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ABSTRACT

This thesis examines the large-scale stability of a
class of infinite, self-similar models of disk galaxies
characterized by a constant circular velocity. These axi-
symmetric and self-gravitating disks are presumed to consist
only of stars which, in addition to their mean rotation
around the center, are endowed with considerable random
velocities. The surface density of these equilibrium models
varies inversely with radius, but the in-and-out components
of the velocities of their stars are assumed distributed in
an identical Gaussian manner at all radii.

Our stability analysis consists of determining whether
any given member of this family of models admits exponen-
tially growing modes of infinitesimal amplitude. Without
loss of generality, we presume such modes to have the angu-
lar dependence exp(imO) , where 8 is the angular coordi-
nate, and we examine separately the appropriate linearized
equations of motion for each angular harmonic m . We take
advantage of the self-similarity of the models to perform
certain of the integrations analytically. Ultimately, for
each m , we obtain an exact integral equation of Fredholm
type that must be satisfied by the radial Fourier transform
of the disturbance density. The solutions of this integral
equation are pursued numerically.

We find that the present disks are stable with respect
to all axisymmetric (m = 0) disturbances provided the velo-
city dispersion is chosen sufficiently large. Specifically
needed for stability is that the r.m.s. random velocity in
the radial direction exceed 0.3781 times the circular
speed; this result agrees closely with an estimate based on
a short-wavelength approximation.



In order to examine non-axisymmetric disturbances, it
was necessary here to immobilize the centermost parts of our
disks, owing chiefly to the arbitrarily rapid angular motions
found therein. This was done by artificially reducing, from
unity at large radii to zero at the center, the fraction of
the stars that was actually permitted to partake in a
disturbance.

Among the non-axisymmetric results so obtained, prob-
ably the most interesting concern bisymmetric (m = 2) dis-
turbances. Provided the center has been "cut out" fairly
gradually, we find invariably that the m = 2 modes become
stable sooner than the axisymmetric or m = 0 modes as the
velocity dispersion is increased. This conclusion contrasts
markedly with several reports in the recent literature that
m = 2 modes seem distinctly more troublesome than those of
kind m = 0 ; we do not dispute such findings, but only
reemphasize that they do not seem to apply here. To be
sure, in cases where the central stars were excluded rather
sharply with radius, even our models exhibit some growing
m = 2 modes that persist beyond the axisymmetric stability
boundary; however, the pattern speeds then leave little doubt
that such instabilities are indebted to the artificially
sharp inner edge of the "active" disk.

Similar studies of the m = 3 and m = 4 disturbances
indicate that these always stabilize sooner than the m = 2
modes. On the other hand, our analysis of the m = 1 modes
remains incomplete, inasmuch as we have not yet examined
properly the m = 1 modes that leave fixed the center of
mass of the entire system. Instead, our m = 1 studies
thus far have been confined largely to the simpler but less
realistic problem for which it is the excluded central disk
that is held fixed in space. Here we find an instability
that persists long after axisymmetric stability has been
achieved, but it is not at all clear yet that such behavior
would remain if the supposedly rigid center were released
and thus were able to displace laterally.

Thesis Supervisor: Alar Toomre
Title: Professor of Applied Mathematics
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I. INTRODUCTION

A good deal of progress has been made during the past

decade toward answering the long-standing questions: why

are there spiral galaxies? why are there barred galaxies?

why indeed do disk galaxies as a class display such a rich

variety of forms? The answers, as we now know, involve

density waves and related shocks, some Jeans instabilities,

objects like Riemann ellipsoids, and once in a while even

interactions with neighboring galaxies. All these phenomena

are basically gravitational in nature.

All these phenomena also touch sooner or later upon the

fundamental issue of the overall stability of a galaxy.

Unfortunately, that important topic is still not well under-

stood. No firm theoretical basis yet exists for determining

just what it takes to stabilize a disk galaxy against all

conceivable large-scale perturbations or, for that matter,

for deciding which disturbances are the most difficult to

suppress. The empirical evidence suggests that spiral and/or

bar-like waves are the perturbations which an almost but not

quite stable galaxy is most prone to develop spontaneously.

But even this tendency has still not been firmly established

from the laws of dynamics.



