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ABSTRACT

This thesis dealt with the application of a particular
technique in systems identification, the Kalman statistical
filter, to maneuvering analyses, determining the value of the
hydrodynamic coefficients to the general equations of motion.
A computer program was developed for use in this identification
process. The system that the identification was applied to
was the general class of surface vessels. The Mariner-class
hull form was singled out for extensive analysis because of
the availability of accepted values for the coefficients of
these ships in the literature.

The identification process was conducted over a variety
of experimental conditions. The results indicate a capability
for the program to identify the desired coefficients with
reasonable accuracy - within five percent of the accepted
true values for the individual coefficients.

It was found that the best type of maneuver was one
which generates a continuously varying input of the vessel's
motion paramenters, such as the sinusoidal maneuver. Addition-
ally, the process was shown to be able to operate on noisy
data containing a large amount of scatter. The new coefficient
estimates can be refiltered on additional passes by the process

ii



over the same noisy data and thereby re-evaluated and updated
to a new estimate. The results of this updating seems to
depend upon the accuracy of the estimates obtained from the
previous pass over the noisy data.

Thesis Supervisor: Martin A. Abkowitz
Title: Professor of Naval Architecture
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NOTATION

Lower case letters represent scalar quantities: x

Lower case leters, underlined, represent vectors: x

T
Vector dot product: XTx

Upper case letters represent matrices: E

The superscript T represents the matrix transpose: ET

A bar over either a scalar or vector represents

the mean value of that quantity:x
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Chapter 1

INTRODUCTION

The naval architect must be able to predict the various

motions of an ocean vehicle in order to design a vessel which

can meet the required aspects of operability under which the

ship will function. Without this knowledge, little can be said

of the ship's capabilities with any certainty until the system

is actually built. An accurate model of the vessel is thus of

primary importance for design purposes.

The dynamics of an ocean vehicle can be described theor-

etically in terms of a general set of motion equations. The

utility of this set of equations which can accurately predict

the motions of a ship should be readily apparent.

The equations of motion are derived in a number of ways

throughout the literature.. That method which implements the

vector calculus is presented later in this work. The equations'

structures are such that they may be applied to many diverse

systems, with the judicious choice of coefficients to the

equations setting their structure to the particular system at

hand. The specification of these coefficients sets the model

to the system and is the problem area toward which this work

is oriented.

Unfortunately, the exact numerical values of these

hydrodynamic coefficients are difficult to attain. Hydrostatic

1
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and hydrodynamic theory permits specification of only a few

of the parameters. Through potential theory, the acceler-

ation derivatives can be calculated with reasonable accuracy,

though they are of minor importance in terms of the general

equations.

The coefficients associated with the criteria for

dynamical stability in straight line motion,

Yv(Nr-MXGu)-Nv (Yr-mu)> 0,

namely the velocity derivatives, are unattainable to

sufficient accuracy for displacement hulls through present

theory. For these and many other cases, one presently must

resort to captive model tests in the towing tank. The

consequence of this is the Introduction of scaling effects

inherent in the modeling of ship systems to the correct

Froude number and, by necessity, the neglecting of Reynold's

number.

There are two principle means of running model tests

at present. One uses the rotating-.arm mechanism. The other

more popular method incorporates the planar motion mechanism.

For both methods, the forces and moments exerted on the

model hull forms are measured by dynamometers as the model

is put through various constrained maneuvers. These forces

and moments are then plotted as a function of the motion

variables. The slope.through the equilibrium condition,
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usually the origin, of this function then gives the relevant

force or moment derivative. Quite obviously, this is not as

accurate a procedure as one would desire because of scale

effects and the difficulty of attaining certain of the non-

linear coefficients.

A possible alternative to this traditional approach is

derived from modern control theory. Systems identification

consists of a set of theories and their applications,

capable of assigning the most suitable numerical values to

the variables and coefficients of the equations describing

the state of the system. These equations of state consist

of the motion equations as well as functions representing

the measured motion responses, both assigned levels of

uncertainty in their structure and recording capabilities.

One of the methods used in systems identification is

statitical filtering. By taking advantage of the estimated

uncertainties, or noise, as well as recorded trajectories

of the ship motions, the statistical filter is capable of

choosing values for these coefficients which minimize the

error between the recorded and calculated state values.

The specific technique of filtering used in this work is

the Kalman filter, an optimum linear filter which was

extended to handle non-linear systems.

The main body of this thesis consists of two parts.

In Chapters II and III, the theory and equations describing

both the system and the identification technique are given.



4

The equations of motion describing the state of the system

are developed, as well as an optimum linear filter and it's

non-linear extention for use in the identification.

The second part of this thesis, contained in Chapters

IV,V and VI, applies the theory to a practical problem -

the identification of the hydrodynamic coefficients of a

Mariner-class surface ship. This type of vessel was chosen

primarily for consistency with previous studies in the area.

Additionally, the coefficients for this class vessel are well

documented in the literature and permit a realistic appraisal

of the identification results given in Chapter V. Conclusions

and future considerations are stated in Chapter VI.

A listing of the general program developed for this

study, as well as a description of its usage, are given in

the Appendix. Also included are various and sundry items

useful in this work and hopefully for any continuation of

these studies.



Chapter II

SYSTEMS IDENTIFICATION

2.1 Parametric Identification

Inherent in the understanding of any dynamic system is

the ability to model that system accurately through a series

of differential equations. The general identification and

specification of any system requires that the general

structure of the system as given by this mathematical model

be known, although the particular values of the parameters

in the model need not be specified. For a system in this

form, classical identification techniques can be employed

determining the particular parametric values. This is

referred to as parametric identification. The mathematical

equations usually involve what are termed the state variables

of the system and their derivatives, along with various

constant coefficients to these variables. The coefficients

set the model for the particular system or conditions under

consideration. It is the values of these coefficients which

need to be determined.

In ocean vehicle dynamics, the coefficients primarily

relate to the hydrodynamic forces and moments exerted upon

the body in response to arbitrary disturbances from

5
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equilibrium. These coefficients, which take the form of

first, second and higher order force and moment derivatives,

may be either completely unknown or reasonably estimated to

within a degree of uncertainty. Part of the uncertainty

arises from the methods involved in their estimation - model

tests and full scale trials. Precise response trajectories

of the vehicle motions are difficult to attain. Typically,

for systems of this sort the deterministic, or precise,

model is waivered for a simpler indeterminate model, where

minor higher order terms as well as indeterminate noisy

additions to the responses are incorporated into a single

noise variable. This concept will be further developed

later in this work.

2.2 System Representation

The systems analyst works is a realm defined by state

variables and state-space representations of dynamic systems.

A set of state variables are simply those variables which,

along with a set of initial conditions, can be used to

completely describe the dynamic state of a system - past,

present and future. For a static system, this definition

is trivial. However, since one usually deals with dynamic

systems whose state is ever changing with time, the ability

to so model that system is crucial to it's identification.

Often the term primary state variable is used in the



literature. Its usage is somewhat arbitrary, though

frequently it refers to the set of velocity parameters. 8 )

For this study, the primary state variables will be defined

as that subset of the state variables used in the ident-

ification procedure - the measured parameters of the vehicle

motions. These may include orientation as will as motion

variables.

The state-space representation of the dynamic system

is that set of equations incorporating the state variables

which forms the model of the system.

x = f( x,u,t)

z = h(x,u,t)

x(t0)X

Here the state variables, x, and the input variables, u,

are used in the motion function, f, giving the time rate of

change of the state variable and the measurement function, h,

giving the measured output, z.

Frequently, the actual structure of the system is

known, except for a set of parameters or coefficients, 2.

See Notation - the bar under a lower case letter indicates
a vector quantity.

?
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As stated earlier, this structure can be simplified by

neglecting extraneous higher order terms. A modification

to the equation structure involving a single uncertainty

term, w, compensates for this adjustment. Similarly, any

uncertainty in the measurement function can be included in

another uncertainty term, v. The state-space representation

then takes the somewhat more complex though useful form,

X = f(x,u,p,w,t)

z = h(x,u,p,v,t)

x(t0 ) = X

A significant simplification in both the structure of

the above representation and eventually in the computation

incorporating the model can be made through the following

assumptions about the system under consideration:(16)

(i) The mathematical model and the measurement

function are time invariant.

(ii) The system structural uncertainty and

measurement noise are linear, and add

directly to the equation of state.

(iii) The output measurements are linear functions

of the state of the system, and are

structurally independent.
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(iv) The model coefficients are constants of the

system while under observation and hence are

the objective of the identification.

The first assumption is the most crucial since the loss

of the assumption implies that any identification on the

system is valid only over the period of observation and thus

cannot be extended to the general case. The time invariant

assumption, however, can be lifted if the relationship between

the structure and time is known. For a quasi-static structure

which is only slowly time-varying, the time invariant

assumption can be made, though with some caution.

The dynamic state-space representation under these as

assumptions is thereby reduced to,

0

x=f(x9uP) + w (2.1)

z = Hx + v (2.2)

For cases such as in this study, where the measured

output is assumed to be in direct correspondence with the

state of the system, the measurement function is simply

the identity matrix.
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2.3 Identification Methodology

Many different techniques exist for applying the system

representation, eqs. (2.1) and (2.2), to the parametric

identification problem. The literature abounds with procedures,

many primarily oriented toward specific identification

problems.(7),(10),(15) The trick then becomes the matching

of the more adept procedure to the situation at hand.

2.3.1 Iterative Procedures

One of the more general methods applied to ship

maneuvering, investigated by Brinati, was the model

reference technique, an iterative process. This procedure

is one of the more conceptually simple identification

techniques in current use. It can best be described as a

brute force interpolation. The mathematical model is set

except for one or two of the coefficients which are varied

uniformly in an attempt to find those values which minimize

the error function between the model and the actual data.

This method was shown to work well. However, the limitations

under which it must operate - limited noise levels and a

minimal number of observable coefficients per trial, seem

to limit its utility in extensive design applications.
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2.3.2 Statistical Filtering

An alternative approach and one which has received a

great deal of attention in the past decade is that of

statistical filtering. Part of this popularity and utility

comes from the fact that it provides an optimum use of all

available information about the system. This includes

statistical estimates of both the noise in the system and

its state.

Much of the initial theoretical work on statistical

estimation and filtering was performed by Weiner,(1,) in the

1930's. It's applicability to systems analysis was developed

by Kalman (11),(12) in the 1960's. He showed that an optimum

linear filter, based on the covariance matrix of the state

estimation errors can lead to a minimum error in the final

estimate of the state of the system.

There are two major disadvantages to the Kalman filtering

technique, neither of which had a very serious effect upon

this study.

(i) The filter has a linear derivation and there-

fore is valid only for linear systems.

(ii) It requires a reasonable, but not necessarily

accurate, estimate of the system and noise

parameters before their identification may

proceed.
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For ocean vehicle systems, the second problem is incon-

sequential. Reasonable estimates can be made from vehicle

coefficients which are presently in the literature, or have

been attained from model tests of the class of vehicle desired

by traditional methods. For other types of systems, where

this estimation problem might become significant, on-line

identification techniques are being developed which can

work in conjunction with the Kalman filter, but which initially

need no precise estimate of the state or noise characteristics.

The restriction to linear systems is also of little

concern for those cases where ship maneuvering can be limited

to small linear disturbances. This permits the use of

simplified linear models available in the literature.(6)

For the general case, however, the restriction of linear

modeling is not acceptable. The methods used by Brock(4 )

and described here lift that restriction and permit the

extension of the Kalman filter to the non-linear case - a

development which may not be theoretically strong but which

works quite well all the same.

2.4 The Kalman Filterinw Technique

The Kalman filter was the identification technique used

in this work. It is a statistical filter for use in the

presence of uncorrelated white noise. Through use of the

Kalman filter, the identification problem is reduced to a
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state estimation of the dynamic system. The filter development

follows for a linear system which in turn is followed by it's

logical extension to the non-linear case.

2.4.1 Derivation of the Optimum Linear Filter

Earlier in this chapter, the equations for the state-

space representation of a dynamic system, eqs. (2.1) and (2.2),

were developed,

x f(x,u,2) + w

z = Hx + v

where a linear relationship between state and output has been

assumed. For simplification in that which follows, the noise

factors, w and v, will be discarded for the time being. The

dynamic system representation is therefore reduced to,

x = (x,u,p) (2.3)

z = Hx (2.4)

Given a system defined by these state and measured out-

put functions, one desires to estimate the true state of the

system at some time t. If numerous measurements of the system
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are taken, a realistic assumption for most physical systems

is that the values attained will approximate a Gaussian

distribution0 Therefore, the best estimate of the state of

the system , will be that which approaches the mean, L,

of the system,

X = x xP(xjz)dx

000

Any error in this estimate can be defined by

e = x - x

and the covariance matrix of these errors by

E = (*-x)(k-x)T

-T
e e (2.5)

One of the characteristics of a Gaussian or normal

distribution is the fact that the mean of x specifies the

maximum of its probability density function (PDF),

P(i) = max [P(x3

Therefore, a proper method for determining the optimal

estimate of x is one which would determine that x which
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maximizes it's PDF. The standard form of the Gaussian PDF

for a random variable, y, is given by

P(y) = e 20OD<Yo5 0)

This can be extended to describe a system of n state

variables as

S(X-)U'xx)T/ 2E
P(x) (= n n/2 .1/2e

=(2n9)" E~t

where E is the variance, defined as the square of the standard

deviation, a2 . The problem is then one of maximizing P(x),

under the constraint imposed by the measured output

z = Hx

Since log [P(x) attains a maximum for the same value of x

as P(x), the problem can be rewritten, using Lagrangian

multipliers, as the maximization of F(x), where

F(x) = log P(x) + XT (z-Hx)

= log - i'-x)x x)T/2E + XT (z-Hx)
[(2)n/2E1/2
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The variation of F(x) with x is given by

dF (x) -T

d(x-x)TE~I
dx

-x aT

Maximization implies

dF(x)
d =0

dx

or,

(2xT E~1 = xT( x) H

Taking the transpose of both sides yields

(-x) (Ei)T = x HT

but from symmetry,

-x)= ET

K = i-X EHT

From the measurement function,

(2.6)
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z = Hx

= H(0 - X EHT)

or,

= (Jj5- z)/HEHT (2.7)

Substitution of eq. (2.7) into eq. (2.6) gives

x =QX"+ [(z-)/HEHT] EHT

=x H + EHTHEHTJ -(Z- (2.8)

This then is that value of x which maximizes the PDF

for the function and, by definition, is the optimum estimate

of the state of the system at time t.

It can be shown that if one includes the measurement

noise, y, in the eq.(2.4), having its specified character,

then the more general form of the state estimate is

Ix =+ EHT[HEHT + R] 1 (z-H) (2.9)

where,

R = ( f-v) (9-v) T (2.10)
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In order to determine the new covariance matrix for this

optimal estimate, x , one need only substractx from eq.(2.9),

arriving at a value for e. From the relation

E =e eT

one arrives at the updated matrix

E= E - EHT T + R) HE (2.11)

Eqsa(2.9) and (2.11) can be somewhat simplified and possibly

more easily understood by defining the new variable K, the gain.

K = EHT (HEHT + R)MI (2.12)

Then, eqs.(2.9) and (2.11) reduce to

'% = +K(z-Hx) (2.13)

(2.14)E' = E - KHE

At this point, the process noise in the state equation

can be re-introduced into eq.(2.3) as given in eq.(2.1).

0
f (xtlutpJ + w
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The optimum estimate for x will then take the form

x = f(x,u,2) (2.15)

since the process noise is defined as being of zero-mean.

This equation can be rewritten as

x = Bx (2.16)

where B is a matrix of coefficients acting upon the state

variables.

B = ---- (2.17)

The error in the state estimate is seen to be

A9 4
e =x-x

=Bx- (Bx +w)

The time derivative of the error covariance matrix, E, is

then written as

d T
E = .--- (e e

dt -

* T *
=e e + e e
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or finally,

E=BE + EBT + (w w)

The process noise covariance matrix, Q, is defined as

Q = w w (2.18)

The time rate of change of the error covariance matrix can

therefore be converted to the form

*T
E = BE + EBT +Q (2.19)

This then is the controlling equation in the variation of

the covariance matrix in conjunction with the measurement

function over time.

The estimation problem can thus be completely described

by eqs. (2.13),(2.14),(2.15) and (2.19). When a measurement

of the system is taken, eq. (2.13) determines the optimal

As
estimate,, x', of the state variables at that time. This it

does by maximizing the system's PDF based on the previous

estimate of the system, 12, and the present measured output, z.

The error covariance matrix is similarly determined by

eq. (2.14) as a function of the matrix calculated for the

previous measurement. Eqs. (2.15) and (2.19) are integrated

to update the state and error covariance matrices before the
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next measurement. These new values of the state and co-

variance matrices before the next measurement. These new

values of the state and covariance matrices are then used

to again optimize the system's estimates and the process

repeats itself.

r ~ - M I rn M-. ON
Phys ical j~easurement,
Systemv

+ f IOH

I- I II

L II IP om dm NJdm

goal------------ ' M
Optimum Linear Filter

Simulation i

1i+
I>

EHI

1 mo8w- m. M do

Block Diagram of Optimum Linear FilterFig. 2-1.
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2.4.2 Non-linear Extension

The derivation of the equations relating to the

statistical Kalman filter was done for a linear system,

0

x= f(x,u,P,w)

z = h(x,u,2,v)

and indeed, can be applied only to those systems whose

dynamics can be considered linear functions of x, u, p and

v or w. However, it is possible to extend these equations

to the cases where the dynamics of the system must be

described by non-linear functions. This linearization of

non-linear equations gives one the versatility of applying

the filtering technique to a wider class of physical systems.

Assuming eqs. (2.1) and (2.2) are continuous and differ-

entiable over the region of interest, the state variables

can be written as

x = x +6x

z = z +bz-o -

and eqs. (2.1) and (2.2) can be expanded in a Taylor series
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about the initial values,

6x = --- 6x + -
- x - w -

bz = ---o6x + -- o by + 00

The values of x and z can be assumed to be close to the initial

values so that 6; and bz can be considered linear functions

of 6x This assumes that 6w and 6v are equal to w and v

respectively, which follows from their being uncorrelated.

The linear derivation described earlier can then be used

to get the optimum estimate of 6x. The equations for the non-

linear filter are thus of the same form as those developed

for the linear case, with minor redefinitions of the matrices

involved.

x = f (',u,e) (2020)

x = X1 + ESHT (HEOHT + Rn)al (z-x) (2.21)
n- -

E = BE + EBT + Qn (2.22)

E = E' - E'HT (HEOHT + Rn) F HE' (2.23)

where,

B (9,u
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H =

Tn= - -

Q = -- --

n IN B

For the assumptions under which eqs. (2.1) and (2.2) were

developed, namely additive linear noise and a linear measure-

ment function, the noise covariance matrices, Rn and Qn,

reduce to the form of those found in the linear model, R and Q.



Chapter III

THE SYSTEM

The system under consideration in this work is a Mariner-

class vessel operating in unrestricted waters. Under equil-

ibrium conditions, it is assumed to be moving at a constant

forward speed. We are interested in determining the effect

that various deviations from the equilibrium condition will

have upon the motions of the ship. To do so requires a

model which accurately portrays the vessel under any and all

conditions in which it may be found.

3.1 The Mathematical Model

The best method of simulating a dynamic system is to

mathematically recreate it through a series of differential

equations which can accurately describe its motions. The

mathematical model used in this work, developed by Abkowitz,

considers the vessel as a rigid body of constant mass with

a stationary center of gravity. Alternative models have been

developed in the literature for similar systems, as well as,

those special cases not included in this model.(8)

A body moving in a fluid medium is considered to be a

acted upon by a system of fortces and moments. These can be

25
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resolved by considering two sets of forces and moments, each

of which is equivalent to the other at equilibrium. First,

one can consider the body's rigid structure and the forces

and moments due to it's mass and the motions of that mass -

velocities, accelerations, moments of inertia, et cetera,

independent of the body's shape. Secondly, one can consider

the forces and moments arising from the medium itself,

termed the hydrodynamic forces and moments. These act

upon and are initiated by the body's shape - the dynamics

of its interaction with the fluid medium. The subsequent

motions of the body in the fluid through dynamic equilibrium

arise from equating the two systems of forces.

3.1.1 Rigid Body Dynamics in Six Degrees of Freedom

The dynamics of the origonal body structure are ultimately

derived from an understanding of Newtonian mechanics.

F = A (Momentum) = XI +Y + Za
- dt

dt

M = (Angular Momentum) = KT + MT + Nt
- dt

One can consider a rectangular coordinate system with

arbitrary origin not necessarily at the center of gravity

of the system, but parallel to the principle axes of inertia

through the center of gravity. The system can thus be shown
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in the form of fig. (3-i),

CG

M N

Y
z

K

0
X

Fig. 3-i, Rectangular Coordinate System

where the relevant forces and moments are as indicated. RG

is the vector displacement of the origin from the center of

gravity.

Using this notation, the force equation becomes,

d
F=my- (U + QxG

under the constant mass assumption, where

= pt + qj + it

R

WL ipa-
k
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and is defined as the angular velocity of the center of

gravity about the chosen origin. Expansion of the equation

yields the force components along the principle axes.

x -2+2X = TLu + qw -rv -xG (q +r )
+ G(pq-r) + zG(pr+q)J (3.1)

Y = m v + ru - pw - YG(r+p) + zG(qr-p) + xG(qp+r) (3.2)

z =M w + pv-qu-zG(p 2+q 2) + xG(rp-q) + yG(rq+p) (3.3)

In a similar manner, the moment equation can be shown

to be equivalent to

whereG+OG

where

dt x

The moment components about the principle axes are then given

by the equations

K = I + (Iztl y)qr + mYG( + pvequ) -zG(v +ru - pw)

+X G Ypr-4 )soxGzGpq 4 ) + yGZG(r 2rq2)(3.4)
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= yq + (I'-Iz)rp + m IzG( + qw - rv) - xG(w + pv - qu)

1** ( 2 r ( ,5
+ yGzG(qP-r) - yGG(qr+p) + xGGa -rJ

N = Izr + (IY-I )pq +, mlxG(v + ru -pw) - yG(u + qw-rv)

" Z 0(rq-p) - Z yprprqiq G Gp)J(,6+ G G GYG r+q) + yG G 22)(I6

The rigid body structure of the dynamic model can there-

fore be summarized by eqs. (3.1) through (3.6) for a vessel

of constant mass and arbitrary origin of its coordinate

system.

3.1.2 The Hydrodynamic Forces and Moments

The dynamic forces and moments acting upon the body

in a fluid are functions of the body itself, its motions and

the medium through which it passes. For a given body oper-

ating in a particular fluid, these functions are dependent

only upon the body's movement.

F

= g(R 2, U, Q, Q, effector controls)

For this work, it is assumed that the body is operating in

unrestricted waters, therefore negating any effect of the
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orientation parameter, R , on the dynamics. The only effector

force and moment contributions will come from the rudder

deflection, 6, neglecting higher order terms such as 6 and 6.

F. .

g(UJU, 2,,6) (3.?)
M Is

The function in eq. (3.7) can be expanded through a Taylor

series expansion, assuming the function is continuous and

analytic over the region of interest. This assumption is

valid under normal operating conditions.

The multi-dimensional expansion is done about a nominal

condition, in this case the equilibrium condition of constant

forward motion, in terms of the individual components of the

functional quantities. Looking at the force equation,

F = F(u, v, w, p, q, r, u, v, w, p, q, r, 6)

the expansion becomes a lengthy equation of the form

F + ( ) ( A u ) + *** +A ( ) ( Au 0)2

2
+ 0+ ()u> O( Au )( AV) +00

+) (Au ) + ** + higher order
L u terms

(3.8)
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It will be seen that many of the terms in eq. (3.8) can be

eliminated by employing the proper assumptions.

Two simplifications are now in order. First, standard

shorthand notation will be used throught for the force and

moment derivatives,

=F
3x o -x.

Secondly,

(x d 
o x~i( o

Under the equilibrium conditions of straight ahead motion

at constant speed,

(xi 0 = 0

and

(xi) = xi

for all xi except u, which doesahave a non-zero equilibrium

value. Therefore, the hydrodynamic forces and moments can

be portrayed as
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FA + (A) + ** + i[Fu( Au)2 + *** + F u )v
- o -U 21 -uu -UV

+.. + [F ( Au)3 + * + higher order
+ [7UUUJ terms (3.9)

3.1.3 Equations of State for a Body Moving in Three

Degrees of Freedom

The rigid body structure of the dynamic model for a body

of constant mass and arbitrary center of gravity, moving in

six degrees of freedom was given in eqs. (3.1) through (3.6).

Similarly, the hydrodynamic forces and moments acting upon

a body with six degrees of freedom are derived in the form of

eq. (3.9) from the Taylor series expansion. With the system

under dynamic equilibrium, the hydrodynamic forces and moments

are solely responsible for the forces and moments acting on

the rigid body, and hence the motions of the body through the

fluid. Therefore, the two systems of equations can be equated

to determine the resultant motions in six degrees of freedom.

Hydrodynamic and ) Inertial

hydrostatic forces reaction (3.10)
and moments ) responses

This general case does not always apply to every system,

however. For this study, the body was constrained to only

three degrees of freedom - a surface ship operating solely

within the horizontal plane. Additionally, it was assumed
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that these horizontal maneuvers do not excite rolling motions.

This assumption applied to the Mariner-class hull form is

adequately valid under normal operating conditions. It will

also be assumed that yG is located along the longitudinal

plane of symmetry.

Under these conditions,

yG= = w = p = q = w = p q = Z = K = M = 0

for any time t. The equations used in eq. (3.10) can therefore

be reduced from the general case to that for only three degrees

of freedom, with substantial simplification in structure.

The rigid body forces and moments in the horizontal

plane, excluding roll, are

X = m Cu- rv - xGr *(3.11)

Y = m (v + ru + xGr) (3.12)

N = Ir+ MXG(; + ru) (3.13)

while the hydrodynamic forces and moments for the same case

are given by the Taylor series expansion of

= 0 ,

X=X(u, v, r, u, v, r,.6 (3.14)



Y = Y(u, v, r, u, v r, 6) (3.15)

N = N(u, v, r, U9 V9 r, &) (3.16)

Brinati showed that numerous additional terms in the

expansion of the hydrodynamic structure could be dropped by

additional assumptions. These included cross-coupling

between the acceleration and velocity terms, negligible

second and higher order terms, and negligible contributions

from symmetry considerations. Applying these assumptions,

which are quite valid, one arrives at the following form for

the hydrodynamic structure.

XX+XAu+V+1-X(u2 2 2X = X, + X( AU) + X 0u + uu A u)2 + X v + X ro u u 2 Luu V +xrrr

+ X62 + Xrvr + Xr6b + Xv6 + Xuuu )3

+ Xvvu"2( A u) + Xr2 ( Au) + X 62( A u)

+ Xvruvr( Au) + XV6 uvb( A u) + X 6rb( A u) (3.17)

Y = Y + YvV + Y6 + Yvuv( Au) + Yrr + Yrur( Au) + Y 6u6( Au)

o v 3 +Y r vu 6r 1 ru

+ Lvv 3 ++Yrrr +6663  + 2[vrrv

+ YV66 v62 + Yvuuv( Au)2 +y rv 2 + Yr66 r2

34
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+ Yruur( Au) 2 + Y6 vv6V 2 + Y6rr r2 + YOuUN6(Au)21

+ Yvr6vr6 (3.18)

N=N0 + N v + N r +Nb 6 + N v( au) + N r( Au)

+ N6 6( Au) + ' [Nvvvv3 + Nrrrr3 + N 6 663

1 + N yr2 +Nvb 2 +N v(Au)2  2

+ vrr v66 vuu + Nrvvrv

+ Nr6 2 + Nruur( Au)2 +Nb6vvv2 + N b6rr

+ N6uu6( Au)2 ] + Nvr6vr6 (3.19)

A further simplification can be made in eqs. (3.17),

(3.18) and (3.19), by dropping those terms which individually

have negligible effect upon the eventual motions of the ship,

without unduly altering the model. This reasoning is some-

what similar to the dropping of the fourth and higher order

terms from the expansion. For all cases, dropped terms, if

small enough, are in actuality compensated for in the indeter-

minate model by the uncertainty term. Possibly the most

important reason for this simplification is not so much in

reducing the equation structure, but rather in what will be.

shown to be a detrimental effect by these minor terms on the

identification process itself. Brinati conducted an exam-
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ination of these equations and was able to separate a number

of minor terms. The results of his work were not verified

for this study because of time constraints, but were used

in the equation development.

