name

Ils the last component name In a valld pathname of the object. To

get the other components of a pathname of the oblect, we

recursively apply this technique to the virtual address of the

iirectory entry uhich ls of course, wlthin the parent directory.

he5 Sr © Neslgan

this chapter has presented a design that al lows

directories to be Initiated In all rings. As a consequence, the

need for the Multics security kernel to maintaln reference names

has been eliminated. The key feature of thls design Ils that the

security kernel maintains, for each process, the Illusion that

any postulated directory exists unless the process has sufflclent

access to prove otherwise. This permits the security kernel to

sllow a process to Inlitlate a directory to which It has no access

without dlsclosing the existence of that dlrectory. The address

space manager Interface presented In thls design Is summarlzed in

appendix Ce Appendix 0 contains an example of the use of this

interface.

24i

Chapter\

Redesian nf_the Shell

As 8 result of our design, the Interface to ring zero

has been wmodlifled quite extensively. We have eliminated ttrree

major functions that were supported by the old ring 2zerol

reference name management, pathname resolution, and storage

systema (ink Indirection. If the shell ls to use these services or

provide them to the users of the system, then we must deslian

nodules capable of providing these services that run outside of

ring zero. Ne have already explalneds to a degree which we trope

ls sufficlent to convince the reader, how the last function may

be trivially performed by outer ring modulese In this chapter we

wlt8 discuss the lmportant lssues Involved in resolving pathnames

in the outer ring and designing an outer ring reference nare

managers In addition, we wlll address ourselves briefly to the

problem taced by user progrias that depend upon now obsolete ring

rero Inte—~tag.

Sel

"TC

-~~lan

He have seen that the Multics reference name manager

provides four prinltive functions on name Spaces. These

functions provideaprocess with the abllilty tot bind a name to

a segment numbers unbind a name, determine the segment number

that 8 name Is bound to, and obtaln a list of tre names bound to

y 7

segment number. Actually, the Multics reference name manager

provides a larger set of functions. However, the additional

functions all can all be exnressed In terms of the four

Dri. Sf
T+

1 , We hava ¢g- ‘hed.

It Is not our Intentlon to actually design a reference

Tere We trust that the reader will accept our assurance

that It can be done and that It ls In fact stralghtforward. We

Rusty however, comment on one consideration that the design of an

puter ring reference name manager must recognize. When the name

space manager resided In ring 2ero It was operating Ir an

environment In which lt was guarsnteed to run to completion once

invokede ‘An outer ring n-

Juxurye

Executing in the outer ring environment, the reference

name ®manager «ay be stopped at any Instant. This of (little

Lonsequence except when jt |s stopped by the Mul tics “qulit™

rechanlsa. In thls cases, the system suspends the process’

current computation and then restarts the process. The process

Ray then relnvoke the reference name manager and at a tater time

resume the suspended computation having potentlaltly totally

, the r<¢ {
] 8 fhane . ~gr®s data base.

Luckily the system precvides a mechanism that allows a

rdc cg to Inhibit or "mask™ qult signals. By masking quits on

>» JF H-

entrance to the reference name manager and unmrasking quits upon

exlt the problem can be eliminated. Actually, It ls highly

unlikely that the entire computation performec by the reference

name manager need be masked. We should design the reference name

Ranager so that It has as small a "crlitical® section or sections

3s possible. In other words, we should try tc lsolate the code

that sight malfunction [ft [t were not masked against quilts. We

tan then eask and unmask quilts only when we enter and exit a

critical sectlone

8efore leaving the topic of name space management, we

should comment on one consequence of allowing processes to

Inltiate directories directly. This ablilty allows a process to

use the reference name manager to bind an arbitrary name to a

directorye One immedlately obvious use of this new faclllty Is

lo replace the current specls! purpose mechanisms that ldentifies

2 process® per ring working dlrectory and search directories

[011 Alt we need to do 1s bind the approprlate name, l.e.

"working _dir™ or * “-reh_dir_n" to the correct directory segrenrt

numberée

Be? Pi
-

utlon

He have commented that reference names are per ring.

his prevents programs executing In one ring from causing

programs executing In another ring to malfunction by tampering

sf Qu

with shared reference names. As a result, ring four could bind

the name “sqrt™ to one procedure and ring one could bind the same

hame to an entirely different procedure. While thls multiplicity

of name Spaces per process 1s desirable for protection and

Rodular prograaning reasons, It partlally defeats find_*'s purpose

In using the reference name manager to bind patrnames to segrent

humberse Since each ring has a different name space, assoclating

the pathname >a>d with segment number 481 In one ring will not

help snother ring resolve >a>be The result Is that wrany

redundant pathname resolutions wlll occur and many name spaces

niit contaln identical entries.

He suggest that find. not use the reference name

Ranager to assoclate pathnames with segment numbers. In fact, It

3s never correct for It to have done so. A nzme space just

assoclates an arbitrary name with a segment number. However,

pathnames are not just arbitrary names. Consider, for instance,

what happens when we remove the name db from the dlrectory »>a>b

and then add the name b to the directory >a»>c. The result of

this change In the environment |s external to tre reference name

Ranager and yet It has Invalldated a mapping the reference name

Ranager wags keepinge The pathname >3>b no tonger refers to the

object that [Is odbound to segment number 4081, but the reference

name ®an2ner has no way of knowing thls.

9D av

There are potential advantages to binding pathnames to

directories once per process, as ls done in tre current system.

Consider the problem of installing a new verslon of a

aultliecomponent subsystems such as the Multics PL/I compller,

while Multlics 1s running In the current system we could store

the components of the compller In a single directory. To install

3 new version of the compller all we would need to do is bulld

the new version In a brother directory of the current compiler.

Hhen the new compllier |s ready for Installation all that would be

necessary Is to exchange the names on the new and old compiler

directories. Processes that had already started to use the

complier would remember the segment number of the old directory

3s the compiler directory and would continue to use the old

compllier and satisfy new dynamic tlnkage faults to components of

the complier fron the old directory. In thls way a process

aluays gets a consistent copy of the compller. A process that

had not yet used the compiler would initiate the directory

contalning the new complier when |t attempted to invoke the

compliers It would then remember this new directory as the

crompllier directory and satisfy all linkage faults for pleces of

the complier from this directory.

+S does not "frceze™ a directory sub-tree, as

js done In the current system, when It Inltlates that directory,

then It becomes very difficult to do on (line Installations of

[ft a or -

aulti-component subsystems. A proz-=s could easily get half of

 2 i

an old multi-component subsystem and half of a new version of

that subsystem when an online installation of the subsystem [s

donee On the other handy a process often wants to use the actual

hierarchys not a “frozen® Image of the hilerarchy. Qur deslian

alfows a process to choose between these two alternatives by

suUpPDf~Ling an gnnma-~ te verrion of tlnd_ In tre outer ring.