That most of the grand - and presumably also many of

the not so grand - spiral and bar-like structures observed

in galaxies indeed represent large-scale "density waves" of

the kind first suggested by B. Lindblad (1942) in the context

of bars and, more vaguely in his 1963-64 papers, as the sort

of "circulation" of material in and out of arms needed to

explain normal spirals, seems hardly in dispute any longer.

It is, of course, due especially to Lin and Shu (1964, 1966,

and subsequent papers) that this wave idea has by now grown

into a widely appreciated physical theory. Interestingly,

the most crucial contribution of even Lin and Shu consisted,

in retrospect, not of inferring from any first principles

that certain spiral waves can long endure; rather, their key

step was simply to hypothesize boldly that such waves really

do exist. From this, as they and others showed, one can not

only deduce various dynamical properties of the waves which

invite comparison with observations, but one even discovers

that the observations seem to agree!

By now, the most impressive area of agreement concerns

the gas flow in a galaxy whose force field itself contains

some spiral structure. In such circumstances, as Roberts

(1969) demonstrated, somewhat following the lead of Fujimoto

(1968), a shock wave will form in the gas on the inner edge

of a trailing spiral arm if the spiral field is stronger than

a few percent of the background or mean gravity. Subsequently

the radio astronomers Mathewson, van der Kruit and Brouw (1972)



found compelling evidence that such a shock is indeed present

in the galaxy M51: on the inner edge of its spiral arms are

located not only the well-known optical dust lanes but also

an intense synchrotron emission at radio wavelengths; on the

density-wave hypothesis, both are expected to occur in regions

of greatest gas compression. There now also appears to be

rather good evidence of a shock wave in the galaxy M81: from

his own Westerbork radio observations with Shane, Rots (1974)

reported that the neutral hydrogen there seems not only con-

centrated in the major optical arms but it also exhibits

velocities to be expected from flows such as studied by

Roberts. Altogether, the possibility of gas shocks seems very

reassuring: as Lin, Shu and others have remarked, it offers

much hope of accounting for the presence of the many bright,

young stars seen in the vicinity of dust lanes. As they have

argued, it is quite plausible (although the details remain

vague) that the sudden gas compression in the shock triggers

star formation; the resulting bright stars burn out not long

after their birth, and hence remain visible only near their

places of origin. Facts like these explain much of the

present confidence in the density-wave hypothesis.

Yet even these successes presuppose some understanding

of the stability requirements of a galaxy. This is illustrated

by two of the main assumptions which Lin and his coworkers

felt obliged to make in their calculations of the detailed

properties of the waves whose existence they had postulated.



For one thing, as Lin and Shu seemed acutely aware from their

1966 paper onwards, it made sense to contemplate density waves

only in circumstances where these were not about to be over-

whelmed by some (other) severe instabilities of the system.

They and most subsequent workers assumed that the random

stellar velocities in various parts of any likely disk have

roughly to equal the minimum value which Toomre (1964) had

"locally" estimated to be necessary for ensuring axisymmetric

stability. This assumption was both reasonable and convenient,

but of course it never seemed very certain, even in the 1960's,

that such velocities sufficed to ensure complete stability.

The second point is that practically all the Lin-Shu and

related analyses assumed the waves to be tightly-wrapped,

mainly in order to be mathematically tractable. This wise

decision gave rise, among other things, to the useful stellar-

dynamical dispersion relation of Lin and Shu (1966). But

again it was never very clear, either a priori or a posteriori,

that all significant parts of a genuine galactic density wave

really obey such a short-wave assumption. At any rate, both

the angular velocity and any conceivable growth rate - plus

even the trailing versus leading nature -- of the wave

patterns seemed long to be almost free parameters in the

Lin-Shu theory.

In reverse order, those two sources of vague uneasiness

with the density-wave theory each turned into a serious issue

involving stability, as follows.



