APPLICATION OF THE

EXTENDED KALMAN FILTERING TECHNIQUE

TO SHIP MANEUVERING ANALYSIS

by

JOHN G. LUNDBLAD

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF BACHELOR OF

SCIENCE

and for the

DEGREE OF MASTER OF

SCIENCE

IN OCEAN ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December, 1974 (.c. February, 1975)

Signature of the Author:

Department of Ocean Engineering December, 1974

Prof. Martin A. Abkowitz Thesis Supervisor

Accepted by:

Certified by:

Prof. J. Harvey Evans Department of Ocean Engineering Graduate Committee

APPLICATION OF THE

Ś

EXTENDED KALMAN FILTERING TECHNIQUE

TO SHIP MANEUVERING ANALYSIS

by

JOHN G. LUNDBLAD

Submitted to the Department of Ocean Engineering in December, 1974, in partial fulfillment of the requirements for the degree of Bachelor of Science and for the degree of Master of Science in Ocean Engineering.

ABSTRACT

This thesis dealt with the application of a particular technique in systems identification, the Kalman statistical filter, to maneuvering analyses, determining the value of the hydrodynamic coefficients to the general equations of motion. A computer program was developed for use in this identification process. The system that the identification was applied to was the general class of surface vessels. The Mariner-class hull form was singled out for extensive analysis because of the availability of accepted values for the coefficients of these ships in the literature.

The identification process was conducted over a variety of experimental conditions. The results indicate a capability for the program to identify the desired coefficients with reasonable accuracy - within five percent of the accepted true values for the individual coefficients.

It was found that the best type of maneuver was one which generates a continuously varying input of the vessel's motion paramenters, such as the sinusoidal maneuver. Additionally, the process was shown to be able to operate on noisy data containing a large amount of scatter. The new coefficient estimates can be refiltered on additional passes by the process over the same noisy data and thereby re-evaluated and updated to a new estimate. The results of this updating seems to depend upon the accuracy of the estimates obtained from the previous pass over the noisy data.

1.

Thesis Supervisor: Martin A. Abkowitz Title: Professor of Naval Architecture

\$

ACKNOWLEDGEMENT

I would like to express my thanks to Prof. Martin A. Abkowitz for his supervision and encouragement over the sometimes discouraging course of this study. It is sometimes necessary to have a shoulder to cry on when working with the computer.

I would also like to thank my none-too-nimble fingers for lasting until the end of this paper. I alone must take the blame for any mistakes in text and/or figures.

The financial support for the research came from the United States Maritime Administration - project MARAD 3-36291, M.I.T. OSP 81239. Additional support came from a Sloan Research Summer Traineeship for the summer of 1974.

All computations were done at the M.I.T. Information Processing Center (IPC).

> December 18, 1974 Cambridge, Massachusetts

iv

TABLE OF CONTENTS

				<u>Page</u>
TIT	LE PA	GE	• • • • • • • • • • • • • • • • • • • •	i
ABS	TRACT			ii
ACK	ACKNOWLEDGEMENT			iv
TAB.	LE OF	CONTEN	TS	v
LIST OF ILLUSTRATIONS			vii	
LIST OF TABLES			ix	
NOTATION			xi	
I.	INTRO	DUCTIO	N	1
II.	SYST	EMS IDE	NTIFICATION	5
	2.1	Parame	tric Identification	5
	2.2	System	Representation	6
	2.3	Identi	fication Methodology	10
		2.3.1	Iterative Procedures	10
		2.3.2	Statistical Filtering	11
	2.4	The Ka	lman Filtering Technique	12
		2.4.1	Derivation of the Optimum Linear Filter	13
		2.4.2	Non-linear Extension	22
III.	THE :	SYSTEM.	• • • • • • • • • • • • • • • • • • • •	25
	3.1	The Ma	thematical Model	25
		3.1.1	Rigid Body Dynamics in Six Degrees of Freedom	26
		3.1.2	The Hydrodynamic Forces and Moments	29
		3.1.3	Equations of State for a Body Moving in Three Degrees of Freedom	32
	3.2	Sea-Tr	ial Maneuvers	37
		3.2.1	Single-Step Rudder Deflection	38

TABLE OF CONTENTS (CONTINUED)

P.,

		3.2.2 Zig-Zag Rudder Deflection	39
		3.2.3 Sinusoidal Rudder Deflection	40
IV.	APPL. IDEN	ICATION OF THE EXTENDED KALMAN FILTER TO THE TIFICATION PROBLEM	42
	4.1	Compatibility Between the System and the Filter.	42
	4.2	Noise Generation and Incorporation	45
	4.3	The Identification Process	49
۷.	RESU	LTS OF THE IDENTIFICATION PROCESS	52
	5.1	A Typical Identification (Control)	56
	5.2	Variation in the Maximum Rudder Deflection	61
	5.3	Variation in the Trial Length	66
	5•4	Variation in the Time Increment	71
	5•5	Variation in the Number of Observed Primary State Variables	76
	5.6	Variation in the Maneuver	81
	5•7	Variation in the Noise Level	91
	5.8	2 ^{<u>ed Generation Identification</u>}	96
	5.9	Noise Exaggeration	101
VI.	SUMML	ARY AND CONCLUSIONS	106
APPE	ENDIX	A - PROGRAM DESCRIPTION	111
APPE	ENDIX	B - THE PROGRAM	142
APPE	ENDIX	C - INPUT DATA DESCRIPTION	226
		- HYDRODYNAMIC COEFFICIENTS	230
		- SAMPLE DATA DECK	232
REFE	RENCI	ES	234

LIST OF ILLUSTRATIONS

Figure No	<u>•</u>	<u>Page</u>
2-1	Block Diagram of Optimum Linear Filter	21
3-1	Rectangular Coordinate System	27
4-1	Imprecision in Noise Definition	48
5 - 1a	Filtered States - Typical Identification	58
5-1b	Coefficients - Typical Identification	59
5-2a	Filtered States - Variation in Maximum Rudder Deflection	63
5 - 2d	Coefficients - Variation in Maximum Rudder Deflection	64
5 - 3a	Filtered States - Variation in Trial Length	68
5 - 3b	Coefficients - Variation in Trial Length	69
5 - 4a	Filtered States - Variation in Time Increment	73
5-40	Coefficients - Variation in Time Increment	74
5-5a	Filtered States - Variation in the Number of Measured Primary State Variables	78
5-5b	Coefficients - Variation in the Number of Measured Primary State Variables	79
5 - 6a	Filtered States - Variation in Maneuver (Zig-zag Step Rudder Deflection)	84
5-6b	Coefficients - Variation in Maneuver (Zig-zag Step Rudder Deflection)	85
5 - 6c	Filtered States - Variation in Maneuver (Single-Step Rudder Deflection)	88
5 - 6d	Coefficients - Variation in Maneuver (Single-Step Rudder Deflection)	89
5 - 7a	Filtered States - Variation in Noise Level	93
5 - 7b	Coefficients - Variation in Noise Level	94

•

LIST OF ILLUSTRATIONS (CONTINUED)

.

<u>Figure No</u>	.•	Page
5 - 8a	Filtered States - Second-Generation Identification	98
5 - 8b	Coefficients - Second-Generation Identification	99
5 - 9a	Filtered States - Variation in Noise Exaggeration	104
5-9b	Coefficients - Variation in Noise Exaggeration.	105

. LIST OF TABLES

~

Table No.		<u>Page</u>
4-1	Summary of the Computation Steps	51
5 - 1a	Conditions for the Typical Identification	57
5-1b	Coefficient Identification for the Typical Case	60
5 - 2a	Conditions for the Variation in Rudder Deflection	62
5 - 2b	Coefficient Identification for the Variation in Maximum Rudder Deflection	65
5 - 3a	Conditions for the Variation in Trial Length	67
5 - 3b	Coefficient Identification for the Variation in Trial Length	70
5-4a	Conditions for the Variation in Time Increment	72
5-40	Coefficient Identification for the Variation in Time Increment	75
5 - 5a	Conditions for the Variation in the Number of Measured Primary State Variables	77
5 - 5b	Coefficient Identification for the Variation of the Number of Measured Primary State Variables	80
5 - 6a	Conditions for the Variation in Maneuver (Zig-zag Step Rudder Deflection)	83
5 - 6b	Coefficient Identification for the Variation in Maneuver (Zig-zag Step Rudder Deflection)	86
5 - 6c	Conditions for the Variation in Maneuver (Single-Step Rudder Deflection)	87
5 - 6a	Coefficient Identification for the Variation in Maneuver (Single-Step Rudder Deflection)	90

LIST OF TABLES (CONTINUED)

,

Table No.		<u>Page</u>
5 - 7a	Conditions for the Variation in Noise Level	92
5 - 7b	Coefficient Identification for the Variation in Noise Level	95
5-8a	Conditions for the Second-Generation Identification	97
5-8d	Coefficient Identification for the Second- Genration Identification	100
5-9a	Conditions for the Variation in Noise Exaggeration	102
5 - 9b	Coefficient Identification for the Variation in Noise Exaggeration	105

,

.

.

NOTATION

.

Lower case letters represent scalar quantities:	x
Lower case leters, underlined, represent vectors:	Ŧ
Vector dot product:	х ^т х
Upper case letters represent matrices:	E
The superscript T represents the matrix transpose:	\mathbf{E}^{T}
A bar over either a scalar or vector represents	
the mean value of that quantity:	x

.

Chapter I

1

INTRODUCTION

The naval architect must be able to predict the various motions of an ocean vehicle in order to design a vessel which can meet the required aspects of operability under which the ship will function. Without this knowledge, little can be said of the ship's capabilities with any certainty until the system is actually built. An accurate model of the vessel is thus of primary importance for design purposes.

The dynamics of an ocean vehicle can be described theoretically in terms of a general set of motion equations. The utility of this set of equations which can accurately predict the motions of a ship should be readily apparent.

The equations of motion are derived in a number of ways throughout the literature. That method which implements the vector calculus is presented later in this work. The equations' structures are such that they may be applied to many diverse systems, with the judicious choice of coefficients to the equations setting their structure to the particular system at hand. The specification of these coefficients sets the model to the system and is the problem area toward which this work is oriented.

Unfortunately, the exact numerical values of these hydrodynamic coefficients are difficult to attain. Hydrostatic

and hydrodynamic theory permits specification of only a few of the parameters. Through potential theory, the acceleration derivatives can be calculated with reasonable accuracy, though they are of minor importance in terms of the general equations.

The coefficients associated with the criteria for dynamical stability in straight line motion,

S. F.

```
Y_v(N_r-mx_Gu)-N_v(Y_r-mu) > 0,
```

namely the velocity derivatives, are unattainable to sufficient accuracy for displacement hulls through present theory. For these and many other cases, one presently must resort to captive model tests in the towing tank. The consequence of this is the introduction of scaling effects inherent in the modeling of ship systems to the correct Froude number and, by necessity, the neglecting of Reynold's number.

There are two principle means of running model tests at present. One uses the rotating-arm mechanism. The other more popular method incorporates the planar motion mechanism. For both methods, the forces and moments exerted on the model hull forms are measured by dynamometers as the model is put through various constrained maneuvers. These forces and moments are then plotted as a function of the motion variables. The slope through the equilibrium condition,

usually the origin, of this function then gives the relevant force or moment derivative. Quite obviously, this is not as accurate a procedure as one would desire because of scale effects and the difficulty of attaining certain of the nonlinear coefficients.

2

A possible alternative to this traditional approach is derived from modern control theory. Systems identification consists of a set of theories and their applications, capable of assigning the most suitable numerical values to the variables and coefficients of the equations describing the state of the system. These equations of state consist of the motion equations as well as functions representing the measured motion responses, both assigned levels of uncertainty in their structure and recording capabilities.

One of the methods used in systems identification is statistical filtering. By taking advantage of the estimated uncertainties, or noise, as well as recorded trajectories of the ship motions, the statistical filter is capable of choosing values for these coefficients which minimize the error between the recorded and calculated state values. The specific technique of filtering used in this work is the Kalman filter, an optimum linear filter which was extended to handle non-linear systems.

The main body of this thesis consists of two parts. In Chapters II and III, the theory and equations describing both the system and the identification technique are given. The equations of motion describing the state of the system are developed, as well as an optimum linear filter and it's non-linear extention for use in the identification.

The second part of this thesis, contained in Chapters IV,V and VI, applies the theory to a practical problem the identification of the hydrodynamic coefficients of a Mariner-class surface ship. This type of vessel was chosen primarily for consistency with previous studies in the area. Additionally, the coefficients for this class vessel are well documented in the literature and permit a realistic appraisal of the identification results given in Chapter V. Conclusions and future considerations are stated in Chapter VI.

A listing of the general program developed for this study, as well as a description of its usage, are given in the Appendix. Also included are various and sundry items useful in this work and hopefully for any continuation of these studies.

Chapter II

SYSTEMS IDENTIFICATION

2.1 Parametric Identification

Inherent in the understanding of any dynamic system is the ability to model that system accurately through a series of differential equations. The general identification and specification of any system requires that the general structure of the system as given by this mathematical model be known, although the particular values of the parameters in the model need not be specified. For a system in this form, classical identification techniques can be employed determining the particular parametric values. This is referred to as parametric identification. The mathematical equations usually involve what are termed the state variables of the system and their derivatives, along with various constant coefficients to these variables. The coefficients set the model for the particular system or conditions under consideration. It is the values of these coefficients which need to be determined.

In ocean vehicle dynamics, the coefficients primarily relate to the hydrodynamic forces and moments exerted upon the body in response to arbitrary disturbances from

equilibrium. These coefficients, which take the form of first, second and higher order force and moment derivatives, may be either completely unknown or reasonably estimated to within a degree of uncertainty. Part of the uncertainty arises from the methods involved in their estimation - model tests and full scale trials. Precise response trajectories of the vehicle motions are difficult to attain. Typically, for systems of this sort the deterministic, or precise, model is waivered for a simpler indeterminate model, where minor higher order terms as well as indeterminate noisy additions to the responses are incorporated into a single noise variable. This concept will be further developed later in this work.

2.2 System Representation

The systems analyst works is a realm defined by state variables and state-space representations of dynamic systems. A set of state variables are simply those variables which, along with a set of initial conditions, can be used to completely describe the dynamic state of a system - past, present and future. For a static system, this definition is trivial. However, since one usually deals with dynamic systems whose state is ever changing with time, the ability to so model that system is crucial to it's identification.

Often the term primary state variable is used in the

literature. Its usage is somewhat arbitrary, though frequently it refers to the set of velocity parameters.⁽⁸⁾ For this study, the primary state variables will be defined as that subset of the state variables used in the identification procedure - the measured parameters of the vehicle motions. These may include orientation as will as motion variables.

The state-space representation of the dynamic system is that set of equations incorporating the state variables which forms the model of the system.

ð,

 $\dot{x} = f(x, u, t)^{*}$ $\dot{z} = h(x, u, t)$

$$\underline{x}(t_0) = \underline{x}_0$$

. .

Here the state variables, \underline{x} , and the input variables, \underline{u} , are used in the motion function, \underline{f} , giving the time rate of change of the state variable and the measurement function, \underline{h} , giving the measured output, \underline{z} .

Frequently, the actual structure of the system is known, except for a set of parameters or coefficients, p.

See Notation - the bar under a lower case letter indicates a vector quantity.

As stated earlier, this structure can be simplified by neglecting extraneous higher order terms. A modification to the equation structure involving a single uncertainty term, w, compensates for this adjustment. Similarly, any uncertainty in the measurement function can be included in another uncertainty term, v. The state-space representation then takes the somewhat more complex though useful form,

- $\dot{\mathbf{x}} = \underline{\mathbf{f}}(\mathbf{x}, \underline{\mathbf{u}}, \underline{\mathbf{p}}, \underline{\mathbf{w}}, \mathbf{t})$
- z = h(x,u,p,v,t)

 $\underline{x}(t_0) = \underline{x}_0$

A significant simplification in both the structure of the above representation and eventually in the computation incorporating the model can be made through the following assumptions about the system under consideration: ⁽¹⁶⁾

- (i) The mathematical model and the measurement function are time invariant.
- (ii) The system structural uncertainty and measurement noise are linear, and add directly to the equation of state.
- (iii) The output measurements are linear functions of the state of the system, and are structurally independent.

(iv) The model coefficients are constants of the system while under observation and hence are the objective of the identification.

r.,

The first assumption is the most crucial since the loss of the assumption implies that any identification on the system is valid only over the period of observation and thus cannot be extended to the general case. The time invariant assumption, however, can be lifted if the relationship between the structure and time is known. For a quasi-static structure which is only slowly time-varying, the time invariant assumption can be made, though with some caution.

The dynamic state-space representation under these as assumptions is thereby reduced to,

$$\underbrace{\mathbf{x}}_{\mathbf{x}} = \underline{\mathbf{f}}(\mathbf{x}, \mathbf{u}, \mathbf{p}) + \underline{\mathbf{w}}$$
 (2.1)

$$z = Hx + y \qquad (2.2)$$

For cases such as in this study, where the measured output is assumed to be in direct correspondence with the state of the system, the measurement function is simply the identity matrix.

2.3 Identification Methodology

Many different techniques exist for applying the system representation, eqs. (2.1) and (2.2), to the parametric identification problem. The literature abounds with procedures, many primarily oriented toward specific identification problems. (7),(10),(15) The trick then becomes the matching of the more adept procedure to the situation at hand.

2.3.1 Iterative Procedures

One of the more general methods applied to ship maneuvering, investigated by Brinati,⁽³⁾ was the model reference technique, an iterative process. This procedure is one of the more conceptually simple identification techniques in current use. It can best be described as a brute force interpolation. The mathematical model is set except for one or two of the coefficients which are varied uniformly in an attempt to find those values which minimize the error function between the model and the actual data. This method was shown to work well. However, the limitations under which it must operate - limited noise levels and a minimal number of observable coefficients per trial, seem to limit its utility in extensive design applications.

2.3.2 Statistical Filtering

r.

An alternative approach and one which has received a great deal of attention in the past decade is that of statistical filtering. Part of this popularity and utility comes from the fact that it provides an optimum use of all available information about the system. This includes statistical estimates of both the noise in the system and its state.

Much of the initial theoretical work on statistical estimation and filtering was performed by Weiner, (18) in the 1930's. It's applicability to systems analysis was developed by Kalman (11),(12) in the 1960's. He showed that an optimum linear filter, based on the covariance matrix of the state estimation errors can lead to a minimum error in the final estimate of the state of the system.

There are two major disadvantages to the Kalman filtering technique, neither of which had a very serious effect upon this study.

- (i) The filter has a linear derivation and therefore is valid only for linear systems.
- (ii) It requires a reasonable, but not necessarily accurate, estimate of the system and noise parameters before their identification may proceed.

For ocean vehicle systems, the second problem is inconsequential. Reasonable estimates can be made from vehicle coefficients which are presently in the literature, or have been attained from model tests of the class of vehicle desired by traditional methods. For other types of systems, where this estimation problem might become significant, on-line identification techniques are being developed (14) which can work in conjunction with the Kalman filter, but which initially need no precise estimate of the state or noise characteristics.

The restriction to linear systems is also of little concern for those cases where ship maneuvering can be limited to small linear disturbances. This permits the use of simplified linear models available in the literature.⁽⁶⁾

For the general case, however, the restriction of linear modeling is not acceptable. The methods used by Brock⁽⁴⁾ and described here lift that restriction and permit the extension of the Kalman filter to the non-linear case - a development which may not be theoretically strong but which works quite well all the same.

2.4 The Kalman Filtering Technique

The Kalman filter was the identification technique used in this work. It is a statistical filter for use in the presence of uncorrelated white noise. Through use of the Kalman filter, the identification problem is reduced to a

1

state estimation of the dynamic system. The filter development follows for a linear system which in turn is followed by it's logical extension to the non-linear case.

2.4.1 Derivation of the Optimum Linear Filter

Earlier in this chapter, the equations for the statespace representation of a dynamic system, eqs. (2.1) and (2.2), were developed,

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, \mathbf{p}) + \mathbf{w}$ $\mathbf{z} = \mathbf{H}\mathbf{x} + \mathbf{v}$

where a linear relationship between state and output has been assumed. For simplification in that which follows, the noise factors, \underline{w} and \underline{v} , will be discarded for the time being. The dynamic system representation is therefore reduced to,

$$x = f(x, u, p)$$
 (2.3)

$$\underline{z} = H\underline{x} \tag{2.4}$$

Given a system defined by these state and measured output functions, one desires to estimate the true state of the system at some time t. If numerous measurements of the system are taken, a realistic assumption for most physical systems is that the values attained will approximate a Gaussian distribution. Therefore, the best estimate of the state of the system, \hat{x} , will be that which approaches the mean, \bar{x} , of the system,

$$\hat{\mathbf{x}} = \bar{\mathbf{x}} = \int_{-\infty}^{\infty} \bar{\mathbf{x}} P(\mathbf{x} | \mathbf{z}) d\mathbf{x}$$

Any error in this estimate can be defined by

Ļ

and the covariance matrix of these errors by

$$E = \overline{(\mathbf{x} - \mathbf{x})(\mathbf{x} - \mathbf{x})}^{\mathrm{T}}$$
$$= \overline{\underline{e} \ \underline{e}}^{\mathrm{T}}$$
(2.5)

One of the characteristics of a Gaussian or normal distribution is the fact that the mean of \underline{x} specifies the maximum of its probability density function (PDF),

$$P(\bar{x}) = \max \left[P(\bar{x})\right]$$

Therefore, a proper method for determining the optimal estimate of x is one which would determine that x which

maximizes it's PDF. The standard form of the Gaussian PDF for a random variable, y, is given by

$$P(y) = \frac{1}{\sqrt{2\pi} \sigma} e^{-(y_0 - \bar{y})^2/2\sigma^2} \qquad (-\infty \le y \le \infty)$$

This can be extended to describe a system of n state variables as

$$P(\underline{x}) = \frac{1}{(2\pi)^{n/2} E^{1/2}} e^{-(\hat{\underline{x}}-\underline{x})(\hat{\underline{x}}-\underline{x})^{T}/2E}$$

where E is the variance, defined as the square of the standard deviation, σ^2 . The problem is then one of maximizing $P(\underline{x})$, under the constraint imposed by the measured output

$$\mathbf{z} = \mathbf{H}\mathbf{x}$$

Since log $[P(\underline{x})]$ attains a maximum for the same value of \underline{x} as $P(\underline{x})$, the problem can be rewritten, using Lagrangian multipliers, as the maximization of $F(\underline{x})$, where

$$F(\underline{x}) = \log \left[P(\underline{x}) \right] + \underline{\lambda}^{T} (\underline{z} - H\underline{x})$$
$$= \log \left[\frac{1}{(2\pi)^{n/2} E^{1/2}} \right] - (\underline{\hat{x}} - \underline{x}) (\underline{\hat{x}} - \underline{x})^{T} / 2E + \underline{\lambda}^{T} (\underline{z} - H\underline{x})$$

. ...

The variation of $F(\underline{x})$ with \underline{x} is given by

$$\frac{dF(\underline{x})}{d\underline{x}} = (\widehat{\underline{x}} - \underline{x})^{T} E^{-1} - \underline{\lambda}^{T} H$$

Maximization implies

$$\frac{\mathrm{d}\mathbf{F}(\underline{\mathbf{x}})}{\mathrm{d}\underline{\mathbf{x}}} = 0$$

]

or,

1

k,

$$(\hat{\mathbf{x}}-\mathbf{x})^{\mathrm{T}} \mathbf{E}^{-1} = \lambda^{\mathrm{T}} \mathbf{H}$$

Taking the transpose of both sides yields

$$(\widehat{\mathbf{x}}-\mathbf{x})(\mathbf{E}^{-1})^{\mathrm{T}} = \lambda \mathbf{H}^{\mathrm{T}}$$

but from symmetry,

$$(\widehat{\mathbf{x}}-\mathbf{x}) = \widehat{\mathbf{\lambda}} \mathbf{E}\mathbf{H}^{\mathrm{T}}$$

 $\underline{\mathbf{x}} = \widehat{\mathbf{x}} - \widehat{\mathbf{\lambda}} \mathbf{E}\mathbf{H}^{\mathrm{T}}$ (2.6)

÷

From the measurement function,

$$\underline{z} = H\underline{x}$$

= $H(\underline{\hat{x}} - \underline{\lambda} EH^{T})$

or,

$$\lambda = (H\hat{\mathbf{x}} - \mathbf{z})/HEH^{\mathrm{T}}$$
(2.7)

Substitution of eq. (2.7) into eq. (2.6) gives

$$\underline{\mathbf{x}} = \hat{\mathbf{x}} + \left[(\underline{\mathbf{z}} - \mathbf{H} \hat{\mathbf{x}}) / \mathbf{H} \mathbf{E} \mathbf{H}^{\mathrm{T}} \right] = \mathbf{\hat{x}} + \mathbf{E} \mathbf{H}^{\mathrm{T}} \left[\mathbf{H} \mathbf{E} \mathbf{H}^{\mathrm{T}} \right]^{-1} (\underline{\mathbf{z}} - \mathbf{H} \hat{\mathbf{x}})$$
(2.8)

This then is that value of \underline{x} which maximizes the PDF for the function and, by definition, is the optimum estimate of the state of the system at time t.

It can be shown that if one includes the measurement noise, \underline{v} , in the eq.(2.4), having its specified character, then the more general form of the state estimate is

معرر

$$\widehat{\mathbf{x}}^{\bullet} = \widehat{\mathbf{x}}^{\bullet} + \mathbf{E}\mathbf{H}^{\mathrm{T}} \left[\mathbf{H}\mathbf{E}\mathbf{H}^{\mathrm{T}} + \mathbf{R} \right]^{-1} \left(\underline{\mathbf{z}} - \mathbf{H}\widehat{\mathbf{x}} \right)$$
(2.9)

where,

$$R = \overline{(\underline{\hat{\mathbf{y}}} - \underline{\mathbf{y}})(\underline{\hat{\mathbf{y}}} - \underline{\mathbf{y}})^{\mathrm{T}}}$$
(2.10)

In order to determine the new covariance matrix for this optimal estimate, \hat{x}^{*} , one need only substract \hat{x} from eq.(2.9), arriving at a value for e. From the relation

$$E = \overline{e e}^T$$

one arrives at the updated matrix

*****,

$$E^{\bullet} = E - EH^{T} (\cdots H^{T} + R)^{-1} HE$$
 (2.11)

Eqs.(2.9) and (2.11) can be somewhat simplified and possibly more easily understood by defining the new variable K, the gain.

$$K = EH^{T} (HEH^{T} + R)^{-1}$$
 (2.12)

Then, eqs.(2.9) and (2.11) reduce to

$$\hat{\mathbf{x}}^* = \hat{\mathbf{x}} + K(\mathbf{z} - H\hat{\mathbf{x}})$$
 (2.13)

$$E^* = E - KHE \qquad (2.14)$$

At this point, the process noise in the state equation can be re-introduced into $eq_{\circ}(2.3)$ as given in $eq_{\circ}(2.1)$.

$$\underline{x} = \underline{f}(\underline{x},\underline{u},\underline{p}) + \underline{w}$$

The optimum estimate for \underline{x} will then take the form

$$\hat{\mathbf{x}} = \underline{\mathbf{f}}(\hat{\mathbf{x}}, \underline{\mathbf{u}}, \underline{\mathbf{p}})$$
(2.15)

since the process noise is defined as being of zero-mean. This equation can be rewritten as

$$\dot{\mathbf{x}} = \mathbf{B}\dot{\mathbf{x}}$$
(2.16)

where B is a matrix of coefficients acting upon the state variables.

$$B = \frac{\partial f(\hat{x}, u, p)}{\partial x}$$
(2.17)

The error in the state estimate is seen to be

$$\underbrace{e}_{x} = \underbrace{x}_{x} - \underbrace{x}_{x}$$
$$= B \underbrace{x}_{x} - (B \underbrace{x}_{x} + \underbrace{w})$$

The time derivative of the error covariance matrix, \dot{E}_{s} is then written as

$$E = \frac{d}{dt} (\underline{e} \ \underline{e}^{T})$$
$$= \underline{e} \ \underline{e}^{T} + \underline{e} \ \underline{e}^{T}$$

e

or finally,

 \sim

ŀ

$$\mathbf{E} = \mathbf{B}\mathbf{E} + \mathbf{E}\mathbf{B}^{\mathrm{T}} + (\mathbf{w} \ \mathbf{w}^{\mathrm{T}})$$

The process noise covariance matrix, Q, is defined as

$$Q = \overline{\underline{w} \ \underline{w}}^{\mathrm{T}}$$
(2.18)

The time rate of change of the error covariance matrix can therefore be converted to the form

$$\stackrel{\bullet}{\mathbf{E}} = \mathbf{B}\mathbf{E} + \mathbf{E}\mathbf{B}^{\mathrm{T}} + \mathbf{Q} \tag{2.19}$$

This then is the controlling equation in the variation of the covariance matrix in conjunction with the measurement function over time.

The estimation problem can thus be completely described by eqs. (2.13), (2.14), (2.15) and (2.19). When a measurement of the system is taken, eq. (2.13) determines the optimal estimate, $\hat{\mathbf{x}}$, of the state variables at that time. This it does by maximizing the system's PDF based on the previous estimate of the system, $\hat{\mathbf{x}}$, and the present measured output, \underline{z} . The error covariance matrix is similarly determined by eq. (2.14) as a function of the matrix calculated for the previous measurement. Eqs. (2.15) and (2.19) are integrated to update the state and error covariance matrices before the next measurement. These new values of the state and covariance matrices before the next measurement. These new values of the state and covariance matrices are then used to again optimize the system's estimates and the process repeats itself.

1

Fig. 2-1. Block Diagram of Optimum Linear Filter⁽⁴⁾

2.4.2 Non-linear Extension

بر ا

The derivation of the equations relating to the statistical Kalman filter was done for a linear system,

```
\underline{x} = \underline{f}(\underline{x}, \underline{u}, \underline{p}, \underline{w})\underline{z} = h(\underline{x}, \underline{u}, \underline{p}, \underline{v})
```

and indeed, can be applied only to those systems whose dynamics can be considered linear functions of \underline{x} , \underline{u} , \underline{p} and \underline{v} or \underline{w} . However, it is possible to extend these equations to the cases where the dynamics of the system must be described by non-linear functions. This linearization of non-linear equations gives one the versatility of applying the filtering technique to a wider class of physical systems.

Assuming eqs. (2.1) and (2.2) are continuous and differentiable over the region of interest, the state variables can be written as

 $\underline{\mathbf{x}} = \underline{\mathbf{x}}_{0} + \mathbf{\delta}\underline{\mathbf{x}}$

$$z = z + \delta z$$

and eqs. (2.1) and (2.2) can be expanded in a Taylor series

about the initial values,

$$\varphi \overline{z} = \frac{\partial \overline{z}}{\partial \overline{t}} \varphi \overline{z} + \frac{\partial \overline{z}}{\partial \overline{t}} \varphi \overline{z} + \cdots$$

The values of \dot{x} and z can be assumed to be close to the initial values so that $\delta \dot{x}$ and δz can be considered linear functions of δx . This assumes that δw and δy are equal to w and y respectively, which follows from their being uncorrelated.

The linear derivation described earlier can then be used to get the optimum estimate of δx . The equations for the nonlinear filter are thus of the same form as those developed for the linear case, with minor redefinitions of the matrices involved.

$$\hat{\mathbf{x}} = \underline{\mathbf{f}}(\hat{\mathbf{x}}, \underline{\mathbf{u}}, \underline{\mathbf{p}}) \tag{2.20}$$

$$\widehat{\mathbf{x}} = \widehat{\mathbf{x}}^{*} + \mathbf{E}^{*}\mathbf{H}^{\mathrm{T}} (\mathbf{H}\mathbf{E}^{*}\mathbf{H}^{\mathrm{T}} + \mathbf{R}_{\mathrm{n}})^{-1} (\underline{\mathbf{z}} - \mathbf{H}\widehat{\mathbf{x}}) \quad (2.21)$$

$$\stackrel{\bullet}{\mathbf{E}} = \mathbf{B}\mathbf{E} + \mathbf{E}\mathbf{B}^{\mathrm{T}} + \mathbf{Q}_{\mathrm{n}}$$
 (2.22)

$$E = E^{\bullet} - E^{\bullet}H^{T} (HE^{\bullet}H^{T} + R_{n})^{-1} HE^{\bullet}$$
 (2.23)

where,

$$B = \frac{\partial f}{\partial x} (\hat{x}, u, p)$$

$$H = \frac{\partial h}{\partial x} (x, u, p)$$
$$R_{n} = \frac{\partial h}{\partial y} R \frac{\partial h}{\partial y}^{T}$$
$$Q_{n} = \frac{\partial f}{\partial w} Q \frac{\partial f}{\partial w}$$

2

For the assumptions under which eqs. (2.1) and (2.2) were developed, namely additive linear noise and a linear measurement function, the noise covariance matrices, R_n and Q_n , reduce to the form of those found in the linear model, R and Q.

Chapter III

THE SYSTEM

The system under consideration in this work is a Marinerclass vessel operating in unrestricted waters. Under equilibrium conditions, it is assumed to be moving at a constant forward speed. We are interested in determining the effect that various deviations from the equilibrium condition will have upon the motions of the ship. To do so requires a model which accurately portrays the vessel under any and all conditions in which it may be found.

3.1 The Mathematical Model

The best method of simulating a dynamic system is to mathematically recreate it through a series of differential equations which can accurately describe its motions. The mathematical model used in this work, developed by Abkowitz,⁽¹⁾ considers the vessel as a rigid body of constant mass with a stationary center of gravity. Alternative models have been developed in the literature for similar systems, as well as those special cases not included in this model.⁽⁸⁾

A body moving in a fluid medium is considered to be a acted upon by a system of forces and moments. These can be
resolved by considering two sets of forces and moments, each of which is equivalent to the other at equilibrium. First, one can consider the body's rigid structure and the forces and moments due to it's mass and the motions of that mass velocities, accelerations, moments of inertia, et cetera, independent of the body's shape. Secondly, one can consider the forces and moments arising from the medium itself, termed the hydrodynamic forces and moments. These act upon and are initiated by the body's shape - the dynamics of its interaction with the fluid medium. The subsequent motions of the body in the fluid through dynamic equilibrium arise from equating the two systems of forces.

2

3.1.1 Rigid Body Dynamics in Six Degrees of Freedom

The dynamics of the origonal body structure are ultimately derived from an understanding of Newtonian mechanics.

$$F = \frac{d}{dt} (Momentum) = X\hat{1} + Y\hat{j} + 2\hat{k}$$
$$M = \frac{d}{dt} (Angular Momentum) = K\hat{1} + M\hat{j} + N\hat{k}$$

One can consider a rectangular coordinate system with arbitrary origin not necessarily at the center of gravity of the system, but parallel to the principle axes of inertia through the center of gravity. The system can thus be shown

in the form of fig. (3-1),

Fig. 3-1, Rectangular Coordinate System

where the relevant forces and moments are as indicated. $\frac{R}{-G}$ is the vector displacement of the origin from the center of gravity.

Using this notation, the force equation becomes,

$$\underline{F} = m \frac{d}{dt} (\underline{U} + \underline{\Omega} \times \underline{R}_{G})$$

under the constant mass assumption, where

$$\Omega = \mathbf{p} \mathbf{\hat{1}} + \mathbf{q} \mathbf{\hat{j}} + \mathbf{r} \mathbf{\hat{k}}$$

and is defined as the angular velocity of the center of gravity about the chosen origin. Expansion of the equation yields the force components along the principle axes.

$$X = m \left[\dot{u} + qw - rv - x_{G}(q^{2}+r^{2}) + y_{G}(pq-r) + z_{G}(pr+q) \right] \quad (3.1)$$

$$Y = m \left[v + ru - pw - y_{G}(r^{2} + p^{2}) + z_{G}(qr - p) + x_{G}(qp + r) \right] \quad (3.2)$$

$$Z = m \left[{}^{\bullet}_{w} + pv - qu - z_{G}(p^{2}+q^{2}) + x_{G}(rp-q) + y_{G}(rq+p) \right] (3.3)$$

In a similar manner, the moment equation can be shown to be equivalent to

$$\underline{M} = \underline{M}_{G} + \underline{R}_{G} \times \underline{F}$$

-

where

 \widehat{f}

$$\underline{M}_{G} = \frac{d}{dt} (I_{x} p \hat{T} + I_{y} q \hat{J} + I_{z} r \hat{k})$$

The moment components about the principle axes are then given by the equations

$$K = I_{x} \dot{p} + (I_{z} - I_{y})qr + m \left[y_{G}(\ddot{w} + pv - qu) - z_{G}(v + ru - pw) + x_{G}y_{G}(pr - \dot{q}) - x_{G}z_{G}(pq + \dot{r}) + y_{G}z_{G}(r^{2} - q^{2}) \right]$$
(3.4)

$$M = I_{y}q + (I_{x}-I_{z})rp + m \left[z_{G}(u + qw - rv) - x_{G}(w + pv - qu) + y_{G}z_{G}(qp-r) - y_{G}x_{G}(qr+p) + x_{G}z_{G}(p^{2}-r^{2}) \right]$$
(3.5)

$$N = I_{z}r + (I_{y}-I_{x})pq + m \left[x_{G}(v + ru - pw) - y_{G}(u + qw - rv) + z_{G}x_{G}(rq - p) - z_{G}y_{G}(rp + q) + y_{G}x_{G}(q^{2} - p^{2}) \right]$$
(3.6)

The rigid body structure of the dynamic model can therefore be summarized by eqs. (3.1) through (3.6) for a vessel of constant mass and arbitrary origin of its coordinate system.

3.1.2 The Hydrodynamic Forces and Moments

<u>م</u>

The dynamic forces and moments acting upon the body in a fluid are functions of the body itself, its motions and the medium through which it passes. For a given body operating in a particular fluid, these functions are dependent only upon the body's movement.

$$\left. \begin{array}{c} F\\ M \end{array} \right\} = g(R_0, U, U, \Omega, \Omega, \Omega, effector controls)$$

For this work, it is assumed that the body is operating in unrestricted waters, therefore negating any effect of the orientation parameter, $\frac{R}{0}$, on the dynamics. The only effector force and moment contributions will come from the rudder deflection, δ , neglecting higher order terms such as δ and δ .