He suggest that the system suppllec find_ opt for

solving the “directory renaming problem™ rather than the "onilne

installation problem™, The esslest and most attractive approach

to solving the directory renaming problem is to not allow fina_

lo use a pathname, Segment number assoclative memory. Instead,

Hind, wlil always recurse to the root when resclving a pathname.

ihile this aight seem unattractive for efflclency reasons, direct

measurement of the Impact of such a scheme upon system

performance reveals that system throughput would only be degraded

by @ small fraction of a percent. In addltion, our proposed

address space manager will drastically reduce the number of

pathname resolutions that occur within the system. This reduction

in pathname resolutions should render the difference between

lind_*s having and not having a pathname assoclative memory

almost [mmeasurables. Thls slight performance degradation seems a

small price to pay tor the elimination of the directory renaming

problem outlined abere,

 od

53 Compatibility

The final topic we wish to discuss In thls chapter Is

that of ¢~~ ~blilitye A basic responsibility of any computing

utility 1s to nlnimlze the effect of Internal changes upon Its

user community. If a major change must be made In the Interfaces

between user wrltten programs and the system, or In the semantics

of these Interfaces, then the system must support both the new

and old Interfaces for a sufficlently long perlod of time to

allow users to convert thelr programs to use the new (nterfaces.

A sultable measure of this perlod of time would probably be

reasured In months or even years, not hours, dayse or weeks.

He have made substantjal changes to the ring zero

interface and thus must address the comgpatlblilty Issue.

Fortunately, It Ils quite simple to preserve comgatiblilty without

keeping the old find. and name and address Space managers. This

is possible for two reasons. Flrst, we can similate the old ring

zero Interface by Interposing a ring four procedure between the

caller of an obsolete ring zero Interface and our nem ring zero

Interfaces Second, {ft ls possible to Interpose such simulation

procedures between the user and the new ring zero Interfaces

without recoding or even re¢2ot.lling any user programs.

sonslder how we would simulate the old interface to

inltlatee The outer ring Ini.. 'Ualng procedure would call the

3 §-

outer ring reference name manager to map the pathrame directory

speclfler of the old Interface Into the segment number requlred

by the new Interface. It would then call the new initiation

prilaltives If this returned 3s inky the outer ring Interposing

or. ‘yre¢ would start over again.

This slsulation procedure would be difficult to

implement lf It were not for the fact that Multics now has an

Interposing procedure on all calls to ring zero. This procedure

is a ring four transfer vector that normally transfers the call

to the appropriate ring zero gate. (1) This transfer vector can

be w®modlfled so as to call an approprlate interposing Interface

simulation p. ~reg for the Interfsces we have changed.

-

{1) This transfer vector, which was dlscussed [In a previous
masters thesis by Janson {J1] has not yet been Installed In the
current Multics systen.

a

Chapter NI

[Implementation

He have coded a fest Implementation of the essentlal

teatures of our design. This test Implementation was undertaken

for four major reasons. First, a working implementation of our

ideas serves as an existence proof of the basic clalm of our

theslse Second, a working Implementation helps us demonstrate

the practlcallty of our designe. Third, the actual task of

implementing our design helps Insure that we have not neglected

any important detalls in our deslgn. Finally, a test

implementation of our design halps us to quantify the Impact of

sur deslian upon the system.

be4 Plan

We have Indicated that our new design requires an

extensive overhaul of ring zero. The pervasiveness of the

modifications necessary to ring zero Is largely a result of the

removal of pathnames from ring zero. While the removal of

pathnames from ring zero Is c~-~ntlal to our design, It Is a time

tonsumings stralghtforwardy, and [ntefllectualiliy unrewardlng task.

Instead of undertaking thls drudgery, we have devised a

scheme that allows the essential ideas of our design to be

implemented while avoiding sost of the unintcresting work. The

> gE

implementation we will describe does not affect any code outside

of ering zero, nor does it affect the syntax or semantics of the

interface to ring zero. As a3 result of this feature, our test

implementation provides the flerst step In an orderly transition

rom the current Multics system to the system we have described.

fhe inplenentation we ulll describe could be Immedlately

installed In the $7 “1 Mul tics system without substantially

affecting uscrse.

hat we elected to do was to [lsplement our new

initiations terminations, and name space management primitives

inside ring zero. He then relmplemented, Inslde ring zero, the

old Injtiations termination, and name Space management primitives

using our new primitives. This scheme allowed us to concentrate

upon the key lssues of our design without getting bogged dowr in

the mechanics of converting thirty or more large complex programs

from using pathn~mes to not using pathnesr “fa

The strength of thls approach Is that the modules In

ring zero may be slowly weaned away from using pathnames or now

obsolete Interfaces. Alsoy by supplying gates to our new

primsltivesy users of Multlcs can start converting thelr programs

to take advantage of the new ring zero Interface. When ring zero

has been completely converted, all we need do Is throw away the

code that Implemented the old primitives In terms of the new

primjtives and move the °cLAPISe name manager cout of ring zero.

R8-

Be? Impact on T *~m Complexity

Reducing the complexity of a system certalnly Increzses

its certifiadblilty (D1, D2, OD3s Lis Ni, Pile. In order to

substantiate the hypothesis that our design results In a system

that ls sore certifiable than the current Multlcs system, we will

look af two measures of the complexity of the security kernels of

the two Systems. These measures are the difference In size of

the old ring zero and our new ring zero and the difference in the

nuaber and cc... ¥ [ty of gates Into the old ring zero and our new

ring zereo.

Appendix E summarizes the slze comparison data between

the old ring zero and our new ring zero. As it reports, the

address space manager was reduced In size by seventy-seven per

cents Thls corresponds to a two and a half per cent reduction in

the slze of ring zero. In fact, the address space manager that

we designed was $0 small that we have presented It In appendix H

for the reader to peruse. This sizeable reductlon In the slze of

the address space manager Is quite encouraging and substantiates

our clalm that we have produced a more certifiable ring zero.

Nhat 1s even amore encouraging ls that white thls figure Is In

itself? substantlaly It only represents a partlal |wplementation.

Several wodules In ring zero accept both patrnames and segrent

numbers as storage system object specifiers. In a complete

+x T

implementation of our design many of these rodules would cnly

accept segment numbers. This would allow the code that handled

the pathnames In these aodules to be thrown out of ring zero,

further dr “ng lts complexity.

fhe old ring zero supports about two hundred gates.

Jur design clearly removes the necessity of having gates into

ring zero whlch call the reference name manager. It also removes

a whole class of gates that allow an object to be specified by

pathname. Many gates Into the old ring zero came [In palrs. One

gate would speclfty the target object by segment number. The

other gate would speclfy the target object by pathname. With the

ability to Initlate directorles In the outer rings, this

nul tiplicity of gates becomes unnecessary. AS a result, only the

gates that take a segment number as object speclifler would be

retalned In the ring zero of a complete Implementation of our

designe When we add up the number of gates that a full

implementation of our design would remove from the current ring

zero Interface, we find that we would remove about flve per cent

of the gates. In additlon to reducing the nusber of gates into

ring zeros we have slgnlficantily sieplified the Interface to over

ittyofthegatesthatmustremaln In ring zero. (1) This

reduction In Interface complexity also lends credibility to our

clalm that we have made ring zeros and hence Multics, rore

certifiable.

{1) See appendix oe.

58

he3 Impacton © fr ~fqorrance

fe help assess the Impact of our design upon the

performance of the Multlics system, we developed a small benchmark

that tests the speed and paging behavior of the most used system

functions that our design affectede This benchmark was run on

both the standard Multics system and our test Implementation.

The results of these runs Indicated that the virtual cpu time to

inltlate and then terminate an object dropped from 11.002

alttiseconds In the standard system to 10.226 milliseconds In our

test system, a reductlon of elght per cent. (1) Thls is

especially gratifying since the test name space manager we

implemented was not In the least optimized for running speed. In

addltione our test implementation was unfalrly penalized by

having to conv wlth our benchmark through a simutation of the

pld Interfacc.e.