Chronologically first came the demonstration by Toomre

(1969) that even the tightly-wrapped waves possess a signif-

icant group velocity, and that this velocity should cause

existing waves to drift away into the vicinity of Lindblad

resonances [and there decay, as Mark (1971) later established]

within a few "galactic years". Yet the disk galaxies in

which grand spiral patterns are observed have themselves

existed for tens of rotation periods, and the prevalence of

their spiral patterns suggests that even these are hardly

transitory phenomena. Hence if the observed spirals involve

density waves, a mechanism for replenishing the waves must

be found and exhibited. Broadly speaking, what seems needed

in the typical isolated galaxy is some further, if relatively

mild, instability. Quite possibly, the fundamental scale of

such instability may need to be truly of galactic dimensions

- and hence well outside the tightly-wrapped approximation

- if we are to trust the corollary impression that the group

velocity also carries information from the very open toward

the moderately tight waves. To this date, no very convincing

candidate has yet emerged.

The other and probably even more serious worry is that

it has become increasingly evident in recent years that local

or short-scale instabilities are really not the most serious

ones to which a disk galaxy may be prone. The elimination of

all non-axisymmetric instabilities now appears to require, at

least in some major regions of a disk, considerably more



velocity dispersion, or "heat", than was estimated by Toomre

for axisymmetric reasons alone. The N-body calculations of

Miller, Prendergast and Quirk (1970) and Miller (1971) fur-

nished the first clear signals of this worrisome behavior.

Subsequent, more extensive N-body studies by Hohl (1971)

confirmed it. The disks which started with barely enough

velocity dispersion to eliminate Jeans instabilities of the

axisymmetric sort were found by both groups of workers to

develop very quickly various large-scale and non-axisymmetric

inhomogeneities -- which in turn soon mixed away into a newly

smooth but much hotter disk. The case was strengthened when

Kalnajs (1972) reported that a similar fate seemed to befall

certain stellar disks which he had studied analytically.

Partly on this basis, Ostriker and Peebles (1973) went so

far as to suggest that a very massive halo may be required

for a galaxy to be stable and yet exhibit random velocities

in the disk itself which are as small as those in the solar

neighborhood seem to be. Thus, even apart from spiral waves,

it is obviously urgent that the dynamical conditions under

which disk galaxies are stable be clarified as soundly as

possible.

Of ccurse, all this has been meant only as a review.

The need for comprehensive studies of the global stability

and/or modes of specific galactic disk models has been apparent



for quite some time. In principle, of course, such stability

questions may be answered in a direct enough manner. Since

real galactic disks are quite thin and flat, it has long

seemed sensible to idealize these disks as infinitesimally

thin; also, since the stars in a galaxy number in many bil-

lions, it has seemed only natural to describe them collec-

tively in terms of distribution functions, Vlasov equations,

and the like. As is well known, the mathematical problems

governing the linearized modes of such idealized stellar

disks can then be formulated easily enough. The trouble,

however, is that even those systems still depend on two coor-

dinate and momentum variables each, and they do so in both a

differential and an integral sense. Hence except for special

galaxy models where all or at least many of the computations

can be done analytically, the numerical solution of this prob-

lem remains simply too formidable at present for results to

be obtained abundantly at a reasonable cost.

Certainly a more straightforward approach to the stability

of hot stellar disks was taken in the extensive N-body simula-

tions to which we have referred above. Here again, though,

the sheer size of the problem is staggering: the computation

of billions of individual orbits, with each star influenced

by the gravitational attraction of all the other stars in a

galaxy, is simply out of the question with present-day (and

any foreseeable) machines. However, reasonably honest simu-

lations consisting of roughly 105 stars moving in their own



smoothed gravitational field have been produced. These simu-

lations were devised by Miller and Prendergast (1968) and by

Hohl and Hockney (1969). Especially Hohl (1973) has recently

shown that the relaxation times in such softened N-body simu-

lations seem to be much longer than the evolutionary times

typically explored; hence the computed systems seem effectively

collisionless, just like actual galaxies.

As mentioned earlier, it was the numerical experiments

by Miller et al. that gave the first indications that non-

axisymmetric instabilities are much more serious than axi-

symmetric ones. More specifically, Hohl (1973) later reported

that although Toomre's criterion does in fact provide security

against axisymmetric and even arbitrary short-scale instabil-

ities, it does not protect a disk against the slow but steady

growth of large-scale, and often bar-like, structures. He

also noted that even when the high random velocites of the

eventual hot disks are reduced artificially in the hope of

obtaining cooler stable disks, the resulting models soon

again heat up dramatically through non-axisymmetric

instabilities.