Equating the resulting hydrodynamic structure with that

developed for a rigid body under constraint of maneuvering

in the horizontal plane, and solving for the acceleration

terms, leads to the following set of state equations.

u = f1Cm - XQ) (3,20)

(Iz 2 
Nf2  m G r 3 (3.21)

f4

(m -Y*)f3 0- (mxG - N*)f2

r = (3.22)
4

where,

f X +X(AU)+1 x AU)2+l X (Au)3  1 2
1 o u + uu uuu 2 Xv

+( X x )r 2 + x 6 2 + (X +m)vr+ X 6

1 1 2
2 o v r 66 666 Yrvv

1 2
+ 1 Y 6 v2
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1 3+ 1 2f = N0 + Nvv + (Nr -mxGu)r + N66 + 1 N6666 ++ Nrvv

1N 2
2 6vV

4 = (m - YQIZ - NP) - (mxG - N)(mxG - Ye)

Eqs. (3.19), (3.20) and (3.21) then, describe the motions

of the vessel in the horizontal plane with three degrees of

freedom, Together, they form a set of state variables which,

along with the initial conditions of the problem, completely

describe the past, present and future motions for any given

input. This dynamic model is complete, except for these

initial conditions, and forms a sufficient set of equations

for the work of this study.

3.2 Sea-Trial Maneuvers

Of primary importance in any maneuvering trial is the

proper planning for that trial. Especially in the type of

identification process proposed here, it is necessary to know

what effect different maneuvers will have on the ability to

identify the different hydrodynamic coefficients. It is

desirable to know what measurements to make, which motions

to record under the various conditions of gradual accelerations,

sudden changes in velocity, steady state velocities or the

like.
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For these reasons, several different maneuvers were used

in this study and are described here. As stated earlier, the

only control surface considered in this work was the rudder

and it's deflections. This was incorporated into the general

equations as the variable 6.

3.2.1 Single-step Rudder Deflection

Formally, the single-step rudder deflection can be de

described as a step function of the form

6(t) =
6,9

6(t)

6

I

t<0

t>o

0 t

Graphically, this corresponds to the case where the vessel

goes into a constant turn in the steady state.

t '
R2>-
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Previous to the rudder deflection, all velocities and

accelerations are zero except u. However, u is an unmea-

surable motion by conventional methods and for the most part

will be neglected. As the effect of the rudder deflection

is felt by the vessel, all velocity and acceleration terms

become non-zero until the ship reaches it's steady state

turning radius. At this point the acceleration terms v and r

have non-zero values for the remainder of the trial. For

large rudder deflections, a distinct speed reduction occurs

due to the tight turn.(2)

3.2.2 Zig-zag Rudder Deflection

Again, this maneuver can also be formally described by

the step function,

0, t<0, t 200

6(t) = 3, ot<100

-6, 100<t<200

6(t)

+6

0 100 200 t

-b

This definition is perhaps not completely realistic to real-

life situations at sea since no time-lag is incorporated into



it's structure. However, for the purposes of this study, it

is an acceptable representation.

Pictorially,

I A

to

PIL

the vessel is seen to go into one steady turn followed by the

opposite steady turn and finally achieving the new equilibrium

state of constant forward speed, though not necessarily at

the original orientation. Essentially there are three steady

state conditions during the maneuver. The situation for the

motion parameters in the steady state turns is identical to

that discussed for the step deflection. For the straight

ahead motion at constant speed, both the velocity and

acceleration terms are reduced to zero.

3.2.3 Sinusoidal Rudder Deflections

This deflection is simply a sinusoidal motion of the

rudder with a maximum displacement corresponding to 6 and

with the specified period, T.

40
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6(t) = 6 sin at

6(t)

+6

-6 -

T -

The motions of the ship will follow the rudder deflection in

a sinusoidal manner, with a slight time lag.

t~~~~ ~ 0-0 01-ft-% b- 0

The important point for this maneuver is that the velocity

and the acceleration terms are in a constant state of flux.

At no point during the trial, after t, is the steady state

condition established for any of the motion parameters. This

gives the identification process a continually changing system

upon which to operate.

It is this maneuver which was used for much of this study.



Chapter IV

APPLICATION OF THE EXTENDED KALMAN FILTER

TO THE IDENTIFICATION PROBLEM

4.1 Compatibility Between the System and the Filter

In Chapter II, the concept of parametric identification

was developed as a means of system identification applicable

to those dynamic systems whose general structure was known,

but whose specific parameters or coefficients were unknown.

The structure of the indeterminate model was given as

x = f(x,1u,2p) + w (4.1)

z = Hx + v (4.2)

where the imprecision of the model is represented by the

uncertainty terms, w and v.

The utility of statistical filtering as a method for

solving the identification problem was shown and the equations

for the optimum linear filter, as developed by Kalman, were

given. These equations were extended to the non-linear form.

x = f(, uIt )(4.3)

- 42
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x + EkF (HESHT + R )-1(z - Hx) (4.4)

Tn

E=BE + EBT + Qn (4.5)

E = El - E'HT (HE'HT + Rn F 1 HE (4.6)

The general model for an ocean vehicle was developed in

Chapter III for a surface ship moving in the horizontal plane

without roll.

f /(m - V)(4.?a)u 1 u

(I -N)f2 - (MxG f3  (4*7b)

4

(m-Y.)f3 - (mxG - N,9f 2  (4.7c)

4 -

where f , f2pf3 and f4 are as before. This gives the general

structure of the system (a vehicle under maneuvering) and

identifies that system except for the hydrodynamic coefficients.

The initial conditions which specify the dynamic condition

of the system are those for which the equations were developed,

namely straight ahead motion under constant speed.

By combining these steps, the ability to use the extended

Kalman filter to identify the hydrodynamic coefficients of
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the equations of motion can be attained. First, however,

some minor changes must be made in the above development.

The state vector must be extended to the augmented state,

x = (x1, x2, n 9tl' 2* '

by the inclusion of the unknown coefficients. In this manner

the Kalman filtering technique which identifies, or more

correctly estimates, the state of the system can be used to

identify the coefficients under observation by including them

in the state vector.

The input function of the ocean vehicle is known and is

frequently a function of time. This removes the time in-

variant assumption in the structure of f. However, since the

function of time, u(t), is known, it can be incorporated into

the model and as stated earlier, is an acceptable alteration.

These two redefinitions reduce eq. (4.1) to

x = f(x,t) + w = B(t)x + w (4.8)

which is compatible to that used in the definition of the

extended Kalman filter.

Finally, from the assumption of linear additive noise

contributions to the equations of state and measurement

function, the process and measurement noise covariance matrices,

Qn and Rn, reduce to that of the linear filter.



Qn =

R=R
n

From these alterations, the system, a Mariner-class

surface vessel in maneuvering, and the identification tech-

nique, statislical filtering, may be applied to the problem

at hand. This does not necessarily-imply that statistical

filtering in particular or system identification in general

can lead to the complete specification of the system

structure. It does mean, however, that one is now in a

position to apply the system to the technique and see wether

or not an identification capability does indeed exist.

4.2 Noise Generation and Incorporation

Up to this point, very little has been said concerning

the noise contributions, w and v, to the system structure

and measurement function. In Chapter II, one of the dis-

advantages of the Kalman filter was stated to be that the

statistical characteristics of the uncertainty terms had to

be specified. This is true, though the estimation of these

characteristics for many cases is relatively straightforward.

The process noise, w, expresses the uncertainty in the

structure of the mathematical model. This arises from the

truncation of the Taylor series expansion for the hydro-
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dynamic structure of all terms over third order. It may also

incorporate any unknown contributions from the input function,

i(t), or any spurious deviations from the assumptions used

in developing the equations of state. Excitations from the

enviornment are also included in the process noise.

The output uncertainly is expressed as a measurement

noise, v. As for the process noise, this term includes all

unknown structural aspects of the measurement function, H.

For this study, since the measured output is assumed to

directly correspond to the actual state of the system, any

deviations from this linear correspondence are represented

by v.

The noise contributions are both treated in a similar

manner and are felt to be similar, statistically. Both are

assumed to be stochastic processes, with uncorrelated, zero-

mean, Gaussian white noise. The Gaussian probability density

function (PDF) for the uncertainty values is a reasonable

assumption for most physical systems. From the central limit

theorem of general probability theory, it can be shown that

the sum of a large number of independent effects has a

Gaussian distribution, regardless of the statistical properties

of the small effects individually. The uncertainty terms can

therefore be considered Gaussian in nature and treated as

random variables for simple incorporation into the model

structure.

These assumptions can be summarized as follows.
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w = E [w ] = 0

v = E[v] = 0

Q = E[wwT

R = E[vvT]

E [w VT] =0

To be consistent with the work done by others in this

same area at MIT,(3),(8),(16) the noise used for the generation

of simulated noisy data measurements to be used in the ident-

ification will be defined as a percentage noise value. For

the generation of noise with the desired Gaussian distribution

(see Appendix A - Program Desription), it is necessary to

specify both the desired mean and the standard deviation.

The mean is assumed to be zero by convention. The standard

deviation of the distribution will be defined as that specified

percentage of the maximum of the function under consideration.

Therefore,

rw =NQn

is equal to that percentage of the maximum value of the func-

tion x, while
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Yv n

is that percentage of the maximum value of the measured

output, x. The maximum values are attained from the tra-

jectory of the deterministic model (w = v = 0) over the

interval of observation.

This definition has several unfortunate aspects which

must be kept in mind. In particular, it should be apparent

that problems in specification will arise for those maneuvers

where the function is not uniform in magnitude, but rather

peaks for a short period during the trial. For these cases,

the noise present will be specified by the percentage of that

maximum value, but will be added to function values substan-

tially lower in magnitude over the majority of the period.

Maximum value of g(t) used in
g(t) 00 noise generation

Average value over much of
the period

t

Fig. 4-1. Imprecision in Noise Definition

In these cases, therefore, the actual noise present during

the identification process will be noticably larger than that
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specified, possibly by an order of magnitude or more.

4.3 The Identification Process

Much of the actual implementation of the theory developed

up to this point is described in the Appendix. However, a

summary of the various steps leading to the results ofthe

next chapter should be of value at this time.

The state-space representation of the system was developed

in Chapter III and specialized for a surface ship moving with

three degrees of freedom. Theoretically, this leads to at

least nine primary state variables (x, y ,*, u, v, r,u

v, r, * *) which could be measured during a particular

maneuver. In reality this is not the case. Some of these

variables can not be recorded at all during full-scale

trials, while others require special devises not normally

available on-board ship during maneuvers. Those variables

which could be readily recorded by traditional methods are

yaw velocity, r, and angle, *, along with the sway acceleration

;, actually (V + ru0) * A general program dealing with nine

primary state variables was developed, but most of the

identification studies deal with these three variables -

r, *, and V. Indirectly, the -sway velocity, v, was also

incorporated. Use of an integrating accelerometer on-board

shp, while not permitting direct measurement of v, would

give an indirect record of the sway velocity which could be

used in the identification by the filter. Thus, for this
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study the state vector is defined as,

'v

r

There may be a problem arising from the dependence of v upon

the measured acceleration, ;, though in this study it did not

become readily apparent.

Equations for each of the primary state variables can

be derived from eq. (4.7) - v directly from the definition

and v,r and f from the integration of their respective

equations.

2

r = vdt

ti

r = Irdt
t1

t2

S= fr d t

Using these state variables, the remaining steps in the

identification process can be summarized as in Table 4-1.
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For this study, the noisy data had to be generated within

the program itself before it could be processed.

STEP 1: Generate the noisy sea-trial data,

B(t)x + w

z Hx + v

STEP 2: Propagate the estimated state and error

covariance matrices over one time step,

x=B~t)x
^9 A

z = iMx-m H

* T
E=BE + EB + Q

STEP 3: Calculate the Kalman filter gain matrix,

K = EHT (HEHT + R)"

STEP 4: Update the estimated state and error

covariance matrices at the end of the step,

2' = x + K (z - z )

El = E - KHE

STEP 5: Set the updated state and error covariance

matrices as the new estimates and repeat

STEPS 2 through 5 until the end of the

identification process.

Table 4-1 Summary of the Computation Steps



Chapter V

RESULTS OF THE IDENTIFICATION PROCESS

The application of the theory developed in Chapters II

and III to the problem of identifying the coefficients for

a Mariner-class surface vessel was shown in the last chapter.

The equations for the extended Kalman filter were given in

Table 4-1 as steps of a procedure for their computation.

What remains is for the theory to be tested on the system

and see if indeed this technique for systems identification

is valid under the given conditions.

A program was deloped to do these tasks using the MIT

IBM 370/168. It is listed in the Appendix, along with a

detailed description of it's use and function. The reader

is referred to this section for those details. However, a

few brief points are in order at this time.

An attempt was made to keep the program as general as

possible, requiring only a change in the input to enact

wholesale alterations in the structure of the identification.

For the most part, this was accomplished. There remains

some card shifting to enable the user to select different

measured state variables, but for choices in coefficients

identified, trial types and lengths and the like, only a

variation in the data deck is necessary.

52
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There are a multitude of different control combinations

which may be employed in the identification process. This

is simultaneously a blessing and a curse. The results depend

on the judicious choice of trial conditions. The identifi-

cation of a certain coefficient may be attained with good

results under one set of conditions, but with totally negative

results under different circumstances. Fortunately, there

are so many conditions under which a trial may be run that

it is possible to mix and match until a certain combination

gives the desired results.

This plethora of choices makes a final verdict on the

identification difficult. Most of the work done for this

project was devoted to developing the computer program. Very

little actual analysis could be completed. Therefore,

to say that, based upon the sample of results given here,

identification is either good or bad is unrealistic. The

best set of operating conditions were not examined.

The raison d'Aetre for this chapter is simply to show

the possibilities and capabilities of the program, no more.

Trends may be observed. Hopefully, these will be of help

later in developing a detailed analysis useful in designing

full-scale trials. Again, however, it should be emphasized

that these results are neither representative nor optimal.

They are simply the results for the given set of conditions

under which the system operated.

What are these trial conditions which may be system-



atically altered? A partial list, some of which will later

be illustrated, include:

i) Variation in the uncertainty or noise term,

measurement and/or process noise

ii) Variation in what the filter is told concerning

the amount of noise (noise exaggeration)

iii) Estimates of the coefficient values and the

standard deviations of those estimates

iv) The number of coefficients processed at one

time, as well as their combination

v) The number and characteristics of the measured

primary state variables

vi) The type and magnitude of maneuver

vii) The length of the period of observation

viii) The time increment between observations

ix) Second and third generation identifications

x) Flexibility in using results of sets of

maneuvers, each identifying those coefficients

for which it is best suited.

Obviously, the choices are many. To best observe the

capabilities of this technique, all the above possibilities
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should be explored systematically. Neither time nor finances

permitted doing so for this study. Consequently, it was

decided to simply show some results and possibly indicate

some trends and/or difficulties in using the program.

An attempt was made to keep all conditions, save one,

equal during each trial. In each case, only four coefficients

were studied.

Yv (6), (Yr - mu) (7), Nv (12), (Nr - rxGu) (13)

These were chosen because they represent the coefficients

used in determining the criteria for dynamic stability in

straight line motion (see Chapter I). They are four of

the most critical coefficients. Being able to successfully

identify these would be a measure of the overall success

of this technique.

Additionally, for each case the noise level was kept

constant for both the process and measurement noise. When

reference is made to 5% noise level, both measurement and

process noise are at 5%.

It was felt that identification to within 10% of the

true value could be classified as successful. This

specification was used in anysing the following results.
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5.1 A Typical Identification (Control)

The best results were found to occur when a sinusoidal

rudder deflection of 100 was used in conjunction with the

four measured primary state variable - v, r, and v. This

run is an illustration of these results. The conditions

under which it ran, namely 5% noise, 376 second trial, no

noise exaggeration and four primary state variables, are the

controlling cases for the runs which follow. For some

however, more than one condition had to be varied. In most

runs, the time increment was one second. In this case, the

increment had to be increased to two seconds. For smaller

increments the filter became unstable.

As can be seen, the results are really quite impressive,

with all identifications to within 2% of the accepted true

value, except for Y. at a respectable 6% .
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*

* PARAMETRIC IDENTIFICATICN - EXTENDEC KALMAN FILTER *

SYSTEM: MARINER-CLASS SURFACE VESSEL

MANEUVER: ZIG-ZAG, WITH SINUSCIDAL RUCCER
DEFLECTIONS OF PERIOD 200.0 SECONDS AND
MAXIMUM DEFLECTICNS CF 10.0 DECREES

NOISE LEVEL: MEASUREMENT NOISE - 5%

PROCESS NOISE - 5%

EXAGGERATED NOISE FACTOR: I .

TRIAL PERIOD: 376 SECONDS

TIME STEP: 2.0 SECONDS

NUMBER OF PRIMARY STATE VARIABLES:

NUMBER OF COEFFICIENTS IDENTIFIED:

(NCN-LINEAR MODEL)

Table 5-la Conditions for the Typical Identification

4

4
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NP 13 TRUE VALUE =

sv -%I * 22752D+10 + CR

FV -C*33036E+10 + CP

-Oo32510E+10

C*G1581D+Cg

Co67285E+08

(Nft mx U)J. G

IDENTIFTCATION WITHIN lo627 CF ThE TRIOE VALUE*

NP 12 TRUE VALUE

sv -0968414D+C7 + CR

FV -0*964C8E+fs7 + OR

-Co97735E+C7

C*291021D+C7

Co27363E+06

N

IDENTTFICATION WITHTN 1*36% OF THE TRUE VALUE.

NP

's V

FV

7 TRUE VALUE

-0*12955D+C8 + OR

-Ool8497E+08 + OR

-0*185C8E+CE

Co5-cOc#250+C7

0926818E+C6

(Yr m mu)

IDENTIFICATI0N WITHIN 0*06% OF THE TRUE VALUES

N P

S V

F V

6 TRUE VALUF

-0&570600+05 + 0, R

-0*76791E+C5 + CR

-0*81515E+05

Co24454D+C5

C*13076E+04

y

I DENT IF IC AT ION Wl THT N 5979% OF THE TRUE VALUES

Table 5-1b Coef f ic ient Identif ication for the Typical Case



5.2 Variation in the Maximum Rudder Deflection

The magnitude of the maximum rudder deflection for the

same sinusoidal zig-zag maneuver was increased to a strongly

non-linear 350. The time step had to be increased to two

seconds as before, for filter stability. The identification

was successful for Nv and (Nr - mxGu) only. The remaining

two coefficients were not determined. It should be noted

that the identification process zeroed in on a value for each

coefficient, even though for Yv and (Yr - mu) that value was

incorrect. This consequently was shown as undeserved

confidence in the values as shown by the final standard

deviations.

The motion trajectories are seen to be well defined

after filtering. This, in conjunction with the poor

identification of Yv and (Yr - mu) implies that these two

coefficients do not overly affect the ship's motions. The

result of this is the inability of the filter to operate

successfully under these conditions.
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~t****************************t******************* ******4 *

**
* PARAMETRIC IDENTIFICATIWN - EXTENDED KALMAN FILTER *
* *

SYSTEM: PARINER-CLASS SURFACE VESSEL

MANEUVER: ZIG-ZAG, WITH SINUSOICAL RUDDER
DEFLECTICNS OF FERIOD 200.0 SECONDS AND
MAXIMUM DEFLECTIONS OF 35.0 DEGREES

NOISE LEVEL: MEASUREPENT NOISE - 5%

PROCESS NCISE - 5%

EXAGGERATED NOISE FACTCP: 1.0

TRIAL PERIOD: 376 SECCNDS

TIME STEP: 2.0 SECCNDS

NUMBER OF PRIMARY STATE VARIABLES:

NUMBER OF COEFFICIENTS IDENTIFIED:

(NON-LINEAR MCDEL)

Table 5-2a Conditions for the Variation in Rudder Deflection

Li

4
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NP = 13 TRUE VALUE =

SV = -0.22752D+10 + OR -

FV = -0.33229E+10 + CR -

-0.3 250ICE+10

0.975810+09

0.60134E+08

(Nr -mxGu)

IDENTIFICATION WITHIN 2.21% OF TPE TRUE VALUE.

NP = 12 TRUE VALUE =

SV = -0.684140+07 + CR -

FV = -0.91301E+07 + CR -

-0.97735E+C7

0.293210+07

0.22CC5E+UE

IDENTIFICATION WITHIN 6.581 OF THE TRUE VALUE.

7 TRUE VALUE =

-0.12955D+08 + CR -

-0.14113E+08 + CR -

-o .E5C8E+CE

C.555250+07

0.23044E+06

(Yr - mu)

IDENTIFICATION WITHIN 23.75% OF THE TRUE VALUE.

6 TRUE VALUE =

-0.57060D+05 + OR -

-0.64299E+05 + CR -

-0.81515E+05

C.24454D+05

0.92124E+03

IDENTIFICATICN WITHIN 21.12% CF THE TRUE VALUE.

Table 5-21 Coefficient Identification for the Variation
in Maximum Rudder Deflection

N

NP =

SV

FV

NP =

SV =

FV =

Y
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5.3 Variation in the Trial Length

One of the important aspects of any maneuver is the

length of the trial over which observations are taken. This

case is an investigation of that variable condition. For

this run, the two second time increment was continued for a

752 second period. Twice as many observations and therefore

twice as many revaluations were made as before. The results

are essentially the same as before for Nv and (Nr - MXGu),

but are substantially worse for the remaining coefficients.

This trial is basically two trials, one after the other.

It probably could be considered similar to a second generation

identification. After 376 seconds, the filter works on the

new estimates with the newly derived error covariance matrix.

The trial does not change, being a sinusoidal function of

time. However, looking at the values at t= 376, they do not

appear to correspond with those given in the previous trial

over 376 seconds under the same conditions.

The lengthening of the trial is felt to be more appro-

priate to those maneuvers such as the step zig-zag trial

where the maneuver over the second half of the trial is

different from that of the first half. In this way, two

aspects could be studied, the large variation identification

followed by the steady state identification. Results under

these conditions may be more useful.
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PARAPETRIC ICENTIFICATICN EXTENCEE KALPAN FILTER

SYSTEP: MARINER-CLAS.S. I.SURFACE VESSEL

PANELVER: ZIG-ZAG, 10TH SINUl"SOCICAL RUCCER
CEFLECTICNS CF PERICO 2CC.C SECONC'r - ANE
IVAXIPUP, CEFLECTICNS CF lCoC CEGREES

NCISE LEVEL: MEASLREMENT NCISE - 5%

PPCCES.S NCISE 5%

EXAGGERATED NCISE FACTCR: I *

752 SECCNESTRIAL PERICE:

TIVE STEP: 2*0 SECCKCS

KUPEER CF PRIVARY STATE VtRIAeLESO

KUPEER CF CUFFICIENTS IDENTIFIED:

(KCIN-LINEAR MCCEL)

0

Table 5aw3a Conditions for the Variation in Trial Length
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NP 13 TRUE VALLE

sv -Oo22752C+10 4 CR

FV -Cal02SgCE+IC + OR

-Co3251CE+IC

C o971.1108IC4C'g

Co5C136E+C8

r am mx G U)

ICEN11FICATION WITI-IN 1*487 (F TFE TRUE VALUEO

NP 12 TRUE VALUE

-Oo68414E+07 CR

FV -CoICC28E+Ce + OR

-C *97730 QE+07

Co2S32JC407

C*21182E+C6

N

ICENIIFICATION WIIHIN 2*60% CF TFE TRUE VALUEO

N P

FV

TRUE VALLE -dw

-Ool2955E+08 + CR

-C*16625E+C8 + OR

-C*IE5CeE+CE

0*55525C+07

C*25196E+C6

mu)

ICEN71FICATICK WITHIN lOol8% CF TI-E TRUE VALUE*

NP

FV

TRUE VALLE

-0*57060C+05 + CR

-Cs68C98E+C5 + OR

8 15 15 E + C 5

0*24454C405

ColICCeE+C4

Yv

ICENTIFICATION WITHIN 16*46% CF TFE TRUE VALUEe

Table 5 3b Coeff icient Identification for the Variation
in Trial Length



71

5.4 Variation in the Time Increment

It had originally been felt that an increase in accuracy

by the filter would occur directly in proportion to the number

of observations used in the process. The result illustrated

by this case was therefore somewhat surprizing. Only 94

observations on the system were made, with a full four seconds

between points. Yet, the results are on the average as good

or better than those using twice the number of observations.

Two to three percent is excellent and was observed for each

coefficient except Nv, which was even better at less than

one percent off the accepted true value. Even more encour-

aging is the appearance of the filtered states for each of

the primary state variables. The plot for v does not have

the characteristic deviation around 100 seconds which was

seen on several other trials.

An added benefit from this observation is the substantial

savings in computer time and therefore dollars. Only a

quarter of the calculations need be made as from the one

second trials.
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*********************** **** *************** ******* 4******
* *
* PARAMETRIC IDENTIFICATION - EXTENDED KALMAN FILTER *

SYSTEM: MARINER-CLASS SURFACE VESSEL

MANEUVER: ZIG-ZAG, WITH SINUSOICAL RUDDER
DEFLECTIONS OF PERICD 200.0 SECONDS AND
MAXIMUM DEFLECTIONS OF 10.0 DEGREES

NOISE LEVEL: MEASUREMENT NOISE - 5%

PROCESS NOISE - 5%

EXAGGERATED NOISE FACTOR: 1.0

TRIAL PERIOD: 376 SECCNDS

TIME STEP: 4.0 SECONCS

NUMBER OF PRIMARY STATE VARIABLES:

NUMBER OF COEFFICIENTS IDENTIFIED:

(NCN-LINEAR POEL)

Table.5-4a Conditions for the Variation in Time Increment

4

4t
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-0932510E+10

0*91581D+09

OoS7594E+C8

NP 13 TRUE VALUE -00

sv -0m22752D+10 + OR

FV -Oo3l749E+10 + OR

mx G U)

11DENTIFICATTON WITHIN 2,m34% OF TFE TRUE VALUEs

NP 12 TRUE VALUE =

sv -Oo68414D+07 + CR

FV -0*96934E+07 + OR

-Oog7l35E+C7

0*29321C+07

C,942230E*Cfz

N

IDENTIFICATION WITHIN Oo82% OF TFE TRUE VALUE*

7 TRUE VALUE =

-0*12955D+C8 + OR

-09179C8E+08 + OR

-0016509E+CE

0*55525D+07

0*62208E+C6

NP

S IV

F V

(Yr m mu)

ICENTIFICATION WITHTN 3e24% OF TPE TRUE VALUE*

-0081515E+c5

0*24454D+05

Oo28920E+04

NP

SV

FV

TRUE VALUE =

-Oo57060D+05 + OR

-Oo83280E+05 + OR

IDENTIFICATION WITHIN 29171 OF TPE TRUE VALUE*

Table 5,,=4b Coefficient Identification for the Variation0
in Time Increment
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5.5 Variation in the Number of Observed Primary State

Variables

Occasionally, it may be necessary to alter the number

of measured motion parameters. It may not be possible to use

the integrating accelerometer, or possibly only r and 4 can

be measured under the operating conditions of the trial.

For this run it was assumed that vs could not be attained.

The measured variables are therefore decreased to three in

number - v, r and *.

As expected, the results are not as accurate as those

obtained when there was more information fed into the filter.

Still,'all coefficients are in the range of being classified

as identified. Except for (Yr - mu), the difference in

accuracy is approximately a factor of two. For (Yr - mu)

the identification was substantially diminished for no other

reason than the fact that in the original case, the coefficient

was fully identified.
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* *

* PARAMETRIC IDENTIFICATION - EXTENDED KALMAN FILTER *
* *

SYSTEM: MARINER-CLASS SURFACE VESSEL

MANEUVER: ZIG-ZAG, WITH SINUSOIDAL RUDDER
DEFLECTIONS OF PERIOD 200.0 SECONDS AND
MAXIMUM DEFLECTIONS OF i0oU DEGREES

NOISE LEVEL: MEASUREMENT NOISE - 5%

PROCESS NOISE - 5%

EXAGGERATED NOISE FACTOR: 13

TRIAL PERIOD: 376 SECONDS

TIME STEP: 1.0 SECONDS

NUMBER OF PRIMARY STATE VARIABLES:

NUMBER OF COEFFICIENTS IDENTIFIED:

3

4

(NON-LINEAR MODEL)

Table 5-5a Conditions for the Variation in the Number of
Measured Primary State Variables
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NP = 13 TRUE VALUE =

SV = -0.22752D+10 + OR -

FV = -O.30754E+10 + OR -

-0.32510E+10

0.97581D+09

0.42554E+08

(Nr - ImxGU)

ICENTIFICATION WITHIN 5.40% OF THE TRUE VALUE.

NP = 12 TRUE VALUE =

SV = -0.68414D+07 + OR -

FV = -0.92879E+07 + OR -

-0.97735E+07

0.2932 1D+07

0.21235E+06

IDENTIFICATION WITHIN 4o97% OF THE TRUE VALUE.

NP = 7 TRUE VALUE =

SV -0.129550+18 + OR -

FV = -0017107E+08 + OR -

-0.18508E+08

0.55525D+07

0.33004E+06

IDENTIFICATION WITHIN 7.57% OF THE TRUE VALUE.