He attribute this speed up to many factors; not the

least of which [Is the fact that we greatly simplified the

structure of the known segment table. We also make the somewhat

immodest clalm that our Inltletion, termination, and reference

name management primitives were simply coded better than those In

the current? sycteme But this Is not surprising; most things are

HE" a

{1) A description of our benchmark as well 3s a brlef summary
the performance data can be found [n appendix F.

of

- JR Gf

jone better the second time around. It should also be noted that

the smaller and less complex a module is, the easler It Is to

program that module efficiently and correctly. Unless a

programmer can hold all of the relevent detalls and

specifications of a program [In hls head at one time, It Is very

ditfticult to per

Ihe programe

Jur working set performance data Indicates that our

system r_.erenced two more pages running the berchmark than the

standard systen. This dld not come as much of a surprise. One

dt these extra page faults resulted from splitting the code of

the reference name manager and address space manager apart and

the other resulted from splitting apart thelr shared data base.

Ne anticipate that when programs are converted to use the new

interfaces directly the extra page fault that was caused by

splitting the code spart will be compensated for. We expect that

since our code ls smaller In total, by eliminating the simulation

code we wlll decrease the working set by a least a page. This

 ill make up for the extra page fault caused by splitting the

reference name manager and address space manager apart. The

increase In working set due to splitting apart the known segment

table cannot In Iitselt be avolded. However, thls Increase in

working set Is only on the order of a hatf of a page and Is

independent of the comblned size of the new data bases.

+39=

He have not really put much effort Into the performance

arguments above. We feel that the performance data which we rave

reported above ls not, In fact, a good measure of the performance

of a full lsplementation of our designe We clalm trat there Is a

hidden performance factor which will easily swamp out the

performance effects we have been discussing. Fortunately, thls

hidden performance factor ls In our favor. The effect to which

we are alluding wilt not be seen Immediately but will slowly

assert Itself. This effect has to do with the gradual conversion

of major shell and user programs to use segment numbers as

directory speclflers. Since pathname resolutlon Is fairly

expensive (even when find_ Is given a pathname - segment number

assoclatlive mem~ary)l, the use of segment numbers as directory

speclftlers wlll! save an avei'ane process a substantial amount of

computations

oy =
a

 ~~

Chapter VII

opciuslieon

He have araued that retfer.nce name management need not

be suraorted by the securlty kernel of a computing utility. In

particular, we have demonstrated a transformatlicn on the Multics

system that removes reference name management from [ts security

kernele Our design has further simplified the Multics security

kernel by altowing directories to be inltlated outside of ring

zeroes and removing the concept of a storage system link from ring

reroe In the process, we have repaired an Inherent security flaw

in the current Multics design that allowed processes to detect

the existence of objects In the storage system hlerarchy to which

they had no accesses This flaw resulted from having insufficient

access control on llnks and from ring zero®s fallure to termirate

undetectable directorles. Flnally, we have provided a solution

lo the problem of clearing find_*s p~thname acs~czlitlive merory

when 8 dlivectory [ls renamed.

He have used a technique In our redesign of the Multics

system that we feel deserves speclal mention. This technique

involves constructing a careful tle to malntaln the security of a

plece of data. In our casey we constructed a security kernel

that §les about the existence of a directory untill the caller

proves Its clght to know of the exlstence of the dlrectory. This

lies which was actually qulte easy to malntalin, prevents a

“a —

process from detecting directories that should be undetectable by

pretending that att possible pathnames correspond to an existing

directory unless the process has sufficient access to the object

speclfled by the pathname to prove otherwise.

Me have laplemented and tected the key points of our

designe This lmplementation has shown that our design Is both

simpler and eore efficlent than the standard system. More

detalls of our design than were presented In the body of the

thesis may be found In the appendices that follcw., In particular,

appendix H presents the actual programs of tre address space

aanaqger declgned In this thes lise.

In conclusion, we would llke to note three observations

ne made while designing a new address space manager for Multicse.

First, our address space managary which Is far simpler than the

current Multics address Space manager, also ls more efficlent

than the current address space manager. The ccmplexity of the

current address Space manager cost Multics both space and

performances (One Is tempted to belleve that, In general,

complexity added to lmprove performance Is frequently

counterproductive.) Second, because Multics Is an existing

systems the functionality and use patterns of tre Mul tics address

space manager were thoroughly understood when we began our

researche A large part of the simplification achleved 1s the

direct result of Insight extracted by observing the existing

24 4 =

implementation of these mechanisms. Finally, we noticec an

impressive threshold effect. As our design progressed lt got

simpler and sispler. At a certain point, when our design was

simple enough so that all of the relevant detalls of the design

could be considered simultaneously, our design underwent a

lurther drastic simplifications This simplification was only

discovered when the mechanism became simple enough ana srall

enough to be kept In the head of one designer all at one time.

 Bh -

APPENDIX_A

SIUC! x er ~»nt Table

The maln data base for the current ring zero address

and reference name manager [s the Known Segment Jabjle. The KST Is

a per=nrocessy ring zero segment. Loglcally It contalns ttrree

items. First, It contalns an array of KST Entries. KSTEs are

indexed by Segment number and contaln all per-process Information

necessary for the proper care and feeding of the segment or

directory assoclated with the Indexing segment rumber. Second, lt

contains a hash coded mapping from the space of Unique

[Dentiflers onto the space of segment numbers, or equivalently

the space of KSTEs. This mapping provides the means of locating

the KSTE of an already Initiated segment should It subsequently

be Initiated by a different nane. Third, It contains a hash coded

rapping from the space of names onto the space of segrent

numbers. Thls association Is malnily of use to tre dynamic linking

nechanlsne The current contents of a8 KSTE and thelr major usages

are glven In the following table.

-3C

XSITE Fleld
forward polnter,
hackward pointer

inlaue 10 Ny

 a.
|

3 -_

hame pointer

Inferlor count

parent secment numbor

ntry offset

directory sultch

yse

These pointers are used to chain
the KSTE onto a (lst of free KSTEs
shen lt Is not In use.

fhe unlque identifier of the
segment Is used to valldate UID
hash searches and to properly
identity the correspongcing
directory entry gsfter an on-{lne
salvage.

This pointer chalns together a list
>¢ the reference names assoclated
with thls segment or dlrectory.
Stored with each reference name is
the number of the ring In whlch the
name [s knoune

The Inferior count records the
ueber of Inferlors of a directory
that are In the process® address
ipacee This Informatlon [is used to
orevent a directory from being
terminated white It has known sons.

Thls entry records the segment
number of this segment®s parent. It
Ils used at segment fault time to
help focate this segment®s
jirec tory entry. It also is used to
lransiate segment numbers Into
pathnames.

fhis entry, whlch records the
23ffset of thls segment®s directory
antry within Its parent, Is usec In
conjuction with parent segrent
aumber to (locate the segment’'s
jirectory entry.

his flags which Is set to Indlcate
that the segment Implements a
jlrec tory object, is used to
special case access setting for
Jirectorles at segment fault time.

AF=

APPENDIXB

Structure ~° ~~ ~ <--ment Table

Jur redesigned KST has been simplified and contains only two

componentss a KSTE arrays and a UID hash table. The contents of

pach KSTE and thelr major usr ~~ summarized below.

KSIE tleld

forward pointer,
backward oolnter

unique identifier

inferior count

entry pointer

dlrectoery sul?ch

rings

rlighest ¢ able ring

JSa

Jsed to thread KSTE onto free or
hash class lst as required.

