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ABSTRACT

This thesls examines the varlous mechanlsms for naming
the jinformation oblJects stored in a general-purpose computing
utility, and lsolates a baslic set of naming facllities that nmust
be protected to assure complete control over user Interaction and
that allow desired interactions among users to occur Iin a natural
Wavye Minimizing the protected naming faclilitles consistent wlth
the functlional objective of controlled, but natural, user
interaction contributes to defining a security kernel for a
general-purpose computing utility. The security kernel s that
complex of programs that must be correct [f control on user
interaction is to be assured.

The Multics system Is used as a test case, and Iits
segment naming mechanisms are redesigned to recuce the part that
must be protected as part of the supervisor. To show that +this
smaller protected naming faclility can still support the compiete
functionality of Multics, a test implementation of the design is
performed. The new deslign Is shown to have a significant [mpact
on the size and complexity of the Multlcs supervisor.
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Introgduction

1.1 Bclef Statement of the Problem and Result

This thesis investigates the class of computing utllity
mechanisms that deal with naming Information objects within a
computing wutitity. Our goal is to wunderstand the varlious
functions played by name spaces In contemporary computing
utitities and to decide which of these functions must be
protected to assure complete control over user interaction. The
Multics systems which is a sophisticated computing utlility, will
be wused to ftest the valldity of our conclusions. (1) We will
find that Multics protects several mechanisms that we claim reed
not be protected to assure control over user interactlon. To
substantliate our claim we will present a redesign of Multics that
allows these mechanisms to be unprotected without sacrificing the
ability to control user infteraction. The resulting reduction in
the amount of code that must be protected to assure control cver
user Interaction contributes to defining a security kernel for

Multicse.

(1) The Multics system was developed as a prototype computing
utiiity by Honeywell Informatlon Systems, IncC.y and M.I.T."'s
Project MAC. A complete bibliography of the Multics system may
be found in [(M2]).



1.2 Related Work

The Multlics system [Ci1,y C2, M2, 01, S3) is an exarmple
of a sophisticated state-of-the-art computing utility. As part
of a general Investigation Into how one goes about the task of
certifying the security of large systems, the Computer Systenms
Research Division of Project MAC at M.I.T. is attempting to
produce a certifiably secure version of the Multics system, Dy
redesigning Multics to minimize the collection of programs that
must be correct fto assure complete control over user
interactions. As a resulty, this collection of programs, the
Multics security kernel, has been steadily decreasing In size and
complexity. A recent masters thesls [Ji1] describes how a Multics
security kernel that does not include a dynamic linking mechanlism
was developed. This thesis reports the results of another effort

to reduce the size of the Mul tics security kernel.

1.3  Backaround

A computing utitity is any computer system, or network
of interconnected computing systems, that oprovide general
computing services to a community of wusers. Among the wmost
important services provided by computing utilitles are facilltles
that alliow users to share, store, retfrieve, and process
information. To faclilitate the manipulation and sharing of

stored Information, computing utilities must support a multlitude



of name SsSpaces. These name spaces, which maintain a
correspondence between a collection of names and the Information
they denote, provide organization of the collections of

information processed In the system.

We find wmany name spaces at all levels of a computing
utility. The base computers on which a computing utlllty runs
implicitly employ a name space that maps a set of infeger names
{actually a set of representations of integers) called addresses
into a set of words of computer memory. Similarly, direct access
mass storage devices such as magnetic disks and drums define 3
name space that maps physical storage addresses into records of
bits. At a higher level, most computer utilitlies support a name
space that allows its users to denote files of information by
character string names such as “John®s_file™. Detalled énalvsjs

of most systems reveals many other examples of rame spaces.

He have stated fthat a computing utillty provides
information processing services to a community c¢f users. Since we
have not placed any restrictions upon the cemposition of this
user community, we must assume that these users harbor (11 will
toward c-nh' other or toward the computing utility Itself. This
i1 witl can manifest itself in any of three ways. A mallclous
user llihf attempt to uses modify, or prevent others from using
or modifying information in the computing utility. Even In a

computing wutllilty shared by a non-maliclious user community, one
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user might acclidently compromise another user®'s information or

computation.

Any general computing wutlility must prevent such
undesirable interactions between ifs users. To thils end It wust
secure Its wusers against unauthorlized use, modiflcatlion, or
denlial of use of the Informatlon they process In the computing
utitity. This requires that the computing utillity Implement an
authorization mechanism that allows those user-Information
interactions that are to be permitted to be specifled. The
information supplled to the system through this authorization
mechanlsm must then be used by an access control mechanism that
intercepts all user-information Interactlons and verifies that

they are authorized.

The presence of access authorization and control
mechanisms In a computing utility does not prima facie secure ifts
users from harmful, uncontrolled interactions with other users of
the computing utliity. It must be established that these
protection mechanisms do Indeed perform thelir Intended fask
without error. It further must be established that these
information protection mechanisms cannot be subverted, damaged,
or clrecumvented. Only then may users of the computing utlility
process senslitives Irreplaceable, or timely Information wlith

reasonable freedom from fear for its security.



We ldentify that subset of the mechanisms of a
computing wutility which must be correct in order to guarantee
the securlty of the information contained In the computing
utllity as its securlty kernel. Mechanisms not belonging to the
securlty kerne! of a computing utility are said to belong to its

shella

Clearly the task of establishing the correctness of the
securlty kernel of a computing utitity must Increase
monotonically with its size and complexity. For this reason |t
would be advantageous to know which computing utility mechanisms
need be included in the security kernel for intrinsic reasons. A
mechanism has an Intrinsic need to be included In the security
kernel of a computing system if and only iIf it can be used by one
computation to influence another computation. The access
authorization and control mechanisms of a computing wutility are
the two most obvious examples of mechanisms that must be Included
in a security kernel. If a computing utitity supports a shared
name space for ldentifying stored Information, then this
mechanism, by wirtue of its commonality, also allows one
computation to Influence another and hence must be conslderad

part of the security kernel of the computing utility.

Mechanisms that have no intrinsic need to be protected

often are included In the securlty kernel of a system. Common

reasons for Incorporating a mechanism In the securlty kernel of a



computing utility when it has no intrinsic need to be protected
include the desire to protect the mechanism from damage, the
desire to wminimize cross domaln calls, and tre need to protect
the mechanlism because some security kernel mechanism hapoens to
depend wupon Its correct operation. The motivation behind
inctuding a mechanism Iin the security kernel of a computing
utitity when It has no securlty-related need to be protected must
be carefully analyzed, as the Inclusion of the mechanism In the
securlty kernel contributes to the complexity of the security
kernel. Removing the mechanism from the security kernel would
have the advantage of lessening the task of establlishing the
correctness of the security kernel. This thesis will evaluate
the need for each of the major name spaces supported by a typical
computing utllity to be included in its security kernel. We will
use the knowledge thus accumulated to simglify the Multlcs

security kernel.

1.4 Plan of thesis

In Chapter II we present a model of a computing
utiltity. This model pays particular attention to those
mechanisms that are Involved In naming Information stored In a
computing utitity. We begin by defining a very simple
information storage and protection model. Through successive
enhancement of this model we arrive at a model that we feel

represents the essence of name space management In a contemporary
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computing utility. As we add each new name space to our model, we
conslider Ifts basic raison d*8tre, the advantages and
disadvantages It provides over the previous model, and most
importantly its impact upon which name spaces ir the model must

be protected as a part of the securlty kernel.

Chapter I1I begins our case study of name space
management In Multics. We identify the major name spaces
maintalned by Multics that deal with naming stored Information
and establish a correspondence between these name spaces and the
name spaces of our model. Having established this correspondence,
we attempt to v.rlf; that no intrinsically shell functions, as
identified In our model, are iImplemented by the Multics security
kernel. This Investigation reveals that the Multics reference
name spacey, @a name space used In resolving Inter-procedure
references, is lmplemented In the Multics securlity kernel
although It has no Intrinsic need to be protected. The reasons
behind this flaw In the modularity of the Multics system are

investlgated.

In Chapter IV we develop a design that removes
reference name management from the securlty kernel of the Multics
system. In so doingy we also remove several functions related
to the management of the Multlics global naming hlerarchy from the
Multics security kernel. The most notable of these are that

function which allows the security kernel tc name segments by
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hierarchy pathnames and that functlon which allows multiple
paths in the Multics storage system hierarchy to designate the
same object. In the course of removing these functlons from the
security kernel, our design drastically changes the Multics
securlty kernel! Intertace. Finally, we discuss the Impact of

this design upon the security kernel.

Chapter V discusses the lmplications of our security
kernel design upon the Multics shell. MWe discuss the princlples
involved In desligning a shell resident reference name manager. In
the course of this presentation we uncover an important
consideration In moving any module out of the Multlics security
kernels Specifically, Multics security kernel procedures are
guaranteed to run to completion once invoked. This allows them
to make assumptions that would be invalid were they to be
executed In the Interuptable shell environment. Following this
discussion, we show how the functions of pathname resolution,
and storage system (ink processing may be implemented In the
Multics shetl. Finally, we discuss the need for simulating fthe

old security kernel interface.
In Chapter VI we discuss the results of a test

ltoloi.nt-tloa of the security kernel we have designed. This

test Iimplementation allowed wus to measure of the Impact of our
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design upon the complexity and performance of tre Mul tics system.
We report this data along with a description of our test

implementation.

Chapter VII summar izes the results of our thesis.

We have Included nine appendices In this thesis.
Appendix A dotalls the structure of the data base for the current
Multics address space manager and reference name manager.,
Appendix B shows the Impact of our desigmn upon the structure and
content of this data base. Appendix C summarizes the new address
space manager interface proposed In this thesis. In appendix 0
we present an example of the use of this new interface. Appendix
E summarlizes the Impact of this theslis upon the size of the
Multlics security kernel. In appendix F we report the details and
results of our performance éoaparlson between the standard
Multics system and our test system. Appendix G summarizes the
effect of our thesis upon the complexity of the Multics security
kernel Interface. Appendix #® presents the programs of our
redesigned address space manager for the reader's perusal.
Appendix I discusses several functions suppor ted by the current
Multics address space manager that, for the sake of simpliclity,

were not considered Iin the body of the thesis.
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Chapter 11
Name Space Management in 3 Computing Utllity

In this chapter we will develop a model of a computing
utititys Our emphasis will be upon the roles played by name
spaces In contemporary computing utitities. This model will be
developed by adding successive layers to a central model of
information storage and protection. After we add each successive
mechanism or name space to this model, we will present a graphic
representation of the current state of the model. Each node In
these Iillustrations will represent a class of names. The name
space binding one group of names to another group of objects or
names will be represented by an undirected line. If a name space
must be protected to control wuser interaction, then the line
representing It will be constructed from the symbol “+%. If the
name space need not be protected it will be represented by a line

composed of the symbol ".".

2.1 Basic Information Storage and Protection Model

Some basic notion of information storage and protection
nust be at the heart of any computing utility model. In our
model the basic vessel of Information storage is a seament. In

theory, we do not restrict the amount of infermation a segment



may contaln. In practice, the amount of [Information a segment
may hold will be bounded by a combinatior of hardware and

software limltations.

Segments will also serve as our baslc unit of
information protection. We require that any Information
protection must apply uniformly to all information stored within
a segment. We will choose an access control 1ist (ACL) based
information protection scheme for our model. The baslc
motivation behind this cholice 1Is that Multics, our test case

system, uses an access control llist protection scheme.

He assume that an aécoss confrol 1ist s assocliated
with every segment. Thlis access control list encodes the
authority of each principal in the computing utility to use or
modify the contents of the assoclated segment. (1) MWe wlli
further assume that the computing utllity supports the necessary
principal authentication and access authorization mechanisms for
maintaining the contents of access contrel Ilists. We reguire
that at some polnt iIn referencing any segment, its assoclated

access conftrol list be used to mediate that reference.

(1) We assume that the reader Is famillar wlth such computer
science concepts as accessy, cspabilitles, domains, processes, and
principals [(S4, F1l.
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2.2 Global Machine Orjented Names

We will name a segment and lts access control Ilist by a
name that is unigque within the system. This name, which we wlil!
qoll a unigque identifier (UID), will be compact, fixed lencth,
and of high information density. The unigue identifier naming a
segment and Its access control Ilst will be assigned when the
segment Ils created and may never be changed. Once assligned, a
unigue ldentifler wil! be valld for all time., If we allowed a
unique ldentifler to be reused after the segment It names Is
destroyed, fthen that ldentifler would not uniquely ldentlify a
segment. It would be difficulty If not ilmpossible, for a process
to distinguish between different segments, existing at mutually
exclusive points In time, named by the same unigue ldentifier,

(1)

It should be noted that we have purposely excluded the
possibitity of having more than one unique lidentlifier bounc to
the same object. The reason for this Is the need to determine I[f
two segments are ldentical. If we guarantee that no two wunlague
identifiers are bound to the same object, then we can cdecide if

two segments are ldentical by comparing thelr unique identiflers.

(1) A discussion of the need for computing systems to support
unique ldentiflier name spaces may be found in Fabry [Fil.
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Lacklng thls guarantee, It IS not <clear how a process could

declide If two segments were the same segment. (1)

Due to their compact size, unique ldentifiers are well
suited to efficlent implementation and manipulation by computing
hardware. We will assume, for the moment, that access control
will operate during the translatlion of unigque identifler to
objects Certainly fthis requires that the rame spaces that
assoclate unique ldentiflers with objects and thelr assoclated
access control lists be protected. Otherwise a process could
circumvent the access control mechanisms of the system by causing
the wnique identifier associated with any segment to nawme an
arbitrary access control list or equivalentiy, causing the unique
identifier assocliated with any access control list to name an
arbitrary segment. It Is therefore necessary that the securlty
kernel exercise complete control over the wunique identifier to
access control list and unique ldentifler to segment name spaces.
Since the security kernel must force these two name spaces to
corresponds we will treat them as a single entity. Fligure 2-1
iltlustrates this oprotected binding mapping unique ldentifiers

into segments and thelr access control lists.

<UID> ++4+ <SEG/ACL>

Flgure 2-1t Global Machine-Oriented Names

(1) By equal we mean the lisp concept of eq [M4],

-20-



2.3 Global User Orlented Names

From the point of view of a human user, the wunique
identifler name space which we have defined for naming segments
has four major Inherent disadvantages. The first disadvantage is
that humans are poor at dealing with high Information density
namese. Second, since unique ldentifiers must be assigned by the
system and not the user, they can have no mnemonic significarce.
Thirds the binding or meaning of a2 unique ldentifler cannot be
changed. The final dlsadvantage In the wusage of unique
identiflers by humans Is that It Is often convenient to allow
nultiple names In a name space to denote the same object. In our
model we have precluded the possibitity of having +two unique

ldentiflers name the same segment.

For these reasons, any viable computing utility must
support a user-orlented name space. Ideally this name space
should bind arbiftrary lengthy, user-supplied character string
names to unlgque ldentlifiers. In practice, some upper bound Iis
often placed wupon the size of wuser-suppllied nrames. In any
reasonable computing utllity this restriction must not force
users to wuse difficult=-to-remember non-mnemonic names. To
promote and encourage Information sharing, thils name space
should be sharable by all precesses in the computing utitity. If

this were not the case, then one user who wished to share a

-21—



segment with another wuser would have to communicate the unique
identifier of that segment to the other user. A shared
user-oriented name space eases this communication problem by
allowing users to ident ify segments in interpersonal

communication by human-oriented names.

A well known weakness of such a simple, unstructured,
global name space, which results from the need for a name space
to define a function, Is that two users may not name different
segments by the same name. If one user rames a segment
“square_root_program™, then no other user may use thlis name for
another segment. Perhaps the most severe manifestation of this
problem Is that a user may not choose a name for a segment

without knowledge of every name In the global name space.