6 TRUE VALUE =

-0.57060D+05 + OR -

-0.73271E+05 + OR -

-0.81515E+05

f.)24454D+05

0.19199E+04

IDENTIFICATION WITHIN 10.11% OF THE TRUE VALUE.

Table 5-5b Coefficient Identification for the Variation
in the Number of Measured State Variables

y

(Yr - mu)

NP =

SV =

FV =



5.6 Variation in the Maneuver

As discussed earlier, one is not limited to the sinusoidal

zig-zag maneuver in the identification trial. Any number of

different maneuvers can be developed, many already in current

use. Two are shown here. These are the single-step rudder

rudder deflection and the zig-zag maneuver with step rudder

deflections. A discussion of the characteristics of each

trial is given in Chapter IV. As indicated, v cannot be one

of the measured variables for the case of the step zig-zag

deflections. For this reason it was decided to continue the

policy of the last case, inputing values of v, r and * only

to the filtering process. The results are best compared to

the previous case where the sinusoidal maneuver is used,

again measuring but three motion parameters.

The zig-zag step deflection is seen to give results s

similar to the sinusoidal case. The value of (Yr - mu)

improved by several percentage points, while that of N was

much worse. The filter again seems to have settled down

after 200 seconds to a particular value. A high degree of

confidence in that value is shown, even though it is not as

accurate as might be expected. It should be noted that after

200 seconds the maneuver settles down to a steady state and

no longer inputs a variation in the motion to the filter.

The case of the single step deflection is disappointing.

There was no identification at all. In the case of the co-
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efficient (Y - mu), the final value was even worse than the

initial estimate. The identification process for N and Yv

settles down to a final value very quickly, after just 75

seconds. Again, it is at this point that the velocity has

reached it's steady state value. There is no further

variation in v over the rest of the period.
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*************** ********* *********************** ******

* *

PARAMETRIC IDENTIFICATION - EXTENDED KALMAN FILTER *
* *

SYSTEM: MARINER-CLASS SURFACE VESSEL

MANEUVER: ZIG-ZAGWITH STEP RUDDER
DEFLECTIONS OF 10.0 DEGREES AT
TIME T=100 AND T=200 SECONDS

NOISE LEVEL: MEASUREMENT NOISE - 5%

PROCESS NOISE - 5%

EXAGGERATED NOISE FACTOR: 1.0

TRIAL PERIOD: 376 SECJNDS

TIME STEP: 1.0 SECONDS

NUMBER OF PRIMARY STATE VARIABLES:

NUMBER OF COEFFICIENTS IDENTIFIED:

3

4

(NON-LINEAR MODEL)

Table 5-6a Conditions for the Variation in Maneuver
(Zig-zag Step Rudder Deflection)
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NP = 13 TRUE VALUE =

SV = -0.22752D+10 + OR -

FV = -0.30418E+10 + OR -.

-0.32510E+10

0.97581D+09

0.55280E+08

(Nr - mxGU)

IDENTIFICATION WITHIN 6.43% OF THE TRUE VALUE.

NP = 12 TRUE VALUE =

SV = -0.68414D+07 + OR -

FV = -U.85771E+07 + OR -

-0.97735E+07

0.293210+07

0.34697E+06

IDENTIFICATION WITHIN 12.24% OF THE TRUE VALUE.

NP = 7 TRUE VALUE

SV = -0.12955D+08 + OR -

FV = -0.17090E+08 + OR -

-0.18508E+08

0.55525D+07

0.32648E+06

(Y - mu)

IDENTIFICATION WITHIN 7.66% OF THE TRUE VALUE.

NP = 6 TRUE VALUE =

SV = -0.570600+05 + OR -

FV = -0074825E+05 + OR -

-0.81515E+05

0*244540+05

0.39778E+04

IDENTIFICATION WITHIN 8.21% OF THE TRUE VALUE.

Table 5-6b Coefficient Identification for the Variation
in Maneuver

(Zig-Zag Step Rudder Deflection)

N

y
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* *
* PARAMETRIC IDENTIFICATION - EXTENDED KALMAN FILTER *
* *

SYSTEM: MARINER-CLASS SURFACE VESSEL

MANEUVER: STEP RUDDER DEFLECTION A T=O
MAXIMUM DEFLECTION OF 10.0 DEGREES

NOISE LEVEL: MEASUREMENT NOISE -

PROCESS NOISE - 5%

EXAGGERATED NOISE FACTOR: 1.0

TRIAL PERIOD: 376 SECONDS

TIME STEP: 1.0 SECONDS

NUMBER CF PRIMARY STATE VARIABLES:

NUMBER OF CCEFFICIENTS IDENTIFIED:

3

4

(NCN-LINEAR MODEL)

Table 5-6c Conditions for the Variation in Maneuver
(Single-Step Rudder Deflection)

5%
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NP = 13 TRUE VALUE =

SV = -0.22752D+10 + OR -

FV = -0.23889E+10 + OR -

-0. 32510E+10

0097581D+09

0.66537E+09

(Nr - IGU)

IDENTIFICATION WITHIN 26.52% OF THE TRUE VALUE.

NP = 12 TRUE VALUE =

SV = -0.68414D+07 + OR -

FV = -0.72667E+07 + OR -

-0.97735E+07

0.29321D+07

0.19934E+07

IDENTIFICATION WITHIN 25.65% OF THE TRUE VALUE.

NP = 7 TRUE VALUE =

SV = -0.12955D+08 + OR -

FV = -0.1178SE+08 + OR

-0.18508E+08

0.555250+07

0.47030E+07

IDENTIFICATION WITHIN 36.30% OF THE TRUE VALUE.

6 TRUE VALUE =

-0.57060D+05 + OR -

-0059769E+05 + OR -

-0.81515E+05

0.24454D+05

0.99413E+04

IDENTIFICATION WITHIN 26.68% OF THE TRUE VALUE.

Table 5-6d Coefficient Identification for the Variation
in Maneuver

(Single-Step Rudder Deflection)

N

(Yr - mu)

NP =

SV =

FV

yv
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5.7 Variation in the Noise Level

This run was made to see how the filter would react to

large quantities of noise (25%) in the measured input. For

the most part, these results are encouraging. All coefficients

were identified except one, NV, and the identification of Yv

and (Yr - mu) is as good as that determined under low noise

conditions. Seeing the amount of scatter in the measured

data, it is remarkable that any accuracy, much less good

identification, can take place. More noise was not run

since that did not seem realistic; lesser quantities should

exhibit the same results.

It will be seen that these values may be improved upon

by resubmitting the final estimate to the filter and re-

processing the information.
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* *
* PARAMETRIC IDENTIFICATION - EXTENDED KAL!AN FILTER *
* *
* **** ** ***** *** *** ***** **** ************** ** *******

SYSTEM: MARINER-CLASS SURFACE VESSEL

MANEUVER: ZIG-ZAG,. WITH SINUSOIDAL RUDDER
DEFLECTICNS OF PERIOD 20C.0 SECCNDS AND
MAXIMUM DEFLECTIONS OF 10.0 DEGREES

NOISE LEVEL: MEASUREMENT NOISE - 25%

PROCESS NOISE - 25%

EXAGGERATED NOISE FACTOR: 1.0

TRIAL PERIOD: 376 SECONDS

TIME STEP: 1.0 SECONDS

NUMBER OF PRIMARY STATE VARIABLES:

NUMBER OF COEFFICIENTS IDENTIFIED:

(NCN-LINEAR MODEL)

Table 5-?a Conditions for the Variation in Noise Level

4

4
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NP = 13 TRUE VALUE =

SV = -0.227520+10 + OR -

FV = -0.29581E+10 + OR -

-0.32510E+10

0.97581D+09

0.176.36E+09

(Nr - xGU)

ICENTIFICATION WITHIN 9.01% OF THE TRUE VALUE.

NP = 12 TRUE VALUE =

SV = -0.684140+07 + OR -

FV = -0.79114E+07 + OR -

-0.97735E+07

0.2932 ID+07

0.71233E+06

IDENTIFICATION WITHIN 19.05% OF THE TRUE VALUE.

7 TRUE VALUE =

-0.12955D+)8 + OR -

-0.18142E+08 + OR -

-0.18508E+08

0.555250+07

0.71847E+06

ICENTIFICATION WITHIN 1.98% OF THE TRUE VALUE.

6 TRUE VALUE =

-0.57C600+05 * OR -

-0.86228E+05 + OR -

-0.81515E+05

0.24454D+05

0.31166E+04

IOENTIFICATION WITHIN 5.78% OF THE TRUE VALUE.

Table 5-7b Coefficient Identification for the Variation
in Noise Level

N

NP =

SV =

FV =

r - mu)

NP =

SV =

FV =

y
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5.8 2ed Generation Identification

One of the hoped-for capabilities of this system was

that, even if the identification over the original pass was

not as good as expected, the data could be resubmitted and

processed again using the new estimates.

This run was the test of that hypothesis. The data

obtained from the 25% noise run was resubmitted. Each

coefficient except one showed an increase in accuracy. The

remaining coeficient, (Yr - mu), had been identified to within

two percent on the previous pass. It should be noted that

Y is essentially equivalent, percentage-wise, after the

second pass to the first value. Apparently, the improved

identification will take place only if first pass yields

results more than five percent off the true value. If the

identification is within five percent, the filter will become

unstable and inaccuracy results. At any rate, this does

indicate that the coefficient values can be re-evaluated.

As seen here, after two passes the results from a 25% noise

level can be made to within five or ten percent of their

true values. This should be valuable for future

considerations.



97

*********************** *** **

* PARAMETRIC IDENTIFICATICN - EXTENDED KALfAN FILTER *
* *
******************************************** ************

SYSTEM: MARINER-CLASS SURFACE VESSEL

MANEUVER: ZIG-ZAG1 WITH SINUSOIDAL RUDDER
CEFLECTIONS OF PERIOD 20C.0 SECONDS AND
NAXIMUM DEFLECTIONS OF 10.0 DEGREES

NOISE LEVEL: MEASUREMENT NOISE - 25%

PROCESS NOISE - 25%

EXAGGERATED NCISE FACTOR: 1.0

TRIAL PERIOD: 376 SECONDS

TIME STEP: 1.0 SECCNOS

NUMBER OF PRIMARY STATE VARIABLES:

NUMBER OF COEFFICIENTS IDENTIFIED:

(NCN-LINEAR MODEL)

Table 5-8a Conditions for the Second-Generation Identification

It

it
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NP = 13 TRUE VALUE =o

SV = -0.29581D+10 + OR -

FV = -0.30434E+10 + OR -

-0.32510E+10

0.1763 6D+09

0.10937E+09

(Nr a mxGu)

IDENTIFICATION WITHIN 6.39% OF THE TRUE VALUE.

NP = 12 TRUE VALUE =

SV = -0.791140+07 + OR -

FV = -C.90214E+07 + OR -

-0.97735E+07

0.19000D+07

0.50969E+06

IDENTIFICATION WITHIN 7.702 OF THE TRUE VALUE.

7 TRUE VALUE =

-0.18142D+08 + OR -

-0.16524E+08 + OR -

-0.18508E+08

0.71847D+06

0.48812E+06

(Yr - mu)

IDENTIFICATION WITHIN 10.72% OF THE TRUE VALUE.

6 TRUE VALUE =

-0.86228D+05 + OR -

-0.77134E+05 + OR -

-0.81515E+05

0.3176D+04

0.22458E+04

ICENTIFICATION WITHIN 5.37% OF THE TRUE VALUE.

Table 5-Sb Coefficient Identification for the Second-
Generation Identification

N

NP =

SV =

FV =

NP =

SV =

FV =

YV
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5.9 Noire Exaggeration

Similar to introducing large noise values in the input

data is the exaggeration of that level of noise present, be

it high or low. This type of variation probably should be

reserved for special situations. With the case given here,

other cases were run using normal maneuvers with a one second

time step and no exaggeration. As stated earlier, the filter

became unstable for these runs and no identification was

possible. However, it is seen here that by telling the filter

that the noise level was higher than it actually was (25 times),

some results were obtained. Granted, they are not very good,

but compared to the case without exaggeration, namely no

results, they are a substantial improvement.

A similar situation occurred when the noise level was

very low (1%). By telling the filter that more noise is

present than is actually the case, it remains stable and the

identification process proceeds to completion.

Having a factor of 25 is probably excessive. A smaller

factor of five or so should do the job just as adequately

while not affecting the realism of the situation.
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* *

* PARAMETRIC IDENTIFICATION - EXTENDED KALMAN FILTER *
* *

SYSTEM: MARINER-CLASS SURFACE VESSEL

MANEUVER: ZIG-ZAG, WITH SINUSOICAL RUDDER
DEFLECTIONS OF PERIOD 200.0 SECONDS AND.
MAXIMUM DEFLECTIONS OF 10.0 DEGREES

NOISE LEVEL: MEASUREMENT NOISE - 51

PROCESS NOISE - 5%

EXAGGERATED NOISE FACTOR: 25.0

TRIAL PERIOD: 376 SECCNDS

TIME STEP: 1.0 SECCNDS

NUMBER OF PRIMARY STATE VARIABLES:

NUMBER OF COEFFICIENTS IDENTIFIED:

(NON-LINEAR MCDEL)

Table 5-9a Conditions for the Variation in NoiseExaggeration

4

4
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NP 13 TRUE VALUE =

SV = -0.22752D+10 + OR -

FV = -0.28711E+10 + OR -

-0.32510E+10

0.975810+0g

0.15690E+09

(Nr -MXGU)

IDENTIFICATION WITHIN 11.69% OF THE TRUE VALUE.

NP = 12 TRUE VALUE =

SV = -0.68414D+07 + OR -

FV = -0.78529E+07 + OR -

-0.97735E+07

0.29321D+07

0.7381E+C6

IDENTIFICATION WITHIN 19.65% OF THE TRUE VALUE.

7 TRUE VALUE =

-0.129550+08 + OR -

-0.17238E+08 + OR -

-C.18508E+C8

0.555250+07

0.62796E+06

ICENTIFICATION WITHIN 6.86% OF THE TRUE VALUE.

6 TRUE VALUE =

-0.570600+05 + OR -

-0.76117E+05 + OR -

-C.81515E+05

0.24454D+05

0.32170E+04

IDENTIFICATION WITHIN 6.622 OF TFE TRUE VALUE.

Table 5-9b Coefficient Identification for the Variation
in Noise Exaggeration

NP =

SV =

FV =

(Yr -mu)

NP =

SV =

FV =

y,



Chapter VI

SUMMARY AND CONCLUSIONS

This study was concerned with the application of a

particular technique in systems identification to ship man-

euvering analysis and ultimately to ship design.

The technique used here was an extension of the Kalman

statistical filter. Statistical filtering is a powerful

method of systems identification which provides estimates on

the state of the system based on both statistical and phys-

ical properties of that system. Kalman developed an optimum

linear filter to be used in the identification of linear

systems. Brock showed how this linear derivtion could be

extended -, the non-linear case. It was this non-linear

extension of Kalman's filter that was used in this work.

The specific system under consideration was a surface

vessel operating in the horizontal plane without roll, with

particular application to the Mariner-class hull form.

The model used for describing systems of this type was dev-

eloped by Abkowitz as an extension of Newton's Laws of Motion

using the vector calculus, and an expansion of the hydrodynamic

forces present into a Taylor series. This resulted in a set

of partial differential equations describing each motion

component of the ship. The general structure of these equations

1Q6
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is specified for all systems; the coefficients to these

equations are determined by the type of system under obser-

vation.

The problem statement for this thesis concerned the

identification of these constant coefficients, given the gen-

eral structure of the equations describing the motions of the

system, and noisy recorded responses for the system under

maneuvering.

Traditional methods exist for identifying the hydro-

dynamic coefficients, Primarily these consist of either

specification from hydrostatic and hydrodynamic theory, or

estimation from model tests done in the towing tank. Theory

is capable of calculating only a few of the coefficients.

Model tests, because of scale effects inherent to this type

of testing, are incapable of accurately determining all co-

efficient values, particularly the non-linear terms.

By applying the systems identification methodology

described here to the Mariner-class vessel, very good results

were obtained for the identification of the hydrodynamic co-

efficients, For numerous cases, under a variety of conditions,

results to within at least 10 % of the accepted values were
obtained. By carefully specifying the conditions under which

the maneuver was run and the filter activated, the estimates

to the coefficient values were within 1%V- 2%of their true

values.

The conditions to be used in a maneuver and the subsequent

filtering of the noisy data have a very strong effect upon
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the final results in the identification. Thus, in this study

it was shown that essentially no identification resulted from

running the simulated trial with a single-step rudder deflection.

However, by changing to a sinusoidal rudder deflection, keeping

all other conditions constant resulted in excellent accuracy

for the identification.

A discussion of the pertinent results appears in Chapter V.

However, several of the more important observations shall be

repeated.

For the limited analysis given here, it was found that

the sinusoidal maneuver gave the consistently better results.

This verifies the result suggested by Hayes, who felt that the

best period of the sinusoidal maneuver was one which approx-

imated the "natural frequency" of the system.

It was noted that the filter is able to operate with

reasonable success under large (25%) amounts of noise in the

data. This is encouraging as it indicates the strength of the

method operating under adverse experimental conditions.

The ability to repeat the filtering process on previously

updated estimates, with an increase in accuracy, was shown.

In conjunction with the filter's ability to operate on very

noisy data, improving the noisy estimates, this presents a

very powerful tool for the naval architect analyst. Once

having the noisy data on tape, he is able to reprocess the data

numerous times, under a variety of different conditions. By

so doing, it becomes a simple matter of observing that value

which is most frequently and with the highest degree of
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confidence attained, and thus most probably the best estimate

for that coefficient.

The work done on this project centered about the develop-

ment of the computer program listed in the Appendix, applying

the Kalman filtering technique to an arbitrary system. The

program was designed to be general enough to handle many dif-

ferent situations. No known bugs are in the identification

program as given here. Some difficulty was encountered in

operating on eight coefficients at one time in preparing the

final runs for this paper. However, it was felt that this was

caused more by the choice of operating conditions and measured

state variables than from any fault in the algorithm.

Previous results, using u,v, and r, had shown the program to

be capable of operating with reasonable accuracy on any

number of chosen coefficients.

Which way now? There remains much to do on this project.

Initially, all the equations used here should be checked and

verified. A repetition of Brinati's preliminary analysis on

which coefficients to include in the model should also be done.

For this study, these results were accepted as they were and

not checked.

Once the program's structure has been verified, there

remains a detailed analysis of the different conditions under

which a trial should be run, determining what set of conditions

best suits the identification desired. Additionally, some

efforts should be spent to incorporate roll into the general

motion equations, giving the model a complete generality for
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most vessels operating in the horizontal plane.

Finally, an identification should be run on real data,

not thb simulated type used here. This would mean either

full-scale sea-trial data or model test results. A more

accurate picture of this system's true capabilities would

surface under realistic conditions such as these. The

method has been developed and shown to work with reasonably

good results on simulated noisy data. It remains to see how

well it can operate in various real situations, either in

design or operation.



Appendix A

PROGRAM DESCRIPTION

MAIN

Remarks:

MAIN is the primary calling routine of the identification

program. It serves three purposes. Initially, it inputs all

necessary data and specifies the format and type of most

variables used in the program. A detailed listing and des-

cription of the input data can be found in Appendix C.

Secondly, MAIN organizes the necessary data for later

use, initializing the variables and generating noisy sea-

trial responses. The necessary data is then fed into the

filter and processed.

In the end, MAIN specifies the output modes of the

filtered results, both graphically and tabular.

Notable Variables (MAIN):

LP - Actual number of elements within the extended

state vector

111
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SP - Maximum number of elements possible within the

extended state vector, assuming identification of

all coefficients

TS(N) - Time values for all measurements

IST(NO) - Starting values of the primary state variables

ICV(NO) - Estimated covariance of the starting values

of the primary state variables

ZV(N), ZR(N), ZPS(N), ZVD(N) - Measured noisy output of

the primary state variables generated in

subroutine RKL

VP(94), RP(94), PSP(94), VDP(94) - Filtered primary state

trajectories, for plotting

VEIV(94), VEIR(94), VPS(94), VVD(94) - Noisy primary state

trajectories, for plotting

PP1(94), FP2(94), * - Stored arrays of the coefficient

values as a function of time during the ident-

ification process, for plotting

Subroutines and Function Subprograms Required:

RKL, SETUP, FILTER, PLOTM, SHOMO, SHOCO, ABS
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SUBROUTINE SETUP

Remarks:

Subroutine SETUP is used to assign initial values to most

of the variables and matrices used in the filtering routine.

It also defines the noise covariance matrices, Q and R, while

introducing the exaggerated noise factors, if applicable.

This allows one to tell the filter that the amount of noise

in the measured data is higher than is actually the case.

The filter reacts accordingly and does not have as high a

degree of confidence in it's values. This prevents the filter

from zeroing in on a value for the coefficients as quickly

as it might. Especially for those cases with very low noise

magnitudes, this provides stability to the filter and more

valid results.

Areas of Interest:

(0174 - 0184) - The noise covariance values for the dif-

ferent state variables are defined as the

square of the desired standard deviation

of the additive noise. These covariances

are multiplied by the relavent exaggeration

factors.

Notable Variables (SETUP):

A(36) - True values of the hydrodynamic coefficients
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A1(36) - Estimated values of the hydrodynamic coefficients

ASD(36) - Estimated standard deviation of the estimated

coefficient values

PMS(2LP) - Standard deviation and mean of the noise

distribution for the individual state variables

IST(NO) - Starting values of the primary state variables

ICV(NO) - Estimated covariance of the starting values

of the primary state variables

XHT(SP) - Extended state vector

XBAR(SP) - Transfer vector for the extended state vector

EHT(SP,SP) - Error covariance matrix

HZ(NO,SP) - Measurement function

Q(LPLP) - Process noise covariance matrix

R(LPLP) - Measurement noise covariance matrix

PA1, PA2, * - True values of the coefficients

LP1, LP2, - Integer designation of the coefficients

to be identified

PW - Exaggeration factor, measurement noise

QW - Exaggeration factor, process noise
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Subroutines and Function Subprograms Required:

none

SUBROUTINE RKL

Remarks:

Subroutine RKL generates the noisy sea-trial motion

trajectories to be filtered i the identification process.

The motion equations were developed in the form

k = f(x, t) + w

The form of x can be determined by integration of x over

time. The method used in this work was the Runge-Kutta

th (9)4- order technique, a method similar in many respects

to Simpson's Rule.

k+1 k + ( + 2b 2 + 2b3 + b4 )

where,

kt * f[ tk)

2 At *r(xk +2 1 tk 1



b A *1 1
3 = At*f(xk + -20 k + -At)

b4 = At*f(xk+b
3, tk +At)

The integration of can thus be broken into four distinct

phases for each time step. New additive process noise values

are generated for each phase and added to the function which

is then used in the following phase. Noiseless values are

calculated for each phase to be used in calculating the time

derivatives of the state variables for the next phase. This

assures that the noise added will not be in excess of that

specified in the input. If not, the noise would accumulate

over each successive phase. The noise distribution at the

end of the trial would then be dependent upon the preceeding

values.

After the function has been integrated over each time

increment, the measurement noise for that step is generated

and added to the state value to be stored as the output

value of an imaginary measurement devise. To simulate the

use of the integrating accelerometer, the noisy acceleration

is integrated by a simple geometric method,

1 ..
Ik k+1 + I k + k+1

yielding the velocity. This is then given additional

measurement noise.

116
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Areas of Interest:

(0065 - 0068) - Generate process noise for the first phase

of the integration over the time step.

The generated noise will have a Gaussian

distribution and characteristics as

specified.

(0083 0086) - Calculate the noisy state variable values.

These will be averaged over the interval

and used as the actual output of the

period.

(0181 - 0185) - Generate the measurement noise as a

Gaussian distribution, with characteristics

as specified.

(0188 - 0195) - Calculate the noisy output of the measure-

ment devise,

z =x + v

Notable Variables (RKL):

ZV(N), ZR(N), ZPS(N), ZVD(N) - Measured noisy output of

the primary state variables

P(2LP) - Standard deviation and mean of the noise dis-

tribution for the individual state variables
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IN(LP) - Random odd integer values used in generating

random numbers by RANDU

U(t) - Rudder deflection at time t, 6(t)

DUD(t) - Time rate of change of the rudder deflection

at time t, 6(t)

DV - Incremental sway acceleration, v

DR - Incremental yaw acceleration, r

YV_, YR_, YPS_, YVD_ - Intermediate noisy state variables

YVN, YRJN, YPSN, YVD_N a Intermediate noisy state

variables

WL - Process noise, w

VL - Measurement noise, V

N - Number of increments (measurements, time steps) over

the entire period of observation

H - Time increment

NO - Number of primary state variables

Subroutines and Function Subprograms Required:

WNO, U, DUD, FNLV,.FNLR
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FUNCTION U

Remarks:

Function U specifies the rudder deflections as a function

of time, depending on the type of maneuver used in the trial.

U(t) = 6(t)

Areas of Interest:

(0016 - 0017) - Step rudder deflection,

(0021 - 0028) - Zig-zag rudder deflection ,

(0032 - 0034) - Sinusoidal rudder deflection,
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Notable Variables (U):

JJ - Integer specifying the type of maneuver:

1 - Step rudder deflection

2 - Zig-zag maneuver

3 - Sinusoidal maneuver

DI - Magnitude of the maximum rudder deflection in any

maneuver over the trial period

T - Time of observation

TL - Half-period of the sinusoidal deflection

Subroutines and Function Subprograms Required:

SIN

FUNCTION DUD

Remarks:

Function DUD calculates the time rate of change of the

rudder deflection.

DUD(t) = 6(t)

This is primarily used in those situations where the extended

state vector includes acceleration variables. For these cases,
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where subroutine EFNT1 calculates the matrix,

3 f(x,t)
B(LPLP) =

it is necessary to calculate the time rate of change for these

accelerations. It is here that the additional term, 5(t),

appears. (see EFNTi) It should be apparent that 6(t) need

be continuous over time, and therefore only rudder deflections

such as

6(t) = sin wt

can be implemented. Thus, the step rudder deflection (zig-

zag) with it's discontinuous function of 6 can not be used

in conjunction with the identification of any accelerations.

Subroutines and Function Subprograms Required:

COS

SUBROUTINE WNO

Remarks:

Subroutine WNO transfers the specified mean and standard

deviation for a desired noise level into subroutine GAUSS,
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It then returns the generated random Gaussian white noise to

the calling routine.

Notable Variables (WNO):

IN(LP) - Odd random integer values for use by RANDU in

generating a set of random numbers

AM - Desired mean noise level

S - Desired standard deviation of the Gaussian noise

P(2LP) - Mean and standard deviation for the noise

levels of those primary state variables used

in the extended state vector

W - Generated Gaussian white noise returned to the

calling routine

Subroutines and Function Subprograms Required:

GAUSS

SUBROUTINE GAUSS

Remarks:

Subroutine GAUSS is basically the same' as that offered

by the IBM Scientific Subroutine Package. It computes a
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normally distributed random number with the given mean and

standard deviation. Details on it's theory can be obtained

from the literature.(19)

Subroutines and Function Subprograms Required:

RANDU

SUBROUTINE RANDU

Remarks:

Subroutine RANDU computes a uniformily distributed

random number between 0.0 and 1.0 for use by subroutine GAUSS.

It also is part of the IBM Scientific Subroutine Package.

Subroutines and Function Subprograms Required:

none

FUNCTION FNLV and FUNCTION FNLR

Remarks:

Functions FNLV and FNLR calculate the sway and yaw

accelerations for the system at any time t.

= f(x,t)
r
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Notable Variables (FNLV, FNLR):

XV - Sway velocity, v

XR - Yaw velocity, r

U - Rudder deflection, 6

A(36) - Hydrodynamic coefficients of the motion equations

Subroutines and Function Subprograms Required:

none

SUBROUTINE SHOMO

Remarks:

Subroutine SHOMO is one of the options available for

showing the output of the identification data. It will call

certain CALCOMP routines, both standard and MIT supplied,

to plot the motion trajectories, noisy and filtered, as a

function of time. It also plots a zero line and prints a

key for the various plots. It is not internally adjustable

for variations in the input data, nor is it usable on all

systems. For this reason it will not be detailed. By

setting one of it's parameters, K, to one, the option may

be by-passed. It is strongly recommended that this routine

be used only for final reports, theses, etc., when it's
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increased accuracy and readability will compensate for the

added cost. Otherwise, it may mean your head. The run time

to plot four state variables is approximately four minutes

at a cost of *10.00 per hour. The other option, PLOTM, costs

approximately 0.0 5 per plot and is perfectly adequate for

production runs when only trends in the identification need

be shown.