2

$$\left. \begin{array}{c} \mathbf{F} \\ \mathbf{M} \end{array} \right\} = \mathbf{g}(\underline{U}, \underline{U}, \Omega, \Omega, \delta) \qquad (3.7)$$

The function in eq. (3.7) can be expanded through a Taylor series expansion, assuming the function is continuous and analytic over the region of interest. This assumption is valid under normal operating conditions.

The multi-dimensional expansion is done about a nominal condition, in this case the equilibrium condition of constant forward motion, in terms of the individual components of the functional quantities. Looking at the force equation,

$$F = F(u, v, w, p, q, r, u, v, w, p, q, r, \delta)$$

the expansion becomes a lengthy equation of the form

$$\underline{F} = \underline{F}_{0} + \left(\frac{\partial \underline{F}}{\partial u}\right)_{0} (\Delta u_{0}) + \cdots + \frac{1}{2} \left[\left(\frac{\partial^{2} \underline{F}}{\partial u^{2}}\right)_{0} (\Delta u_{0})^{2} + \cdots + \left(\frac{\partial^{2} \underline{F}}{\partial u \partial v}\right)_{0} (\Delta u_{0}) (\Delta v_{0}) + \cdots \right] + \frac{1}{6} \left[\left(\frac{\partial^{3} \underline{F}}{\partial u^{3}}\right)_{0} (\Delta u_{0})^{3} + \cdots \right] + \text{higher order terms}$$

$$(3.8)$$

It will be seen that many of the terms in eq. (3.8) can be eliminated by employing the proper assumptions.

Two simplifications are now in order. First, standard shorthand notation will be used throught for the force and moment derivatives,

$$\left(\frac{\partial \underline{F}}{\partial x_{i}}\right)_{o} = \underline{F}_{x_{i}}$$

Secondly,

,

$$(x_{i})_{o} = x_{i} - (x_{i})_{o}$$

Under the equilibrium conditions of straight ahead motion at constant speed,

 $(x_i)_0 = 0$

and

$$(x_i)_0 = x_i$$

for all x_i except u, which does have a non-zero equilibrium value. Therefore, the hydrodynamic forces and moments can be portrayed as

$$\underline{F} = \underline{F}_{0} + \underline{F}_{u}(\Delta u) + \cdots + \frac{1}{2} \left[\underline{F}_{uu}(\Delta u)^{2} + \cdots + \underline{F}_{uv}(\Delta u)v + \cdots \right] + \frac{1}{6} \left[\underline{F}_{uuu}(\Delta u)^{3} + \cdots \right] + \text{higher order}_{terms} \quad (3.9)$$

3.1.3 Equations of State for a Body Moving in Three Degrees of Freedom

.

The rigid body structure of the dynamic model for a body of constant mass and arbitrary center of gravity, moving in six degrees of freedom was given in eqs. (3.1) through (3.6). Similarly, the hydrodynamic forces and moments acting upon a body with six degrees of freedom are derived in the form of eq. (3.9) from the Taylor series expansion. With the system under dynamic equilibrium, the hydrodynamic forces and moments are solely responsible for the forces and moments acting on the rigid body, and hence the motions of the body through the fluid. Therefore, the two systems of equations can be equated to determine the resultant motions in six degrees of freedom.

This general case does not always apply to every system, however. For this study, the body was constrained to only three degrees of freedom - a surface ship operating solely within the horizontal plane. Additionally, it was assumed that these horizontal maneuvers do not excite rolling motions. This assumption applied to the Mariner-class hull form is adequately valid under normal operating conditions. It will also be assumed that $y_{\rm G}$ is located along the longitudinal plane of symmetry.

Under these conditions,

 $y_{G} = \phi = \varphi = w = p = q = w = p = q = Z = K = M = 0$

for any time t. The equations used in eq. (3.10) can therefore be reduced from the general case to that for only three degrees of freedom, with substantial simplification in structure.

The rigid body forces and moments in the horizontal plane, excluding roll, are

$$X = m (u - rv - x_G r^2)$$
 (3.11)

$$Y = m (v + ru + x_{G}r)$$
 (3.12)

$$N = I_{z}r + mx_{G}(v + ru)$$
 (3.13)

while the hydrodynamic forces and moments for the same case are given by the Taylor series expansion of

$$X = X(u, v, r, u, v, r, \delta)$$
 (3.14)

$$Y = Y(u, v, r, u, v, r, \delta)$$
 (3.15)

$$N = N(u, v, r, u, v, r, \delta)$$
 (3.16)

Brinati⁽³⁾ showed that numerous additional terms in the expansion of the hydrodynamic structure could be dropped by additional assumptions. These included cross-coupling between the acceleration and velocity terms, negligible second and higher order terms, and negligible contributions from symmetry considerations. Applying these assumptions, which are quite valid, one arrives at the following form for the hydrodynamic structure.

4

r

$$X = X_{o} + X_{u}(\Lambda u) + X_{u}^{\bullet} + \frac{1}{2} \left[X_{uu}(\Lambda u)^{2} + X_{vv}v^{2} + X_{rr}r^{2} + X_{\delta\delta}\delta^{2} \right] + X_{vr}vr + X_{r\delta}r\delta + X_{v\delta}v\delta + \frac{1}{6}X_{uuu}(\Lambda u)^{3} + \frac{1}{2} \left[X_{vvu}v^{2}(\Lambda u) + X_{rru}r^{2}(\Lambda u) + X_{\delta\delta u}\delta^{2}(\Lambda u) \right] + X_{vru}vr(\Lambda u) + X_{v\delta u}v\delta(\Lambda u) + X_{r\delta u}r\delta(\Lambda u)$$
(3.17)

$$Y = Y_{0} + Y_{v}v + Y_{\delta}\delta + Y_{vu}v(\Delta u) + Y_{r}r + Y_{ru}r(\Delta u) + Y_{\delta u}\delta(\Delta u)$$
$$+ \frac{1}{6} \left[Y_{vvv}v^{3} + Y_{rrr}r^{3} + Y_{\delta\delta\delta}\delta^{3} \right] + \frac{1}{2} \left[Y_{vrr}vr^{2} + Y_{v\delta\delta}v\delta^{2} + Y_{vuu}v(\Delta u)^{2} + Y_{rvv}rv^{2} + Y_{r\delta\delta}r\delta^{2} \right]$$

+
$$Y_{ruu}r(\Delta u)^2$$
 + $Y_{\delta vv}\delta v^2$ + $Y_{\delta rr}\delta r^2$ + $Y_{\delta uu}\delta(\Delta u)^2$
+ $Y_{vr\delta}vr\delta$ (3.18)

$$N = N_{0} + N_{v}v + N_{r}r + N_{\delta}\delta + N_{vu}v(\Delta u) + N_{ru}r(\Delta u)$$

$$+ N_{\delta u}\delta(\Delta u) + \frac{1}{6} \left[N_{vvv}v^{3} + N_{rrr}r^{3} + N_{\delta\delta\delta}\delta^{3} \right]$$

$$+ \frac{1}{2} \left[N_{vrr}vr^{2} + N_{v\delta\delta}v\delta^{2} + N_{vuu}v(\Delta u)^{2} + N_{rvv}rv^{2} + N_{r\delta\delta}r\delta^{2} + N_{ruu}r(\Delta u)^{2} + N_{\delta rr}\delta r^{2} + N_{\delta rv}\delta v^{2} + N_{\delta rr}\delta r^{2} + N_{\delta ru}\delta(\Delta u)^{2} \right] + N_{vr\delta}vr\delta \qquad (3.19)$$

A further simplification can be made in eqs. (3.17), (3.18) and (3.19), by dropping those terms which individually have negligible effect upon the eventual motions of the ship, without unduly altering the model. This reasoning is somewhat similar to the dropping of the fourth and higher order terms from the expansion. For all cases, dropped terms, if small enough, are in actuality compensated for in the indeterminate model by the uncertainty term. Possibly the most important reason for this simplification is not so much in reducing the equation structure, but rather in what will be shown to be a detrimental effect by these minor terms on the identification process itself. Brinati conducted an examination of these equations and was able to separate a number of minor terms. The results of his work were not verified for this study because of time constraints, but were used in the equation development.

Equating the resulting hydrodynamic structure with that developed for a rigid body under constraint of maneuvering in the horizontal plane, and solving for the acceleration terms, leads to the following set of state equations.

$$\dot{u} = f_1 / (m - X_{\dot{u}})$$
 (3.20)

$$\dot{\mathbf{v}} = \frac{(\mathbf{I}_{z} - N_{r})f_{2} - (mx_{G} - Y_{r})f_{3}}{f_{4}}$$
(3.21)

$$r = \frac{(m - Y_v)f_3 - (mx_G - N_v)f_2}{f_4}$$
(3.22)

where,

-

$$f_{1} = X_{0} + X_{u}(\Delta u) + \frac{1}{2} X_{uu}(\Delta u)^{2} + \frac{1}{6} X_{uuu}(\Delta u)^{3} + \frac{1}{2} X_{vv}v^{2}$$
$$+ (\frac{1}{2} X_{rr} + mx_{G})r^{2} + \frac{1}{2} X_{\delta\delta}\delta^{2} + (X_{vr} + m)vr + X_{v\delta}v\delta$$

$$f_{2} = Y_{0} + Y_{v}v + (Y_{r} - mu)r + Y_{\delta}\delta + \frac{1}{6}Y_{\delta\delta\delta}\delta^{3} + \frac{1}{2}Y_{rvv}rv^{2} + \frac{1}{2}Y_{\delta vv}\delta v^{2}$$

$$f_{3} = N_{0} + N_{v}v + (N_{r} - mx_{G}u)r + N_{\delta}\delta + \frac{1}{6}N_{\delta\delta\delta}\delta^{3} + \frac{1}{2}N_{rvv}rv^{2} + \frac{1}{2}N_{\delta vv}\delta v^{2}$$

$$f_{4} = (m - Y_{v})(I_{z} - N_{r}) - (mx_{G} - N_{v})(mx_{G} - Y_{r})$$

Eqs. (3.19), (3.20) and (3.21) then, describe the motions of the vessel in the horizontal plane with three degrees of freedom. Together, they form a set of state variables which, along with the initial conditions of the problem, completely describe the past, present and future motions for any given input. This dynamic model is complete, except for these initial conditions, and forms a sufficient set of equations for the work of this study.

3.2 <u>Sea-Trial Maneuvers</u>

Of primary importance in any maneuvering trial is the proper planning for that trial. Especially in the type of identification process proposed here, it is necessary to know what effect different maneuvers will have on the ability to identify the different hydrodynamic coefficients. It is desirable to know what measurements to make, which motions to record under the various conditions of gradual accelerations, sudden changes in velocity, steady state velocities or the like. For these reasons, several different maneuvers were used in this study and are described here. As stated earlier, the only control surface considered in this work was the rudder and it's deflections. This was incorporated into the general equations as the variable δ .

3.2.1 Single-step Rudder Deflection

÷

Formally, the single-step rudder deflection can be de described as a step function of the form

$$\delta(t) = \begin{cases} 0, t < 0 \\ \delta, t \ge 0 \end{cases}$$

Graphically, this corresponds to the case where the vessel goes into a constant turn in the steady state.

Previous to the rudder deflection, all velocities and accelerations are zero except u. However, u is an unmeasurable motion by conventional methods and for the most part will be neglected. As the effect of the rudder deflection is felt by the vessel, all velocity and acceleration terms become non-zero until the ship reaches it's steady state turning radius. At this point the acceleration terms v and r have non-zero values for the remainder of the trial. For large rudder deflections, a distinct speed reduction occurs due to the tight turn.⁽²⁾

3.2.2 Zig-zag Rudder Deflection

۰.

Again, this maneuver can also be formally described by the step function,

This definition is perhaps not completely realistic to reallife situations at sea since no time-lag is incorporated into it's structure. However, for the purposes of this study, it is an acceptable representation.

Pictorially,

the vessel is seen to go into one steady turn followed by the opposite steady turn and finally achieving the new equilibrium state of constant forward speed, though not necessarily at the original orientation. Essentially there are three steady state conditions during the maneuver. The situation for the motion parameters in the steady state turns is identical to that discussed for the step deflection. For the straight ahead motion at constant speed, both the velocity and acceleration terms are reduced to zero.

3.2.3 Sinusoidal Rudder Deflections

This deflection is simply a sinusoidal motion of the rudder with a maximum displacement corresponding to δ and with the specified period, T.

 $\delta(t) = \delta \sin \omega t$

The motions of the ship will follow the rudder deflection in a sinusoidal manner, with a slight time lag.

The important point for this maneuver is that the velocity and the acceleration terms are in a constant state of flux. At no point during the trial, after t_o, is the steady state condition established for any of the motion parameters. This gives the identification process a continually changing system upon which to operate.

It is this maneuver which was used for much of this study.

ţ

Chapter IV

APPLICATION OF THE EXTENDED KALMAN FILTER TO THE IDENTIFICATION PROBLEM

4.1 Compatibility Between the System and the Filter

In Chapter II, the concept of parametric identification was developed as a means of system identification applicable to those dynamic systems whose general structure was known, but whose specific parameters or coefficients were unknown. The structure of the indeterminate model was given as

$$x = f(x, u, p) + w$$
 (4.1)

$$\underline{z} = H\underline{x} + \underline{y} \tag{4.2}$$

where the imprecision of the model is represented by the uncertainty terms, w and v_{\bullet}

The utility of statistical filtering as a method for solving the identification problem was shown and the equations for the optimum linear filter, as developed by Kalman, were given. These equations were extended to the non-linear form.

$$\hat{\mathbf{x}} = \underline{\mathbf{f}}(\hat{\mathbf{x}}, \underline{\mathbf{u}}, \underline{\mathbf{p}}) \tag{4.3}$$

$$\widehat{\mathbf{x}} = \widehat{\mathbf{x}}^{\bullet} + \mathbf{E}^{\bullet} \mathbf{H}^{\mathrm{T}} (\mathbf{H} \mathbf{E}^{\bullet} \mathbf{H}^{\mathrm{T}} + \mathbf{R}_{\mathrm{n}})^{-1} (\underline{z} - \mathbf{H} \widehat{\underline{x}}) \qquad (4.4)$$

$$\stackrel{\bullet}{\mathbf{E}} = \mathbf{B}\mathbf{E} + \mathbf{E}\mathbf{B}^{\mathrm{T}} + \mathbf{Q}_{\mathrm{n}}$$
 (4.5)

$$E = E^{\circ} - E^{\circ}H^{T} (HE^{\circ}H^{T} + R_{n})^{-1} HE$$
 (4.6)

The general model for an ocean vehicle was developed in Chapter III for a surface ship moving in the horizontal plane without roll.

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{u} \end{bmatrix} \begin{bmatrix} \mathbf{f}_1 / (\mathbf{m} - \mathbf{X}_{\mathbf{u}}) \\ (4.7a) \end{bmatrix}$$

1

$$\stackrel{\bullet}{\mathbf{x}} = \begin{vmatrix} \mathbf{v} \\ \mathbf{v} \end{vmatrix} = \begin{vmatrix} (\mathbf{I}_{\mathbf{z}} - \mathbf{N}_{\mathbf{r}})\mathbf{f}_{2} - (\mathbf{m}\mathbf{x}_{\mathbf{G}} - \mathbf{Y}_{\mathbf{r}})\mathbf{f}_{3} \\ \mathbf{f}_{4} \end{vmatrix}$$
 (4.7b)

$$\begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \begin{bmatrix} (\underline{\mathbf{m} - Y_{\mathbf{v}}})\mathbf{f}_{3} - (\mathbf{m}\mathbf{x}_{G} - N_{\mathbf{v}})\mathbf{f}_{2} \\ \mathbf{f}_{4} \end{bmatrix}$$
(4.7c)

where f_1 , f_2 , f_3 and f_4 are as before. This gives the general structure of the system (a vehicle under maneuvering) and identifies that system except for the hydrodynamic coefficients. The initial conditions which specify the dynamic condition of the system are those for which the equations were developed, namely straight ahead motion under constant speed.

By combining these steps, the ability to use the extended Kalman filter to identify the hydrodynamic coefficients of

z,

the equations of motion can be attained. First, however, some minor changes must be made in the above development.

٦.

The state vector must be extended to the augmented state,

$$x = (x_1, x_2, \cdots, x_n, p_1, p_2, \cdots, p_m)$$

by the inclusion of the unknown coefficients. In this manner the Kalman filtering technique which identifies, or more correctly estimates, the state of the system can be used to identify the coefficients under observation by including them in the state vector.

The input function of the ocean vehicle is known and is frequently a function of time. This removes the time invariant assumption in the structure of \underline{f} . However, since the function of time, $\underline{u}(t)$, is known, it can be incorporated into the model and as stated earlier, is an acceptable alteration.

These two redefinitions reduce eq. (4.1) to

$$x = f(x,t) + w = B(t)x + w$$
 (4.8)

which is compatible to that used in the definition of the extended Kalman filter.

Finally, from the assumption of linear additive noise contributions to the equations of state and measurement function, the process and measurement noise covariance matrices, Q_n and R_n , reduce to that of the linear filter.

 $Q_n = Q$ $R_n = R$

From these alterations, the system, a Mariner-class surface vessel in maneuvering, and the identification technique, statistical filtering, may be applied to the problem at hand. This does not necessarily imply that statistical filtering in particular or system identification in general can lead to the complete specification of the system structure. It does mean, however, that one is now in a position to apply the system to the technique and see wether or not an identification capability does indeed exist.

4.2 Noise Generation and Incorporation

Up to this point, very little has been said concerning the noise contributions, \underline{w} and \underline{v} , to the system structure and measurement function. In Chapter II, one of the disadvantages of the Kalman filter was stated to be that the statistical characteristics of the uncertainty terms had to be specified. This is true, though the estimation of these characteristics for many cases is relatively straightforward.

The process noise, \underline{w} , expresses the uncertainty in the structure of the mathematical model. This arises from the truncation of the Taylor series expansion for the hydro-

dynamic structure of all terms over third order. It may also incorporate any unknown contributions from the input function, u(t), or any spurious deviations from the assumptions used in developing the equations of state. Excitations from the enviornment are also included in the process noise.

The output uncertainly is expressed as a measurement noise, y. As for the process noise, this term includes all unknown structural aspects of the measurement function, H. For this study, since the measured output is assumed to directly correspond to the actual state of the system, any deviations from this linear correspondence are represented by v.

The noise contributions are both treated in a similar manner and are felt to be similar, statistically. Both are assumed to be stochastic processes, with uncorrelated, zeromean, Gaussian white noise. The Gaussian probability density function (PDF) for the uncertainty values is a reasonable assumption for most physical systems. From the central limit theorem of general probability theory, it can be shown that the sum of a large number of independent effects has a Gaussian distribution, regardless of the statistical properties of the small effects individually. The uncertainty terms can therefore be considered Gaussian in nature and treated as random variables for simple incorporation into the model structure.

These assumptions can be summarized as follows.

W	=	E[w] =	; 0
ĩ	Ŧ	E[v] =	: 0
Q	=	E [w w ^T]	
R	=	E [v_ v ^T]	
E	[<u>w</u>	$\mathbf{\underline{v}}^{\mathrm{T}} = 0$	

4

To be consistent with the work done by others in this same area at MIT, (3), (8), (16) the noise used for the generation of simulated noisy data measurements to be used in the identification will be defined as a percentage noise value. For the generation of noise with the desired Gaussian distribution (see Appendix A - Program Desription), it is necessary to specify both the desired mean and the standard deviation. The mean is assumed to be zero by convention. The standard deviation of the distribution will be defined as that specified percentage of the maximum of the function under consideration. Therefore,

$$\sigma_{\underline{w}} = \sqrt{Q_n}$$

is equal to that percentage of the maximum value of the function \dot{x} , while

$$\sigma_{\underline{v}} = \sqrt{R_n}$$

is that percentage of the maximum value of the measured output, \underline{x} . The maximum values are attained from the trajectory of the deterministic model ($\underline{w} = \underline{v} = 0$) over the interval of observation.

This definition has several unfortunate aspects which must be kept in mind. In particular, it should be apparent that problems in specification will arise for those maneuvers where the function is not uniform in magnitude, but rather peaks for a short period during the trial. For these cases, the noise present will be specified by the percentage of that maximum value, but will be added to function values substantially lower in magnitude over the majority of the period.

Fig. 4-1. Imprecision in Noise Definition

In these cases, therefore, the actual noise present during the identification process will be noticably larger than that specified, possibly by an order of magnitude or more.

4.3 The Identification Process

Much of the actual implementation of the theory developed up to this point is described in the Appendix. However, a summary of the various steps leading to the results of the next chapter should be of value at this time.

The state-space representation of the system was developed in Chapter III and specialized for a surface ship moving with three degrees of freedom. Theoretically, this leads to at least nine primary state variables (x₀, y₀, ψ_0 , u, v, r, \dot{u} , \dot{v} , \dot{r} , •••) which could be measured during a particular maneuver. In reality this is not the case. Some of these variables can not be recorded at all during full-scale trials, while others require special devises not normally available on-board ship during maneuvers. Those variables which could be readily recorded by traditional methods are yaw velocity, r, and angle, ψ , along with the sway acceleration $\mathbf{\dot{v}}$, actually ($\mathbf{\dot{v}}$ + ru_o) . A general program dealing with nine primary state variables was developed, but most of the identification studies deal with these three variables r, ψ , and \mathring{v} . Indirectly, the sway velocity, v, was also incorporated. Use of an integrating accelerometer on-board ship, while not permitting direct measurement of v, would give an indirect record of the sway velocity which could be used in the identification by the filter. Thus, for this

study the state vector is defined as,

$$\mathbf{x} = \begin{bmatrix} \mathbf{v} \\ \mathbf{r} \\ \mathbf{\psi} \\ \mathbf{v} \end{bmatrix}$$

There may be a problem arising from the dependence of v upon the measured acceleration, $\mathbf{\dot{v}}$, though in this study it did not become readily apparent.

Equations for each of the primary state variables can be derived from eq. (4.7) - $\stackrel{\bullet}{v}$ directly from the definition and v,r and ψ from the integration of their respective equations.

$$v = \int_{t_{1}}^{t_{2}} v \, dt$$
$$r = \int_{t_{1}}^{t_{2}} r \, dt$$
$$\psi = \int_{t_{1}}^{t_{2}} r \, dt$$

Using these state variables, the remaining steps in the identification process can be summarized as in Table 4-1.

For this study, the noisy data had to be generated within the program itself before it could be processed.

F

* * *

- STEP 1: Generate the noisy sea-trial data, $\frac{x}{z} = B(t)x + w$ z = Hx + y
- STEP 2: Propagate the estimated state and error covariance matrices over one time step.

$$\hat{\underline{x}} = B(t)\hat{\underline{x}}$$
$$\underline{z}_{m} = H\hat{\underline{x}}$$
$$\hat{\underline{E}} = B\underline{E} + \underline{E}B^{T} + Q$$

STEP 3: Calculate the Kalman filter gain matrix,

$$K = EH^T (HEH^T + R)^{-1}$$

STEP 4: Update the estimated state and error covariance matrices at the end of the step,

 $\hat{\mathbf{x}}^{\bullet} = \hat{\mathbf{x}}^{\bullet} + K (\mathbf{z}^{\bullet} - \mathbf{z}_{m})$ $\mathbf{E}^{\bullet} = \mathbf{E}^{\bullet} - KH\mathbf{E}$

STEP 5: Set the updated state and error covariance matrices as the new estimates and repeat STEPS 2 through 5 until the end of the identification process.

Table 4-1 Summary of the Computation Steps

Chapter V

RESULTS OF THE IDENTIFICATION PROCESS

The application of the theory developed in Chapters II and III to the problem of identifying the coefficients for a Mariner-class surface vessel was shown in the last chapter. The equations for the extended Kalman filter were given in Table 4-1 as steps of a procedure for their computation. What remains is for the theory to be tested on the system and see if indeed this technique for systems identification is valid under the given conditions.

A program was deloped to do these tasks using the MIT IBM 370/168. It is listed in the Appendix, along with a detailed description of it's use and function. The reader is referred to this section for those details. However, a few brief points are in order at this time.

An attempt was made to keep the program as general as possible, requiring only a change in the input to enact wholesale alterations in the structure of the identification. For the most part, this was accomplished. There remains some card shifting to enable the user to select different measured state variables, but for choices in coefficients identified, trial types and lengths and the like, only a variation in the data deck is necessary.

There are a multitude of different control combinations which may be employed in the identification process. This is simultaneously a blessing and a curse. The results depend on the judicious choice of trial conditions. The identification of a certain coefficient may be attained with good results under one set of conditions, but with totally negative results under different circumstances. Fortunately, there are so many conditions under which a trial may be run that it is possible to mix and match until a certain combination gives the desired results.

This plethora of choices makes a final verdict on the identification difficult. Most of the work done for this project was devoted to developing the computer program. Very little actual analysis could be completed. Therefore, to say that, based upon the sample of results given here, identification is either good or bad is unrealistic. The best set of operating conditions were not examined.

The raison d'être for this chapter is simply to show the possibilities and capabilities of the program, no more. Trends may be observed. Hopefully, these will be of help later in developing a detailed analysis useful in designing full-scale trials. Again, however, it should be emphasized that these results are neither representative nor optimal. They are simply the results for the given set of conditions under which the system operated.

What are these trial conditions which may be system-

atically altered? A partial list, some of which will later be illustrated, include:

1

- i) Variation in the uncertainty or noise term, measurement and/or process noise
- ii) Variation in what the filter is told concerning the amount of noise (noise exaggeration)
- iii) Estimates of the coefficient values and the standard deviations of those estimates
- iv) The number of coefficients processed at one time, as well as their combination
- v) The number and characteristics of the measured primary state variables
- vi) The type and magnitude of maneuver
- vii) The length of the period of observation
- viii) The time increment between observations
 - ix) Second and third generation identifications
 - x) Flexibility in using results of sets of maneuvers, each identifying those coefficients for which it is best suited.

Obviously, the choices are many. To best observe the capabilities of this technique, all the above possibilities

should be explored systematically. Neither time nor finances permitted doing so for this study. Consequently, it was decided to simply show some results and possibly indicate some trends and/or difficulties in using the program.

An attempt was made to keep all conditions, save one, equal during each trial. In each case, only four coefficients were studied.

$$Y_v$$
 (6), $(Y_r - mu)$ (7), N_v (12), $(N_r - mx_c u)$ (13)

These were chosen because they represent the coefficients used in determining the criteria for dynamic stability in straight line motion (see Chapter I). They are four of the most critical coefficients. Being able to successfully identify these would be a measure of the overall success of this technique.

Additionally, for each case the noise level was kept constant for both the process and measurement noise. When reference is made to 5% noise level, both measurement and process noise are at 5%.

It was felt that identification to within 10% of the true value could be classified as successful. This specification was used in andysing the following results.

5.1 <u>A Typical Identification (Control)</u>

The best results were found to occur when a sinusoidal rudder deflection of 10° was used in conjunction with the four measured primary state variable - v, r, ψ and \dot{v} . This run is an illustration of these results. The conditions under which it ran, namely 5% noise, 376 second trial, no noise exaggeration and four primary state variables, are the controlling cases for the runs which follow. For some however, more than one condition had to be varied. In most runs, the time increment was one second. In this case, the increment had to be increased to two seconds. For smaller increments the filter became unstable.

As can be seen, the results are really quite impressive, with all identifications to within 2% of the accepted true value, except for Y_v at a respectable 6%.

2	ADANCTOIC IDENTIFICATION EVICADED VALMAN ETITED 4
t	PARAMETRIC IDENTIFICATION - EXTENDED RALMAN FILTER *
e nijer :	的复数时 我说 都 # # # # # # # # # # # # # # # # # #
	SYSTEM: MARINER-CLASS SURFACE VESSEL
	MANEUVER: ZIG-ZAG, WITH SINUSCIDAL RUDDER
	DEFLECTIONS OF PERIOD 200.0 SECONDS A
	MAXIMUM DEFLECTIONS OF 10.0 DECKEES
	NOISE LEVEL: MEASUREMENT NOISE - 5%
	PROCESS NOISE - 5%
	EXAGGERATED NOISE FACTOR: 1.0
	TRIAL PERIOD: 376 SECONDS
	TIME STEP: 2.0 SECONDS
	NUMBER OF PRIMARY STATE VARIABLES: 4
	NUMBER OF COEFFICIENTS IDENTIFIED: 4
	INCN_ITNEAD MODELS
	UNCH CINCHN HUUCLY
	Table 5-1a Conditions for the Typical Identification

 \sim

Ņ

~ 4

];

~

C

4 5

~

~ *

1. S. S.

di ča

ŝ

R

Fig. 5-1a Filtered States from Typical Identification

γ

Fig. 5-1b Coefficient Identification for the Typical Case

NP = 13 TRUE VALUE = -0.32510E+10 $SV = -0.22752D+10 + 0R - 0.97581D+09 (N_r - mx_Gu)$ FV = -0.33036E+10 + CR - 0.67285E+08

IDENTIFICATION WITHIN 1.62% OF THE TRUE VALUE.

NP = 12 TRUE VALUE = -0.97735E+C7SV = -0.68414D+C7 + CR - C.29321D+C7 N_V FV = -0.964C8E+C7 + CR - C.27363E+C6

IDENTIFICATION WITHIN 1.36% OF THE TRUE VALUE.

NP = 7 TRUE VALUE = -0.18508E+08SV = -0.12955D+08 + 0R - 0.55525D+07 (Y_r - mu) FV = -0.18497E+08 + 0R - 0.26818E+06

IDENTIFICATION WITHIN 0.06% OF THE TRUE VALUE.

 $NP = 6 \quad TRUE \ VALUE = -0.81515E+05$ $SV = -0.57060D+05 + OR - 0.24454D+C5 \qquad Y_{V}$ FV = -0.76791E+C5 + CR - 0.13076E+04

IDENTIFICATION WITHIN 5.79% OF THE TRUE VALUE.

Table 5-1b Coefficient Identification for the Typical Case

5.2 Variation in the Maximum Rudder Deflection

The magnitude of the maximum rudder deflection for the same sinusoidal zig-zag maneuver was increased to a strongly non-linear 35° . The time step had to be increased to two seconds as before, for filter stability. The identification was successful for N_v and (N_r - mx_Gu) only. The remaining two coefficients were not determined. It should be noted that the identification process zeroed in on a value for each coefficient, even though for Y_v and (Y_r - mu) that value was incorrect. This consequently was shown as undeserved confidence in the values as shown by the final standard deviations.

The motion trajectories are seen to be well defined after filtering. This, in conjunction with the poor identification of Y_v and $(Y_r - mu)$ implies that these two coefficients do not overly affect the ship's motions. The result of this is the inability of the filter to operate successfully under these conditions.
*					
*	PARAMETRIC	IDENTIFICAT	ICN - EXTEN	DED KALMAN	FILTER
ě.					

*

SYSTEM: MARINER-CLASS SURFACE VESSEL

MANEUVER: ZIG-ZAG, WITH SINUSDICAL RUDDER DEFLECTIONS OF FERIOD 200.0 SECONDS AND MAXIMUM DEFLECTIONS OF 35.0 DEGREES

NOISE LEVEL: MEASUREMENT NOISE - 5%

PROCESS NOISE - 5%

EXAGGERATED NOISE FACTOP: 1.0

TRIAL PERIOD: 376 SECONDS

TIME STEP: 2.0 SECONDS

NUMBER OF PRIMARY STATE VARIABLES: 4

NUMBER OF COEFFICIENTS IDENTIFIED: 4

(NON-LINEAR MCDEL)

Table 5-2a Conditions for the Variation in Rudder Deflection

.

Fig. 5-2a Filtered States - Variation in Maximum Rudder Deflections

)

Fig. 5-2b Coefficients - Variation in the Maximum Rudder Deflection

• 3

 $NP = 13 \quad TRUE \; VALUE = -0.32510E+1C$ $SV = -0.227520+10 + OR - 0.97581D+09 \quad (N_r - mx_Gu)$ FV = -0.33229E+10 + CR - 0.60134E+08

IDENTIFICATION WITHIN 2.21% OF THE TRUE VALUE.

NP = 12 TRUE VALUE = -0.97735E+C7SV = -0.68414D+07 + CR - 0.29321D+C7 N_V FV = -0.91301E+07 + CR - 0.22005E+C6

IDENTIFICATION WITHIN 6.58% OF THE TRUE VALUE.

NP = 7 TRUE VALUE = -0.185C8E+C8 SV = -0.12955D+08 + CR - C.55525D+07 (Yr - mu)FV = -0.14113E+08 + CR - 0.23044E+06

IDENTIFICATION WITHIN 23.75% OF THE TRUE VALUE.

NP = 6 TRUE VALUE = -0.81515E+05SV = -0.57060D+05 + 0R - 0.24454D+05 Y FV = -0.64299E+05 + CR - 0.92124E+03

IDENTIFICATION WITHIN 21.12% OF THE TRUE VALUE.

Table 5-2b Coefficient Identification for the Variation in Maximum Rudder Deflection

5.3 Variation in the Trial Length

One of the important aspects of any maneuver is the length of the trial over which observations are taken. This case is an investigation of that variable condition. For this run, the two second time increment was continued for a 752 second period. Twice as many observations and therefore twice as many revaluations were made as before. The results are essentially the same as before for N_v and $(N_r - mx_Gu)$, but are substantially worse for the remaining coefficients.

This trial is basically two trials, one after the other. It probably could be considered similar to a second generation identification. After 376 seconds, the filter works on the new estimates with the newly derived error covariance matrix. The trial does not change, being a sinusoidal function of time. However, looking at the values at t = 376, they do not appear to correspond with those given in the previous trial over 376 seconds under the same conditions.

The lengthening of the trial is felt to be more appropriate to those maneuvers such as the step zig-zag trial where the maneuver over the second half of the trial is different from that of the first half. In this way, two aspects could be studied, the large variation identification followed by the steady state identification. Results under these conditions may be more useful.

F

5

÷.

Ň

SYSTEM: MARINER-CLASS SURFACE VESSEL

MANELVER: ZIG-ZAG, WITH SINUSCIDAL RUCCER DEFLECTIONS OF PERIOD 200.0 SECONDS AND MAXINUM DEFLECTIONS OF 10.0 DEGREES

NCISE LEVEL: MEASUREMENT NCISE - 5%

PRCCESS NCISE - 5%

EXAGGERATED NCISE FACTOR: 1.0

TRIAL PERIOD: 752 SECONDS

TIME STEP: 2.0 SECONES

NUMBER OF PRIMARY STATE VARIABLES: 4

NUMBER OF COFFFICIENTS IDENTIFIED: 4

(NON-LINEAR MCDEL)

Table 5-3a Conditions for the Variation in Trial Length

Fig. 5-3a Filtered States - Variation in Trial Length

1 1 1

¥

Ż

)

]

5

NP = 13 TRUE VALUE = -C.3251CE+1C SV = -0.22752C+10 + CR - C.97581C+C9 (N_r - mx_Gu) FV = -C.3259CE+10 + OR - C.5C136E+08

ICENTIFICATION WITHIN 1.48% CF THE TRUE VALUE.

 $NP = 12 \quad TRUE \ VALUE = -C.97735E+07$ $SV = -0.68414C+07 + CR - 0.29321C+07 \qquad N_V$ FV = -C.1CC28E+C8 + OR - C.21182E+C6

ICENTIFICATION WITHIN 2.60% CF THE TRUE VALUE.

 $NP = 7 \quad TRUE \ VALUE = -C.185C8E+C8$ $SV = -0.12955C+08 + CR - 0.55525C+07 \quad (Y_r - mu)$ FV = -C.16625E+C8 + OR - C.25196E+C6

ICENTIFICATION WITHIN 10.18% CF THE TRUE VALUE.

 $NP = 6 \quad TRUE \ VALUE = -0.81515E+C5$ $SV = -0.57060E+05 + OR - 0.24454E+05 \qquad Y_V$ FV = -C.68C98E+C5 + OR - C.11C08E+C4

ICENTIFICATION WITHIN 16.46% CF THE TRUE VALUE.

Table 5-3b Coefficient Identification for the Variation in Trial Length

5.4 Variation in the Time Increment

2

It had originally been felt that an increase in accuracy by the filter would occur directly in proportion to the number of observations used in the process. The result illustrated by this case was therefore somewhat surprizing. Only 94 observations on the system were made, with a full four seconds between points. Yet, the results are on the average as good or better than those using twice the number of observations. Two to three percent is excellent and was observed for each coefficient except N_v , which was even better at less than one percent off the accepted true value. Even more encouraging is the appearance of the filtered states for each of the primary state variables. The plot for v does not have the characteristic deviation around 100 seconds which was seen on several other trials.

An added benefit from this observation is the substantial savings in computer time and therefore dollars. Only a quarter of the calculations need be made as from the one second trials.

k ‡ : ⊾	朱女并外女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女
	PARAMETRIC IDENTIFICATION - EXTENDED KALMAN FILTER *

	SYSTEM: MARINER-CLASS SURFACE VESSEL
	MANEUVER: ZIG-ZAG, WITH SINUSOICAL RUDDER
	DEFLECTIONS OF PERICD 200.0 SECONDS A MAXIMUM DEFLECTIONS OF 10.0 DEGREES
	NOISE LEVEL: MEASUREMENT NOISE - 5%
	PROCESS NOISE - 5%
	EXAGGERATED NOISE FACTOR: 1.0
	TRIAL PERIOD: 376 SECONDS
	TIME STEP: 4.0 SECONCS
	NUMBER OF PRIMARY STATE VARIABLES: 4
	NUMBER OF COEFFICIENTS IDENTIFIED: 4
	(NCN-LINEAR MODEL)

?

;

;

i.

i....

е ж

4

×.

)

dist.

1

.

.

Table 5-4a Conditions for the Variation in Time Increment

Fig. 5-4b Filtered States - Variation in Time Increment

Fig. 5-4b Coefficients - Variation in Time Increment

 $NP = 13 \quad TRUE \ VALUE = -0.32510E+10$ $SV = -0.22752D+10 + 0R - 0.97581D+09 \quad (N_r - mx_Gu)$ FV = -0.31749E+10 + 0R - 0.97594E+C8

IDENTIFICATION WITHIN 2.34% OF THE TRUE VALUE.

7

1

٦.,

ì

J

ŝ

10**9**

NP = 12 TRUE VALUE = -0.97735E+C7 $SV = -0.68414D+07 + CR - 0.29321D+07 N_V$ FV = -0.96934E+07 + 0R - 0.42230E+06

IDENTIFICATION WITHIN 0.82% OF THE TRUE VALUE.