In addition to suggesting that considerable random velo-

cities are required to stabilize disk galaxies, the numerical

simulations have provided some clues to the dominant types of

disturbances in moderately unstable systems. Some striking

trailing spiral patterns have been observed in the experiments

previously cited and in others by Quirk (1971) and by Hockney



and Brownrigg (1974). These patterns were unmistakably wave-

like: the stars clearly moved into and then out of the den-

sity concentrations. However, none of these wave patterns

managed to remain essentially unchanged for more than a couple

galactic revolutions; instead, the spirals gradually sheared

and/or broke up and reassembled into somewhat different struc-

tures. Nothing resembling a true spiral mode can really be

said to have been found in any of the N-body experiments.

Moreover, some type of non-stellar (or "gaseous") component

has frequently appeared necessary for even these transitory

spirals to develop. On the other hand, a reasonably steady

bar-like structure of finite amplitude had resulted fairly

often in these experiments.

A thorough exploration of galaxy models by N-body exper-

iments would almost certainly resolve most of the pressing

stability issues involved. Unfortunately, such simulations

are still very expensive, despite all the cleverness that

already underlies the present schemes. Thus even the most

valuable experiments can still yield only fragmentary infor-

mation. Moreover, although the computational relaxation times

seem fairly large, some suspicions remain that certain gross

statistical properties of the simulations may still be contam-

inated by microscopic errors. In essence, though, it is the

cost of the N-body computations that provides the truly com-

pelling reason for seeking more efficient alternative analyses

of hot galaxy models.
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To date, the only thoroughly reported large-scale, or

global, analysis of the linear modes of an idealized disk

galaxy with non-vanishing random stellar motions has been

the study by Kalnajs (1972) referring to a family of uni-

formly rotating models invented by Freeman (1966). He

exhibited certain hot disks which had no growing modes and

others which were unstable. Prominent among the latter was

one model which had much larger random velocities than are

required to suppress all axisymmetric instabilities, and yet

it still had many growing non-axisymmetric modes. Its most

pronounced instability definitely had a bar-like nature.

However, it should be cautioned that the uniformly rotating

Freeman models differ in two significant respects from real

galaxies: their complete absence of shear, and their rather

unusual velocity distributions.

In addition, Kalnajs has long been engaged in studies of

large-scale modes in more realistic galaxy models; from those

studies, relatively little seems yet to have been published

(cf. Kalnajs 1970), although his mathematical methods were

described extensively in his 1971 paper.

In contrast to the situation with hot stellar disks, the

question of global stability in cold disks (purely circular

stellar orbits) is fairly tractable. Obviously these systems

are much simpler mathematically, in large part because momenta

in them do not need to be treated as independent variables.

The investigations have typically searched for modes whose



angular and temporal behavior can be described by the factor

ei(mO-Wt) , where 0 is the angular coordinate, t is the

time, m is the angular harmonic number and w is the fre-

quency. The analyses have sought the characteristic frequen-

cies w for various angular harmonics. The first global

examinations of cold disks were performed by Hunter (1963,

1965), who also studied, among other things, a finite uni-

formly rotating disk - a cold version of the hot disks later

examined by Kalnajs. For axisymmetric perturbations Hunter

found a single stable disturbance and an infinity of unstable

ones, these having ever-decreasing wavelengths. For each of

the non-axisymmetric harmonics he found an infinity of unstable

modes. When he examined a few other galaxy models he found

that several (but by no means all) of the long-wavelength

axisymmetric disturbances could be stabilized by an increase

in the central concentration of the surface density of the

equilibrium disk. In a separate work, Toomre (1964) looked

for the self-consistent axisymmetric perturbations of an

infinite cold disk model; both discrete stable modes and a

continuum of unstable modes were displayed by him. Miyamoto

(1969) later searched for the bisymmetric (m = 2) modes of

the same model and again found a variety of stable and

unstable disturbances.

Intermediate in difficulty between cold disks and hot

disks composed only of stars are the gaseous disks with finite

pressure. Bardeen (1975) has recently produced the first



global stability analysis of some such systems. The models

he studied had a polytropic relation between the density and

the pressure and frequently were imbedded in a rigid three-

dimensional halo. Focusing on bisymmetric disturbances,

Bardeen integrated numerically the equations satisfied by the

perturbation variables and was able to extract the most

rapidly-growing mode. His results for these systems were

consistent with the computer simulations: m = 2 instabili-

ties definitely remain in disks which are barely stable to

m = 0 disturbances. Several of the growing spiral patterns

that he found had rather large wavelengths and thus were

truly global in nature.