SUBROUTINE SHOCO

Remarks:

Subroutine SHOCO is the CALCOMP option available to

produce plots of the identification of the individual coef-

ficients as a function of time. It also plots the true value

of the coefficient, as well as a key to the various plots

produced. As with subroutine SHOMO, by setting K to one,

the option can be by-passed. The same remarks given to SHOMO

apply to SHOCO and need not be repeated.

SUBROUTINE PJLOTM

Remarks:

Subroutine PLOTM is one of two options available for

graphically portraying the results of the identification.
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It is substantially less expensive than the alternative option

given in SHOMO and SHOCO. However, the accuracy is limited

and is best suited to show trends in the identification or

motion trajectories.

The results are plotted on a size (47x51) which is

compatible to thesis use. The plot scale variables are

formated as F5.2, thu3 some care must be taken to conform to

these specifications. Difficulty will not be encountered

when the trial length is 188, 376 or 752 seconds as used in

this work.

This routine was modified from the IBM Scientific

Subroutine PLOT.(19)

Notable Variables (PLOTM):

NO - Numerical label for the graph, appearing at the

head of the plot and consisting of no more than

three digits

A - Matrix to be plotted, in single column form. The

first N elements form the base vector, while the

remaining (M-1)N elements specify the (M-1) cross

vectors, where (M-1)s9 representing a maximum of

nine plots on one graph

N - Number of rows in matrix A, N:547

M - Number of columns in matrix A, MS10
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NS - Code for sorting the base variable data into ascend-

ing order,

0 - Data already sorted

1 - Sorting necessary

NE - Code for by-passing PLOTM and using an alternative

routine,

I - PLOTM to be used

2 - CALCOMP to be used

3 - Both routines used simultaneously

Subroutines and Function Subprograms Required:

none

SUBROUTINE FILTER

Remarks:

Subroutine FILTER is the statistical filtering routine

of this program. The flow of the routine is identical to

that described in Chapter IV. The steps may be summarized

as follows.

1. Propagate the estimated state and error

covariance matrices,

= x
x =f t
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X= ftxdt

ti

* TE = BE + EB + Q

t2

E = fE dt

ti1

2. Calculate the gain for the Kalman filter

K = EHT (HEHT + R) i

3. Update the state and error covariance

matrices

z=
-m -

= + K(z - zm)

E = E - KHE

The process is repeated for each time increment, with

occassional values stored for use later in the plotting

routines. The number of values saved corresponds to the

number of points to be plotted (47 for this work).

Subroutines and Function Subprograms Required:

PROP, GAIN, UPDT, STORB, U, DUD
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SUBROUTINE PROP

Remarks:

Subroutine PROP is used to propagate the estimated state

and error covariance matrices over the desired time increment.

x = f(x,t)

t2

x = fxdt

t1

t2

E =f E dt

ti1

The time rate of change of the error covariance matrix

is called from subroutine EFNT2 where it is calculated in

conjunction with subroutine EFNT1. This routine, PROP, is

basically the same as RKL, with the integration again done

using the Runge-Kutta 41 order technique.

Subroutines and Function Subprograms Required:

FNLV, FNLR, EFNT1, EFNT2



130

SUBROUTINE EFNT1

Remarks:

Subroutine EFNT1 calculates the matrix,

6f (xt)
B(LP,LP) = -

x

x
16

which is then used by subroutine EFNT2 to calculate the time

rate of change of the error covariance matrix, S. The first

subscript indicates the row and the relevant equation, f(xt),

to be differentiated. The second subscript refers to the

column and the element of the extended state vector with which

the differentiation is taken. The notation can be defined as,

K1 f (xt) u

K2 f2(xt)

K3 f3 (x,t) r

K4 f4 (x,t) x

K5 = f5(xt)

K6 f6 (x~t) *0
00K7 f7(xt) u

K8 f8 V

00K9 1 f 9 (x,t) r
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where,

equations developed in

T l sChapter III

Area ofInteest

f( -u cos pvsin f

f 5 u sin + v cos

f6r

tospaae aials

28 ~3t

f ---
9 3t

The elements of the extended state vector depend upon

which state variables and coefficients are included in the

identification.

Areas of Interest:

(0034 - 0056) - The common parts found in many of the

derivatives are computed once and assigned

to separate variables.

(0039 - 0042) - The position of the elements of the

primary state variables are designated,
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(0061 - 0067) -

(0079 - 0209) -

using the notation given above. For

example, K2 = 1 and K3 = 2 implies that

the first two elements of the primary

state vector are v and r. Therefore,

the derivatives of functions K2 (vr) and

K3 (r) occupy the first two rows of the

B matrix.

The derivatives of the functions of the

state variables are taken with respect

to those state variables, and comprise

the initial (NOxNO) submatrix of B.

The derivatives of the functions of the

state variables are taken with respect

to the coefficients to be identified.

These coefficients are found in the (NO+1)

to (NO+MP) elements of the extended state

vector, and thus the corresponding

columns of the B matrix.

example -

let K3 = 2, I = LP2, LP2 = 7

then,

B(K3I) = A3
= A(LPZ)

A(7)
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Subroutines and Function Subprograms Required:

none

SUBROUTINE EFNT2

Remarks:

Subroutine EFNT2 is used in conjunction with subroutine

EFNT1 and calculates the time rate of change of the error

covariance matrix.

T
E=BE+EB + Q

Subroutine PROP then takes the result and propagates it over

the time interval, arriving at a new value of the error co-

variance matrix, E.

Notable Variables (EFNT2):

EH(SP,SP) - Error covariance matrix

B(LP,LP) - Matrix of the partial derivatives of the

extended state vector from subroutine EFNT1

Q(LPLP) - Process noise covariance matrix

Ei(LP,LP) - Time rate of change of the error covariance
0

matrix, E
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Subroutines and Function Subprograms Required:

TRNSPS, MAMP1S, MAMP2S, MAADDS

SUBROUTINE GAIN

Remarks:

Subroutine GAIN is the key routine of the identification

process since it calculates the gain of the Kalman filter.

K = EHT (HEHT + R)'

The gain is then used in subroutine UPDT to update the esti-

mates for both the state and error covariance matrices.

Notable Variables (GAIN):

EB(LP,LP) - Error covariance matrix

H(NOSP) - Measurement function

K(LPNO) - Kalman filter gain matrix

C(NO2 ) - One-dimensional array containing the elements

of the two-dimensional matrix (HEHT + R), for

inversion by subroutine MINV

Subroutines and Function Subprograms Required:

TRNSPS, NAMP1S, MAADDS, MINV
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SUBROUTINE UPDT

Remarks:

After the estimated state and error covariance matrices

have been propagated over the time step and the filter gain

has been calculated, subroutine UPDT is called to update the

estimates to their values at the end of the increment.

z = Hx-M -

x' = X + K(z-z)

E = E - KHE

Notable Variables.(UPDT):

H(NO,SP) - Measurement function

EB(LPLP) - Error covariance matrix at the beginning

of the time increment

EH(SPSP) - Updated error covariance matrix

XB(SP) - Estimated extended state vector at the

beginning of the time increment

XH(SP) - Updated extended state vector at the end of

the time increment
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Z(NO) - Value of the primary state variables during the

noisy sea-trial

EL(LP) - Measured value of the primary state variables,

taken from the estimated state vector operated

upon by the measurement function

ES(LP) - Difference between the actual and estimated

values of the measured state variables

Subroutines and Function Subprograms Required:

MAMP1S,MAMP2S, MASUBS, DABS

SUBROUTINE STORB

Remarks:

Subroutine STORB is used to store selected values of

the error covariance and state matrices at regular intervals

during the identification process. These values are coupled

to the time of the reading during the trial and plotted by

either PLOTM, or SHOMO and SHOCO. The standard deviations

are derived from the diagonal elements of the covariance

matrix at the end of the trial. These are used as a

representation of the confidence level in the final results.



137

Notable Variables (STORB):

I - Index of the stored measurement

L - Actual index of the time matrix for the stored

measurement

KS - Number of measurements between stored values

PP1(94), PP2(94), **- One-dimensional array of the

identification of the individual coefficients.

The first 47 elements are the times for the

corresponding stored measurements, while the

remaining 47 elements are the measured values.

EPI, EP2, * - Standard deviation of the final value

assigned to each coefficient

EE(SP) - Values of the diagonal elements of the

covariance matrix

Subroutines and Function Subprograms Required:

DSQRT, DABS

SUBROUTINE TRNSPS

Remarks:

Subroutine TRNSPS is capable of taking the transpose of
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a matrix A and placing it in a matrix B, leaving matrix A

unchanged.

AT - B

Matrix A has absolute dimensions IA x JA, while matrix B has

absolute dimensions IB x JB. The submatrix of A to be trans-

posed has dimensions of MA x NA. The transposed submatrix

in B has dimensions of NA x MA.

This routine is part of the WATFIV library.(20)

Subroutines and Function Subprograms Required:

none

SUBROUTINE MAMPiS and SUBROUTINE MAMP2S

Remarks:

Subroutines MAMPIS and MAMP2S are used to multiply two

matrices, A and B, with the product replacing one of the

matrices depending upon which routine is called, leaving

the other unchanged.

A * B -- oA (MAMP1S)

A * B -- B (MAMP2S)



139

The absolute dimensions of A are IA x JA, while those of

matrix B are IB x JB. The actual multiplication involves the

submatrix of A with dimensions MA x NAMB and the submatrix of

B with dimensions NAMB x NB. W is a work vector at least as

large as MA in MAMP2S or NB in MAMPIS. (WATFIV library)

Subroutines and Function Subprograms Required:

none

SUBROUTINE MAADDS

Remarks:

Subroutine MAADDS adds the elements of matrix A to

matrix B, replacing A by the resultant sum and leaving B

unchanged.

A + B -- A

The actual size of the added submatrices is MA x NA. The

absolute dimensions of A and B are IA x JA and IB x JB

respectively. (WATFIV library)

Subroutines and Function Subprograms Required:

none
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SUBROUTINE MASUBS

Remarks:

Subroutine MASUBS subtracts matrix B from matrix A,

placing the difference in A and leaving B unchanged.

A - B -+A

The absolute dimensions of matrices A and B are IA x JA and

IB x JB respectively. The actual size of the subtracted sub-

matrix is MA x NA. (WATFIV library)

Subroutines and Function Subprograms Required:

none

SUBROUTINE MINV

Remarks:

This routine uses the standard Gauss-Jordan method for

inversion of matrices. Matrix A is inverted and replaced

by it's inverse.

A~i -*A

Calculation of the resulting determinant, D, indicates wether

or no the resultant matrix is singular (D = 0). Matrix A is



141

a general matrix of order N. D is the resultant determinant,

while L and M are work vectors of length N.

Subroutine MINV is part of the IBM Scientific Subroutine

Package.

Subroutines and Function Subprograms Required:

none



Appendix B

THE PROGRAM

"Lasciate ogni speranza voi ch'entrate ...

Inscription over the entrance to Hell,

in Dante's Inferno

"f
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INTEGER SP 
DIMENSION VP(94),RP(94t,PSPC94),VOP(94t 
DIMENSION PP1(94),PP2(94),PP3(94),PP4(94),PP5C94),PP6(941,PP7C94) 
DIMENSION PP8 (94),PP9(94),PP10C94t,PP11(94),PP12(94),PP131941 
DIMENSION PP14(94),PP15(94),PP16(94, 
DIMENSION PP17(94),PP18(94),PP19(94),PP20C94),PP21C94t,PP22(94) 
DIMENSION PP23(941,PP24(94),PP25(94),PP26(94),PP27(94),PP28C94) 
DIMENSION PP29(94J,PP30(94),PP31(94),PP32(94),PP33C94t,PP34C94t 
DIMENSION P·P35(94) ,PP36(94) 
DIMENSION VEIV(94),VEIRC94),VPS(94),VV0(94) 
DIMENSION INXCB) 
DIMENSION IC(4),IR(4) 
DIMENSION EE(401 
DIMENSION ZEROl47) 
DIMENSION AV(47),ARC47J,APSC47),AVD(471 
DIMENSION AVP(471,ARP(47J,APSPC47t,AVDP(47) 
DIMENSION PlC471,P2(47),P3(41),P4(47J 
DIMENSION P5C47),P6(47),P7(47),P8C47) 
DIMENSION TITLEC4,9),YLAB1(9J,YLAB2C9) 9 YLAB3C9),VLAB4(9) 
DOUBLE PRECISION H,DI,PW,QW,TL,TI 
DOUBLE PRECISION AC36J,AI(36J,ASDC36) 
DOUBLE PRECISION PMSC16) 
DOUBLE PRECISION W(8)

DOUBLE PRECISION WN(41,VNC4) 
DOUBLE PRECISION V(376, 
DOUBLE PRECISION ZVC376l,ZR(376),ZPS1376t,ZVD(3761 
DOUBLE PRECISION Zl4) 
DOUBLE PRECISION TSC3761,USC377),DUS(377J 
DOUBLE PRECISION K(8,4t,Q(8,8J,RC8,8),B(8 98),EBAR(8,Bt 
DOUBLE PRECISION EHTC40,40),XHT(401,XBARC401,HZC4,401 
DOUBLE PRECISION XVI,XRI,XPSI,XVD1 
DOUBLE PRECISION VST,RST,PST,VOST 
DOUBLE PRECISION VCV,RCV,PCV,VDCV 
DOUBLE PRECISION EJC8,81,ElC8,81,E2C8,8),E3C8,8),E4(8,81 
DOUBLE PRECISION E5(8 9 8t,ENC8,Bt,Qll8,8),BNC8,BJ,FTC8,81 
DOUBLE PRECISION EM(8,81,Hl(4,81,T(8,41,H2C4,8l,H318,8) 
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00 

00 

oo: 

00 

00 



DOUBLE PRECISION EL(8)vES(81 0037

DOUBLE PRECISION IST(4)9.ICV(4) 0038

DOUBLE PRECISION C(16) 0039

COMM3N /OUTPS/ PP179PPI89PP199PP209PP219PP229PP23#PP24#PP259PP26 0040

COMMON /OUTP6/ PP279PP26#PP294PP309PP319PP329PP339PP349PP359PP36 0041

COMMON /OUTPI/ VPPRPiPSPvVDPtPPltPP29PP39PP49PP59PP69PP79PPB 0042

COMMON /OUTP2/ PP9#PPIOPPIIPPI29PPI39PP14vPPI59PP16 0043

COMMON /PRMI/ PA19PA29PA3vPA4vPASePA69PA79PA89PA99PA109PA119PA12 0044

COMMON /OUTP3/ EViPERPEPSPEVD-PEPIvEP2-PEP39EP4-PEP59EP6,PEP79EP8 0045

COMMON /OUTP7/ EP179EP189EP199EP20*EP211EP22*EP23,EP24,EP259EP26 0046

COMMON /OUTP8/ EP27TEP289EP29PEP30PEP3ltEP329EP33*EP349EP359EP36 0047

COMMON /OUTP4/ EP99EP10PEP119EP12PEP139EPl4tEP159EP16 0048

COMMON /PRAM3/ LP179LP189LP19PLP2OvLP219LP229LP239LP249LP259LP26 0049

COMMON /PRAM4/ LP279LP289LP299LP30#LP3ltLP32vLP339LP349LP359LP36 0050

COMMON /PRM2/ PA13*PA149PA159PA169PAITtPAISPPA209PA219PA22tPA23 0051

COMMON /PRM3/ PA24tPA259PA269PA279PA28,PA299PA309PA319PA329PA33 0052

COMMON /PRAMI/ LP19LP29LP3tLP49LP59LP69LP79LP8 0053

COMMON /PRAM2/ LP99LP109LPli'LiLP12,,LP139LP149LPl5tLP16 0054

COMMON /EXAG/ PW;QW 0055

COMMON /INPUT/ DItTLtJJ 0056

COMMON /PKI/G 
0057

COMMON /PRM4/ PA349PA359PA36 0058

c 
0059

C 
0060

C 0061

CALL PLOTS(IDUM91DUM91J.) 
0062

CALL FACTOR(OoSi 
0063

CALL PLOT(0*092o0v-3) 
0064

1 CONTINUE 
0065

KI = 5 
0066

KO = 6 
0067

C 
0068

C INPUT DATA 0069

C 
0070

READ (KIjl0) (WIll = 1061 0071

IF (A(l)eEQe0e0) GO TO 909 0072



READ (KI910) (AI(1)91 19361 0073

READ (KItIO) (ASD(I)ql 1936) 0074

10 FORMAT (6Dl3o4l 0075

READ (Kltll) (PMS(J)vJ 1916) 0076

11 FORMAT (6Dl3e4) 0077

READ (KI9121 (INX(I)vl 1981 0078

12 FORMAT (616) 0079

READ (Klvl3) G 0080

13 FORMAT (FlOe6) 0081

READ (KIP14) LPI#LP2ipLP3,#LP4tLP5vLP6vLP79LP89LP9 0082

14 FORMAT (9151 0083

READ (Kltl5) LPIOvLPIliLP129LP139LP14irLP159LP169LP179LP18 0084

15 FORMAT (9151 0085

READ (KI916) LP199LP209LP219LP2-2ipLP239LP249LP25#LP26tLP27 0086

16 FORMAT (915) 0087

READ (KI917) LP289LP299LP309LP319LP329LP33iLP349LP35vLP36 0088

17 FORMAT 1915) 0089

READ (KIP19) VST9RSTtPSTvVDST 0090

19 FORMAT (4FlOo5) 0091

READ (KI920) VCVtRCVPCV*VDCV 0092

20 FORMAT W1001 0093

READ (KI921) KSvNpH 0094

21 FORMAT(214tFI0,2) 0095

READ (Kli,221 NMPNP 0096

22 FORMAT (2151 0097

READ (KIP23) PWtQW 0098

23 FORMAT (2DlOe2) 0099

READ iKI926) MPvN0 oloo

26 FORMAT (214) 0101

READ (KI927) DItTLvJJ 0102

Z7 FORMAT (2FIO*3,151 0103

READ (KI9281 NE 0104

28 FORMAT (15) 0105

DO 790 1 = 1,4 0106

790 READ (KI00) (TITLE(ItJl#J 199) 0107

90 FORMAT (9A4) 0108



DO 791 J = 1,9 
0109

YLABI(J) = TITLE(19J 
0110

YLAB2(J) = TITLE(2#J) 
0111

YLAB3(J) = TITLE(39J) 
0112

YLAB40) = TITLE(49J) 
0113

791 CONTINUE 
0114

c 
0115

c INITIAL CCNDITIONS 
0116

C 
0117

TI O*DO 
0118

XVI 09DO 
0119

XRI O*DO 
0120

XPSI = o0co 
0121

XVDI = 0,DO 
0122

JON N*H 
0123

NN N 
0124

c 
0125

C GENERATE NOISY SEA TRIAL DATA FOR USE IN FILTERING 0126

c 
0127

CALL RKL(HvTltXV19XR19XPS19XVDIiNgAvZVIZRtZPSZVDUSDUSvTSIINXI 
0128

IPMStWNtVNvNDvVi 
0129

NPL = 47 
0130

DO 99 1 = lvNPL 
0131

L = KS*I 
0132

NL1 = I+NPL 
0133

VEIV(I) =TS(L) 
0134

VEIR(l) =TSM 
0135

VPS11) = TS(L) 
0136

VVD(I) = TS(L) 
0137

AM) = ZV(L) 
0138

ARM = ZR(L) 
0139

APSM = ZPS(L) 
0140

AVD(l) = ZVD(L) 
0141

VEIV(NLI) = ZV(L) 
0142

VEIR(NLI) = ZRM 
0143

VPSINLll = ZPS(L) 
0144



A

VVD(NL1) = ZVD(L) 0145
99 CONTINUE 0146

C 0147
C PLOT THE NOISY SEA TRIAL DATA AND INITIALIZE THE STARTING VALUES 0148
C OF THE PRIMARY STATES 0149
C 0150

CALL PLOTM(0,VEIVNPL,2,0,NE) 0151
NO = 1 0152
ISTINO) = VST 0153
ICV(NOI = VCV 0154
CALL PLOTM(0,VEIRNPL,2,0,NE) 0155
NO = NO+1 0156
IST(NO)= RST 0157
ICV(NQ) = RCV 0158
CALL PLOTM(0,VPSNPL,2,0,NE) 0159
NO = NOtI 0160
IST(NO) = PST 0161
ICV(NOI = PCV 0162
CALL PLOTM(0,VVDNPL,2,0,NE) 0163
NO = N0+1 0164
IST(NOI = VDST 0165
ICV(NO) = VDCV 0166
LP = MPtNO 0167
SP = N0+36 0168

C 0169
C INITIALIZE THE MATRICES USED [N THE IDENTIFICATION 0170
C 0171

CALL SETUP(QRLPNOSPEHTISTICVAPAIASO;,PMSXHTPXBARHZZERO) 0172
C 0173
C PERFORM THE PARAMETRIC IDENTIFICATION UPON THE SPECIFIED 0174
C COEFFICIENTS USING THE INITIAL CONDITIONS AND THE GENERATED 0175
C NOISY SEA TRIAL DATA 0176
C 0177

CALL FILTER(EJEIE2, E3,E4,E5,ENEMELESQ1,BNFTTH1,H2,H3,LP, 0178
IKS,EBARB,KQREENOZSPZVZRZPS ,ZVDUSTStXHTXBARHIACEHT 0179
2, IC, IRWHTINDUS) 0180



KK = 47 0181

KP = 94 0182

NS = 0 0183

N = 1 

0184 ,M = 2 0185

DO 40 1 KMN = 19 47 0186

NMK = KMN+47 0187

AVP(KMN) = VP(NMK) 0188

ARP(KMN) = RP(NMK) 0189

APSP(KMN) = PSP(NMK) 0190

AVDP(KMN) = VDP(NMKI 0191

Pl(KMN) PP1(NMK) 0192

P2(KMN) PP2(NMK) 0193

P3(KMN) PP3(NMK) 0194

P4(KMN) PP4(NMK) 0195

P5(KMN) PP5(NMK) 0196

P6(KMN) PP6(NMK) 0197

P7(KMN) PP7(NMK) 0198

P8(KMN) PP81NMK) 0199

401 CONTINUE 0200

C 0201

c PLOT THE FILTERED PRIMARY STATE VARIABLES USING THE IDENTIFIED 0202

c VALUES OF THE HYDRODYNAMIC COEFFICIENTS 0203

C 0204

CALL PLOTM(NPVPtKKgMPNStNE) 0205

CALL SHOMO(VEIVIAVtVEIVPZER09VEIVtAVP9-11*095*6t-39NE91,PYLABI) 0206

N = N+l 0207

CALL PLOTM(N*RPtKKvMvNStNE) 0208

CALL SHOMO(VEIRgARtVEIRtZER09VEIRvARPt-1*59-5*69-39NE92iYLAB2I 0209

N = N+l 0210

CALL PLOTM(NvPSPqKKsMvNSvNE) 0211

CALL SHOMO(VPStAPS#VPSiZEROIVPS#APSPi-11,095*69-39NE93#YLAB3) 0212

N = N+l 0213

CALL PLOTM(NqVDPvKKqMqNSqNE) 0214

CALL SHOMO(VVDtAVDtVVDiZEROtVVDPAVDP95*09-5,69-39NE949YLAB4) 0215

IF IMPEQ*O) GO TO 560 0216

OD



C 0217

c PLOT THE IDENTIFICATION OF THE SPECIFIED COEFFICIENTS AS A 0218

C FUNCTION OF TIME DURING THE FILTERING PROCESS 0219

C 0220

GO TO (IOItIO291039104,tlO5tlO69lO7tlO89lO9illOtlIlill2vll3vll4v 0221

11,159116tll7tll89ll9tl2O9l2lt122tl23tl249125#126tl2791289129,pl3Ot 0222

2131#132il33tl34t135ipl36)ipMP 0223

136 N = LP36 0224

CALL PLOTM(NqPP36qKKqM9NStNE) 0225

135 N = LP35 0226

CALL PL0TM(NqPP35tKKvMvNS9NEl 0227

134 N = LP34 0228

CALL PLOTM(NjPP34qKKjMjNSqNE) 0229

133 N = LP33 0230

CALL PLOTM(NPP33*KKgMtKS*NE) 0231

132 N = LP32 0232

CALL PL0TM(NqPP32,vKKpMvfkSqNE) 0233

131 N = LP31 0234

CALL PL0TM(NvPP3lvKKvM#NSiNE) 0235

130 N = LP30 0236

CALL PLOTM(NvPP309KKIMINSVNE) 0237

129 N = LP29 0238

CALL PLOTM(N9PP29qKKjMqNspNE) 0239

128 N = LP28 0240

CALL PLOTM(N*PP289KKtMvhStNE) 0241

127 N = LP27 0242

CALL PLOTM(NpPP2TpKKtMvNStNE) 0243

126 N = LP26 0244

CALL PLOTM(NpPP26vKK9MvNS9NE) 0245

125 N = LP25 0246

CALL PLOTM(NtPP25tKKtMthSgNE) 0247

124 N = LP24 0248

CALL PLOTM(NtPP249KKpMvhStNE) 0249

123 N = LP23 0250

CALL PLC)TM(NtPP239KKvMtNSvNE) 0251

122 N = LP22 0252



CALL PLOTMfNvPP22#KKiMtNSPNE)

121 N = LP21 

0253

CALL PLOTM(NvPP21qKKjMqhS9NE) 

0254

120 N = LP20 

0255

CALL PLOTM(NgPP20*KKgMvNSvNE) 

0256

119 N = LP19 

0257

CALL PLOTM(N9PP19jKK*M#NS9NE) 

0258

118 N = LP18 

0259

CALL PLOTM(NPP189KKtMvNSNE) 

0260

117 N = LP17 

0261

CALL PLOTM(NtPPI7qKKjMNStNE) 

0262

116 N = LP16 

0263

CALL PLOTM(N,,PP16vKKjMjNSjNE) 

0264

115 N = LPIS 

0265

CALL PLOTM(NtPPI5vKKqMjNSqNE) 

0266

114 N = LP14 

0267

CALL PLOTM(NvPP149KKvMvhSvNE) 

0268

113 N = LP13 

0269

CALL PLOTM(NtPPI3qKKqMjNSvNE) 

0270

112 N = LP12 

0271

CALL PLOTM(NtPP129KKvMvNS*NE) 

0272

III N = LPII 

0273

CALL PLOTM(NqPPllvKKqMtNSvNE) 

0274

110 N = LP10 

0275

CALL PLDTM(NqPPlO9KKqMvNSvNE) 

0276

109 N = LP9 

0277

CALL PLOTM(NjPP9jKKqM,,NSjNE) 

0278

108 N = LPS 

0279

CALL PLOTM(NtPP8,KKvMvNSiNE) 

0280

CALL SHOCO(PP8tP8tPP8tPA890,095*69-3,NEglt8I 

0281

107 N = LP7 

0282

CALL PLOTM(NqPP7tKKjMvNSvNE) 