Jnchanged (a phoney directory will
have a uld = 0).

Jnchangede.

A polnter to the
lor this segment.

Jlrcctory antry

Jnchanged.

An elght blt fleld contalning one
hit per ring. Whenever ring | has
thls segment number Inltlsted then
lt 1 of this fleld 1s one.

A number that speclifles the hligrest
ring In which thls process has
astablished 1lts right to know of
lhe existence of this directory.

4)FF—

APPENDIXC

The pre

ProposedA

dry 1g . 9 S

mer Interface

 nN Jr sinter face Is as

loll ons.

initlate_ (dir: .dirsue link. ~mno;coce)

dirsegno
ename

dlrsw
link
Begno
code

segment number of the parent (input)
entry name of target (input)
directory switch (lnput)
link (output)
segment number of target (output)
status code (output)

@ status code val ues?POSE.

error_table_$segknown ~~~ segment already known to process
error__table_Snoinfo -=-- jnsuffliclent access to return any

information |

error _table_Snrakst --- no more room In known segment table
prror_table_Sno_entry -=-- entry does not exlst or fs of the

wrong type
prror_table_Siink === entry Is a tink

ers’ hate _(segnogcode)

segno segment number to be
code se¢ above

1‘1ed(input)

possible status code valuast

errror_table_Sinvalidsegno === segment number Is not bounc to
an object

error_table_Sinfcnt_non_zeroe <-- cant terminate due to
active Inferlors

arror_table_sSknown_In_other_rings --- can®t terminate due to
segment number belng used In other
rings

JK«

APPENDIXD

Example

To help clarify the ideas presented In thls thesls,

let us conslder the followlng scenario In which a process tries

to Inltlate the segment >a>b>c>d>e>f In ring four. He will assume

that directory e and segment ft do not exlst and that the process

haS nO access to as, b or de and append permission to ¢ In rings

zero through four. We have presented below a representation of

thls path through the hlerasrchy along wlth the process® access

rights to each object In ring fours.

ob. Fee status

tees Null

t= null

C= append

<< c= null

To silmplilfy matters we will ignore the existence of the outer

ring reference name manager and we wit) sssume that we are

operating In a virgin environment. What follows ls how the outer

ring tind_ would proceed In this case.

 - 99

step ©

JTep 1

;tep 2

call Inltlate_(0ys""osisllnkysegno_of_rootycode)

The root directory will be Initiated, Its detectable
lietd In the KSTE will be set to four, and a status
code of zero will be returned. (all rrocesses rave
status peralssion to the root directory)

rat
Inltlate_(segno_of_ront."t"e1slinkesegno_of_a,code)

fhe dlrectory wii be Initiated, lts detectable flela
In the KSTE will be set to four, and 8 status code of
rero will be returned.

call Inltlate_(segno_of_a"bde1ellnkysegno_of_b,coce)

fhe directory wlll be Initiated , Its detectable fleld
in the KSTE will! be set to zero, and the status code
woinfo will be returned.

31 ep 3

veep &

step S

step 6

veep 7

call Inltlate_(segno_of_b."c"s1.linkysegno_of_c,code)

fhe directory will be Initlated, its detectable field
In the KSTE wlll De set to fours and a zero status code
#188 be returned. In addition thls Initiation
3stabllishes the process® right to know of the existence
of superlor directories at least In rings zero through
foure This Is reflected, In thls casey, by setting the
jetectable fleld In the KSTE of »a>b to four.

call Initlate_(segno_of_c,"d1.0inky,segno_of_ds,code)

fhe directory d will be Initiated, its detectable field
in the KSTE wlll be set to four, and a zero status code
wlll be returned.

call initlate_(segno_of_d,"e",1+linkysegno_of_e,code)

fhe non existent directory e will be assigned a KSTE
shich will be marked as phoney and the status code
holnfo will be returned.

call Inltlate_(segno_of_e"Ff",

No KSTE wlll be assigned and the strtus code noinfo
will be returned.

call terminate_(segno_of_escode)

The segment number gssigned to e will be released
the grounds that e may not really existe.

on

»400-

APPENDIXE

Sire ot 7 -
on
ro.

In this appendix we Sut...Xecomparison data between

the size ot the current Multlics securlty kernel and the size of

our proposed Multlics securlty kernel. We rave only Included

data for the major programs that were affected by our design. As

a basic measure of the slze of a procedure we have chosen thre

number of words of text In Its Multics object code module. This

corresponds roughly to the number of machine Instructions in the

modules Our comparison ls between the modules In appendix H and

the co~~2spondling modules In Multlics system 24.2. We notice that

in most cases the procedures In our system are markedly smalier

then thelr counterparts In the current system. Our reduction of

the securlty kernel by 3499 words or about two and a halt per

cent may not appear spectacular, but the reduction In slze of the

address space ®manager Is seventy-seven per cent. This has

substantlally reduced the complexity of the security kernel. The

reason we can make this clalm is that while the reference name

Ranager In the current systea ls not that largess lt 1s corplex

lar out of proportion to Its slze.

1014~

oid er
pp - fF

find_

Rakeknoun

kstsrch

kst man

Rakeunknown

inltlallze_kst

initiate

kst_entry_check

ilze

req

r32

128

164

240 Ld3

y & 3h

{0&4

b67

103

RD

598 1L3&

112

iB

AE

529 1030

402: »

nex procedure

fird_entry

makeknown_

ks tsrch

pet _kstep

terminate_

initialize _kst

Initliate_

ks te_Info

ks te

vatlce vw od

JT _Tegno

APPENDIX_F

Performance Lata

In order to measure the change In overall performance

between our system and the standard Multics system, we developed

 a» speclal benchmark programe. Thls benchmark was designed to

evaluate only the most commonly used features that we modified In

our designs segment Initiation, reference name management, and

segment termination. Specifically, our benchmark called the old

ring zero Inltiation Interface (1) to Initiate a segment and glve

it a reference name. It then used the terminate by segment

number orimitive of the old Interface to terminate the segrent

and unbind the reference name. This was repeated one hundred

times. The virtual cpu time In microseconds to complete the

benchmark was then divided by one hundred to obtain a normalized

perforaance timing datum. The total number of page faults for

the run was 8ilso recorded.

The benchmarks for both systems were run on December

10s 197& within ten alnutes of each other on a dedicated

computere The standard Multlcs system used was designated as

Multlcs system 24.2. Our test system was identical to system

26.2 excep? as It Implemented our design. Three runs were made

oh each system. The first run served only to cause dynamic

linking to occur and to bring the pages that our benchmark

na

(1) The old ring zero Interfaces were simulated In our system.

Ld 8

touches Into primary memory. The second run, which took no page

fauitsy was used to obtaln our timing data. (1) Multics system

2ke2 averaged 11002 wmicroseconds for each jteratlon of our

bencheark. Our test luplenmentation was actually seven per cent

faster, taking 108226 ajlcroseconds per Interations The final run

nas u3de after the contents of primary memory were flushed. This

run established the size of the working set of our benchmark

since each page touched while running our benchmark produced a

nlssing page fault. The working set of our benchmark In Multics

26e2 was five pages. Our test leplesentation had a working set of

SVEN PALES

rE EES a SEES

(1) Prior testing had shown that multiple runs of the benchmark,
under Jldentlcal conditjons, produced times within one hundredth
of one per cent of each other, As a result one timing run was
all that was regulred.