Another consequence of the global scope of the name
space we are defining Is that It provides a path of user
interaction. One user might Intentionally medify a name to
unique ldentifler binding that another user was depending upon.
This constifutes an unconfrol led malicious user interaction since
it allows one process to cause another process to reference the
wrong segment. This in turn may cause an unsuspecting process to
fall or compromise the Integrity or security of sensitive
information to which it has access. It |Is therefore apparent
that the abllity to change a global user-orlented name space must

be regulated by the security kernel.
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One simple authorization scheme a computing utlility
could adopt for Its global user-orliented name space ls to allow
only fthe principal who created a name binding to modify that
binding. Unfortunately, even such a primitive authorizatlon
mechanism Is an unwieldy extension to the unstructured name space
we have defined. Such an extension would require that every name
binding in the name space have an associated principal name used
to authorize modifications of that name binding. If the name
space were structured Into meaningful collections of name
bindingss then a more natural authorization scheme based on
controlting a process® abllity to modify any of a related

collection of name bindings could be employed.

Mierarchical name spacess such as the wuser-orlented
name spaces found In the Multics (Bi, 011 and UNIX [R2]
time=sharing systems, provide a powerful and natural solutlon to
both the naming confllict and authorization problems outllined
above. Since most name spaces found In contemporary computer
systems, Such as the ublqultous “two-level™ file system [M3]1, may
be described as degenerate fixed-depth hlerarchles, our model

will support a hlerarchical global user-oriented name space.

Hierarchical name spaces provide thelr wusers with 2

powerful organizational mechanism. This mechanism encourages

logically related name bindings to be collected In a single
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directory or directory sub-tree of the rierarchical name space.
For Instance, each user could place name bindings he creates In
distinct sub-tfrees of +the hierarchy. Naming confllcts within a
given directory are easliy avolded by locally restructuring the
hierarchical name space so that the conflicting name bindinas
occur In different directories. The directory structure of a
hierarchical name space can also serve as the basis for a simple,
flexible mechanism for controliing the modification of the name
bindings in the hierarchical name space. The ability to wuse
and/or change the name bindings In a directory can be specifled
by an access control (list on that directory. Authorization
confrel may also be delegated by allowing the access control
lists of a directory to specify which principal may modlfy the
access control lists of iIts sube-directories. Flgure 2-2 extends
our model to include both human-oriented and machline-orlented
global name spaces.
USER ORIENTED MACHINE ORIENTED
NAMES NAMES

SPATHNAME> #4444 44444444+ <UID> ++4++ <SEG/ACL>

Flgure 2-2% Global User-Orlented Names
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2.4 Local Machine Orjlented Names

At this point our model provides two very powerful
mechanisms for naming information. One mechanism allows any
segment In a computing wutility to be denoted by a compact,
fixed-length, unique lidentifier. The other naming mechanism
allows segments to be named by arbltrary length character string
names Indicating the position of a segment in a naming hierarchy.
In common to both of these mechaniswms Is the fact that threlr
scope Iis globali they are shared by all users of the computing

utiltity.

An obvious Iimplication of the scope of a wunique
ldentifler Is that It must be capable of representing as many
distincet segments as the computing utitity could create
throughout its entire life. Because the set of segments exlisting
at any one time will be a small subset of all segments that rave
ever existed or will ever exist, our unique ldentifler name space
will be sparsely populated. For flarge systems with long
tifetimesy this wunique ldentlifler name space will also be quite
larges. Economics demand that such large, sparse mappings be
stored In a compact form reqguiring more sophlsticated accessing
methods than Indexing by unigue identiflier value. This need for
sophistlcated retrleval methods In conjunctlion with the large
potential size of the unique identifier to segment mappling tables

suggests that this name space Is difficult to Implement
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efficlentiy. As a result, contemporary ccmputing hardware
provides a name space for addressing segments that Is ruch
smaller and denser than the global unique identifler name spzce.
The Increased efficlency of representation and mapping of this
name space is achieved by restricting the scope of the

machine-orliented segment identifliers.

The local machine-oriented name space In our model Is
patterned after the Multics segment opumber name space. Like
unique ldentifiers, segment numbers are compact, flxed-lencth,
machine-oriented names. Unllke wunique ldentifliers, relativeiy
few segment numbers are supported (1) and segment numbers are
locally dense so that simple, efficlent hardware transliation
techniques can be used. Since segments will be identified to tre
base level of the computing utility by segment number, we will

call a segment number name space an address space.

There are many possible choices for the scope of
segment numbers. A cooperating collection of processes could
share a common segment number address space. Segment numbers
could be private to a process, shared by all domains in that
process. Conversely, the scope of a segment number could be a
domalne It Is even possible to imagine a system In which the

scope of a segment number |ls temporally restricted. The cholce of

(1) Multjics supports a local, machine-orlented name space of
about four thousand segment numbers.

-26-



which of these or other possible schemes for llniting the scope
of segment numbers Is appropriate for a glven computing utility
depends upon both the hardware on which it must run and the
desired patterns of Interaction within the computing utlility.
The targer we allow the scope of a name space to be, the greafer
the cost of translating names In that name space. Conversely,
the smaller we make the scope of a name space, the fewer the

naming needs it can satisfy.

Irt ne desire inter-domain communication to be
efficlent, then it would be inapproprlate to restrict the scoope
of segment numbers to a domaln. MWere this done, segments could
only be named in inter-domain communication by unique Iidentifler
ory, worse still, pathname. Since these names are not directly
usable by the base level hardware of the computing utility, they
would have to be mapped by the recelving domaln Into Its segment
number address space before the segment named could be
referenced. B8y simlilar reasoning, if inter-process communication
occurs with high frequency in a partlicular computing utility then
that computing wutility wmight choose to share a segment number

address space among a group of cooperating processes.

The cholce of the scope of segment numbers represents
an englineering frade-off, We must limit the scope of segment
numbers so that they may be efficiently implemented In hardware.

Additionally, the smaller the scope of a segment number the less
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Its need to be protected. If an address space Is local tc a
protection domain, then |t may be freely manipulated by that
domain without compromising security. In opposition to the
efficiency considerations that weligh in favor of reducing the
scope of segment numbers is the desire to make the scope of a
segment number as large as possible so as to make communication
between different computer systems, processes, domalns, and
moments in time as efficient as possible. The desired
characteristics and resources avallable to each computing utility
must be carefully evaluated to determine fthe largest group of
interacting objects that can share an address space wltrout

making the address space unacceptably large.

Routine communication between the security kernel
domain and other protection domains in a computing utility should
probablyy for performance and modular programming reasons, be
performed by using segment numbers to denote segments. This
requires that the abliity to manipulate the segment number name
space we have jJust defined be confrolled by the securlity kerrel.
This need for the security kernel to control the manipulation of
an address space would not arise if address spaces did not span
protection domalns. The reader should take note of the fact that
since segment numbers do not have global scope, our global
user-orlented name space cannot be implemented by binding names
to segment numbers. Flgure 2-3 extends our model to Include the

protected binding of segment numbers to segments and their access
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control llsts. We also Include =a protected binding between
segment numbers and unique ldentifiers. This binding allons tre

identity of a segment named by 3 segment number to be

established.
USER ORIENTED MACHINE ORIENTED
NAMES NAMES
PER=-SYSTEM <PATHNAME> #+#+++++44+ <UID> +++# <SEG/ACL>
+ +
ks +
PER-ADDRESS SPACE <SEGNOD>

Figure 2-3t Local Machine-Oriented Names

2.5 Local Descriotors

Economics requlire that we refine the segment number to
access control list and segment translatlons depicted by our
models These transliations must be performed upon every reference
to a segment. It Is thus essential that they be efflicliertly
implementeds In (light of current computing technology, threse
translatlions must be performed In hardware If we desire our

computing utitity to be economically feasible.

Contemporary computing hardware supgports nelther the
abliity to address arbitrary amounts of storage nor the abllity
to perform the necessary access control list search upon every

reference to a segment. To solve these problems one frequenrtly
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finds two hlgh-speed, hardware |ook-aside memories aiding the
processors that implement a computing wutillity. One associatlve
memory maps a segment number and dcomain ldentifier Into a
hardware Interpretable representation of the domaln®s access to
the segment speclified by that segment number. We will call the
entries In this assoclative memory protection descriptors (POS).
The ofther associative memory maps a segment number into an

addressing descriptor (ADS) that allows the hardware to address

the representation of a segment.

The processors we have described look up the address of
a segment In their addressing descriptor assoclative memory and
validate their authority to reference the segment with respect to
the appropriate protection descriptor found in thelr oprotection
descriptor associative memory. When one of these descriptors is
not found In its assoclative memory, a hardware fault will be
recognized. At this point software may Intervene and take the
appropriate steps to load the necessary descriptors and restart

the faulted program.

Cleartly the securlty kernel must control the
manipulation of the protection descriptor and addressing
descriptor name spaces. This Is necessary since there exlists a
one-to-one correspondence befween addressing descriptors and
protection descriptors which must be maintained to preserve the

integrity of the system®'s access control mechanisms. Flgure 2-4
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refines our previous model by supplanting the protected segment
number fto segment and access control list mapping by the four

protected mappings described above.

USER ORIENTED MACHINE ORIENTED

NAMES NAMES
PER-SYSTEM CPATHNAME> #4#+44 <UID> #4++444+++ <SEG/ACL>
+ + +
+ + +
PER-ADDRESS SPACE <SEGNO> + <ACS> + +
+ +
+ +
PER=-DOMAIN CPOS> #4454+ 4444444+ +4+

Flgure 2-432 Local Descriptors

2.6 Logal User Oriented Names

We have seen that efficiency considerzstions require our
model to support a limited-scope, machine-oriented name space. It
is only natural to consider whether there would be any advantages
in our mode! also supporting a user-oriented name space of

timited scope. The answer ls, qulte emphatically, ves.

Like the segment number name space we have definec, a
user-orliented name space of local scope would be easier and
faster to search than lts global counterpart. But more lmportant,

it would provide a private name space that could be manipulated
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arbitrarily without worrying about Interactlons with processes
outside of the scope of the name space. This latter ablility Is

necessary in providing modular programming facilities.

It Is clear that a program should not code into itself
the wunique ldentifier or even the pathname of another program,
such as a square root program, fthat [t wishes to call. This
premature binding between modules would require that the first
program be changed and recompiled if a new and better square root
program was added to the computing utllity. The caller of a
square root program does not, In general, wish to be bound to a
particular square root program. If the choice of which routire a
procedure ls to call can be delayed until the call Is made, then

we gailn much flexibility.

We call a name that one program uses to refer to
another program a peference name (011 If its meaning Is only
defined In relatlon to a local name space. Such a local
user-orlented name space Is called a3 reference name space. One
way to Implement a space of reference names is to maintain a list
of reference name to segment assoclations (011). Ancther
mechanism for reallzing a reference name space, found in many
contemporary computer systems (Ji, I11, involves searching an
ordered list of speciflied directories, called search rules, to
resolve Inter-program references. Reference names provide a very

useful mechanism for combining separately concelved subsystems
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and testing new subsystems all of whose components rave yet to bhe
written by allowing reference name to segment binding to be
defered wuntil the components of a subsystem are combined for

execution.

In our model, each domain will have a private reference
name space. This minimizes the problem of naming conflicts and
allows each profection domain to operate without regard fto the
reference names used In other domains. A further advantage of
per-domaln reference names Is that they need not be expliclitly
protected or controlled by the securlty kernel. Since reference
names are private to a protection domain, each domaln may freely
manipulate Its own reference name space. All that Is requirec is
that the reference names of each protection domain be stored In 3
segment accessible to only that protection domain. If reference
names spanned protection domalns, It would be necessary for a
security kernel mechanism to control the manipulation of
reference names to prevent one domaln from exerting uncontrolled
influence over another domain through the manipulation of
reference names. Flgure 2-5 shows the relatlionship of the
unprotected reference name space *to the other name spzaces



USER ORIENTED MACHINE ORIENTED

NAMES NAMES

PER-SYSTEM <PATHNAME> ++#+++ <UID> ++++++4+ <SEG/ACL>
+ + +

+ + +

PER-ADDRESS SPACE <SEGNO> + <A[CS> + +
. + +

. + +

PER-DOMAIN <REFERENCE NAME> .. +4+ <PDS> ++44+++44++

Fligure 2-5t Local User-0Orliented Names

2.7 Susmacy

In this chapter we have Investigated the basic rcles
played by name spaces In a typical computing utility. Of the
eight name spaces we have described, only the per-domaln
reference name Space may be excluded from the security kernel
without Jeopardizing the ablllty of the computing utility to
control user interactions. The critical difference between the
reference name space, which can be uncontrolled, and the other
seven name spaces we have considered, which must be controlled,
is that the reference name space Is not common to multiole
protection environments. Since it cannot be used by one
protection domaln to exert Influence over another protectlon

domaing It need not be implemented Iin the security kernel.



Chapter 111
A Mogdel of the Myltics Systenm

Before approaching the specific problem of defininc a
security kernel for the Multics system that does not support
unnecessary name space management mechanlsms, we will present 3
detailed model of the Multics system and show [ts corresponcence
with our general computing utility model. OQur Multics model
contains four components: a storage system model, an Information
protection model, an address space model, and a reference name
model. These models will contaln sufficient detail to allow the
reader who Is wunfamiltiar with the Implementation of Multics to

comprehend the important details of the design we will opresent.

3.1 Storage Systen Meodel

The Multics storage system (1) manages two distinctly
different types of objects called segments and directories.
These objects are organized Into a single system-wide ftree
structure fthat |Is known as the storage system hierarchy. This
hierarchy Implements the system®'s human-oriented global name
space. The Internal nodes of this hierarchy are directory

objects. Each directory object is itself composed of a named

(1) A more complete description of the Multics storage system
than will be presented In this section may be found In Organick
[{01) and Bensoussan [B81].
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collection of entries, one for eact Immediately Inferlor segment
or directory In the hlerarchy and one for ezch 11ink In the
directory. Links are psuedo-objects in the hierarchy that allow
an object to appear to reside at several distinct nodes In the
hierarchy. To accomplish this, the directory entry of a link
contalns the pathname of another oblect or link In the hlerarchy
that Iis fto be considered as the target object of the Iink. The
directory entry of a segment or directory object contains nwmrany
important attributes of the object. Among these attributes are:
a system=wide unique ldentiflery, a collection of human-readsble
names for the oblect that are unique within the directory, an
access control list, and a flle map for the objlect that allows

the system to access the object.

Each dlirectory In the Multics hierarchy Is stored In a
separate segment. Many advantages accrue from supporting a
hierarchical name space whose directories are Implemented in
separate segments. These advantages are closely Interrelated.
Firsts since each directory contains only a small fractlon of the
total name bindings represented by the hlierarchy, It may be
searched much more quickly than a corresponding single segment
implementation of the whole hierarchy. Finding a name In a
hierarchically organized name space requires sesrching only those
directories defined by the prefixes of the nanme. In general,
this will represent a substantlal savings In search time.

Secondy, the component names In a directory may be viewed as
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uniforms, unstructured names. Finally, the names in a directory

can be refatively small and yet stlll be unlque.

As we have mentioned, a practical computing utillty
cannot assume that all users will be benevolent with respect to
thelr maniputation of a global, shared name space. We must assume
that some user, through malice or accldent, will attempt to
delete or modify name bindings that other users are depencing
upon. If this global name space Is to be useful, then users must
be able to control or at least know who may change the name
bindings that are of interest to them. Controlling who may read
the name bindings Iin a particular directory of a shared name
space Is also desirable since the names in a directory might

themselves constitute sensitive Information.