0283

0284

CALL SHOCC(PP7tP79PP79PA799o5t-5*6t-3tNEt297) 0285

106 N = LP6 0286

CALL PLOTM(N-tPP6jKKjM9NSvNE) 0287

CALL SHOCO(PP6iP69PP69PA690*095,6#-39NE,396) 0288



105 N = LP5 0289

CALL PLOTM(NtPP5ivKKoMtNSgNE) 0290

CALL SHOCO(PP59P59PPSiPA5il5*Ot-5o6p-3vNE94951 0291

104 N = LP4 0292

CALL PLOTM(NtPP49KKvMtNS#NE) 0293

CALL SHOCO(PP4tP49PP49PA4vOO95o6t-3tNE9lt4) 0294

103 N = LP3 0295

CALL Pl-0TM(NjPP3qKKqV9NSqNE) 0296

CALL SHOCO(PP3tP39PP39PA3t9e5i?-5,69-3tNE92#3) 0297

102 N = LP2 0298

CALL PLOTM(NtPP2#KKvMvNSvNE) 0299

CALL SHOCO(PP2tP2*PP2vPA2#0*095*69-3tNE9392) 0300

101 N = LP1 0301

CALL PL0TM(NtPPltKKvMvNS#NE) 0302

CALL SHOCC(PP1,PltPP19PA1915oO9-7*99-39NE94tl) 0303

C. 0304

C. TABULATE THE PRELIMINARY INFORMATION AND THE RESULTS OF THE 0305

C IDENTIFICATION ANALYSIS 0306

c 0307

N = 0 0308

WRITE (KC95571 0309

WRITE (KO9550) 0310

TL = 2o*TL 0311

GO TO (l40vl5O9l6O)9JJ 0312

140 WRITE (KOv547) DI 0313

GO TO 70 0314

150 WRITE IK09548) DI 0315

GO TO 70 0316

160 WRITE (KOt5491 TL*01 0317

70 CONTINUE 0318

WRITE (KOt553) NMjNP 0319

WRITE (KC95611 PW 0320

WRITE (KO9552) JON 0321

WRITE (KO9566) H 0322

WRITE (KO9562) NO 0323

WRITE (KOt563) MP 0324



WRITE (KO9558) 0325

WRITE (KOP5591 0326

GO TO (20lt2O2t2O392O4t2O5v206,t2O7t2O892U992lOt2llt2l292l392l4t 0327

l2l592l6t2l7t2l692l'9i,22Op221*222,p2239224ip225v226t2279228t22992_009 0328

223192329233v2349235#236)tMP 0329

236 WRITE (KO9556) LP369PA369AI(LP36)gASO(LP3619PP36(KPIgEP36 0330

TI = ABS(((PA36-PP36(KPI)/PA36)*100o) 0331

WRITE (KO95551 T1 0332

N = N+l 0333

IF (NeLT94) GO TO 235 0334

N = 0 0335

WRITE (KC9559) 0336

235 WRITE (KO9556) LP359PA35!PAI(LP35)gASD(LP35)vPP35(KP)*EP35 0337

TI = ASS(((PA35-PP35(KP))/PA35)*100o) 0338

WRITE (KO9555) TI 0339

N = N+l 0340

IF (N*LT*41 GO TO 234 0341

N = 0 0342

WRITE (KO9559) 0343

234 WRITE IKOt556) LP34tPA34,AI(LP34)iPASD(LP34)PPP34(KP)VEP34 0344

TI = ABS(((PA34-PP34(KP))/PA34)*100,aI 034S

WRITE (KO95551 TI 0346

N = N+l 0347

IF (NvLTo4) GO TO 233 0348

N = 0 0349

WRITE (KO95591 0350

233 WRITE (KO9556) LP339PA33tAI(LP33)tASD(LP33)tPP33(KP)tEP33 0351

TI = ASS(((PA33-PP33(KP)I/PA33)*100*) 0352

WRITE (K09555) TI 0353

N = N+l 0354

IF (NoLT*4) GO TO 232 035S

N = 0 0356

WRITE (KO9559) 0357

232 WRITE (KO9556) LP32,PA329AI(LP32)tASD(LP3219PP32(KPItEP32 0358

TI = ABS(((PA32-PP32(KP))/PA32)*100o) 0359

WRITE (KO9555) Tl 0360



N = N+l 0361

IF (NeLT*41 GO TO 231 0362

N = 0 0363

WRITE (KC95591 0364

231 WRITE (KO95561 LP319PA31.,AI(LP31)vASO(LP31!vPP31(KPIgEP31 0365

TI = ASS(((PA31-PP31(KP)I/PA31)*100*) 0366

WRITE (KOt555) Tl 0367

N = N+l 0368

IF (NeLT94) GO TO 230 0369

N = 0 0370

WRITE (KO9559) 0371

230 WRITE (KO9556) LP309PA309AI(LP30)gASD(LP3019PP30(KP)vEP30 0372

TI = ABS(((PA30-PP30(KP))/PA30)*LOO*) 0373

WRITE (KO9555) TI 0374

N = N+l 0375

IF (NeLT*4) GO TO 229 0376

N = 0 0377

WRITE (KC95591 0378

229 WRITE (KO,9556) LP299PA299AI(LP29)vASD(LP2919PP29(KPIgEP29 0379

Tl = ABS((IPA29-PP29(KP)I/PA29)*100o) 0380

WRITE (KC9555) Tl 0381

N = N+l 0382

IF (NeLT*4) GO TO 228 0383

N = 0 0384

WRITE (KO95591 0385

228 WRITE (KO9556) LP289PA28,tAI(LP28),oASD(LP28)tPP28(KPIvEP28 0386

TI = ABSI((PA28-PP28(KPI)/PA281*100oI 0387

WRITE (KO9555) Tl 0388

N = N+l 0389

IF (NeLT*4) GO TO 227 0390

N = 0 0391

WRITE (KO9559) 0392

227 WRITE (KO1556) LP279PA279AI(LP2719ASD(LP27)#PP27(KP)gEP27 0393

Tl = ASS(((PA27-PP27(KP))/PA27)*100e) 0394

WRITE (KO,9555) Tl 0395

N = N+l 0396



IF (N*LT*4) GO TO 226 0397

N = 0 0398

WRITE (KO9559) 0399

226 WRITE (KO,556) LP269PA269AT(LP26)vASD(LP26)PPP26(KP)PEP26 0400

TI = ABS( PA26-PP26(KP) )/PA261*100,o 1 0401

WRITE (KO9555) Tl 0402

N = N+l 0403

IF (NoLT*4) GO TO 225 0404

N = 0 0405

WRITE (KO9559) 0406

225 WRITE (KO9556) LP25,PPA25,PAI(LP2511ASD(LP25),PP25(KPItEP25 0407

TI = ABS(((PA25-PP25(KPII/PA25)*100*1 0408

WRITE (KC9555) TI 0409

N = N+l 0410

IF (NaLTo4) GO TO 224 0411

N = 0 0412

WRITE (KO9559) 0413

224 WRITE (KO1556) LP249PA249AI(LP24),ASD(LP24),PPP24(KP)tEP24 0414

T1 = ABS(((PA24-PP24(KP))/PA24)*100e) 0415

WRITE (K09555) Tl 0416

N = N+l 0417

IF (NoLTo4) GO TO 223 0418

N = 0 0419

WRITE (KO95591 0420

223 WRITE (KO9556) LP239PA23#AI(LP23)vASD(LP23)*PP23(KPIPEP23 0421

TI = ASS(((PA23-PP23(KP))/PA23)*100*) 0422

WRITE (KO1555) Tl 0423

N = N+l 0424

IF (NaLT*4) GO TO 222 0425

N = 0 0426

WRITE (KO9559) 0427

222 WRITE (KO9556) LP22tPA229AI(LP22)tASD(LP22)PPP22(KP)gEP22 0428

T1 = ABS(((Pk,", l--PP22(KPII/PA22)*100*1 0429

WRITE (KO9555) Tl 0430

N = N+l 0431

IF (N*LTo4) GO TO 221 0432



N = 0
WRITE (KO9559)

221 WRITE (KO9556) LP219PA211AI(LP21)tASD(LP2119PP21(KP)tEP21
Tl = ABS(((PA*4-1-PP21(KP))IPA21)*100*1

WRITE (K0*555) TI
N N+l
IF (NoLT*4) GO TO 220
N 0
WRITE (KO,559)

220 WRITE (KO9556) LP20,PPA20,pAI(LP2019ASD(LP20)tPP20(KP)tEP20
TI = ABS(((PA20-PP20(KP)IIPA201*100s)

WRITE (KO9555) TI
N N+l
IF (NoLTe4) GO TO 219
N 0
WRITE (KO-95591

219 WRITE (KO9556) LP19#PA199AI(LP1919ASO(LP1919PP19(KP)vEP19
Tl = ABS(((PA19-PPI'9(KS))/PA19)*100*)

WRITE IK09555) Tl
N N+l
IF (NoLTo4) GO TO 218
N 0
WRITE (KO,559)

218 WRITE (K0,556) LP189PA169AI(LP18)gASD(LP1819PPISIKPIgEPIB
TI = ABS(((PA18-PPIS(KPII/PAIS)*1009)

WRITE (KO9555) Tl
N N+l
IF (NeLT*4) GO TO 217
N 0
WRITE (KC1559)

217 WRITE (KC9556) LP179PA179AI(LP17)PASO(LP1719PP17(KPIPEP17
Tl = ABS(((PA17-PP17(KPII/PA17)*100o)

WRITE (KO,555) Tl
N N+l
IF (NaLTo4) GO TO 216
N = 0

0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468

p



-41

WRITE (KO9559) 0469

216 WRITE (KO9556) LP169PA169AI(LP16)vASD(LP16)#PP16(KP)tEP16 0470

TI = ABS(((PA16-PP16(KPI)/PA16)*100*) 0471

WRITE 4KO9555) Tl 0472

N = N+l 0473

IF (NeLT*4) GO TO 215 0474

N = 0 0475

WRITE (KO95591 0476

215 WRITE (KOt5561 LP15,PA159AI(LP1519ASO(LP15),PP15(KPItEP15 0477

TI = ABS(((PA15-PP15(KP)I/PA15)*10091 0478

WRITE (KCt5551 Tl 0479

N = N+l 0480

IF (NoLT*4) GO TO 214 0481

N = 0 0482

WRITE (KO9559) 0483

214 WRITE (KO9556) LP149PA14ipAI(LP14),PASD(LP1419PP14(KPIgEP14 0484

Tl = ABS(((PA14-PP14(KP))/PA14)*100*1 0485

WRITE (KO9555) Tl 0486

N = N+l 0467

IF (NoLTo4) GO TO 213 0488

N = 0 0489

WRITE (KO95591 0490

213 WRITE (KO95561 LP139PA139AI(LP13)tASD(LP13)*PP13(KPItEP13 0491

Tl = ASS(((PA13-PP13(KP))/PA13)*100*) 0492

WRITE (KC9555) Tl 0493

N = N+l 0494

IF (N*LTo4) GO TO 212 0495

N = 0 0496

WRITE (KO9559) 0497

212 WRITE (KO9556) LP12,vPA12,tAI(LP12),PASD(LP12loPP12(KP)IEP12 0498

T1 = ASS(((PA12-PP12(KP))/PA12)*100o) 0499

WRITE (KO95551 Tl 0500

N = N+l 0501

IF (N*LT*41 GO TO 211 0502

N = 0 0503

WRITE (KC95591 0504



211 WRITE (KO9556) LP119PA119AI(LPII)tASD(LPIIIPPP11(KPItEPII
TI = ABS(((PAII--PP11(KPI)/PA11)*100o)

WRITE (KO9555) TI
N N+l
IF (NeLTo4) GO TO 210
N 0
WRITE (KO95591

210 WRITE (KO9556) LPID*PA109AI(LPIO)#ASD(LP1019PP10(KP)vEP10
TI = ABS(((PAIO-PP10(KPII/PA10)*100*)

WRITE (KO*555) Tl
N N+l
IF (N*LTo4) GO TO 209
N 0
WRITE (KO9559)

209 WRITE (KO9556) LP99PA99AT(LP9)gASO(LP9)tPP9(KPIPEP9
TI = ABSf((PA9-PP9(KP))/PA9)*100o)

WRITE (KC9555) Tl
N N+l
IF (NeLTo4) GO TO 208
N 0
WRITE IK095591

208 WRITE (KO9556) LP89PA89AI(LP8)gASD(LP8),PPP81KP)gEP8
Tl = ABS(((PA8-PPS(KPI)/PA8)*100*1

WRITE (KO9555) Tl
N N+l
IF lNoLT*4) GO TO 207
N 0
WRITE (KO95591

207 WRITE (KO9556) LP7tPA79AI(LPTIPASD(LP7)vPP7(KP)tEP7
TI = ABS(((PAI-PP7(KP))/PA7)*100*)

WRITE (KO9555) Tl
N N+l
IF (NeLT*41 GO TO 206
N 0
WRITE (KO95591

206 WRITE (KO9556) LP69PA69AI(LP619ASD(LP619PP6(KP)vEP6

0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540



Tl =
WRITE (KO9555)
N N+l
IF (NaLT*41 GO
N 0
WRITE (KC*559)

205 WRITE (KO9556)
TI =

WRITE (KO9555)
N N+l
IF (NeLT*4) GO
N 0
WRITE (KO9559)

204 WRITE (KDt556)
TI =

WRITE (KO9555)
N N*l
IF (NaLT*4) GO
N 0
WRITE (KC059)

203 WRITE (K09556)
TI =

WRITE (K09555)
N N+l
IF (NoLTo4) GO
N 0
WRITE (KO95591

202 WRITE (K0j556)
T1 =

WRITE (KO9555)
N N+l
IF (N*LT*41 GO
N 0
WRITE (KC#559)

201 WRITE (KOP556)
Tl =

ABS( PA6-PP6(KP) )/PA6)*100*
Tl

700 205

LP59PA59AT(LP5)vASD(LP5)*PP5(KP)vEP5
ABS(((PA5-PP5(KPI)/PASI*100*)
TI

TO 204

LP49PA49AT(LP419ASD(LP4)tPP4(KP),PEP4
ABS(((PA4-PP4(KPI)/PA4)*100e I
TI

TO 203

LP39PA39AI(LP3)*ASD(LP3)PPP3(KP)gEP3
ABS( ( (PA3-PP3(KP) )/PA3)*100o
Tl

TO 202

L.P2,PPA29AI(LP219ASD(LP219PP2(KP)vEP2
ABS(((PA2-PP2(KPI)/PA2)*100o
TI

TO 201

LP19PAItAI(LPI)tASD(LPI)iPP1(KP)gEP1
ABS ( ( ( PA I-PP I (KP) ) /PA 1) * 100o )

0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576

I-A

%.A
OD



WRITE (K0,555) TI 0577
547 FORMAT (///0X,'MANEUVER: STEP RUDDER DEFLECTION AT T=0',/21X,'MA 0578

1XIMUM DEFLECTION OF *,F4.1,' DEGREES') 0579
548 FORMAT (///10X,'MANEUVER: ZIG-ZAGWITH STEP RUDDER',/21X,"DEFLECT 0580

lIONS OF IF4.I,' DEGREES AT',/21X,'TIME T=100 AND T=200 SECONDS') 0581
549 FORMAT (///OX,'MANEUVER: ZIG-ZAG, WITH SINUSOIDAL RUDDER',/20X,' 0582

1 QEFLECTIONS OF PERIOD',F6.1,' SECONDS AND',/21X,'MAXIMUM DEFLECTI 0583
2ONS OF',F5.1,' DEGREES') 0584

550 FORMAT(///IOX,'SYSTEM.: MARINER-CLASS SURFACE VESSEL') 0585
552 FORMAT (///I0X,'TRIAL PERIOD: *,14,' SECONDS') 0586
553 FORMAT (///10X,'NOISE LEVEL: MEASUREMENT NOISE - ',13,'%',//24X,' 0587

1PROCESS NOISE - 1,13,'%') 0588
555 FORMAT (//8X,'IDENTIFICATION WITHIN ,F5.2,'% OF THE TRUE VALUE. 0589

1') 0590
556 FORMAT(///118X,'NP = 'tI3,5X,'TRUE VALUE =',2X,E13.5//8X,'SV =', 0591

12XE13.5,' + OR - ',E13.5//8X,'FV =',2XE13.5,' + OR - ',E13. 0592
25) 0593

557 FORMAT (LHL,////2X,'********************************************** 0594
1**********',/2X,* 0595
2 *',/2X,'* PARAMETRIC IDENTIFICATION - EXTENDED KALMAN FILTE 0596
3R *',/2X,'* 0597
4* ',/2X, '********************************************************s 0598

558 FORMAT (////20X,'(NON-LINEAR MODEL)') 0599
559 FORMAT ('1') 0600
566 FORMAT (///10X,'TIME STEP: ',F3.1,' SECONDS') 0601
562 FORMAT (///I0X,'NIUMBER OF PRIMARY STATE VARIABLES: ',12) 0602
561 FORMAT (///IOX,'EXAGGERATED NOISE FACTOR: ',F5.1) 0603
563 FORMAT (///IOX,'NUMBER CF COEFFICIENTS IDENTIFIED: ',13) 0604
560 CONTINUE 0605

GO TO 1 0606
909 CONTINUE 0607

CALL ENDPLT(7.o0,0.0,999) 0608
END 0609



SUBROUTINE SETUP(OgRiLPNOSPtEHT#IST91CVtAvAlgASDtPMStXHT*XBARt 0001

1HZvZERO) 0002

C 0003

C SUBROUTINE SETUP ASSIGNS THE INITIAL VALUES TO MOST OF THE 0004

c MATRICES USED IN THE IDENTIFICATION 0005

C 0006

INTEGER SP OOOT

DIMENSION ZERO(l) 0008

DOUBLE PRECISION I ST( 1) v I CV( 1) 9HZ (NO 9SP) 0009

DOUBLE PRECISION Q(LPoLP)tR(LPirLP)*EHT(SPtSP),XHT(I)VXBAR(l) 0010

DOUBLE PRECISION All)qAI(l)jASD(1)jPMS(l) 0011

DOUBLE PRECISION PWtQW 0012

COMMON /PRMl/ PAliPA29PA3*PA4tPA5*PA6*PA79PA89PA9#PA109PAII#PA12 0013

COMMON /PRM2/ PA13tPA149PA159PA169PA17vPA189PA20#PA21#PA229PA23 0014

COMMON /PRM3/ PA249PA259PA269PA27tPA289PA299PA309PA3ltPA32,PA33 0015

COMMON /PRAM3/ LP179LP189LP199LP209LP219LP229LP239LP249LP25*LP26 0016

COMMON /PRAM4/ LP27,LP269LP299LP309LP319LP329LP339LP34vLP35vLP36 0017

CGMMON /PRAM2/ LP99LP109LPlItLP12tLP139LP149LP159LP16 0018

COMMON /PRAMI/ LP1tLP2vLP3tLP49LP5vLP6vLP79LP8 0019

COMMON /EXAG/ PWqQW 0020

COMMON /PKI/ G 0021

COMMON /PRM4/ PA34tPA35,PA36 0022

C 0023

C 0024

C 0025

C STORE THE TRUE VALUES OF THE COEFFICIENTS TO BE IDENTIFIED 0026

C 0027

PAI = A(LPl) 0028

PA2 = A(LP21 0029

PA3 = A(LP3) 0030

PA4 = A(LP4) 0031

PA5 = ARP5) 0032

PA6 = A(LP6) 0033

PA7 = AILP71 0034

PA8 = A(LPS) 0035

PA9 = A(LP9) 0036



PAlO = AILPLOP 0037
PAll = A(LP1I) 0038
PA12 = A(LPI2) 0039
PA13 = A(LPI3) 0040
PA14 = A(LPI4) 0041
PA15 = A(LPI5) 0042
PA16 = A(1P16) 0043
PAL? = A(LPLII 0044
PAl8 = A(1P181 0045
PA19 = A(1P19) 0046
PA20 = A(LP2O) 0047
PA21 = A(1P211 0048
PA22 = A(1P22) 0049
PA23 = A(LP23) 0050
PA24 = A(1P241 0051
PA25 = A(LP25) 0052
PA26 = A(1P261 0053
PA27 = A(1P27) 0054
PA28 = A(1P28) 0055
PA29 = A(1P291 0056
PA3O = A(1P301 0057
PA31 = A(1P31) 0058
PA32 = A(1P32) 0059
PA33 = A(1P33) 0060
PA34 = A(1P341 0061
PA35 = A(LP351 0062
PA36 = A(1P361 0063

C 0064
C ASSIGN INITIAL STATE AND COEFFICIENT ESTIMATION VALUES TO THE- 0065
C EXTENDED STATE VECTOR 0066
C 0067

DO 20 1 =19NO 0068
XHTUl) 15T() 0069

20 CONTINUE 0070
XHT(NO+1) = AItIPI) 0071
XHT(NO+2) = AI(LP2) 0072



Al (LP3)
Al (LP41
Al (LP5)
Al (LP61
AI(LP7)
Al (LP81
Al i LP9)

0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108

XHT(ND+3)
XHT(NO+4)
XHT ( NO+ 5)
XH T (NO+ 6)
XHT (ND+7)
XHT(NO+8)
XHT(NO+9)
XHT(NO+10)
XHT(NO+11)

XHT (NO+ 12)
XHT (NO+ 13)

XHT(NO+14)
XHT (NO+ 151

XHT(NO+16)
XHT (NO +17)

XHT(NO+18)
XH T (NO+ 19)
XHT(N(3+201

XHT (NO+ 21)
XHT(NO+22)
XHT(N0+23)
XHT (NO+24)
XHT (NO +2 5)
XHT (NO+26)
XHT(NO+27)
XHT(NO+28)
XHT(N0+29)
XHT(NO+30)
XHT(NO+311
XHT(NO+32)
XHT (NO+ 33)
XHT(ND+34)
XHT(NO+35)
XHT (NO+36)

AHLPIO)
AI(LP11)
AI(LP12)
Al (LP131
Al (LP14)
AT (LP 151
Al (LP161
AI(LP17)
AI(LP18)
AT (LP19)
AT ( LP20)
Al (LP211
Al (LP221
AI(LP231
AT (LP24)
AHLP25)
AHLP26)
Al (I-P27)
Al (LP28)
AT (LP291
Al (LP30)
AI(LP31)
Al MP321
AT (LP33)
Al (LP34)
AT (LP35)
Al (LP36)

c

c INITIALIZE THE MEASUREMENT FUNCTION



DO 4 Ni = 1,NO
DO 5 MI = 1,SP
HZ(Nl,MI) = 0.00

5 CONTINUE
4 CONTINUE

DO 3 NI = 1,NO
HZ(N1,N1I = 1.00

3 CONTINUE
DO 91 N = 1,SP
XBAR(N) = 0.00

91 CONTINUE
DO 300 II = 1,47
ZEPOtlI) = 0.0

300 CONTINUE

INITIALIZE THE ERROR COVARIANCE MATRIX

DO 7 NI = 1,SP
DO 6 Mi = iSP
EHT(NI,M1) = 0.00

6 CONTINUE
7 CONTINUE

DO 21 I = 100
EHT(I,) = ICV(I)

21 CONTINUE
EHT(NO+1,NO+1) = ASD(LP1)**2
EHT(NO+2,NO+2) = ASD(LP21**2
EHT(NO+3,NO+3) = ASD(LP3)**2
EHT(NO+4,N0+4) = ASD(LP4)**2
EHT(NO+5,NO+5) = ASD(LP5)**2
EHT(NO+6,NO+6) = ASD(LP6)**2
EHT(NO+7,NO+71 = ASD(LP7)**2
EHT(NO+8,N0+8) = ASD(LP8I**2
EHT(NO+9,NO+9) = ASD(LP9)**2
EHT(NO+10,NO+11) = ASD(LP10)**2

C

C
C
C

0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144



EHT(NO+119NO+11)
EHT(NO+129NO+121
EHT(NC+l3tNO+l3)
EHT(NO+149NO+14)
EHT(NO+15,NO+15)
EHT(NO+16,NO+16)
EHT(NO+179NO+17)
EHT(ND+189ND+18)
EHT(NO+199NO+19)
EHT(N0+20jN0+20)
EHT(NO+219NO+21)
EHT(NO+229NO+22)
EHT(NO+239ND+23)
EHT (NO+249 NO+241
EHT(NO+259NO+251
EHT(NO+269NO+26)
EHT(NO+27*NO+271
EHT(NO+28vNO+28)
EHT(NO+29vNO+29)
EHT(NO+309NO+30)
EHT(ND+31#ND+311
EHT(NO+32#ND+32)
EHT(NO+339NO+33)
E HT (NO + 34 9 NO +34)
EHT(NO+359NO+351
EHT(NO+369NO+36)

ASO(LP11)**2
ASD(LP121**2
ASD(LP13)**2
ASD(LP14)**2
ASD(LP15)**2
ASD(LP16)**2
ASD(LP17)**2
ASO(LP18)**2
ASD(LP191**2
ASD(LP20)**2
ASO(LP21)**2
ASD(LP22)**2
ASD(LP23)**2
ASD(LP24)**2
ASD(LP251**2
ASD(LP26)**2
ASD(LP271**2
ASD(LP281**2
ASD(LP29)**2
ASD(LP30)**2
ASD(LP31)**2
ASD(LP32)**2
ASD(LP33)**2
ASD(LP34)**2
ASD(LP35)**2
ASO(LP36)**2

0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180

c

c

c

SET EXAGERATED NOISE PARAMETERS

CC 1 Nl = 19LP
DO 2 MI = 19LP
QtNltMIl = O&DO
R(NIMl) = O.DO
CONTINUE
CONTINUE
DO 55 IR = ItNO



IA = IR+2*NO 0181
IV = IA+NO 0182
Q(IRIR) = QW*PMS(IAI**2 0183
R(IRIR) = PW*PMS(IV)**2 0184

55 CONTINUE 0185
RETURN 0186
END 0187



SUBROUTINE RKL(HTIXVI,XRIXPSIXVDI ,N,A,ZV,ZR,ZPSZVDUSDUSTS,
1N,P,WNVN,NO,V)

SUBROUTINE RKL GENERATES THE NOISY SEA TRIAL DATA USED FOR THE
IDENTIFICATION BY THE KALMAN FILTER...THE EQUATIONS OF MOTION ARE
USED TO GENERATE MOTION TRAJECTORIES WITH A SPECIFIED LEVEL OF
NOISE...USING THE RUNGE-KUTTA 4TH ORDER INTEGRATION TECHNIQUE,
THE VALUES OF THE STATE VARIABLES AS A FUNCTION OF TIME ARE
RETURNED TO THE CALLING PROGRAM

INTEGER SP
DIMENSION IN(I)
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
COMMiN /PKI/ G

C
C *********

U,UDDUOUS(1) ,DUS(1 I
HHMT,TI,TMTN,TS( 1)
WLVLWN(I),VN( 1)
V(376)
P(I ),A(1)
ZV(),ZR( 1),ZPS l),ZVO(1)
FNLVFNLR
DV,DR
ZZ1,ZZ2
XVIXRIXPSIXVDI
XVXRXPSXVD
YVIYV2,YV3,YV4
YR1,YR2,YR3,YR4
YPS1,YPS2,YPS3,YPS4
YVD1,YVD2,YVD3,YVD4
XVNXRNXPSNXVDN
YVIN,YV2N,YV3NYV4N
YRINYR2N,YR3NYR4N
YPS 1N,Y PS2N,YPS3NYPS4N
YVDIN,VD2NYVD3NYVD4N
DSINDCOS

C
C
C
C
C
C
C
C

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036

ON

-



c 0037
C INITIALIZE THE STATE VARIABLES AND THE TIME INCREMENT USED IN THE 0038
C INTEGRATION 0039
C 0040

T =TI 0041
XV - XVI 0042
XR= XRI 0043
XPS= XPSI 0044
XVD= XVDI 0045
XVN = XVI 0046
XRN = XRI 0047
XPSN = XPSI 0048
XVDN= XVDI 0049
HP = H/2. 0050
NVAP = NO 0051

C 0052
C START THE INTEGRATION LOOP, ONE CIRCUIT PER TIME STEP 0053
C 0054

DO 300 IJ = 1,N 0055
TM = T+HM 0056
TN = T+H 0057
UD = U(T) 0058
US(IJ)= UD 0059
DUS( IJ)= DUD(T) 0060

C 0061
C GENERATE THE GAUSSIAN PROCESS NOISE FOR EACH STATE VARIABLE IN 0062
c THE INITIAL PHASE OF THE TIME STEP 0063
C 0064

D0 333 IVAR = 1,NVAR n065
CALL WNO(IN,PIVARNVARWL) 0066
WN(IVAR) = WL 0067

333 CONTINUE 0068
C 0069
c CALCULATE THE NOISELESS STATE VARIABLES AT THE START OF THE TIME 0070
C INCREMENT, AT TIME T 0071
C 0072



DV = FNLV (XVqXR,9UD,9A) 0073
DR = FNLR(XVXRUDA) 0074
YVL. = H*DV 0075
YRI = H*DR 0076
YPSI. = H*XR 0077
YVDI = DV 0978

C 0079
C CALCULATE THE NOISY STATE VARIABLES AT TIME T FOR GENERATING THE 0080
C ACTUAL NOISY DATA FOR THIS TIME INCREMENT 0081
C 0082

YVLN = H*(DV+G*WN(1)) 0083
YR1N = H*(DR+G*WN(21) 0084
YPS1N = H*(XR+G*WN(3)) 0085
YVD1N = DV+G*WN(41 0086
LZI = XV+C.5*YVL 0087
Z12 = XR+0.5*YRL 0088

j = U( TM) 0089
C 0090
C GENERATE NEW PROCESS NOISE FOR THE SECOND PHASE OF THE INTEGRATION 0091
C 0092

DO 335 IVAR = 1,NVAR 0093
CALL. WNO(INPIVARNVARWL) 0094
WN(IVAR) = WL 0095

335 CONTINUE 0096
C 0097
C DO THE NOISELESS STATE CALCULATIONS AT TIME TM 0098
C 0099

DV = FNLV(ZZ1,112,UD,A) 0100
DR = FNLR(ZZ1,112,UDA) 0101
YV2 = H'#DV 0102
YR2 = H*DR 0)103
YPSZ = H*112 0104
YVD2 = DV 0105

C 0106
C DO THE NOISY STATE CALCULATIONS AT TIME TM 0107
C 0108



VV2N = H*(DV+G*WN( 1) ) 0109
YR2N = H*(DR+G*WN(2)) 0110
YPS2N = H*(112*G*WN(3)) 0.)111
YVD2N = CV+G*WN(43 0112
ZZI = XVt005*YV2 0113
2Z2= XR+0.5*YR2 0114