Besides its literal interpretation, a non-zero pressure

in a gaseous disk can also be viewed as a rough substitute

for some of the effects of random velocities in stars. An

alternative modification of cold disks to mimic a true velo-

city dispersion is to soften the gravitational interaction

by changing the potential from its usual form of

ý(r) = -GM/s

to

(r) = -GM//s + a ,

where G is the gravitational constant, M is the mass of

an attracting body, s is the particle separation and the

constant a provides the length scale of the softening.

Erickson (1974) and Miller (1974) both employed this idea in



full-scale stability analyses - having noticed that under

such a force law the local dispersion relation for short-

wavelength waves is qualitatively similar, for both long and

short wavelengths, to the Lin-Shu dispersion relation for

stellar disks. A very attractive feature of these systems

is that all additional complications resulting from initially

non-circular stellar orbits are avoided. Unfortunately,

although Erickson found that all axisymmetric disturbances

can be stabilized in such a modified disk with a Gaussian

density by choosing moderate values of the softening length

a , he discovered that it was not possible to stabilize the

disk against non-axisymmetric disturbances, even when the

softening length was chosen comparable to the scale of the

disk.

All in all, there are many indications that disk galaxies

are more susceptible to large-scale non-axisymmetric distur-

bances than to any axisymmetric type. Likewise bars and/or

trailing spirals seem to emerge often, but not always. How-

ever, neither type of evidence can yet be called conclusive in

view of the scarcity of thorough stellar dynamical analyses.

This thesis is about to study the global stability of

a special family of hot stellar disks in the spirit of large-

scale perturbation analysis rather than via N-body simulations.

As we have remarked, the only previous studies of this sort
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appear to be those by Kalnajs, most notably his thorough

analysis of various hot Freeman disks characterized by

uniform angular velocity. Our family of models, on the other

hand, will be characterized by a constant linear velocity of

rotation, somewhat resembling fairly large segments of many

observed rotation curves. Our objectives, like those of

Kalnajs, will be two-fold: (i) to determine how much random

motion is required to suppress all instabilities for each

angular harmonic; (ii) to explore the instabilities that

remain when the velocity dispersion is chosen sufficiently

small.

The present models will be described in detail in Chapter

II. As we will see, these models suggested by Toomre are

attractive primarily because they are self-similar. Their

surface density and angular velocity both vary inversely with

the radius, whereas the r.m.s. random speeds are independent

of location. Hence the intrinsic properties of these disks

at one radius turn out to be just scaled versions of the

properties at any other, and there is also a close resemblance

between the stellar orbits near different radii. This self-

similarity of the models enables us to perform exactly several

of the required integrations, and thereby to surmount at a

reasonable computational cost the notorious analytical diffi-

culties presented by the hot stellar disks.

The mathematical details of our analysis will be pre-

sented in Chapter III. As will be seen there, our precise



goal will be to determine whether some given member of our

family of models is able to sustain any infinitesimal but

exponentially growing perturbations to its equilibrium con-

figuration; we will examine separately each angular harmonic

m . The axisymmetric (m = 0) stability criteria for these

models will be reported in Chapter IV. Detailed results for

the bisymmetric (m = 2) disturbances will be presented in

Chapter V. Results for angular harmonics m = 1, 3 and 4

will be discussed, more briefly, in Chapter VI. Finally,

some concluding remarks will appear in Chapter VII.

We wish to stress that, unlike perhaps Kalnajs with the

Freeman disks, we will be unable to draw any rigorous conclu-

sions about the stability of our galaxy models. Conclusions

of this sort would require either a complete study of the

initial value problem or else a complete study of both the

discrete and any continuous modes. Such analyses for the

inhomogeneous disks under consideration here are presently

beyond us. Furthermore, we are currently even unable to

consider any self-consistent perturbations whose growth laws

are other than exponential. We cannot, for example, rule out

modes (unlikely though they may seem) which instead grow with

time like some polynomial multiplied by an exponential. At

present we simply have to limit ourselves to drawing plausible

inferences about the linear stability of our disks from their
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ability or inability, as the case may be, to exhibit expo-

nentially growing modes alone. This slight deficiency, how-

ever, seems to be shared by almost all other local or global

analyses of disk systems.