 $NP = 7 \quad TRUE \; VALUE = -0.18508E+C8$ $SV = -0.12955D+C8 + OR - 0.55525D+07 \qquad (Y_r - mu)$ FV = -0.17908E+08 + OR - 0.62208E+06

IDENTIFICATION WITHIN 3.24% OF THE TRUE VALUE.

 $NP = 6 \quad TRUE \ VALUE = -0.81515E+C5$ $SV = -0.57060D+05 + 0R - 0.24454D+05 \quad \frac{Y}{V}$ FV = -0.83280E+05 + 0R - 0.28920E+04

IDENTIFICATION WITHIN 2.17% OF THE TRUE VALUE.

Table 5-4b Coefficient Identification for the Variation in Time Increment

5.5 <u>Variation in the Number of Observed Primary State</u> <u>Variables</u>

~

Occasionally, it may be necessary to alter the number of measured motion parameters. It may not be possible to use the integrating accelerometer, or possibly only r and ψ can be measured under the operating conditions of the trial. For this run it was assumed that \hat{v} could not be attained. The measured variables are therefore decreased to three in number - v, r and ψ .

As expected, the results are not as accurate as those obtained when there was more information fed into the filter. Still, all coefficients are in the range of being classified as identified. Except for $(Y_r - mu)$, the difference in accuracy is approximately a factor of two. For $(Y_r - mu)$ the identification was substantially diminished for no other reason than the fact that in the original case, the coefficient was fully identified.

*							*
*	PARAMETRIC	IDENTIFICA	TION -	EXTENDED	KALMAN	FILTER	*
*							×

j

1

Ì,

. 7 F

įž.

Ŷ

à

3

SYSTEM: MARINER-CLASS SURFACE VESSEL

- MANEUVER: ZIG-ZAG, WITH SINUSOIDAL RUDDER DEFLECTIONS OF PERIOD 200.0 SECONDS AND MAXIMUM DEFLECTIONS OF 10.0 DEGREES
- NOISE LEVEL: MEASUREMENT NOISE 5%

PROCESS NOISE - 5%

EXAGGERATED NOISE FACTOR: 1.0

TRIAL PERIOD: 376 SECONDS

TIME STEP: 1.0 SECONDS

NUMBER OF PRIMARY STATE VARIABLES: 3

•

.

NUMBER OF COEFFICIENTS IDENTIFIED: 4

(NON-LINEAR MODEL)

Table 5-5a Conditions for the Variation in the Number of Measured Primary State Variables

.

Fig. 5-5a Filtered States - Variation in the Number of Measured State Variables

Fig. 5-5b Coefficients - Variation in the Number of Measured State Variables

 $NP = 13 \quad TRUE \ VALUE = -0.32510E+10$ $SV = -0.22752D+10 + OR - 0.97581D+09 \quad (N_r - mx_g u)$

IDENTIFICATION WITHIN 5.40% OF THE TRUE VALUE.

-J.30754E+10 + OR - 0.42554E+08

، ا

1

ł

1

2

1

жет. Т

(¹⁹⁴

਼ੋ

 \hat{j}

j,

S.

FV =

NP = 12 TRUE VALUE = -0.97735E+07SV = -0.68414D+07 + 0R - 0.29321D+07 Y_v FV = -0.92879E+07 + 0R - 0.21235E+06

IDENTIFICATION WITHIN 4.97% OF THE TRUE VALUE.

NP = 7 TRUE VALUE = -0.18508E+08SV = -0.12955D+08 + 0R - 0.55525D+07 (Y_r - mu) FV = -0.17107E+08 + 0R - 0.33004E+06

IDENTIFICATION WITHIN 7.57% OF THE TRUE VALUE.

NP = 6 TRUE VALUE = -0.81515E+05SV = -0.57060D+05 + 0R - 0.24454D+05 N_v FV = -0.73271E+05 + 0R - 0.19199E+04

IDENTIFICATION WITHIN 10.11% OF THE TRUE VALUE.

Table 5-5b Coefficient Identification for the Variation in the Number of Measured State Variables

5.6 Variation in the Maneuver

1

As discussed earlier, one is not limited to the sinusoidal zig-zag maneuver in the identification trial. Any number of different maneuvers can be developed, many already in current use. Two are shown here. These are the single-step rudder rudder deflection and the zig-zag maneuver with step rudder deflections. A discussion of the characteristics of each trial is given in Chapter IV. As indicated, v cannot be one of the measured variables for the case of the step zig-zag deflections. For this reason it was decided to continue the policy of the last case, inputing values of v, r and ψ only to the filtering process. The results are best compared to the previous case where the sinusoidal maneuver is used, again measuring but three motion parameters.

The zig-zag step deflection is seen to give results s similar to the sinusoidal case. The value of $(Y_r - mu)$ improved by several percentage points, while that of N_v was much worse. The filter again seems to have settled down after 200 seconds to a particular value. A high degree of confidence in that value is shown, even though it is not as accurate as might be expected. It should be noted that after 200 seconds the maneuver settles down to a steady state and no longer inputs a variation in the motion to the filter.

The case of the single step deflection is disappointing. There was no identification at all. In the case of the co-

efficient (Y_r - mu), the final value was even worse than the initial estimate. The identification process for N_v and Y_v settles down to a final value very quickly, after just 75 seconds. Again, it is at this point that the velocity has reached it's steady state value. There is no further variation in v over the rest of the period.

Ì

ļ

ų,

1

÷

ł

SYSTEM: MARINER-CLASS SURFACE VESSEL

- MANEUVER: ZIG-ZAG, WITH STEP RUDDER DEFLECTIONS OF 10.0 DEGREES AT TIME T=100 AND T=200 SECONDS
- NOISE LEVEL: MEASUREMENT NOISE 5%

PROCESS NOISE - 5%

EXAGGERATED NOISE FACTOR: 1.0

TRIAL PERIOD: 376 SECONDS

TIME STEP: 1.0 SECONDS

NUMBER OF PRIMARY STATE VARIABLES: 3

NUMBER OF COEFFICIENTS IDENTIFIED: 4

(NGN-LINEAR MODEL)

Table 5-6a Conditions for the Variation in Maneuver (Zig-zag Step Rudder Deflection)

- 5

NP = 13 TRUE VALUE = -0.32510E+10 $SV = -0.22752D+10 + 0R - 0.97581D+09 (N_r - mx_Gu)$ FV = -0.30418E+10 + 0R - 0.55280E+08

IDENTIFICATION WITHIN 6.43% OF THE TRUE VALUE.

2

ź

2

*

1.7

ķ

ì,

ł

τ,

NP = 12 TRUE VALUE = -0.97735E+07SV = -0.68414D+07 + 0R - 0.29321D+07 N_V FV = -0.85771E+07 + 0R - 0.34697E+06

IDENTIFICATION WITHIN 12.24% OF THE TRUE VALUE.

NP = 7 TRUE VALUE = -0.18508E+08SV = -0.12955D+08 + 0R - 0.55525D+07 (Y_r - mu) FV = -0.17090E+08 + 0R - 0.32648E+06

IDENTIFICATION WITHIN 7.66% OF THE TRUE VALUE.

NP = 6 TRUE VALUE = -0.81515E+05SV = -9.570600+05 + 0R - 0.244540+05 Y_V FV = -0.74825E+05 + 0R - 0.39778E+04

IDENTIFICATION WITHIN 8.21% OF THE TRUE VALUE.

Table 5-6b Coefficient Identification for the Variation in Maneuver (Zig-Zag Step Rudder Deflection)

****** PARAMETRIC IDENTIFICATION - EXTENDED KALMAN FILTER × * * * ***** SYSTEM: MARINER-CLASS SURFACE VESSEL MANEUVER: STEP RUDDER DEFLECTION AT T=0 MAXIMUM DEFLECTION OF 10.0 DEGREES NOISE LEVEL: MEASUREMENT NOISE -5% PROCESS NOISE - 5% EXAGGERATED NOISE FACTOR: 1.0 TRIAL PERIOD: 376 SECONDS TIME STEP: 1.0 SECONDS NUMBER OF PRIMARY STATE VARIABLES: 3 NUMBER OF CCEFFICIENTS IDENTIFIED: 4 (NCN-LINEAR MODEL)

а. 7

7

l,

1

Table 5-6c Conditions for the Variation in Maneuver (Single-Step Rudder Deflection)

°)

Fig. 5-6d Coefficients - Variation in Maneuver (Single-Step Rudder Deflection)

68

`)

NP = 13 TRUE VALUE = -0.32510E+10SV = -0.22752D+10 + DR - 0.97581D+09 (N_r - mx_Gu) FV = -0.23889E+10 + DR - 0.66537E+09

IDENTIFICATION WITHIN 26.52% OF THE TRUE VALUE.

Ĩ

3

 $NP = 12 \quad TRUE \ VALUE = -0.97735E+07$ $SV = -0.68414D+07 + 0R - 0.29321D+07 \qquad N_V$ FV = -0.72667E+07 + 0R - 0.19934E+07

IDENTIFICATION WITHIN 25.65% OF THE TRUE VALUE.

NP = 7 TRUE VALUE = -0.18508E+08SV = -0.12955D+08 + 0R - 0.55525D+07 (Y_r - mu) FV = -0.11789E+08 + 0R - 0.47030E+07

ł

IDENTIFICATION WITHIN 36.30% OF THE TRUE VALUE.

 $NP = 6 \quad TRUE \; VALUE = -0.81515E+05$ $SV = -0.57660D+05 + 0R - 0.24454D+05 \qquad Y_{v}$ FV = -0.59769E+05 + 0R - 0.99413E+04

IDENTIFICATION WITHIN 26.68% OF THE TRUE VALUE.

Table 5-6d Coefficient Identification for the Variation in Maneuver (Single-Step Rudder Deflection)

5.7 Variation in the Noise Level

~

This run was made to see how the filter would react to large quantities of noise (25%) in the measured input. For the most part, these results are encouraging. All coefficients were identified except one, N_v , and the identification of Y_v and $(Y_r - mu)$ is as good as that determined under low noise conditions. Seeing the amount of scatter in the measured data, it is remarkable that any accuracy, much less good identification, can take place. More noise was not run since that did not seem realistic; lesser quantities should exhibit the same results.

It will be seen that these values may be improved upon by resubmitting the final estimate to the filter and reprocessing the information.

PAR	AMETRIC IDENTIFICATION - EXTENDED KALMAN FILTER *
****	~ ************************************
	SYSTEM: MARINER-CLASS SURFACE VESSEL
	MANEUVER: ZIG-ZAG, WITH SINUSOIDAL RUDDER DEFLECTIONS OF PERIOD 20C.0 SECONDS AM MAXIMUM DEFLECTIONS OF 10.0 DEGREES
	NOISE LEVEL: MEASUREMENT NOISE - 25%
	PROCESS NOISE - 25%
	EXAGGERATED NOISE FACTOR: 1.0
	TRIAL PERIOD: 376 SECONDS
	TIME STEP: 1.0 SECONDS
	NUMBER OF PRIMARY STATE VARIABLES: 4
	NUMBER OF COEFFICIENTS IDENTIFIED: 4
	(NCN-LINEAR MODEL)
Tabl	le 5-7a Conditions for the Variation in Noise Leve

C

C

ĩ

(

!...

(

÷

(

C

(·

•

C

C:

0

0

·- **`**

. 92

.

Fig. 5-7a Filtered States - Variation in Noise Level

Fig. 5-7b Coefficients - Variation in Noise Level

۲ ،

ţ

NP = 13 TRUE VALUE = -0.32510E+10 $SV = -0.22752D+10 + 0R - 0.97581D+09 (N_r - mx_Gu)$ FV = -0.29581E+10 + 0R - 0.17636E+09

IDENTIFICATION WITHIN 9.01% OF THE TRUE VALUE.

NP = 12 TRUE VALUE = -0.97735E+07 $SV = -0.68414D+07 + 0R - 0.29321D+07 N_V$ FV = -0.79114E+07 + 0R - 0.71233E+06

IDENTIFICATION WITHIN 19.05% OF THE TRUE VALUE.

NP = 7 TRUE VALUE = -0.18508E+08SV = -0.12955D+08 + 0R - 0.55525D+07 (Y_r - mu) FV = -0.18142E+08 + 0R - 0.71847E+06

ICENTIFICATION WITHIN 1.98% OF THE TRUE VALUE.

 $NP = 6 \quad TRUE \ VALUE = -0.81515E+05$ $SV = -0.5766CD+05 + 0R - 0.24454D+65 \qquad Y_V$ FV = -0.86228E+05 + 0R - 0.31756E+04

IDENTIFICATION WITHIN 5.78% OF THE TRUE VALUE.

Table 5-7b Coefficient Identification for the Variation in Noise Level

5.8 2^{ed} Generation Identification

-

One of the hoped-for capabilities of this system was that, even if the identification over the original pass was not as good as expected, the data could be resubmitted and processed again using the new estimates.

This run was the test of that hypothesis. The data obtained from the 25% noise run was resubmitted. Each coefficient except one showed an increase in accuracy. The remaining coeficient, $(Y_r - mu)$, had been identified to within two percent on the previous pass. It should be noted that Y, is essentially equivalent, percentage-wise, after the second pass to the first value. Apparently, the improved identification will take place only if first pass yields results more than five percent off the true value. If the identification is within five percent, the filter will become unstable and inaccuracy results. At any rate, this does indicate that the coefficient values can be re-evaluated. As seen here, after two passes the results from a 25 % noise level can be made to within five or ten percent of their true values. This should be valuable for future considerations.

P	ARAMETRIC IDENTIFICATION - EXTENDED KALMAN FILTER *
1. 24 5. 245 2	* ************************************
	SYSTEM: MARINER-CLASS SURFACE VESSEL
	MANEUVER: ZIG-ZAG, WITH SINUSOIDAL RUDDER DEFLECTIONS OF PERIOD 20G.0 SECONDS AND MAXIMUM DEFLECTIONS OF 1G.0 DEGREES
	NOISE LEVEL: MEASUREMENT NOISE - 25%
	PROCESS NOISE - 25%
	EXAGGERATED NOISE FACTOR: 1.0
	TRIAL PERIOD: 376 SECONDS
	TIME STEP: 1.0 SECONDS
	NUMBER OF PRIMARY STATE VARIABLES: 4
	NUMBER OF COEFFICIENTS IDENTIFIED: 4
	(NCN-LINEAR MODEL)

. .

?

• •

. ---

....

-

2

1

2

7

97

.

Fig. 5-8a Filtered States - Second-Generation Identification

86

Ĵ

Fig. 5-8b Coefficients - Second-Generation Identification

66

ъ.)

آر ا

2

NP = 13 TRUE VALUE = -0.32510E+10 $SV' = -0.29581D+10 + 0R - 0.17636D+09 (N_r - mx_Gu)$ FV = -0.30434E+10 + 0R - 0.10937E+09

IDENTIFICATION WITHIN 6.39% OF THE TRUE VALUE.

$NP = 12 \quad TRUE \ VALUE = -0.97735E+07$ $SV = -0.79114D+07 + DR - 0.19000D+07 \quad N_V$ FV = -0.90214E+07 + DR - 0.50969E+06

IDENTIFICATION WITHIN 7.70% OF THE TRUE VALUE.

NP = 7 TRUE VALUE = -0.18508E+08SV = -0.181420+08 + 0R - 0.718470+06 (Y_r - mu) FV = -0.16524E+08 + 0R - 0.48872E+06

IDENTIFICATION WITHIN 10.72% OF THE TRUE VALUE.

 $NP = 6 \quad TRUE \; VALUE = -0.81515E+05$ $SV = -0.86228D+05 + 0R - 0.31756D+04 \quad Y_{V}$ FV = -0.77134E+05 + 0R - 0.22458E+04

ICENTIFICATION WITHIN 5.37% OF THE TRUE VALUE.

Table 5-8b Coefficient Identification for the Second-Generation Identification

5.9 Noise Exaggeration

Similar to introducing large noise values in the input data is the exaggeration of that level of noise present, be it high or low. This type of variation probably should be reserved for special situations. With the case given here, other cases were run using normal maneuvers with a one second time step and no exaggeration. As stated earlier, the filter became unstable for these runs and no identification was possible. However, it is seen here that by telling the filter that the noise level was higher than it actually was (25 times), some results were obtained. Granted, they are not very good, but compared to the case without exaggeration, namely no results, they are a substantial improvement.

A similar situation occurred when the noise level was very low (1%). By telling the filter that more noise is present than is actually the case, it remains stable and the identification process proceeds to completion.

Having a factor of 25 is probably excessive. A smaller factor of five or so should do the job just as adequately while not affecting the realism of the situation.

* * PARAMETRIC IDENTIFICATION - EXTENDED KALMAN FILTER *
* ************************************
SYSTEM: MARINER-CLASS SURFACE VESSEL
MANEUVER: ZIG-ZAG, WITH SINUSOICAL RUDDER DEFLECTIONS OF PERIOD 200.0 SECONDS AND MAXIMUM DEFLECTIONS OF 10.0 DEGREES
NOISE LEVEL: MEASUREMENT NOISE - 5% PROCESS NOISE - 5%
EXAGGERATED NOISE FACTOR: 25.0
TRIAL PERIOD: 376 SECONDS
TIME STEP: 1.0 SECONDS
NUMBER OF PRIMARY STATE VARIABLES: 4
NUMBER OF COEFFICIENTS IDENTIFIED: 4
(NCN-LINEAR MCDEL)

الحر

2

į

î,

÷

;

1

Table 5-9a Conditions for the Variation in Noise Exaggeration

,

102

Fig. 5-9a Filtered States - Variation in Noise Exaggeration

Fig. 5-9b Coefficients - Variation in Noise Exaggeration

 $NP = 13 \quad TRUE \ VALUE = -0.32510E+10$ $SV = -0.22752D+10 + OR - 0.97581D+09 \quad (N_r - mx_Gu)$ FV = -0.28711E+10 + OR - 0.15690E+09

IDENTIFICATION WITHIN 11.69% OF THE TRUE VALUE.

2

ì.

NP = 12 TRUE VALUE = -0.97735E+07SV = -0.68414D+07 + 0R - 0.29321D+07 N_V FV = -0.78529E+07 + 0R - 0.71381E+06

IDENTIFICATION WITHIN 19.65% OF THE TRUE VALUE.

NP = 7 TRUE VALUE = -C.18508E+C8SV = -0.12955D+08 + OR - 0.55525D+07 (Y_r - mu) FV = -0.17238E+08 + OR - 0.62796E+06

IDENTIFICATION WITHIN 6.86% OF THE TRUE VALUE.

NP = 6 TRUE VALUE = -0.81515E+05SV = -0.57060D+05 + 0R - 0.24454D+05 Y_V FV = -0.76117E+05 + 0R - 0.32170E+04

IDENTIFICATION WITHIN 6.62% OF THE TRUE VALUE.

Table 5-9b Coefficient Identification for the Variation in Noise Exaggeration

Chapter VI

SUMMARY AND CONCLUSIONS

This study was concerned with the application of a particular technique in systems identification to ship maneuvering analysis and ultimately to ship design.

The technique used here was an extension of the Kalman statistical filter. Statistical filtering is a powerful method of systems identification which provides estimates on the state of the system based on both statistical and physical properties of that system. Kalman developed an optimum linear filter to be used in the identification of linear systems. Brock showed how this linear derivation could be extended up the non-linear case. It was this non-linear extension of Kalman's filter that was used in this work.

The specific system under consideration was a surface vessel operating in the horizontal plane without roll, with particular application to the Mariner-class hull form. The model used for describing systems of this type was developed by Abkowitz as an extension of Newton's Laws of Motion using the vector calculus, and an expansion of the hydrodynamic forces present into a Taylor series. This resulted in a set of partial differential equations describing each motion component of the ship. The general structure of these equations

is specified for all systems; the coefficients to these equations are determined by the type of system under observation.

The problem statement for this thesis concerned the identification of these constant coefficients, given the general structure of the equations describing the motions of the system, and noisy recorded responses for the system under maneuvering.

ķ.

Traditional methods exist for identifying the hydrodynamic coefficients. Primarily these consist of either specification from hydrostatic and hydrodynamic theory, or estimation from model tests done in the towing tank. Theory is capable of calculating only a few of the coefficients. Model tests, because of scale effects inherent to this type of testing, are incapable of accurately determining all coefficient values, particularly the non-linear terms.

By applying the systems identification methodology described here to the Mariner-class vessel, very good results were obtained for the identification of the hydrodynamic coefficients. For numerous cases, under a variety of conditions, results to within at least 10 % of the accepted values were obtained. By carefully specifying the conditions under which the maneuver was run and the filter activated, the estimates to the coefficient values were within 1% - 2% of their true values.

The conditions to be used in a maneuver and the subsequent filtering of the noisy data have a very strong effect upon

the final results in the identification. Thus, in this study it was shown that essentially no identification resulted from running the simulated trial with a single-step rudder deflection. However, by changing to a sinusoidal rudder deflection, keeping all other conditions constant resulted in excellent accuracy for the identification.

2

A discussion of the pertinent results appears in Chapter V. However, several of the more important observations shall be repeated.

For the limited analysis given here, it was found that the sinusoidal maneuver gave the consistently better results. This verifies the result suggested by Hayes, who felt that the best period of the sinusoidal maneuver was one which approximated the "natural frequency" of the system.

It was noted that the filter is able to operate with reasonable success under large (25%) amounts of noise in the data. This is encouraging as it indicates the strength of the method operating under adverse experimental conditions.

The ability to repeat the filtering process on previously updated estimates, with an increase in accuracy, was shown. In conjunction with the filter's ability to operate on very noisy data, improving the noisy estimates, this presents a very powerful tool for the naval architect analyst. Once having the noisy data on tape, he is able to reprocess the data numerous times, under a variety of different conditions. By so doing, it becomes a simple matter of observing that value which is most frequently and with the highest degree of

confidence attained, and thus most probably the best estimate for that coefficient.

وينغم محمد الم

Ę

The work done on this project centered about the development of the computer program listed in the Appendix, applying the Kalman filtering technique to an arbitrary system. The program was designed to be general enough to handle many different situations. No known bugs are in the identification program as given here. Some difficulty was encountered in operating on eight coefficients at one time in preparing the final runs for this paper. However, it was felt that this was caused more by the choice of operating conditions and measured state variables than from any fault in the algorithm. Previous results, using u,v, and r, had shown the program to be capable of operating with reasonable accuracy on any number of chosen coefficients.

Which way now? There remains much to do on this project. Initially, all the equations used here should be checked and verified. A repetition of Brinati's preliminary analysis on which coefficients to include in the model should also be done. For this study, these results were accepted as they were and not checked.

Once the program's structure has been verified, there remains a detailed analysis of the different conditions under which a trial should be run, determining what set of conditions best suits the identification desired. Additionally, some efforts should be spent to incorporate roll into the general motion equations, giving the model a complete generality for most vessels operating in the horizontal plane.

Finally, an identification should be run on real data, not the simulated type used here. This would mean either full-scale sea-trial data or model test results. A more accurate picture of this system's true capabilities would surface under realistic conditions such as these. The method has been developed and shown to work with reasonably good results on simulated noisy data. It remains to see how well it can operate in various real situations, either in design or operation.

Appendix A

PROGRAM DESCRIPTION

MAIN

Remarks:

MAIN is the primary calling routine of the identification program. It serves three purposes. Initially, it inputs all necessary data and specifies the format and type of most variables used in the program. A detailed listing and description of the input data can be found in Appendix C.

Secondly, MAIN organizes the necessary data for later use, initializing the variables and generating noisy seatrial responses. The necessary data is then fed into the filter and processed.

In the end, MAIN specifies the output modes of the filtered results, both graphically and tabular.

Notable_Variables (MAIN):

LP - Actual number of elements within the extended state vector

- SP Maximum number of elements possible within the extended state vector, assuming identification of all coefficients
- TS(N) Time values for all measurements

1

- IST(NO) Starting values of the primary state variables
- ZV(N), ZR(N), ZPS(N), ZVD(N) Measured noisy output of the primary state variables generated in subroutine RKL
- VP(94), RP(94), PSP(94), VDP(94) Filtered primary state trajectories, for plotting
- VEIV(94), VEIR(94), VPS(94), VVD(94) Noisy primary state trajectories, for plotting
- PP1(94), FP2(94), *** Stored arrays of the coefficient
 values as a function of time during the identification process, for plotting

Subroutines and Function Subprograms Required:

RKL, SETUP, FILTER, PLOTM, SHOMO, SHOCO, ABS

SUBROUTINE SETUP

Remarks:

Subroutine SETUP is used to assign initial values to most of the variables and matrices used in the filtering routine. It also defines the noise covariance matrices, Q and R, while introducing the exaggerated noise factors, if applicable. This allows one to tell the filter that the amount of noise in the measured data is higher than is actually the case. The filter reacts accordingly and does not have as high a degree of confidence in it's values. This prevents the filter from zeroing in on a value for the coefficients as quickly as it might. Especially for those cases with very low noise magnitudes, this provides stability to the filter and more valid results.

Areas of Interest:

(0174 - 0184) - The noise covariance values for the different state variables are defined as the square of the desired standard deviation of the additive noise. These covariances are multiplied by the relavent exaggeration factors.

Notable Variables (SETUP):

A(36) - True values of the hydrodynamic coefficients

113

Al(36) - Estimated values of the hydrodynamic coefficients

- ASD(36) Estimated standard deviation of the estimated coefficient values
- PMS(2LP) Standard deviation and mean of the noise distribution for the individual state variables
- IST(NO) Starting values of the primary state variables
- XHT(SP) Extended state vector
- XBAR(SP) Transfer vector for the extended state vector

EHT(SP,SP) - Error covariance matrix

- HZ(NO,SP) Measurement function
- Q(LP,LP) Process noise covariance matrix
- R(LP,LP) Measurement noise covariance matrix
- PA1. PA2. *** True values of the coefficients
- LP1, LP2, *** Integer designation of the coefficients to be identified

PW - Exaggeration factor, measurement noise

QW - Exaggeration factor, process noise

Subroutines and Function Subprograms Required:

none

m.

SUBROUTINE RKL

Remarks:

Subroutine RKL generates the noisy sea-trial motion trajectories to be filtered in the identification process. The motion equations were developed in the form

$$\dot{\mathbf{x}} = \underline{\mathbf{f}}(\mathbf{x}, \mathbf{t}) + \underline{\mathbf{w}}$$

The form of \underline{x} can be determined by integration of $\underline{\dot{x}}$ over time. The method used in this work was the Runge-Kutta $4\frac{\mathrm{th}}{\mathrm{th}}$ order technique,⁽⁹⁾ a method similar in many respects to Simpson's Rule.

$$\underline{\mathbf{x}}_{k+1} \simeq \underline{\mathbf{x}}_{k} + \frac{1}{6} (\underline{\mathbf{b}}_{1} + 2\underline{\mathbf{b}}_{2} + 2\underline{\mathbf{b}}_{3} + \underline{\mathbf{b}}_{4})$$

where,

$$\underline{b}_{1} = \Delta t * \underline{f}(\underline{x}_{k}, t_{k})$$

$$\underline{b}_{2} = \Delta t * \underline{f}(\underline{x}_{k} + \frac{1}{2} \underline{b}_{1}, t_{k} + \frac{1}{2} \Delta t)$$

$$\underline{b}_3 = \Delta t * \underline{f}(\underline{x}_k + \frac{1}{2} \underline{b}_2, t_k + \frac{1}{2} \Delta t)$$

$$\underline{b}_{4} = \Delta t * \underline{f}(\underline{x}_{k} + \underline{b}_{3}, t_{k} + \Delta t)$$

The integration of $\dot{\mathbf{x}}$ can thus be broken into four distinct phases for each time step. New additive process noise values are generated for each phase and added to the function which is then used in the following phase. Noiseless values are calculated for each phase to be used in calculating the time derivatives of the state variables for the next phase. This assures that the noise added will not be in excess of that specified in the input. If not, the noise would accumulate over each successive phase. The noise distribution at the end of the trial would then be dependent upon the preceeding values.

After the function has been integrated over each time increment, the measurement noise for that step is generated and added to the state value to be stored as the output value of an imaginary measurement devise. To simulate the use of the integrating accelerometer, the noisy acceleration is integrated by a simple geometric method,

$$\underline{x}_{k} = \underline{x}_{k+1} + \frac{1}{2} (\underline{x}_{k} + \underline{x}_{k+1}) At$$

yielding the velocity. This is then given additional measurement noise.

Areas of Interest:

-

- (0065 0068) Generate process noise for the first phase of the integration over the time step. The generated noise will have a Gaussian distribution and characteristics as specified.
- (0083 0086) Calculate the noisy state variable values. These will be averaged over the interval and used as the actual output of the period.
- (0181 0185) Generate the measurement noise as a Gaussian distribution, with characteristics as specified.
- (0188 0195) Calculate the noisy output of the measurement devise,

z = x + y

Notable Variables (RKL):

- ZV(N), ZR(N), ZPS(N), ZVD(N) Measured noisy output of the primary state variables
- P(2LP) Standard deviation and mean of the noise distribution for the individual state variables

- U(t) Rudder deflection at time t, $\delta(t)$
- DUD(t) Time rate of change of the rudder deflection at time t, $\hat{\delta}(t)$
- DV Incremental sway acceleration, v
- DR Incremental yaw acceleration, r
- YV_, YR_, YPS_, YVD_ Intermediate noisy state variables
- YV_N, YR_N, YPS_N, YVD_N Intermediate noisy state variables
- WL Process noise, w

P. .

- VL Measurement noise, v
- N Number of increments (measurements, time steps) over the entire period of observation
- H Time increment
- NO Number of primary state variables

Subroutines and Function Subprograms Required:

WNO, U, DUD, FNLV, FNLR

Remarks:

7

Function U specifies the rudder deflections as a function of time, depending on the type of maneuver used in the trial.

 $U(t) = \delta(t)$

Areas of Interest:

(0016 - 0017) - Step rudder deflection,

(0021 - 0028) - Zig-zag rudder deflection,

.

(0032 - 0034) - Sinusoidal rudder deflection,

Notable Variables (U):

?

JJ - Integer specifying the type of maneuver:

1 - Step rudder deflection

2 - Zig-zag maneuver

3 - Sinusoidal maneuver

DI - Magnitude of the maximum rudder deflection in any maneuver over the trial period

T - Time of observation

TL - Half-period of the sinusoidal deflection

Subroutines and Function Subprograms Required:

SIN

FUNCTION DUD

Remarks:

Function DUD calculates the time rate of change of the rudder deflection.

$$DUD(t) = \delta(t)$$

This is primarily used in those situations where the extended state vector includes acceleration variables. For these cases,

where subroutine EFNT1 calculates the matrix,

$$B(LP,LP) = \frac{\partial \underline{f}(\underline{x},t)}{\partial \underline{x}}$$

it is necessary to calculate the time rate of change for these accelerations. It is here that the additional term, $\delta(t)$, appears. (see EFNT1) It should be apparent that $\delta(t)$ need be continuous over time, and therefore only rudder deflections such as

$$\delta(t) = \sin \omega t$$

can be implemented. Thus, the step rudder deflection (zigzag) with it's discontinuous function of ô can not be used in conjunction with the identification of any accelerations.

Subroutines and Function Subprograms Required:

 ϵ^{\prime}

COS

ł.

SUBROUTINE WNO

Remarks:

Subroutine WNO transfers the specified mean and standard deviation for a desired noise level into subroutine GAUSS,

It then returns the generated random Gaussian white noise to the calling routine.

Notable Variables (WNO):

Ę

IN(LP) - Odd random integer values for use by RANDU in generating a set of random numbers

AM - Desired mean noise level

- S Desired standard deviation of the Gaussian noise
- P(2LP) Mran and standard deviation for the noise levels of those primary state variables used in the extended state vector
- W Generated Gaussian white noise returned to the calling routine

Subroutines and Function Subprograms Required:

GAUSS

SUBROUTINE GAUSS

Remarks:

Subroutine GAUSS is basically the same as that offered by the IBM Scientific Subroutine Package. It computes a normally distributed random number with the given mean and standard deviation. Details on it's theory can be obtained from the literature.⁽¹⁹⁾

Subroutines and Function Subprograms Required:

RANDU

SUBROUTINE RANDU

Remarks:

ŀ.

Subroutine RANDU computes a uniformily distributed random number between 0.0 and 1.0 for use by subroutine GAUSS. It also is part of the IBM Scientific Subroutine Package.

Subroutines and Function Subprograms Required:

none

FUNCTION FNLV and FUNCTION FNLR

Remarks:

Functions FNLV and FNLR calculate the sway and yaw accelerations for the system at any time t.

$$\begin{bmatrix} v \\ v \\ r \end{bmatrix} = \underline{f}(\underline{x}, t)$$

Notable Variables (FNLV, FNLR):

XV - Sway velocity, v
XR - Yaw velocity, r
U - Rudder deflection, ô
A(36) - Hydrodynamic coefficients of the motion equations

Subroutines and Function Subprograms Required:

none

SUBROUTINE SHOMO

Remarks:

Subroutine SHOMO is one of the options available for showing the output of the identification data. It will call certain CALCOMP routines, both standard and MIT supplied, to plot the motion trajectories, noisy and filtered, as a function of time. It also plots a zero line and prints a key for the various plots. It is not internally adjustable for variations in the input data, nor is it usable on all systems. For this reason it will not be detailed. By setting one of it's parameters, K, to one, the option may be by-passed. It is strongly recommended that this routine be used only for final reports, theses, etc., when it's increased accuracy and readability will compensate for the added cost. Otherwise, it may mean your head. The run time to plot four state variables is approximately four minutes at a cost of \$10.00 per hour. The other option, PLOTM, costs approximately \$0.05 per plot and is perfectly adequate for production runs when only trends in the identification need be shown.

SUBROUTINE SHOCO

Remarks:

1

Subroutine SHOCO is the CALCOMP option available to produce plots of the identification of the individual coefficients as a function of time. It also plots the true value of the coefficient, as well as a key to the various plots produced. As with subroutine SHOMO, by setting K to one, the option can be by-passed. The same remarks given to SHOMO apply to SHOCO and need not be repeated.

SUBROUTINE PLOTM

Remarks:

Subroutine PLOTM is one of two options available for graphically portraying the results of the identification.

It is substantially less expensive than the alternative option given in SHOMO and SHOCO. However, the accuracy is limited and is best suited to show trends in the identification or motion trajectories.

The results are plotted on a size (47x51) which is compatible to thesis use. The plot scale variables are formated as F5.2, thus some care must be taken to conform to these specifications. Difficulty will not be encountered when the trial length is 188, 376 or 752 seconds as used in this work.

This routine was modified from the IBM Scientific Subroutine PLOT.⁽¹⁹⁾

Notable Variables (PLOTM):

- NO Numerical label for the graph, appearing at the head of the plot and consisting of no more than three digits
- A Matrix to be plotted, in single column form. The first N elements form the base vector, while the remaining (M-1)N elements specify the (M-1) cross vectors, where $(M-1) \leq 9$ representing a maximum of nine plots on one graph
- N Number of rows in matrix A, $N \leq 47$
- M Number of columns in matrix A, $M \leq 10$

- NS Code for sorting the base variable data into ascending order,
 - 0 Data already sorted
 - 1 Sorting necessary
- NE Code for by-passing PLOTM and using an alternative routine,
 - 1 PLOTM to be used
 2 CALCOMP to be used
 3 Both routines used simultaneously

Subroutines and Function Subprograms Required:

none

SUBROUTINE FILTER

Remarks:

Subroutine FILTER is the statistical filtering routine of this program. The flow of the routine is identical to that described in Chapter IV. The steps may be summarized as follows.

1. Propagate the estimated state and error covariance matrices.

$$\hat{\mathbf{x}} = \underline{\mathbf{f}}(\hat{\mathbf{x}}, \mathbf{t})$$

$$\hat{\mathbf{x}} = \int_{t_1}^{t_2} \hat{\mathbf{x}} dt$$

$$\hat{\mathbf{E}} = \mathbf{B}\mathbf{E} + \mathbf{E}\mathbf{B}^{\mathrm{T}} + \mathbf{Q}$$

$$\mathbf{E} = \int_{t_1}^{t_2} \hat{\mathbf{E}} dt$$

2. Calculate the gain for the Kalman filter

$$K = EH^{T} (HEH^{T} + R)^{-1}$$

 Update the state and error covariance matrices

 $\underline{z}_{m} = H \widehat{\underline{x}}$ $\widehat{\underline{x}} = \widehat{\underline{x}} + K(\underline{z} - \underline{z}_{m})$ $E^{*} = E - KHE$

The process is repeated for each time increment, with occassional values stored for use later in the plotting routines. The number of values saved corresponds to the number of points to be plotted (47 for this work).

Subroutines and Function Subprograms Required:

PROP, GAIN, UPDT, STORB, U, DUD

128

មកសេវានេះ បានសេវានិងនេះអាវាម័យដែលជាអ្នកសេវានិងនេះស្រីការសេវានេះ ដែលសេវានិងនៃនេះ 🗤 🗠 🖓 🖓 🖓 🖓 🖓

Remarks:

<u>_</u>

Subroutine PROP is used to propagate the estimated state and error covariance matrices over the desired time increment.

$$\dot{\mathbf{x}} = \underline{\mathbf{f}}(\underline{\mathbf{x}}, \mathbf{t})$$

$$\dot{\mathbf{x}} = \int_{t_1}^{t_2} \dot{\mathbf{x}} dt$$

$$\mathbf{E} = \int_{t_1}^{t_2} \mathbf{\hat{E}} dt$$

The time rate of change of the error covariance matrix is called from subroutine EFNT2 where it is calculated in conjunction with subroutine EFNT1. This routine, PROP, is basically the same as RKL, with the integration again done using the Runge-Kutta $4\frac{\text{th}}{\text{th}}$ order technique.