»4 O4-

APPENDIX©

Ring Zer- Ny "ty Data

This appendix (tlsts brlefly the changes we have made

In the standard ring zero Interface. We have excluded from this

appendix the changes me have made to the ring zero address space

nanager Interface as these changes have been documented In

append]x Ce.

pbsole” oy

—y

hr wa

hes_Schname_flle
hes_Sfis_gdet_path_name
hcs_Sdelentry_file
hes_Sfis_get_ref_name
hes_Sfs_get_segptr
hcs_Sstatus_aint
hcs_Sterainate_tflle
hcs_Stermlnate_nanme
hcs_Sterminate_noname
hes_S$truncate_file
hes_$set_bC

143% -

 [Interfaces Converted ToSpecifying Their Iaraet Oblect
BySeamentNumberRatherIhan

3yDirectoryP~thname_andEntryName

hes_Sadd_acli_entries
hes__gadd_dir_acli_entriles
hes_Sadd_dir_lacli_entries
hcs_sSadd_lacle_entries
hes_gdel_dir_tree
hcs_Sdelete_act_entrles
hcs_Sdelete_dlir_scli_entries
hcs_Sdelete_dir_lacli_entries
hcs_Sdelete_lacle_entriles
hes_$get_author
hes_gget_bc_author
hcs_Sget_dir_rling_brackets
hcs_Sget_max_length
nes_Sget_ring_brackets
hcs_Sget_safety_sw
hcs_8Sget__user_effmode
hcs_8Stlist_acl
hcs_$tist_dir_acl
hes_$llst_dir_lacl
hes_$Stlst_Lnacl
hcs_sSquota_move
hcs_Srepl ace_acl
hcs_Sreplace_dlir_acl
hcs_sSrepl ace_dir_lnacl
hes_srepl ace_inacl
hes_%set_copysw
hes_$set_dir_ring_brackets
hcs_3$set_rax_length
hecs_Sstatus_
hcs_Sstatus_long
hphcs__$add_acl_entries
hphcs_S$add_dir_acl_entries
hphcs_Sdelete_acl_entries
hphcs_Sdelete_dilr_acl_entriles
nphcs_sSreplace_acl
hphcs_Sreplace_dlr_acl
hphcs_$set_act
hphcs_$set_auth
nphcs_$set_bc_auth
nphcs_S$set_dates
hphcs_8$set_dir_ring_brackets
nphcs_Sset_ring_brackets
nphcs_gsstatus_backup_info

406 “a.

InterfacesConverted Io Specitving Thelrc ITsrget Oblect
BySegmenthumberRatherThan

By D*~ -*arwv Pathpame

hes_Sappend_branch
hes_Sappend_branchx
hcs_$append_Ilink
hcs_squota_get
hes _S$star_
hcs_Sstar_(1lst_
hphcs_Squota_reload
hphcs_Squota_set
hphcs_$salvage_dlir
hphcs_Sstar_no_acc_ck

=fyr »?,

APPENDIXH

Ihe Addr r_Progragss

He have claimed that the address space manager we

designed Is simples, small and easy to certify. To substantiate

this clalmy we are Including in this appendix the source code of

our address space manager for the reader's perusal. These

programs differ from the actual programs that ran In our trial

Mul tics sycvem only In a few minor detallse (1)

Ne will divide this appendix Into three sections. The

tirst section contains 8 declaration for the KST. This

declarat]lon Is used by prograsas that contaln a *“YZlnclude ksti™

statement. The second section contains the PL/I source programs

that constitute the address space manager, Flnally, the ttird

section describes the calling sequence and functlonallty of

system modules called by the pre~y. ns presented In section two.

The baseno and ptr PL/I bulltin functions used In the

programs In this appendix are non-standard Multics PL/I functlons

that manipulate pointers. A Multics pointer may be viewed as a

palr of Integer values. The flrst component of a pointer is

interpreted as a segment number by the Multics hardware. The

(1) See appendix I.

 a 04."

second component of a pointer ls Interpreted as a word offset

within the segment specifled by the first component. The baseno

bullitin function constructs a pointer to tre flrst word In a

segment glven a segment number for that segment. The ptr bulltin

function constructs a pointer from the segment number In its

'irst argument, which aust be a pointer, and tre Integer offset

shich Is lts second argument.

+409

4

/%¥ BEGIN INCLUDE FILE - - - kst.incl.pll = - =

del kst_seg$ ext;

kst aligned based (addr (kst_seg$))
lowseg fixed bin,
highseg fixed bin,
free list
3 (fp, bp) bit (18) unaligned,
uid hash (0: 127)
3 (Tp, bp) bit (18) unaligned,

2 entry (lowseg:highseg) like kste;

del kstep ptr;

del 1 kste based (kstep) aligned,

(2 fp bit (18)
2 bp bit (18),

2 segno fixed bin (17),

2 rings bit (8),
2 hdr fixed bin (3),
2 dirsw bit (1)
2 unused bit (57,
2 infcount fixed bin (17),

2 entryp ptr) unaligned,

2 id bit (36) aligned;

END INCLUDE FILE - - = kst.inel.pll = - =

~~

/* kst segment ¥/

/* KST header declaration ¥/

/* lowest segment number described by kst */
/¥ highest segment number described by kst ¥//* free list ¥*/

/%* uid hash table ¥/

/* pointer to entry ¥/

/*¥ KST entry declaration ¥/

/* forward rel pointer ¥*/
/* backward rel pointer ¥*/

/* segment number of kste ¥/

/*¥ rings in which this segment is known *¥/
/* highest detectable ring */
/* directory type switch //* unused bits */
/%¥ inferior segment count ¥*/

/¥ ptr to dir entry ¥*/

/* unique identifier ¥*/

initialize kst:
proc (lowseg, highseg);

/ ¥

initialize kst is called during process initialization to build a virgin kst
USAGE: call initialize_kst (lowseg, highseg);
lowseg fixed bin (17) - - - lowest segment number described by kst
highseg fixed bin (17) - - = highest segment number described by kst

k/

=A

a

del (lowseg, highseg, i) fixed bin (17),
thread$in ext entry (ptr, ptr):

% include kst;

kst.lowseg = lowseg;
kst.highseg = highseg;
Kst.free_list = "O"b;
kst.uid_hash = "0"b;
do i = lowseg to highseg;

call thread$in (addr (kst.free_list), addr (kst.entry (i)));
kst.entry (i).segno = i;

end;
initialize _kst;

initiate_: proc (a_psegno, a entry name, a_dirsw, a_link, a_segno, a_code) ;
/¥

---> initiate_,is the ring zero gate which allows an object to be mapped
into a process address space. This module only validates its caller s
right to initiate the object in question. If the request is valid
then makeknown_ is called to actually map the object into the process
address space.
USAGE: call initiate (psegno, entry_name, dirsw, link, segno, code);

psegno fixed bin(17) --- segment number of parent directory (input)
eantry_name char(¥*) --- name of entry in directory to initiate (input)
dirsw piel) --- set if sairy is a directory (input)link char(¥*) varying --- link (output)
segno fixed bin (175 --- segment number of target (output)
zode fixed bin(35) --- status code (output)

possible status code values:

error_table_$segknown --- Segment (or directory) already known to process
error_table $noinfo --- insufficient access to return any information
error_table_$nrmkst --- no more room in known segment table
error_table $no_entry --- entry does not exist or is of the wrong type
error_table_$link --- entry is a link

k /
=)