II. GALAXY MODELS

The equilibrium galaxy models that will be studied here

are all ones with the stars confined to an infinitesimally

thin galactic plane referred to as z = 0 . In this chapter,

we describe first our basic self-similar model, then take a

detailed look at the stellar orbits in its inverse-first-

power force field, and finally we consider some specific ways

of truncating or immobilizing this sort of a model gradually

near its center, to avoid having to cope in our analysis with

the arbitrarily large angular velocities that would otherwise

prove a real nuisance.

a) Self-Similar Model

The distinguishing property of the self-similar model

examined here is its constant rotational velocity (the speed

required by a star moving in a purely circular orbit),

V(r) = V . (2.1)
o

Mestel (1963) appears to have been the first to notice that

infinite disks with this characteristic circular speed have

the surface mass density
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s (r) = por /r , (2.2)

where p and r are constants which set the density and
o o

distance scales and which must be related to the velocity

scale V via

V2 = 2nGp r . (2.3)0 o0o

Since the circular speed is V , the radial force (per

unit mass) is clearly given by

F (r) = -V /r . (2.4)
r 0

The gravitational potential, then, is simply

r) = V2  n(r/r ) . (2.5)
0 0

Unlike most other models of infinite extent, the gravitational

potential in this disk blows up as r ÷ w , and so the usual

convention, 0(m) = 0 , cannot be employed. Instead, we adopt

(r ) = 0 .

Any star moving in this axisymmetric i/r force field

has the usual two integrals: the angular momentum J and

the energy E , both reckoned per unit mass. If the radial

and tangential components of the velocity vector of the star

are denoted by u and v , respectively, then

J = rv (2.6)
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and

E = (u2 + v2)/2 + V2 n(r/ro) . (2.7)
0 0

It is of no immediate concern that the density V s(r)

in this model is singular at the origin r = 0 : after all

the disk mass contained inside radius r ,

r
M(r) = 2r f x Ps (x) dx = 27r•0 r r , (2.8)0 00

is clearly finite. On the other hand, this model has the

unpleasant feature of possessing infinite total mass, for

M(r) grows linearly without bound as r -+ . Even this

may not be a serious defect, however: In any reasonable

perturbation, the surface density will decay rapidly for

large r , and thus one can well imagine that the adoption

of some large but finite outer radius R for the disk -

as in the finite, Mestel (1963) models with a slightly more

complicated density - would scarcely affect either the

equilibrium properties or the nature of the perturbations for

r << R . The use of some finite outer radius R would, of

course, result immediately in a finite total mass for the

disk. Nevertheless, we much prefer to retain, mathematically

if not conceptually, the infinite extent of the model in

order to exploit its self-similarity in our ensuing stability

analysis.



A couple of other interesting properties of this model

are the angular velocity Q(r) and the epicyclic frequency

K(r) . The first of these is simply the circular velocity

divided by the radius,

Q(r) = V /r ; (2.9)

the other is the rate of infinitesimally small oscillations

about circular motions and can here be found from the

conventional prescription

K(r) = 4 Q2 (r) [1 + 0.5 rQ-l(r) dQ(r)/dr]

to be

K(r) = /2 V /r = V/ Q(r) . (2.10)

None of these properties -- the circular velocity, the

surface density, etc. -- depend upon the velocity dispersion

of the model. In fact, the description furnished so far is

more than adequate for a cold stellar disk.

For our purposes, however, a hot model is needed. That, of

course, requires a self-consistent equilibrium mass distribu-

tion function, f (r,u,v) - which we define as usual so that

the total mass in the annulus between r and r + dr contrib-

uted by stars with velocities in the range u + du and v + dv

is f s(r,u,v) 27r dr du dv . About a decade ago Toomre real-

ized that a particularly convenient choice for this function is



a -E/o2
S(EJ) = CJ e u (J > 0) (2.11)

expressed in terms of the two integrals E and J . In this

expression C is a normalization constant, ou is the dis-

persion in the radial velocities and self-consistency demands

a = (V /au)2 - 1 ; (2.12)

there are no counter-rotating stars in this model, or fs = 0

for J < 0 . Since this result was never published by Toomre,

a detailed summary of the properties of this hot disk is now

provided below.