Subroutines and Function Subprograms Required:

FNLV, FNLR, EFNT1, EFNT2

Remarks:

Subroutine EFNT1 calculates the matrix,

$$B(LP,LP) = \frac{\partial \underline{f}}{\partial \underline{x}} (\underline{x},t)$$
$$= \frac{\partial \underline{x}}{\partial \underline{x}}$$

which is then used by subroutine EFNT2 to calculate the time rate of change of the error covariance matrix, \vec{E} . The first subscript indicates the row and the relevant equation, f(x,t), to be differentiated. The second subscript refers to the column and the element of the extended state vector with which the differentiation is taken. The notation can be defined as,

K1
K2
$$f_1(x,t)$$

 $f_2(x,t)$
 $f_3(x,t)$ v
 v K3 $f_1(x,t)$
 $f_2(x,t)$ v
 r K3 $f_3(x,t)$
 $f_3(x,t)$ v
 r K4 $f_4(x,t)$
 $f_5(x,t)$ x_0
 y_0 K5 $=$ $f_5(x,t)$
 $f_6(x,t)$ v
 v K6 $f_6(x,t)$
 $f_7(x,t)$
 $f_8(x,t)$ v
 v K8 $f_8(x,t)$
 $f_9(x,t)$ v
 r

¥,

$$\begin{cases} f_1 \\ f_2 \\ f_3 \end{cases} = \begin{cases} equations developed in \\ Chapter III \end{cases}$$

$$\begin{cases} f_4 \\ f_5 \\ f_6 \end{cases} = \begin{cases} u \cos \psi - v \sin \psi \\ u \sin \psi + v \cos \psi \\ r \end{cases}$$

$$\begin{cases} f_7 \\ f_8 \\ f_9 \end{cases} = \begin{cases} \frac{\partial f_1}{\partial t} \\ \frac{\partial f_2}{\partial t} \\ \frac{\partial f_3}{\partial t} \end{cases}$$

The elements of the extended state vector depend upon which state variables and coefficients are included in the identification.

Areas of Interest:

÷

- (0039 0042) The position of the elements of the primary state variables are designated,

using the notation given above. For example, K2 = 1 and K3 = 2 implies that the first two elements of the primary state vector are v and r. Therefore, the derivatives of functions K2 (v) and K3 (r) occupy the first two rows of the B matrix.

(0061 - 0067) - The derivatives of the functions of the state variables are taken with respect to those state variables, and comprise the initial (NOxNO) submatrix of B.

7

(0079 - 0209) - The derivatives of the functions of the state variables are taken with respect to the coefficients to be identified. These coefficients are found in the (NO+1) to (NO+MP) elements of the extended state vector, and thus the corresponding columns of the B matrix.

example -

let $K_3 = 2$, I = LP2, LP2 = ?

then,

$$B(K3,I) = \frac{\partial K3}{\partial A(LP2)}$$
$$= \frac{\partial r}{\partial A(7)}$$

Subroutines and Function Subprograms Required:

none

SUBROUTINE EFNT2

Remarks:

-

Subroutine EFNT2 is used in conjunction with subroutine EFNT1 and calculates the time rate of change of the error covariance matrix.

 $\dot{\mathbf{E}} = \mathbf{B}\mathbf{E} + \mathbf{E}\mathbf{B}^{\mathrm{T}} + \mathbf{Q}$

Subroutine PROP then takes the result and propagates it over the time interval, arriving at a new value of the error covariance matrix, E.

Notable Variables (EFNT2):

,

EH(SP,SP) - Error covariance matrix

B(LP,LP) - Matrix of the partial derivatives of the extended state vector from subroutine EFNT1

Q(LP,LP) - Process noise covariance matrix

E1(LP,LP) - Time rate of change of the error covariance matrix, E
Subroutines and Function Subprograms Required:

TRNSPS, MAMP1S, MAMP2S, MAADDS

SUBROUTINE GAIN

Remarks:

 $\sum_{i=1}^{n}$

Subroutine GAIN is the key routine of the identification process since it calculates the gain of the Kalman filter.

$$K = EH^T (HEH^T + R)^{-1}$$

The gain is then used in subroutine UPDT to update the estimates for both the state and error covariance matrices.

Notable Variables (GAIN):

EB(LP,LP) - Error covariance matrix

H(NO,SP) - Measurement function

- K(LP,NO) Kalman filter gain matrix
- $C(NO^2)$ One-dimensional array containing the elements of the two-dimensional matrix (HEH^T + R), for inversion by subroutine MINV

Subroutines and Function Subprograms Required:

TRNSPS, MAMP1S, MAADDS, MINV

SUBROUTINE UPDT

Remarks:

After the estimated state and error covariance matrices have been propagated over the time step and the filter gain has been calculated, subroutine UPDT is called to update the estimates to their values at the end of the increment.

 $\underline{z}_{m} = H\underline{x}$ $\underline{x}^{*} = \underline{x} + K(\underline{z} - \underline{z}_{m})$ $E^{*} = E - KHE$

Notable Variables (UPDT):

, ب

H(NO,SP) - Measurement function

- EB(LP,LP) Error covariance matrix at the beginning of the time increment
- EH(SP,SP) Updated error covariance matrix
- XB(SP) Estimated extended state vector at the beginning of the time increment
- XH(SP) Updated extended state vector at the end of the time increment

- Z(NO) Value of the primary state variables during the noisy sea-trial
- EL(LP) Measured value of the primary state variables, taken from the estimated state vector operated upon by the measurement function
- ES(LP) Difference between the actual and estimated values of the measured state variables

Subroutines and Function Subprograms Required:

MAMP1S, MAMP2S, MASUBS, DABS

SUBROUTINE STORB

Remarks:

Subroutine STORB is used to store selected values of the error covariance and state matrices at regular intervals during the identification process. These values are coupled to the time of the reading during the trial and plotted by either PLOTM, or SHOMO and SHOCO. The standard deviations are derived from the diagonal elements of the covariance matrix at the end of the trial. These are used as a representation of the confidence level in the final results.

Notable Variables (STORB):

2

- I Index of the stored measurement
- L Actual index of the time matrix for the stored measurement

KS - Number of measurements between stored values

- PP1(94), PP2(94), *** One-dimensional array of the identification of the individual coefficients. The first 47 elements are the times for the corresponding stored measurements, while the remaining 47 elements are the measured values.
- EP1, EP2, *** Standard deviation of the final value assigned to each coefficient
- EE(SP) Values of the diagonal elements of the covariance matrix

Subroutines and Function Subprograms Required:

DSQRT, DABS

SUBROUTINE TRNSPS

Remarks:

Subroutine TRNSPS is capable of taking the transpose of

a matrix A and placing it in a matrix B, leaving matrix A unchanged.

$$A^{\mathrm{T}} \longrightarrow B$$

Matrix A has absolute dimensions IA x JA, while matrix B has absolute dimensions IB x JB. The submatrix of A to be transposed has dimensions of MA x NA. The transposed submatrix in B has dimensions of NA x MA.

This routine is part of the WATFIV library. (20)

Subroutines and Function Subprograms Required: none

SUBROUTINE MAMP1S and SUBROUTINE MAMP2S

Remarks:

2

Subroutines MAMP1S and MAMP2S are used to multiply two matrices, A and B, with the product replacing one of the matrices depending upon which routine is called, leaving the other unchanged.

 $A * B \longrightarrow A$ (MAMP1S)

 $A * B \rightarrow B$ (MAMP2S)

The absolute dimensions of A are IA x JA, while those of matrix B are IB x JB. The actual multiplication involves the submatrix of A with dimensions MA x NAMB and the submatrix of B with dimensions NAMB x NB. W is a work vector at least as large as MA in MAMP2S or NB in MAMP1S. (WATFIV library)

Subroutines and Function Subprograms Required:

none

SUBROUTINE MAADDS

Remarks:

Subroutine MAADDS adds the elements of matrix A to matrix B, replacing A by the resultant sum and leaving B unchanged.

$A + B \longrightarrow A$

The actual size of the added submatrices is MA x NA. The absolute dimensions of A and B are IA x JA and IB x JB respectively. (WATFIV library)

Subroutines and Function Subprograms Required:

none

SUBROUTINE MASUBS

Remarks:

Subroutine MASUBS subtracts matrix B from matrix A, placing the difference in A and leaving B unchanged.

 $A - B \longrightarrow A$

The absolute dimensions of matrices A and B are IA x JA and IB x JB respectively. The actual size of the subtracted submatrix is MA x NA. (WATFIV library)

Subroutines and Function Subprograms Required:

none

SUBROUTINE MINV

Remarks:

This routine uses the standard Gauss-Jordan method for inversion of matrices. Matrix A is inverted and replaced by it's inverse.

 $A^{-1} \rightarrow A$

Calculation of the resulting determinant, D, indicates wether . or no the resultant matrix is singular (D = 0). Matrix A is a general matrix of order N. D is the resultant determinant, while L and M are work vectors of length N.

Subroutine MINV is part of the IBM Scientific Subroutine Package.⁽¹⁹⁾

Subroutines and Function Subprograms Required:

none

Appendix B

.

2

THE PROGRAM

"Lasciate ogni speranza voi ch'entrate ... "

Inscription over the entrance to Hell, in Dante's <u>Inferno</u>

INTEGER SP	00(
DIMENSION VP(94),RP(94),PSP(94),VDP(94)	00(
DIMENSION PP1(94), PP2(94), PP3(94), PP4(94), PP5(94), PP6(94), PP7(94)	00(
DIMENSION PP8(94), PP9(94), PP10(94), PP11(94), PP12(94), PP13(94)	00(
DIMENSION PP14(94), PP15(94), PP16(94)	00(
DIMENSION PP17(94), PP18(94), PP19(94), PP20(94), PP21(94), PP22(94)	00(
DIMENSION PP23(94), PP24(94), PP25(94), PP26(94), PP27(94), PP28(94)	00(
DIMENSION PP29(94), PP30(94), PP31(94), PP32(94), PP33(94), PP34(94)	00(
DIMENSION PP35(94), PP36(94)	001
DIMENSION VEIV(94), VEIR(94), VPS(94), VVD(94)	00
DIMENSION INX(8)	00
DIMENSION IC(4), IR(4)	00
DIMENSION EE(40)	00
DIMENSION ZERO(47)	00
DIMENSION AV(47), AR(47), APS(47), AVD(47)	00
DIMENSION AVP(47), ARP(47), APSP(47), AVDP(47)	00
DIMENSION P1(47),P2(47),P3(47),P4(47)	00
DIMENSION P5(47),P6(47),P7(47),P8(47)	00
DIMENSION TITLE(4,9), YLAB1(9), YLAB2(9), YLAB3(9), YLAB4(9)	00
DOUBLE PRECISION H, DI, PW, QW, TL, TI	00
DOUBLE PRECISION A(36), AI(36), ASD(36)	00
DOUBLE PRECISION PMS(16)	00
DOUBLE PRECISION W(8)	00
DOUBLE PRECISION WN(4),VN(4)	00
DOUBLE PRECISION V(376)	00.
DOUBLE PRECISION ZV(376), ZR(376), ZPS(376), ZVD(376)	00
DOUBLE PRECISION Z(4)	00
DOUBLE PRECISION TS(376), US(377), DUS(377)	00
DOUBLE PRECISION K(8,4),Q(8,8),R(8,8),B(8,8),EBAR(8,8)	00
DOUBLE PRECISION EHT(40,40), XHT(40), XBAR(40), HZ(4,40)	00
DOUBLE PRECISION XVI, XRI, XPSI, XVDI	00
DOUBLE PRECISION VST,RST,PST,VDST	00
DOUBLE PRECISION VCV, RCV, PCV, VDCV	00
DOUBLE PRECISION EJ(8,8),E1(8,8),E2(8,8),E3(8,8),E4(8,8)	00
DOUBLE PRECISION E5(8,8), EN(8,8), Q1(8,8), BN(8,8), FT(8,8)	00
DOUBLE PRECISION EM(8,8),H1(4,8),T(8,4),H2(4,8),H3(8,8)	00

```
DOUBLE PRECISION EL(8), ES(8)
                                                                                            0037
      DOUBLE PRECISION IST(4), ICV(4)
                                                                                            0038
      DOUBLE PRECISION C(16)
                                                                                            0039
      COMMON /OUTP5/ PP17, PP18, PP19, PP20, PP21, PP22, PP23, PP24, PP25, PP26
                                                                                            0040
      COMMON /OUTP6/ PP27.PP28.PP29.PP30.PP31.PP32.PP33.PP34.PP35.PP36
                                                                                            0041
      COMMON /OUTP1/ VP.RP.PSP.VDP.PP1.PP2.PP3.PP4.PP5.PP6.PP7.PP8
                                                                                            0042
      COMMON /OUTP2/ PP9, PP10, PP11, PP12, PP13, PP14, PP15, PP16
                                                                                            0043
      COMMON /PRM1/ PA1, PA2, PA3, PA4, PA5, PA6, PA7, PA8, PA9, PA10, PA11, PA12
                                                                                            0044
      COMMON /OUTP3/ EV, ER, EPS, EVD, EP1, EP2, EP3, EP4, EP5, EP6, EP7, EP8
                                                                                            0045
      COMMON /OUTP7/ EP17, EP18, EP19, EP20, EP21, EP22, EP23, EP24, EP25, EP26
                                                                                            0046
      COMMON /OUTP8/ EP27, EP28, EP29, EP30, EP31, EP32, EP33, EP34, EP35, EP36
                                                                                            0047
      COMMON /OUTP4/ EP9.EP10.EP11.EP12.EP13.EP14.EP15.EP16
                                                                                            0048
      COMMON /PRAM3/ LP17, LP18, LP19, LP20, LP21, LP22, LP23, LP24, LP25, LP26
                                                                                            0049
      COMMON /PRAM4/ LP27, LP28, LP29, LP30, LP31, LP32, LP33, LP34, LP35, LP36
                                                                                            0050
      COMMON /PRM2/ PA13.PA14.PA15,PA16.PA17.PA18.PA20,PA21,PA22,PA23
                                                                                            0051
      COMMON /PRM3/ PA24, PA25, PA26, PA27, PA28, PA29, PA30, PA31, PA32, PA33
                                                                                            0052
      COMMON /PRAM1/ LP1, LP2, LP3, LP4, LP5, LP6, LP7, LP8
                                                                                            0053
      COMMON /PRAM2/ LP9, LP10, LP11, LP12, LP13, LP14, LP15, LP16
                                                                                            0054
      COMMON /EXAG/ PW=OW
                                                                                            0055
      COMMON /INPUT/ DI.TL.JJ
                                                                                            0056
      COMMON /PKI/G
                                                                                            0057
      COMMON /PRM4/ PA34, PA35, PA36
                                                                                            0058
                                                                                            0059
C ********
                                                                                            0060
                                                                                            0061
      CALL PLOTS(IDUM, IDUM, 11)
                                                                                            0062
      CALL FACTOR(0.5)
                                                                                            0063
      CALL PLOT(0.0,2.0,-3)
                                                                                            0064
    1 CONTINUE
                                                                                            0065
      KI = 5
                                                                                             0066
      KO = 6
                                                                                            0067
                                                                                            0068
      INPUT DATA
                                                                                            0069
                                                                                             0070
      READ (KI, 10) (A(I), I = 1, 36)
                                                                                            0071
      IF (A(1).EQ.0.0) GO TO 909
                                                                                            0072
```

С

С

С

С

C.

£

	READ (KI,10) (AI(I), $I = 1,36$)	0073
	READ (KI, 10) (ASD(I), $I = 1, 36$)	0074
10	FORMAT (6D13.4)	0075
	READ $(KI, 11)$ $(PMS(J), J = 1, 16)$	0076
11	FORMAT (6D13.4)	0077
	READ $(KI, 12)$ $(INX(I), I = 1, 8)$	0078
12	FORMAT (616)	0079
	READ (K1,13) G	0080
13	FORMAT (F10.6)	0081
	READ (KI,14) LP1,LP2,LP3,LP4,LP5,LP6,LP7,LP8,LP9	0082
14	FORMAT (915)	0083
	READ (KI,15) LP10, LP11, LP12, LP13, LP14, LP15, LP16, LP17, LP18	0084
15	FORMAT (915)	0085
	READ (KI,16) LP19,LP20,LP21,LP22,LP23,LP24,LP25,LP26,LP27	0086
16	FORMAT (915)	0087
	READ (KI,17) LP28,LP29,LP30,LP31,LP32,LP33,LP34,LP35,LP36	0088
17	FORMAT (915)	0089
	READ (KI, 19) VST, RST, PST, VDST	0090
19	FORMAT (4F10.5)	0091
	READ (KI,20) VCV,RCV,PCV,VDCV	0092
20	FORMAT (4F10.3)	0093
	READ (KI,21) KS,N,H	0094
21	FORMAT(214,F10.2)	0095
	READ (KI,22) NM,NP	0096
22	FORMAT (215)	0097
	READ (KI,23) PW,QW	0098
23	FORMAT (2010-2)	0099
	READ (KI,26) MP,NO	0100
26	FORMAT (214)	0101
	READ (KI,27) DI,TL,JJ	0102
27	FORMAT (2F10.3,15)	0103
	READ (KI,28) NE	0104
28	FORMAT (15)	0105
	DO 790 I = 1,4	0106
790	READ (KI,90) (TITLE(I,J), $J = 1,9$)	0107
90	FORMAT (9A4)	0108

.

	DO 791 J = 1.9	0100
	YLAB1(J) = TITLE(1,J)	0109
	YLAB2(J) = TITLE(2,J)	0110
	YLAB3(J) = TITLE(3,J)	0112
	YLAB4(J) = TIT(F(4,J))	0112
	791 CONTINUE	0115
С		0114
C	INITIAL CONDITIONS	0115
С		0110
	TI = 0.00	0117
	$XVI = O_{\bullet}DO$	0110
	XRI = 0.00	0120
	XPSI = 0.00	0120
	XVDI = 0.D0	0121
	JON = N+H	0122
	NN = N	0125
С		0124
С	GENERATE NOISY SEA TRIAL DATA FOR USE IN FILTERING	0125
С		0127
	CALL RKL(H,TI,XVI,XRI,XPSI,XVDI,N,A,ZV,ZR,ZPS,ZVD,US,DUS,TS,INX,	0128
	1PMS + WN + VN + NO + V)	0129
	NPL = 47	0130
	DO 99 I = 1, NPL	0131
	L = KS * I	0132
	NLI = I+NPL	0133
	VEIV(I) =TS(L)	0134
	VEIR(I) =TS(L)	0135
	VPS(I) = TS(L)	0136
	VVD(1) = TS(L)	0137
	AV(1) = ZV(L)	0138
	AR(1) = ZR(1)	0139
	APS(I) = ZPS(L)	0140
	AVU(1) = ZVU(L)	0141
	VEIVINLI) = ZV(L)	0142
	VEIR(NEI) = ZR(E)	0143
	VPS(NLI) = ZPS(L)	0144
	. 1*	

.

·...)

		2. ₁₀
	\cdot	
	VU(NLI) = ZVU(L)	0145
c	99 CUNTINUE	0140
r	DIGT THE NOTSY SEA TOTAL DATA AND INITIALIZE THE STADIING W	9410 23111
ř	OF THE PRIMARY STATES	
č	or the randar offees	0150
Č.	CALL PLOTM(0.VEIV.NPL.2.0.NE)	0151
	NO = 1	0152
	IST(NO) = VST	0153
	ICV(NO) = VCV	0154
	CALL PLOTM(0,VEIR,NPL,2,0,NE)	0155
	NO = NO+1	0156
	IST(NO) = RST	0157
	ICV(ND) = RCV	0158
	CALL PLOTM(0,VPS,NPL,2,0,NE)	0159
	NO = NO+1	0160
	IST(NO) = PST	0161
	ICV(NO) = PCV	0162
	CALL PLOTM(0,VVD,NPL,2,0,NE)	0163
	NO = NO+1	0164
	ISI(NO) = VOSI	0165
	1CV(NU) = VDCV	0166
	LY = MYTNU 50 - NO124	0107
r	Sr = MUt S0	U100 0160
ř	INITIALIZE THE MATRICES USED IN THE IDENTIFICATION	0109
č	INTERCE THE PROTOCO OVED IN THE IDENTITIANIUM	0171
Č.	CALL SETUPIO.R. P.N. SP. FHT. IST. ICV. A.AI.ASD. PMS. XHT. XBAR.H.	7.7FR() 0172
C		0173
č	PERFORM THE PARAMETRIC IDENTIFICATION UPON THE SPECIFIED	0174
Č	COEFFICIENTS USING THE INITIAL CONDITIONS AND THE GENERATED	0175
С	NOISY SEA TRIAL DATA	0176
С		0177
	CALL FILTER(EJ,E1,E2,E3,E4,E5,EN,EM,EL,ES,Q1,BN,FT,T,H1,H2,	H3,LP, 0178
	1KS,EBAR,B,K,Q,R,EE,NO,Z,SP,ZV,ZR,ZPS,ZVD,US,TS,XHT,XBAR,HZ,	A,C,EHT 0179
	2,IC,IR,W,H,TI,N,DUS}	0180

	KK = 47	0181
	KP = 94	0182
	NS = 0	0183
	N = 1	0184
	M = 2	0185
	DO 401 KMN = $1,47$	0186
	NHK = KMN+47	0187
	AVP(KMN) = VP(NMK)	0188
	ARP(KMN) = RP(NMK)	0189
	APSP(KMN) = PSP(NMK)	0190
	AVDP(KMN) = VDP(NMK)	0191
	P1(KMN) = PP1(NMK)	0192
	P2(KMN) = PP2(NMK)	0193
	P3(KMN) = PP3(NMK)	0194
	P4(KMN) = PP4(NMK)	0195
	P5(KMN) = PP5(NMK)	0196
	P6(KMN) = PP6(NMK)	0197
	P7(KMN) = PP7(NMK)	0198
	P8(KMN) = PP8(NMK)	0199
401	CONTINUE	0200
	x x	0201
	PLOT THE FILTERED PRIMARY STATE VARIABLES USING THE IDENTIFIED	0202
	VALUES OF THE HYDRODYNAMIC COEFFICIENTS	0203
		0204
	CALL PLOTM(N,VP,KK,M,NS,NE)	0205
	CALL SHOMO(VEIV, AV, VEIV, ZERO, VEIV, AVP, -11.0, 5.6, -3, NE, 1, YLAB1)	0206
	N = N + 1	0207
	CALL PLOTM(N, RP, KK, M, NS, NE)	0208
	CALL SHOMO(VEIR, AR, VEIR, ZERO, VEIR, ARP, -1, 5, -5, 6, -3, NE, 2, YLAB2)	0209
	N = N+1	0210
	CALL PLOTM(N, PSP, KK, M, NS, NE)	0211
	CALL SHOMO(VPS,APS,VPS,ZERO,VPS,APSP,-11.0,5.6,-3,NE,3,YLAB3)	0212
	N = N+1	0213
	CALL PLOTM(N,VDP,KK,M,NS,NE)	0214
	CALL SHOMO(VVD,AVD,VVD,ZERO,VVD,AVDP,5.0,-5.6,-3,NE,4,YLAB4)	0215
	IF (MP.EQ.0) GO TO 560	0216

с с с с

-

C		0217
C	PLOT THE IDENTIFICATION OF THE SPECIFIED COEFFICIENTS AS A	0218
С	FUNCTION OF TIME DURING THE FILTERING PROCESS	0219
C		0220
	GO TO (101,102,103,104,105,106,107,108,109,110,111,112,113,114,	0221
	1115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,	0222
	2131,132,133,134,135,136),MP	0223
	136 N = LP36	0224
	CALL PLOTM(N,PP36,KK,M,NS,NE)	0225
	135 N = LP35	0226
	CALL PLOTM(N, PP35, KK, M, NS, NE)	0227
	134 N = LP34	0228
	CALL PLOTM(N, PP34, KK, M, NS, NE)	0229
	133 N = LP33	0230
	CALL PLOTM(N,PP33,KK,M,NS,NE)	0231
	132 N = LP32	0232
	CALL PLOTM(N,PP32,KK,M,NS,NE)	0233
	131 N = LP31	0234
	CALL PLOTM(N, PP31, KK, M, NS, NE)	0235
	130 N = LP30	0236
	CALL PLOTM(N, PP30, KK, M, NS, NE)	0237
	129 N = LP29	0238
	CALL PLOTM(N, PP29, KK, M, NS, NE)	0239
	123 N = 128	0240
	CALL PLOTM(N,PP28,KK,M,NS,NE)	0241
	127 N = LP27	0242
	CALL PLOTM(N, PP27, KK, M, NS, NE)	0243
	126 N = LP26	0244
	CALL PLOTM(N, PP26, KK, M, NS, NE)	0245
	125 N = LP25	0246
	CALL PLUTM(N, PP25, KK, M, NS, NE)	0247
	124 N = LP24	0248
	CALL PLUTMIN, PP24, KK, M, NS, NET	0249
	123 N = LP23	0250
	CALL PLUIMIN, PP23, KK, M, NS, NEJ	0251
	122 N = 1722	0252

	CALL PLOTM(N, PP22, KK, M, NS, NE)	0253
121	N = LP21	0254
	CALL PLOTM(N,PP21,KK,M,NS,NE)	0255
120	N = LP20	0256
	CALL PLOTM(N, PP20, KK, M, NS, NE)	0257
119	N = LP19	0258
	CALL PLOTM(N, PP19, KK, M, NS, NE)	0259
118	N = LP18	0260
	CALL PLOTM(N, PP18, KK, M, NS, NE)	0261
117	N = LP17	0262
	CALL PLOTM(N, PP17, KK, M, NS, NE)	0263
116	N = LP16	0264
	CALL PLOTM(N, PP16, KK, M, NS, NE)	0265
115	N = LP15	0266
	CALL PLOTM(N, PP15, KK, M, NS, NE)	0267
114	N = LP14	0268
	CALL PLOTM(N, PP14, KK, M, NS, NE)	0269
113	N = LP13	0270
	CALL PLOTM(N, PP13, KK, M, NS, NE)	0271
112	N = LP12	0272
	CALL PLOTM(N, PP12, KK, M, NS, NE)	0273
111	N = LP11	0274
	CALL PLOTM(N, PP11, KK, M, NS, NE)	0275
110	N = LP10	0276
	CALL PLOTM(N, PP10, KK, M, NS, NE)	0277
109	N = LP9	0278
	CALL PLOTM(N,PP9,KK,M,NS,NE)	0279
108	N = LP8	0280
	CALL PLOTM(N, PP8, KK, M, NS, NE)	0281
	CALL SHOCD(PP8,P8,PP8,PA8,0.0,5.6,-3,NE,1,8)	0282
107	N = LP7	0283
	CALL PLOTM(N, PP7, KK, M, NS, NE)	0284
	CALL SHOCO(PP7,P7,PP7,PA7,9.5,-5.6,-3,NE,2,7)	0285
106	N = LP6	0286
	CALL PLOTM(N, PP6,KK, M, NS, NE)	0287
	CALL SHOCO(PP6,P6,PP6,PA6,0.0,5.6,-3,NE,3,6)	0288

-124

	105	N = LP5	0289
		CALL PLOTM(N, PP5, KK, M, NS, NE)	0290
		CALL SHOCO(PP5, P5, PP5, PA5, 15.0, -5.6, -3, NE, 4, 5)	0291
	104	N = LP4	0292
	-	CALL PLOTM(N,PP4,KK,M,NS,NE)	0293
		CALL SHOCD(PP4, P4, PP4, PA4, 0.0, 5.6, -3, NE, 1,4)	0294
	103	N = LP3	0295
		CALL PLOTM(N,PP3,KK,M,NS,NE)	0296
		CALL SHOCO(PP3, P3, PP3, PA3, 9.5, -5.6, -3, NE, 2, 3)	0297
	102	N = LP2	0298
		CALL PLOTM(N,PP2,KK,M,NS,NE)	0299
		CALL SHOCO(PP2,P2,PP2,PA2,0.0,5.6,-3,NE,3,2)	0300
	101	N = LP1	0301
		CALL PLOTM(N, PP1, KK, M, NS, NE)	0302
		CALL SHOCO(PP1,P1,PP1,PA1,15.0,-7.9,-3,NE,4,1)	0303
С			0304
С		TABULATE THE PRELIMINARY INFORMATION AND THE RESULTS OF THE	0305
С		IDENTIFICATION ANALYSIS	0306
С			0307
		N = 0	0308
		WRITE (KO,557)	0309
		WRITE (KO,550)	0310
		TL = 2.*TL	0311
		GO TO (140,150,160),JJ	0312
	140	WRITE (K0,547) DI	0313
		GO TO 70	0314
	150	WRITE (K0,548) DI	0315
	_	GO TO 70	0316
	160	WRITE (KO,549) TL,DI	0317
	70	CONTINUE	0318
		WRITE (KO,553) NM,NP	0319
		WRITE (K0,561) PW	0320
		WRITE (KO, 552) JON	0321
		WRITE (K0,566) H	0322
		WRITE (KO,562) NO	0323
		WRITE (KU,563) MP	0324

•

```
WRITE (K0,558)
                                                                                    0325
                                                                                    0326
   WRITE (K0.559)
   GO TO (201,202,203,204,205,206,207,208,209,210,211,212,213,214,
                                                                                    0327
  1215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,
                                                                                    0328
   2231,232,233,234,235,236),MP
                                                                                    0329
236 WRITE (KD, 556) LP36, PA36, AI(LP36), ASD(LP36), PP36(KP), EP36
                                                                                    0330
             T_1 = ABS(((PA36-PP36(KP))/PA36)*100_{o})
                                                                                    0331
    WRITE (K0.555) T1
                                                                                    0332
    N = N+1
                                                                                    0333
    IF (N.LT.4) GO TO 235
                                                                                    0334
    N = 0
                                                                                    0335
                                                                                    0336
    WRITE (K0,559)
235 WRITE (KD,556) LP35, PA35, AI(LP35), ASD(LP35), PP35(KP), EP35
                                                                                    0337
             T1 = ABS(((PA35-PP35(KP))/PA35)*100.)
                                                                                    0338
    WRITE (K0.555) T1
                                                                                    0339
    N = N+1
                                                                                    0340
    IF (N.LT.4) GO TO 234
                                                                                    0341
    N = 0
                                                                                    0342
    WRITE (K0,559)
                                                                                    0343
234 WRITE (K0.556) LP34.PA34.AI(LP34).ASD(LP34).PP34(KP).EP34
                                                                                    0344
              T1 = ABS(((PA34-PP34(KP))/PA34)*100_)
                                                                                    0345
    WRITE (K0,555) T1
                                                                                    0346
    N = N+1
                                                                                    0347
    IF (N.LT.4) GD TO 233
                                                                                    0348
    N = 0
                                                                                    0349
    WRITE (K0,559)
                                                                                    0350
233 WRITE (K0,556) LP33, PA33, AI(LP33), ASD(LP33), PP33(KP), EP33
                                                                                    0351
              T1 = ABS(((PA33-PP33(KP))/PA33)*100.)
                                                                                    0352
    WRITE (K0.555) T1
                                                                                    0353
                                                                                    0354
    N = N+1
    IF (N.LT.4) GO TO 232
                                                                                    0355
    N = 0
                                                                                    0356
    WRITE (K0,559)
                                                                                    0357
232 WRITE (K0,556) LP32, PA32, AI(LP32), ASD(LP32), PP32(KP), EP32
                                                                                     0358
              T1 = ABS(((PA32-PP32(KP))/PA32)*100_{o})
                                                                                    0359
    WRITE (K0,555) T1
                                                                                    0360
```

	N = N+1		0361
	IF (NoLT.4) GO	TO 231	0362
	N = 0		0363
	WRITE (K0,559)		0364
231	WRITE (K0,556)	LP31, PA31, AI (LP31), ASD(LP31!, PP31(KP), EP31	0365
	T1 =	ABS(((PA31-PP31(KP))/PA31)*100.)	0366
	WRITE (K0,555)	T1	0367
	N = N+1		0368
	IF (N.LT.4) GD	TO 230	0369
	N = 0		0370
	WRITE (K0,559)		0371
230	WRITE (K0,556)	LP30, PA30, AI (LP30), ASD(LP30), PP30(KP), EP30	0372
	T1 =	ABS(((PA30-PP30(KP))/PA30)*100.)	0373
	WRITE (K0,555)	Τ1	0374
	N = N+1		0375
	IF (NoLTo4) GD	TO 229	0376
	N = 0		0377
	WRITE (K0,559)		0378
229	WRITE (K0,556)	LP29, PA29, AI(LP29), ASD(LP29), PP29(KP1, EP29	0379
	T1 =	ABS([{PA29-PP29(KP)]/PA29]*100.}	0380
	WRITE (K0,555)	T1	0381
	N = N+1		0382
	IF (N.LT.4) GD	TO 228	0383
	N = O		0384
	WRITE (K0,559)		0385
228	WRITE (K0,556)	LP28,PA28,AI(LP28),ASD(LP28),PP28(KP),EP28	0386
	. T1 =	ABS(((PA28-PP28(KP))/PA28)*100.)	0387
	WRITE (K0,555)	T1	0388
	N = N+1		0389
	IF (NoLTo4) GO	TO 227	0390
	N = 0		0391
	WRITE (K0,559)		0392
227	WRITE (K0,556)	LP27, PA27, AI (LP27), ASD(LP27), PP27(KP), EP27	0393
	T1 =	ABS(((PA27-PP27(KP))/PA27)*100.)	0394
	WRITE (K0,555)	T1	0395
	N = N+1		0396

	IF (N.LT.4) GO	TO 226	0397
	N = 0		0398
	WRITE (K0,559)		0399
226	WRITE (K0,556)	LP26, PA26, AI(LP26), ASD(LP26), PP26(KP), EP26	0400
	T1 =	ABS(((PA26-PP26(KP))/PA26)*100.)	0401
	WRITE (K0,555)	τ1	0402
	N = N+1		0403
	IF (N. LT. 4) GO	TO 225	0404
	N = 0		0405
	WRITE (K0,559)		0406
225	WRITE (K0,556)	LP25,PA25,AI(LP25),ASD(LP25),PP25(KP),EP25	0407
	T1 =	ABS(((PA25-PP25(KP))/PA25)*100.)	0408
	WRITE (K0,555)	τ1	0409
	N = N+1		0410
	IF (N.LT.4) GO	TO 224	0411
	N = 0		0412
	WRITE (K0,559)		0413
224	WRITE (K0,556)	LP24, PA24, AI (LP24), ASD(LP24), PP24(KP), EP24	0414
	T1 =	ABS(((PA24-PP24(KP))/PA24)*100.)	0415
	WRITE (K0,555)	71	0416
	N = N+1		0417
	IF (NoLT.4) GO	TO 223	0418
	N = 0		0419
	WRITE (K0,559)		0420
223	WRITE (K0,556)	LP23,PA23,AI(LP23),ASD(LP23),PP23(KP),EP23	0421
	T1 =	ABS(((PA23-PP23(KP))/PA23)*100.)	0422
	WRITE (K0,555)	T1	0423
	N = N+1		0424
	IF (N.LT.4) GD	TO 222	0425
	N = 0		0426
	WRITE (K0,559)		0427
222	WRITE (K0,556)	LP22, PA22, AI (LP22), ASD(LP22), PP22(KP), EP22	0428
	TL =	ABS(((P#22-PP22(KP))/PA22)*100.)	0429
	WRITE (K0,555)	71	0430
	N = N+1		0431
	IF (NoLTo4) GO	TO 221	0432

		N = 0		0433
	221	WRITE (KU, 559)		0434
	221	WKIIE (KU;530)	LP21, PA21, A1 (LP21), ASU(LP21), PP21(RP), EP21	U435
		11 =	ADS(\\PA21=PP21\\P/PA21)+1UU+1	0430
		WRITE (KU; 0007	11	0437
		$\mathbf{N} = \mathbf{N} + \mathbf{L}$	TO 220	0438
		1F (NoL104) 60	10 220	0459
		N = 0		0440
	220	WRITE (KU1007)	1000 0400 AT (1000) ACD (1000) 0000 (KD) 5000	0441
	220	WKITE (NU+550)	LP2U1P42U1A1(LP2U11A3D(LP2U11PP2U(RP11EP2U	0442
		11 = HDITE (VO 666)	AD3(((PA20-PP20(KP1//PA20)+1000)	U443 0444
		WRITE (RU9000)	(<u>T</u>	0444
		$\mathbf{N} = \mathbf{N} \mathbf{T} \mathbf{L}$	TO 210	0443
		$\frac{11}{11} \left(\frac{11}{10} + 1$	10 219	0440
		UDITE (KO.550)		0447
	210	WRITE (K0.554)	L D10. D410. AT (1 D101. ACD/1 D101. DD10//D1. 5010	0448
	217	T1 -	CF179FA179A14CF17794A304CF17799FF174AF79CF17 ABC///DA10_0010(/C1)/DA101#100)	0447
			AD3/((FA17-FF17(N3///FA17)*1000/	0450
		M + M + 1	, <u>,</u>	0453
		$\mathbf{I} = \mathbf{I} \mathbf{I} \mathbf{I}$	TO 210	0452
			10 210	0454
		WPITE (KO, 550)		0454
	21.0	WRITE (KU9227)	1010.0414 47/10101 ACD/10191 0010/POL 5010	0433
	210	T1 =	LF10#FA10#A1(LF10/#A3U(LF10/#FF10(NF/#EF10 AR\$(//DA18=DD19/KD1)/DA181±100_1	0456
			AD3114FA10-FF131KF1//FA10/#1006/	0459
		N = N + 1		0450
		$\mathbf{I} = \mathbf{I} \mathbf{I} \mathbf{I}$	TO 217	0457
			10 211	0490
	1	WRITE (KR.559)		0461
•	217	WRITE (KO.556)	1917.9417.41(1917).450(1917).0017(49).5017	0402
	6 L I	T1 -	LFL/JFMI/JMI(LFI/JMSU(LFL/JJFFL/(NF/JLF1/ ARC///DA17_DD17//D11//DA171#100 }	0409
			AUSIIIFAI/~FFIIIRF///FAI//*1000/	0404
		N = N41	F 🗶	C0402
		TE (N.(T.4) CD	TO 216	0400
		N = 0		0407
				V400