del

del

del

del

a_entry name char (¥),
(a_dirsw, dirsw, noinfo) bit (1),
a_link char (*} varying,
link char (168) varying,
\Segno, a_segno, psegno, a_psegno) fixed bin (17),.code, acode) fixed bin (35);

branch_pointer ptr,entry uid bit 56) aligned,
entry _name char (32) aligned;

get branch info entry (fixed bin (17), char (32) aligned, bit (1), bit (36) aligned,
bit (1), char (¥) varying, BL fixed bin (35)),makeknown_ ext entry (ptr, bit (36) aligned, bit (1), fixed bin (17), bit (1). fixed bin (35));

null builtin:

end

psegno = a_psegno;
dirsw = a_dirsw;
entry_name = a_entry_name;
if psegno = 0
then do;

dirsw = "1"b;
entry uid = (36)"1"b;
branch_pointer = null ();
noinfo = "0"b;

do; /* NOTE: get_branch_info may call kste_info ¥*/
call get_branch info (psegno, entry name, dirsw, entry uid,

noinfo, link, branch_pointer, code);
if code = 0
then do;

a_link = link;
a_code = code;
return;

end;
end; .
call makeknown_ (branch pointer, entry_uid, dirsw, segno, noinfo, code);
3. S0gn0 = segno; /* set output arguments ¥/a_code = code;
return;

initiate_;
KY

WY

makeknown_:
proc (ep, entry uid, dirsw, segno, accessible, code);

/

---> makeknown_ maps a segment or directory (specified by dirsw) into its
caller s address space. This module assumes that the process right toinitiate the segment specified has already been established. It further
assumes that its input arguments will not be modified while it is executing.
This assumption requires 1ts callers to be sure that arguments passed
to makeknown_ are not accessible to outer ring procedures.
USAGE: call makeknown_ (ep, entry uid, dirsw, segno, accessible, code);

ep ptr --- pointer to the objectsbranch (input)
entry_uid bit(36) aligned --- unique identifier of the object (input)
dirsw bit(1) --- set if object is a directory (input)
segno fixed bin(17) --- segment number bound to the object (output)
accessible pittl) --- set if process has access to the object or its parent (input)code fixed bin(35) --- status code (output)

~3

©

del

del

ep ptr,
entry uid bit (36)aligned,
dirsw bit (1),
segno fixed bin (17),
accessible bit Ji]code fixed bin 35);

ring fixed bin (3),
,error_table_$segknown, error_table $noinfo) ext fixed bin (35),
‘pkstep. hashp) ptr:

level$get ext entry () returns (fixed bin (3)),get_kstep ext entry (fixed bin (17)) returns (ptr),
kstsrch ext entry (bit (36) aligned, bit (1), ptr, ptr),
thread$in ext entry (ptr, ptr),
<ste$reserve ext entry (fixed Bin (17), ptr, fixed bin (35));

del (baseno, fixed, null, substr) builtin;

%include kst;
-

»

T

ring = level$get ();
call kstsrch (entry uid, accessible, hashp, kstep);if kstep “= null (
then do;

code = error_table_$segknown;
segno = kste.segno;

do; /* must allocate a new KSTE
if "accessible then code = error_table_$noinfo;
call kste$reserve (segno, kstep, code);
if code = 0 then return;
call thread$in (hashp, kstep); /* thread KSTE into hash class ¥/
if ep "= null () ji
then do; /¥ increment parent's inferior count ¥/

pkstep = get_kstep (fixed (baseno (ep), 17));
q pkstep -> kste.infcount = pkstep -> kste.infcount+1;

end;
kste.dirsw = dirsw; /%¥ fill in KSTE */
«ste.infcount = 0;
kste.entryp = ep;

q kste.id = entry_uid;
end;
substr (kste.rings, ring+1, 1) = "1"b;
if accessible
then do while (ring > kste.hdr);

kste.hdr = ring;

if kste.entryp = null 0)
J then kstep = get _kstep (fixed (baseno (kste.entryp),

end;
return;

end makeknown_;

/*¥ object already has a detectable KSTE ¥/

JE
N

/* mark kste as known in proper ring ¥/

/* update hdr of superiors ¥/

terminate_:proc (a_segno, a_code);
ry

---> terminate is the gate into ring zero which allows a process to unbind
31 segment number from the object to which it was bound. If the KSTE has no
inferiors and the segment number is not in use by other rings then the
segment number is physically disconnected from the object to which it was bound
and the segment number is returned to the free or reserved pool as specified
by the reserved switch argument. If these conditions do not obtain then the
segment number is not disconnected. The KSTE is merely marked as no
Longer in use in the caller s protection ring.USAGE: call terminate_ (segno, code)

segno fixed bin(17) - - - segment number of the segment
code fixed bin (35) - - - error code (output)

possible status code values:

error_table_$invalidsegno --- segment number is not bound to an object
error_table_$infent_non_zero --- can t terminate due to active inferiors
error_table_$known_Iin_other_rings --- can’t terminate due to segment number being used in other rings

k /

— del a_segno fixed bin (1).D a_code fixed bin (35);

pkstep ptr
ring fixed bin,
segno fixed bin (17);

del disconnect ext entry (fixed bin (1190,
get _kstep ext entry (fixed bin (17)) returns (ptr),kste$free ext entry (ptr)
thread$out ext entry (ptr),
validate _segno$inuse ext entry (fixed bin (17)) returns (ptr),
level$gelt ext entry returns (fixed bin);

del (error_tabie gknoun in other_rings, error_table_$infent_nonzero)extfixedbin(35);del error_table_$invalidsegno ext fixed bin (35);

del (baseno, fixed, null, substr) builtin;

% include kst;
/ -

A3

—

wy

Segno = a_segno;
«step = validate _segno$inuse (segno);
if stop = null 1)then call abort (error_table_$invalidsegno);
ring = level$get ();
substr (kste.rings, ring+t, 1) = "0"b; /* make unknown in this ring ¥/
if kste.rings "= nhnp ,
then call abort (error_table_$known_in_otherrings);/*can’tterminateinanotherring ¥/
if kste.infcount "= 0 ;
then call abort (error_table_$infent_non_zero); /* can’t terminate if infcount non zero */
if kste.entryp "= null () j
then do; /* decrement parent s inferior count ¥*/

pkstep = get kstep (fixed (baseno (kstep -> kste.entryp), 17));
4 pkstep => kste.infcount = pkstep -> kste.infcount-1:

end;

call disconnect (segno);
call thread$out (kstep);call kste$free (Ebocy
3_code = 0;
return;

abort: procedure (status_code);
del status_code fixed bin (35);

a_code = status_code;
go to return;

end abort:

/* copy values of input arguments ¥/
/* so our caller can t change them ¥/
/* make sure call is legal ¥/

/

return: return:

end terminate_;

h h ||

---, kstsrch searches the KST unique identifier hash table and returns pointers
to the KSTE desired and the hash class thread word. Only if the process has established
its right to detect the existence of the object bound to the KSTE will a match be found.
The conditions required for kstsrch to return a given segment number are:

I) the segment number must be bound to the correct object (as identified by uid),
2) the segment number must be detectable in the caller's ring, and
3) no higher ring may have the segment number initiated. At the expense of assigning multiple
segment numbers to an object when not necessary for protection reasons, kstsrch could
ise a weaker matching algorithm such as matching only if the caller has access to the target
object or the parent of the target object.JSAGE: call kstsrch(uid, accessible, hashp, kstep);

aid bit(36) aligned ——— niques id of object searched for (input)accessible bit (71) ---- set if the process has any access to the object or its parent (input)
hashp ptr ---- pointer to the hash class thread word (output)
kstep ptr ---- pointer to the desired KSTE if found else null (output)