C 0115
C GENERATE PROCESS NOISE FOR THE THIRD PHASE OF THE INTEGRATION 0116
C 0117

DO 336 IVAR = 19NVAR 0118
CALL WNO(INPIVARNVARWL) 0119
WN(IVAR) = WL 0120

336 CONTINUE 0121
C 0122
C DO THE NOISELESS STATE CALCULATIONS AT TIME TM 0123
C 0124

DV = FNLV(ZZIZZ12,UDAJ 0125
DR = FNLR(ZZ1,112,UD,A) 0126
YV3 = H*DV 0127
YR3 = H*DR 0128
YPS3 = H*112 0129
YVD3 = DV 0130

C 0131
C DO THE NOISY STATE CALOLLATIONS AT TIME TM 0132
C 0133

YV3N = H*(DV+G*WN(1I) 0134
YR3N = H*(DR+G*WN(2)) 0)135
YPS3N = H*(172+G*WN(3)) 0136
VVD3N = DV+G*WN(4) 0137
ZZI = XV+YV3 0138
ZZ2 = XR+YR3 0139
UD = U(TN) 0140

C 0141
C GENERATE PROCESS NOISE VALUES FOR THE FINAL PHASE OF THE 0142
c INTEGRATION AT THE END OF THE TIME INCREMENT 0143
C 0144



DO 337 IVAR = 1#NVAR 0145

CALL WN0(INjPIVARlNVARjWL) 0146

WN(IVAR) = WL 0147

337 CONTINUE 0148

C 0149

C DO THE NOISELESS STATE CALCULATIONS FOR TIME TN 0150

c 0151

DV = FNLV(ZZ19ZL2,PUDtA) 0152

DR = FNLR(ZZliZZ2,UDvA) 0153

YV4 = H*DV 0154

YR4 = H*DR 0155

YPS4 = H*ZZ2 0156

YVD4 = OV 0157

C 0158

C DO THE NOISY STATE CALCULATIONS AT TIME TN 0159

c 0160

YV4N = H*(DV+G*WN(l)) 0161

YR4N = H*(DR+G*WN(2)) 0162

YPS4N = H*(ZL2+G*WN(3)) 0163

YVD4N = DV+G*WN(4) 0164

C 0165

C FIND THE VALUE OF THE STATE VARIABLES OVER THE INCREMENT AND ADD 0166

C TO THE CUMULATIVE TOTAL OVER ALL TIME 0167

C 0168

XV = XV+le/69*(YV1+2o*YV2+2**YV3+YV4) 0169

XR = XR+I./6,*(YRI+2.*YR2+2.*YR3+YR4) 0170

XPS = XPS+I*/6,*(YPS1+2**YPS2+2**YPS3+YPS4) 0171

XVD = lo/6.o*(YVD1+29*YV02+2,a*YVD3+YVD4) 0172

XVN = XVN+lo/6.*(YVIN+2,*YV2N+2**YV3N+YV4N) 0173

XRN = XRN+I,/6,*(YRlN+2e*YR2N+2**YR3N+YR4N) 0174

XPSN = XPSN+I,/6o*(YPSlN+2o*YPS2N+2,a*YPS3N+YPS4N) 0175

XVDN = le/6**(YVDlN+2,*YVD2N+2,*YVD3N+YVD4N) 0176

C 0177

c GENERATE THE GAUSSIAN MEASUREMENT NOISE FOR EACH MEASURED STATE 0178

C VARIABLE TO BE OUTPUT 0179

c 0160

1-"



DO 334 IR = INVAR 0181
IVAR = IR+NVAR 0182
CALL WNO( INPIVARNVARW.) 0183
VN(IR) = WL 0184

334 CONTINUE 0185
C 0186
C DETERMINE THE MEASURED NOISY OUTPUT OF THE SYSTEM 0187
c 0188

V(IJ) = VN(l) 0189
VL = VN(2) 0190
ZR(IJ) = XRN+VL 0191
VL = VN(3) 0192
ZPS (I J) = XPSN+VL 0193
VL = VN(4) 0194
ZVD(IJ) = XVDN+VL 0195
T = TtH 0196
TS(IJ) = T 0197

300 CONTINUE 0198
US(N+1) = UD 0199
DUS(N+1) = DUD(TN) 0200

C 0201
c INTEGRATE THE MEASURED NOISY ACCELERATION TO GENERATE A NOISY 0202
C SWAY VELOCITY OUTPUT 0203
C 0204

ZV(11 =0.5*H*(XVDI.-ZVD(1)) 0205
DO 301 1K = 2,0 0206
ZV(IK) = LV(IK-1?+Q05*H*(ZVD(IK)+ZVD(IK-1I) 0207

301 CONTINUE 0208
DC 302 KI = 1,N 0209
ZV(KI) = ZV(KI)+V(KI) 0210

332 CONTINUE 0211
RETURN 021.2
END 0213



DOUBLE PRECISION FUNCTION U(T) 0001
C 0002
C FUNCTION UCT) GENERATES RUDDER DEFLECTIONS FOR SPECIFIC MANEUVERS 0003
C AS A FUNCTION OF TIME 0004
C 0005

DOUBLE PREC IS ION D, DT,,TL,,DSIN, PER 0006
COMMON /INPUTI DITLJJ 0007

C 0008
C *****0009

C 0010
D = 01/57.296 0011
GO TO (1O,2Q,30),JJ 0012

C 0013
C STEP RUDDER DEFLECTION 0014
C 0015

10 U = D 0016
RETURN 0017

C 0018
c ZIG-TAG RUDDER DEFLECTION 0019
C 0020

20 IF (T-1000b 3,4,4 0021
3 U = 0 0022

RETURN 0023
4 IF (T-2000 ) 5,6,6 0024
5 U = -0) 0025

RETURN 0026'
6 U = 0,D0 0027

RETURN 0028
C 00219
C SINUSOIDAL RUDDER DEFLECTION- 0030
C 0031

30 PER = TITL*% .14159 0032
U = D*DSINCPER) 0033
RETURN 0034
END 0035



DOUBLE PRECISION FUNCTION OUD(T) 0001
C 0002
C FUNCTION DUD(T) CALCULATES THE TIME RATE OF CHANGE IN THE RUDDER 0003
C DEFLECTION FOR SPECIFIC MANEUVERS 0004
C 0005

DOUBLE PRECISION DDI ,TTL,DCOSPER 0006
COMMON IINPUT/ DITLJJ 0007

C 0008
C *****0009

C 0010
0= D11579296 0011
GO TO (1,20p3ObqJJ 0012

C 0013
C STEP RUDDER DEFLECTION 0014
C 0015

10 DUD = OoD0 0016
RETURN 0017

C 0018
C ZIG-ZAG RUDDER DEFLECTION 0019
C 0020

20 DUD = 0.0O 0021
RETURN 0022

C 0023
C SINUSOIDAL RUDDER DEFLECTION 0024
C 0025

30 PER = TfTL', 3.14159 0026
DUD = D*DCOS(PER) 0027
RETURN 0028
END 0029



SUBROUTINE WNO(INPIVAR,NVARW) 0001
C 0002
C SUBROUTINE WNO GENERATES GAUSSIAN WHITE NOISE FROM THE SPECIFIED 0003
C STATISTICAL PROPERTIES CF THE DESIRED NOISE LEVELS 0004
C 000)5

DIMENSION IN~l) 0006
DOUBLE PRECISION P(J)bAM,S,W 0007

C 0008
C *****0009

C 0010
IX = INC IVAR) 0011
LW = IVAR+2*NVAR 0012

C 0013
C DESIRED MEAN 0014
C 0015

AM = P(IVAP) 0016
C 001?
C DESIRED STANDARD DEVIATION 0018
C 0019

S = P(LW) 0020
CALL GAUSS(IXSAMW) 0021
INCIVAR) = IX 0022
RETURN 0023
END 0024



SUBROUTINE GAUSS( IX, SAMW) 0001
C 0002
C SUBROUTINE GAUSS COMPUTES A NORMALLY DISTRIBUTED RANDOM NUMBER 0003
C WITH A GIVEN MEAN AND STANDARD DEVIATION 0004
C 0005

DOUBLE PRECISION SAMWA 0006
C 0007
C *****0008

C 0009
A = Q,)00 0010
DO 50 1 = 1,12 0011
GALL RANDU ( IXiIY9 Y) 0012
IX = iv0013

50' A = MY 0014
W= (A-6.DO)*S+AM 0015
RETURN 0016
END 0017



SUBROUTINE RANOU(IXIYYFL) 0001
c 0002
c SUBROUTINE RANDU GENERATES UNIFORMLY RANDOM NUMBERS FOR USE IN 0003
c SUBROUTINE GAUSS 0004
o 0005

IY IX*65539 0006
IF (IV) 5,6,6 0007

5 IV IY+2147483647+1 0008
6 YFL =IY 0009
YFL= YFL*0 04656613E-9 0010
RETURN 0011
END 0012



DOUBLE PRECISION FUNCTION FNLV(XVvXRtUPA) 0001

c 0002

c FUNCTION FNLV CALCULATES THE VALUE OF THE TIME DERIVATIVE OF THE 0003

C SWAY VELOCITY 0004

c 0005

DOUBLE PRECISION XVtXRqLjA(l)jF2jF3jF4 0006

C 0007

Cl********* 0008

C, noog

F2 = A(9)+A(6)*XV+A(7)*XR+A(B)*()+A(26)*U**3 +A(27)*XR*XV**2 +Af2q) 0010

I*U*XV**2 0011

F3 = A(15)+A(12)*XV+A(13)*XR+A(14)*U+A(31)*U**3 +A(32)*XR*XV**2 +A 0012

1(33)*U*XV**2 0013

F4 = 1,/(A(4)*Atll)-A(10)*A(5)) 0014

FNLV = F4*(A(11)*F2-A(5)*F3) 0015

RETURN 0016

END 0017



DOUBLE PRECISION FUNCTION FNLR(XVtXRvUtA) 0001

C 0002

C FUNCTION FNLR CALCULATES THE VALUE OF THE TIME DERIVATIVE OF THE 0003

C YAW VELOCITY 0004

C 0005

DOUBLE PRECISION XVvXRtU#A(l)qF29F3fF4 0006

C 0007

C 0008

C 0009

F2 = A(91+A(61*XV+A(7)*XR+A(8)*U+A(26)*U**3 +A(27)*XR*XV**2 +A(281 0010

I*U*XV**2 0011

F3 =,A(15)+A(12)*XV+A(13)*XR+A(14)*U+A(31)*U**3 +A(32)*XR*XV**2 +A 0012

1(33)*U*XV**2 0013

F4 = 1,/(A(4)*A(ll)-A(l0,)*A(5)) 0014

FNLR-= F4*(A(4)*F3-A(10)*F2) 0015

RETURN 0016

END 0017

cX)



C
C
C
C
C

SUBROUTINE SHOMO(UlVvU2,V2,U3,V3,XPAGE,YPAGE,IPEN,K,M,YLABEL)

SUBROUTINE SHOMO CAN BE USED TO PORTRAY THE MOTIONS OF THE VESSEL
USING THE CALCOMP PLOTTING ROUTINE...IT CAN BE USED IN CONJUNCTION
WITH OR SEPERATE FROM TI'E ALTERNATE ROUTINE PLOTM.

DIMENSION Ul(l),Vl(1),U2(l),V2(1),U3(1)eV3(1)
DIMENSION YLABEL(1)
IF (K.EQ.1) GO TO 306
IF (MoGT.ll GO TO 307

PRINT A KEY FOR PLOT IDENTIFICATION.

CALL SYMBOL(2.0,0.75,.14,'MEASUREMENT NOISE - 5% ,0.0,23)
CALL SYMBOL(2.0,0.25,0.14,'PROCESS NOISE - 5% ',0.O,19)
X = 13.24
CALL SYMBOL(11.0,1.0,0.14,'FILTERED STATE ',0.0,16)
CALL SYMBOL(X,1o00,,14,15,0a0,-1)
X = X+0.15
DC 301 I = 1,5
CALL SYMBOL(X,10 0,0.14,15,0 00,-2)
x = X+0.15

301 CONTINUE
X = 13.24
CALL SYMBOL(11.0,0.5,0.14,'NOISY STATE ',0.0,16)
DO 302 1 = 1,6
CALL SYMBOL(X,0.570.14,1,0.0,-1)
X = X+0.15

302 CONTINUE
X = 13.24
CALL SYMBCL(11.O,0.0,0.14,'ZERO LINE ',O.0,16)
DO 303 1 = 1,6
CALL SYMBOL(XO.0,0.14,15,0.0r-1)
X = X+0.15

303 CONTINUE
CALL PLOT(0.0,2.3,-3 1

C
C
C
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307 CONTINUE 0037
C 0038
C PLOT BOTH THE FILTERED AND NOISY MOTIONS AS A FUNOTIIN OF TIME. 0039
C 0040

CALL MINMAX(VI,47,AMINAMAX) 0041
IF (AMIN.LE.0.0.AND.AMAX.GE.0.0) GO TO 304 0042
CALL PICTUR(8.0*,0,'TIME (SEC,I.1,lYLABEL33UIV1,-47,01O 0043
1IrU3#V3#4?,0.0, 1) 0044
GO TO 305 0045

3U4 CALL PICTUR(8.09,0,'TIME (SEC.) 1llYLABFL,33,UliVI,-47,0.1Ov 0046
11,U2,V2r-47,0.10, 15,U3,V3,47,0.0, 1) 0047

305 CALL PLOT(XPAGEYPAGEIPEN) 0048
306 CONTINUE 0049

RETURN 0050

0



END 0001
SUBROUT INE SHOCO(UlV1,vU2,PV21,XPAGE,YPAGEIPENKMN) 0002

C 0003
C SUBROUTINE SHOCO CAN BE USED TO PORTRAY THE COEFFICIENT 0004
C IDENTIFICATION AS A'FUNCTION OF TIME USING THE CALCOMP PLOTTER. 0005
C 0006

DIMENSION WA I) ,Vl(1) ,U2(1ii VZ(47) 0007
IF (K.EQ.1) GO TO 307 0008
00 300 1 = 1,47 0009
V2(I) = V21 0010

300 CONTINUE 0011
IF (M.GT.1) GO TO 333 0012
CALL PLOT(0.0,-2.3,-31 0013
CALL SYMBCL(2 0 0,0075,00 14,'MEASUREMENT NOISE - 5% O0023) 0014
CALL SYMBOL(2.90.25,O.14,'PROCESS NOISE -5% 4 0.0919) 0015
X = 13.24 0016
CALL SYMBOL(11,0,,75v,.4,'IDENTIFTCATION '#0.0#16) 0017
CALL SYMBOL(Xv,.75,0.14, 159,00-I) 0018
X = X+0915 0019
DO 301 1 = 1,5 0020
CALL SYMBOL(X,.75,0.14,15,U.0,-2) 0021
X = XtO.15 0022

301 CONTINUE 0023
X = 13.24 0024
CALL SYMBOL(11O,.259,149'TRUE VALUE ly00416) 0025
D0 302 1 = 1,6 0026
CALL SYMBOL (X,0 25,0.e149 15,0.Ort) 0027
X = x+o.I1s 0028

302 CONTINUE 0029
CALL PLOT (00 0,v2e3t-31 0030

333 CONTINUE 0031
CALL PICTUR(8.0,4.0,'TIME (SEC,11,ll'COEFFICIENT VALUE 1l8,U1,VI 0032
1947,00,2,V2 ,-47,0. 10,15) 0033
CALL PLOT(-11.090o3t-3) 0034
GO TO (304,3069303,30519N 0035

303 CALL SYMBOL( 7.5,3.5,0.48,85*0.0,-I) 0036



CALL SYMBOL(6*05t3e4vOo24910liOeOt-1) 
0037

GO TO 307 0038

304 CALL SYMBOL(7.5ip3.5,PO*48910490-09-1) 0039

CALL SYMBOL(8.0593.490.24#10liO-09-1) 
0040

GG TO 307 
0041

305 CALL PLOT(-0,7090*0t-3) 
0042

CALL SYMBCLf6o5v3o5v0e48p85#0&0v-1) 
0043

CALL SYMBOL(7*05i3o4tOo, d4t899O.Ov-l) 0044

CALL SYMBOL(7o36t3o5,tOo28915,FO*09-1) 0045

CALL SYMBOL (7o 7493,o 5 q0o2804,90*0 9-1 ) 0046

CALL SYMBOL(8,1213,59C,28tlO3tOoOt-l) 
0047

CALL SYMBCL(8.38j3.4j0*24j7lq0e0j-l) 
0048

CALL SYMBOL( 8o 6493o5 90o 289 1000,09-1 0049

CALL PLOT(0,700,09-3) 
0050

GO TO 307 
0051

306-CALL SYMBCL(6o5t3,*5,PO,48!PI0490.01-1) 
0052

CALL SYMB0L(7*05v3*4q0o24t89#0e0v-l) 
0053

CALL SYMBOL(7a36ip3a59Oe28,PI5,tOoOt-l) 0054

CALL SYMBOL( 7, 7493,590,28,840,09-1) 
0055

CALL SYMBOL(8ol2t3o59Oo28910090*09-1) 
0056

GO TO 307 
0057

308 CALL SYMBU(6*593*50*2898490,09-1) 
0058

CALL SYMBOL (6*85 13 *5t0,28,,l5v0e0v-l) 0059

CALL SYMBOL17.2093*590,489lO4vOOt-l) 
0060

CALL SYMBOL(7*75t3,490*24ilOlvOoOt-1) 
0061

GO TO 307 
0062

309 CALL PLOT(-0,3vOOv-31 
0063

CALL SYMBOL(6*593,590*2898490*09-1) 
0064

CALL SYMBOL(6,n85v3o59O,28tlO3-PO-Og-i) 
0065

CALL SYMBOL (7olli,3o4p0o24i,71,p0*09-1) 
0066

CALL SYMBOL(7.40j3o5v0c28ql5i090t-l) 
0067

CALL SYMBOL(7,7513,510,48910490.09-1) 
0068

CALL SYMBOL(8,300,490*249890*09-1) 
0069

CALL PLOT(0e30j0c0v-3) 
00-11110)

GO TO 307 
0071

310 CALL PLOT (-0.3 PO,09-3) 
0072

00
N



CALL SYMBOL (6c, 593o5 9Oo48973 90*0 #-1 ) 0073

CALL SYMBOL(7oU5t3*4fOo24tio5loool-1) 0074

CALL SYMBOL(7*36*3,5v0*28vl5v0,09-l) 0075

CALL SYMBOL(7,740,590*489850.0w-1) 0076

CALL SYMBOL(8*2993o49Oo249819,POOOV-l) 0077

CALL PLOT(0o3j0o0,p-3) 0078

GO TO 307 0079

311 CALL SYM80L(7,5v3*5*0e46v85v0e0v-1) 0080

CALL SYMB0L(8o05q3a4q0o24943v0a0t-l) 0081

307 CONTINUE 0082

CALL PLOT(0,0,1-0,3,-31 0083

CALL PLOT(XPAGEYPAGEIPEN) 0084

RETURN 0085

END 0086

00
u



)

SUBROUTINE PLOTM(NO,A,N,M,NSNE) 0001
C 0002
c 0003
C 0004
C SUBROUTINE PLOT 0005
C 0006
C PURPOSE 0007
c PLOT SEVERAL CROSS VARIABLES Y VERSUS A BASE 0008
C VARIABLE X IN A FORMAT SUITABLE FOR THESIS USE 0009
C 0010
C USAGE 0011
C CALL PLOT(NO,A,N,M,NS) 0012
C 0013
C DESCRIPTION OF PARAMETERS 0014
C NO - PLOT NUMBER OF .LTE. 3 DIGITS 0015
C A - MATRIX OF DATA TO BE PLOTTED, MUST BE IN 0016
c STANDARD SINGLE COLUMN FORM. FIRST COLUMN 0017
C REPRESENTS BASE VARIABLE AND SUCCESSIVE 0018
C COLUMNS ARE THE CROSS VARIABLES (MAXIMUM IS 0019
C NINE). 0020
C N - NUMBER OF ROWS IN MATRIX A. N MUST BE 0021
C oLTEg 47 0022
C M - NUMBER OF COLUMNS IN MATRIX A. M MUST BE 0023
C .LTE. 10 0024
C NS - CODE FOR SORTING THE BASE VARIABLE DATA IN 0025
C ASCENDING ORDER 0026
C 0 SORTING IS NOT NECESSARY(ALREADY IN 0021
C ASCENDING ORDER) 0028
C 1 SORTING IS NECESSARY 0029
C ******v*********************************************** 0030
C 0031

DIMENSION OUT(51),IANG(9),YPR(6),YPT(3),A(j) 0032
INTEGER*2 OUTIANGBLANK 0033
IF (NE.EQ.2) GO TO 99 0034
DATA IANG /'1 ','2 ,93 ,4 1,15 9,6 *,7 1,68 19S9 1/ 0035
DATA BLANK /I 1/ 0036



c FORMAT STATEMENTS FOR THESIS USE 0037
1 FORMAT(IHI,21Xi,7H PLOT 08) 0038
2 FORMAT (IH ,EIO.3v'*',51A1,'*') 0039
3 FORMAT(1H ,lOX,':'51X,':' 0040
4 FORMAT (LH ,18X0 ... INCREMENT IS '9E15.7) 0041
5 FORMAT (1H ,8XE15.7,5XpE15.7,5XE15.7) 0042
7 FORMAT( IH ,I, 6 ~~o.o*oooo~oo.o~io~ 0043
11 5H6be. v* ** *...*) 0044

8 FORMAT (IH ,3XE9.2,1XE9.2,IXE9.2,LXE9.2,IXE9.2,IXE9.21 0045
9 FORMAT(1H) 0046

NL=47 0047
NTH=51 0048
NLL=NL 0049
IF (NS )16,116, 10 0050

C 0051
c SORTING ROUTINE 0052
C 0053

10 DO 15 I=1,N 0054
DO 14 J=IN 0055
IF( A( I)-A(J) )14,14,11 0056

11 L=I-N 0057
LL=J-N 0058
DO 12 K=1,M 0059
L =L +N 0060
LL=LL+N 0061
F=A(L) 0062
A(L)=A(LL) 0063

12 A(LL)=F 0064
14 CONTINUE 0065
15 CONTINUE 0066
16 CONTINUE 0067

C 0068
C FIND BASE AND CROSS VARIABLE SCALES 0069
C 0070

XSCAL=(A(N)-A(1))/CFLOAT(NLL-1)) 0071
MI=N+1 0072

00)



YMAX = -1,E37 0073

YMIN = I.E37 0074

M2=M*N 0075

DO 40 J=Ml9M2 0076

IF (AM GT. YMAX) YMAX=A(J) 0077

IF (AM LT* YMIN) YMIN=A(J) 0078

40 CONTINUE 0079

YSCAL=(YMAX-YMIN)/50*0 0080

IF (YSCALEQO,) YSCAL=1,E-37 0081

YPR(l) = YMIN 0082

DO 90 KN = 194 0083

YPR(KN+1)=YPR(KN)+YSCAL*lOoO 0084

90 CONTINUE 0085

YPR(6)=YMAX 0086

YPT(I)=YMIN 0087

YSTAR=YSCAL*5,0 0088

YPT(2)=YMIN+YSCAL*25.0 0089

YPT(3)=YMAX 0090

c 0091

C PRINT HEADING AND CROSS VARIABLE SCALE 0092

C 0093

WRITE(691)NO 0094

WRITE(6t4)YSTAR 0095

WRITE(695)(YPT(IP)IIP = 11,3) 0096

WRlTE(6q8)(YPR(IP)9IP=1q6) 0097

WRITE(60) 0098

c 0099

C FIND BASE VARIABLE PRINT POSITION 0100

C 0101

XB=A(l) 0102

L=l 0103

MY=M-l 0104

1=1 0105

XEPS=XSCAL/FLOAT(2*(NLL-1)) 0106

45 F = FLOAT(T-1) 0107

XPR = XB+F*XSCAL 0108

co
CY\



XDIF=A(LI)-XPR-XEPS 0109
IF (XDIF )50,5n.,70 0110

C 0111
C FIND CROSS VARIABLES 0112
C 0113

50 DO 55 IXflNTH 0114
OUT( I X) =BLANK 0115

55 CONTINUE 0116
DO 60 J=1,MY 0111
LL=L+J*N 0118
JP = ((A(LL)-YMIN)/YSCAL)+1.0 0119
OUT(JPl=IANG(J) 0120

60 CONTINUE 0121
C 0122
C PRINT LINE AND CLEAR, OR SKIP 0123
C 0124

WRITEf 6,2)XPR, (OUT( lB 4 Z=1,NTH) 0125
L=Lol 0126
GO TO 80 0127

70 WRITE(6,3) 0128
80y 1=1+1 0129

IF( I-NLL)45, 84,P 86 0130
84 XPR=A(N) 0131

GO TO 50 0132
C 0133
C PRINT BOTTOM AND CROSS VARIABLE SCALE 0134
C 3135

86 WRJTE(6,7) 0136
WRITE( 6,8) ( YPR( IP) , IP=1,6) 0137
WRITE(6,9) 0138

99 CONTINUE 0139
RETURN 0140
END 0141



SUBROUTINE FILTER(EJvElPE29E39E49E59ENiEMPELPEStQI#BNtFTtT9HltH2#
IH3,rLPvKSvEBARrBtKtQpRtEEvNOtZvSPvZVsZRpZPSvZVDtUSvTSvXHTiXBARgHZt
2AqC9EHTjICjIRqWtHqTIqNqDUS)

SUBROUTINE FILTER IS THE MAIN FILTERING ROUTINE FOR THE PROGRAM

INTEGER SP
D I ME NS I ON VP (941 1 RP (94) 9 PS P (94) 9 VDP (94)
DIMENSION PP1(94)tPP2(94)gPP3(94)tPP4(94)vPP5(94),PP6(94)vPP7(941
DIMENSION PP 8 (94) , PP 9 (9 4 ) 9 P P 10 (94),v P P 11 ( 94),p P P 12 ( 94) v PP 13 (94)
DIMENSION PP14(94)vPP15(94)vPP16(94)
DIMENSION PP17(94),PPP18(94)PPP19(94)tPP20(94)gPP21194)gPP22(94)
DIMENSION PP23(94)tPP24(94)tPP25(94),PP26(94)vPP27(94),PP28(94)
DIMENSION PP2 9 (94) # P P30 (94) 9 PP31 (94) 9 PP3 2 (94) v P P33 (9 4) 9 PP 34 ( 94)
DIMENSION PP35(94)vPP36(94)
DIMENSION IC(1)91R(l)
DIMENSION EE(l)

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036

c

c

c

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOU BL E
DOUBLE
DOUBLE
DOUBLE
DOALE
DOUBLE
DOUBLE
DOUBLE
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

PRECISION DUSQ)jUSDVtDUDjUZD
PRECISION W(ll
PRECISION Z( I) IZV(1) *ZR( 1)qZPS(l) iZVD(1)
PRECISION K(LP #NO) 9Q(LPvLP) PR(LPPLP) 9B(LPvLP) 9EBAR(LPjl.P)
PRECISION EHT(SP#SP) oXHT( 1) 9HZ (NO tSP) t A( 1) 1 XBAR(1)
PRECISION D I IT I 9USVpUZpUvDTiH
PRECISION FNLVFNLR
PRECISION EI(LPiLP)tE2(LPLP)vE3(LPtLP)tE4(LPiLP)vE5(LPvLP)
PRECISION EJ (LPiLP Vp EN(LPPLP),tQ I( LPpLP ),PBN(LPPLP' tFT(LPqLP)

PRECISTON EM(l-P9LP),vHl (NO 91-P) T(I-Pv NO) tEL(1)vES(1
PRECISION H2 (NO, LP ) *H3(LP9LP)
PRECISION TSQ)9US(l)
PRECISION C(l)
/OUTPl/ VPtRPPPSPPVDPiPPliPP2vPP39PP49PP5tPP69PP79PP8
/OUTP2/ PP99PPIOtPP119PP12,PP13vPP14 pPPI59PP16
/OUTP5/ PP17,PPl8vPPl9tPP209PP219PP229PP23tPP249PP259PP26
/OUT-P6/ PP27,PP289PP299PP309PP311PP32,PP33,PP34vPP359PP36
/OUTP3/ EVvEREPSEVDiEPItEP2tEP3vEP4TEP59EP69EP7tEP8
/OUTP4i EP9,PEP101PE-PlltEP12,EP139EP149EP159EP16

I-A
OD
CC)