Since segments are the baslic unit of access control In
Multies, It 1is only natural to control the manipulation of the
names In a dilrectory by the Multics segment access control
mechanisms. This approach [s quite attractlive since It allows
the name bindings In a name space *to be protected without
introducing any new, special purpose access control mechanisms.
The access control Iist of a directory specifies which principals
may read and write its representation. In this way, the normal
access control and authorization mechanisms of Multics
automat ically provide a certain degree of control over the

manipulation of names In Its hilerarchical name space. Multics
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actually provides finer access control on directorles than Is
afforded by Iifs hardware enforced access control mechanlisnm by
encapsulating directories and a set of system-supplled procedures
which manipulate directories in a protected subsystem ([S1l. The
procedures In this protected subsystem, which must be a part of
the security kernel,; exercise control over the use and

manipulation of the name bindings In a directory.

If we assume that the root directory of the hierarchy
is its own parent, then every object In the Multlcs storage
system has @a wunique parent directory. Furthermore, since the
hierarchy has the sfructure of a ftree and names of directory
enfries are unigue within that directory, we can specify an
arbitrary object in the hierarchy by an ordered 1list of entry
names. Such a specification is called a pathname. The first
component of a pathname names an entry within the root directory,
and each additional name specifies an entry within the directory
specifled by the list of names that preceeded it. B8y convention
we take the name of the root to be the null name, and we wrlite

the pathname as Dy «ee G as >3>b>4e +>qe

A leaf node of the Multics hlerarchy can be either an
empty directorys a linky or a segment. Segment oblects, which
are lImplemented directly by the Multics hardware, are primitive

objects In which programs and data are stored.
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In our general computing wutility mcdel a directory
entry consists of one name to unique identifier mapping stored In
a directory of the user-oriented hlerarchical nzme space. The
issue of where fto store the access control Iist and other
attributes of a segment or dlirectory, which was not addressec by
our general model, was resolved In Multics by merolng this
informatlion with the entrles of Its hlerarchical name space.
This scheme has three lmportant conseguences. First, because a
directory entry contains the attributes of the segment it names,
no two directory entrles in the hierarchy are allowed fo descrlbe
the same segment. (1) This requlires that an entry contain all
synonyms of the object It describes. In our general computing
utitlity model! this was not necessary since there was no penallity
assoclated with allowing multiple entries (single name to unliaque

identifler mappings) to denote the same object.

Second, the unique ldentiflier to segment name space of
our general computing utiltity model exists In Multics only =2s a3
collection of individual wmappings scattered throughout all
directory segments In the hierarchy. This renders the task of
locating a segment glven Iits unlque identiflier prohibitively
expensives. However, Multics does wuse unique ldentifiers to
facititate the determination of whether two oblects denoted by

dl fferent pathnames are In fact the same object.

(1) 1If this rule were not obeyed, then the system would be fzaced
with the error=-prone task of maintalning ldentical, but separate,
coples of the attrilbutes of a segment.
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Third, because the access conftrol list of an oblect Is
stored in the object®s superior directory, it Is not possible to
have the access confrol list on that object arbitrate access to
the object Independent of the access control (lists on tne
object*s superlor directories. To see that this Is true all we
need do is consider the following scenario of a process
attempting te reference a segment. Assume that the access
control (list of the segment specifies that the process is
authorized to reference the segment, but fthat the segment's
directory entry resides In a directory to which the process has
no access. The system s faced with a paradox. If it allows the
process to reference the segment, then It must allow the process
to use informatlon In the secment's directory entry. But the
process is not authorized to use information In the directory
containing the entry. Thus, if the system permits the process to
reference the segment, then It must wviolate the authorization
specified In the access control Iist of the containing directory.
Conversely, If the system does not permit the oprocess to
reference the segment, then it wmust violate the authorization
specifled In the access control (list of the segment. This

dilemma will be discussed In detail In the next chapter.
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3.2 Information Protection Model

The active agent of computation |In Multics Is a
processs A process may execute Instructions In any of elght
protection domains, numbered from 0 to 7. These domalins have the
property that a process® access rights to objects In the storage
system whilte executing in domain n are a subset of Its access
rights while executing In domaln n-i. Domains that are so
constrained have been named rimgs [S2]1. To identify the user on
whose behalf a process Is executing Instructions, the system
assoclates with each process an unforgeable principal name. This
access control name Is used to establlish a process® rlghts to

access directories and segments In the storage system hierarchy.

Assoclated with each segment and directory In the
storage system hlerarchy Is an access control Iist which, In
conjunction with the access control name and ring of execution of
a process, completely determines the access rights of that
process to the object. The access control list In the directory
entry of an object encodes the access mode or rights each
principal Is to have to the assoclated object in a glven

protection ring. (1)

(1) In the current Multics implementation both z segment®s access
control 11lst and Iits ring brackets must be considered to
determine the access rights of a principal to the segment in a
given ring. Since this level of detall Is wunlimportant for our
purposess wWe will Imagine that a segment's access control list
alone Is sufficient to determine access.



When a process attempts to reference a segment or
directory, the system evaluates the process® access modes to the
target object. Conceptually, this involves searching the access
control 1ist of the object. This information Is used to valldate
the process® right to perform a given operation upon the segment
or directory. 1In the case of evaluating access to segments,
Multics relles wupon the hardware assoclatlive memories described

in our general model! to make access validation efficient.

For segments the valid access modes are read, write,
and execute. These access modes are enforced directly by the
Multics hardware. The valld access modes for directories are
status - the right to read the attributes of the entries In the
directory; modify - the rlght to change the attributes of the
entries In the directorys and append - the right to add new
entries to the directory. Directory access modes are

interpretively enforced by the Multlics securlty kerrel.

Linksy which are not full fledged objects In the
Multics hlerarchy, are not glven an access control |list.
Instead, access to read the contents of a link iIs granted to any
process that has status permission to the Ilink's contalning

directory.
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The process of a normal user execttes In protection
ring four. This allows the process to access only those seaments
and directories to which it has non-null access In ring four or
some higher numbered ring. In order to access a storage system
object accessible to the process only In rings numbered lower
than four, a user process must enter an appropriate lower ring.
This may be done only by calling a procedure which is designated,
by its access control list, as a gate Into that ring. When such
a gate procedure Is called, the process enters the Inner ring.
By virtue of its having entered an Inner ring, the access rlgnhts
of the process may increase. When the process returns from the
gate procedure, It reenters lts previous ring of executlon and
relinquishes the access rights It gained on entfry to the lower
rings To put teeth into this protection mechanism, the storage
system manager will not allow a process to create a gate Into a
tower ring than the ring the process ls currently executing in.
This insures that only procedures authorized to run In an Inner

ring may create gates Into that ring. (1)

The nu!fics system takes advantage of fthis ring
protection mechanism to protect its security kernel programs and
data bases from ftampering by shell procedures. This is
accompiished by setting the access control lists of securlty

kernel procedures and data bases to Indicate that they may be

(1) More complete descriptlions of the Multics protectlon
mechanisms may be found In Saltzer [53], Schroeder {S21, and
Organick [011l.



accessed only by processes executing In protection ring zero.
Entry points In the security kernel which are callable by the

shell are declared to be gates Into ring zero.

3.3 Addcess Space Model

The Multics system assoclates an address space with
each process [(B1l. The function served by this address space IS
to provide a mapping from a swmall set of virtual addresses,
called segment numbers, that can be directly ftransliated by the
Multics hardware, onto the much larger set of objects in the
Multics hlerarchy. This segment number address space corresponds
to the local machine-oriented name space defined In our general
computing utllity model. In the Multics system every process has

@ potentlal address space of several thousand segment numbers.

The binding of a segment number te¢ a storage system
objecty which Incorporates a storage system object Into an
address space, is called initiation. The effect of initiatirg a
storage system object is to make the representation of that
object appear directly addressable by the hardware of the Multics
machine. Since Multics relles wupon addressing and protection
descriptorss such as those described In our computing wutility
modely tTo Implement hardware references to segments, only a
fraction of the hardware segment number to segment mappings

implied by @a process' address space need exlst at any gliven
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instance. As in our computing utliity model, the Multics security
kernel handles faults caused by attempting to wuse missing
descriptors by reloading the missing addressing or protectlon
descriptor and restarting the faulted process. The unbinding of
a storage system object from a segment number, which removes the

object from the process® address space, is called termination.

Our discussion may have lead the reader *to fthe
conclusion that a process may have several segment numbers bound
to the same storage systfem object. Actually, this Iis noft
permitfed by the address space manager. During the Initiation of
an objecty the address space manager locates the directory entry
of the object from which [t fetches the system-wide unique
identifler of the object. This ldentifler |Is looked up In 3
per-process table (1) that maps unique identifiers Into segment
numbers. If the unique ldentifier Is found in this table, then
the object iIs already In the address space of the process. This
belng the case, the initiation primitive returns an Indicatior to
this effect as well as the segment number that Is bound to the
objects This scheme has several advantages. First, It helps a
process conserve Ifs segment numbers - a very sScarce resource.
Seconds It permits a process to test the identity of two oblects
in 1ts address space by comparing the segment numbers assignec to
these objectse. Finally, 1t simplifiles the management of the

Multics virtual memory.

(1) See appendix A.
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3.4 Reference Name Space Mogdel

We have asserted that local user-oriented name spaces
in a computing utility need not be part of its security kernel.
This clalim not withstanding, the Multlcs supervisor Implements a
reference name space for every ring of every process. These name
spaces provide a mechanism for mapping character string names
into segment numbers and vice versa. In the current Multics
implementation only segments may be assigned reference names.
The security kernel itself does not use reference names for
normal segments. It does however misuse |[fts wunique ablilty to
assign reference names to the segments with which It implements
directory objects. (1) Speclifically, the Multics supervisor uses
the reference name manager fo associate the hlerarchy pathnames
of initlated directories with the segment number of the segment
containing the representation of the directory. As we will see In
the next chapter, this presents problems when directory objects
are renamed. This problem will be discussed in great detall In

the ensuing chapters.

The address space manager and reference name manager
share a common data base In the current Multics Implementatlion.

This combined data base Is called the Known Segment Jable andg is

(1) In non-security kernel domalns dlrectory objlects are sezled
and may not be accessed as segment oblects.
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documented In appendix A. The reader who Is unfamllar with the
structure and contents of the KST Is wurged +to review this
material. Additional information on the Multics reference name

manager may be found In Organlick [01] and Bensoussan (B1i].
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Chapter 1V

Desian

The Multics desigrers recognized the advantacges of
segregating the modules of a computing utlllty Infto a security
kernel and a shell. As a consequence, Multics Is more fortunate
than most existing computer systems as regards its securabllity.
By ‘c.nttructlen most modules of the Multlcs system are not
permitted to execute In protection ring zero. This bulk of code,
which is part of the Multics shell, Is thus prevented by the
Multics protection mechanisms from tampering with those programs
and data that are only accessible from protectlon ring zero.
These protected programs constlitute the Multics securlty kerrel,
Although the Multics shell dwarfs the securlty kernel in
comparison, the modules of the Multics security kernel are still
quite numerous as well as compliex. The object modules of the
Multics securlity kernel presently represent approximately one
hundred and fifty thousand machine Iinstructions. These
instructions Iimplement In excess of two hundred shell callable
functions as well as a host of Implicit system services such as

demand paging.
He will present 2a redesign of the current Multics

securlty kernel that will enhance its certlfiability by reducing

its size and number of exfternal interfaces. As a side effect, we
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will also Improve the modularity anc coaing of the area of the
system we will investigate. Our design will ellminate the need
for the Multics security kernel to support reference name
management. This requires that we carefully redesign and
remodularize ring zero so that it is independent of the reference
name manager. Thils Is necessary since a securlty kernel must nof
depend upon the correctness of procedures outside of the kerrel.
Before getting into the detalls of our design, we will
Investigate the reason behind ring zero®s current dependence on

the reference name managers.

4.1 Securlity Kernel Dependence on Reference Name Management

White there does not appear to be any Intrinsic reed
for the Multics securlity kernel fto support reference name
managements its removal from ring zero Is complicated by the fact
that the Multics address space manager uses the faclillitlies of the
reference name manager fto maintaln an assoclation between the
pathnames of directories It has Initliated In a process and the
segment numbers of these directories. The address space manager
uses these associatlions to aveld having to repeatedly resclve
identical directory pathnames into segment numbers. Since the
security kernel must not depend upon a mechanism outside the
securlity kernely It (s necessary to decouple the address space
manager from the reference name manager before the latter can be

removed from ring zero.
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The dependence of the acdress space manager upon the
reference name manager manlifests Itself in the recurslive
procedure find_ which the address space manager uses to resolve
directory pathnames intoe directory segment numbers. This
resolution Iis necessary since the hardware base of the system
only iImplements references to storage system objects by segment
numbers When find_ 1is Invoked to determine the segment number
for a directory, It calls the reference name manager to map the
pathname it is glven, Interpreted as a reference name, into 2
segment number. If the pathname Is a reference name known In
ring zero of the process, then find_ refturns the assocliated
segment number as the segment number of the directory. (1) It
the pathname is not a known reference name, then find_ splits the
pathname into a pathname of the parent directory of the taraget
directory and the directory entry name of the target directory.
It then calls itself recursively to obtain a segment number for
the parent directory. Using this segment number to reference the
parent directory, find_ attempts to Initiate the target
directory. If it succeeds, It calls the reference name manager
to bind the pathname of the target dlrectory, as a reference

names to the segment number assigned to the tarcget directory.

(1) As we will see latery this can cause problems since this
segment number may no longer be bound to the directory specified
by folloning the pathname find_ was glven step by step through
the directory hlerarchy.

-50=-



This thesis suggests a raclcal change In the ring zero
address space manager. The essential result of thls change is
that find_, as described above, need no longer be called by ring
zero. This allows both find_ and reference name management to be

removed from ring zero.

4.2 Source of the Dependence

One of the basic tenents of the Multics protection
mechanism iIs that a process should be wunable to detect the
existence of a storage system object to which It has no access.
(1) A second basic tenent of the Multics protection mechanisn s
that the access control list of an object should be the sole

specifier of access to the object. (2)

(1) We will consider that if a process has access to the parent
of an object then It has sufficient access to determine the
existence of the object. The reason for this will be discussed
laters

(2) This tenent was not originally embodied in the Multics desian
and represents a lesson learned the hard way. Orlglnally a
process® access to an object mas a function of three different
access confrol lists. The first 1ist was part of the directory
entry of the object and corresponds to the access control list we
now Q. The second llst was part of the objlect*s parent and
was com to atl entries in the directory. The last list was a
one per system master access confrol list. The result was a very
complex access evaluation mechanism that allowed an unwary user
to Iincrease a principal®*s access rights to an ob)ject by removing
that principal from one access control list when his Intentlon
was actually to deny fthe princlpal access to the oblect. The
complexity of this mechanism so confused users that many of them
did not attempt to use the system provided protection mechanism.
With the current Multics design a wuser needs only review one
access control Ilist to determine who has access to a given
segment.
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These tenents have made the determination of whether a
process should be permitted to Initiate an arbltrary directory
quite difficult., This difficulty stems from the fact that the
access control Ilist of an object and its physical storage map
reside in iIfts parent. Since we wish the access control list of an
object to exercise complete control over access to that ob)ect,
we must permit a process to initiate all superiors of accessible
segments Independent of access to these superiors. But this

violates our second tenent.