J del uid bit (36) aligned,= accessible bit (71),
ol (ring, hdr) fixed bin (3),
: hashp ptr,

addr, ptr, null, mod, dimension) builtin,
level$get ext entry {) returns (fixed bin (3));

%include kst;

ring = level$get ();
hashp, kstep = addr (kst.uid_hash (mod (fixed (uid), dimension (kst.uid_hash, 1))));
do while (kste.fp “= "0"b);

kstep = ptr (kstep, kste.fp);
if match () then return;

end;
kstep = null ();
return;
proc () returns (bit (1);

if uid = kste.id & (accessible | kste.hdr >= ring)
then do;

if accessible
then hdr = max (kste.hdr, ring);
slse hdr = kste.hdr;

3 Lf substr (kste.rings, hdr + 2, 7 = hdr) = "0"b then return ("1"b);
end;
return ("0"b);

end match;
end kstsrch:

kstes
“ : pro

c ():’

kste provides the functions of freeing and reserving segment numbers

---> kste$reserve extracts a kste from the free list
USAGE: call kste$reserve (segno,kstep,code);

---> kste$free frees a segment number given a kst entry poi.
The kste is threaded onto the free list.
USAGE: call kste$free (kstep);

segno fixed bin (17) - - - segment number (output)

¢<step ptr - - = pginter to the kstep (input/output)
i fixed bin(35) - - - error code (output)

™

del code fixed bin (35)
‘segno, save _segno) fixed bin (17) ;

del reagan ext entry (ptr, ptr),thread$out ext entry (ptr);

oO del (addr, ptr, unspec) builtin;
del error table $nrmkst ext fixed bin (35);

% include kst;

entry (segno, kstep, code);
if kst.free list.fp = "09h
then do;

code = error_table $nrmkst;
return;

end;
«step = ptr (addr (ks),call thread$out (kstep);
segno = kste.segno;
xste.fp, kste.bp = "O"b;
code = 0;
return;

entry (kstep);
save_segno = kste.segno;unspec (kste) = "0"b;
kste.segno = save_segno;
call thread$in (addr (kst.free list), kstep);
return;

/%* terminate chains ¥/

Cb

and kste:

get_kstep: proc (segno) returns (ptr);
J ¥

---> get _kstep translates a segment number into a pointer to the associated KSTE
JSAGE: kstep = get _kstep (segno);

W segno fixed bin(17) ---- the segment number
2) kstep ptr ---- pointer to a KSTE

% include kst;

del segno fixed bin (17),
(null, addr) builtin;

if segno < kst.lowseg | segno > kst.highseg
then return (null OY;
return (addr (kst.entry (segno)));

get _kstep;end

-3

 ND
2
1

validate segno:proc ();
a

!

validate_segno provides generally useful kste validation functions
Each entry returns a pointer to the associated kste if a particular conditions holds.
If the stated condition does not obtain then the null pointer is returned.

--=> validate _segno$free checks to see that the segment number is free
JSAGE: kstep = validate_segno$free (segno);

--=-> validate _segno$inuse checks to see that the segment number is bound to an object
USAGE: kstep = validate _segno$inuse (segno);

segno fixed bin (17) - - - segment number (input)
kstep ptr - - - pointer to the kstep (output)

k/

—

ND
—

del segno fixed bin (17);

del get _kstep ext entry (fixed bin (17)) returns (ptr);

del (null, unspec) builtin;

%include kst;

entry (segno) returns (ptr);
return (eval ("1"b));

entry (segno) returns (ptr);
return (eval ("0"b)):

eval: proc {gpassigned) returns (ptr);del unassigned bit (1) aligned;
«step = get _kstep (segno);
if kstep = null () then return (null ());
if unassigned "= (unspec (kste.entryp) = "0"b) then return (null ());
return (kstep);

end eval;

and validate segno;

kste_info: proc (segno, uid, branchp, code);
J ¥

\D
ND

--=> kste_info returns the uid of the object bound to a segment number
as well as the address of the object s branch. This information is used
to lock the parent directory and locate the desired branch.
JSAGE: call kste_info (segno, uid, branchp, code);

---> kste_info$update_branch_offsetiscalledbythefile system when it notices that
the online salvager has moved an entry in a directory.
It updates the pointer in the kste to reflect the new location of
of the branch within the directory.
USAGE: call kste_info$update_branch_offset (segno, branch_offset);

3egno fixed bin (17) ---- segment number of the object (input)aid bit (36) aligned ---- unique identifier of the object (output)
pranchp ptr ---- branch pointer (output)
branch offset bit (18) aligned ---- offset of branch of object in parent (output)
code fixed bin(35) ---- status code (output)

segno fixed bin (31)code fixed bin (35),
branchp ptr,
nranch_offset bit (18) aligned,
uid bit (36) aligned;

del (error_table_$invalidsegno, error table Soesntrs) ext fixed bin (35);del validate segno$inuse ext entry (Tixed bin (17)) returns (ptr);

%include kst;

kstep = validate_segno$inuse (segno);
if kstep = null0)
then do;

code = error table$invalidsegno;
return;

end;
uid = kste.id;
if kste.entryp = null ()
then do;

code = error_table_$noentry;
return;

end;
ranchp = kste.entryp;
code = 0;
return;

update_branch_offset:
entry (segno, branch offset);
<st.entry (segno).entryp = ptr (kst.entry (segno).entryp, branch offset);
return;

kste_info;

i

 >» get_branch_Info

This tlle system routine Is called by initlate_ to get

the attributes of a named entry In a directory. It returns wlth

an approprlate error code If the target object does not exlst, is

of the wrong types or Is not accessible to thre process. The

reader should note that get_branch_info must read the access

control (lst of the directory containing the named entry if the

entry does not exist or If the process has no access to the

entry. To locate the access control I1ist of the contalning

directory, get_branch_Into must call the kste_info module of the

address Space managers a re-i*~lve Invocation of the address

Space MANAgers

Usaget call get_branch_info (psegno, ename, dirsw,
dir_noinfo, link, ep, code)?

ula,

psegno fixed bin (17) =--- directory segment number (Input)
ename char (32) allgned === name of target entry In directory

(lnput)
dirsw bit (1) --- expected type of target (ingut)
uid bl? (36) aligned === unique ldentifler of object (output)
dir_noinfo blt (1) <== set If target Is a directory and the

process has no access to the target or Its parent
(output)

link char(®) varying === set to the tink If the entry Is 13
detectable Ink (output)

ep pointer -=-- pointer to the entry of the object (output)
code fixed bin (35) === error code (output)

424

- threadsin

This routine adds an element to a two way linked list

5f elements. The first word of each element contalns the

nec “sary forward and backward pointers.

Jsagel call threadsin (where, what)

where pointer === pointer te an element In the (ist after which
the new element is to be threaded.

what pointer =-« pointer to the element to be threaded Into
the list.

Lo"out

This routine threads an element out of a two way lirked

ilst bullit by threadsin.

Usaget call threadgout (what)

what pointer ««« pointer to (lie ¢
the tlist.

] ent to be threaded out of

" ®

This routine returns the valldation level of the

catting procedure. In all cases consldered In this thesis the

valldation (evel of a process Is equal to the rumber of the ring

In which the process was ¢ © Juving when It called Into ring zero.