\$

-

	WRITE (K0,559)		0469
216	WRITE (K0,556)	LP16, PA16, AI (LP16), ASD(LP16), PP16(KP), EP16	0470
	T1 =	ABS(((PA16-PP16(KP))/PA16)*100.)	0471
	WRITE (K0,555)	T1	0472
	N = N+1		0473
	IF (N.LT.4) GO	TO 215	0474
	N = 0		0475
	WRITE (K0,559)		0476
215	WRITE (K0,556)	LP15,PA15,AI(LP15),ASD(LP15),PP15(KP),EP15	0477
	T1 =	ABS(((PA15-PP15(KP))/PA15)*100.)	0478
	WRITE (KC,555)	T1	0479
	N = N+1		0480
	IF (NoLT.4) GO	TO 214	0481
	N = 0		0482
	WRITE (K0,559)		0483
214	WRITE (K0,556)	LP14,PA14,AI(LP14),ASD(LP14),PP14(KP),EP14	0484
	T1 =	ABS(((PA14-PP14(KP))/PA14)*100.)	Q485
	WRITE (K0,555)	T1	0486
	N = N+1		0487
	IF (NeLTe4) GD	TO 213	0488
	N = 0		0489
	WRITE (KO,559)		0490
213	WRITE (K0,556)	LP13,PA13,AI(LP13),ASD(LP13),PP13(KP),EP13	0491
	Tl =	ABS(((PA13-PP13(KP))/PA13)*100.)	0492
	WRITE (K0,555)	T1	0493
	N = N+1		0494
	IF (N.LT.4) GO	TO 212	0495
	N = 0		0496
	WRITE (K0,559)		0497
212	WRITE (K0,556)	LP12, PA12, AI(LP12), ASD(LP12), PP12(KP), EP12	0498
	T1 =	ABS(((PA12-PP12(KP))/PA12)*100°)	0499
	WRITE (K0,555)	T1	0500
	N = N+1		0501
	IF (N.LT.4) GO	TO 211	0502
	N = 0		0503
	WRITE (K0,559)		0504

211	WRITE (K0,556)	LP11,PA11,AI(LP11),ASD(LP11),PP11(KP),EP11 ABS(((PA11-PP11(KP))/PA11)*100-)	0505 0506
	HRITE (K0.555)	T1	0507
	N = N + 1	* -	0508
	T = T T	TO 210	0508
	N = 0		0510
	WRITE (K0.559)		0511
210	WRITE (K0.556)	1 P10. PA10. AT (1 P 10). ASD (1 P 10). PP10(KP). FP10	0512
6. a. ve	T1 =	$ABS(({PA10-PP10(XP)})/PA10)*100.)$	0513
	WRITE (K0+555)	T1	0514
	N = N+1		0515
	IF (NalTa4) GD	TO 209	0516
	N = 0		0517
	WRITE (K0.559)		0518
209	WRITE (K0.556)	LP9.PA9.AI(LP9).ASD(LP9).PP9(KP).EP9	0519
	T1 =	ABS(((PA9-PP9(KP))/PA9)*100.)	0520
	WRITE (K0,555)	T1	0521
	N = N+1		0522
	IF (N.LT.4) GO	TO 208	0523
	N = 0		0524
	WRITE (K0,559)		0525
208	WRITE (K0,556)	LP8,PA8,AI(LP8),ASD(LP8),PP8(KP),EP8	0526
	T1 =	ABS(((PA8-PP8(KP))/PA8)*100.)	0527
	WRITE (K0,555)	T1	0528
	N = N+1		0529
	IF (N.LT.4) GO	TO 207	0530
	N = 0		0531
	WRITE (K0,559)		0532
207	WRITE (K0,556)	LP7,PA7,AI(LP7),ASD(LP7),PP7(KP),EP7	0533
	T1 =	ABS(((PA7-PP7(KP))/PA7)*100.)	0534
	WRITE (K0,555)	T1	0535
	N = N+1		0536
	IF (N.LT.4) GO	TO 206	0537
	N = 0		0538
	WRITE (K0,559)		0539
206	WRITE (K0,556)	LP6,PA6,AI(LP6),ASD(LP6),PP6(KP),EP6	0540

	T1 =	ABS(((PA6-PP6(KP))/PA6)*100.)	0541
	WRITE (K0,555)	T1	0542
	N = N+1		0543
	IF (NaLT.4) GO	TO 205	0544
	N = 0		0545
	WRITE (K0.559)		0546
205	WRITE (K0.556)	LP5.PA5.AI(LP5).ASD(LP5).PP5(KP).EP5	0547
	T1 =	ABS(((PA5-PP5(KP))/PA5)*100.)	0548
	WRITE (K0.555)	T1	0549
	N = N+1		0550
	IF (N.LT.4) GO	TO 204	0551
	N = 0		0552
	WRITE (K0,559)		0553
204	WRITE (K0,556)	LP4,PA4,AI(LP4),ASD(LP4),PP4(KP),EP4	0554
	T1 =	ABS(((PA4-PP4(KP))/PA4)*100.)	0555
	WRITE (K0,555)	T1	0556
	N = N+1		0557
	IF (NoLT.4) GO	TO 203	0558
	N = 0		0559
	WRITE (K0,559)		0560
203	WRITE (K0,556)	LP3,PA3,AI(LP3),ASD(LP3),PP3(KP),EP3	0561
	T1 =	ABS(((PA3-PP3(KP))/PA3)*100.)	0562
	WRITE (K0,555)	T1	0563
	N = N+1		0564
	IF (N.LT.4) GO	TO 202	0565
	N = 0		0566
	WRITE (K0,559)		0567
202	WRITE (K0,556)	LP2,PA2,AI(LP2),ASD(LP2),PP2(KP),EP2	0568
	T1 =	ABS(((PA2-PP2(KP))/PA2)*100。)	0569
	WRITE (K0,555)	Τ1	0570
	N = N+1		0571
	IF (N.LT.4) GO	TO 201	0572
	N = 0		0573
	WRITE (K0,559)		0574
201	WRITE (K0,556)	LP1,PA1,AI(LP1),ASD(LP1),PP1(KP),EP1	0575
	T1 =	ABS(((PA1-PP1(KP))/PA1)*100.)	0576

WRITE (K0,555) T1	0577
547 FORMAT {///10X, MANEUVER: STEP RUDDER DEFLECTION AT T=0 //21X, MA	0578
1XIMUM DEFLECTION OF *, F4.1, * DEGREES*)	0579
548 FORMAT (///10X, * MANEUVER: ZIG-ZAG, WITH STEP RUDDER *, /21X, *DEFLECT	0580
110NS OF ',F4.1, DEGREES AT',/21X, TIME T=100 AND T=200 SECONDS')	0581
549 FORMAT (///10X, "MANEUVER: ZIG-ZAG, WITH SINUSDIDAL RUDDER ./20X."	0582
1 DEFLECTIONS OF PERIOD', F6, 1, ' SECONDS AND', /21X, 'MAXIMUM DEFLECTI	0583
20NS OF + F5+1+ DEGREES)	0584
550 FORMAT(///10X, SYSTEM: MARINER-CLASS SURFACE VESSEL*)	0585
552 FORMAT (///IOX, 'TRIAL PERIOD: ', I4, ' SECONDS')	0586
553 FORMAT (///10X, 'NDISE LEVEL: MEASUREMENT NOISE - ', 13, 18', //24X.	0587
1PROCESS NOISE - ', I3, '%')	0588
555 FORMAT (//8X, IDENTIFICATION WITHIN ', F5.2, '% OF THE TRUE VALUE.	0589
1')	0590
556 FORMAT(////8X, 'NP = ', I3, 5X, 'TRUE VALUE =', 2X, E13. 5//8X, 'SV =',	0591
12X,E13.5, + OR - *,E13.5//8X, FV = ,2X,E13.5, + OR - *,E13.	0592
25)	0593
557 FORMAT {1H1,////2X,"************************************	0594
1*************************************	0595
2 **,/2X,** PARAMETRIC IDENTIFICATION - EXTENDED KALMAN FILTE	0596
3R ***/2X***	0597
4* ° , / 2X ,	0598
558 FORMAT (////20X,"(NON-LINEAR MODEL)")	0599
559 FORMAT (*1*)	0600
566 FORMAT (///10X, TIME STEP: ',F3.1, SECONDS')	0601
562 FORMAT (///IOX, NUMBER OF PRIMARY STATE VARIABLES: 1,12)	0602
561 FORMAT (///10X, 'EXAGGERATED NOISE FACTOR: ', F5.1)	0603
563 FORMAT (///IOX, 'NUMBER OF COEFFICIENTS IDENTIFIED: ', 13)	0604
560 CONTINUE	0605
GO TO 1	0606
909 CONTINUE	0607
CALL ENDPLT(7.0,0.0,999)	0608
END	0609

.

.

 \mathcal{L}^{i}

SUBROUTINE SETUP(Q,R,LP,NO,SP,EHT,IST,ICV,A,AI,ASD,PMS,XHT,XBAR, 1HZ,ZERO)	0001 0002
	0003
SUBROUTINE SETUP ASSIGNS THE INITIAL VALUES TO MOST OF THE	0004
MATRICES USED IN THE IDENTIFICATION	0005
	0006
INTEGER SP	0007
DIMENSION ZERO(1)	8000
DOUBLE PRECISION IST(1),ICV(1),HZ(NO,SP)	0009
DOUBLE PRECISION Q(LF,LP),R(LP,LP),EHT(SP,SP),XHT(1),XBAR(1)	0010
DOUBLE PRECISION A(1),AI(1),ASD(1),PMS(1)	0011
DOUBLE PRECISION PW,QW	0012
COMMON /PRMI/ PA1,PA2,PA3,PA4,PA5,PA6,PA7,PA8,PA9,PA10,PA11,PA12	0013
COMMON /PRM2/ PA13,PA14,PA15,PA16,PA17,PA18,PA20,PA21,PA22,PA23	0014
COMMON /PRM3/ PA24,PA25,PA26,PA27,PA28,PA29,PA30,PA31,PA32,PA33	0015
COMMON /PRAM3/ LP17,LP18,LP19,LP20,LP21,LP22,LP23,LP24,LP25,LP26	0016
COMMON /PRAM4/ LP27,LP28,LP29,LP30,LP31,LP32,LP33,LP34,LP35,LP36	0017
CCMMON /PRAM2/ LP9,LP10,LP11,LP12,LP13,LP14,LP15,LP16	0018
COMMON /PRAM1/ LP1, LP2, LP3, LP4, LP5, LP6, LP7, LP8	0019
COMMON /EXAG/ PW,QW	0020
COMMON /PKI/ G	0021
COMMON /PRM4/ PA34,PA35,PA36	0022
	0023
******	0024
	0025
STORE THE TRUE VALUES OF THE COEFFICIENTS TO BE IDENTIFIED	0026
	0027
PA1 = A(LP1)	0028
PA2 = A(LP2)	0029
PA3 = A(LP3)	0030
PA4 = A(LP4)	0031
PA5 = A(LP5)	0032
PA6 = A(LP6)	0033
PA7 = A(LP7)	0034
PA8 = A(LP8)	0035
PA9 = A(LP9)	0036

С С С С С

00000

.

160

-

	PA10 = A(LP10)	0037
	PA11 = A(LP11)	0038
	PA12 = A(LP12)	0039
	PA13 = A(LP13)	0040
	PA14 = A(LP14)	0041
	PA15 = A(LP15)	0042
	PA16 = A(LP16)	0043
	PA17 = A(LP17)	0044
	PA18 = A(LP18)	0045
	PA19 = A(LP19)	0046
	PA20 = A(LP20)	0047
	PA21 = A(LP21)	0048
	PA22 = A(LP22)	0049
•	PA23 = A(LF23)	0050
	PA24 = A(LP24)	0051
	PA25 = A(LP25)	0052
	PA26 = A(LP26)	0053
	PA27 = A(LP27)	0054
	PA28 = A(LP28)	0055
	PA29 = A(LP29)	0056
	PA30 = A(LP30)	0057
	PA31 = A(LP31)	0058
	PA32 = A(LP32)	0059
	PA33 = A(LP33)	0060
	PA34 = A(LP34)	0061
	PA35 = A(LP35)	0062
	PA36 = A(LP36)	0063
		0064
	ASSIGN INITIAL STATE AND COEFFICIENT ESTIMATION VALUES TO THE \pm	0065
	EXTENDED STATE VECTOR	0066
		0067
	DO 20 I = 1, NO	0068
	XHT(I) = IST(I)	0069
20	CONTINUE	0070
	XHT(NO+1) = AI(LP1)	0071
	XHT(NO+2) = AI(LP2)	0072

с с с с с

XHT(NO+3) = AI(LP3)	0073
XHT(NO+4) = AI(LP4)	0074
XHT(NO+5) = AI(LP5)	0075
XHT(NO+6) = AI(LP6)	0076
XHT(ND+7) = AI(LP7)	0077
XHT(NO+8) = AI(LP8)	0078
XHT(NO+9) = AI(LP9)	0079
XHT(NO+10) = AI(LP10)	0080
XHT(NO+11) = AI(LP11)	0061
XHT(NO+12) = AI(LP12)	0082
XHT(NO+13) = AI(LP13)	0083
XHT(NO+14) = AI(LP14)	0084
XHT(NO+15) = AI(LP15)	0085
XHT(NO+16) = AI(LP16)	0086
XHT(NO+17) = AI(LP17)	0087
XHT(NO+18) = AI(LP18)	0088
XHT(NO+19) = AI(LP19)	0089
XHT(NO+20) = AI(LP20)	0090
XHT(NO+21) = AI(LP21)	0091
XHT(NO+22) = AI(LP22)	0092
XHT(NO+23) = AI(LP23)	0093
XHT(NO+24) = AI(LP24)	0094
XHT(NO+25) = AI(LP25)	0095
XHT(NO+26) = AI(LP26)	0096
XHT(NO+27) = AI(LP27)	0097
XHT(NO+28) = AI(LP28)	0098
XHT(NO+29) = AI(LP29)	0099
XHT(NO+30) = AI(LP30)	0100
XHT(NO+31) = AI(LP31)	0101
XHT(NO+32) = AI(LP32)	0102
XHT(NO+33) = AI(LP33)	0103
XHT(NO+34) = AI(LP34)	0104
XHT(NO+35) = AI(LP35)	0105
XHT(NO+36) = AI(LP36)	0106
	0107
INITIALIZE THE MEASUREMENT FUNCTION	0108

C C

162

D0 4 N1 = 1,N0 0110 D0 5 M1 = 1,SP 0112 5 CONTINUE 0113 4 CONTINUE 0114 D0 3 N1 = 1,N0 0115 HZ(N1,N1) = 1,00 0116 D0 91 N = 1,SP 0117 D0 91 N = 1,SP 0118 XBAR(N) = 0,D0 0119 91 CONTINUE 002 D0 300 II = 1,47 012 2ERO(II) = 0.0 0122 300 CONTINUE 0122 C 0123 C 0124 C 0125 C 00 7 N1 = 1,SP 0126 D0 7 N1 = 1,SP 0126 C 0126 D0 7 N1 = 1,SP 0126 C 0127 D0 6 Mi = 1,SP 0127 D0 6 Mi = 1,SP 0127 D0 7 CONTINUE 0128 C 0128 C 0129 6 CONTINUE 0120 7 CONTINUE 0120 7 CONTINUE 0120 7 CONTINUE 0130 D0 21 I = 1,N0 0127 D1 21 = 1,N0 0127 21 CONTINUE 0131 D0 21 I = 1,N0 0139 EHT(N2,N0+2) = ASD(LP1)*2 0136 EHT(N0+4,N0+4) = ASD(LP1)*2 0137 EHT(N0+6,N0+6) = ASD(LP1)*2 0139 EHT(N0+6,N0+6) = ASD(LP1)*2 0139 EHT(N0+7,N0+7) = ASD(LP1)*2 0139 EHT(N0+6,N0+6) = ASD(LP1)*2 0139 EHT(N0+6,N0+6) = ASD(LP1)*2 0139 EHT(N0+6,N0+6) = ASD(LP1)*2 0141 EHT(N0+6,N0+6) = ASD(LP1)*2 0144	С		0109
D0 5 M1 = 1,SP HZ(N1,M1) = 0.D0 5 CONTINUE 00 3 N1 = 1.N0 HZ(N1,N1) = 1.N0 HZ(N1,N1) = 1.D0 3 CONTINUE 00 91 N = 1,SP XBAR(N) = 0.D0 DC 300 II = 1,47 ZER0(II) = 0.0 300 CONTINUE C INITIALIZE THE ERROR COVARIANCE MATRIX C D0 7 N1 = 1,SP D0 6 Mi = 1,SP 0126 EHT(N1,M1) = 0.D0 6 CONTINUE 0127 0128 C D0 7 N1 = 1,SP 0128 EHT(N1,M1) = 0.D0 1029 1020 CONTINUE 0129 1020 CONTINUE 0120 1130 0120		DO 4 N1 = 1 + NO	0110
HZ(N1,M1) = 0.D0 0112 S CONTINUE 0113 4 CONTINUE 0114 D0 3 N1 = 1,N0 0115 HZ(N1,N1) = 1.00 0116 3 CONTINUE 0117 D0 91 N = 1,SP 0118 xBAR(N) = 0.00 0119 91 CONTINUE 0120 D0 300 II = 1,47 0121 ZER0(II) = 0.0 0123 300 CONTINUE 0123 C INITIALIZE THE ERROR COVARIANCE MATRIX 0125 C 00 7 N1 = 1, SP 0126 D0 6 Mi = 1, SP 0127 0128 EHT(N1,M1) = 0.D0 0129 0120 6 CONTINUE 0130 0127 D0 2 1 I = 1, N0 0131 0120 C EHT(N1,M1) = 0.D0 0132 0132 C CONTINUE 0133 0128 C EHT(N1,M1) = 1.SP 0131 0132 D0 21 I = 1,N0 0132 0133 C ENTINUE 0133 0132 C CONTINUE 0133 0132 C ENTINUE 0133 0132 C ENTINUE 013		DO 5 M1 = 1, SP	0111
5 CONTINUE 0113 4 CONTINUE 0114 D0 3 N1 = 1,ND 0115 HZ(N1,N1) = 1.0D 0116 3 CONTINUE 0117 D0 91 N = 1,SP 0118 XBAR(N) = 0.0D 0119 91 CONTINUE 0120 D0 3 00 II = 1,47 0121 ZERO(II) = 0.0 0122 300 CONTINUE 0122 C 017 NI = 1,SP C 017 NI = 1,SP D0 6 Mi = 1,SP 0126 D0 6 Mi = 1,SP 0127 D0 6 Mi = 1,SP 0126 C 017 N1 = 1,SP D0 6 Mi = 1,SP 0127 D0 6 II = 1,NO 0129 GUTINUE 0130 O 21 I = 1,NO 0132 EHT(IN,H) = ASD(LP1)**2 0133 21 CONTINUE 0133		HZ(N1,M1) = 0.D0	0112
4 CONTINUE 0114 D0 3 N1 = 1,N0 0115 HZ(N1,N1) = 1,D0 0116 3 CONTINUE 0117 D0 91 N = 1,SP 0118 XBAR(N) = 0.00 0119 91 CONTINUE 0120 D0 300 II = 1,47 0121 ZEP0111 = 0.0 0123 300 CONTINUE 0124 C 0125 C 0126 D0 7 N1 = 1,SP 0125 C 0126 D0 7 N1 = 1,SP 0127 D0 6 Mi = 1,SP 0128 EHT(N1,M1) = 0.00 0128 EHT(N1,M1) = 0.00 0129 0 6 CONTINUE 0130 7 CONTINUE 0131 D0 21 I = 1,N0 0128 EHT(N1,H1) = 1CV(I) 0133 21 CONTINUE 0133 21 CONTINUE </td <td>5</td> <td>5 CONTINUE</td> <td>0113</td>	5	5 CONTINUE	0113
D0 3 N1 = 1,N0 0115 HZ(N1,N1) = 1.00 0116 3 CONTINUE 0117 D0 91 N = 1,SP 0120 D0 01 N = 0.00 0119 91 CONTINUE 0120 D0 300 II = 1,47 0121 ZERO(II) = 0.0 0123 300 CONTINUE 0123 C 017 NI = 1,5P C 017 NI = 1,SP D0 6 Mi = 1,SP 0127 D0 6 Mi = 1,SP 0128 C 0128 C MTINUE 0129 6 CONTINUE 0129 6 CONTINUE 0129 6 CONTINUE 0120 00 21 I = 1,N0 0129 6 CONTINUE 0131 00 21 I = 1,N0 0132 C EHT(N1,N0+1) = ASD(LP1)**2 0134 EHT(N0+2,N0+2) = ASD(LP2)**2 0135 EHT(N0+4,N0+4) = ASD(LP1)**2 0136 EHT(N0+4,N0+4) = ASD(LP3)**2 0137 EHT(N0+5,N0+5) = ASD(LP5)**2 0138 EHT(N0+5,N0+5) = ASD(LP5)**2 0139 EHT(N0+6,N0+6) = ASD(LP6)**2 0140 EHT(N0+7,N0+7) = ASD(LP3)**2	4	4 CONTINUE	0114
HZ(N1,N1) = 1,00 0116 3 CONTINUE 0117 D0 91 N = 1,5P 0118 XBAR(N) = 0.00 0119 91 CONTINUE 0120 D0 300 II = 1,47 0121 ZERO(11) = 0.0 0122 300 CONTINUE 0123 C INITIALIZE THE ERROR COVARIANCE MATRIX 0125 C 00 7 N1 = 1,5P 0126 D0 6 Mi = 1,5P 0127 D0 6 Mi = 1,5P 0126 D0 7 N1 = 1,5P 0126 D0 7 N1 = 1,5P 0127 D0 6 Mi = 1,5P 0127 D0 6 Mi = 1,5P 0128 EHT(N1,M1) = 0.DO 0129 6 CONTINUE 0130 D0 21 I = 1,NO 0129 6 CONTINUE 0131 D0 21 I = 1,NO 0132 21 CGNTINUE 0133 21 CGNTINUE 0133 21 CGNTINUE 0133 21 CGNTINUE 0134 EHT(N04,N044) = ASD(LP1)**2 0135 EHT(N04,N044) = ASD(LP3)**2 0136 EHT(N04,N044) = ASD(LP4)**2 0138 EHT(N04,		DO 3 N1 = 1, NO	0115
3 CONTINUE 0117 D0 91 N = 1, SP 0118 D0 91 N = 0.00 0119 91 CONTINUE 0120 D0 300 II = 1,47 0121 ZEP0(II) = 0.0 0123 300 CONTINUE 0124 C INITIALIZE THE ERROR COVARIANCE MATRIX 0125 C 00 7 NI = 1, SP 0127 D0 6 Mi = 1, SP 0127 D0 6 Mi = 1, SP 0127 D0 6 Mi = 1, SP 0128 C CONTINUE 0129 6 CONTINUE 0130 7 CONTINUE 0132 0 2 1 I = 1, NO 0132 2 EHT(IN, M1) = 0.00 0132 C TITINUE 0133 21 CONTINUE 0133 21 CONTINUE 0133 21 CONTINUE 0133 21 CONTINUE 0134 EHT(NO+1, NO+1) = ASD(LP1)**2 0135 EHT(NO+2, NO+2) = ASD(LP2)**2 0136 EHT(NO+4, NO+4) = ASD(LP4)**2 0138 EHT(NO+5, NO+5) = ASD(LP5)**2 0139 EHT(NO+6, NO+6) = ASD(LP6)**2 0140 EHT(NO+6, NO+6) = ASD(LP6)**2 <t< td=""><td></td><td>HZ(N1,N1) = 1,00</td><td>0116</td></t<>		HZ(N1,N1) = 1,00	0116
D0 91 N = 1, SP 0168 XBAR(N) = 0.00 0119 91 CONTINUE 0120 D0 300 II = 1,47 0121 ZERO(II) = 0.0 0122 300 CONTINUE 0123 C 0124 C INITIALIZE THE ERROR COVARIANCE MATRIX 0125 C 0127 D0 6 Mi = 1, SP 0127 D0 6 Mi = 1, SP 0128 EHT(N1,M1) = 0.D0 0129 6 CONTINUE 0130 T CONTINUE 0130 D0 21 I = 1,N0 0132 EHT(N0+1,N0+1) = ASD(LP1)**2 0133 21 CONTINUE 0133 21 CONTINUE 0133 21 CONTINUE 0134 EHT(N0+1,N0+1) = ASD(LP1)**2 0135 EHT(N0+4,N0+4) = ASD(LP3)**2 0136 EHT(N0+6,N0+6) = ASD(LP3)**2 0139 EHT(N0+6,N0+6) = ASD(LP7)**2 0140 EHT(N0+6,N0+6) = ASD(LP8)**2 0142 EHT(N0+8,N0+8) = ASD(LP8)**2 0142	3	B CONTINUE	0117
XBAR(N) = 0.00 0119 91 CONTINUE 0120 D0 300 I I = 1.47 0121 ZER0III) = 0.0 0123 300 CONTINUE 0123 C INITIALIZE THE ERROR COVARIANCE MATRIX 0125 C 00 7 N1 = 1.5P 0127 D0 6 Mi = 1.5P 0128 EHT(N1,H1) = 0.00 0129 6 CONTINUE 0130 7 CONTINUE 0130 0 21 I = 1.NO 0131 D0 21 I = 1.NO 0132 21 CONTINUE 0133 21 CONTINUE 0132 21 CONTINUE 0133 21 CONTINUE 0134 D0 21 I = 1.NO 0132 21 CONTINUE 0133 21 CONTINUE 0134 EHT(N0+1.NO+1) = ASD(LP1)**2 0135 EHT(NO+3.NO+3) = ASD(LP2)**2 0136 EHT(NO+4.NO+4) = ASD(LP3)**2 0137 EHT(NO+6.NO+5) = ASD(LP4)**2 0138 EHT(NO+6.NO+6) = ASD(LP5)**2 0139 EHT(NO+6.NO+6) = ASD(LP6)**2 0140 EHT(NO+8.NO+8) = ASD(LP6)**2 0141 EHT(NO+8.NO+8) = ASD(L		DO 91 N = 1, SP	0118
91 CONTINUE 0120 DD 300 II = 1,47 0121 ZER0(II) = 0.0 0123 300 CONTINUE 0124 C INITIALIZE THE ERROR COVARIANCE MATRIX 0125 C 00 7 N1 = 1, SP 0127 D0 6 Mi = 1, SP 0128 EHT(N1,M1) = 0.D0 0129 0 6 CONTINUE 0131 D0 7 CONTINUE 0132 1 CONTINUE 0131 D0 21 I = 1,NO 0132 21 CONTINUE 0133 21 CONTINUE 0134 EHT(N0+1,N0+1) = ASD(LP1)**2 0135 EHT(N0+2,N0+2) = ASD(LP2)**2 0136 EHT(N0+3,N0+3) = ASD(LP1)**2 0137 EHT(N0+4,N0+4) = ASD(LP4)**2 0138 EHT(N0+6,N0+6) = ASD(LP5)**2 0139 EHT(N0+6,N0+6) = ASD(LP6)**2 0140 EHT(N0+6,N0+6) = ASD(LP6)**2 0141 EHT(N0+8,N0+8) = ASD(LP8)**2 0141		XBAR(N) = 0.00	0119
DC 300 II = 1,47 0121 ZER0(11) = 0.0 0122 300 CONTINUE 0123 C 0124 C 0125 D0 7 N1 = 1, SP 0126 D0 7 N1 = 1, SP 0127 D0 6 Mi = 1, SP 0128 EHT (N1, M1) = 0.D0 0129 6 CONTINUE 0130 7 CONTINUE 0131 D0 21 I = 1, NO 0132 C CONTINUE 0131 D0 21 I = 1, NO 0132 C CONTINUE 0131 D0 21 I = 1, NO 0132 EHT (N, H) = ASD(LP1)**2 0133 EHT (NO+1, ND+1) = ASD(LP1)**2 0134 EHT (NO+3, NO+3) = ASD(LP2)**2 0135 EHT (NO+3, NO+3) = ASD(LP2)**2 0136 EHT (NO+4, NO+4) = ASD(LP4)**2 0138 EHT (NO+4, NO+4) = ASD(LP4)**2 0139 EHT (NO+5, NO+5) = ASD(LP5)**2 0139 EHT (NO+6, NO+6) = ASD(LP6)**2 0142 EHT (NO+6, NO+6) = ASD(LP6)**2 0142 EHT (NO+8, NO+8) = ASD(LP8)**2 0142	91	L CONTINUE	0120
ZERO(11) = 0.0 0122 300 CONTINUE 0124 C INITIALIZE THE ERROR COVARIANCE MATRIX 0125 C 00 7 N1 = 1, SP 0127 D0 6 Mi = 1, SP 0127 D0 6 Mi = 1, SP 0128 EHT(N1,M1) = 0.D0 0129 6 CONTINUE 0130 D0 21 I = 1,NO 0131 D0 21 I = 1,NO 0132 EHT(N0+1,ND+1) = ASD(LP1)**2 0134 EHT(NO+1,ND+1) = ASD(LP1)**2 0135 EHT(NO+3,NO+3) = ASD(LP2)**2 0136 EHT(NO+4,NO+4) = ASD(LP4)**2 0138 EHT(NO+5,NO+5) = ASD(LP5)**2 0139 EHT(NO+5,NO+5) = ASD(LP6)**2 0139 EHT(NO+6,NO+6) = ASD(LP6)**2 0139 EHT(NO+7,NO+7) = ASD(LP7)**2 0141 EHT(NO+8,NO+8) = ASD(LP8)**2 0142		DO 300 II = 1,47	0121
300 CONTINUE 0123 C INITIALIZE THE ERROR COVARIANCE MATRIX 0126 C 010 7 N1 = 1, SP 0126 D0 7 N1 = 1, SP 0127 D0 6 Mi = 1, SP 0128 EHT(N1,M1) = 0.D0 0129 6 CONTINUE 0130 7 CONTINUE 0131 D0 21 I = 1, NO 0132 EHT(I,I) = ICV(I) 0133 21 CONTINUE 0134 EHT(N0+2,N0+1) = ASD(LP1)**2 0135 EHT(N0+3,N0+3) = ASD(LP2)**2 0136 EHT(N0+4,N0+4) = ASD(LP4)**2 0138 EHT(N0+5,N0+5) = ASD(LP6)**2 0139 EHT(N0+7,N0+7) = ASD(LP6)**2 0139 EHT(N0+7,N0+7) = ASD(LP6)**2 0140 EHT(N0+6,N0+6) = ASD(LP6)**2 0140 EHT(N0+7,N0+7) = ASD(LP6)**2 0141 EHT(N0+8,N0+8) = ASD(LP8)**2 0142		2ERO(11) = 0.0	0122
C INITIALIZE THE ERROR COVARIANCE MATRIX 0124 C 0126 0127 D0 7 N1 = 1, SP 0127 D0 6 Mi = 1, SP 0128 EHT(N1,M1) = 0.D0 0129 6 CONTINUE 0130 7 CONTINUE 0131 D0 21 I = 1, NO 0132 EHT(I,I) = ICV(I) 0133 21 CGNTINUE 0134 EHT(N0+1,NO+1) = ASD(LP1)**2 0135 EHT(N0+2,NO+2) = ASD(LP2)**2 0136 EHT(N0+3,NO+3) = ASD(LP3)**2 0137 EHT(N0+4,NO+4) = ASD(LP4)**2 0138 EHT(N0+5,NO+5) = ASD(LP6)**2 0139 EHT(N0+6,NO+6) = ASD(LP6)**2 0139 EHT(N0+6,NO+7) = ASD(LP6)**2 0140 EHT(N0+8,NO+8) = ASD(LP8)**2 0142	300) CONTINUE	0123
C INITIALIZE THE ERROR COVARIANCE MATRIX 0125 C 0127 0126 D0 7 N1 = 1, SP 0127 D0 6 Mi = 1, SP 0128 EHT(N1,M1) = 0.D0 0129 6 CONTINUE 0130 7 CONTINUE 0131 D0 21 I = 1,NO 0132 EHT(I,I) = ICV(I) 0133 21 CGNTINUE 0133 EHT(N0+1,ND+1) = ASD(LP1)**2 0136 EHT(N0+2,NO+2) = ASD(LP2)**2 0136 EHT(N0+4,ND+4) = ASD(LP3)**2 0137 EHT(N0+4,NO+4) = ASD(LP3)**2 0138 EHT(N0+5,NO+5) = ASD(LP5)**2 0139 EHT(N0+6,NO+6) = ASD(LP6)**2 0140 EHT(N0+6,NO+6) = ASD(LP6)**2 0141 EHT(N0+8,NO+8) = ASD(LP8)**2 0142	С		0124
C 0126 D0 7 N1 = 1, SP 0127 D0 6 Mi = 1, SP 0128 EHT(N1,M1) = 0.D0 0129 6 CONTINUE 0130 7 CONTINUE 0131 D0 21 I = 1, NO 0132 EHT(I,I) = ICV(I) 0133 21 CGNTINUE 0134 EHT(ND+1,ND+1) = ASD(LP1)**2 0135 EHT(ND+2,ND+2) = ASD(LP2)**2 0136 EHT(ND+4,ND+4) = ASD(LP3)**2 0137 EHT(ND+4,ND+4) = ASD(LP4)**2 0138 EHT(ND+5,ND+5) = ASD(LP5)**2 0139 EHT(ND+6,ND+6) = ASD(LP6)**2 0149 EHT(ND+7,ND+7) = ASD(LP7)**2 0141 EHT(ND+8,ND+8) = ASD(LP8)**2 0142	C	INITIALIZE THE ERROR COVARIANCE MATRIX	0125
D0 7 N1 = 1, SP 0127 D0 6 Mi = 1, SP 0128 EHT(N1, M1) = 0.D0 0129 6 CONTINUE 0130 7 CONTINUE 0131 D0 21 I = 1, NO 0132 EHT(I,I) = ICV(I) 0133 21 CONTINUE 0135 EHT(ND+1,ND+1) = ASD(LP1)**2 0135 EHT(ND+2,ND+2) = ASD(LP2)**2 0136 EHT(ND+3,ND+3) = ASD(LP3)**2 0137 EHT(ND+6,ND+6) = ASD(LP4)**2 0138 EHT(ND+6,ND+6) = ASD(LP6)**2 0140 EHT(ND+7,NO+7) = ASD(LP7)**2 0141 EHT(ND+8,NO+8) = ASD(LP8)**2 0142	C		0126
D0 6 Mi = 1, SP 0128 EHT (N1, M1) = 0.D0 0129 6 CONTINUE 0130 7 CONTINUE 0131 D0 21 I = 1, NO 0132 EHT (I, I) = ICV(I) 0133 21 CONTINUE 0133 21 CONTINUE 0133 21 CONTINUE 0134 EHT (N0+1, N0+1) = ASD(LP1)**2 0135 EHT (N0+2, N0+2) = ASD(LP2)**2 0135 EHT (N0+3, N0+3) = ASD(LP3)**2 0137 EHT (N0+4, N0+4) = ASD(LP4)**2 0138 EHT (N0+5, N0+5) = ASD(LP5)**2 0139 EHT (N0+6, N0+6) = ASD(LP6)**2 0140 EHT (N0+7, N0+7) = ASD(LP7)**2 0141 EHT (N0+8, N0+8) = ASD(LP8)**2 0142		DO 7 N1 = 1, SP	0127
EHT (N1, M1) = 0.D0 0129 6 CONTINUE 0130 7 CONTINUE 0131 D0 21 I = 1,N0 0132 EHT (I,I) = ICV(I) 0133 21 CONTINUE 0134 EHT (ND+1,ND+1) = ASD(LP1)**2 0135 EHT (ND+2,ND+2) = ASD(LP2)**2 0136 EHT (ND+3,ND+3) = ASD(LP3)**2 0137 EHT (ND+4,ND+4) = ASD(LP4)**2 0138 EHT (ND+5,ND+5) = ASD(LP4)**2 0139 EHT (ND+6,ND+6) = ASD(LP6)**2 0140 EHT (ND+7,NO+7) = ASD(LP7)**2 0141 EHT (ND+8,NO+8) = ASD(LP8)**2 0142		DO 6 Mi = 1, SP	0128
6 CONTINUE 0130 7 CONTINUE 0131 D0 21 I = 1,N0 0132 • EHT(I,I) = ICV(I) 0133 21 CONTINUE 0134 EHT(ND+1,ND+1) = ASD(LP1)**2 0135 EHT(ND+2,ND+2) = ASD(LP2)**2 0136 EHT(ND+3,ND+3) = ASD(LP3)**2 0137 EHT(ND+4,ND+4) = ASD(LP4)**2 0138 EHT(ND+5,ND+5) = ASD(LP5)**2 0139 EHT(ND+6,ND+6) = ASD(LP6)**2 0140 EHT(ND+7,NO+7) = ASD(LP7)**2 0141 EHT(ND+8,NO+8) = ASD(LP8)**2 0142		EHT(N1, M1) = 0.00	0129
7 CONTINUE 0131 D0 21 I = 1,N0 0132 EHT(I,I) = ICV(I) 0133 0133 21 CGNTINUE 0134 EHT(N0+1,N0+1) = ASD(LP1)**2 0135 0135 EHT(N0+2,N0+2) = ASD(LP2)**2 0136 0137 EHT(N0+3,N0+3) = ASD(LP3)**2 0137 0138 EHT(N0+4,N0+4) = ASD(LP4)**2 0138 0139 EHT(N0+5,N0+5) = ASD(LP6)**2 0139 0140 EHT(N0+6,N0+6) = ASD(LP6)**2 0140 0141 EHT(N0+8,N0+8) = ASD(LP8)**2 0142 0142	6	5 CONTINUE	0130
D0 21 I = 1,N0 0132 EHT(I,I) = ICV(I) 0133 21 CONTINUE 0134 EHT(N0+1,N0+1) = ASD(LP1)**2 0135 EHT(N0+2,N0+2) = ASD(LP2)**2 0136 EHT(N0+3,N0+3) = ASD(LP3)**2 0137 EHT(N0+4,N0+4) = ASD(LP4)**2 0138 EHT(N0+5,N0+5) = ASD(LP5)**2 0139 EHT(N0+6,N0+6) = ASD(LP6)**2 0140 EHT(N0+7,N0+7) = ASD(LP7)**2 0141 EHT(N0+8,N0+8) = ASD(LP8)**2 0142	7	7 CONTINUE	0131
EHT(I,I) = ICV(I) 0133 21 CGNTINUE 0134 EHT(N0+1,N0+1) = ASD(LP1)**2 0135 EHT(N0+2,N0+2) = ASD(LP2)**2 0136 EHT(N0+3,N0+3) = ASD(LP3)**2 0137 EHT(N0+4,N0+4) = ASD(LP4)**2 0138 EHT(N0+6,N0+6) = ASD(LP5)**2 0139 EHT(N0+6,N0+6) = ASD(LP6)**2 0140 EHT(N0+7,N0+7) = ASD(LP7)**2 0141 EHT(N0+8,N0+8) = ASD(LP8)**2 0142		DO 21 I = 1, NO	0132
21 CONTINUE 0134 EHT(N0+1,N0+1) = ASD(LP1)**2 0135 EHT(N0+2,N0+2) = ASD(LP2)**2 0136 EHT(N0+3,N0+3) = ASD(LP3)**2 0137 EHT(N0+4,N0+4) = ASD(LP4)**2 0138 EHT(N0+5,N0+5) = ASD(LP5)**2 0139 EHT(N0+6,N0+6) = ASD(LP6)**2 0140 EHT(N0+7,N0+7) = ASD(LP7)**2 0141 EHT(N0+8,N0+8) = ASD(LP8)**2 0142	-	$EHT(I_{9}I) = ICV(I)$	0133
EHT(N0+1,N0+1) = ASD(LP1)**2 0135 EHT(N0+2,N0+2) = ASD(LP2)**2 0136 EHT(N0+3,N0+3) = ASD(LP3)**2 0137 EHT(N0+4,N0+4) = ASD(LP4)**2 0138 EHT(N0+5,N0+5) = ASD(LP5)**2 0139 EHT(N0+6,N0+6) = ASD(LP6)**2 0140 EHT(N0+7,N0+7) = ASD(LP7)**2 0141 EHT(N0+8,N0+8) = ASD(LP8)**2 0142	21	L CONTINUE	0134
EHT(N0+2,N0+2) = ASD(LP2)**2 0136 EHT(N0+3,N0+3) = ASD(LP3)**2 0137 EHT(N0+4,N0+4) = ASD(LP4)**2 0138 EHT(N0+5,N0+5) = ASD(LP5)**2 0139 EHT(N0+6,N0+6) = ASD(LP6)**2 0140 EHT(N0+7,N0+7) = ASD(LP7)**2 0141 EHT(N0+8,N0+8) = ASD(LP8)**2 0142		EHT(NO+1,NO+1) = ASD(LP1) * *2	0135
EHT(ND+3,ND+3) = ASD(LP3)**2 0137 EHT(ND+4,ND+4) = ASD(LP4)**2 0138 EHT(ND+5,ND+5) = ASD(LP5)**2 0139 EHT(ND+6,ND+6) = ASD(LP6)**2 0140 EHT(ND+7,NO+7) = ASD(LP7)**2 0141 EHT(ND+8,NO+8) = ASD(LP8)**2 0142		EHT(N0+2,N0+2) = ASD(LP2)**2	0136
EHT(N0+4,N0+4) = ASD(LP4)**2 0138 EHT(N0+5,N0+5) = ASD(LP5)**2 0139 EHT(N0+6,N0+6) = ASD(LP6)**2 0140 EHT(N0+7,N0+7) = ASD(LP7)**2 0141 EHT(N0+8,N0+8) = ASD(LP8)**2 0142		EHT(NO+3,NO+3) = ASD(LP3)**2	0137
EHT(ND+5,ND+5) = ASD(LP5)**2 0139 EHT(ND+6,ND+6) = ASD(LP6)**2 0140 EHT(ND+7,ND+7) = ASD(LP7)**2 0141 EHT(ND+8,ND+8) = ASD(LP8)**2 0142		EHT(NO+4,NO+4) = ASD(LP4) * * 2	0138
EHT(N0+6,N0+6) = ASD(LP6)**2 0140 EHT(N0+7,N0+7) = ASD(LP7)**2 0141 EHT(N0+8,N0+8) = ASD(LP8)**2 0142		EHT(N0+5,N0+5) = ASD(L05)**2	0139
EHT(NO+7,NO+7) = ASD(LP7)**2 EHT(NO+8,NO+8) = ASD(LP8)**2 0142		EHT(NO+6,NO+6) = ASD(LP6)**2	0140
EHT(NO+8, NO+8) = ASD(LP8)**2 0142		EHT(NO+7,NO+7) = ASD(LP7)**2	0141
		EHT(NO+8,NO+8) = ASD(LP8)**2	0142
EHT(NO+9,NO+9) = ASD(LP9)**2 0143		EHT(N0+9,N0+9) = ASD(LP9)**2	0143
EHT(NO+10,NO+10) = ASD(LP10)**2 0144		EHT(NO+10,NO+10) = ASD(LP10)**2	0144

```
EHT(NO+11,NO+11) = ASD(LP11) **2
 EHT(NO+12,NO+12) = ASD(LP12)**2
 EHT(NO+13,NO+13) = ASD(LP13) **2
 EHT(N0+14.N0+14) = ASD(LP14)**2
 EHT(NO+15,NO+15) = ASD(LP15) **2
 EHT(NO+16,NO+16) = ASD(LP16)**2
 EHT(NO+17,NO+17) = ASD(LP17)**2
 EHT(NO+18,NO+18) = ASD(LP18)**2
 EHT(NO+19,NO+19) = ASD(LP19)**2
 EHT(NO+20,NO+20) = ASD(LP20) = *2
 EHT(NO+21,NO+21) = ASD(LP21)**2
  EHT(NO+22,NO+22) = ASD(LP22)**2
 EHT(NO+23,NO+23) = ASD(LP23)**2
  EHT(NO+24, NO+24) = ASD(LP24) **2
 EHT(NO+25,NO+25) = ASD(LP25) **2
 EHT(NO+26,NO+26) = ASD(LP26)**2
  EHT(NO+27,NO+27) = ASD(LP27) **2
  EHT(NO+28,NO+28) = ASD(LP28)**2
  EHT(NO+29,NO+29) = ASD(LP29) **2
  EHT(NO+30,NO+30) = ASD(LP30)**2
  EHT(NO+31,NO+31) = ASD(LP31)**2
  EHT(NO+32,NO+32) = ASD(LP32)**2
 EHT(NO+33,NO+33) = ASD(LP33)**2
  EHT(NO+34,NO+34) = ASD(LP34) **2
  EHT(NO+35,NO+35) = ASD(LP35)**2
  EHT(NO+36,NO+36) = ASD(LP36) **2
  SET EXAGERATED NOISE PARAMETERS
  DO 1 N1 = 1, LP
  DO 2 MI = 1.LP
 Q(N1,M1) = 0.00
  R(N1, M1) = 0.00
2 CONTINUE
1 CONTINUE
  D0.55 IR = 1, N0
```