Multics attempts to resolve the conflict outlined above
by not permitting a process running outside of ring zero to
initiate a directory. Since a process cannot read the access
control (ist of a segment until its parent Is known, the system
still must permit processes, while executing In ring zero, to
initiate directories that they may not have the right to know
exist. By causing the initlation of these superlior directorlies to
occur In a single, indivisible ring zero call, the system could,
in principley prevent securlty leaks. This could be accomplished
by terminating those intermediate dJdirectories that had to be
initiated only to find that the process had no access to the
terminal segmenty before returning to the caller. Unfortunately,
the current system does not do so. As a result, any process can
determine the existence of any postulated directory by attempting

to initiate any arbltrarlily named descendent (which need not
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exlst) of that directory and observing how many segment numbers
were allocated by ring zero. This Is possible btecause all rings

share a common address space.

It would be relatively easy to correct the
implementation flaw in the Multics address space manager polinted
out above. However, fthe system would still have to be very
careful to avold compromising information. For example, suppose
a process filled up Ifts address space intertionally and then
called ring zero to Initiate >secret>x. If ring zero was not very
carefuly; it might cause the process to die due to Its inablility
to find an unused segment number to bind to >secret, If and only
if >secret existed.s This would alliow the existence of >secret to

be inferred by whether or not the process died.

The Iinabliliity of a process to initlate directories In
outer rings directly has led to many needlessly complex
mechanisms for manipulating directories. In addition, It has
forced us always to refer to dilrectories by pathname In the
security kernel interface. Not only is this inefficient, but it
has led to ring zero's dependence wupon find_. If we could
initiate directories directily outside ring zero, then the ring
zero Interface could take a segment number Instead of taking 3

pathname @as a directory specifier. Since ring zero would no
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longer need to call find_s It could move out of ring zero, along
with reference name management, without compromising the security

of ring zero.

4.3 Removal of the Dependence

43.1 QOuerview of the Desiar

We propose allowing directories fto be Initlated by
processes executing In all rings. As was noted earller, the
hillc problem to be solved Iis that of ceclding whetrer a
process should be allowed to Initiate a directory to which It has
no explicit access. There are essentlally four schemes for
making thils decision. The first scheme Invelves recognizing that
if the access control |Ilst of a directory is to completely
express access to that directorys then we must make expliclt the
now “hidden™ permission to Initlate a directory if some
descendent of the directory ls accessible to the process. The
obvious way to accomplish this Is to Invent a new directory
access mode called “initiate™. This mode would allow the nzmed
principal to Initiate a directory and to use the Information It
contalns that Is relevent to accessing descendents of that
directory. This makes the decislon of whether or not a process
should be allowed to Initlate a directory quite simple. If the
process has non-null access to the directory, then It may

Initiate It. Otherwise, It may not.
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This scheme does not meet our reguirement that the
access control 1ist of an object completely express which
processes may access that object. The only way to correct this
deficiency Is to couple the access control list on an object with
the access control Iists on all superlor directorles, so that
when a process is glven access to an object It Is also glven
initlate access to all superior directorlies of that object.
When a process subsequently Is denled access to an oblect, fthe
security kernel nust remove any Initiate permisslion that the
process had to the superlior directorlies of the object and that
resul ted solely from its having access *to the oblect.
Determining which Initlate permissions should be removed Is very
difflcult, potentially requiring that the entire directory

hlerarchy be examined.

A second way to decide whether a process may Initiate a
directory 1ls to search the hierarchy subtree rooted at that
directory. If the process has non-nuill access to any member of
this subtree then the process should be allowed to Inltlate the
directory in question. Naturally, this scheme (s far too

inefficient to consider serjously.
A third nofhod of deciding whether a process may

initijate a directory 1Is to require non-null access to the

directory. This scheme has the dissdvantage, starec by the first
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scheme dlscussed, of preventing the access control list of a
directory or segment from belng the sole arbiter of access fto
that directory or segment. In order to Initiate a segment, a

process would need non=-null access to the superliors of that

segment.

He propose a fourth solution to the oproblem of
initiating directories., Instead of worrying abeut whether or not
a process has the right to Initlate a directory, let us allow all
processes to iniltlate any directory - whether or not [t exists.
The key to this scheme is preventing the process from detecting
any difference between an Inltlated directory that does not exist
and an Iniltlated directory that exlists but that the process bhras
not proven its right to know exists. How this is to be done will

be discussed later.

The ring zero address space manager interface resulting
from this approach seems ouite natural. Ring zero no longer
concerns ifself with pathnames. Instead, It accepts directory
segment numbers for directory specliflers.s To allow this sctreme
to bootstrap ifseif, we will define the segment number of the
parent of the root to be zero. Initiation of segments and
directorles will be confrolled by the procedure Initiate_ that
will accept a parameter spec ifing whether a segment or directory

is to be Initiated.
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The rationale behind dilstinguishing directory and
segment Initlation 1Is that a process usually has a preconcelved
idea about the type of the object It wishes te Initiate. MWhen
reality does not support this preconceived idea, the process is
usually In error. Forcing the process to make expllicit the type
of object It Is expecting allows ring zero to Immediately catch
many such errors, preventing a careless process from bumbling
along thinking all is well onily to die when it attempts to access
a directory as a segment or vice versa. Naturally, It would be 2
security violation for the kerneil to report a type violation to 3
process that has no right to know whether the directory or
segment named actually exists. If a segment or directory should
be undetectable to a process, then the securlity kernel must treat
it In a manner consistent with the type speclifled In the Initiate

call regardless of lts actual type.

To complete our new ring zero address space manager
interface we must define a new ftermination oprimitive. This
primitive will accept two arguments. The first argument speclfles
the segment number to be terminated. The final argument is 3
status codes It should be noticed that this oprimitive may be
calted with either a segment or directory segment number. In fthe
case of terminating a directory, one constraint |Is enforced.
Since the system requires that a known segment®s parent alsc be
knowns terminate_ will not terminate a directory wifth krown

Inferjors.
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4.3.2 QDetails of the Design

So far everything seems rosy. This scheme seems to
remove many functions from ring zero and to simplify the ring
zero Interface in the bargain. Where is the hitch? Do we get all
this for free? The answer 1ls, of course, no. We have clossed over
one important point. In order to decouple directory and segment
initlation we wmust be able to successfully cloak the physical
initiation of directories from a process® detection until It has
established Iits right to know of the existence of the directory.
As was polnted out earllier, this need for deception Is Intrinsic
to the hilerarchy structure and functlionallty of the Multics
systems While this design makes the system®s need to deceive the

user more obwvious, It Is not responsible for the required decelt.

We will call a directory detectable if a process has
establ ished its rioght to know that the directory exlists.
Detectability may be established either by having non=-null access
to the directory, by having non=null access to lts parent, or by
establishing the detectability of an Inferior of the directory.
The reason that non-null access on the parent of an object
establishes Its detectablliity is that either status, modify or
append permission to a directory is sufficlent to allow a process

to detect 1f a postulated entry In that directory actually
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existse. It should be noted that the detectability of a directory

is dependent on the process® history and the ring of execution.

A directory |ls detectable by a process In rlings zero
through the highest ring In which it has detectably initlated
some member of the ftree rooted at that directory. This hlghest
detectable ring number of a directory Is kept In Its KSTE. (1)
We will not attempt to reset this field should a once detectable
directory subsequentiy become undetectable. Net attempting to
reset the hlghest detectable ring flield In the KSTE of an object
when It becomes undetectable to the process makes sense since the
system has already admitted the existence of the directory to the
process. The process could have stored thinforsation elsewhere,
so It would be of Iiftle wuse to deny the existence of the
directory. The record kept In the KST of the existence of the
directory wlill naturally vanish when the directory is terminated

or when the process ls destroyed.

We must prevent a process from detecting any difference
between an Initlated directory that does not exist and an
initlated existings but undetectable, directory. If a process
could detect a difference In these two cases then It could
establish the existence of gny postulated path In the hierarchy.
This would constitute a clear vioclation of security. To

accomplish thls means abandoning the current one-to-one mapplng

(1) See appendices A and B,
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that exists between occupied segment numbers and Initiated
segments and directories. Although we will still cnily allow one
segment number to be bound to 3 segment, we must allow multiple

segment numbers for the same directory.

The reason for this dichotomy between segments and
directories Ils simple. Since the access control list of a
segment completely controls the right to initiate that segment
there Is no need to allow a process to Iinitiate a segment to
which It has no access. This allows us to hide the physical
existence of a segment from a process that has no right to know
of Its existence by returning the amblguous status code "nolnfo™
In response to an initlate request. This simple mechanism fails
for directories since we must always allow a process to inltiate
an existing directory in case it has access to some Inferior of
that directory. This forces us to return more than one segment
number for a directory In some cases In order to oprevent the
process from detecting the existence of physically initlated but

logically undetectable directories.

There are two Characterlistics of Multics that
necessitate our abandonment of the current one-to-one mapping
between directory segment numbers and directories. First,
directories can have multiple entry names. If Initiate_ returned
the same segment number for two different entry names withiln a

given directory, then the process would know that these names

-60-



both named the same directory. This coincidence of names would
establtish the existence of the directory (if thre directory <cid
not existy then how could it have two names?). To prevent the
coinclidence of multiple names on a directory frem revealing the
existence of the directory, we must return a new segment number
if a process reinitiates a directory that Is still undetectzble
with a new name. In facty we will even return a new segment
number if it tries to Initiate an undetectable directory with the
same name twice. If we returned the same segment number, then In
order for directories that do not physically exlist to appear the
same to the user ring, ring zero would have to remember the name
of every phoney directory. This is a needless complication of

ring zero.

The second characteristic of Multics that forces our
abandonment of the one~to-one mapping between directory segment
numbers and directories is that the segment numbers of a process
are a finite resource shared among all protection rings of that
process. As we have commented earlier, the finite size of the
Multics shared segment number address space allews one ring fto
detect the number of segment numbers being used by all other
rings. This makes It necessary to assign a new segment number
whenever an attempt (s wmade to Iinitiate an wundetecteble

directory. This segment number must not be shared wlith ancther



ring so long as the directory remains undetectable. The need for
assigning private, per-ring segment numbers to wundetectable

directorles may be seen In the argument that follows.

Assume the system refurned the same segment number when
asked to Inltlate a directory In two different rings. Assume
also that the directory 1s undetectable in the upper of the two
rings. What 1ls the system to do when asked to unbind the segment
number from the directory by the upper ring? It cannot urbind
the segment number and return It to the Ilist of free segment
numbers since a lower ring Iis wusing the segment number.
Unfortunately the ring that requested the system to terminate the
segment number can detect whether or not the system actually
returned the segment number to the free list so the system cannot
just pretend to honor the termination request. If the segment
number is not freed then the ring can deduce that some other ring
has the directory Inltlated. By an argument slnilar to the one
given iIn the previous paragraph the ring can conclude, from the
coinclidence of two rings having the directory Initliated, that the
directory actually exists. Since segment numbers are a scarce
resources the system cannot take the easy out of not allowing
undetectable directories to be ferminated. As a resul t, initiate_
must assign a8 new segment number whenever It Inltiates an

undetectable directory.
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The reader should note that we have ignored, up to nNowW,
the preblem of preventing a process from distingulshing between a
non-existent directory and an existent but uncetectable directory
through observation and analysis of second order effects such as
the time required to iInitliate or terminate a directory. It is
hard to predict In advance of Installatlon in the standard system
what sort of second order effects might be observed. The plan is
to Investigate this problem following actusal installation.
Timing differences can be easily hidden by iInserting extra code
in the shorter path. Other dlfferences also probably are

disguisable.

This scheme will merrlly allow a process to iInifiate
vast trees of directories that do not exist. These directories
wit? be Indistinguishable from real undetectable directories.
The potential multiplicity of segment numbers for directorles
implles that if we compare two directory segment numbers and find
them to be not equalsy then we cannot conclude that the oblects to
which they are bound are not one and the same. Since processes
running outside ring zero cannot currently obtain segment numbers
for directorlies, no wuser code can be affected by this new
restriction. To allow processes to aquickly determine If two
segment numbers are bound to the same object, the system should
support a function for mapping a segment number into the unique
identifler of the object to which it Is bound. Naturally, this

function must return an error Lf the object is not detectable to

-63-



the process. The system must also assure that |If a process
attempts to reference through any cirectory pcinter in an outer
rings it will get the same access violation whether or not the
segment number it referenced corresponded to a real or phoney

directory.

Figure &=-1 summarizes the actions performed by
initiate_ when mapping a directory into a process® address spzace.
The reader should note that a target object within a phoney
directory Is considered a priorl undetectable and a non-existent
target object Is considered detectable by a process If the
process has non-null access to the contalning directory. The
abbreviation ™hdr™ used in fligure 4-1 stands for the contents of
@ KSTE®"s highest detectable ring field. We have omitted the case

where the target is a link as this case will be discussed later.

«target ls detectable in ring of caller

-

« starget exists in hierarchy

- .

« »« starget already has a segment number

E: - -

. & @ roturn valucs i internal state
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Flgure &4-13 Actlion of Initiate_ for Directories
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Two possible oblections we can see to thls scheme are
that It can potentjally waste segment numbers and It requires
Inspecting the parent's access control Ilst. A close examination
of flgure &-1 Indlicates that there are only ftwo ways to assian
nuitiple segment numbers to a directory. The first way |Is to
reinitlate an undetectable directory. The second Is to Initlate a
phoney directory. MNelther of these operations should occur In
normal operation. They could, however, arlse Iin an atfempt to use
a misspelied pathname. To control this problem, the oufer ring
variant of find_ could terminate those directorles that might be
phoney iIf the terminal segment could not be iInitiated. This would
prevent a hablitual misspelier from cluttering his address space.
It seems that with this additlon a process woulc¢ be obliged to go
out of Its way in order to clutter its address space. If that Is
what It wants fine. Even [f a process wastes all Its segment
numbers, It can recover by terminating no longer needed segment

numbers.

The apparent (Inefficency of Inspecting the access
control 1lst of the parent of a directory during Ifs iniftiation
is not serlous since It is normally not required. Only when a
process has null access to an object and has not previously
established detectablility for that object Is It necessary to

inspect the access control list of the parent. (1)

(1) In fact, the fregquency wlth which a process Initliates a
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In the current system the address space manager and the
reference name manager share a data base. (1) The address space
manager takes advantage of [fts ablliity to access the reference
name manager®s data base by scanning the per ring, per segment
numbers Ilst of reference names kept by the reference name
manager to determine which rings of a process are still wusing a
particular segment number. This Information Is used to prevent
one ring from fterminating a segment number that is still In wuse
by another ring. (2) Only If all rings that Initlated the oblect
have terminated It can the segment number be unbound from the
objects Thus, we have the concept of Inltiating an object In 3
particular ring rather than the concept of Initiating an objlect
globally In all rings of a process. This scheme 1ls desirzble

since all rings share the address space of segment numbers.

— -

directory to which it has has no access is low enough In Multics
that our test implementation does not check to see If a process
has previousiy established detectabliity for a directory to avoid
inspecting the access contrel Iist of the parent of the
directory. If the process has null access to a dlirectory, then
we always check fthe process® access to the parent of the
directorye.

(1) See appendix A.