Usage! ring = (evelSget ()3

ring fixed bin (3) --- validation level of the proces-

 {1 Pq

- disconnect

This routine physically removes a segment number from a

process®

that segment number In the pre-~~-s°® virtual address transiation

tables

Usagel call dlsconnect (segno)!

segno fixed bin (17) =«- serr~nt number to be disconnected.

 ~-4 25

APPENDIXI

UnipplementedA+== Cnage_Manager functions

[n our discussion ¢t the Multics address space manager

ne omltted three mechanisms that [tt currently supports. Trese

nechanlsmsy which are non ~~~ntlal to our deslgn, were omitted

to slapllify our presentation and avold confusion. In this

appendix we will briefly describe these mechanisms and show how

they flt Into our design.

led - Pa

S

The Multics initiation and termination primitives take

3 reserved switch argument, In the case of Initiation, this

switch specifles, If set, that the caller wishes to specify what

Segment number to bind to the object when it Is Initiated.

Naturally, fing zero must check that the caller has In fact

reserved the segment number. When the ring zero Initiation

primitive 1s called without the reserved switch set, then ring

tere chooses a segment number from a list it maintains of free

segment numbers. This segment number Is bound to the object and

returned to the caller. In the case of termlnatlon, the reserved

switch speclfles whether the freed segment rumber Js to be

eligible for sssignment when a free segment number Is needed.

-12¥ =i

The reserved switch must clearly remain a protected

securlty kernel mechanism In our new address space manager. kere

this not the casey one protection domain could cause another

protection domaln to malfunction by using a segrent number that

the first protection domaln had recrved.

[a? Lornw Switch

During the process of Initlating a segment, an

attribute In Its directory entry called a copy switch is

examined, If the segment has the copy attribute, then a copy of

the secment ls made and thls copy is made accessible to the

proc~eg Instead of the originale

He can use the mechanism of reflectirg Information out

to an outer ring by setting a status code to remove copy switch

processing from ring zero. This Is possible since the current

inltlatlon prisltive takes an argument that allows a process to

bypass copy swltch processinge Together wlth the fact that no

ring zero procedures or data bases have thelr copy switch set,

this Insures that the protection mechanisms of the system do not

depend upon the segment copy on Initiation facility. To take

advantage of this, our new Initiate primitive will not process

the copy switche Instead, It wlll always Initiate the target

segment and return a status flag Indicating whether or not the

segment®s copy sultch was sete. The outer rings can then worry

 4 PP~

about creating a copy of the segment, terminating the origiral,

and returning the segment number of the copy If the copy switch

was sete Thls allows the concept of a copy switch to move out of

ring zero.

[« 3 ay

Beg
*- Liches

When a segment 1s Initiated In tre current Multics

systems the address space manager sets two switches, called the

transparent usage switch and the transparent moclflcation switch,

In Its KSTE. These switches determlne whether this process® usage

and modification of the segment |[s to be detectable to other

processes In the system. These transparency switches have no

influence upon our design except that In an Implementation of our

design (as In our test laplementation) these switches would be

kept In the KSTE of a segment and the address space manager would

retaln the two (ines of code from the current address space

Ranager that sets these switches.

Le -w

Bibliography

3 4

he|

¢

14

32

- 3X
»

ri

JL

[..

L1

11

oy Kk.

n 4

Bensoussany A.y Clingeny CeTey and Daleyy, ReCey “The
Mul tics Virtual Memoryt Concepts and Oeslign,* CACM 15,
5 (May 1972), pp. 308-318.

Corbatd, Fe Jeo JeHe Saltzer, and CeTe Clingen,
"Multics <= The Flrst Seven Years,” AFIPS Conf. Proce.
0 (1972 SJCC), AFIPS Press Montvalees NeJe

Corbatd FeJey and Vyssotskyy, Ve.Aes “Introduction and
Overview of the Multics System,™ AFIPS Conf. Proc. 27
(1965 FJUCC), Spartan Books! HWashlngtons D.C.

Di)kstra EeHee "Complexity controlied by hlerarchicsal
ordering of function and varlabllity,” Software
Engineering (Pe. Naur and Be Randell, edse) NATO
S5clentitflic Affairs Olivision? Brussels, January 1969,
PPe 181-185.

Dijkstra Eley "The structure of the "THE" -
nul tiprogramming systems™ CACM 14+ 5 (May 1968), pp.
361-346.

Jahly Oesdes Oljkstra, EoeWes and Hoare, CeAeRoey
Structured Programminges Academic Press? New York, N.Y.,
1972.

Fabrys ReSes ™Capadbility-Based Adc. .sing,*™ CACM 17, 7
(July 1974)s PPe 403-412.

Jansony PeAey "Removing the Dynamic Linker from the
Securlty Kernel of a Computing Utltlity,* MIT Project
MAC Technical Report TR-132, 1974.

[BM, "IBM OS Linkage Edlitor™, IBM Systems Reference
Library, 6C 28-6538, January 1972.

Liskove Be Hee *A deslgn methodology for rellable
software systems," AFIPS Conf. Proc. 4&1 (1972 FJCC),
AFIPS Presst Montvales Nede

MItISe HeDeo "On the development of {large reliable
programss™ Proceedings of the IEEE Symposium on
pornuter Software Rellabliltys 1973.

MeIeT. Project MAC, Introduction to Multics, MIT
Project MAC Technical Report TR-123, 1974.

Madnick, SeEe.y "Oesign Strategles for Flle Systems,”
MIT Project MAC Technical Report TR-78, 1970.

A Ph

NN

<3
- of

=

3°

J a
4

2

12

- a

=

 P

y x

od I

1s

i.#

McCarthy, Je.» Abrahams, Pes et ales Lisp 1.5
Programmer®s Manuals MIT Press? Cambridge, Massa,
L965.

Naure Pe. and Be. Randel! (Edse.)y Software Enalneering,
report by the NATO Science Committee, Garmisch,
sermanys 1968.

Jrganlcky Eelee Ihe Multlcs Systeas An Examinatior of
ts Structure, MIT Presst Cambridge, Masse. 1972.

Parnase Deeley “A technique for software module
specification with examples,” CACM 15, 5 (May 1972),
DDe 330-336.

Rotenberg, LeJe. "Making Computers Keep Secrets,” MIT
Project MAC Technical Report TR-115, 1974.

Ritchey, DeMe. and Thompson Kee “The UNIX Time-Sharing
System,™ CACM 1Z+ 7 (July 1974), pp. 365-375,

Schroedery M.Des "Cooperation of Mutually Suspicious
Subsystems In a Computer Utility,” MIT Project MAC
Technical Report TR-10&s 1972.

Schroeders, M.D. and JeHe Saltzer, “A Hardware
Architecture for Implementing Protection Rings," CACM
15s 3 (March 1972), ppe 157-170.

Sattzery JeHey "Protection and the Control of
Information Sharing In Multlcs,™ CACM 17, 7 (July
L974) PP. 388-402.

Saltzere JeHey and M.De Schroedery, “The Protection of
Information In Computer Systems,” to appear, ILLE
Process September 1975.

Hirth, Neo “Program Oevetlopnment by Stepwise
Reflnement,™ CACM 14» & (April 1970)» PD. 221-227.

Nirthey Ne.» Systematic programming introduction,
drentlice~Hallit Englewood Cliffs, New Jersey, 1973.

-4 30