0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0173 0174 0175 0176 0176 0177 0178 0179 0180

С С С

164

IA = IR+2*NO	0181
IV = IA + NO	0182
Q(IR,IR) = QW*PMS(IA)**2	0183
R(IR, IR) = PW*PMS(IV)**2	0184
55 CONTINUE	0185
RETURN	0186
END	0187

.

.

•

	SUBROUTINE RKL(H,TI,XVI,XRI,XPSI,XVDI,N,A,ZV,ZR,ZPS,ZVD,US,DUS,TS,	0001
	IIN, P, WN, VN, NO, V)	0002
С		0003
C	SUBROUTINE RKL GENERATES THE NOISY SEA TRIAL DATA USED FOR THE	0004
С	IDENTIFICATION BY THE KALMAN FILTERTHE EQUATIONS OF MOTION ARE	0005
C	USED TO GENERATE MOTION TRAJECTORIES WITH A SPECIFIED LEVEL OF	0006
С	NOISEUSING THE RUNGE-KUTTA 4TH ORDER INTEGRATION TECHNIQUE,	0007
С	THE VALUES OF THE STATE VARIABLES AS A FUNCTION OF TIME ARE	0008
С	RETURNED TO THE CALLING PROGRAM	0009
С		0010
	INTEGER SP	0011
	DIMENSION IN(1)	0012
	DOUBLE PRECISION U,UD,DUD,US(1),DUS(1)	0013
	DOUBLE PRECISION H.HM.T.TI.TM.TN.TS(1)	0014
	DOUBLE PRECISION WL,VL,WN(1),VN(1)	0015
	DOUBLE PRECISION V(376)	0016
	DOUBLE PRECISION P(1),A(1)	0017
	DOUBLE PRECISION ZV(1),ZR(1),ZPS(1),ZVD(1)	0018
	DOUBLE PRECISION FNLV, FNLR	0019
	DOUBLE PRECISION DV, DR	0020
	DOUBLE PRECISION ZZ1,ZZ2	0021
	DOUBLE PRECISION XVI, XRI, XPSI, XVDI	0022
	DOUBLE PRECISION XV,XR,XPS,XVD	0023
	DOUBLE PRECISION YV1, YV2, YV3, YV4	0024
	DOUBLE PRECISION YR1, YR2, YR3, YR4	0025
	DOUBLE PRECISION YPS1,YPS2,YPS3,YPS4	0026
	DOUBLE PRECISION YVD1, YVD2, YVD3, YVD4	0027
	DOUBLE PRECISION XVN, XRN, XPSN, XVDN	0028
	DOUBLE PRECISION YV1N,YV2N,YV3N,YV4N	0029
	DOUBLE PRECISION YRIN, YR2N, YR3N, YR4N	0030
	DOUBLE PRECISION YPS1N, YPS2N, YPS3N, YPS4N	0031
	DOUBLE PRECISION YVD1N,YVD2N,YVD3N,YVD4N	0032
	DOUBLE PRECISION DSIN, DCOS	0033
-	CUMMJN /PKI/ G	0034
C		0035
С	*****	0036

-12

С			0037
С		INITIALIZE THE STATE VARIABLES AND THE TIME INCREMENT USED IN THE	0038
С		INTEGRATION	0039
С			0040
		T = TI	0041
		XV = XVI	0042
		XR = XRI	0043
		XPS = XPSI	0044
		XVD = XVDT	0045
		XVN = XVI	0046
		XRN = XRI	0047
		XPSN = XPSI	0048
		XVDN = XVDT	0049
			0050
		NVAP = NO	0051
c			0052
ř		START THE INTEGRATION LCOP, ONE CIRCUIT PER TIME STEP	0053
ř		START THE INTERMETOR COTY ONE STRUCTT FER THE STEP	0054
C		DD = 300 II = 1.0	0055
		55 550 13 - 1914 TN - TAUM	0056
			0057
		HD = H(T)	0058
		$u_{1}(1) - u_{2}$	0059
		OS(13) = OD	0060
r			0061
ĉ		CENEDATE THE CANCELAN DROCESS NOTES FOR EACH STATE VARIARIE IN	0001
č		THE INITIAL DUACE OF THE TIME STED	0063
č		THE INITIAL PHASE OF THE TIME STEP	0003
C		00 222 TVA0 - 1 NVAD	0004
		$\frac{\partial U}{\partial x} = \frac{1}{2} \frac{\partial V}{\partial x} + \frac{1}{2$	0066
		LALL WINDAINSPITVARINVARINULI LALLTVARI - LI	0000
	222		0001
~	222	CUNITNUE	0000
			0009
		UALUULATE THE NUISELESS STATE VARIABLES AT THE STAKE UP THE TIME	0070
С С		INCKEMENT, AT TIME I	0071
C			0072

		DV = FNLV(XV, XR, UD, A)	0073
		DR = FNLR(XV, XR, UD, A)	0074
		YV1 = H*DV	0075
		YR1 = H * DR	0076
		YPS1 = H * XR	0077
		VV01 = DV	0078
c			0079
č		CALCULATE THE NOISY STATE VARIABLES AT TIME T FOR GENERATING THE	0080
ř		ACTHAL NOTSY DATA FOD THIS TIME INCREMENT	0081
č		ACTUAL NUIST DATA FUR HHIS THE INCREMENT	0001
C		$M(t, t) = -it \hat{w} (t) (t, t) (t, t) $	0082
		$YVIN = H^{*}(DV + G^{*}WN(1))$. 0084
		YRIN = H*(UK+G*WN(2))	0005
		$YPSIN = H^{*}(XR + G^{*}WN(3))$	0085
		YVDIN = DV+G*WN(4)	0085
		$ZZ1 = XV+C \cdot 5 * YV1$	1800
		$Z_{2}^{2} = XR + 0.5 * YR1$	8800
		JO = U(TM)	0089
С			0090
С		GENERATE NEW PROCESS NOISE FOR THE SECOND PHASE OF THE INTEGRATION	0091
С			0092
		DO 335 IVAR = 1, NVAR	0093
		CALL WNO(IN, P, IVAR, NVAR, WL)	0094
		WN(IVAR) = WL	0095
	335	CONTINUE	0096
С			0097
Č		DO THE NOISELESS STATE CALCULATIONS AT TIME TH	0098
č			0099
Ŭ		DV = EN(V(77), 772, UD, A)	0100
		$DR = FNIR(771,772,UD,\Lambda)$	0101
		ANG - MAUA ANG - MAUA	0102
			0102
		INC - HTUN NDC2 - HT722	0105
		$IFOZ = \pi^{+}LLZ$	0104
<u> </u>		YVUZ = UV	0105
C			0105
C		DU THE NUISY STATE CALCULATIONS AT TIME IM	0107
¢			0108

.

•

		YV2N = H*(DV+G*WN(1))	0109
		YR2N = H*(DR+G*WN(2))	0110
		YPS2N = H*(ZZ2+G*WN(3))	0111
		YVD2N = CV+G*WN(4)	0112
		ZZ1 = XV+0.5*YV2	0113
		ZZ2 = XR + 0.5 * YR 2	0114
С			0115
С		GENERATE PROCESS NOISE FOR THE THIRD PHASE OF THE INTEGRATION	0116
С			0117
		DO 336 IVAR = 1, NVAR	0118
		CALL WNO(IN, P, IVAR, NVAR, WL)	0119
		WN(IVAR) = WL	0120
	336	CONTINUE	0121
С			0122
C.		DD THE NOISELESS STATE CALCULATIONS AT TIME TM	0123
С		·	0124
	Ŷ	DV = FNLV(ZZ1,ZZ2,UD,A)	0125
		DR = FNLR(ZZ1, ZZ2, UD, A)	0126
		$YV3 = H \times DV$	0127
		YR3 = H*DR	0128
		$\frac{4}{2}$	0129
~		YVU3 = UV	0130
ç			0131
с С		DU THE NUISY STATE CALCULATIONS AT TIME IM	0132
C			0133
		$YV3N = H \neq (UV + G \neq WN(1))$	0134
		YRSON = HT(UR+GTWN(2))	0135
		$TPSJN = H^*(LL2+6\pi WN(3))$	0136
		$\frac{4}{2} \frac{1}{2} = \frac{1}{2} $	0137
		$\frac{221}{772} = \frac{1}{7} \frac{1}{7$	0138
		LL = KRTRS	0139
r		OD = O(TN)	0140
ř		GENERATE PROCESS NOTSE VALUES FOR THE EINAL DUASE OF THE	0141
ř		TNITECONTION AT THE END BE THE TIME INCREMENT	0142
r r		INTEGRATION AT THE END OF THE TIME INCREMENT	0143
C			0144

;

169

Ŋ
		DO 337 IVAR = 1, NVAR	0145
		CALL WNO(IN,P,IVAR,NVAR,WL)	0146
		WN(IVAR) = WL	0147
-	337	CONTINUE	0148
С			0149
С		DO THE NOISELESS STATE CALCULATIONS FOR TIME TN	0150
С			0151
		DV = FNLV(ZZ1,ZZ2,UD,A)	0152
		DR = FNLR(ZZ1, ZZ2, UD, A)	0153
		YV4 = H*DV	0154
		YR4 = H*DR	0155
		YPS4 = H*ZZ2	0156
		YVD4 = DV	0157
С			0158
С		DO THE NOISY STATE CALCULATIONS AT TIME TN	0159
C			0160
		YV4N = H*(DV+G*WN(1))	0161
		YR4N = H*(DR+G*WN(2))	0162
		YPS4N = H*(ZZ2+G*WN(3))	0163
		YVD4N = DV+G*WN(4)	0164
С			0165
С		FIND THE VALUE OF THE STATE VARIABLES OVER THE INCREMENT AND ADD	0166
С		TO THE CUMULATIVE TOTAL OVER ALL TIME	0167
С			0168
		XV = XV+1./6.*(YV1+2.*YV2+2.*YV3+YV4)	0169
		XR = XR+1./6.*(YR1+2.*YR2+2.*YR3+YR4)	0170
		XPS = XPS+1./6.*(YPS1+2.*YPS2+2.*YPS3+YPS4)	0171
		$XVD = 1_{\circ}/6_{\circ} * (YVD1+2_{\circ} * YVD2+2_{\circ} * YVD3+ YVD4)$	0172
		XVN = XVN+1./6.*(YV1N+2.*YV2N+2.*YV3N+YV4N)	0173
		XRN = XRN+1./6.*(YR1N+2.*YR2N+2.*YR3N+YR4N)	0174
		XPSN = XPSN+1º/6º*(Abs1N+5º*Abs2N+5°*Abs3N+Abs4N)	0175
		$XVDN = 1*/6**{VVD1N+2**VVD2N+2**VVD3N+VVD4N}$	0176
С			0177
С		GENERATE THE GAUSSIAN MEASUREMENT NOISE FOR EACH MEASURED STATE	0178
С		VARIABLE TO BE OUTPUT	0179
С			0180

			0101
		$\frac{1}{2} \frac{1}{2} \frac{1}$	U181
		$\frac{1}{2} \frac{1}{2} \frac{1}$	0182
		VALL WINDEIN FROIVARONVARONI, J VALTDE - WI	0103
	224		0104
c	554	CONFINCE	0102
ř		DETERMINE THE MEASURED NOISY OUTPUT OF THE SYSTEM	0180
ř		DETERMINE THE NEWSONED NOISY SOFFOI DI THE STRIEM	0188
Č		V(T,I) = VN(T)	0100
		VL = VN(2)	0190
		7R(TJ) = XRN+VI	0191
		VL = VN(3)	0192
		ZPS(IJ) = XPSN+VL	0193
		VL = VN(4)	0194
		ZVD(IJ) = XVDN+VL	0195
		T = T+H	0196
		TS(IJ) = T	0197
	300	CONTINUE	0198
		US(N+1) = UD	0199
		DUS(N+1) = DUD(TN)	0200
С			0201
C		INTEGRATE THE MEASURED NOISY ACCELERATION TO GENERATE A NOISY	0202
С		SWAY VELOCITY DUTPUT	0203
С			0204
		ZV(1) = 0.5 + H + (XVDI + ZVD(1))	0 20 5
		DO 301 $IK = 2.N$	0206
		$ZV(IK) = ZV(IK-1)+0_{\circ}5*H*(ZVD(IK)+ZVD(IK-1))$	0207
	301	CONTINUE	0208
		DC $302 \text{ KI} = 1, \text{N}$	0209
		2V(KI) = 2V(KI) + V(KI)	0210
	302		0211
		KETUKN	0212
		END	0213

٩,

		DOUBLE PRECISION FUNCTION U(T)	0001
С			0002
С		FUNCTION U(T) GENERATES RUDDER DEFLECTIONS FOR SPECIFIC MANEUVERS	0003
С		AS A FUNCTION OF TIME	0004
С			0005
		DOUBLE PRECISION D, DI, T, TL, DSIN, PER	0006
		COMMON /INPUT/ DI,TL,JJ	0007
С			8000
C	***	****	0009
С			0010
		D = DI/57.296	0011
		GG TO (10,20,30),JJ	0012
С			0013
С		STEP RUDDER DEFLECTION	0014
С			0015
	10	U = D	0016
		RETURN	0017
С			0018
С		ZIG-ZAG RUDDER DEFLECTION	0019
С			0020
	20	IF (T-100°) 3,4,4	0021
	3	U = D	0022
		RETURN	0023
	- 4	IF (T-200.) 5,6,6	0024
	5	U = -D	0025
		RETURN	0026
	6	$U = 0_2 D 0$	0027
		RETURN	0028
С			0029
С		SINUSDIDAL RUDDER DEFLECTION -	9030
С			0031
	30	PER = T/TL*3.14159	0032
	-	U = D*DSIN(PER)	0033
		RETURN	0034
		END	0035

:

c		DOUBLE PRECISION FUNCTION DUD(T)	0001
		FUNCTION DUD(T) CALCULATES THE TIME RATE OF CHANGE IN THE RUDDER DEFLECTION FOR SPECIFIC MANEUVERS	0003 0004 0005
c		DOUBLE PRECISION D,DI,T,TL,DCOS,PER COMMON /INPUT/ DI,TL,JJ	0006 0007 0008
	***	****	0009
-		D = DI/57.296 GO TO (10,20,30),JJ	0011
с С С		STEP RUDDER DEFLECTION	0013 0014 0015
_	10	DUD = 0,00 RETURN	0016
C C C		ZIG-ZAG RUDDER DEFLECTION	0019
Ŭ	20	DUD = 0.00 RETURN	0021
C C C		SINUSDIDAL RUDDER DEFLECTION	0023
U	30	PER = T/TL*3.14159 DUD = D*DCOS(PER)	0026 0027
		R E TURN END	0028 0029

×

۰.

٦:

	SUBROUTINE WNO(IN,P,IVAR,NVAR,W)	0001
С		0002
С	SUBROUTINE WNO GENERATES GAUSSIAN WHITE NOISE FROM THE SPECIFIED	0003
Ċ	STATISTICAL PROPERTIES OF THE DESIRED NOISE LEVELS	0004
č		0005
-	DIMENSION IN(1)	0006
	DOUBLE PRECISION P(1)+AM+S+W	0007
С		0008
Č ×	****	0009
č		0010
•	TX = TN(TVAR)	0011
	$I W = I V \Delta R + 2 \times N V \Delta R$	0012
С		0013
č	DESTRED MEAN	0014
ř		0015
C	AM - D(TVAD)	0016
r	AN - FIIVANF	0017
ř	DECTOED STANDARD DEVIATION	0018
ř	DESINED STANDARD DEVIATION	0019
C	$c = p(t, \mu)$	0020
	J = F X L R I	0021
	CALL GAUSSIIA, S, AM, W)	0021
	IN(IVAK) = IX	0022
	RETURN	0023
	END	0024

r i i i i i i i i i i i i i i i i i i i	0002
	0002
C SUBROUTINE GAUSS COMPUTES A NORMALLY DISTRIBUTED RANDOM NUMBER	0005
C WITH A GIVEN MEAN AND STANDARD DEVIATION	0004
	0005
DOUBLE PRECISION S.AM.W.A	0006
C	0007
C ******	0008
C.	0009
$\Delta = 0.00$	0010
D(150) I = 1.12	0011
CALL RANDU(IX-IY-Y)	0012
$\mathbf{I}\mathbf{X} = \mathbf{I}\mathbf{Y}$	0013
50 A = A+Y	0014
W = (A-6,DQ) * S + AM	0015
RETURN	0016
END	0017

•

;

	SUBROUTINE RANDU(IX.IY.YFL)	0001
C		0002
č	SUBROUTINE RANDU GENERATES UNIFORMLY RANDOM NUMBERS FOR USE IN	0003
č	SUBROUTINE GAUSS	0004
č		0005
·	IY = IX * 65539	0006
	IF (IY) 5,6,6	0007
	5 IY = IY + 2147483647 + 1	0008
	6 YFL = I Y	0009
	$YFL = YFL * 0_0 4656613E - 9$	0010
	RETURN	0011
	END	0012

DOUBLE PRECISION FUNCTION FNLV(XV,XR,U,A)	0001
C	0002
C FUNCTION FNLV CALCULATES THE VALUE OF THE TIME DERIVATIVE OF THE	0003
C SWAY VELOCITY	0004
C	0005
DOUBLE PRECISION XV, XR, U, A(1), F2, F3, F4	0006
C	0007
C. ******	0008
C	0009
F2 = A(9)+A(6)*XV+A(7)*XR+A(8)*U+A(26)*U**3 +A(27)*XR*XV**2 +A(28)	0010
1×U×XV××2	0011
F3 = A(15)+A(12)*XV+A(13)*XR+A(14)*U+A(31)*U**3 +A(32)*XR*XV**2 +A	0012
1(33)*U*XV**2	0013
F4 = 1./(A(4)*A(11)-A(10)*A(5))	0014
FNLV = F4*(A(11)*F2-A(5)*F3)	0015
RETURN	0016
END	0017

.

	DOUBLE PRECISION FUNCTION FNLR(XV,XR,U,A)	0001
С		0002
С	FUNCTION FNLR CALCULATES THE VALUE OF THE TIME DERIVATIVE OF THE	0003
С	YAW VELOCITY	0004
С		0005
	DOUBLE PRECISION XV,XR,U,A(1),F2,F3,F4	0006
С		0007
C	****	0008
С		0009
	F2 = A{9}+A{6}*XV+A{7}*XR+A{8}*U+A{26}*U**3 +A{27}*XR*XV**2 +A{28}	0010
	1*U*XV**2	0011
	F3 = `A(15)+A(12)*XV+A(13)*XR+A(14)*U+A(31)*U**3 +A(32}*XR*XV**2 +A	0012
	1(33)*U*XV**2	0013
	F4 = 1./(A(4)*A(11)-A(10)*A(5))	0014
	FNLR = F4*(A(4)*F3-A(10)*F2)	0015
	RETURN	0016
	END	0017

r	SUBROUTINE SHOMO(U1,V1,U2,V2,U3,V3,XPAGE,YPAGE,IPEN,K,M,YLABEL)	0001
C C	SUBROUTINE SHOMD CAN BE USED TO PORTRAY THE MOTIONS OF THE VESSEL	0002
č	USING THE CALCOMP PLOTTING ROUTINEIT CAN BE USED IN CONJUNCTION	0004
č	WITH OR SEPERATE FROM THE ALTERNATE ROUTINE PLOTM.	0005
Ĉ		0006
	DIMENSION U1(1),V1(1),U2(1),V2(1),U3(1),V3(1)	0007
	DIMENSION YLABEL(1)	0008
	IF (K.EQ.1) GO TO 306	0009
	IF (M.GT.1) GO TO 307	. 0010
С		0011
С	PRINT A KEY FOR PLOT IDENTIFICATION.	, 0012
С		0013
	CALL SYMBOL(2.0,0.75,0.14, MEASUREMENT NOISE - 5% ',0.0,23)	0014
	CALL SYMBOL(2.0,0.25,0.14, PROCESS NOISE - 5% ',0.0,19)	0015
	X = 13.24	0016
	CALL SYMBOL(11.0,1.0,0.14, 'FILTERED STATE '',0.0,16)	0017
	CALL SYMBOL(X,1.0,0.14,15,0.0,-1)	0018
	X = X + 0.15	0019
	00.301 I = 1,5	0020
	CALL SYMBOL(X,100,0014,15,000,-2)	0021
	X = X + 0.15	e 0022
301	CONTINUE	0023
	X = 13.24	0024
	CALL SYMBOL(11.0,0.5,0.14, NOISY STATE ',0.0,16)	0025
	DO $302 I = 1,6$	0026
	CALL SYMBOL(X,0.5,0.14,1,0.0,-1)	0027
	X = X + 0.15	0028
302	CONTINUE	0029
	X = 13.24	0030
	CALL SYMBOL(11.0,0.0,0.14, ZERO 1. INE ',0.0,16)	0031
	DO $303 I = 1,6$	0032
	CALL SYMBOL($X_{1}0_{0}0_{1}0_{1}14_{1}15_{1}0_{0}0_{1}-1$)	0033
	X = X + 0.15	0034
303		0035
	CALL PLUTIO.0,2.3,-3)	0036

γ

	307	CONTINUE	0037
С			0038
Č		PLOT BOTH THE FILTERED AND NOISY MOTIONS AS A FUNCTION OF TIME.	0039
ē			0040
-		CALL MINMAX(VI.47.AMIN.AMAX)	0041
		$I = \{AMIN_1\} = 0.0, AND_2 AMAX_3 = 0.0\} = G(T) = 304$	0042
		CALL PICTUR (8.0.4.0. TIME (SEC.) .11. YLABEL. 33. U1. V147.0.10.	0043
		11-113-V3-47-0-0-1)	0044
			0045
	204	CALL PICTURI8-0-4-0-ITIME (SEC.) -11-YLABEL-33-UL-VI-47-0-10-	0046
	704	11.112.V247.0.10.15.113.V3.47.0.0.1)	0047
	305	CALL DI CTINDACE, VDACE, IDEN)	0048
	202	CALL FLOTTAFAOLY FFAOLY FERV	0040
	200	O C T I DN	0049
			0000

	END	0001
	SUBROUTINE SHOCO(U1,V1,U2,V2I,XPAGE,YPAGE,IPEN,K,M,N)	0002
С		0003
С	SUBROUTINE SHOCO CAN BE USED TO PORTRAY THE COEFFICIENT	0004
Ċ	IDENTIFICATION AS A FUNCTION OF TIME USING THE CALCOMP PLOTTER.	0005
C		0006
	DIMENSION U1(1),V1(1),U2(1),V2(47)	° 0007
	IF (K.EQ.1) GO TO 307	0008
	$DO \ 300 \ I = 1,47$	0009
	V2(I) = V2I	0010
30	O CONTINUE	0011
	IF (M.GT.1) GO TO 333	0012
	CALL PLOT (0.0,-2.3,-3)	0013
	CALL SYMBOL(2.0.0.75.0.14. MEASUREMENT NOISE - 5% 1.0.0.23)	0014
	CALL SYMBOL(2.0,0.25,0.14, PROCESS NOISE - 5% +,0.0,19)	0015
	X = 13.24	0016
	CALL SYMBOL(11.0,.75,0.14, IDENTIFICATION ',0.0,16)	0017
	CALL SYMBOL(X,.75,0.14,15,0.0,-1)	0018
	X = X + 0.15	0019
	DO 301 I = 1.5	9020
	CALL SYMBOL(X, .75, 0.14, 15, 0.0, -2)	0021
	$X = X + 0_a 15$	0022
. 30	1 CONTINUE	0023
	X = 13.24	0024
	CALL SYMBOL(11.0,.25,0.14, TRUE VALUE ',0.0,16)	0025
	DD $302 I = 1.6$	0026
	CALL SYMBOL $(X_{+2} 25_{+} 0_{0} 14_{+} 15_{+} 0_{0} 0_{+} - 1)$	0027
	X = X + 0.15	0028
30	2 CONTINUE	0029
	CALL PLOT (0.0,2.3,-3)	0030
33	3 CONTINUE	0031
	CALL PICTUR(8.0,4.0, 'TIME (SEC.)',11, COEFFICIENT VALUE ',18,U1,V1	0032
	1, 47, 0.0, 1, U2, V2, -47, 0.10, 15	0033
	CALL PLOT(-11.0,0.3,-3)	0034
	GO TO (304,306,303,305),N	0035
30	3 CALL SYMBOL (7.5, 3.5, 0.48, 85, 0.0, -1)	0036
		+

.

181

;

	CALL SYMBOL(8.05,3.4,0.24,101,0.0,-1)	0037
	GO TO 307	0038
304	CALL SYMBOL(7.5,3.5,0.48,104,0.0,-1)	0039
	CALL SYMBOL(8.05,3.4,0.24,101,0.0,-1)	0040
	GG TO 307	0041
305	CALL PLOT(-0.70,0.0,-3)	0042
	CALL SYMBCL(6.5,3.5,0.48,85,0.0,-1)	0043
	CALL SYMBOL(7.05,3.4,0.24,89,0.0,-1)	0044
	CALL SYMBOL(7.36,3.5,0.28,15,0.0,-1)	0045
	CALL SYMBOL(7°74'3°5'0°5'8'84'0°0'-1)	0046
	CALL SYMBOL(8.12,3.5,0.28,103,0.0,-1)	0047
	CALL SYMBOL(8.38,3.4,0.24,71,0.0,-1)	0048
-	CALL SYMBOL(8,64,3,5,0,28,100,0.0,-1)	0049
	CALL PLOT(0.70,0.0,-3)	0050
	GO TO 307	0051
306	CALL SYMBOL(6.5,3.5,0.48,104,0.0,-1)	0052
	CALL SYMBOL(7.05,3.4,0.24,89,0.0,-1)	0053
	CALL SYMBOL (7, 36, 3, 5, 0, 28, 15, 0, 0, -1)	0054
	CALL SYMBOL(7.74,3.5,0.28,84,0.0,-1)	0055
	CALL SYMBOL(8.12,3.5,0.28,100,0.0,-1)	0056
	GO TO 307	0057
308	CALL SYMBOL(6.5,3.5,0.28,84,0.0,-1)	0058
	CALL SYMBOL(6.85,3.5,0.28,15,0.0,-1)	0059
	CALL SYMBOL(7.20,3.5,0.48,104,0.0,-1)	0060
	CALL SYMBOL (7.75,3.4,0.24,101,0.0,-1)	0061
	GO TO 307	0062
309	CALL PLOT(-0.3,0.0,-3)	0063
	CALL SYMBOL(6.5,3.5,0.28,84,0.0,-1)	0064
	CALL SYMBOL(6.85,3.5,0.28,103,0.0,-1)	0065
	CALL SYMBOL(7.11,3.4,0.24,71,0.0,-1)	0066
	CALL SYMBOL(7.40,3.5,0.28,15,0.0,-1)	0067
	CALL SYMBOL (7.75,3.5,0.48,104,0.0,-1)	0068
	CALL SYMBOL (8.30,3.4.0.24,89,0.0,-1)	0069
	CALL PLOT ($0_{e} 30, 0_{e} 0, -3$)	0070
	GO TO 307	0071
310	CALL PLOT(-0.3,0.0,-3)	0072

CALL SYMBOL(6,5,3,5,0,48,73,0,0,-1)	0073
CALL SYMBOL (7.05, 3.4, 0.24, 105, 0.0, -1)	0074
CALL SYMBOL (7.36,3.5,0.28,15,0.0,-1)	0075
CALL SYMBOL (7.74,3.5,0.48,85,0.0,-1)	0076
CALL SYMBOL (8.29,3.4,0.24,89,0.0,-1)	0077
CALL PLOT(0.3,0.0,-3)	0078
GO TO 307	0079
CALL SYMBOL(7.5,3.5,0.48,85,0.0,-1)	0800
CALL SYMBOL(8.05,3.4,0.24,43,0.0,-1)	0081
CONTINUE	0082
CALL PLOT(0.0,-0.3,-3)	0083
CALL PLOT(XPAGE, YPAGE, IPEN)	0084
RETURN	0085
END	0086
	CALL SYMBOL(6.5,3.5,0.48,73,0.0,-1) CALL SYMBOL(7.05,3.4,0.24,105,0.0,-1) CALL SYMBOL(7.36,3.5,0.28,15,0.0,-1) CALL SYMBOL(7.74,3.5,0.48,85,0.0,-1) CALL SYMBOL(8.29,3.4,0.24,89,0.0,-1) CALL PLOT(0.3,0.0,-3) GO TO 307 CALL SYMBOL(7.5,3.5,0.48,85,0.0,-1) CALL SYMBOL(8.05,3.4,0.24,43,0.0,-1) CALL SYMBOL(8.05,3.4,0.24,43,0.0,-1) CONTINUE CALL PLOT(0.0,-0.3,-3) CALL PLOT(0.0,-0.3,-3) CALL PLOT(XPAGE,YPAGE,IPEN) RETURN END

•

ι.