(2) Since fthe address space manager uses the presence of
reference names In a glven ring for a segment number to detect
that the rlu: is still using the segment number, the current
initiation primitive must call the reference name manager to glive
a segment a reference name In the appropriate ring each time the
segment is initlated. The current initiate interface supplies the
address space manager with a reference for this purpose. A more
complete description of the relationship between the address
space manager and reference names In the current system may be
found in Organick [01).
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Since reference names will no longer be kept in the
KST, some new mechanism must be Invented to supply Information
about which rings of a process are still using a given segrent
numbers This is easlly accomplished by adding an elght bit fleld,
called ringss to each KSTE. If the i th bit( 0 orlgined) Iin this
field is on then the corresponding ring has the segment number
initlated. This allows ring zero to detect when a segment number
may be physically terminated, thereby preventing one ring from
terminating a segment or directory that is being used by another

ring. (1)

Our termination primitive marks the segment number it
is given as free in Its caller*s ring of execution. If the
segment number is iInitlated in no other rings and Its inferior
count Is zeros, then the segment number Is unbound from the object
and its KSTE is placed on a list of free KSTEs. It should bhe
carefully noted that fthe termination primitive terminates a
single segment numberj it only removes an object from the
process® address space If the last segment number for the object
is terminateds The reader should notice that because Iinitiate_
always assligns a private segment number when a dlrectory lIs
undetectably initiated, fterminate_ need not worry about revealing

the exlistence of an undetectable directory.

(1) Appendix B summarizes the content of the kncwn segment table
as we have redefined it.



4.4 Removal of Pathname Processing

Ring zero®s abitlity to resolve a pathname Iinto a
segment number has been severely Impalired by our design. This
ability, which was embodied in the ring zero procedure find_,
depended wupon ring zero®*s ablility to call the reference name
manager. Specifically, find_ depended on the reference name
manager fto wmalntaln an assoclation between pathnames of oblects
and the segment number bound to the object. Fortunately, this
assoclation was only wused to make find_ more efficient. As 3
resulty, we could redefine find_ In such a manner that It would
stitl operate correctly but would not take advantage of such an

assoclation between pathnames and segment numbers.

To make find_ Independent of the reference name
managers all we would need to do Is redefine find_ to Inspect the
pathname It was glven to see If It specified the root, l.e. ">",
If it dide then find_ would initiate the root, and return |Its
segment number. (1) Otherwise find_ would strip off the last
component of the pathname and call litself recursively with the
pathname of the parent of the target object to get its segment

numbers Glven this segment number, find_ would call initlate to

(1) The system freats the root directory as a speclial case. The
location of Ifts physical object map as well &s the rest of the
Information that would reside In its directory entry, If It had a
parent, Is embedded In the programs of tre system. Tnis
guarantees that the root may always be initlated.
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Initiate the entry named by the component which was previously
removed from the pathname. For example, If find_ were called
with 2>a»b It would call Iitself recursively to get a segment
number for >a. It would then call Initiate to get a segwent

number for the objlect named b in the directory >a.

While the procedure we have described is correct, it
appears to be quite inefficient. This inefficiency suggests that
we should either glve find_ a new assoclative memory or move It
out of ring zero so that it can once again use the reference name
managers Since glving find_ a new assoclative memory would add
code to ring zero which has no protection reason to be In the
security kernely this alternative [Is untenable. Our approach

wili therefore be to remove find_ from ring zero.

The actual removal of find_. from ring zero Is, of
itselfy, trivials. In the outer rings It can access the reference
name manager directly once agailn. It can also access our new
initiation primitive through a standard gate into ring zero. The
problem Is that numerous programs In ring zero depend upon find_
to map pathnames Iinto segment numbers. Unfortunately, they
cannot be allowed to call our new find_ In the ocuter ring. To do
so would )Jeopardize the security of ring zero. To get ourselves

out of this dilemma, we will have to remove almest all wuses of
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pathnames from ring Zer o. This In 1Itself represents a
substantial simplification of ring zero. To accompllish thls task

we wiltl consider the four ma)or uses of pathnames In ring zero.

4e4.1 Parcapeters to Ring Zero

The first class of pathnames used in ring zero that we
will consider consists of those pathnames that were passed Iinto
ring gzero as an argument to a gate procedure. This class
represents the major use of pathnames in ring zero. Fortunately,
it Is also the easlest class to remove from ring zero. Since
find_, now resides In the outer ring, we will make the outer ring
responsible for transliating all opathnames that are currently
passed iInfo ring zero Iinto segment numbers. We will then
redefine all ring zero gates that accept pathnames as object
speciflers to accept segment numbers as object speclifliers

Instead.

4+%.2 Lioks

The second class of pathnames used in ring zero are the
pathnames contained Iin links. Many ring zero programs, when they
discover that the object they are to act wpon Is a Ilnk, are

defined to act Instead upon the target of the link. An example



of a ring zero function that is defined to follcecw this rule Is
the segment initlation primitive. (1) We propose that primitives
which are defined to follow |inks return a status code Incdicating
that a 1ink has been encountered as well as the contents of the

tink itself, upon discovering that their target Is a link.

This scheme requires that Ilinks be readable In the
outer rings which raises the guestion of what, If any, access
control should be placed on reading links. The approach taker In
the current system Is to make links effectively readable by any
process that has non-null access to the terminal target of the
finke This scheme has an inherent security flaw and ls therefore
unacceptable. If some process can guess the pathname of an
existing f1ink to whose target the process has access, then it can
prove the exlstence of the parent directorles of that link by
initiating the target object through the link. To eliminate this
securlity flaw we could place access control! Ilists on Ilinks,
thereby explicitly naming fthose processes which may read the
tinke The complexity of such a mechanlism seems unwarranted when
weighed against Iits benefi 1s. The only access control on the
target object of the link that Is gusranteed is specifled by the

access control list of that object. Any access control specified

(1) To prevent a process from causing ring zero, which Is masked
against Interupts, from looping Indefinately following a circular
chain of 1inksy each program that follows |inks keeps count of
the number of links It traverses during each Invocatlon. If this
number exceeds a certaln system-specifled threshold, then the
computation is aborted.
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on a lilnk may be avolded by referencing tre target oblect
directly and thus serves only to protect the contents of the Ilink

itseif.

The reasons that access to links must be controlled is
that the existence of a Iilnk (mplles the existence of Its
superior directories and suggests the existerce of its target.
We have chosen a simpler mechanism for contrellling access +to
links whichy; although not as comprehensive as a mechanism that
assoclates a private access control list with each Ilink, meets
both of the needs for protecting links. MWe consider a link to be
part of |Its containing directory, readable only by processes
having status permission on that directory. This scheme has the
virtues of being simple, easy to Implement, and plugging the
information hole that uncontrolled access to (links provides In
the current system. While this scheme does make one class of
currentily legal uses of links itlegal, this restriction does not

seem too severe.

To illustrate the scheme we have proposed, we will
outiine the redesign of (ink processing by the ring zero
initiation oprimitive. When Initlate_ encounters a detectable
tinky It willl return the link and a status code that Informs the

outer ring procedure that a | ink was encountered. (1) The outer

(1) As we have mentioned earliery if an undetectable 11ink Iis
encountered while attempting to initliate a directory, the system
must treat that (Ink as an undetectable, phoney directory.



ring procedure may then try the new path specifiec by the |lnk.
Since this Is happening In an outer ring, we need nc longer Frave
a standard Interpretation of links. Since link processing will
be done In the user ring, the process may Interpret links in any
manner It chooses. Why not let links contain relative pathnames,
offsets, or even arblifrary character strings? A link might even
specify a file residing Iin another computer system. The
important polint |Is that while the kernel may be the keeper of
tinkss it does not interpret them. Naturally, the restriction on
tink depth, which was Intended to keep ring zero from getting

into trouble, vanishes.

4.4.3 Ipternally Geperated Patbnames

In a few cases, ring zero generates and uses pathnames
Internal ly. These generated pathnames constitute the trird
general class of uses of pathnames in ring zero. We will further
partition this class Into those pathnames that are generated only
during system Initializatior and those pathnames that are

generated durling normal system operation.

During the Initiatization of the Multics system, the
need arises to initiate on the order of one hundred or fewer
segmentse. The reason the system must initiate these segments Is
of little Interest to our thesis. We observe that since system

initiatization is an Infreguent operation (hopefully once a day
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or less) and the number of pathnames to be resolved Is aqulte
smally we need not feel remorse at proposing a very Ilnefficlient
mechanism to resolve these pathnames. In fact, as the reader has
undoubtedly guessed, we propose that these pathnames be resolved
by calls to the Inefficlent version of find_ that we described

earlier.

In the case of pathnames generated by ring zero during
normal system operation, we cannot be quite so cavaller. Or can
we? 1In fact, we can. A careful examination of ring zero reveals
that ten Is a reasonable upper bound on the number of generated
pathnames fthat must be resolved Iin ring zero In the life of any

glven process.

In fact, these Internally generated pathnames are so
restricted that we have no need to even call our Inefficlent
find_« Since they all are of tree depth at most three and all
components of these pathnames except possibly the last component
are constant for all time, we could expand the code of find_ iIn
line In the programs that use these pathnames. For example, If a
program needed to Initiate >pdd>my, then it would first initiate
the roots Then, given the segment number of the root, it would
initiate pdd. Finally, given the segment number of pdd, It would

initiate my.
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4.4.4 Ercor _Conditions

The last and perhaps most troublesome class of
pathnames used in ring zero are pathnames that are used to report
error conditlons. There exist numerous Instances In the system
where a procedure detects an inconsistency or error concdlition
assoclated with some segment or directory. For Instance, the
system may detect an unrecoverable error while reading the
contents of a segment, Another example would be the detection
that the doubly threaded Ilist which chains the entries in a
directory together Is misthreaded. In error conditftlons such as
theseys the system writes a message into the system log explaining
the problem. This message often contains a patkname that was
generated from the virtual address of the segment or directory in
which fthe error occured. While the exact algorithm for
generating a pathname from a virtual address 1Is of Iittle
interest to us, this algorithm dld depend upon the reference name
manager®s ability to map a directory segment number into a

pathname of the object It was bound fto.

Since we have argued that ring zero must not call the
outer ring name space manager, we must propose a new algorithm
for mapping a segment number Iinto a pathname. Many schemes are
possibles. However, since the error conditions we are talking
about may be presumed to be quite rare, we will suggest a very

simple, but Inefficient, algorithm. This algorithm relies on the
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fact that any virtual address may be mapped, by the known segment
tabley, Into the virtual address of its directory entry. In the
directory entry can be found a name for the segment. This name
is the last component name in a valld pathname of the object. To
get the other components of a pathname of the objJject, we
recursively aoply this technlqgue to the virtual address of the

directory entry which is, of course, within the parent directervy.

4.5 Summacy of the Desian

This chapter has opresented a design that allows
directories to be iInitlated In all rings. As a consequence, the
need for the Multics security kernel to maintain reference names
has been eliminated. The key feature of thls desion Is that the
security kernel maintains, for each process, the illusion that
any postulated directory exists unless the process has suffliclient
access to prove otherwise. This permits the security kernel to
allow a process to initiate a directory to which It has no accass
without disclosing the existence of that directory. The address
space manager Interface presented in thils design ls summarlzed in
appendix C. Appendix D contains an example of the use of this

interface.
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Redesian of the Shell

As a3 result of our design, the interface to ring zero
has been modifled quite extensively. We have eliminated trree
major functlons that were supported by the old ring zero?l
reference name management, pathname resolution, and storage
system link Indirection. If the shell is to use these services or
provide them to the users of the system, then we must desian
modules capable of providing these services that run outside of
ring zero. We have already explained, to a degree which we hope
is suffliclent to convince the reader, how the last function may
be trivially performed by outer ring modules. In this chapter we
will discuss the lmportant lssues involved in resolving pathnames
in the outer ring and designing an outer ring reference nrame
manager. In addition, we will address ourselves brjiefly to the
problem faced by user programs that depend upon now obsolete ring

zero Interfaces.

5.1 Reference Name Mapager Deslan

He have seen that the Multlics reference name manager
provides four oprimiftive functions on name spaces. These
functions provide a process with the ablility tot bind a name to
a segment numbers unbind a name, determine the segment number

that a name is bound tos, and obtaln a list of trhre names bound *to
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a segment number. Actually, the Multics reference name manager
provides a larger set of functions. However, the additional
functions all can all be expressed In terms of the four

primitives we have described.

It is not our Intention to actually design a reference
name manager. We ftrust that the reader will accept our assurance
that It can be done and that It Ils In fact stralghtforward. We
nust, however, comment on one consideration that the design of an
outer ring reference name manager must recognize. When the name
space manager resided In ring 2zero it was operating Irn an
environment in which It was guaranteed to run to completion once
invoked. An outer ring name space manager is not afforded thls

fuxurye.

Executing in the outer ring environment, the reference
name manager wmay be stopped at any Instants This of 1ittle
consequence except when It |s stopped by the Multics “quit™
mechanlism. In this cases, the system suspends the process®
current computation and then restarts the process. The process
may then relnvoke the reference name manager and at a later time
resume the suspended computation having potentially totally

rearranged the reference name manager®s data base.

Luckily the system provides a mechanism that allowns a

process to inhibit or "mask™ quit signals. By masking quits on

-78-



entrance to the reference name manager and unmrasking quits upon
exlit the problem can be eliminated. Actually, It Is  highly
uniikely that the entire computation performec by the reference
name manager need be masked. We should design the reference name
manager so that It has as small a "critical”™ section or sections
as possible. In other words, we should try tc Ilsolate the code
that might malfunction if it were not masked against aqults. We
can then mask and wunmask quits only when we enter and exit a

critical sectione.

Before leaving the toplic of name space management, we
should comment on one consequence of allowing processes to
Iinitiate directories directiy. This abllity allows a process to
use the reference name wanager to bind an arbitrary name to a
directory. One immedlately obvious use of this new facllity Is
to replace the current speclal purpose mechanlsm that identifies
a process® per ring working directory and search dlrectories
(011. Alt we need to do 1Is bind the appropriate name, l.e.
“working_dir*™ or “search_dir_n" to the correct directory segwrent

numbers

5.2 Eathpame Resolution

We have commented that reference names are per ringe.

This prevents programs executing In one ring from causing

programs executing In another ring to malfunction by tampering
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with shared reference names. As a result, ring four could bind
the name “sqgrt"™ to one procedure and ring one could bind the same
name to an entirely different procedure. While thils multiplicity
of mname sSpaces per process Is desirable for protection and
modular programming reasons, It partially defeats find_"s purpose
in using the reference name manager to bind patbnames to segrment
numbers. Since each ring has a different name space, assoclating
the pathname >a>b with segment number 401 Iin one ring will not
help another ring resolve >a>b. The result s that wmany
redundant pathname resolutions will occur and many name sp&ces

will contaln ldentical entries.

We suggest that find_ not wuse the reference name
manager to assoclate pathnames with segment numbers. In fact, It
was never correct for it to have done so. A name space Just
assoclates an arbifrary name with a segment number. However,
pathnames are not jJust arbiftrary names. Consider, for instance,
what happens when we remove the name b from the directory >a>b
and then add the name b to the directory >a>c. The result of
this change In the environment Is external to the reference name
manager and yet It has Invalidated a mapping the reference name
manager was keeping. The pathname >a3>b no longer refers +to the
object fthat is bound to segment number 401, but the reference

name manager has no way of knowing this.



There are potential advantages to binding patbnames to
directories once per process, as is done in tre current system.
Consider the problem of Installing a new verslon of a
nulti-component subsystemy such as the Multics PL/I compller,
while Multics Is runnings In the current system we could store
the components of the compiler In a single directory. To install
a new version of the compller all we would need to do ls bulld
the new version in a brother directory of the current compliler,
When the new compller ls ready for Installatlon all that would be
necessary is fto exchange the names on the new and old compiler
directories. Processes that had already started to use the
compiter would remember the segment number of the old directory
as the compliler directory and would continue to wuse the old
compiler and satisfy new dynamic linkage faults to components of
the eonallqr from the old directory. In thils way a process
always gets a consistent copy of the compiler. A process that
had not vyet wused the compiler would Iinitlate the directory
contalning the new compiler when |t attempted *to invoke the
complier. It would then remember this new directory as the
complier directory and satisfy all linkage faults for pleces of

the compiler from this directory.