COMMON /OUTP7/ EP179EP189EP19,EP209EP2lvEP229EP23vEP249EP25#EP26 0037

COMMON /OUTP8/ EP27,EP289EP299EP30*EP3ltEP329EP339EP34PEP359EP36 0.038

COMMON /PRAM3/ LP171LP189LP19ILP209LP21ILP22,LP239LP24,LP25vLP26 0039

COMMON /PRAM4/ LP27tLP289LP29tLP3O9l-P319LP32tLP33iLP349LP359LP36 0040

COMWIN /PRAMl/ LP19LP29LP39LP4,LP59LP69LP79LP8 0041

COMMON /PRAM2/ LP99LPlOiLP119LP129LP13,tLPl4tLP159LP16 0042

COMMON /INPUT/ D I p T L i J J 0043

COMMON /PKI/G 0044

C. 0045

C 
0046

C 0047

KB = 2 0048

MH = 1 0049

KFIM = 47 0050

C 0051

C, PROCESS THE SEA TRIAL DATA 0052

c 0053

USV = US(l) 0054

USDV = DUSM 0055

UZ = U(TI) 0056

UZD = DUDITII 0057

US(l) UZ 0058

DUSM UZD 0059

DT = H 0060

C 0061

C PROPAGATE THE STATE AND ERROR COVARIANCE MATRICES FROM THE 0062

c INITIAL CONDITIONS 0063

C 0064

CALL PROP(DTUSvAtQgltEJ9EltE2,PE3tE49E5,tBvENPQ19BNvFTPEBARtLPgNOY 0065

1SPtEHTiPXHTtXBARvWvDUS) 0066

C 0067

C CALCULATE THE INITIAL GAIN FOR THE KALMAN FILTER 0068

C, 0069

CALL GAIN(HZtRgEBARiKoEMPHlpTtLP#NOYSPgWtH29CtlCtlR) 0070

C 0071

C UPDATE THE STATE AND ERROR COVARIANCE MATRICES FROM THEIR 0072



-c INITIAL VALUES 0073
C 0074

CALL UPDT(ZZVZR, ZPSZVOHZ, 1,EBARKEL,ESH2,H3,LPNO, 0075
LXHTKBAREHTWSP) 0076
US(1) USV 0077
DUS(l)= USDV 0078
JLI = 2 0079

C 0080
C BEGIN ITERATIONS FOR FILTERING 0081
C 0082

00 104 TM = KBN 0083
NH = IM-1 0084
JLI = JLI'-1 0085
LI = JLI-1 0086

C 0087
C DETERMINE THE INCREMENTAL TIME STEP 0088
C 0089

DT = TS(IM)-TS(NHJ 0090
C 0091
C PROPAGATE THE STATE AND ERROR COVARIANCE MATRICES FOR A TIME DT 0092
C 0093

CALL PROP(DTUSAQ, IMEJ,ElIE2,E3,E4,E5,BENQIBNFTEBARLPP 0094
INO,SPEHT, XHT,XBAR, WDUS) 0095

C 0096
C COMPUTE THE KALMAN FILTER GAIN 0097
C 0098

CALL GAIN (HZR, EBAR, KEM,H1,T, LPNO, SPWH2,,IC, IRI 0099
C 0100
C UPDATE THE STATE AND ERROR COVARIANCE MATRICES 0101
C 0102

CALL UPOT(Z, ZVZR, ZPSZVDHZIMEBARKELESH2,H3,LPNO, 0103
LXHTXBAREHTWSP) 0104
IF(LL.LT.KSI GO TO 377 0105

C 0106
C STORE THOSE VALUES OF THE STATE AND ERROR COVARIANCE MATRICES 0107
C SELECTED FOR PLOTTING 0108



C 0109
CALL STORB(TSMHKF!MKSNOEE ,XHTEHT,SP) 0110
MH =MH*1 0111
JLI 1 0112

377 CONTINUE 0113
104 CONTINUE 0114

RETURN 0115
END 0116



SUBROUTINE PROPCHUSAQ, IEJ,E1, E2,E3,E4,E5,BENQIBN, FTEBARLP 0001
1,NOSP,EHT, XHTXBARWDUS) 0002

C 0003
C SUBROUTINE PROP PROPAGATES THE STATE AND ERROR COVARIANCE MATRICES 0004
C FOR EACH TIME INCREMENT OF THE ITERATION 0005
C 0006

INTEGER SP 0007
DOUBLE PRECISION W(1) 0008
DOUBLE PRECISION EHT(SPSPhvXHT(1hgXBAR(1) 0009
DOUBLE PRECISION E1:(IPLP),E2(LPLP) ,E3(LP,LP), E4(LPLPh9E5(LPLP) 0010
DOUBLE PRECISION EJ(LPLPbEBAR(LPLP),A(1) ,Q(LPLPI 0011
DOUBLE PRECISION US(1bvCUS( 1P,UV,UD 0012
DOUBLE PRECISION HHM 0013
DOUBLE PRECISION XV, XR,9XP SXVD ,XR D 0014
DOUBLE PRECISION YV1,tYV2,9YV3,VV4 0015
DOUBLE PRECISION Y RI,YR2,9YR 3,iYR 4 9016
DOUBLE PRECISION YPS1,YPS2, YPS3,VPS4 0017
DOUBLE PRECISION YVDLYWI2,YVD3,YVD4 0018
DOUBLE PRECISION YRDL1,YRD2,YRD3,YRD4 0019
DOUBLE PRECISION ZZ1,1Z2,1Z3,1Z4 0020
DOUBLE PRECISION FNLVFNLR 0021
DOUBLE PRECISIONB (L P ,LP ) ,E N(L P, LP),Q 1(LPLP ),BN(LP,9L PIF T(L PL P)0022
DOUBLE PRECISION DSINDCOS 0023
COMMON IPRAM3/ LPIILPI8,LPl9,LP2OLP2L ,LP2ZLPZ3,LP24,LP25,LP26 0024
COMMON fPRAM4/ LP2ILP2ELP29, LP3OLP31,LP32,LP33,LP34,LP35,LP36 0025
COMMON /PRAM2/ LP9,LPLOLPLLLPI2,LPl3,LPI4, LPL5,LP16 0026
COMMON /PRAM 1/ LPILP2,LP3,LP4,LP5,1P6,LP7,LP8 0027

c 0028
C *****0029

C 0030
C INTEGRATE THE STATE VALUES OVER THE TIME INCREMENT USING THE 0031
C- RUNGE-KUTTA 4TH ORDER TECHNIQUE OF INTEGRATION 0032
C 0033

MP =LP-NC 0034
UV= US(I) 0035
UP DUS(I) 0036



C
C
Cc

AfL P36)
AtLP35)
A(LP34)
A(LP33)
A(LP32)
A(LP31)
A(LP30)
A(LP29)
A(LP28)
A(LP27)
A(LP26)
A(LP25)
A(LP24)
A(LP23
A(LP22)
A(LP21)
A(LP20)
A(LP19)
A (L P18)
A(LPI7)
A(LP16)
A(LP15)
A(LP14)

XHT(SP)
XHT(SP-1)
XHT(SP-21
XHT(SP-3)
XHT(SP-4)
XHT(SP-5)
XHT(SP-6)
XHT( SP-7)
XHT(SP-8)
XHT(SP-9)
XHT(SP-10)
XHT(SP-11)
XHT(SP-12)
XHT(SP-13)
XHT(SP-14)
XHT(SP-15)
XHT(SP-16)
XHT(SP-17)
XHT(SP-18)
XHT(SP-19)
XHT(SP-20)
XHT(SP-21)
XHT( SP-22)

INITIALIZE THE STATES AND THE COEFFICIENTS OF INTEREST TO THOSE
VALUES ASSIGNED INITIALLY OR CALCULATED IN THE PREVIOUS INCREMENT

XV = XHT(1)
XR = XHT(2)
XPS = XHT(3)
XVD = XHT(4)
XRD = FNLR(XVXR,UV,A)
IF (MP.EQ.0) GO Tf 500
GO TO (101,102,103,104,105,106,107,108,109,110,111,112,113,114,
1115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,
2131,132,133,134,135,136),MP

136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114

0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072



0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108

113
112
ill
110
109
108
107
106
IC, 5
104
103
102
101
500

AMP13) XHT(SP-23)
A(LP12) XHT(SP-24)
A(LP11) XHT(SP-25)
A(LP10) XHT(SP-26)
A(LP9) XHT(SP-27)
A(LP8) XHT(SP-28)
A(LP7) XHT(SP-291
A(LP6) XHT(SP-30)
A(LP5) XHT(SP-31)
A(LP4) XHT(SP-32)
A(LP3) XHT(SP-331
A(LP2) XHT(SP-34)
A(LP1) XHT(SP-35)
CONTINUE
DO 1 N = 19LP
DO 2 M = 19LP
EJ(NvM) EHT(NM)
CONTINUE
CONTINUE

c

c

c

c

CALCULATE THE STATE VALUES AND THE TIME RATE OF CHANGE OF THE
ERROR COVARIANCE MATRIX AT THE START OF THE TNCREMENT

HM= H/2,o
YVDI = FNLV(XVXRUVvA)
YR01 = FNLR(XVvXRvUVqA)
YVI = H*YVD1
YR1 = H*YRD1
YPS1 = H*XR
CALL EFNT1(AgUVvBtLPiSPvXVPXRtNOIXVDIPXRDIPUDgH)
CALL EFNT2(EliQtENtQlvBNPFTtBtLPvNO#SPvWiEHT)
ZZ1 = XV+Oe5*YV1
ZZ2 = XR+0*5*YR1
ZZ3 = XPS+0*5*YPS1
ZZ4 = YVD1
XHT(l) = ZZ1



XHT(2) = ZZ2 0109

XHT(3) = ZZ3 0110

XHT(4) = ZZ4 0111

DO 3 N = 19 L P 0112

00 4 M = 19LP 0113

E2(N,,M) = H*El(NPM) 0114

EHT(N,,M) = EJ(NPM)+HM*El(N,,M) 0115

4 CONTINUE 0116

3 CONTINUE 0117

C 0118

c DO THE R-K CALCULATIONS AT THE MIDDLE OF THE INCREMENT 0119

c 0120

UV = (US(I)+US(1+1))/2. 0121

UD = (DUS(I)+DUS(1+1))/2 0122

YVD2 = FNI-V(ZZ19ZZ2,UVtA; 0123

YRD2 = FNLR(ZZ19ZZ29UVPA) 0124

YV2 = H*YVD2 0125

YR2 = H*YRD2 0126

YPS2 =,H*ZZ2 0127

CALL EFNT1(AUVvBtLPiSPiZZ19ZZ2tNOtYVDI, IDIiUD#H) 0128

CALL EFNT2(ElvQvENvQlvBNtFTvBvLPoNOiSPWvEHT) 0129

ZZ1 = XV+Co5*YV2 0130

ZZ2 = XR+Oo5*YR2 0131

ZZ3 = XPS+0*5*YPS2 0132

ZZ4 = YVD2 0133

XHT(l) = ZZI 0134

XHT(21 = ZZ2 0135

XHT(31 = ZZ3 0136

XHT(4) = ZZ4 0137

DO 5 N = 1,LP 0138

DC 6 M = 19LP 0139

E3(NM) HM*El(N#Ml 0140

EHT(NtM) EJ(NtM)+HM*El(NM) 0141

6 CONTINUE 0142

5 CONTINUE 0143

C, 0144



C REPEAT THE R-K CALCULATIONS FOR THE MIDDLE OF THE INCREMENT 0145

C 0146

YVD3 = FNLV(ZZ19ZZ2,UVvA) 0147

YRD3 = FNLR(ZZ19ZZ29UVPA) 0148

YV3 = H*YVD3 0149

YR3 = H*YRD3 OIL50

YPS3 = H*ZZ2 0151

CALL EFNT1(AtUVBtLPvSPIZZliZZ29NOgYVD2?YRD29UDvH) 0152

CALL EFNT2(EIIQENvQlpBKFTtBvLPtNO*SPtWgEHT) 01153

ZZ1 = XV+YV3 0154

ZZ2 = XR+YR3 0155

ZZ3 = XPS+YPS3 0156

ZZ4 = YVD3 0157

XHT(l) = ZZ1 0158

XHT(2) = ZZ2 0159

XHT(3) = ZZ3 01,50

XHT(4) = ZZ4 0161

00 7 N = lvLP 0162

DO 8 M = ILP 0163

E4(NPM) = HM*El(Nvm) 0164

EHT(NtM) = EJ(NYMI+H*F--I(NvM) 0165

8 CCNTINUE 0166

7 CONTINUE 0167

c 0168

C DO THE R-K CALCULATIONS FOR THE END OF THE INCREMENT 0169

c 0170

UV = US(1+1) 0171

UD = DUS(1+1) 0172

YVD4 = FNLV(ZZ19ZZ29UVtA) 0173

YRD4 = FNLR(ZZliZZ29UVvA) 0174

YV4 = H*YVD4 0175

YR4 = H*YRD4 0176

YPS4 = H*ZZ2 0177

CALL EFNT1(AgUVtBPLPtSPPZZliZZ2tNOtYVD3#YRD3,UD,,H) 0178

tALL EFNT2(EliOPENQlBNFTtBLPNOISPWgEHT) 0179

DO 9 N = 1#LP 0180

cr\



DO 10 M = 1,LP 0181
E5(N,M) = H*EI(NM) 0182

10 CONTINUE 0183
9 CONTINUE 0184

C 0185
C FROM THE STATE VALUES CALCULATED OVER THE TIME INCREMENT, 0186
C DETERMINE THE NEW STATE VALUES PROPAGATED FROM T TO T+DT 0187
C 0188

XBAR(1) = XVo-1/6*(V1+2.*YV2+2.*YV3+VV4) 0189
XBAR(2)= XR+1./6.*(YR1+2.,*YR2-2.*YR34-VR4) 0190
XBAR1(3) = XPS+1 0 /6c * (YPSI+20*YPS2+2.&*YPS3+YPS4) 01L91
XBAR(4) = Ief6*(YVD+2*YVD22**YVD3+VVD4) 0192
IF (MP.EQ.0) GO TO 501 0193
NI = NO+1 0194
DO 24JO N= NlLP 0195
XBAR(N) =XHT(NI 0196

200 CONTINUE 0197
501 CONTINUE 0198

C 0199
C PROPAGATE THE ERROR COVARIANCE MATRIX 0200
C 0201

DO 11 N = 1,LP' 0202
D0 12 M =1,LP 0203
EBAR(NM) = EJ(NM)t1./6.*(EZ(N,M)+2.*E3(N,MIfr2.*E4(NM)+E5(NPM)) 0204

12 CONTINUE 0205
11. CONTINUE 0206

RETURN 0207
END 0208



SUBROUTINE EFNT 1(AUBLP,SP, XVXRNOXVDXRDUDHI 0001
C 0002
c SUBROUTINE EFNTI CALCULATES THE MATRIX B ... THE PARTIAL DERIVATIVES 0003
C OF THE MOTION EQUATIONS WITH RESPECT TO THE VARIOUS ELEMENTS OF 0004
C THE EXTENDED STATE VECTCR 0005
C 0006

INTEGER SP 0007
DOUBLE PRECISION H 0008
DOUBLE PRECISION UD 0009
DOUBLE PRECISION XVXR 0010
DOUBLE PRECISION XVDXRD 0011
DOUBLE PRECISION B(LPLP),A( 1),X(1PC2,C5,C6,DI,02,D3,D4,U 0012
DOUBLE PRECISION CIC8,C9,C10,D5,D6,DTD8 0013
DOUBLE PRECISION DCOSDSIN 0014
COMMON /PRAM3I LPII, LPI8,LP19, LP2OLP21,LP22,LP23,LP24,LP25,LP26 0015
COMMON /PRAM4I LP2ILP28,LP29,LP3OLP3ILP32,LP33,LP34,LP35,LP36 0016
COMMON /PRAM 1/ LPL,LP2,LP3,LP4,LP5,LP6,LPILPB 0017
COMMON IPRAM2/ LP9, LPIO ,LP1,9LP12,LP13,LPL4,L-PI5,LP16 0018

C 0019
C *****0020

C 0021
MP = LP-NO 0022

C 0023
C INITIALIZE THE MATRIX TE ZERO 0024
C 0025

DO 1. N = 1,LP 0026
DO 2 M = 191LP 0027
B(N,M) = C.DO 0028

2 CONTINUE 0029
1 CONTINUE 0030

C 0031
C CALCULATE THOSE ELEMENTS OF THE MATRIX WHICH ARE NON-ZERO 0032
C 0033

C2 = 1./(A(4)*A( 111-A(51)*A(1O) 0034
C5 = A(9)+A(6)*XV +A(7I*XR 4A(8)*UeA(26)*U**3 +A(27)*XR *XV * 0035
12 +A(28)*U*XV **2 0036



C6 = A(15)+A(12)*XV +A(13)*XR +A(14)*U+A(31)*U**3 +A(32)*XR *XV 0037

1 **2 +A(33)*U*XV **2 0038

K2 = 1 0039

K3 = 2 0040

K6 = 3 0041

K8 = 4 0042

Dl = A(61+A(27)*XR *XV *2o+29*A(28)*XV *U 0043

D2 = A(12)+2.i*A(32)*XR *XV +2.*A(33)*XV *U 0044

D3 = A(7)+A(27)*XV **2 0045

D4 = A(13)+A(32)*Xv **2 0046

C7 = 2e*A(27)*(XV *XRD+XR *XVD)+2o*A(28)*U*XVD+2**A(28)*XV *UD 0047

C8 = 2,*A(32)*(XV *XRD+XR *XVDI+2,*A(33)*U*XVD+2**A(33)*XV *UD 0048

C9 = A(6)*XVD+A(7)*XRD+A(27)*(XV **2*XRD+2u*XR *XVD*XV )+2,*A(2 0049

1 8)*U*XV *XVD+A(8)*UD+3**A(26)*UD*U**2+A(28)*XV **2*UD 0050

C10 = A(12)*XVD+A(13)*XRD+A(32)*(XRD*XV **2+2.*XR *XV *XVD)+2o* 0051

1 A(33)*U*XV *XVD+A(14)*UD+3.*A(31)*U**2*UD+A(33)*XV **2*UD 0052

D5 = 2**A(27)*XV *XVD 0053

D6 = 2e*A(32)*XV *XVD 0054

D7 = A( ll)*Clg-A(S)*CIO 0055

D8 = A(4)*CIO-A(10)*C9 0056

c 0057

c CALCULATE THOSE ELEMENTS CORRESPONDING TO THE PARTIAL DERIVATIVES 0058

c WITH RESPECT TO THE STATE VARIABLES OF THE EXTENDED STATE VECTOR 0059

c 0060

8(K2jK2) = C2*(A(11)*Dl-A(51*D2) 0061

B(K29K3) = C2*(A(11)*D3-A(5)*D4) 0062

8(K3vK2) = C2*(A(4)*D2-A( 10,)*Dl) 0063

B(K39K3) = C2*(A(4)*04-A(10)*D3) 0064

B(K8vK2) = C2*(A(11)*C7-A(5)*C8) 0065

O(KBvK3) = C2*(A(11)*D5-A(5)*D6) 0066

B(K89KS) = C2*(A(11)*Dl-A(5)*D2) 0067

NPA = LP1 0068

1 = NO+l 0069

N = 1 0070

10 CONTINUE 0071

c 0072



c

c

c

c

CALCULATE THE REMAINING ELEMENTS WHICH CORRESPOND TO THE PARTIAL
DERIVATIVES WITH RESPECT TO THE IDENTIFIED COEFFICIENTS OF THE

EXTENDEC STATE VECTOR

GO TO(11,#12913tl4vl5vl6,tl7-pl8vl9,t2( ),p2lt22,#23,v24p55,t56,p57v28929,t339
l3lv3Zy33934935936937i38*3'9940941942943944945946)tNPA

11 CONTINUE
GO TO 25

12 CONTINUE
GO TO 25

13 CONTINUE
GO TO 25

14 CONTINUE
B(K2,I) -C2**2 *A(11)*(A(11)*C5-A(51*C6)
B(K3,11 =-C2**2 *A(111*(A(4)*C6-A(10)*C5)+C2*C6
B(K891) = C2**2*A(11)*Ol
GO TO 25

15 CONTINUE
B(K2,I) = C2**2 *A(10)*(A(11)*C-R..-A(5)*C6)-C2*C6
O(K3911 = C2**2 *A(10)*(A(4)*C6-AIIO)*C5)
B(K8tll = -C2**2*(A(10)*D7-C2*CIOJ
GO TO 25

16 CONTINUE
B(K291) = C2*A(11)*XV
B(K3911 = -C2*A(10)*XV
B(K891) = C2*A(11)*XVD
GO TO 25

17 CONTINUE
B(K291) = C2*A(11)*XR
B(K391) = -C2*A(10)*XR
B(K811) = C2*A(11)*XRD
GO TO 25

18 CONTINUE
B(K291) = C2*A(11)*U
B(K3,vl) = -C2*A(10)*U
B(K891) = A(11)*UD*C2

0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108



0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144

GO TO 25
19 CONTINUE

B(K2tl) =
B(K3911 =
GO TO 25

20 CONTINUE
B(K291) =
B(K39
B(K891)
GO TO 25

21 CONTINUE
B(K2,11 =
B(K3,I) =
B(K811)
GO TO 25

22 CONTINUE
B(K291) =
B(K3,I) =
B(KBPI) =
GO TO 25

23 CONTINUE
R(K2,pl) =
MK391) =
B(K8,I) =
GO TO 25

24 CONTINUE
B(K2,I) =
B(K3,pl) =
R(K8,I)
GO TO 25

55 CONTINUE
B(K291)
B(K3,pl)
GO TO 25

56 CONTINUE
GG TO 25

C2*A (11)
-C2*A( 10)

C2**2 *A(5)*(A(11)*C5-A(5)*C6)
C2**2 *A(5)*(A(4)*C6-A( 10)*C5)-C2*C5
-C2**2*A(5)*D7

-C2**2*A(4)*(A( ll)*C5-A(5)*C6)+C2*C5
-C2**2 *A(4)*(A(4)*C6-A( 10)*C5)
C2**2*(A(4)*D7-C2*C9)

-C2*A(5)*XV
C2*A(4)*XV
-C2*A(5)*XVD

-C2*A(5)*XR
C2*A(4)*XR
-C2*A(5)*XRO

-C2*A(5)*U
C2*A(41*U
-A(5)*UD*C2

-C2*A(5)
C2*A(4)



57 CONTINUE
GO TO 25

28 CONTINUE
GO TO 25

29 CCNTINUE
GO TO 25

30 CONTINUE
GO TO 25

31 CONTINUE
GO TO 25

32 CONTINUE
GO TO 25

33 CONTINUE
GO TO 25

34 CONTINUE
GO TO 25

35 CONTINUE
B(K3,I) =
B(K8,I) =
GO TO 25

36 CONTINUE
B(K2,1I =
B(K3,1) =
B(K8,I) =
GO TO 25

37 CONTINUE
B(K2,1) =
B(K3,I) =

-C2*A(10)*XV**3
C2*A(11)*3*XV**2*XVD

C2*U**3 *A(11)
-C2*U**3 *A(10).
A( 11)*3 0 *U**2*UD*C2

C2*X(3)*X(2)**2 *A(11)
-C2*A( 10I)*XR*XV**2

GO TO 25
38 CONTINUE

8(K2,I) = C2*U*X(2)**2 *A(11)
B(K3,1) =-C2*U*XV **2 *A(10)
B(K8,I) = A(11)*(2.*U*XV *XVD+XV **2*UD)*C2
GO TO 25

39 CONTINUE
B(K3,I) = -C2*A(10)*XV*L**2

0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180



B(K89I) = C2*A(111*(XV*2*U*UO*U**2*XVD) 0181

GO TO 25 0182

40 CONTINUE 0183

S(K3vl) = C2*A44)*XV**3 0184

B(KStll = -C2*A(!51*3*XV**2*XVD 0185

GO TO 25 0186

41 CONTINUE 0187

O(K291) = -C2*U**3 *A(5) 0188

B(K3911 = C2*U**3 *A(4) 0189

B(K8vll = -A(5)*39*U**2*UD*C2 0190

GO TO 25 0191

42 CONTINUE 0192

BIK201 = -C2*X(3)*X(21**2 *A(5) 0193

S(K3911 = C2*XR *XV **2 *A(4) 0194

R(K891) = -C2*A(S)*(XRD*XV **2+2,o*XR *XV *XVO) 0195

GO TO 25 0196

43 CONTINUE 0197

B(K2.pll = -C2*U*X(21**2 *A(5) 0198

B(K391) = C2*U*XV **2 *A(4) 0199

O(K891) = -A(5)*(2**U*XV *XVD+XV **2*UD)*C2 0200

GO TO 25 0201

44 CONTINUE 0202

S(K391) = C2*A(41*XV*U**2 0203

O(K8.tll = -C2*A(5)*(XV*e^*U*UD+U**2*XVD) 0204

GO TO 25 0205

45 CONTINUE 0206

GO TO 25 0207

46 CONTINUE 0208

25 CONTINUE 0209

N = N+l 0210

IF (N*GT*MP) GO TO 26 0211

GO TO 110191029103iplO49lO5ivIO6,tlO79lO8-rlO9tllOpl11#1129113#11.49 0212

111591161ll7vll8,tll9tl2O,pl2l9l22vl23ipl24-pl25vl26*1279128PI29tl3Ot 0213

21319132#133tl34#1359136)PN 0214

GO TO 27 0215

101 NPA = LPI 0216

CD

%A)



GO TO 21 0218
102 NPA = 1P2 01

GO TO 27 0219
103 NPA = 1P3 0220,

GO TO 27 0221
104 NPA = 1P4 0222

GO TO 27 0223
105 NPA = IP5 0224

GO TO 27 0225
106 NPA = 1P6 0226

GO TO 27 0227
101 NPA =LWI 0228

GO TO 27 0229
108 NPA = 1P8 0230

GO TO 271 0231
109 NPA = LP9 0232

GO TO 27 0233
110',NPA = LP10 0234

GO TO 27 0235
I11 NPA = LPII 0236

GO TO 21 0237
112 NPA = IP12 0238

GO TO 27 0239
113 NPA = 1P13 0240

GO TO 21 0241
114 NPA = 1P14 0242

GO TO 27 0243
115 NPA = IP15 0244

GO TO0 7 0245
116 NPA = 1P16 0246

GO TO '27 0247
117 NPA = IPI? 0248

GO TO 27 0249
118 N P't.= LP18 0250

GO TO21 0251
119 NPA = IP19 0252



GO TO 21 0253

120 NPA = 1P20- 0254
GO TO 27 0255

121 NPA = LP21 0256
GO TO 21 025?

122 NPA = LP22 0258
GO TO 27 0259

123 NPA = LP23 0260
GO TO 2? 0261

124 NPA = 1P24 0262
GO TO 21 0263

125 NPA = 1P25 0264
GO TO 27 0265

126 NPA = LP26 0266
GO TO 27 0267

127 NWA = 1P27 0268
GO TO 27 0269

128 NPA = LP28 0270
GO TO 2? 0271

129 NPA = 1P219 0272
GO TO 21 0273

130 NPA = 1P30 0274
GO TO 27 0275

131 NPA = 1P31 0276
GO TO 27 027?

132 NPA = 1P32 0278
GO TO 21 0279

133 NPA = LP33 0280
GO TO 21 0281

134 NWA = 1P34 0282
GO TO 27 0283

135 NWA = LP35 0284
GO TO 21 0285

136 NPA = LP36 0286
21 1 = N+NO 0287

GO TO 10 0288



26 CONTINUE 0289
RETURN 0290
END 0291



SUBROUTINE EFNT2(E1,Q.ENQLBNFTBLPNOSPWEHI) 0001
C 0002
C SUBROUTINE EFNT2 CALCULATES THE TIME RATE OF CHANGE OF THE ERROR 0003
C COVARIANCE MATRIX AND RETURNS THE VALUE TO SUBROUTINE PROP TO BE 0004
C INTEGRATED OVER THE TIME INCREMENT 0005
C 0006

INTEGER SP 0007
DOUBLE PRECISION EH(SPSPhvW(1),EI(LPLP ),EN(LPLP) ,Q(LPLP) 0008
DOUBLE PRECISION Ql(LPLP),B(LPLPhvBN(LPLP),FT(LP.LP) 0009

C 0010
C **"***0011

C 0012
DO 1 N = 1,LP 0013
00 2 N = 1,LP 0014
QI(N.M) = Q(NMI 0015
BN(N,MR = B(NPMJ 0016
EN(NM) = EH(NM) 0017

2 CONTINUE 0018
1 CONTINUE 0019
CALL TRNSPSI BNLPLPLPLPFTLPLP) 0020
CALL MAMPISCBNLP,,LPENLPLPLPLPLPWLP) 0021
CALL MAMP2S(ENLPLPFTLPLPLPLPLPW ,LP) 0022
CALL MAADDS(BNLPLPLPLPFTL.PLP). 0023
CALL MAADDS (BNLPLPLPLPQ1,LPLP) 0024
DO 3 N = 1,LP 0025
00 4 M = 1,LP 0026
E1(NM) = BN(N9M) 0027

4 CONTINUE 0028
3 CONTINUE 0029
RETURN 0030.
END 0031



SUBROUTINE GAIN(HR, EBKEMHITt,LPNOSPWH2,CIC, IR) 0001
C 0002
C SUBROUTINE GAIN DETERMINES THE EXTENDED KALMAN FILTER GAIN USED IN 0003
C UPDATING THE STATE AND ERROR COVARIANCE ESTIMATES 0604
C 0005