}

SUBROUTINE PLOTM(NO,A,N,M,NS,NE)	0001
	0002
************	0003
	0004
SUBROUTINE PLOT	0005
	0006
PURPOSE	0007
PLOT SEVERAL CROSS VARIABLES Y VERSUS A BASE	0008
VARIABLE X IN A FORMAT SUITABLE FOR THESIS USE	000
	0010
USAGE	0011
CALL PLOT(NO,A,N,M,NS)	0012
	0013
DESCRIPTION OF PARAMETERS	0014
NO - PLOT NUMBER OF .LTE. 3 DIGITS	0015
A - MATRIX OF DATA TO BE PLOTTED. MUST BE IN	0016
STANDARD SINGLE COLUMN FORM. FIRST COLUMN	0017
REPRESENTS BASE VARIABLE AND SUCCESSIVE	0018
COLUMNS ARE THE CROSS VARIABLES (MAXIMUM IS	0019
NINE).	0020
N - NUMBER OF ROWS IN MATRIX A. N MUST BE	0021
oLTEo 47	0022
M – NUMBER OF COLUMNS IN MATRIX A. M MUST BE	0023
•LTE. 10	0024
NS - CODE FOR SORTING THE BASE VARIABLE DATA IN	0025
ASCENDING ORDER	0026
O SORTING IS NOT NECESSARY (ALREADY IN	0027
ASCENDING ORDER)	0028
1 SORTING IS NECESSARY	0029
******************	0030
	0031
DIMENSION OUT(51), IANG(9), YPR(6), YPT(3), A(1)	0032
INTEGER * 2 OUT, IANG, BLANK	0033
IF (NE.EQ.2) GO TO 99	0034
DATA IANG /*1 *,*2 *,*3 *,*4 *,*5 *,*6 *,*7 *,*8 *,*9 */	0035
DATA BLANK / 1 1/	0036

,

Ϋ́, Υ

С	FORMAT STATEMENTS FOR THESIS USE	0037
	1 FORMAT(1H1,27X,7H PLOT ,18)	0038
	2 FORMAT (1H ,E10.3, ***, 51A1, ***)	0039
	3 FORMAT(1H ,10X, ":",51X, ":")	0040
	4 FORMAT (1H ,18X, * ** INCREMENT IS *, E15.7)	0041
	5 FORMAT (1H +8X+E15-7-5X+E15-7-5X+E15-7)	0042
	7 FORMAT(1H +11X,36H*	0043
	115H*	0044
	8 FORMAT (1H + 3X+E9+2+1X+E9+2+1X+E9+2+1X+E9+2+1X+E9+2+1X+E9+2)	0045
	9 FORMAT(1H)	0046
	NL=47	0047
	NTH=51	0048
	NLL=NL	0049
	IF(NS)16,16,10	0050
С		0051
С	SORTING ROUTINE	0052
С		0053
	10 DO 15 I=1,N	0054
	DO 14 J=I, N	0055
	IF(A(I)-A(J))14,14,11	0056
	11 L=I-N	0057
	LL=J−N	0058
	DO 12 K=1,M	0059
	L=L+N	0060
	LL=LL+N	0061
	F=A(L)	0062
	A(L)=A(LL)	0063
	12 A(LL)=F	0064
	14 CONTINUE	0065
	15 CONTINUE	0066
	16 CONTINUE	0067
С		0068
С	FIND BASE AND CROSS VARIABLE SCALES	0069
С		0070
	XSCAL=(A(N)-A(1))/(FLOAT(NLL-1))	0071
	M1=N+1	0072
		1

```
YMIN = 1.E37
      M2=M*N
      DG 40 J=M1,M2
      IF (A(J) .GT. YMAX) YMAX=A(J)
      IF (A(J) .LT. YMIN) YMIN=A(J)
   40 CONTINUE
      YSCAL=(YMAX-YMIN)/50.0
      IF (YSCAL.EQ.O.) YSCAL=1.E-37
      YPR(1) = YMIN
      DO 90 KN = 1.4
      YPR(KN+1)=YPR(KN)+YSCAL*10.0
   90 CONTINUE
      YPR(6) = YMAX
      YPT(1) = YMIN
      YSTAR=YSCAL*5.0
      YPT(2)=YMIN+YSCAL*25.0
      YPT(3) = YMAX
С
С
      PRINT HEADING AND CROSS VARIABLE SCALE
С
      WRITE(6,1)NO
      WRITE(6,4)YSTAR
      WRITE(6,5)(YPT(IP), IP = 1,3)
        WRITE(6,8)(YPR(IP), IP=1,6)
      WRITE(6,7)
С
С
      FIND BASE VARIABLE PRINT POSITION
С
      XB=A(1)
      L=1
      MY=M-1
      I = 1
      XEP S=XSCAL/FLOAT(2*(NLL-1))
   45 F = FLOAT(I-1)
      XPR = XB+F*XSCAL
```

.

a service and a service of

and the second second

YMAX = -1.E37

0073

		XDIF=A(L)-XPR+XEPS	0109
		IF(XDIF)50,50,70	0110
С			0111
С		FIND CROSS VARIABLES	0112
С			0113
	50	DO 55 IX=1,NTH	0114
		OUT(IX)=BLANK	0115
	55	CONTINUE	0116
		DO 60 J=1,MY	0117
		LL=L+J*N	0118
		JP = ((A(LL) - YMIN) / YSCAL) + 1.0	0119
		OUT(JP)=IANG(J)	0120
	60	CONTINUE	0121
С			0122
С		PRINT LINE AND CLEAR, OR SKIP	0123
С			0124
		WRITE(6,2)XPR;(OUT(IZ),IZ=1,NTH)	0125
		L=L+1	0126
		GO TO 8 0	0127
	70	WRITE(6,3)	0128
	80	I=I+1	0129
		IF(I-NLL)45,84,86	0130
	84	XPR=A(N)	0131
		GO TO 50	0132
С			0133
С		PRINT BOTTOM AND CROSS VARIABLE SCALE	0134
С			J135
	86	WRITE(6,7)	0136
		WRITE(6,8)(YPR(IP),IP=1,6)	0137
		WRITE(6,9)	0138
	99	CONTINUE	0139
		RETURN	0140
		END	0141

t,

SUBRDUTINE FILTER(EJ,E1,E2,E3,E4,E5,EN,EM,EL,ES,Q1,BN,FT,T,H1,H2,	0001
1H3, LP, KS, EBAR, B, K, Q, R, EE, NO, Z, SP, ZV, ZR, ZPS, ZVD, US, TS, XHT, XBAR, HZ,	0002
2A,C,EHT,IC,IR,W,H,TI,N,DUS)	0003
	0004
SUBROUTINE FILTER IS THE MAIN FILTERING ROUTINE FOR THE PROGRAM	0005
	0006
INTEGER SP	0007
DIMENSION VP(94), RP(94), PSP(94), VDP(94)	0008
DIMENSION PP1(94),PP2(94),PP3(94),PP4(94),PP5(94),PP6(94),PP7(94)	0009
DIMENSION PP8(94), PP9(94), PP10(94), PP11(94), PP12(94), PP13(94)	0010
DIMENSION PP14(94), PP15(94), PP16(94)	0011
DIMENSION PP17(94), PP18(94), PP19(94), PP20(94), PP21(94), PP22(94)	0012
DIMENSION PP23(94), PP24(94), PP25(94), PP26(94), PP27(94), PP28(94)	0013
DIMENSION PP29(94),PP30(94),PP31(94),PP32(94),PP33(94),PP34(94)	0014
DIMENSION PP35(94), PP36(94)	0015
DIMENSION IC(1), IR(1)	0016
DIMENSION EE(1)	0017
DOUBLE PRECISION DUS(1), USDV, DUD, UZD	0018
DOUBLE PRECISION W(1)	0019
DOUBLE PRECISION Z(1),ZV(1),ZR(1),ZPS(1),ZVD(1)	0020
DOUBLE PRECISION K(LP,NO),Q(LP,LP),R(LP,LP),B(LP,LP),EBAR(LP,LP)	0021
DOUBLE PRECISION EHT(SP,SP),XHT(1),HZ(NO,SP),A(1),XBAR(1)	0022
DOUBLE PRECISION DI,TI,USV,UZ,U,DT,H	0023
DOUBLE PRECISION FNLV,FNLR	0024
DOUBLE PRECISION E1(LP,LP),E2(LP,LP),E3(LP,LP),E4(LP,LP),E5(LP,LP)	0025
DOUBLE PRECISION EJ(LP,LP), EN(LP,LP), Q1(LP,LP), BN(LP,LP',FT(LP,LP)	0026
DOUBLE PRECISION EM(LP,LP),H1(NO,LP),T(LP,NO),EL(1),ES(1)	0027
DOUBLE PRECISION H2(NO,LP),H3(LP,LP)	0028
DOUBLE PRECISION TS(1), US(1)	0029
DOUBLE PRECISION C(1)	0030
COMMON /OUTP1/ VP,RP,PSP,VDP,PP1,PP2,PP3,PP4,PP5,PP6,PP7,PP8	0031
COMMON /OUTP2/ PP9, PP10, PP11, PP12, PP13, PP14, PP15, PP16	0032
COMMON /OUTP5/ PP17, PP18, PP19, PP20, PP21, PP22, PP23, PP24, PP25, PP26	0033
COMMON /OUTP6/ PP27, PP28, PP29, PP30, PP31, PP32, PP33, PP34, PP35, PP36	0034
COMMON /OUTP3/ EV, ER, EPS, EVD, EP1, EP2, EP3, EP4, EP5, EP6, EP7, EP8	0035
COMMON /OUTP4/ EP9,EP10,EP11,EP12,EP13,EP14,EP15,EP16	0036

С С С

188

```
COMMON /OUTP7/ EP17, EP18, EP19, EP20, EP21, EP22, EP23, EP24, EP25, EP26
                                                                                             0037
      COMMON /OUTP8/ EP27, EP28, EP29, EP30, EP31, EP32, EP33, EP34, EP35, EP36
                                                                                             0038
      COMMON /PRAM3/ LP17, LP18, LP19, LP20, LP21, LP22, LP23, LP24, LP25, LP26
                                                                                             0039
      COMMON /PRAM4/ LP27, LP28, LP29, LP30, LP31, LP32, LP33, LP34, LP35, LP36
                                                                                             0040
      COMMON /PRAM1/ LP1, LP2, LP3, LP4, LP5, LP6, LP7, LP8
                                                                                             0041
      COMMON /PRAM2/ LP9, LP10, LP11, LP12, LP13, LP14, LP15, LP16
                                                                                              0042
      COMMON /INPUT/ DI.TL.JJ
                                                                                             0043
      COMMON /PKI/G
                                                                                             0044
С
                                                                                             0045
( *********
                                                                                              0046
C
                                                                                             0047
      KB = 2
                                                                                              0048
      MH = 1
                                                                                              0049
      KFIM = 47
                                                                                              0050
С
                                                                                              0051
С
      PROCESS THE SEA TRIAL DATA
                                                                                              0052
С
                                                                                             0053
      USV = US(1)
                                                                                              0054
      USDV = DUS(1)
                                                                                              0055
      UZ = U(TI)
                                                                                              0056
      UZD = DUC(TI)
                                                                                              0057
      US(1) = UZ
                                                                                              0058
      DUS(1) = UZD
                                                                                              0059
      DT = H
                                                                                              0060
С
                                                                                              0061
С
      PROPAGATE THE STATE AND ERROR COVARIANCE MATRICES FROM THE
                                                                                              0062
С
      INITIAL CONDITIONS
                                                                                             0063
С
                                                                                              0064
      CALL PROPIDT, US, A, Q, 1, EJ, E1, E2, E3, E4, E5, B, EN, Q1, BN, FT, EBAR, LP, ND,
                                                                                              0065
     1SP, EHT, XHT, XBAR, W, DUS)
                                                                                              0066
С
                                                                                              0067
С
      CALCULATE THE INITIAL GAIN FOR THE KALMAN FILTER
                                                                                              0068
С
                                                                                              0069
      CALL GAIN(HZ,R,EBAR,K,EM,H1,T,LP,NO,SP,W,H2,C,IC,IR)
                                                                                              0070
С
                                                                                              0071
C
      UPDATE THE STATE AND ERROR COVARIANCE MATRICES FROM THEIR
                                                                                              0072
```

· · .

.C. C	INITIAL VALUES	0073 0074
	CALL UPDT(Z,ZV,ZR,ZPS,ZVD,HZ,1,EBAR,K,EL,ES,H2,H3,LP,ND,	0075
	1XHT, XBAR, EHT, W, SP)	0076
	US(1) = USV	0077
	DUS(1) = USDV	0078
	JLI = 2	0079
C		0080
С	BEGIN ITERATIONS FOR FILTERING	0081
С		0082
	$DO \ 104 \ IM = KB_*N$	0083
	NH = IM - I	0084
	JLI = JLI + 1	0085
	LL = JLI - I	0086
С		0087
С	DETERMINE THE INCREMENTAL TIME STEP	0088
С		0089
	DT = TS(IM) - TS(NH)	0090
С		0091
С	PROPAGATE THE STATE AND ERROR COVARIANCE MATRICES FOR A TIME DT	0092
С		0093
	CALL PROP(DT,US,A,Q,IM,EJ,E1,E2,E3,E4,E5,B,EN,Q1,BN,FT,EBAR,LP,	0094
	IND, SP, EHT, XHT, XBAR, W, DUS)	0095
C		0096
С	COMPUTE THE KALMAN FILTER GAIN	0097
С		0098
	CALL GAIN(HZ,R,EBAR,K,EM,H1,T,LP,NO,SP,W,H2,C,IC,IR)	0099
С		0100
C	UPDATE THE STATE AND ERROR COVARIANCE MATRICES	0101
С		0102
	CALL UPDT(Z,ZV,ZR,ZPS,ZVD,HZ,IM,EBAR,K,EL,ES,H2,H3,LP,NO,	0103
	1XHT, XBAR, EHT, W, SP)	0104
	IF(LL.LT.KS) GO TO 377	0105
С	·	0106
C	STORE THOSE VALUES OF THE STATE AND ERROR COVARIANCE MATRICES	0107
C	SELECTED FOR PLOTTING	0108

•

ŀ

.

С		0109
	CALL STORB(TS,MH,KFIM,KS,NO,EE,XHT,EHT,SP)	0110
	MH = MH+1	0111
	JLI = 1	0112
377	CONTINUE	0113
104	CONTINUE	0114
	RETURN	0115
	END	0116

.

. .

.

191

.

•

)

	SUBROUTINE PROP(H,US,A,G,I,EJ,E1,E2,E3,E4,E5,B,EN,Q1,BN,FT,EBAR,LP	0001
	1,NO,SP,EHT,XHT,XBAR,W,DUS)	0002
С		0003
С	SUBROUTINE PROP PROPAGATES THE STATE AND ERROR COVARIANCE MATRICES	0004
С	FOR EACH TIME INCREMENT OF THE ITERATION	0005
С		0006
	INTEGER SP	0007
	DOUBLE PRECISION W(1)	0008
	DOUBLE PRECISION EHT(SP,SP),XHT(1),XBAR(1)	0009
	DOUBLE PRECISION E1(LP,LP),E2(LP,LP),E3(LP,LP),E4(LP,LP),E5(LP,LP)	0010
	DOUBLE PRECISION EJ(LP+LP)+EBAR(LP+LP)+A(1)+Q(LP+LP)	0011
	DOUBLE PRECISION US(1).CUS(1).UV.UD	0012
	DOUBLE PRECISION H.HM	0013
	DOUBLE PRECISION XV, XR, XPS, XVD, XRD	0014
	DOUBLE PRECISION YV1.YV2.YV3.YV4	0015
	DOUBLE PRECISION YR1, YR2, YR3, YR4	2016
	DOUBLE PRECISION YPS1.YPS2.YPS3.YPS4	0017
	DOUBLE PRECISION YVD1.YVD2.YVD3.YVD4	0018
	DOUBLE PRECISION YRD1.YRD2.YRD3.YRD4	0019
	DOUBLE PRECISION 771-772-773-774	0020
	DOUBLE PRECISION ENLV.ENLR	0021
	DOUBLE PRECISION B(LP+LP)+EN(LP+LP)+Q1(LP+LP)+BN(LP+LP)+FT(LP+LP)	0022
	DOUBLE PRECISION DSIN.DCOS	0023
	COMMON /PRAM3/ LP17+LP18+LP19+LP20+LP21+LP22+LP23+LP24+LP25+LP26	0024
	COMMON /PRAM4/ LP27.LP28.LP29.LP30.LP31.LP32.LP33.LP34.LP35.LP36	0025
	COMMON /PRAM2/ LP9, LP10, LP11, LP12, LP13, LP14, LP15, LP16	0026
	COMMON /PRAM1/ LP1.LP2.LP3.LP4.LP5.LP6.LP7.LP8	0027
С		0028
č	*****	0029
č		0030
Ċ	INTEGRATE THE STATE VALUES OVER THE TIME INCREMENT USING THE	0031
č	RUNGE-KUTTA 4TH ORDER TECHNIQUE DE INTEGRATION	0032
č		0033
Ŭ	MP = 1P - NG	0034
	UV = US(I)	0035
	UD = DUS(I)	0036

С		0037
С	INITIALIZE THE STATES AND THE COEFFICIENTS OF INTEREST TO THOSE	0038
С	VALUES ASSIGNED INITIALLY OR CALCULATED IN THE PREVIOUS INCREMENT	0039
C		0040
	XV = XHT(1)	0041
	XR = XHT(2)	0042
	XPS = XHT(3)	0043
	XVD = XHT(4)	0044
	XRD = FNLR(XV, XR, UV, A)	0045
	IF (MP.EQ.0) GD TO 500	0046
	GO TO (101,102,103,104,105,106,107,108,109,110,111,112,113,114,	0047
	1115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,	0048
	2131,132,133,134,135,136),MP	0049
	136 A(LP36) = XHT(SP)	0050
	135 A(LP35) = XHT(SP-1)	0051
	134 A(LP34) = XHT(SP-2)	0052
	133 A(LP33) = XHT(SP-3)	0053
	132 A(LP32) = XHT(SP-4)	0054
	131 A(LP31) = XHT(SP-5)	0055
	130 A(LP30) = XHT(SP-6)	0056
	129 A(LP29) = XHT(SP-7)	0057
	128 A(LP28) = XHT(SP-8)	0058
	$127 A\{LP27\} = XHT(SP-9)$	0059
	126 A(LP26) = XHT(SP-10)	0060
	125 A(LP25) = XHT(SP-11)	0061
	124 A(LP24) = XHT(SP-12)	0062
	123 A(LP23) = XHT(SP-13)	0063
	122 A(LP22) = XHT(SP-14)	0064
~	121 A(LP21) = XHT(SP-15)	0065
	120 A(LP20) = XHT(SP-16)	0066
	119 A(LP19) = XHT(SP-17)	0067
	118 A(LP18) = XHT(SP-18)	0068
	117 A(LP17) = XHT(SP-19)	0069
	116 A(LP16) = XHT(SP-20)	0070
	115 A(LP15) = XHT(SP-21)	0071
	114 A(LP14) = XHT(SP-22)	0072

>

	113	A(LP13) = XHT(SP-23)	0073
	112	A(LP12) = XHT(SP-24)	0074
	111	A(LP11) = XHT(SP-25)	0075
	110	A(LP10) = XHT(SP-26)	0076
	109	A(LP9) = XHT(SP-27)	0077
	108	A(LP8) = XHT(SP-28)	0078
	107	A(LP7) = XHT(SP-29)	0079
	106	A(LP6) = XHT(SP-30)	0080
	105	A(LP5) = XHT(SP-31)	0081
	104	A(LP4) = XHT(SP-32)	0082
	103	A(LP3) = XHT(SP-33)	0083
	102	A(LP2) = XHT(SP-34)	0084
	101	A(LP1) = XHT(SP-35)	0085
	500	CONTINUE	0086
		DO 1 N = 1, LP	0087
		DO 2 M = 1 P	0088
		EJ(N,M) = EHT(N,M)	0089
	2	CONTINUE	0090
	1	CONTINUE	0091
С			0092
C		CALCULATE THE STATE VALUES AND THE TIME RATE OF CHANGE OF THE	0093
С		ERROR COVARIANCE MATRIX AT THE START OF THE INCREMENT	0094
С			0095
		HM= H/2.	0096
		YVD1 = FNLV(XV, XR, UV, A)	0097
		YRD1 = FNLR(XV, XR, UV, A)	0098
		YV1 = H*YVD1	0099
		YR1 = H*YRD1	0100
		YPS1 = H*XR	0101
		CALL EFNT1(A,UV,B,LP,SP,XV,XR,NO,XVD,XRD,UD,H)	0102
		CALL EFNT2(E1,Q,EN,Q1,BN,FT,B,LP,NO,SP,W,EHT)	0103
		ZZ1 = XV+0.5*YV1	0104
		ZZ2 = XR + 0.5 * YR1	0105
		ZZ3 = XPS+0.5*YPS1	0106
		ZZ4 = YVD1	0107
		XHT(1) = ZZ1	0108

XHT(2) = ZZ2	0109
XHT(3) = 773	0110
XHT(4) = ZZ4	0111
DD 3 N = 1, LP	0112
DO 4 M = 1.LP	0113
$E_2(N,M) = H + E_1(N,M)$	0114
EHT(N,M) = EJ(N,M) + HM + E1(N,M)	0115
4 CONTINUE	0116
3 CONTINUE	0117
	0118
DO THE R-K CALCULATIONS AT THE MIDDLE OF THE INCREMENT	0119
	0120
UV = (US(I)+US(I+1))/2.	0121
UD = (DUS(I) + DUS(I+1))/2.	0122
YVD2 = FNLV(ZZ1,ZZ2,UV,A)	0123
YRD2 = FNLR(ZZ1, ZZ2, UV, A)	0124
YV2 = H*YVD2	0125
YR2 = H*YRD2	0126
YPS2 = H*ZZ2	0127
CALL EFNT1(A,UV, B,LP,SP,ZZ1,ZZ2,N0,YVD1, RD1,UD,H)	0128
CALL EFNT2(E1,Q,EN,Q1,BN,FT,B,LP,NO,SP,W,EHT)	0129
ZZ1 = XV+0.5*YV2	0130
$ZZ2 = XR+0_{0}5*YR2$	0131
ZZ3 = XPS+0.5*YPS2	0132
ZZ4 = YVD2	0133
XHT(1) = ZZ1	0134
XHT(2) = ZZ2	0135
XHT(3) = ZZ3	0136
XHT(4) = ZZ4	0137
DO 5 N = 1, LP	0138
DC 6 M = 1, LP	0139
$E3(N,M) = HM \neq E1(N,M)$	0140
$EHT(N,M) = EJ(N,M) + HM \times EI(N,M)$	0141
6 CONTINUE	0142
5 CONTINUE	0143
	0144

C C C

С

195

<u>х</u>

C	REPEAT THE R-K CALCULATIONS FOR THE MIDDLE OF THE INCREMENT	0145
C		0146
	YVD3 = FNLV(ZZ1,ZZ2,UV,A)	0147
	YRD3 = FNLR(ZZ1,ZZ2,UV,A)	0148
	YV3 = H*YVD3	0149
	YR3 = H*YRD3	0150
	YPS3 = H*ZZ2	0151
	CALL EFNT1(A,UV,B,LP,SP,ZZ1,ZZ2,NO,YVD2,YRD2,UD,H)	0152
	CALL EFNT2(E1,Q,EN,Q1,BN,FT,B,LP,NO,SP,W,EHT)	0153
	ZZ1 = XV + YV3	0154
	ZZ2 = XR+YR3	0155
	ZZ3 = XPS+YPS3	0156
	ZZ4 = YVD3	0157
	XHT(1) = ZZ1	0158
	XHT(2) = ZZ2	0159
	XHT(3) = ZZ3	0150
	XHT(4) = ZZ4	0161
	DO 7 N = 1, LP	0162
	DD 8 M = 1, LP	0163
	E4(N,M) = HM*E1(N,M)	0164
	$EHT(N,M) = EJ(N,M) + H \times E1(N,M)$	0165
	8 CONTINUE	0166
	7 CONTINUE	0167
С		0168
С	DO THE R-K CALCULATIONS FOR THE END OF THE INCREMENT	0169
С	j	0170
-	UV = US(I+1)	0171
	UD = DUS(I+1)	0172
	YVD4 = EN(V(771.772.0)V.A)	0173
	YRD4 = FN(R(771, 772, 1)V, A)	0174
	YV4 = H*YVD4	0175
	YR4 = H*YRD4	0176
	YPS4 = H*772	0177
	CALL EENTI (A.UV.B.LP.SP.771.772.NO.YVD3.YRD3.UD.H)	0178
	CALL = FENT2(F1.0.FN.01.BN.FT.B.1P.NO.SP.W.FHT)	0170
	DD = 1.1 P	0117
	and the second sec	1100

,

C C

.

196

· • •

		DO 10 M = 1, LP	0181
		E5(N,M) = H*E1(N,M)	0182
	10	CONTINUE	0183
	9	CONTINUE	0184
С			0185
С		FROM THE STATE VALUES CALCULATED OVER THE TIME INCREMENT,	0186
С		DETERMINE THE NEW STATE VALUES PROPAGATED FROM T TO T+DT	0187
С			0188
		XBAR(1) = XV+1./6.*(YV1+2.*YV2+2.*YV3+YV4)	0189
		XBAR(2) = XR+1./6.*(YR1+2.*YR2+2.*YR3+YR4)	0190
		XBAR(3) = XPS+1./6.*(YPS1+2.*YPS2+2.*YPS3+YPS4)	0191
		XBAR(4) = 1./6.*(YVD1+2.*YVD2+2.*YVD3+YVD4)	0192
		IF (MP.EQ.0) GO TO 501	0193
		N1 = N0+1	0194
		DO 200 N = N1, LP	0195
		XBAR(N) = XHT(N)	0196
	200	CONTINUE	0197
	501	CONTINUE	0198
С			0199
С		PROPAGATE THE ERROR COVARIANCE MATRIX	0200
С			0201
		DO 11 N = 1, LP	0202
		DO 12 M = 1, LP	0203
		EBAR(N,M) = EJ(N,M)+1./6.*(E2(N,M)+2.*E3(N,M)+2.*E4(N,M)+E5(N,M))	0204
	12	CONTINUE	0205
	11	CONTINUE	0206
		RETURN	0207
		END	0208

	SUBROUTINE EFNT1(A,U,B,LP,SP,XV,XR,NO,XVD,XRD,UD,H)	0001
С		0002
C	SUBROUTINE EFNTI CALCULATES THE MATRIX BTHE PARTIAL DERIVATIVES	0003
C	OF THE MOTION EQUATIONS WITH RESPECT TO THE VARIOUS ELEMENTS OF	0004
С	THE EXTENDED STATE VECTOR	0005
Ç		0006
	INTEGER SP	0007
	DOUBLE PRECISION H	0008
	DOUBLE PRECISION UD	0009
	DOUBLE PRECISION XV, XR	0010
	DOUBLE PRECISION XVD,XRD	0011
	DOUBLE PRECISION B(LP,LP),A(1),X(1),C2,C5,C6,D1,D2,D3,D4,U	0012
	DOUBLE PRECISION C7,C8,C9,C10,D5,D6,D7,D8	0013
	DOUBLE PRECISION DCOS,DSIN	0014
	COMMON /PRAM3/ LP17,LP18,LP19,LP20,LP21,LP22,LP23,LP24,LP25,LP26	0015
	CGMMON /PRAM4/ LP27,LP28,LP29,LP30,LP31,LP32,LP33,LP34,LP35,LP36	0016
	COMMON /PRAM1/ LP1,LP2,LP3,LP4,LP5,LP6,LP7,LP8	0017
	COMMON /PRAM2/ LP9,LP10,LP11,LP12,LP13,LP14,LP15,LP16	0018
С		0019
С	******	0020
С		0021
	MP = LP - NO	0022
С		0023
С	INITIALIZE THE MATRIX TO ZERO	0024
С		0025
	DO 1 N = 1, LP	0026
	DO 2 M = 1, LP	0027
	B(N,M) = 0.D0	0028
	2 CONTINUE	0 0 29
	1 CONTINUE	0030
С		0031
С	CALCULATE THOSE ELEMENTS OF THE MATRIX WHICH ARE NON-ZERO	0032
С		0033
	$C2 = 1 \cdot / (A(4) * A(11) - A(5) * A(10))$	0034
	C5 = A(9) + A(6) * XV + A(7) * XR + A(8) * U + A(26) * U * * 3 + A(27) * XR * XV * *	0035

```
C6 = A(15) + A(12) * XV + A(13) * XR + A(14) * U + A(31) * U * * 3 + A(32) * XR * XV
                                                                                                   0037
                                                                                                   0038
      1 **2 +A(33)*U*XV **2
      K_{2} = 1
                                                                                                   0039
      K3 = 2
                                                                                                   0040
                                                                                                   0041
      K6 = 3
                                                                                                   0042
      K8 = 4
      D1 = A(6) + A(27) * XR * XV * 2 + 2 + 2 + A(28) * XV * U
                                                                                                   0043
                                                                                                   0044
      D2 = A(12)+2_3*A(32)*XR *XV +2.*A(33)*XV *U
                                                                                                   0045
      D3 = A(7) + A(27) + XV + 2
                                                                                                   0046
      D4 = A(13) + A(32) + XV + 2
      C7 = 2.*A(27)*(XV *XRD+XR *XVD)+2.*A(28)*U*XVD+2.*A(28)*XV *UD
                                                                                                   0047
      C8 = 2.*A(32)*(XV *XRD+XR *XVD)+2.*A(33)*U*XVD+2.*A(33)*XV *UD
                                                                                                   0048
      C9 = A(6) \times XVD + A(7) \times XRD + A(27) \times (XV \times 2 \times XRD + 2_0 \times XR \times XVD \times XV ) + 2_0 \times A(2)
                                                                                                   0049
                                                                                                   0050
      1 8 × U × X V × X V + A (8 ) × U + 3 × A (26 ) × U + 2 + A (28 ) × X V × 2 × U + 3
      C10 = A(12) * XVD + A(13) * XRD + A(32) * (XRD * XV * * 2 + 2 * XR * XV * XVD) + 2 *
                                                                                                   0051
                                                                                                   0052
      1 A(33)*U*XV *XVD+A(14)*UD+3.*A(31)*U**2*UD+A(33)*XV **2*UD
                                                                                                   0053
       D5 = 2.*A(27)*XV *XVD
                                                                                                   0054
       D6 = 2_{\circ} * A(32) * XV * XVD
       D7 = A(11)*C9-A(5)*C10
                                                                                                   0055
                                                                                                   0056
       D8 = A(4) * C10 - A(10) * C9
                                                                                                   0057
С
С
       CALCULATE THOSE ELEMENTS CORRESPONDING TO THE PARTIAL DERIVATIVES
                                                                                                   0058
С
       WITH RESPECT TO THE STATE VARIABLES OF THE EXTENDED STATE VECTOR
                                                                                                   0059
                                                                                                   0060
С
       B(K_2,K_2) = C_2*(A(11)*D_1-A(5)*D_2)
                                                                                                   0061
                                                                                                    0062
       B(K_2,K_3) = C_2 (A(11) + D_3 - A(5) + D_4)
                                                                                                    0063
       B(K3,K2) = C2*(A(4)*D2-A(10)*D1)
                                                                                                    0064
       B(K_3,K_3) = C_2 \times (A(4) \times D_4 - A(10) \times D_3)
       B(K8,K2) = C2*(A(11)*C7-A(5)*C8)
                                                                                                    0065
                                                                                                    0066
       B(KB,K3) = C2*(A(11)*D5-A(5)*D6)
                                                                                                    0067
       B(K8,K8) = C2*(A(11)*D1-A(5)*D2)
                                                                                                    0068
       NPA = LP1
       I = NO+1
                                                                                                    0069
                                                                                                    0070
       N = 1
                                                                                                    0071
    10 CONTINUE
                                                                                                    0072
С
```

C	C CALCULATE THE REMAINING ELEMENTS WHICH CORRESPON	ND TO THE PARTIAL 0073
с С	U DERIVATIVES WITH RESPECT TO THE IDENTIFIED COEFI	
С С	C EXTENDED STATE VECTOR	0075
L		
	GU 10(11,12,13,14,15,16,17,18,19,20,21,22,23,24	1551561571281291301 0077 0070
	131,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46	1 • NPA 0078
		0079
	GO TO 25	0080
	12 CONTINUE	0081
	GO TO 25	0082
	13 CONTINUE	N 0083
	GO TO 25	0084
	14 CONTINUE	0085
	B(K2,I) = -C2**2 *A(11)*(A(11)*C5-A(5)*C6)	0860
	B(K3,I) = -C2**2 *A(11)*(A(4)*C6-A(10)*C5)+C2*C6	0087
	B(K8,I) = C2 * 2 * A(11) * 07	0088
	GO TO 25	0089
	15 CONTINUE	0090
	B(K2,I) = C2**2 *A(10)*(A(11)*C5-A(5)*C6)-C2*C6	0091
	B(K3,I) = C2**2 *A(10)*(A(4)*C6-A(10)*C5)	0092
	B(K8,I) = -C2**2*(A(10)*D7-C2*C10)	0093
	GO TO 25	0094
	16 CONTINUE	0095
	B(K2,I) = C2*A(11)*XV	0096
	B(K3,I) = -C2*A(10)*XV	0097
	B(K8,I) = C2*A(I1)*XVD	0098
	GO TO 25	0099
	17 CONTINUE	0100
	B(K2,I) = C2*A(11)*XR	0101
	B(K3,I) = -C2*A(10)*XR	0102
	B(K8,I) = C2*A(11)*XRD	0103
	GO TO 25	0104
	18 CONTINUE	0105
	B(K2,1) = C2*A(11)*U	0106
	B(K3,I) = -C2*A(10)*U	0107
	B(K8,I) = A(11) * UD * C2	0108
		N
		· 00
		÷

,

	GO TO 25	0109
19	CONTINUE	0110
2 7	B(K2.1) = C2*A(11)	0111
	$B(K_3, 1) = -C_2 * A(10)$	0112
	60 To 25	0113
20	CONTINUE	0114
20	B(K2,T) = C2**2 *A(5)*(A(11)*C5-A(5)*C6)	0115
	B(K3, 1) = C2**2 *A(5)*(A(4)*C6-A(10)*C5)-C2*C5	0116
	B(K8,T) = -C2**2*A(5)*D7	0117
	60 TO 25	0118
21		0119
ζ.Τ	$B(K_2, T) = -C_{2**2*A}(A) * (A(11)*C_5-A(5)*C_6)+C_2*C_5$	0120
	$B(K_2,T) = -C_{2**2} \times A(4) \times (A(4) \times C_{-A}(10) \times C_{-})$	0121
	$B(K_{2},T) = C_{2} \times 2 \times (A(4) \times C_{2} \times C_{2})$	0122
	C(1, C) = C = C = C = C = C = C = C = C = C	0123
22		0124
~ ~	$R/V2$, $II = -C2 \times 151 \times 10$	0125
	$R(K2, I) = C2 \times A(2) \times V$	0126
	$P(X) = C^{*}(Y) = C^{*}(Y)$	0127
	CO TO 25	0128
22		0129
23	9 (K) []])*K(S)*YP	0130
	P(V2 + 1) = -O2*A(2)*XX	0131
	P(KO I) = -C2*A(F)*XPO	0132
	CO TO 25	0133
24		0134
24	$P(V2, T) = -C2 \pm A(5) \pm H$	0135
	$R(X_3, T) = C2 \times A(2) \times C$	0136
	$P(K_0, 1) = -A(5) \times (0.27)$	0137
	C(Roy1) = -A(J) + 0D + 0Z	0138
66	CONTINUE	0139
20	$P(K2, I) = -(2 \times 1/5)$	0140
	$D(RZYI) = CZ^{2}R(Z)$	0141
	DINJ911 - VETRITI CO TO 25	0142
64		0143
20	CC TO 25	0144

. -

201

У

57	CONTINUE	0145
	GO TO 25	0146
28	CONTINUE	0147
	GO TO 25	0148
29	CONTINUE	0149
	GO TO 25	0150
30	CONTINUE	0151
	GO TO 25	0152
31	CONTINUE	0153
	G0 T0 25	0154
32	CONTINUE	0155
	60 TO 25	0156
33	CONTINUE	0157
	60 TO 25	0158
34	CONTINUE	0159
	GQ TQ 25	0160
35	CONTINUE	0161
	$B(K3, I) = -C2*\Delta(10)*XV**3$	0162
	$B\{KB,I\} = C2*A(11)*3*XV**2*XVD$	0163
	GO TO 25	0164
36	CONTINUE	0165
	$B(K2,I) = C2 \times U \times X3 \times A(11)$	0166
	$B(K_3, I) = -(2 \times 1) \times 10$	0167
	$B(K8,T) = \Delta(11) + 3 + 11 + 2 + 11 + C2$	0168
		0169
37		0170
<i>.</i>	$B[K_2, I] = C^2 X[3] \times X[2] \times X[1]$	0171
	$B(K3, 1) = -C2 \times A(13) \times XR \times XV \times 2$	0172
		0173
38		0174
20	$B(K_2, T) = C(2*)(*)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)$	0175
	$B[K3,I] = -C2 \times (1 \times V) \times (2 \times A \times $	0176
	$B\{KB_{n}\} = \Delta\{1\}\} \times \{2, \times\} \times \{2, \dots, \times\}$	0177
		0179
20	CONTINUE	0170
	B(K3,T) = -C2xA(10)xXVxLxx2	0190
		0100

.

202

3

	B(K8,I) = C2*A(I1)*(XV*2*U*UD+U**2*XVD)	0181
	GO TO 25	0182
40	CONTINUE	0183
	B(K3,1) = C2*A(4)*XV**3	0184
	B(K8,I) = -C2*A(5)*3*XV**2*XVD	0185
	GO TO 25	0186
41	CONTINUE	0187
. –	$B(K_2,I) = -C_2 + U + 3 + A(5)$	0188
	B(K3,I) = C2*U**3 *A(4)	0189
	B(K8,1) = -A(5)*3*U**2*UD*C2	0190
	GU TO 25	0191
42	CONTINUE	0192
	$B(K_2, I) = -C_2 \times X(3) \times X(2) \times 2 \times A(5)$	0193
	B(K3,I) = C2*XR *XV **2 *A(4)	0194
	$B(K_{0},I) = -C_{2}*A(5)*(XRD*XV **2+2.*XR *XV *XVD)$	0195
	GO TO 25	0196
43	CONTINUE	0197
	B(K2,I) = -C2+U+X(2)++2 +A(5)	0198
	B(K3, 1) = C2*U*XV **2 *A(4)	0199
	8{K8,1} = -A(5)*{2.*U*XV *XVD+XV **2*UD)*C2	0200
	GO TO 25	0201
44	CONTINUE	0202
	B(K3,I) = C2*A(4)*XV*U**2	0203
	B(K8,I) = -C2*A(5)*(XV*2*U*UD+U**2*XVD)	0204
	GO TO 25	0205
45	CONTINUE	0206
	GO TO 25	0207
46	CONTINUE	0208
25	CONTINUE	0209
	N = N+1	0210
	IF (N.GT.MP) GO TO 26	0211
	GO TO (101,102,103,104,105,106,107,108,109,110,111,112,113,114,	0212
	1115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,	0213
	2131,132,133,134,135,136),N	0214
	GO TO 27	0215
101	NPA = LP1	0216

	GO TO 27	0217
102	NPA = LP2	0218
	GO TO 27	0219
103	NPA = LP3	0220
	GO TO 27	0221
104	NPA = LP4	0222
	GO TO 27	0223
105	S NPA = LP5	0224
	GO TO 27	0225
106	NPA = LP6	0226
	GO TO 27	0227
107	NPA = LP7	0228
	GO TO 27	0229
108	B NPA = LPB	0230
	GO TO 27.	0231
109	9 NPA = LP9	0232
	GO TO 27	0233
110	NPA = LP10	0234
	GO TO 27	0235
111	L NPA = LP11	0236
	GO TO 27	0237
112	2 NPA = LP12	0238
	GO TO 27	0239
113	B NPA = LP13	0240
	GO TO 27	0241
114	NPA = LP14	0242
	GU TU 27	0243
115	NPA = LP15	0244
	GO TO 27	0245
116	b NPA = LP16	0246
	GU 10 27	0247
117	(NPA = LP1 /	0248
		0249
118	S NPR = LP18	0250
		0251
119	Y NPA = LP17	0252

.