If a process does not "freeze"™ a directory sub-tree, as
Is done In the current system, when it Initiates that directory,
then 1t becomes very difficult to do on Jline Installations of

multi=-component subsystems. A process could easily get half of
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an old multi-component subsystem and half of a new version of
that subsystem when an online instaliation of the subsystem Is
dones On the other hand, a process often wants to use the actual
hierarchyy, not a “frozen"™ image of the hierarchy. Qur deslian
allows a process to choose between these two alternatives by

suppliyiing an approprlate version of flnd_ In the outer ring.

We suggest that the system suppllec find_ opt for
solving the “directory renaming problem™ rather than the “online
installation problem™. The easlest and most attractive approach
to solving the directory renaming problem is to not allow fina_
to use a pathname, segment number assoclative memory. Instead,
find_ will always recurse to the root when resclving a pathname.
While this might seem unattractive for efficiency reasons, direct
measurement of the Impact of such a scheme upon system
performance reveals that system throughput would only be degraded
by a small fraction of a percent. In addition, our proposed
address space manager will drastically reduce the number of
pathname resolutions that occur within the system. This reduction
in pathname resolutions should render the difference between
find_*s having and not having a pathname assoclative memory
almost Immeasurable. This sl ight performance degradatlon seems a
small price to pay for the el imination of the directory renaming

problem outlined above.
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5.3 Compatiblility

The final topic we wish to discuss In this chapter Is
that of compatibility. A baslic responsibility of any computing
utitity 1Is to minimize the effect of Internal changes upon Its
user community. If a ma)or change must be made In the interfaces
between user written programs and the system, or In the semantics
of these interfaces, then the system must support both the new
and old Interfaces for a sufficlently long perlod of time to
allow users to convert their programs to use the new Iinterfaces.
A sultable measure of this perliod of time would probably bhe

measured Iin months or even years, not hours, days, or weeks.

We have made substantial changes to the ring zero
interface and thus must address the compatibllilty Issue.
Fortunately, It is qulite simple to preserve compatibliity without
keeping the old find_ and name and address sSpace managers. This
is possible for two reasons. Flrst, we can simulate the old ring
zero iInterface by Interposing a ring four procedure between the
caller of an obsolete ring zero Interface and our new ring zero
interface. Second, it Is possible to Interpose such simulation
procedures between the user and the new ring zero Interfaces

without recoding or even recompliling any user programs.

Consider how we would simulate the old interface to

initlates The outer ring Interposing procedure would call the
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outer ring reference name manager to map the pathrame directory
specifler of the old iInterface Into the segment number requlired
by the new Interface. It would then call the new inlitiation
primitives If this returned 2 link, the outer ring Iinterposing

procedure would start over againe.

This simulation procedure would be difflcult to
implement 1f it were not for the fact that Multics now has an
interposing procedure on all calls to ring zero. This procegure
ils a ring four transfer vector that normaily transfers the call
to the appropriate ring zero gate. (1) This transfer vector can
be modified so as to call an appropriate interposing interface

simulatlon procedure for the Interfzces we have changed.

(1) This transfer vector, which was discussed In a previous
masters thesls by Janson [J1] has not yet been installed in the
current Multics system.

.



Chapter VI
Implementation

He have coded a test implementation of the essentlal
features of our design. This test Implementatlon was undertaken
for four major reasons. First, a working implementation of our
ideas serves as an existence oproof of the basic clalim of our
thesiss Second, a working implementation helps us demonstrate
the practicality of our desiogn. Third, the actuzal task of
implementing our design heips insure that we have not neglected
any important detalls in our deslgn. Finally, a test
implementation of our design helps us to quantify the Impact of

our design upon the system.

6.1 Elan

We have Iindicated that our new deslign requires an
extensive overhaul of ring zero. The pervasiveness of the
modifications necessary to ring zero is largely a result of the
removal of pathnames from ring zero. While the removal of
pathnames from ring zero is essential to our design, It Is a time

consumings stralghtforward, and intellectually unrewarding task.

Instead of undertaking thils drudgery, we have devised a

scheme that allows the essential ideas of our design to be

implemented while avolding most of the uninteresting work. The
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implementation we will describe does not affect any code outside
of ring zero, nor does it affect the syntax or semantics of the
interface to ring zero. As a result of this feature, our test
implementation provides the first step In an orderly transition
from the current Multics system to the system we have described.
The implementation we wlll describe could be Immedlately
installied Iin the standard Mul tics system without substantially

affecting users.

What we elected to do was to lImplement our new
initiations, termination, and name space management oprimitives
inside ring zero. We then reimplemented, inslide ring zero, the
old Initlation, termination, and name space management primitives
using our new primitives. This scheme allowed us to concentrate
upon the key lssues of our design without getting bogged dowr in
the mechanics of converting thirty or more large complex programs

from using pathnames to not using pathnames.

The strength of this approach Is that the modules In
ring zero may be slowly weaned away from using pathnames or now
obsolete Interfaces. Alsoy by supplying gates to our new
primitives, users of Multics can start converting thelr programs
to take advantage of the new ring zero interface. When ring zero
has been completely converted, all we need do Is throw away the
code that Implemented the old primitives In terms of the new

primitives and move the reference name manager ocut of ring zero.
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6.2 Inpact on System Complexity

Reducing the complexity of a system certainly increzses
its certifiabliity (D1, D2, D3+ L1, Ni, P1d. In order to
substantiate the hypothesis that our design results in a system
that Is more certifiable than the current Multics system, we will
took at two measures of the complexity of the security kernels of
the two systems. These measures are the difference In size of
the old ring zero and our new ring zero and the difference In the
number and complexity of gates Iinto the old ring zero and our new

ring zero.

Appendix E summarlzes the slze comparison data between
the old ring zero and our new ring zero. As It reports, the
address space manager was reduced In slize by seventy-seven per
cent. This corresponds to a two and a half per cent reduction In
the size of ring zero. In fact, the address space manager that
we designed was so s-til that we have presented It In appendix H
for the reader to peruse. This sizeable reduction In the size of
the address space manager 1; quite encouraging and substantiates
our clalm that we have produced a more certiflable ring zero.
What [Is even more encouraging Is that white thils figure Is in
itself substantlaly it only represents a partial Implementation.

Several modules In ring zero accept both patbnames and segrent

numbers as storage system object speciflerse. In a complete
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implementation of our desicn many of these nmodules would cnly
accept segment numbers. This would allow the code that handled

the pathnames In these modules to be thrown out of ring zero,

further decreasing its complexity.

The old ring zero supports about two hundred gates.
Our design clearly removes the necessity of having gates into
ring zero which call the reference name manager. It also removes
a whole class of gates that allow an object to be specified by
pathname. Many gates Into the old ring zero came iIn palrs. One
gate would speclfy the target object by segment number. The
other gate would speclfy the target object by pathname. With the
abitity to Initlate directorlies In the outer rings, this
mnultiplicity of gates becomes unnecessary. As a result, only the
gates that take a segment number as object specifler would be
retalned In the ring zero of a complete Implementation of our
design. When we add up the number of gates that a full
implementation of our design would remove from the current ring
zero Interface,; we find that we would remove about five per cent
of the gates. In additlon to reducing the number of gates into
ring zeros we have significantly simplified the Interface to over
flfty of the gates that must remain In ring zero. (1) This
reduction In Interface complexity also lends credibility to our
claim that we have made ring zeros and hence Multics, nmrore

certifliable.

(1) See appendix G.
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6.3 Impact op System Performance

To help assess the Impact of our deslgn upon the
performance of the Multics system, we developed a small benchmark
that tests the speed and paging behavior of the most used systenm
functions that our design affecteds This benchmark was run on
both the standard Multics system and our test Iimplementation.
The results of these runs Indicated that the virtual cpu time to
initlate and then terminate an oblject dropped from 11.002
milttiseconds In the standard system to 10.226 milliseconds In our
test system, a reduction of elght per cent. (1) Thls is
especlially gratifying since the test name space manager we
implemented was not In the least optimized for running speed. In
additiony our test implementation was unfalirly penalized by
having to converse with our benchmark through a simulation of the

old interfaces.

We attribute this speed up to many factorsji not the
fteast of which 1Is the fact fthat we greatly simplifled fthe
structure of the known segment table. We also make the somewrhat
immodest claim that our initiation, termination, and reference
name management primitives were simply coded better than those I[n

the current system. But this is not surprising’? most things are

(1) A description of our benchmark as well as a brlef summary of
the performance data can be found Iin appendix F.
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done better the second time arounds. It should also be noted that
the smaller and less complex a module is, the easler [t 1Is to
program that module efficiently and correctly. Unless a
programmer can hold all of the relevent detalls and
speciflications of a program In his head at one time, It Is very
difficult to perform global optimizations or simplifications of

the program.

Our working set performance data Indicates that our
system referenced two more pages running the berchmark than the
standard system. This did not come as much of a surprise. One
of these extra page faults resulted from splitting the code of
the reference name manager and address space manager apart and
the other resulted from splitting apart their shared data base.
He anticipate that when programs are converted to use the new
interfaces directly the extra page fault +that was caused by
splitting the code apart will be compensated for. We expect that
since our code Is smaller In total, by eliminating the simulation
code we wlll decrease the working set by a least a page. This
will make up for the extra page fault caused by splitting the
reference name manager and address space manager apart. The
increase In working set due to splitting apart the known segment
table camnot In Iitself be avoided. However, this Increase in
working set Is only on the order of a half of a page and |is

independent of the combined size of the new data bases.
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We have not really put much effort into the performance
arguments above. MWe feel that the performance data which we have
reported above Is not, In fact, a good measure of the performance
of a full Ilmplementation of our design. We claim trat there Is a
hidden performance factor which will easily swamp out the
performance effects we have been discussing. Fortunately, this
hidden performance factor ls In our favor. The effect to which
we are alluding will not be seen Immedliately but will slowly
assert itself. This effect has to do with the gradual conversion
of major shell and user programs to use segment numbers as
directory speclifiers. Since pathname resolutlion |Is fairly
expensive (even when find_ is given a pathname - segment number
assoclative memory), the use of segment numbers as directory
speciflers will! save an average process a substantial amount of

computation.
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Chapter VII

We have argued that reference name management need not
be supported by the securlty kernel of a computing utility. 1In
particular, we have demonstrated a transformation on the Multics
system that removes reference name management from Its securlty
kernels Our desion has further simplified the Multics security
kernel by allowing directories to be initlated outslde of ring
Zeros and removing the concept of a storage system link from ring
zeros. In the process, we have repaired an Inherent security flaw
in the current Multics design that allowed processes to detect
the existence of objects In the storage system hlerarchy to whlch
they had no access. This flaw resulted from having insufficient
access conftrol on links and from ring zero's fallure to termirate
undetectable directorlies. Flinally, we have provided a solution
to the problem of clearling find_*s pathname assoclatlve memory

when a directory s renamed.

We have used a technique In our redesign of the Multics
system that we feel deserves special mention. This technique
invelves constructing a careful lie to maintain the security of a
plece of data. In our cases, we constructed a securlty kerneal
that lles about the existence of a directory untll the caller
proves its right to know of the exlistence of the directory. This

liey which was actually qulte easy to malntain, prevents a

—92-



process from detecting directories that should be undetectable by
pretending that all possible pathnames correspond to an existing
directory unless the process has sufficient access to the object

specifled by the pathname to prove otherwise.

We have lmplemented and tested the key peolints of our
designe. This implementation has shown that our design [s both
simpler and more efficlent than the standard system. More
detallis of our deslgn than were presented In the body of the
thesls may be found In the appendices that follew. In particular,
appendix H presents the actual programs of the address space

manager desligned in this theslis.

In conclusions, we would like to note three observations
we made while designing a new address space manager for Multics.
First, our address space manager, which Is far simpler than the
current Multlcs address space manager, also ls more efficlent
than the current address space manager. The complexity of the
current address sSpace manager cost Multics both space and
performance. (One I[s tempted to belleve that, In general,
complexity added to improve per formance is frequently
counterproductive.) Second, because Multics 1is an existing
systemy, the functionallity and use patterns of the Mul tics address
space manager were fthoroughly understood when we began our
researches A large part of the simplification achleved 1Is the

direct resulft of Insight extracted by obsarving the existing
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Implementation of these mechanisms. Finally, we noticec an
impressive threshold effect. As our deslgn progressed [t got
simpler and slmpler. At a certain point, when our design was
simple enough so that all of the relevant detalls of the desian
could be consldered simultaneousiys, our deslgn underwent 2a
further drastic simplification. This simplification was only
discovered when the mechanism became simple enough and swrall

enough fo be kept In the head of one designer all at one time.
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APPENDIX A

The main data base for the current ring zero address
and reference name manager is the Known Segment Iable. The KST Is
a per=process, ring zero segment. Loglcally It contains trree
items. First, It contalns an array of KST Entrles. KSTEs are
indexed by segment number and contain all per-process Information
necessary for the proper care and feeding of the segment or
directory assoclated with the Indexing segment rumber. Second, It
contains a hash coded mapping from the space of Unlque
IDentiflers onto the space of segment numbers, or equivalently
the space of KSTEs. This mapping provides the means of locating
the KSTE of an already Initiated segment should It subsequently
be Inltliated by a different name. Third, it contains a hash coded
mapping from the space of names onto the space of segment
numbers. This assoclation ls mainly of use to the dynamic linking
mechanisms The current contents of a KSTE and thelr ma)lor usages

are glven In the following table.
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KSIE Flield

forward pointer,
backward pointer

unique identifier

name pointer

inferjior count

parent segment number

entry offset

directory suitch

Use

These pointers are wused to chain
the KSTE onto a list of free KSTEs
when 1t iIs not in use.

The unique identifier of the
segment s wused to valldate UID
hash searches and to properly
identify the corresponcing
directory entry zfter an on-llne
salvage.

This pointer chains together a list
of the reference names assoclated
with +this segment or directory.
Stored with each reference name is
the number of the ring In which the
name s known.

The Inferior count records the
number of inferlors of a directory
that are In the process® address
space. This information is usec to
prevent a directory from being
terminated while [t has known sons.

This entry records the segment
number of this segment®s parent. It
is wused at segment fault time to
help locate this segment®s
directory entry. It also is used to
transiate segment numbers Into
pathnames.,

This entry, which records the
offset of this segment®s directory
entry within Its parent, is usec in
conjuction with parent segment
number to locate the segment's
directory entry.

This flags, which [s set to iIndicate
that the segment implements a
directory object, is used to
special case access setting for
directories at segment fault time.
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APPENDIX €

Sticucture of the Proposed Known Seagment Table

Qur redesligned KST has been simplified and contains only two

components: a KSTE array, and 2 UID hash table. The contents of

each KSTE and thelr major uses are summarlized below.

KSIE fleld

forward pointer,
backward pointer

unique identifier

inferlor count

entry pointer

directory switch

rings

highest detectable ring

Use

Used to thread KSTE onto free or
hash class 1ist as required.

Unchanged (a phoney directory will
have a uld = 0).

Unchanged.

A pointer to the directory entry
for this segment.

Unchanged.

An elght bit field contalning one
bit per ring. Whenever ring | has
this segment number Inltlated then
bit 1 of this fleld Is on.