INTEGER SP 0006
DIMENSION IR(IhI(1 0007
DOUBLE PRECISION H(NOSPhvW(1),H2(NONOh9DET 0008
DOUBLE PRECISION R(LPLP),EB(LPLPhtK(LPNO),EM(LPLPIHI(NOLPI 0009
DOUBLE PRECISION T(LP.NOhtC(1) 0010

C 0011
C *****0012

C 0013
DO I. N =1,LP 0014
DO 2 M = hILP 0015
EM(NM)= EB(N,M) 0016

2 CONTINUE 0017
1 CONTINUE 0018

DO 3 N = 1,NO 0019
DO 4 M = 1,LP 0020
HI(NM)= H(NM) 0021

4 CONTINUE 0022
3 CONTINUE 0023

CALL TRNSPS(HINOLPNOLPTLPNO) 0024
CALL MAMPIS (EMLP ,LPt4, LPNOLP, LPNO ,WNO) 0025
CALL MAMPIS(H1,NOLPEM ,LPLPNOLPNOW ,NO) 0026
CALL MAADDS(HINOLPNCNORLPLP) 0027
DO 8 N = 1,NO 0028
DO,9 M = 1,NO 0029
H2(NM) = HI(NM) 0030
KK = (N-1)+(M-1)*NO+i 0031
C(KK) = H2(N9M) 0032

9 CONTINUE 0033
8 CONTINUE 0034

CALL MINV(CNO,DET,IRIC) 0035
C 0036

OD



c VERIFY THAT THE DETERMINATE OF THE INVERTED MATRIX IS NOT ZERO 0037
C 0038

IF (DET.NE.0.DO) GO TO 5 0039
WRITE (6,100) DET 0040

100 FORMAT (IHI 9f/5X,'IDETERMINATE = F20.1OI 0041
5 CONTINUE 0042

DO 10 N = 1,NO 0043
DO 11 M = 1,NO 0044
KK = (N-11+(M-1)*NO+l 0045
HZ(N,M) .= C(KK) 0046

11 CONTINUE 0047
10 CONTINUE 0048

CALL MAMPIS(EM,LPLPH2,NO.NOLPNONOWNO) 0049
DO 6 N = 19LP 0050
DO 7 M = 1,NO 0051
K(NvM) = EM(NM) 0052

7 CONTINUE 0053
6 CONTINUE 0054

RETURN 0055
END 0056



SUBROUTINE LPDT(1ZVZRZPS ,ZVDHIMEB, KELESH2,H3,LPNO, 0001
IXHXBEHvhSP) 0002

C 0003

C SUBROUTINE UPDT IS USED TO UPDATE THE STATE AND ERROR COVARIANCE 0004

C MATRICES TO THEIR VALUE AT THE END OF THE SPECIFIED TIME INCREMENT 0005

C 0006

INTEGER SP 0007
DOUBLE PRECISION 1(1),ZV(lhlZR(1),IPS(1),ZVD(1) 0008

DOUBLE PRECISION EB(LPLP),XH(1) ,EH(SPSPhtEL(l1) HZ(NOLP) 0009
DOUBLE PRECISION H3(LPLPtW(1) ,ES(IhDABS 0010

DOUBLE PRECISION H(NOSP) ,XB(1) ,K( LPNO) 0011

C 0012
C *****0013

C 0014
1(1) = ZV(IM) 0015
Z(2) = ZR(IM) 0016
Z1(3) = ZPS(IM) 001?
Z(41 = ZVD(IM) 0018

DO 1I1I= 1LP 0019
EL(IM XB(I) 0020

I CONTINUE 0021
DO 2 N = 1,rNO 0022
DO 3 M = 1,LP 0023
H2(NM) = H(NMI 0024
H3(N#M) = H(NM) 0025

3 CONTINUE 0026
2 CONTINUE 0027

CALL MAMP2S(H2,NOLPELLP,1,NOPLP,1,WLP) 0028

C 0029

C FIND THE DIFFERENCE BETWEEN THE CALCULATED STATE VALUE AND THAT 0030
C FROM THE NOISY SEA TRIAL 0031

C 0032
DO 6 1 =1,NO 0033
ES(!M Z(I)-EL(I) 0034

6 CONTINUE 0035

C 0036



C CALCULATE THE INCREMENTAL CHANGE IN STATE 0037

C 0038

CALL MAMP2S(KIPNOESNO,1,LPNO,1,WLP) 0039

C 0040

C UPDATE THE ELEMENTS OF THE EXTENDED STATE VECTOR 0041

c 0042

DO 7 1 = hIP 0043

XH(II XB(I)+ES(I) 0044

7 CONTINUE 0045

C 0046

C CALCULATE THE INCREMENTAL CHANGE IN THE ERROR COVARIANCE MATRIX 0047

C 0048

CALL MAMP2S( KLPNOH3,LPLPLPNOLPWLP) 0049

CALL MAMP1S(H3,LPLPEBLPLPLPLPqLPWLP) 0050

C 0051

C UPDATE THE ERROR COVARIANCE MATRIX 0052

C 0053

CALL MASUBS(EBLPLPLPLPH3,LPLP) 0054

DO 8 N = 1,LP 0055

DO 9 M = 1,LP 0056

EH(NM) = OABS(EB(NM)) 0057

9 CONTINUE 0058

8 CONTINUE 0059

RETURN 0060

END 0061



SUBROUTINE STORB(TvMHvKvKSvNlOvEE9XHvEHvSP) 0001

c 0002

C SUBROUTINE STORB STORES SELECTED VALUES OF THE STATE AND ERROR 0003

c COVARIANCE MATRICES AT REGULAR INTERVALS OVER TIME FOR USE IN 0004

c THE PLOTTING ROUTINE 0005

c 0006

INTEGER SP 0007

DIMENSION VP(94),RP(9419PSP(9419VDP(941 0008

DIMENSION PPI(94)vPP2(94)tPP3(94)tPP4(94)tPP5(94)vPP6(94)tPP7(94) 0009

DIMENSION PP8(94)vPP9(94)tPP10(9419PP11(94)*PP12(94)vPP13(94) 0010

DIMENSION PP14(94)PPP15(9419PPI6194) 0011

DIMENSION PP17(941,,PP18(94)tPP19(94)lPP20(9419PP21(9419PP22(94) 0012

DIMENSION PP23(94)tPP24(94)iPP25(94)tPP26(94)tPP27(94)vPP281941 D013

DIMENSION PP29(94)tPP30494)tPP31(94)vPP32(94)vPP33(94)#PP34(94) 0014

DIMENSION RP35(94),PP36(941 0015

DIMENSION EE(l) 0016

DOUBLE PRECISION XH(l)vEH(SPvSP) 0017

DOUBLE PRECISION T(I)tD#DSQRTiDABS 0018

COMMON /OUTPI/ VPtRPiPSPgVDPvPP19PP29PP3*PP49PP5vPP6,PP79PP8 0019

COMMON /OUTP5/ PP17tPPl8tPP19PPP2OvPP219PP22*PP23tPP249PP25iPP26 0020

COMMON /OUTP6/ PP279PP281PP299PP309PP319PP32vPP33tPP349PP359PP36 0021

COMMON /OUTP2/ PP99PPI09PPII#PP12*PP139PPI49PPI59PP16 0022

COMMON /OUTP3/ EVvERtEPSEVDtEPItEP29EP39EP49EP59EP6*EP79EPS 0023

COMMON /OUTP7/ EP179EPIS*EP199EP209EP2ltEP22tEP23PEP249EP25#EP26 0024

COMMON /OUTP8/ EP279EP2EtEP29*EP30PEP3ltEP32@EP339EP34*EP35vEP36 0025

COMMON /OUTP4/ EP9*EP109EP11,PEP129EP13#EP149EP159EP16 0026

c 0027

C 0028

C 0029

1 = MH 0030

L = KS*I 0031

c 0032

C STORE THE T'IME VALUES OF EACH OBSERVATION 0033

c 0034

0 = T(L) 0035

VP(l) = D 0036



RP(I 1 0 
0037

PSP(I) D 
0038

VOP(l) D 
0039

ppl(l) D 
0040

PP2( 1) D 
0041

PP3(l) D 
0042

PP4(l) D 
0043

PP5(l) C 
00 , 44

PP6(l) = D 
0045

PP7(l) = D 
0046

ppe(l) = C 
0047

PP9(11 = D 
0048

PPIO(l) = 0 
0049

ppilil) = D 
0050

PP12(l) = D 
0051

PP13(1) = D 
0052

PP14 (I ) = 0 
0053

PP15(1) = 0 
0054

PP16(1) = D 
0055

PP17(1) = D 
0056

PP18(1) = 0 
0057

PP19(1) = 0 
0058

PP20(11 = D 
0059

PP21(1) = 0 
0060

PP22(11 = D 
0061,

PP23(1) = D 
0062

PP24(1) = D 
0063

PP25(1) = 0 
0064

PP25(1) = 0 
0065

PP26(1) = D 
0066

PP27(1) = D 
0067

PP28(1) = D 
0068

PP29(1) = D 
0069

PP3011) = D 
0070

PP31(1) = D 
0071

PP32(1) = D 
0072



=0D
=0D

= 0

STORE THE MEASURED VALUES OF THE ELEMENTS OF THE EXTENDED STATE
VECTOR

XH(1)
XH(2)

XH(3)
XH(4)
XH(NO+1I
XH(NO+2)
XH(NO+3)
XH(NO+4)
XH(NO+5)
XH(NO+6)
XH(NO+7)
XH(NO+8)
XH(NO+9)

= XH(NO+10)
= XH(NO+11)
= XH(NO+12)
= XH(NO+13)
= XH(NO+141
= XH(NO+15)
= XH(NO+16)
= XH(NO+17)
= XH(NO+18)
= XH(NO+19)
= XH(NO+20)
= XH(NO+21)
= XH(NO+22)
= XH(NO+231

PP33(I)
PP34(I)
PP35(I)
PP36( I)

C
C
C
C

N = I+K
VP(N) =
RP(N) =
PSP(N)
VOP(N)
PPI(N)
PP2(N)
PP3(N)
PP4(N)
PP5(N)
PP6(N)
PP7(N)
PP8(N)
PP9(N)
PP10(N)
PPII (N)
PP 12(N)
PPL3(N)
PP14(N)
PP15(N)
PP16(N)
PP17(N)
PP18(N)
PP19(N)
PP20(N I
PP21(N)
PP22(N)
PP23 (N)

0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083-
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108

N



PP24(N) = XH(N0+24) 0109

PP25(N) = XH(NO+25) 0110

PP26(N) = XH(NO+?6) 0111

PP27(N) = XH(N0+27) 0112

PP28(N) = XH(NO+28) 0113

PP29(N) = XHINO+29) 0114

PP30(N) = XH(NO+30) 0115

PP3 (N) = XH(ND+31) 0116

PP32(N) = XH(NO+32) 0117

PP33(N) = XH(NO+33) 0118

PP34tN) = XHIN0+34) 0119

PP35(N) = XH(NO+35J OLZO

PP36(N) = XH(NO+36) 0121

ll F (IoLT*K) GO '1'-'0 100 0122

c 0123

c STORE THE STANDARD DEVIATIONS FOR EACH ELEMENT OF THE EXTENDED 0124

c STATE VECTOR AT THE END OF THE IDENTIFICATION PROCESS 0125

c OIL26

DO 1 M 19SP 0127

EE(M) DSORT(DABS(EH(MvM)I) 0128

1 CONTINUE 0129

EV = EE(l) 0130

ER = EE(21 0131

EPS = EE(3) 0132

EVO = EEM 0133

EP1 = EE(NO+l) 0134

EP2 = EE(NO+2) 0135

EP3 = EE(NO+3) 0136

EP4 = EE(NO+4) 0137

EP5 = EE(NO+5) oija

EP6 = EE(NO+6) 0139

EP7 = EE(N0+7) 0140,

EP8 = EE(NO+8) 0141

EP9'= EE(NO+9) 0142

EP10 = EE(NO+101 0143

EP11 = EE(NO+11) 0144



EP12 = EE(NO+l2) 0145
EP13 = EE(NO*13) 0146
EP14 = EE(NO+14) 0147
EP15 = EE(NIJ+15) 0148
EP16 z EE(NO+16) 0149
EP17 = EE(N04'17I 0150
EP18 = EE(NO+18) 0151
EP19 = EE(NO+19) 0152
EP2O = EE(NO+20) 0153
EP2I = EE(NDt21) 0154
EP22 = EE(NOt22) 0155
EP23 = EE(NO+23) 0156
EP24 = EE(NO+24) 0157
EP25 = EE(NO+251 0158
EP26= EE(NO3+26) 01591
EP27 = EE(NQ+27) 0160.
EP28 = EE(NO+281 0361
EP29 = EE(NO+29) 0162
EP3O = EE(NO+30) 0163
EP31 = EE(N0431) 0164
EP32 = EE(NO+32) 0165
EP33 = EE(N0433) 0166
EP34 = EE(NO+34) 0167
EP35 = EE(NO+35) 0168
EP36 = EE(NO+36) 0169

100 CONTINUE 0170
RETURN 0171
END 0172

01



SUBROUTINE TRNSPS(AIAJAMANABIBJB) 0001
C 0002
C SUBROUTINE TRNSPS TAKES THE TRANSPOSE OF MATRIX A AND STORES IT 0003
c IN MATRIX B 0004
C 0005

DOUBLE PRECISION A(IAJA),B(IBJB) 0006
C 0007
C *****0008

C 0009
K = MA 0010
IF(NA.LT.MAI K = NA 0011
DO 2 I = 1,vK 0012
DO 2 J = IK 0013
B(IJ) = A(JI) 0014

2 B(JIp) = A(IJ) 0015
IF(MA-NA) 3,4,5 0016

3 1 = MAe'1 0011
DO 6 K = LNA 0018
DO 6 1 = 1,MA 0019

6 B(KI) = A(IK) 0020
4 RETURN 0021
5 L = NA+1 0022

DO 7 I = 1,NA 0023
DO 7 J = LMA 0024

7 B(IJ) = A(JI) 0025
RETURN 0026
END 0021



SUBROUTINE MAMPIS(AIAJABIBJBMANAMBNBW, 1WI 0001
C 0002
c SUBROUTINE MAMPIS MULTIPLIES MATRIX A BY MATRIX B AND STORES THE 0003
C PRODUCT IN MATRIX A 0004
C 0005

DOUBLE PRECISION A( IAJA) .B(IBJB) ,W(1W) ,WJ 0006
C 0007
C *****0008

C 0009
00 2 1 = 1,MA 0010
DO 1 J = 1,NB 0011
W.9 = 0.00 0012
DO 11 K = 1,NAMB 0013

11 WJ = WJ+A(IK)*B(KJ) 0014
1 W(J)= WJ 0015

D0 2 K = 1,NB 0016
2 A(IK) = W(K) 0017

RETURN 0018
END 0019

co~



SUBROUTINE MAMP2S(AIpAJA9,tBIBJBMANAMBNBWIIW) 0001
C 0002
c SUBROUTINE MAMP2S MULTIPLIES MATRIX A BY MATRIX B AND STORES THE 0003
C PRODUCT IN MATRIX B 0004
C 0005

DOUBLE PRECISION A(IAgJAhB(IBJBhvWIIW),WI 0006
C 0007
C *****0008

C 0009
00 2 J = 1,NB 0010
00 1 1= 1,MA 0011
WI = 0.00 0012
DO 11 K = 1,PNAMB 0013

11 WI = WI+A(I,KI*B(K,JI 0014
I W(I) = WI 0015

DO 2 1 =-1,MA 0016
2 B(IJ) = W(IJ 0017

RETURN 0018
END 0019



SUBROUTINE MAADDS(AIAJAMANABIBJB) 0001
C 0002
C SUBROUTINE MAADDS ADDS MATRIX A TO MATRIX B AND STORES THE SUM IN 0003
C MATRIX A 0004
C 0005

DOUBLE PRECISION A(IAJA)9B(IBJB) 0006
c 0007
C *****0008

C 0009
DO I J = 1.NA 0010
00 1 1= 1,MA 0011

I A(IJ) = A(IJ)+B(IJ) 0012
RETURN 0013
END 0014



SUBROUTINE MASUBS(AIAJAMANA,B,IB,JB)
C
C SUBROUTINE MASUBS SUBTRACTS MATRIX B FROM MATRIX A WITH THE
C RESULT STORED IN MATRIX A
C

DOUBLE PRECISION A(lIA,JA),B(I8I,JB)
C
C *********
C

DO I J
DO 1 I

1 A(IJ)
RETURN
END

= 1,NA
= 1,MA
= A(I,JI-B(IJ)

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

NN



SUBROUTINE MINV(ANDL,141 0001
c 0002

c SUBROUTINE MINV INVERTS THE MATRIX A AND PLACES THE RESULT 0003

C IN LOCATION A 0004

C 0005

DIMENSION A(1),L(IU9M(1) 0006

DOUBLE PRECISION ADBIGAHOLDDABS 0007

C 0008

C *****0009

C 0010

C SEARCH FOR THE LARGEST ELEMENT 0011

C 0012

C = 1DO 0013

tK= -N 0014

DO 80 K = 1,vN 0015

NK = NK+N 0016

L(K) = K 0017

MWK) = K 0018

KK = NK+K 0019

BIGA = A(KK) 0020

DO 20 J = KN 0021

IZ = N*(J-I) 0022

DO 20 1 = KN 0023

IJ = 11+1 0024

10 IF (DABS(BIGA)-DABS(A(IJ))) 15920920 0025

15 BIG4 = A(IJ) 0026

LUK) = 1 0027

M(K) = J 0028

20 CONTINUE 0029

C 0030

C INTERCHANGE ROWS 0031

C 0032

J =1(K) 0033

IF (J-K) 35,35925 0034

25 KI = K-N 0035

DO 30 1 = 1,N 0036



KI = KI+N 0037
HOLD = -A(KI) 0038
JI = KI-K+J 0039
AIKI) = A(JJ) 0040

30 A(JI) = HOLD 0041
C 0042
C INTERCHANGE COLUMNS 0043
C 0044

35 1 = M(K) 0045
IF (I-K) 45,45,38 0046

38 JP = N*(I-1) 0047
DO 40 J = 19N 0048
JK = NK+J 0049
JI = JP*J 0050
HOLD = A(JK) 0051
A(JK) =A(JII 0052

40 AIJI)= HOLD 0053
C 0054
C DIVIDE COLUMN BY MINUS PIVOT(VALUE OF PIVOT ELEMENT 0055
C IS CONTAINED IN BIGA) 0056
C 0057

45 IF (BIGA) 48,46,48 0058
46 0 = 0.DO 0059

RETURN 0060
48 DO 55 1 = 1,N 0061

IF (I-K) 50,55,P50 0062
50 1K = NKtI 0063

A(I = A(I/(-BIGA) 0064
55 CONTINUE0 0065

C 0066
C REDUCE MATRIX 0067
C 0068

DO 65 I = 1,N 0069
1K = NK+I 0070
HOLD = WK) 0071
IJ = I-N 0072



DO 65 J =h1N 0073
Uj = IJ+N 0074
IF (I-K) 60965960 0015

60 IF LI-K) 62,65,62 0076
62 KJ = IJ-I+K 007

A(IJ) = HOLD*A(KJItA(IJ) 0078
65 CONTINUE 0079

C 0080
C DIVIDE ROW BY PIVOT 0081
C 0082

K1) = K-N 0083
DO 75 J = 19N 0084
KJ = KJ+N 0085
IF (J-KI 10,15,70 0086

70 A(KJ) = A(KJ)/BIGA 0087
75 CONTINUE 0088

C 0089
C PRODUCT OF PIVOTS 0090
C 0091

D = D*BIGA 0092
C 0093
C REPLACE PIVOT BY RECIPROCAL 0094
C 0095

A(KKI = 1*0/8IGA 0096
80 CONTINUE 0091

c 0098
c FINAL ROW AND COLUMN INTERCHANGE 0099
C 0100

K = N 0101
100 K = (K-I) 0102

IF (K) 150,150,105 0103
105 I = L(K) 0104

IF (I-K) 120,120,108 0105
108 JO = N*(K-1) 0106

JR = N*(I-1) 0107
no 110 j = 1,N 0108



JK = JQ+J 0109
HOLD =AWIK)0110
JI = JR+J 0111
A(JK)= -A(JI) 0112

110 AU!l) = HOLD 0113
120 3 = M(K) 0114

IF (3-K) 100,1009125 0115
125 K! = K-N 0116

DO 130 1 = 19N 0117
K! = KI+N 0118
HOLD = AMK) 0119
3! = KI-K+J 0120
AMK) = -A(J1) 0121

130 AU!) = HOLD 0122
GO TO 100 0123

150 RETURN 0124
END 0125



Appendix C

INPUT DATA DESCRIPTION

Card #1 - Card #6: (A(I), 1 =1,36) FORMAT (6D13.4)

A(I) - True values of all coefficients to the motion

equations, taken from the literature

Card #7 - Card #12: (AI(i), I = 1,36) FORMAT (6D13.4)

AI(I) - Initial estimates of all coefficients to the

motion equations, approximately 30% of the

accepted true values

Card #13 - Card #18: (ASD(I), I = 1,36) FORMAT (6D13.4)

ASD(I) - The standard deviations to the estimates of all

coefficients to the motion equations

Card #19 - Card #21: (PmS(J), J = 1,16) FORMAT (6D13.4)

PMS(1) - PMS(4) - Mean process noise values for the

designated state variables

PMS(5) - PMS(8) - Mean measurement noise values for the

designated state variables

PMS(9) - PMS(12) - Desired standard deviations of the

process noise distributions
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PMS(13) - PMS(16) - Desired standard deviations of the

measurement noise distributions

Card #22 - Card #23: (INX(I), I = 1,8) FORMAT (616)

INX(I) - Odd integer values for use in the Gaussian

noise generation, random number generator

Card #24: G FORMAT (FiO.6)

G - Identity factor (1) for the process noise vector w

Card #25 - Card #28: LP1 - LP36 FORMAT (915)

LP_ - Coefficients to be identified, in increasing

numerical order ... remaining positions to be

assigned other arbitrary non-zero values (i.e. I)

Card #29: VST, RST, PST, VDST FORMAT (4F10.5)

VST - Initial sway velocity

RST - Initial yaw velocity

PST - Initial yaw angle

VDST - Initial yaw acceleration

Card #30: VCV, RCV, PCV, VDCV FORMAT (4FIO.3)

VCV - Estimated covariance of the initial sway velocity

RCV - Estimated covariance of the initial yaw velocity
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PCV - Estimated covariance of the initial yaw angle

VDCV - Estimated covariance of the initial sway acceleration

Card #31: KS, N, H FORMAT (214,FO.2)

KS - Number of measured points between plotted points

N - Actual number of measurements over the trial period

H - Time increment per measurement

note: Trial period =N *1H

N/KS = number of plotted points = 47

Card #32: NM, NP FORMAT (215)

NM - Percentage measurement noise

NP - Percentage process noise

Card #33: PW, QW FORMAT (2D10.2)

PW - Exaggeration factor for the process noise

QW - Exaggeration factor for the measurement noise

Card #3: MP, NO FORMAT (214)

MP - Number of coefficients to be identified

NO - Number of measured primary state variables used
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Card #35: DI, TL, JJ FORMAT (2F10.3,I5)

DI - Maximum rudder deflection in degrees

TL - Half-period of the sinusoidal maneuver

JJ - Type of maneuver desired for the identification

I = Single-step rudder deflection

2 = Step zig-zag rudder deflection

3 = Sinusoidal rudder deflection

Card #36: NE FORMAT (15)

NE - Type of plotting desired for output of results

1 = Use PLOTM plotting routine only

2 = Use CALCOMP plotting routines only

3 = Use both plotting options simultaneously

Card j7Card #40: ((TITLE(I,J), J = 1,9), 1 = 1,4)

FORMAT (9A4)

TITLE(I,J) - Character strings used to label CALCOMP

plots of the primary state variables
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HYDRODYNAMIC COEFF IC IENTS(17)(3)

(Mariner-class Hull Form)

Coefficient:

(m-X)

xXu

1/2 x uu

1/6 Xuuu

(1/2 Xrr+mxG)

1/2 Xbb

(X +m)

vr

1/2 X vv

(rn-Y;)

Yv

i/6 Yvy

Sy-mu)

Gr

Yb

1/6 YV66

i/2 Yrvv

1/2 Y6vy

1/2 Yv66

Label:

A f I )

A(2)

A(16)

A(17)

A(19)

A (20)

A(21)

A(22)

A(18)

A(4)

A(5)

A(6)

A(25)

A(7)

A(8)

A (26)

A(27)

A(28)

A(29)

A(9)

Dimensionalized Value:

12*3068

-0.8429

0,.i248

-0.0113

13.9243

-1 6859

S.6915

0.6547

-0.2492

22.6504

-66.5270

-8.1515

-0.8853

-18.5084

4.9423

-I.6006

8.8863

0.3308

-0.2669

-0.6404 E4y

5

E4

E3

E2

6

E5

E6

E4

E4

E5

E5

E4

E3

E6

E5

E5

E4

E4

E3



Coefficient:

(mx -Ne)G v

(I -N*)z r

N

/6 vvv

(Nr-mxGu)

N 6

1/6 Nb66

1/2 DIr vv

1/2 N6vy

1/2 Nv66

N
0

Label:

A (10)

A(11)

A(12)

A ( 30)

A(13)

A(14)

A(31)

A (32)

A(33)

A(34)

A(15)
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Dimensionalized Value:

.7560 E7

33.8608 E9

-9.7735 E6

0.0947 E4

-32.5103 E8

-1,30338

4.2256 7

-1.6753 8

-0.7164 6

0.4636 E6

2.6293 E6

Remarks:

This list is comprised only of those coefficients used in

the identification program. All others are assumed zero.

The dimensionalized values were obtained from the non-

dimensional form by assuming the following values:

p = 1.9905 lbf-sec2/ft4

L = 528.01 ft

u =-25.317 ft/sec



SAMPLE DATA DECK ... o

THIS 0ECK WAS USED IN THE IDENTIFICATION SCHEME OF
SECTION 5.2 - VARIATIJN IN TRIAL LENGTH.

[2.306805
-18.508406
-32.5 103D8

13.,924306
-0.385303
4.225637

15.000 D5
-12.955 06
-22.752 08
10.000 06
-0.700 03
3.500 -7
2.700 D5

55.525 D5
97.581 D 7
3.924 D6
0.185 D3
0.725 07
0.0 DO
0.000000
0 *123200

1 11
.3
5 7
I 1
1 1
1 1

0.0
0.5

-6.429003 000
4.942305 -6.404003

-1.303308 2.6293D6
-1.6859)5 11.6915D5
-1.600605 8.886304
-1.675308 -0.716406

-11.000 D3 QO
64.000 04 -44.830 D2

-91.236 D6 2.000 D6
-1.300 05 9.000 D5
-1.200 05 7.700 D4
-1.300 B -0.600 D6
2.600 03 000
14.827 04 19.213 02
39.101 06 000
0.386 05 2.692 05
3.400 05 1.186 D4
3.375 08 0.116 D6
0.0 Do 0.0 DO
0.000000 0.0035D0
0.000500 0.033000

101 1001 1101 1011
101 1001 1101 1011

22*650405
-1.756007
0.124803
0.6547D4
0.33080D4
0.463606

29.450 0)5
-12.292 06

0.900 02
0.500 D4
0.250 04
0.350 06

67.951 D4
52.680 05
0.348 03
0.155 04
0.080 D4
0.113 06
0.0 DO

0. 00150-2
0. 00 35DO

-66.527005
33.8608D9
-0.01130?

000
-0.266903

000
-46.569 D5
43.900 09
-0.080 Di

000
-0.200 03

000
19.958 05
10.158 D9
0.033 01

000
0.066 03

0r o
0.0 0o
0.000500

-8. 151504
-9.7735D6
-0 *249?Dk

3 DO
0.947005

000
-57.060 03
-68.414 D5
-0.190 04

000
0.750 D5

000
24.454 D3
29.321 05
0.592 D3

000
0.197 D5

01)0
0.0 DO
0.000100

U' 13 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1

3.0 0.0
0.5 - 0.5

1 1
0.*0

0.*5

1 1

C
C
C
C
C
C

I

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036

N
"A)
N



8 376 2.9 0037
5 5 0038
1.001D0 1.00)0 0039

4 4 0040
10.9 100.0 30041
3 0042
SWAY VELOCI TY (FT./ SPC.) 0043
(Ad VELOCITY (RAD./SFC.) 0044

Y AW AINGLEI (R ADI-FANS ) 0045
SWAY A%--ELERATION (FT./SEC./SEC.) 0046
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