In terms of the variables r , u and v , the distri-

bution function (2.11) is

a+l -1 a -(u2 + V2 )/2 (2
f (ruv) = Cr r v e u . (2.13)

It is a simple task to verify that this distribution function

indeed implies the surface mass density of eqn. (2.2), for

5s(r) = I I f (r,u,v) du dv
-m 0

a+2 a+2 a+l -1= / 2a+ a
2  [(a+l)/2] C ra r
u o

where r(z) is the gamma function. This indicates that the

appropriate value of the normalization constant is

-1 a/ 2 a+ 2  -1
c = r {0  / 2a/2 a 2 r[(a+l)/2]} . (2.14)

oo u



With this choice of distribution function this hot ver-

sion of the infinite Mestel model has the following velocity

moments:

<u> = 0

<v> = /2 a P[(a+2)/2]/F[(a+l)/2]
u (2.15)

<U2> = a 2

u

<v 2 > = V2 = (a+l) a2
0 u

It follows that the tangential velocity dispersion

a = {(a+l) - 2r2 [(a+2)/2]/r 2 [(a+l)/2]} 1/2 F
V ....

is

(2.16)

As a + m (or au + 0), the ratio a v/a /2/2 , which agrees

with the estimate provided by the epicyclic approximation [cf.

Chandrasekhar(1960), p. 159]. Even when the velocity disper-

sion is considerable, say a = 0.378 V
u o

(this choice is

explained below), av/ou = 0.694 , which is still fairly

close to /Y/2 .

To estimate the minimum radial velocity dispersion,

a (r) , needed at some radius r to stabilize the disku,min

against local axisymmetric disturbances, notice that Toomre's

(1964) criterion,

min(r) 3.36 Gp(r)/K(r) , (2.17)

in our case reduces simply to a value independent of r

a umin(r) = 0.378 Vu,mmn 0
(2.18)



b) Stellar Orbits

As previously emphasized, the most valuable property of

the kind of disk just described is its self-similarity. In a

rather obvious sense, this similarity refers already to the

simple inverse-first-power dependence of the surface density,

radial force, angular speed, and epicyclic frequency upon the

radius r . Less obviously, any two stars in this model which

have the same radial and the same tangential components of

velocity, u and v -- even at different radii and instants

- have orbits of exactly the same shape. This is very con-

venient, for it means that the shapes of all unperturbed stellar

orbits in this model can be categorized by a single parameter

analogous to eccentricity, as we are about to see.

The first part of this claim -- that stars with the same

u and v have similar orbits -- may be verified by referring

to the equations governing the stellar motions. Let r'(t')

and ' (t') denote the coordinates, at time t' , of a star

which at time t was located at radius r and azimuthal

angle 0 and moved with radial speed u and tangential speed

v . The differential equations and initial conditions appro-

priate to this star are

dr' 2/dt'2 = J2/r'3 - V2/r' (2.19)0

d0'/dt' = J/r'2 (2.20)

8'(t) = 8 , r'(t) = r, dr'(t)/dt' = u . (2.21)
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Now introduce fully dimensionless variables r , 6 , and t

via

r' = (rv/Vo ) r

0' = 0 (2.22)

t'-t = (Vo/rv) t

In terms of these variables the orbit equations become

d2r/dt2 = 1/r3 - 1/r (2.23)

dO/dt = 1/r (2.24)

A A -1 A A

0(0) = , r(0) = (v/V o)- , dr()/dt = u/V . (2.25)

One thus sees fairly explicitly that if two stars have the

same u and v , then their orbits must be similar in shape
A A A A

[described by the functions r(t) and 0(t) ], although the

sizes of the orbits will be proportional to the initial radius

r and the time scales will be inversely proportional to the

same. The orbit equations are invariant under time transla-

tions; so the comparison can be made at arbitrary instants.