A number that specifles the highrest
ring In which thls process has
established lts right to know of
the existence of this directory.
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APPENDIX C

Proposed Address Space Msnager Interface

The proposed ring zereo address space manager Iinterface Is as

follows.

initiate_ (dirsegnosename,dirswelinkysegnoycode)

dirsegno segment number of the parent (input)

ename entry name of target (input)
dirsw directory switch (input)

link tink (output)

segnho segment number of target (output)
code status code (ouftput)

possible status code valuess

error_table_g$segknown --- segment already known to process

error_table_$noinfo =-=-- insufficient access to return any
information

error_table_gnrakst --- no more room In known segment table

error_table_8$no_entry --- entry does not exist or (s of the
wrong type

error_table_8link === entry Is a link

terminate_(segnoycode)

segno segment number to be terminated(input)
code see above ‘

possible status code values!

error_table_g$invalidsegno --- segment number lIs not bounc to
an object

error_table_sinfent_non_zere =--- can®'t terminate due to
active inferiors

error_table_gsknown_Iin_other_rings =--- can®t terminate due to
segment number being used in cother
rings
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APPENDIX ©

Example

To help clarify the ldeas presented In this thesls,
let wus consider the following scenarlio In which a process tries
to initlate the segment >a>b>c>d>e>f In ring four. We will assume
that directfory e and segment f do not exist and that the process
has no access to a, b or dy and append permission to c In rings
zero through four. We have presented below a representation of
this path through the hlierarchy along with the process® access
rights to each object In ring four.

“root"™ <-- status
; <== nuit
<== null

<-=- append

Qe ) =T =0

<== null

To simplify matters we will ignore the existence of the outer
ring reference name manager and we will assume that we are
operating in a virgin environment. What follows Is how the outer

ring find_ would proceed In this case.
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step

step

step

step

step

step

step

step

call Inltiate_(0+:""s1islinkysegno_of_rootycode)

The root directory will be Initiated, ifts detectzble
field in the KSTE will be set to four, and a status
code of zero will be returned. (3ll processes rave
status permission to the root directory)

call
inltiate_(segno_of_root,"a",1,1ink,segno_of_a,code)

The directory wllil be Initlated, Its detectable flela
in the KSTE will be set to four, and a2 status code of
zero will be returned.

call Initlate_(segno_of_a+"b"y1,1inkysegno_of_b,coce)

The directory will be Initliated , its detectable field
in the KSTE will be set to zero, and the status code
noinfo wili be returned.

call iInitiate_(segno_of_b,"c™s1+1inkysegno_of_c,code)

The directory will be Initiated, its detectable field
In the KSTE will be set to four, and a zero status code
will be returned. In addition this Initliation
establishes the process® rlight to know of the existence
of superlor directorjies at least In rings zero through
four. This is reflected, in this case, by setting the
detectable field In the KSTE of »a>b to four.

call initlate_(segno_of_c,"d",1,1ink,segno_of_d,code)
The directory d will be initiated, its detectable field
in the KSTE will be set to four, and a zero status code
will be returned.

call initiate_(segno_of_d."e",1+1inky,segno_of_e,code)
The non existent directory e will be ass ligned a KSTE
which will be marked as phoney and the status code
noinfo will be returned.

call Initiate_(segno_of_e s "f",0,0inkysegno_of_f,code)

No KSTE will be assigned and the status code noinfo
will be returned.

call terminate_(segno_of_ej,code)

The segment number assigned to e will be released on
the grounds that e may not really exist.
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APPENDIX E

Size of Programs

In this appendix we summarlze comparison data between
the size of the current Multics securlity kernel and the size of
our proposed Multics security kernel. We have only Included
data for the major programs that were affected by our design. As
a baslc measure of the size of a procedure we have chosen the
number of words of text In iIts Multics object code module. This
corresponds roughly to the number of machine instructions in the
module. Our comparison is between the modules in appendix H and
the corresponding modules In Multics system 24.2. We notice that
in most cases the procedures In our system are markedly smaller
then their counterparts In the current system. Our reduction of
the security kernel by 3499 words or about two and a half per
cent may not appear spectacular, but the reduction In slize of the
address space manager Is seventy-seven per cent. This has
substantlially reduced the complexity of the securlty kernel. The
reason we can make this claim Is that while the reference name
manager In the current system is not that large, It Is complex

far out of proportion to its size.
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old procedure

find_
makeknown
kstsrch
kst_man
makeunknown
inltlatize_kst
initjate

kst_entry_check

slze pes procedure
791 128 fird_entry
732 164 makeknown_
k&0 103 kstsrch
45 34 get_kstep
1044 123 terminate_
667 82 Iinitialize_kst
698 134 initliate_
112 88 kste_info
84 ks te
86 validate_segno
4529 1030
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Performance QData

In order to measure the change In overall performance
between our system and the standard Multics system, we develcped
a speclal benchmark program. This benchmark was desligned to
evaluate only the most commoniy used features that we modifiec In
our designt segment Initlation, reference name management, and
segment termination. Specifically, our benchmark called the old
ring zero initliation Interface (1) to Initlate 3 segment and glve
it a reference name. It then wused the terminate by segment
number primitive of the old Interface to terminate the segment
and unbind the reference name. This was repeated one hundred
times. The vwvirtual cpu time In microseconds to complete the
benchmark was then divided by one hundred to obtain a normallized
performance timing datum. The total number of page faults for

the run was also recorded.

The benchmarks for both systems were run on QOecember
10y 1974 within ten minutes of each other on a dedicated
computer. The standard Multics system used was deslgnated as
Multics system 24.2. Our test system was ldentical to system
24.2 except as It implemented our design. Three runs were made
on each system. The first run served only to cause dynamic

tinking to occur and to bring the pages that our benchrmark

(1) The old ring zero interfaces were simulated In our system.

-103-



touches iInto primary memory. The second run, whlich took no page
faultsy, was wused to obtain our timing data. (1) Multics system
2ke2 averaged 11002 microseconds for each iteratlon of our
benchmark. Our test jmplementation was actually seven per cent
faster, taking 10226 microseconds per Interation. The flnal run
was made after the contents of primary memory were flushed. This
run established the size of the working set of our benchrark
since each page ftouched while running our benchmark produced a
missing page fault. The working set of our benchmark In Multlics
24+2 was flve pages. Our test ilwmplementation had a working set of

seven pages.

(1) Prjor testing had shown that multiple runs of the benchmark,
under |dentical conditlions, produced times within one hundredth
of one per cent of each other. As a result one timing run was
all that was required.
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APPENDIX ©

Ring Zero Interface Complexity D3ta

This appendix (tists briefly the changes we have wmade
in fthe standard ring zero interface. We have excluded from this
appendix the changes we have made to the ring zero address space
manager Interface as these changes have been documentec In

appendix C.

Obsoleted Interfaces

hcs_sSchname_file
hcs_8$fs_get_path_name
hcs_Sde lentry_flile
hes_8fs_get_ref_name
hcs_8Sfs_get_seg_ptr
hcs_gstatus_minf
hcs_gSterminate_flle
hcs_Sterminate_name
hcs_sterminate_noname
hcs_$truncate_file
hcs_$set_bc
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Interfaces Converted To Specifyipng Their Taraet Oblect
By Seament Number Rather Than
By Directory Pathpame angd Entry Name

hcs_gSadd_acl_entries
hcs_gadd_dir_acl_entrlies
hcs_$add_dir_lacli_entries
hcs_gSadd_lacle_entries
hcs_gdel_dir_tree
hcs_$delete_acl_entrles
hcs_gdelete_dir_acl_entries
hcs_gSdelete_dir_lacl_entries
hcs_$delete_lacle_entriles
hcs_$get_author
hcs_sget_bc_author
hcs_gget_dir_ring_brackets
hcs_%get_max_lencth
hcs_gget_ring_brackets
hcs_8Sget_safety_sw
hcs_8get_user_e ffmode
hcs_8list_act
hcs_giist_dir_acl
hes_$tlist_dir_lacl
hcs_silist_inacl
hcs_S$quota_move

hcs_8$repl ace_ac |
hes_g$replace_dlr_acl
hcs_8Sreplace_dir_inact
hcs_8Srepl ace_lnacl
hcs_$set_copysw
hes_8$set_dir_ring_brackets
hcs_8$set_max_lencth
hcs_S$status_
hcs_g$status_long
hphcs_$add_acl_entries
hphcs_8$add_dir_acli_entries
hphcs_$delete_acl_entries
hphcs_$delete_dir_acl_entries
hphcs_greplace_acl
hphcs_$replace_dir_acl
hphcs_$set_act
hphcs_$set_auth
hphcs_$set_bc_auth
hphcs_$set_dates
hphcs_$set_dir_ring_brackets
hphcs_8$set_ring_brackets
hphcs_8$status_backup_info
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Intecfaces Converted To Specifying Thelr Target Oblect
By Segment humber Rather Than
By Dicectory Psthpanme

hcs_fappend_branch
hes_Sappend_branchx
hcs_sSappend_Ilink
hcs_sSquota_get
hcs_9$star_
hcs_$star_list_
hphcs_Squcota_reload
hphcs_8Squota_set
hphcs_$sa lvage_dir
hphcs_8$star_no_acc_ck
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APPENDIX H

We have claimed that the address space manager we
designed Is simples; small and easy to certify. To substantiate
this claimy we are Including in this appendix the source code of
our address space manager for the reader's perusal. These
programs differ from the actual proegrams that ran In our ftrial

Multics system only In a few minor detalls. (1)

We will divide this appendix Into three sections. The
first section contains 2 declsration for the KST. This
declaratlon is used by programs that contaln a "Xilnclude kst:i™
statement. The second section contains the PL/I source programs
that constitute the address space manager. Finally, the trird
section describes the calling sequence and functlonallity of

system modules called by the programs presented In section twoe.

The baseno and ptr PL/I builtin functions used In the
programs In this appendix are non-standard Multics PL/I functions
that manipulate pointers. A Multics pointer may be viewec 2as a
pair of Integer values. The flrst component of a pointer Iis

interpreted as a segment number by the Multics hardware. The

(1) See appendix I.



second component of a polnter Is Interpreted as a word offset
within the segment specifled by the first component. The baseno
builtin function constructs a polnter to tre flrst word in a
segment given a segment number for that segment. The ptr bulltin
function constructs a pointer from the segment number In |Ifts
first argument, which must be a pointer, and tre Integer offset

which iIs its second argument.
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/*
del

del.

del
del

/I'

BEGIN INCLUDE FILE - - - kst.incl.pltl - - - ¥/
kst _seg$ ext;

1 kst aligned based (addr (kst_seg$)),
2 lowseg fixed bin,
2 highseg fixed bin,
2 5 0%, bo} bit (18) unaligned
p, bp) bi unaligne

2 uid_hash (0: 127) ’

3 (Tp, bp) bit (18) unaligned,
2 entry (lowseg:highseg) like kste;

kstep ptr;
1 kste based (kstep) aligned,

(2 fp bit (18),
2 bppbi% (18),

2 segno fixed bin (17),

2 rings bit (8),

2 hdr fixed bin (3),

2 dirsw bit (1

2 unused bit (5),

2 infecount fixed bin (17),
2 entryp ptr) unaligned,

2 id bit (36) aligned;

END INCLUDE FILE - - - kst.inecl.pll - - - ¥/

kst segment */

KST header declaration ¥/
lowest segment number described b

kst ¥/

highest seg?ent number described by kst ¥/

free list
uid hash table ¥/

pointer to entry ¥/
KST entry declaration ¥/

forward rel pointer ¥/
backward rel pointer ¥/

segment number of kste ¥/

rings in which this segment is known ¥/

highest detectable ring o
directory tyge switch ¥/
unused bits #*/

inferior segment count ¥/

ptr to dir entry ¥/

unique identifier ¥/



o

initialize kst:
proc (lowseg, highseg);

Va4

initialize_ kst is called during process initialization to build a virgin kst
USAGE: call initialize kst (lowseg, highseg);

lowseg fixed bin (17) - - - lowest segment number described by kst
highseg fixed bin (17) = - - highest segment number described by kst

*f

del (lowseg, highseg, i) fixed bin (17),
thread$in ext entry (ptr, ptr);

% include kst;

kst.lowseg = lowseg;

kst.highseg = hlﬁhseg;

kst.free_list = "0"b;

kst.uid_hash = "0"b;

do 1 = lowseg to highseg; . .
call thread$in (addr (kst.free_list), addr (kst.entry (i)));
kst.entry (i).segno = ij;

end;

end initialize kst;
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initiate_: proc (a_psegno, a_entry_name, a_dirsw, a_link, a_segno, a_code)
/*

.
’

---> initiate_,is the ring zero gate which allows an object to be mapped
into a process address space. This module onlg validates its caller s
right to initiate the object in question. If the request is valid ;
then makeknown_ is called to actually map the object into the process
address space.

USAGE: call initiate_(psegno, entry _name, dirsw, link, segno, code);

psegno fixed biné??) --- segment number of parent directory (input)
entry_name char(¥*) --- name of entry in directory to initiate (input)
dirsw bit(1) --- set if entry is a directory (input)

link char(*) varying --- link (output)

segno fixed bin %17 -—- segment number of target (output)

code fixed bin(35) --- status code (output)

possible status code values:

|

error_table_$segknown --- se%ment (or directory) already known to process
error_table_ $noinfo --- insufficient access to return any information
error_table_$nrmkst --- no more room in known segment table
error_table $no_entry --- entry does not exist or is of the wrong type
error_table_$link --- entry is a link
*/
del a_entry name char (¥),
(a_dirsw, dirsw, noinfo) bit (1),
a_link char (*} varying,
link char (168) varying,
segno, a_segno, psegno, a_psegno) fixed bin (17),
code, a_code) fixed bin (3&);

del branch_pointer ptr,
entry_uid bit (56) aligned,
entry_name char (32) aligned;

del %gt branch_info entry (fixed bin (17), char (?%) aligned, bit (1), bit (36) aligned,
i

t (1), char (¥) varying, Btr, fixed bin (35
makeknown_ ext entry (ptr,

del null builting
/%

it’(36) aligned, bif (1), fixed bin (17), bit (1), fixed bin (35));
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psegno = a_psegno; /* copy input arguments */

dirsw = a_dirsw; /* so our caller cant change them ¥/
entry name = a_entry_name;
if psegno = 0 /* special case the root directory ¥*/
then do;

dirsw = "1"b;

entry_uid = {36)"1"b;
branch_pointer = null ();
noinfo = "Q"b;
end;
else do; /* NOTE: get_branch_info may call kste_info #/
call get_branch_info (psegno, entry name, dirsw, entry_uid,
noinfo, link, branch_pointer, code);
if code "= 0
then do;
a*iink =z
a_code =
return;
end;
end; .
call makeknown_ (branch_pointer, entry uid, dirsw, segno, “noinfo, code);
a_segno = Segno; /% set output arguments ¥/
a_code = code;
return;

link;
code;

end initiate_;
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makeknown_:
proc (ep, entry_ uid, dirsw, segno, accessible, code);

/¥

---> makeknown_ maps a segment or directory (specified by dirsw) into its
caller s address space. This module assumes that the Erocess right to
initiate the segment specified has already been established. It further
assumes that its input arguments will not be modified while it is executing.
This assumption requires its callers to be sure that arguments passed

to makeknown are not accessible to outer ring procedures.