	GO TO 27	0253
120	NPA = 1P20	0254
1 C V		0255
121	NPA = 1P21	0256
* ~ 1		0257
122	NPA = 1P22	0258
166		0259
123	NPA = 1923	0260
42.0	GO TO 27	0261
124	NPA = LP24	0262
	GO TO 27	0263
125	NPA = 1.P25	0264
~~~	GG TO 27	0265
126	NPA = 1P26	0266
	GO TO 27	0267
127	NPA = 1P27	0268
	G0 T0 27	0269
128	NPA = LP28	0270
	GO TO 27	. 0271
129	NPA = LP29	0272
	GO TO 27 .	0273
130	NPA = LP30	0274
	GO TO 27	0275
131	NPA = LP31	0276
	GO TO 27	0277
132	NPA = LP32	0278
	GO TO 27	0279
133	NPA = LP33	0280
	GO TO 27	0281
134	NPA = LP34	0282
	GO TO 27	0283
135	i NPA = LP35	0284
	GO TO 27	0285
136	NPA = LP36	0286
27	I = N + NO	0287
	GO TO 10	0288
26 CONTINUE RETURN END

1

.

.

0289 0290 0291

	SUBROUTINE EFNT2(E1,Q,EN,Q1,BN,FT,B,LP,NO,SP,W,EH)	0001
С		0002
С	SUBROUTINE EFNT2 CALCULATES THE TIME RATE OF CHANGE OF THE ERROR	0003
C	COVARIANCE MATRIX AND RETURNS THE VALUE TO SUBROUTINE PROP TO BE	0004
С	INTEGRATED OVER THE TIME INCREMENT	0005
C		0006
	INTEGER SP	0007
	DOUBLE PRECISION EH(SP,SP),W(1),E1(LP,LP),EN(LP,LP),Q(LP,LP)	8000
	DOUBLE PRECISION Q1(LP,LP),B(LP,LP),BN(LP,LP),FT(LP,LP)	0009
C		0010
С	***	0011
C		0012
	DO 1 N = 1, LP	0013
	DO 2 M = 1, LP	0014
	QI(N,M) = Q(N,M)	0015
	BN(N,M) = B(N,M)	0016
	EN(N,M) = EH(N,M)	0017
	2 CONTINUE	0018
	1 CONTINUE	0019
	CALL TRNSPS(BN,LP,LP,LP,LP,FT,LP,LP)	0020
	CALL MAMPIS(BN, LP, LP, EN, LP, LP, LP, LP, LP, W, LP)	0021
	CALL MAMP2S(EN,LP,LP,FT,LP,LP,LP,LP,LP,W,LP)	0022
	CALL MAADDS(BN,LP,LP,LP,FT,LP,LP)	0023
	CALL MAADDS(BN, LP, LP, LP, Q1, LP, LP)	0024
	DO 3 N = 1, LP	0025
	DO 4 M = 1, LP	0026
	E1(N,M) = BN(N,M)	0027
	4 CONTINUE	0028
	3 CONTINUE	0029
	RETURN	0030
	END	0031

-44.5

( 🖉

~		SUBROUTINE GAIN(H,R,EB,K,EM,H1,T,LP,NO,SP,W,H2,C,IC,IR)	0001
с С		SUBROUTINE GAIN DETERMINES THE EXTENDED KALMAN FILTER GAIN USED IN	0002
č		UPDATING THE STATE AND ERROR COVARIANCE ESTIMATES	0004
C			0005
		INTEGER SP	0006
		DIMENSION IR(1), IC(1)	0007
		DUUBLE PRECISION HINU,SPI,WIII,HZINU,NUI,UEI	0008
		DUUDLE PREVIDIUN KILPALPIAEDILPALPIAKILPANUIAEMILPALPIAIINUALPI DOUDLE DECISION THED NOV CAN	0009
r		DUDDLE PRECIDIUN TREPANOTACII	0010
ř	***	****	0012
č			0013
Ť		$DO 1 N = 1 \cdot LP$	0014
		DO 2 M = 1, LP	0015
		EM(N,M) = EB(N,M)	0016
	2	CONTINUE	0017
	1	CONTINUE	0018
		DD 3 N = 1, NO	0019
		DO 4 M = 1 + LP	0020
		H1(N,M) = H(N,M)	0021
	4	CONTINUE	0022
	3	CONTINUE	0023
		CALL TRNSPS (H1, NO, LP, NO, LP, T, LP, NO)	0024
		CALL MAMPIS(EM, LP, LP, T, LP, NU, LP, LP, NU, W, NU)	0025
		CALL MAMPIS(HI;NU;LP;EM;LP;LP;NU;LP;NU;W;NU)	0020
		CALL MAADUS(HI;NU;EF;NL;NU;K;LF;LF) DO A N - 1 NO	0027
		D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D = D + D +	0020
		UU 7 14 - 19 NU H 2 ( N. M) - H 2 ( N. M)	0029
		$KK = \{N-1\} + \{M-1\} \times N(n+1)$	0031
		$C(KK) = H2(N_*M)$	0032
	9	CONTINUE	0033
	8	CONTINUE	0034
		CALL MINV(C,ND,DET,IR,IC)	0035
C			0036

1

. .

.

i

C C	VERIFY THAT THE DETERMINATE OF THE INVERTED MATRIX IS NOT ZERO	0037 0038
	IF (DET.NE.O.DO) GO TO 5	0039
	WRITE (6,100) DET	0040
100	FORMAT(1H1,//5X,'DETERMINATE = ',F20.10)	0041
5	CONTINUE	004Z
	DO 10 N = 1, NO	0043
	DO 11 M = 1, NO	0044
	KK = (N-1) + (M-1) * NO+1	0045
	$H_2(N,M) = C(KK)$	0046
11	CONTINUE	0047
10	CONTINUE	0048
	CALL MAMPIS(EM,LP,LP,H2,NO,NO,LP,NO,NO,W,NO)	0049
	$DO 6 N = 1 \cdot LP$	0050
	$DO 7 M = 1 \cdot NO$	0051
	K(N,M) = EM(N,M)	0052
7	CONTINUE	0053
6	CONTINUE	0054
-	RETURN	0055
	END	0056

.

~

.

ł

•

.

.

c	SUBROUTINE UPDT(Z,ZV,ZR,ZPS,ZVD,H,IM,EB,K,EL,ES,H2,H3,LP,NO, 1XH,XB,EH,W,SP)	0001 0002 0003
	SUBROUTINE UPDT IS USED TO UPDATE THE STATE AND ERROR COVARIANCE Matrices to their value at the end of the specified time increment	0004 0005 0006
v	INTEGER SP DOUBLE PRECISION Z(1),ZV(1),ZR(1),ZPS(1),ZVD(1) DOUBLE PRECISION EB(LP,LP),XH(1),EH(SP,SP),EL(1),H2(NO,LP)	0007 0008 0009
с	DOUBLE PRECISION H3(LP,LP),W(1),ES(1),DABS DOUBLE PRECISION H(NO,SP),XB(1),K(LP,NO)	0010 0011 0012
C C	x + x + x + x + x + x + x + x + x + x +	0013 0014 0015
	Z(2) = ZR(IM) Z(3) = ZPS(IM) Z(4) = ZVD(IM)	0016 0017 0018
	DO 1 I = 1,LP EL(I) = XB(I) 1 CONTINUE	0019 0020 0021
	DO 2 N = 1, NO DO 3 M = 1, LP H2(N,M) = H(N,M)	0022 0023 0024
	H3(N,M) = H(N,M) 3 CONTINUE 2 CONTINUE	0025 0026 0027
С С	CALL MAMP2S(H2,NO,LP,EL,LP,1,NO,LP,1,W,LP) FIND THE DIFFERENCE BETWEEN THE CALCULATED STATE VALUE AND THAT	0028 0029 0030
C C	FROM THE NOISY SEA TRIAL	0031 0032 0033
С	ES(I) = Z(I)-EL(I) 6 CONTINUE	0034 0035 0036

.

C		CALCULATE THE INCREMENTAL CHANGE IN STATE	0037
Ċ			0038
		CALL MAMP2S(K,LP,NO,ES,NO,1,LP,NO,1,W,LP)	0039
С			0040
С		UPDATE THE ELEMENTS OF THE EXTENDED STATE VECTOR	0041
C			0042
		DO 7 I = 1, LP	0043
		XH(I) = XB(I) + ES(I)	0044
	7	CONTINUE	0045
C			0046
С		CALCULATE THE INCREMENTAL CHANGE IN THE ERROR COVARIANCE MATRIX	0047
C			0048
		CALL MAMP2S(K,LP,ND,H3,LP,LP,LP,ND,LP,W,LP)	0049
		CALL MAMPIS(H3,LP,LP,EB,LP,LP,LP,LP,LP,W,LP)	0050
C			0051
C		UPDATE THE ERROR COVARIANCE MATRIX	0052
C			0053
		CALL MASUBS(EB,LP,LP,LP,H3,LP,LP)	0054
		DO 8 N = 1, LP	0055
		DO 9 M = 1 + LP	0056
		EH(N,M) = DABS(EB(N,M))	0057
	9	CONTINUE	0058
	8	CONTINUE	0059
		RETURN	0060
		END	0061

•

•...

	SUBROUTINE STORB(T,MH,K,KS,NO,EE,XH,EH,SP)	0001
С		0002
Ċ	SUBROUTINE STORB STORES SELECTED VALUES OF THE STATE AND ERROR	0003
Ċ	COVARIANCE MATRICES AT REGULAR INTERVALS OVER TIME FOR USE IN	0004
Ċ	THE PLOTTING ROUTINE	0005
č		0006
÷	INTEGER SP	0007
	DIMENSION VP(94) . RP(94) . PSP(94) . VDP(94)	0008
	DIMENSION PP1(94), PP2(94), PP3(94), PP4(94), PP5(94), PP6(94), PP7(94)	0009
	DIMENSION PP8(94), PP9(94), PP10(94), PP11(94), PP12(94), PP13(94)	0010
	DIMENSION PP14(94) • PP15(94) • PP16(94)	0011
	DIMENSION PP17(94), PP18(94), PP19(94), PP20(94), PP21(94), PP22(94)	0012
	DIMENSION PP23(94) • PP24(94) • PP25(94) • PP26(94) • PP27(94) • PP28(94)	0013
	DIMENSION PP29(94) • PP30(94) • PP31(94) • PP32(94) • PP33(94) • PP34(94)	0014
	DIMENSION PP35(94). PP36(94)	0015
	DIMENSION EE(1)	0016
	DOUBLE PRECISION XH(1)+EH(SP+SP)	0017
	DOUBLE PRECISION T(1).D.DSQRT.DABS	0018
	COMMON /OUTP1/ VP.RP.PSP.VDP.PP1.PP2.PP3.PP4.PP5.PP6.PP7.PP8	0019
	COMMON /OUTP5/ PP17.PP18.PP19.PP20.PP21.PP22.PP23.PP24.PP25.PP26	0020
	COMMON /OUTP6/ PP27.PP28.PP29.PP30.PP31.PP32.PP33.PP34.PP35.PP36	0021
	COMMON /OUTP2/ PP9.PP10.PP11.PP12.PP13.PP14.PP15.PP16	0022
	COMMON /OUTP3/ EV.ER.EPS.EVD.EP1.EP2.EP3.EP4.EP5.EP6.EP7.EP8	0023
	COMMON /OUTP7/ EP17.EP18.EP19.EP20.EP21.EP22.EP23.EP24.EP25.EP26	0024
	COMMON /OUTP8/ EP27.EP28.EP29.EP30.EP31.EP32.EP33.EP34.EP35.EP36	0025
	COMMON /OUTP4/ FP9.FP10.EP11.EP12.EP13.EP14.EP15.EP16	0026
C		0027
Č*	<*******	0028
č		0029
v	T = MH	0030
	I = KS * I	0031
C		0032
č	STORE THE TIME VALUES OF EACH OBSERVATION	0033
č		0034
-	D = T(L)	0035
	VP(I) = D	0036
		N
		μ N
		10

•

RP(I) =	D	
PSP(I) =	D	
VDP(I) =	D	
PP1(I) =	D	
PP2(I) =	D	
PP3(I) =	D	
PP4(I) =	D	
PP5(I) =	C	
PP6(I) =	D	
PP7(I) =	Ð	1
PP8(I) =	C	
PP9(I) =	D	)
PP10(1)	#	D
PP11(I)	=	D
PP12(I)	=	D
PP13(I)	Ξ	D
PP14(I)	ਙ	D
PP15(I)	Ξ	D
PP16(I)	=	D
PP17(I)	Ŧ	D
PP18(I)	=	Ð
PP19(I)	₽	D
PP20(I)	Ŧ	D
PP21(I)	=	D
PP22(I)	=	D
PP23(I)	=	D
PP24(1)	#	D
PP25(I)	-	D
PP25(1)		D
PP26(1)	=	D
PP27(I)	Ŧ	D
PP28(I)	#	D
PP29(I)	=	D
PP30(I)	=	D
PP31(I)	1	D
PP32(I)	Ξ	D

0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0055 0056 0055 0055 0055 0055
0067 0068 0069 0070 0071 0072

213

.

.

•

PP33(I) = 00073 0074 PP34(I) = D0075 **PP35(I)** ≈ D PP36(I) = D0076 0077 STORE THE MEASURED VALUES OF THE ELEMENTS OF THE EXTENDED STATE 0078 0079 VECTOR 0080 N = I + K0081 0082 VP(N) = XH(1)0083 RP(N) = XH(2)0084 PSP(N) = XH(3)0085 VDP(N) = XH(4)0086 PP1(N) = XH(NO+1)0087 PP2(N) = XH(NO+2)PP3(N) = XH(NO+3)8800 0089 PP4(N) = XH(NO+4)0090 PP5(N) = XH(NO+5)0091 PP6(N) = XH(NO+6)0092 PP7(N) = XH(NO+7)0093 PPB(N) = XH(NO+8)0094 PP9(N) = XH(NO+9)0095 PP10(N) = XH(NO+10)0096 PP11(N) = XH(NO+11)PP12(N) = XH(NO+12)0097 0098 PP13(N) = XH(NO+13)0099 PP14(N) = XH(NO+14)PP15(N) = XH(NO+15)0100 0101 PP16(N) = XH(NO+16)0102 PP17(N) = XH(NO+17)PP18(N) = XH(NO+18)0103 PP19(N) = XH(NO+19)0104 0105 PP20(N) = XH(NO+20)1 0106 PP21(N) = XH(NO+21)0107 PP22(N) = XH(NO+22)PP23(N) = XH(NO+23)0108

с с

Ċ

214

//

	PP24(N) = XH(N0+24)	0109
	PP25(N) = XH(N0+25)	0110
	PP26(N) = XH(NO+26)	0111
	PP27(N) = XH(NO+27)	0112
	PP28(N) = XH(NO+28)	0113
	PP29(N) = XH(NO+29)	0114
	PP30(N) = XH(NO+30)	0115
	PP31(N) = XH(N0+31)	0116
	PP32(N) = XH(NO+32)	0117
	PP33(N) = XH(NO+33)	0118
	PP34(N) = XH(N0+34)	0119
	PP35(N) = XH(NO+35)	0120
	PP36(N) = XH(NO+36)	0121
	IF (I.LT.K) GO TO 100	0122
		0123
	STORE THE STANDARD DEVIATIONS FOR EACH ELEMENT OF THE EXTENDED	0124
	STATE VECTOR AT THE END OF THE IDENTIFICATION PROCESS	0125
		0126
•	$DO \ 1 \ M = 1, SP$	0127
_	EE(M) = DSQRT(DABS(EH(M,M)))	0128
L	CONTINUE	0129
	EV = EE(1)	0130
	ER = EE(2)	0131
	EPS = EE(3)	0132
	EVD = EE(4)	0133
	EPI = EE(NO+1)	0134
	EP2 = EE(N0+2)	0135
	EP3 = EE(NU+3)	0136
	EP4 = EE(NU+4)	0137
	$EP_{0} = EE(NU+0)$	0138
	EPO = EE(NU+O)	0139
	EPI = EE(NU+I)	U 14U /
	$CPO^{2} = CC(NUTO)$	0141
	EF7 = EE(NUT7) E010 - EE(NUT10)	0142
	CPIV = CERNUTIVI CD11 = CERNUTIVI	0143
	CT11 = CC(NOT11)	0144

-

	EP12 = EE(NO+12)	0145
	EP13 = EE(NO+13)	0146
	EP14 = EE(NO+14)	0147
	EP15 = EE(NO+15)	0148
	EP16 = EE(N0+16)	0149
	EP17 = EE(NO+17)	0150
	EP18 = EE(NO+18)	0151
	EP19 = EE(N0+19)	0152
	EP20 = EE(N0+20)	0153
	EP21 = EE(NO+21)	0154
	EP22 = EE(NO+22)	0155
	EP23 = EE(NO+23)	0156
	EP24 = EE(N0+24)	0157
	EP25 = EE(NO+25)	0158
	EP26 = EE(N0+26)	0159
	EP27 = EE(NO+27)	0160
	EP28 = EE(NO+28)	0161
	EP29 = EE(NO+29)	0162
	EP30 = EE(NO+30)	0163
	EP31 = EE(NO+31)	0164
	EP32 = EE(NO+32)	0165
	EP33 = EE(NO+33)	0166
	EP34 = EE(NO+34)	0167
	EP35 = EE(NO+35)	0168
	EP36 = EE(NO+36)	0169
100	CONTINUE	0170
	RETURN	0171
	END	0172

-

.

.

.

Sal

	<u>^^</u>
C	0002
C SUBROUTINE TRNSPS TAKES THE TRANSPOSE OF MATRIX A AND STORES IT	0003
C IN MATRIX B	0004
C	0005
DOUBLE PRECISION A(IA,JA),B(IB,JB)	0006
C	0007
C *****	0008
C	0009
K = MA	0010
$IF(NA_LT_MA) K = NA$	0011
DO 2 I = 1 K	0012
DO 2 J = I K	0013
$B(I_*J) = A(J_*I)$	0014
$2 B(J \bullet I) = A(I \bullet J)$	0015
IF(MA-NA) 3.4.5	0016
3 L = MA+1	0017
$DC = 6 K = L \cdot NA$	0018
$DO 6 I = 1 \cdot MA$	0019
$6 B(K \cdot I) = A(I \cdot K)$	0020
4 RETURN	0021
5 L = NA+1	0022
DD 7 T = 1.NA	0023
$00.7 l = 1.M\Delta$	0024
$7 B(1.1) = \Delta(1.1)$	0025
RETURN	0026
FND	0027

	SUBROUTINE MAMPIS(A,IA,JA,B,IB,JB,MA,NAMB,NB,W,IW)	0001
С		· 0002
С	SUBROUTINE MAMPIS MULTIPLIES MATRIX A BY MATRIX B AND STORES THE	0003
С	PRODUCT IN MATRIX A	0004
C		0005
-	DOUBLE PRECISION A(IA.JA).B(IB.JB).W(IW).WJ	0006
С		0007
č	*****	0008
č		0009
•	OB 2 I = 1.MA	0010
	DO = 1 + 1 + NB	0011
	$W_{\rm L} = 0.00$	0012
	DO 11 K = 1.NAMB	0013
	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}$	0014
	1  West  = West  Wes	0015
	107 - HO	0016
		0010
	Z ALIYNI - NUNI DETUDN	0017
		0018
	ENU	0013

· · ·

-

**`** 

.

.

		SUBROUTINE MAMP2S(A, IA, JA, B, IB, JB, MA, NAMB, NB, W, IW)	0001
C			0002
č		SUBROUTINE MAMP2S MULTIPLIES MATRIX A BY MATRIX B AND STORES THE	0003
C		PRODUCT IN MATRIX B	0004
Ċ			0005
-		DOUBLE PRECISION A(IA.JA).B(IB.JB).W(IW).WI	0006
С			0007
č	****	*****	0008
č			0009
Č		DD = 2 J = 1.NB	0010
	;	$DD = 1 T = 1.M\Delta$	0011
		WI = 0.00	0012
		DD 11 K = 1.NAMB	0013
	11	$\Delta T = \Delta T X A T X A A K A A$	0014
	11	NITALIANITOLNAUI	0014
	T	N117 - N1 N0 0 T - 1 MA	0015
	_		0010
	2	B(1,j) = W(1)	0017
		RETURN	0018
		END	0019

	0001	
C		0002
č	SUBROUTINE MAADDS ADDS MATRIX A TO MATRIX B AND STORES THE SUM IN	0003
č	MATRIX A	0004
ř		0005
0	DOUBLE PRECISION ALIA, A), BLIB, B)	0006
c		0007
č	*****	0008
č		0009
Ŭ	DO 1 J = 1.NA	0010
	DD = 1 + MA	0011
	$1 A(I_{A}) = A(I_{A}) + B(I_{A})$	0012
	RETURN	0013
	END	0014

	SUBROUTINE MASUBS(A, IA, JA, MA, NA, B, IB, JB)	0001
C		0002
č	SUBROUTINE MASUBS SUBTRACTS MATRIX B FROM MATRIX A WITH THE	0003
č	PESINT STORED IN MATRIX A	0004
ř	REJUCT STORED IN DETRIK S	0005
0	DOUBLE PRECISION ALIA, (A), BLIB, JB	0006
c	DUDDLE PRECISION ALLAGRAGIANTINGON	0007
č	****	0008
č		0009
Ň	$DO(1, 1) = J \cdot NA$	0010
	$DO = I = I \cdot MA$	0011
	$1  A(T_{-1}) = A(T_{-1}) - B(T_{-1})$	0012
	DETION	0013
	END	0014

i

		0001
r		0002
ř	SUBDOUTINE MINY INVERTS THE MATRIX & AND PLACES THE RESULT	0003
č	TAL FOCATION A	0004
C C	TH FOCATION A	0005
L	DIMENSION A(1) - (1) - W(1)	0006
	DIMENSION ALTIGULIGENIT	0007
~	DUNDLE PRECISION MADADIGNAHOEDADHOS	0008
L C	بلد بل مله مله مله مله بلد	0009
С С	******	0010
Š	CEADON FOR THE LARCEST ELEMENT	0011
5 C	SEARCH FUR THE CARGEST ECCMENT	0012
L	n = 1.00	0013
	$\mathbf{U} = \mathbf{I}_{0} \mathbf{U} \mathbf{U}$	0014
	NK = -N	0015
		0016
		0017
	L(K) = K	0018
	M(K) = K	0019
	$\mathbf{K}\mathbf{K} = \mathbf{W}\mathbf{K}\mathbf{K}$	0020
	BIGA = A(KK)	0021
	UU ZU J = NIN 77 - NHAAAA	0022
	$1Z = N^{2}(J^{-1})$	0023
	$\frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$	0024
	IJ = IZ + I	0025
	IO IF (DADS(DIGAF-DADS(A(ISTIT IS)ZOVZO	0026
	15 BIG4 = A(IJ)	0027
	L(K) = 1	0028
	M(K) = J	0029
~	ZU CUNTINUE	0030
С С	INTEDCHANCE DOUS	0031
С С	INTERCHANGE RUNS	0032
C		0033
	J = LIN/ TE / LVN 25 35 25	0034
	IF (J-K) J9(J)(2)	0035
	20 NTM NTM DO 20 T - 1 N	0036

•

		KI = KI + N	0037
		HOLD = -A(KI)	0038
		JI = KI - K + J	0039
		A(KI) = A(JI)	0040
	30	A(JI) = HOLD	0041
С			0042
С		INTERCHANGE COLUMNS	0043
С			0044
	35	I = M(K)	0045
		IF (I-K) 45,45,38	0046
	38	JP = N*(I-1)	0047
		DO 40 J = 1, N	0048
		JK = NK+J	0049
		JI = JP + J	0050
		HOLD = -A(JK)	0051
		A(JK) = A(JI)	0052
	40	A(JI) = HOLD	0053
С		·	0054
С		DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT	0055
Ċ		IS CONTAINED IN BIGA)	0056
С			0057
	45	IF (BIGA) 48,46,48	0058
	46	D = 0.00	0059
		RETURN	0060
	48	DO 55 I = 1, N	0061
		IF (I-K) 50,55,50	0062
	50	IK = NK+I	0063
		A(IK) = A(IK)/(-BIGA)	0064
	55	CONTINUE	0065
С			Ŭ 0066
С		REDUCE MATRIX	0067
С			0068
		DO 65 I = 1, N	0069
		IK = NK + I	0070
		HOLD = A(IK)	0071
		IJ = I - N	0072

		$DO_{1} 65 J = 1.0$	0073
		I = I + I	0074
		IF (I-K) 60,65,60	0075
	60	IF (J-K) 62.65.62	0076
	62	KJ = IJ - I + K	0077
		A(T,I) = HOID * A(K,I) + A(T,I)	0078
	65	CONTINUE	0079
c	0.5		0012
ř		NIVINE DOW BY DIVOT	0081
ř			0001
v		K = K - N	0002
			20 <b>00</b> 4800
		K I = K IIN	0004
		15 - 1.51	2000
	70	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	0000
	70	CONTINUE	0007
~	15	CONTINUE	0000
C C			0089
Š		PRODUCT OF PIVOIS	0090
6			0091
~		$D = U \neq BIGA$	0092
C C			0093
5		REPLACE PIVUT BY RECIPRULAL	0094
C		· · · · · · · · · · · · · · · · · · ·	0095
		$A(KK) = I_{\bullet}O/BIGA$	0096
_	80	CONTINUE	0097
C			0098
С		FINAL ROW AND COLUMN INTERCHANGE	0099
С			0100
		K = N	0101
	100	K = (K-1)	0102
		IF (K) 150,150,105	0103
	105	I = L(K)	0104
		IF (I-K) 120,120,108	0105
	108	JQ = N * (K-1)	0106
		JR = N*(I-1)	0107
		DO 110 $J = 1, N$	0108

JK = JQ+J	0109
HOLD = A(JK)	0110
JI = JR+J	0111
A(JK) = -A(JI)	0112
10 A(JI) = HOLD	0113
20 J = M(K)	0114
IF (J-K) 100,100,125	0115
25  KI = K - N	0116
DO 130 I = $1,N$	0117
KI = KI + N	0118
HOLD = A(KI)	0119
JI = KI - K + J	0120
A(KI) = -A(JI)	0121
30 A(JI) = HOLD	0122
GO TO 100	0123
50 RETURN	0124
END	0125
	JK = JQ+J $HOLD = A(JK)$ $JI = JR+J$ $A(JK) = -A(JI)$ 10 $A(JI) = HOLD$ 20 $J = M(K)$ $IF (J-K) 100,100,125$ 25 $KI = K-N$ $DO 130 I = 1,N$ $KI = KI+N$ $HOLD = A(KI)$ $JI = KI-K+J$ $A(KI) = -A(JI)$ 30 $A(JI) = HOLD$ $GO TO 100$ 50 RETURN END

.

•-

#### Appendix C

### INPUT DATA DESCRIPTION

<u>Card  $\#_1$  - Card  $\#_6$ :</u> (A(I), I = 1,36) FORMAT (6D13.4)

A(I) - True values of all coefficients to the motion equations, taken from the literature

<u>Card #7 - Card #12</u>: (AI(1), I = 1,36) FORMAT (6D13.4)

AI(I) - Initial estimates of all coefficients to the motion equations, approximately 30% of the accepted true values

<u>Card #13 - Card #18</u>: (ASD(I), I = 1,36) FORMAT (6D13.4)

ASD(I) - The standard deviations to the estimates of all coefficients to the motion equations

<u>Card  $\#_{19}$  - Card  $\#_{21}$ : (PMS(J), J = 1,16) FORMAT (6D13.4)</u>

· 226

- PMS(13) PMS(16) Desired standard deviations of the measurement noise distributions
- <u>Card #22 Card #23</u>: (INX(I), I = 1,8) FORMAT (616)

INX(I) - Odd integer values for use in the Gaussian noise generation, random number generator

Card #24: G FORMAT (F10.6)

G - Identity factor (1) for the process noise vector w

Card #25 - Card #28: LP1 - LP36 FORMAT (915)

LP_ - Coefficients to be identified, in increasing numerical order ... remaining positions to be assigned other arbitrary non-zero values (i.e. 1)

Card #29: VST, RST, PST, VDST FORMAT (4F10.5)

- VST Initial sway velocity
- RST Initial yaw velocity
- PST Initial yaw angle
- VDST Initial yaw acceleration
- <u>Card #30</u>: VCV, RCV, PCV, VDCV FORMAT (4F10.3)

VCV - Estimated covariance of the initial sway velocity

RCV - Estimated covariance of the initial yaw velocity

PCV - Estimated covariance of the initial yaw angle

VDCV - Estimated covariance of the initial sway acceleration Card #31: KS, N, H FORMAT (214,F10.2)

- KS Number of measured points between plotted points
  N Actual number of measurements over the trial period
- H Time increment per measurement
  - <u>note</u>: Trial period = N * HN/KS = number of plotted points = 47
- Card #32: NM, NP FORMAT (215)
  - NM Percentage measurement noise
  - NP Percentage process noise
- Card #33: PW, QW FORMAT (2D10.2)
  - PW Exaggeration factor for the process noise
  - QW Exaggeration factor for the measurement noise
- Card #34: MP, NO FORMAT (214)
  - MP Number of coefficients to be identified
  - NO Number of measured primary state variables used

Card #35: DI, TL, JJ FORMAT (2F10.3, 15)

DI - Maximum rudder deflection in degrees TL - Half-period of the sinusoidal maneuver JJ - Type of maneuver desired for the identification 1 = Single-step rudder deflection 2 = Step zig-zag rudder deflection 3 = Sinusoidal rudder deflection Card #36: NE FORMAT (15)

NE - Type of plotting desired for output of results

1 = Use PLOTM plotting routine only
 2 = Use CALCOMP plotting routines only
 3 = Use both plotting options simultaneously

<u>Card #37 - Card #40</u>: ((TITLE(I,J), J = 1,9), I = 1,4) FORMAT (9A4)

# HYDRODYNAMIC COEFFICIENTS^{(17),(3)}

# (Mariner-class Hull Form)

<u>Coefficient</u> :	Label:	Dimensionalized Value:				
$(m-X_{u}^{\bullet})$	A(1)	12,3068 E5				
Xu	A(2)	-0.8429 E4				
1/2 X _{uu}	A(16)	0.1248 E3				
$1/6 X_{uuu}$	A(17)	-0.0113 E2				
$(1/2 X_{rr} + mx_G)$	A(19)	13.9243 E6				
1/2 X ₅₅	A(20)	-1.6859 E5				
(X _{vr} +m)	A(21)	11.6915 E6				
X _{võ}	A(22)	0.6547 E4				
1/2 X _{vv}	A(18)	-0.2492 E4				
(m-Y•)	A(4)	22.6504 E5				
$(mx_G - Y_r^{\bullet})$	A(5)	-66.5270 E5				
Y _v	A(6)	-8.1515 E4				
1/6 Y _{yyy}	A(25)	-0.8853 E3				
(Y _r -mu)	A(7)	-18.5084 E6				
Υ _δ	A(8)	4.9423 E5				
1/6 Y _{ööö}	A(26)	-1.6006 E5				
$1/2 Y_{rvv}$	A(27)	8.8863 E4				
1/2 Y _{ovv}	A(28)	0.3308 E4				
1/2 Y _{võõ}	A(29)	-0.2669 E3				
Чo	A(9)	-0.6404 E4				

<u>Coefficient</u> :	Label:	Dimensionalized Value:
$(mx_{C} - N_{T})$	A(10)	-1.7560 E7
(IN•)	A(11)	33.8608 E9
N_	A(12)	-9.7735 E6
1/6 N	A(30)	0.0947 E4
$(Nmx_cu)$	A(13)	-32.5103 E8
r G N _s	A(14)	-1.3033 E8
0 1/6 N	A(31)	4.2256 E7
1/2 N	A(32)	-1.6753 E8
$1/2 N_{\odot}$	A(33)	-0.7164 E6
1/2 N $1/2$ N $1/2$ N	A ( 34 )	0.4636 E6
ν Ν	A(15)	2.6293 E6

## <u>Remarks</u>:

This list is comprised only of those coefficients used in the identification program. All others are assumed zero.

The dimensionalized values were obtained from the nondimensional form by assuming the following values:

> $\rho = 1.9905 \, lbf - sec^2/ft^4$ L = 528.01 ft u = 25.317 ft/sec

SAM	PLE	DATA D	ECK	• • •													0001
																	0002
	THIS	S DECK	WAS	USED	IN (	THE IC	DENT	IFICAT	ION	SCH	EME OF	<u>-</u>					0003
	SECT	ION 5.	5 -	V AR I	ATT	DN IN 1	FRIA	L LENG	атн.								0004
																	0005
																	0006
12.30	68D5	5 -8	•429	003		(	000	22.	6504	D5	-66,	5270	005	-8.	151	504	0007
-18.50	8406	<b>,</b> 4	•942	305	-	-6.404(	003	-1.	7560	DD <b>7</b>	33.	.8608	309	-9.	.773	5D6	8000
-32.51	03D8	3 -1	303	30.8		2.629	3D6	0.	1248	103	-0.	.011	3D2	-0.	249	2D4	0009
13.92	4306	» -1	•685	905	1	11.691	5D 5	0.	6547	04		(	000		i	0 D O	0010
-0.98	5303	s –t	.600	6D5		8.8363	3D4	0.	3308	304	-0.	266	903	0.	947	005	0011
4.22	5607	/ -1	•675	308	-	-0.7164	4D6	0.	4636	D6		(	000		i	ODO	0012
15.00	0 D5	5 -11	•000	D3		(	000	29.	450	D5	-46.	569	D <b>5</b>	-57.	.060	D3	0013
-12.95	5 D6	o 64	•000	04	-4	4.830	DS	-12.	292	D <b>6</b>	43.	900	D <b>9</b>	-68.	.414	D5	0014
-22.75	2 08	3 -91	•536	D6		2.000	D6	0.	900	D2	-0-	080	Dl	-0.	.190	D4	0015
10.00	0 D6	- 1	• 300	D <b>5</b>		<b>9.0</b> 00	D5	0.	500	D4		(	000		1	0 D O	0016
-0.70	0 D3	3 -1	.200	05		7.700	D4	0.	250	D4	-0.	200	D3	0.	750	D5	0017
3.50	0 D7	/ -]	.300	86	-	-0.600	D6	0.	.350	06		(	00 C		ļ	000	0018
2.70	0 D 5	5 2	.600	Ð <b>3</b>		(	ODO	67.	951	D4	19.	.958	D5	24.	•454	D3	0019
55.52	5 D5	5 14	.827	()4		19.213	Ð2	52.	680	D <b>5</b>	10.	.158	D <b>9</b>	29.	.321	D5	0020
97.58	1 07	7 39	.101	U6		(	0 D O	Ο.	348	D3	0	.033	0 <b>1</b>	0.	592	D3	0021
3.92	<b>4</b> d <i>e</i>	5 0	.386	D <b>5</b>		2.692	D5	0.	155	04		(	0.0.0			0 D O	0022
0.18	5 D3	3 3	.400	05		1.186	D4	0.	080	D4	0.	.066	03	0.	197	D5	0023
0.72	5 D7	7 0	.375	D8		0.116	D6	0.	113	06		(	0DC			000	0024
0.0	D (	) (	•0	D0		0.0	D0	0.	0	D0	0	• 0	D <b>O</b>	0.	.0	D0	0025
0.00	0000	) ()	.000	0 0 0		0.0035	5D0	0.0	0150	)-2	0,	.000	500	0.	.000	1 D O	0026
0.12	3500	) (	.000	500		0.0330	00C	0.	0035	5D0							0027
1	11	101	100	1 1	101	1011											0028
1	11	101	100	1 1	101	1011											0029
1.0																	0030
6	7	12 1	3	1	1	1	1	1									0031
1	1	1	1	1	1	1	1	1									0032
1	1	1	1	1	1	1	1	1									0033
1	1	1	1	1	1	1	1	1									0034
0.0		0.0		0.0		0.0											0035
0.5		0.5		Ο.	5	0	•5										0036

8 376	2.0	0037
5 5		0038
1.00D0	1.0000	0039
4 4		0040
10.0	100.0 3	0041
3		0042
SWAY VEL	OCITY (FT./SEC.)	0043
YAN VELO	CITY (RAD./SEC.)	0044
Y AW A	NGLE (RADIANS)	0045
SWAY ACCELER	ATION (FT./SEC./SEC.)	0046

·

. • N

#### REFERENCES

- 1. Abkowitz, M. A., <u>Stability and Motion Control of Ocean</u> <u>Vehicles</u>, M.I.T. Press, Cambridge, Massachusetts, 1969.
- 2. _____, Discussion on paper "Maneuvering of Large Tankers", W. B. vanBerlekom and T. A. Goddard, <u>SNAME</u> <u>Transactions</u>, Vol. 80, 1972.
- 3. Brinati, H. L., "System Identification Applied to Maneuvering Trials," M.I.T. Engineers Thesis, Department of Ocean Engineering, 1973.
- 4. Brock, L. D., "Application of Statistical Estimation to Navigation Systems," M.I.T. Ph.D Thesis, Department of Aeronautics and Astronautics, 1965.
- 5. Bryson, A. E., and Ho, Y. C., <u>Applied Optimal Control</u> <u>Optimization, Estimation and Control</u>, Blaisdell Publishing Co., 1969.
- 6. Comstock, J. P., ed., <u>Principles of Naval Architecture</u>, SNAME, 1967.
- Galiana, F. D., "A Review of Basic Principles and of Available Techniques in System Identification," M.I.T. Report No. 20, Power Systems Engineering Group, 1969.
- 8. Hayes, M. N., "Parametric Identification of Non-linear Stochastic Systems Applied to Ocean Vehicle Dynamics," M.I.T. Ph.D Thesis, Department of Ocean Engineering, 1971.
- 9. Hildebrand, F. B., <u>Advanced Calculus for Applications</u>, Prentice-Hall, Inc., 1962.
- 10. Ho, Y. C., and Lee, R. C. K., "Identification of Linear Dynamic Systems," <u>Information and Control</u>, Vol.8, Feb. 1965.
- 11. Kalman, R. E., "A New Approach to Linear Filtering and Prediction Problems," <u>Journal of Basic Engineering</u>, March, 1960.

- 12. "Linear Stochastic Filtering Theory Reappraisal and Outlook," Symposium on System Theory, Brooklyn Polytechnique Institute, April, 1965.
- 13. Kaplan, P., et.al., "The Application of System Identification to the Dynamics of Naval Craft," 9th Symposium on Naval Hydrodynamics, 1972.
- 14. Mehra, R. K., "Identification of Stochastic Linear Systems Using Kalman Filter Representation," <u>AIAA Journal</u>, Vol. 9, No. 1, January, 1971.
- 15. Netavoli, A. N., and deFigueiredo, R. J. P., "On the Identification of Non-linear Dynamical Systems," <u>IEEE Transactions, Automatic Control</u>, Vol. AC-14, No. 5, Feb. 1971.
- 16. Reis, J. M. D. B., "Identification of Ship Model Motion Parameters," M.I.T. Engineer Thesis, Department of Ocean Engineering, 1971.
- 17. Strom-Tejsen, J., "A Digital Computer Technique for Prediction of Standard Maneuvers of Surface Ships," Report 2130, David Taylor Model Basin, 1965.
- 18. Weiner, N., <u>Extrapolation, Interpolation and Smoothing</u> of Stationary Time Series, M.I.T. Press, Cambridge, Massachusetts, 1949.
- 19. I.B.M. Scientific Subroutine Package, Version III, "Programmers Manual," Program 360A-CM-03X, 5th Edition, August, 1970.
- 20. WATFIV Library Manual, University of Waterloo.