USAGE: call makeknown_ (ep, entry uid, dirsw, segno, accessible, code);

ep ptr --- pointer to the object’s branch (input)

entry_uid bit(36) aligned --- unique identifier of the object (input)

dirsw bit(1) --- set if object is a directory (input)

segno fixed bin(17) --- segment number bound to the object (output)

accessible bit§1) --- set If process has access to the object or its parent (input)
code fixed bin(35) --- status code (output)

*/

det eptptp"d bit (36)aligned
entry uid bi aligne
dirsi it ’

segno fixed bin (17),
accessible bit 51)
code fixed bin (35);

del ring fixed bin (3), . ) .
error_table_$segknown, error_table_$noinfo) ext fixed bin (35),
pkstep, hashp) ptr;

del level$get ext entry z) returns %fixed bin (3)),
get_kstep ext entry (fixed bin (17)) returns (ptr),
kstsrch ext entr{ bit (36) aligned, bit (1), ptr, ptr),
thread$in ext entry (ptr, ptr), ) )
kste$reserve ext entry (fixed bin (17), ptr, fixed bin (35));
del (baseno, fixed, null, substr) builtin;
$include kst;

/*
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ring = level$get ();

call kstsrch %

if kstep "= null (

then do;
code = error_table_$segknown;
segno = kste.segno;

end;

else doj

if "accessible then code = error_table $noinfo;
call kste$reserve (segno, kstep, code);

if code "= 0 then return;

call thread$in (hashp, kstep);
if ep "= null ()

then do;

pkstep = get kstep (fixed (baseno (e
pkstep -> kste.infcount = pkstep ->

end;

kste.dirsw = dirsw;
kste.infcount = 0;
kste.entryp = ep;.
kste.id = entry_uid;

end;
substr (kste.rings, ring+1, 1) = "1"b;
if accessible
then do while (ring > kste.hdr);
kste.hdr = ring;
if kste.entryp = null

entr¥_pid, accessible, hashp, kstep);
/* object already has a detectable KSTE ¥/

/* must allocate a new KSTE ¥/

/* thread KSTE into hash class ¥/
4;)%ncrement parent ‘s inferior count ¥/
H

.infcount+1;
/¥ fill in KSTE ¥/

/* mark kste as known in proper ring ¥/

/* update hdr of superiors ¥/

)
then kstep = get_kstep Efixed (baseno (kste.entryp), 17));

end;
return;
end makeknown_;
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terminate_: proc (a_segno, a_code);

/*

del

del

del

del
del

del

--=> terminate_ is the %ate into ring zero which allows a process to unbind
a segment number from the object to which it was bound. If the KSTE has no
inferiors and the segment number is not in use by other rings then the

segment number is physically disconnected from the object to which it was bound
and the segment number is returned to the free or reserved pool as specified

by the reserved switch argument. If these conditions do not obtain then the
segment number is not disconpnected. The KSTE is merely marked as no

longer in use in the caller’s protection ring.

USAGE: call terminate_ (segno, code)

segno fixed bin???) - - - segment number of the segment
code fixed bin (35) - - - error code (output)

possible status code values:

error_table_g$invalidsegno --- segment number is not bound to an object

error_table $infcnt_non_zero --- can't terminate due to active inferiors . . .
error_table_$known_in_other_rings --- can t terminate due to segment number being used in other rings
%/

a_segno fixed bin (13),
a_code fixed bin (35);

pkstep ptr,
ring fixed bin,
segno fixed bin (17);

disconnect ext entry (fixed bin (1;;),

get_kstep ext entry (fixed bin (17)) returns (ptr),

kste$free ext entry (ptr)

thread$out ext entry ptrj, ) )

validate_segno$inuse ext entry (fixed bin (17)) returns (ptr),
level$ge® ext entry returns (fixed bin);

(error_table_$known_in_other_rings, error_table_g$infent_non_zero) ext fixed bin (35);
error_table_$invalidsegno ext fixed bin T35);

(baseno, fixed, null, substr) builtin;

% include kst;



®/

Segno = a_segno;
kstep = validate_segno$inuse (segno);
if kstep = null T)

then call abort
ring = level$get ();
substr (kste.rings, ring+t, 1) = "0"b;
if kste.rin tpe

error_table_g$invalidsegno);

s =
then call agort (error_table_g$known_in_other rings);

~

if kste.infcount "= 0

then call abort (error_t%ble_$infcnt_pon_zero);

if kste.entryp "= null™(
then do;

0
pkétep = get_kstep (fixed (baseno (kstep

pkstep -> kste.infcount = pkstep -> kste.

end;
call disconnect (se%no);
call thread$out (kstep);
call kste$free (kstep);

a_code = 0;

return;

abort:

procedure (status_code);
del

status_code fixed bin (35);

I a_code = status_code;
— go to return;
= end abort;
1
return: return;

end terminate ;

/* copy values of input arguments */
/* so our caller can t change them */
/* make sure call is legal ¥/

/* make unknown in this ring ¥/

/* can’t terminate in another ring #/
/%
/* decrement parent’s inferior count */

-> kste.entryp), 17));
infecount-1;

can’t terminate if infcount non zero */

/* deposit kste in free pool ¥/
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kstsrch: proc (uid, accessible, hashp, kstep);

/%

---2> kstsrch searches the KST unique identifier hash table and returns pointers

to the KSTE desired and the hash class thread word. Only if the process has established

its right to detect the existence of the object bound to the KSTE will a match be found.

The conditions required for kstsrch to return a given segment number are:

1) the segment number must be bound to the correct object (as identified by uid),

2) the segment number must be detectable in the caller s ring, and

3) no higher ring may have the segment number initiated. At the expense of assignin% multiple
segment numbers to an object when not necessary for protection reasons, kstsrch could

use a weaker matching algorithm such as matching only if the caller has access to the target
object or the parent of the target object.

USAGE: call kstsrch(uid, accessible, hashp, kstep);

uid bit(36) ali§ned ———— uni?ue id of object searched for (input)

accessible bit(T1) ---- set if the process has any access to the object or its parent (input)
hashp ptr ---- pointer to the hash class thread word (output)

kstep ptr ---- pointer to the desired KSTE if found else null (output)

*®/
del wuid bit (36) ali%ned,
accessible bit (T1),
(ring, hdr) fixed bin (3),
hashp ptr, . .
(addr, ptr, null, mod, dimension) builtin,
1evei$get ext entry ) returns (fixed bin (3));
%$include kst;
ring = level$get (); )
hasgpz kstep = addr (kst.uid_hash (mod (fixed (uid), dimension (kst.uid_hash, 1))));
do while (kste.fp "= "O"b);
kstep = ptr (kstep, kste.fp);
if mateh () then return;
end;
kstep = null ();
return; )
match: proc (5 returns (bit (1));

if uid = kste.id & (accessible | kste.hdr >z ring)
then do;
if accessible )
then hdr = max (kste.hdr, ring);
else hdr = kste.hdr;
if substr (kste.rings, hdr + 2, 7 - hdr) = "0"b then return ("1"b);

end;
return ("0"b);
end match;
end kstsrch;
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kste: proc ();
/%

kste provides the functions of freeing and reserving segment numbers

---> kste$reserve extracts a kste from the free list
USAGE: call kste$reserve (segno,kstep,code);

--=> kste$free frees a segment number given a kst entry pointer

The kste is threaded onto the free list.
USAGE: call kste$free (kstep);

segno fixed bin (17) - - - segment number (output)
kstep ptr - - - gointer to the kstep (input/output)
g?de fixed bin(35) - - - error code (output)

del code fixed bin (35)
(segno, save_segno) fixed bin (17) ;

del threadgin ext entry (ptr, ptr),
thread$out ext entry (ptr);

del (addr, ptr, unspec) builtin;
del error_table $nrmkst ext fixed bin (35);
% include kst;
entry (segno, kstep, code);
if kst.free_ list.fp = "0"b
then do;

code = error_table_ $nrmkst;
return;

reserve:

end;

kstep = ptr (addr (kst;, kst.free_list.fp);
call thread$out (kstep

segno = kste.segno;

kste.fp, kste.bp = "0"b;

code = 6;
return;

free:
entry (kstep);
save_se%no = kste.segno;
unspec (kste) = "0"b;
kste.segno = save_segno;
call thread$in (addr (kst.free_list), kstep);
return;

end kste;

/% terminate chains ¥/
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get_kstep: proc (segno) returns (ptr);
---> get_kstep translates a segment number into a pointer to the associated KSTE

/%
USAGE: kstep = get_kstep (segno);
no fixed bin(17) ---- the seEment number

1; se%
2) kstep ptr ---- pointer to a KST

2/
% include kst;

del segno fixed bin (17),
(null, addr) builtin;

if segno < kst.lowse
then return (null ());
return (addr (kst.entry (segno)));

end get_kstep;

| segno > kst.highseg
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validate segno:
proc (};

/%

validate_segno provides generallz useful kste validation functions
Each entry returns a pointer to the associated kste if a particular conditions holds.
If the stated condition does not obtain then the null pointer is returned.

---> validate_segno$free checks to see that the segment number is free
USAGE: kstep = validate_segno$free (segno);

---> validate_segno$inuse checks to see that the segment number is bound to an object
USAGE: kstep = validate_segno$inuse (segno);

segno fixed bin (17) - - - segment number (input)
kstep ptr - - - pointer to the kstep (output)
*/

del segno fixed bin (17);
del get _kstep ext entry (fixed bin (17)) returns (ptr);
del (null, unspec) builtin;

%include kst;

free: entry (segno) returns (ptr);
return (eval ("1"b)); ’

inuse: entry (segno) returns (ptr);
return (eval ("0"b));

eval: proc (unassi§ned) returns (ptr);
del unassigned bit (1) aligned;
kstep = get_kstep (segno); _
if kstep = null () thén return (null ());
if unassigned "= (unspec (kste.entryp) = "0"b) then return (null ());
return (kstep);
end eval;

end validate_segno;
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kste_info: proc (segno, uid, branchp, code);

/%
---> kste_info returns the uid of the object bound to a segment number
as well as the address of the object s branch. This information is used
to lock the Earent directory and locate the desired branch.

USAGE: call kste_info (segno, uid, branchp, code);

---> kste_info$update_branch_offset is called by the file system when it notices that
the online salvager has moved an entry in a directory.

It ugdates the pointer in the kste to reflect the new location of

of the branch within the directory.

USAGE: call kste_info$update_branch_offset (segno, branch_offset);

segno fixed bin (17) ---- segment number of the object (input)
uid bit (36) aligned ---- unique identifier of the object (output)

branchp ptr ---- branch pointer (output)

branch _offset bit (18) aligned -~-- offset of branch of object in parent (output)
n code fixed bin(35) ---- status code (output)

del segno fixed bin (13),
code fixed bin (35),
branchp ptr,
branch_offset bit (18) aligned,
uid bit (36) aligned;

del (error_table_$invalidsegno, error_table $noentr¥) ext fixed bin (35);
del validate_segno$inuse ext entry (Tixed bin (17)) returns (ptr);

%include kst;

kstep = validate_segno$inuse (segno);

if kstep = null 1)

then do;
code = error_table_ $invalidsegno;
return;

end;

uid = kste.id;

if kste.entryp = null ()

then do;
code = error_table_$noentry;
return;

end;

branchp = kste.entryp;

code = 0;

return;

update_branch_pffset:

entry (segno, branch_offset);

kst.entry (segno).entryp = ptr (kst.entry (segno).entryp, branch_offset);

return;

end kste_info;



-==> get_branch_Iinfo

This flle system routine Is called by initlate_ to get
the attributes of a named entry in a directory. It returns with
an approprlate error code If the target objJect does not exlist, is
of the wrong type, or Is not accessible to the process. The
reader should note that get_branch_info must read the access
confrol list of the directory containing the named entry If the
entry does not exist or |If the process has no access to the
enfry. To locate the access control fist of the contalning
directory, get_branch_info must call the kste_info module of the
address space manager, a recursive Invocation of the address
space managere.

Usaget call get_branch_info (psegno, ename, dirsw, uld,
dir_noinfo, link, ep, code)}
psegno fixed bin (17) =--- directory segment number (Ilnput)
ename char (32) allgned --- name of target entry In directory

(input)

dirsw bit (1) --- expected type of target (ingut)

uid bit (36) aligned === unique ldentifier of object (output)

dir_noinfo bit (1) =--- set [f target is a directory and the
process has no access to the target or Its parent

(output)

link char(*) varying --- set to the link if the entry Is a
detectable fink (output)

ep pointer === pointer to the entry of the oblect (output)
code fixed bin (35) =-=-- error code (output)
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-==> threadgin

Thlis routine adds an element to a two way linked Ilst
of elements. The first word of each element contains the

necessary forward and backward pointers.

Usage? call threads$in (where, what)}
where polnter --- pointer to an element In the list after which
the new element is to be threaded.

what pointer =-- polnter to the element to be threaded Iinto
the fist.

«~==> threadgout

This routine threads an element out of a two way lirked

list bullt by threadg$in.

Usaget call thread$out (what)

what pointer === pointer to the element to be threaded out of
the list.

-==> levelgget

This routine returns the wvalldation level of the
calling procedure. In all cases considered in this thesis the
valldation Jlevel of a process Is equal to the number of the ring

in which the process was executling when it called Into ring zero.

Usaget ring = (evelSget ()}

ring fixed bin (3) --- valldatlion level of the process.
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-=-=> dlsconnect

This routine physically removes a segment number from a
process® address space by zerolng the segment descriptor word for
that segment number in the process® virtual address translation

table.

Usaget! call disconnect (segno)}

segno fixed bin (17) =--- segment number to be disconnected.
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APPENDIX I
Unimplemented Address Space Manager Functions

In owur discussion cf the Multics address space manager
we omltted three mechanisms that |t currently supports. Trese
mechanisms, which are non-essential to our deslan, were omitted
to simplify our presentation and avold confusion. In this
appendix we will briefly describe these mechanisms and show how

they fit Into our design.

I.1 Reserved Switch

The Multics Initiatlion and termination primitives take
a reserved switch argument. In the case of Initiation, this
switch speciflies, iIf set, that the caller wishes to specify what
segment number to bind to the object when it is Initlated.
Naturally, ring zero must check that the caller has in fact
reserved the segment number. When the ring zero initlation
primitive is called without the reserved switch set, then ring
zero chooses a segment number from a Iist it maintains of free
segment numbers. This segment number is bound to the objJect and
returned to the caller. In the case of termination, the reserved
switch specifles whether the freed segment rumber s +to be

eligible for assignment when a free segment number Is needed.
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The reserved switch must clearly remain a protected
securlty kernel mechanism In our new address space manager. Were
this not the case, one protectlion domain could cause ancther
protectlon domain to malfunction by using a segment number that

the first protection domaln had reserved.

I.2 Copy Switch

During the process of Inltlating a segment, an
attribute In its directory entry called a copy switch |is
examined. If the segment has the copy attribute, then a copy of
the segment is made and this copy 1is made accessible to the

process Instead of the original.

We can use the mechanism of reflectirg Information out
to an outer ring by setting a status code to remove cooy switch
processing from ring zero. This is possible since the current
initiation primitive takes an argument that allows a process to
bypass copy sSwilfch processing. Together withr the fact that no
ring zero procedures or data bases have thelr copy switch set,
this Insures that the protection mechanisms of the system do not
depend upon the segment copy on Inlitiatlion facillty. To take
advantage of this, our new initlate primitive willl not process
the copy switch. Instead, It will always Initiate the target
segment and refurn a status flag Indicating whether or not the

segment®s copy switch was set. The outer rings can then worry
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about creatlng a copy of the segment, terminating the orligiral,
and returning the segment number of the copy iIf the copy switch
was set. Thls allows the concept of a copy sSwitch to move out of

ring zeroe.

I.3 Icansparency Switches

When a segment s Initiated iIn trhe current Multics
system, the address space manager sefs two swiftches, called the
transparent usage switch and the transparent mociflcation switch,
In Its KSTE. These switches determine whether this process®' usage
and modiflcation of +the segment Iis to be detectable to cther
processes In the system. These ftransparency switches have no
Influence upon our deslign except that in an implementation of our
deslign (as In our test Implementation) these switches would be
kept In the KSTE of a segment and the address space manager would
retaln the two lilnes of code from the current address space

manager that sets these switches.
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