This last remark suggests that we pick some standard

position in the orbit of each star at which to compare the

radial and tangential speeds. A convenient choice is the

point at which the tangential speed is precisely equal to the

circular speed, i.e., v' = V0 . We call this position the

home radius and denote it by rH . At this location a star



executing a purely circular motion would have the angular

momentum J = rv . Thus

rH = J/Vo = rv/V . (2.26)

In this thesis we will often use rH and J interchangeably.

The radial velocity at the home radius is termed the eccentric

velocity and is denoted by U . It can be found from the

first integral

u + J 2/r'2 + 2 V2 £n(r/r) = constant ,0

of the radial equation of motion, eqn. (2.19), where

u' = dr'/dt' . The constant here is determined by evaluating

the left-hand side of the equation at t' = t , so that

u '2 = u2 + v2 - 2 V2 Zn(r'/r) - J2 /r'2  (2.27)

Therefore,

U2 = u2 + v2 _ V2[1 + 2 £n(v/Vo)] , (2.28)

or, in terms of the usual constants of motion

U2 = 2E - V2 [1 + 2 £n(J/r Vo)] . (2.29)

One can easily show [by differentiating with respect to r'

the right-hand side of eqn. (2.27)] that the eccentric velo-

city U is also the maximum radial velocity that a given



star achieves during its orbit. It seems worth stressing

again that in our model this maximum radial speed depends

only upon the given velocities u and v and not at all

upon the location. To summarize, when a star is located at

its home radius, its radial velocity has the value U , and

its tangential velocity is V by definition. All stars

with the same eccentric velocity U thus have similar orbits,

and we shall refer to them henceforth as belonging to the

same U-class. The home radius serves only to fix the size

and time scale of an orbit.

These two new variables, U and rH , will be useful to

us in a number of ways. They will frequently be used in place

of u and v to parameterize the velocity space. The trans-

formation given by eqns. (2.26) and (2.28) between (u,v)

and (U,rH ) has as its inverse

v = V (rH/r) (2.30)

2 -2u 2 = U2 + V2 [1 + 2 kn(r /r) - (r/r) ] . (2.31)
o H H

Of course the last equation determines only the absolute value

of u . This ambiguity arises because the original transfor-

mation to the (U,rH) description loses track of the sense

of radial motion. When resorting to these two new variables

care must be exercised to account properly for both ingoing

and outgoing stars.



In the remainder of this section we will take a detailed

look at the stellar orbits in our model. In order to reduce

references to arbitrary scale factors both here and in the

ensuing analyses we will often resort to dimensionless varia-

bles. The units of distance, velocity, mass and time will be

r , V , - r and r V , respectively. The corresponding

dimensionless variables will be denoted by tildas - e.g.,

O = U/V is the dimensionless eccentric velocity.

Our description of the orbits starts by finding the

maximum and minimum radii, rmax and rmin , that a given

star will reach. Suppose that the star has eccentric velocity

U and home radius rH . Its instantaneous radial speed,

given by eqn. (2.27), can be written

-2
u = U + V [1 + 2 kn(r'/r ) - (r'/r H)] . (2.32)

o H H

The extreme radii are found by setting u' = 0 in this

expression. Hence they are given by the roots of

-22 + 1 - 2 kn(r/rH) - (r/rH) = 0 .

For each U-class these radii can be standardized as

r = r x (0)
max H max

(2.33)

rmin = H x mi n (0)mlnH mln

where max (0) and x min(0) are the roots ofmax mm



-2
02 + 1 - 2 Zn x - x = 0 . (2.34)

The ratio xmax ()/xmin(0) of maximum-to-minimum radii can

be viewed as one measure of the orbital eccentricity.

The radial position of a star will oscillate between its

two extreme radii. The period of this radial motion is

r
T(C,r H ) = 2 f max dr'/(dr'/dt') ,

mln

or

r
2 max

T(U,rH) =
o rminmmn

dr'
-2 1/2 2{i + O2 - 2 £n(r'/r H ) - (r'/r H )

Upon the substitution x = r'/rH this becomes

r xH max
T(U,r H ) = 2 r f

o x minmmn

dx

{1 + 02 - 2 £n x - x }

This can be expressed in terms of a standard dimensionless

period T(0) for this 0-class by

T(0,r H ) = (rH/V o ) (0)

where

x
(0) = 2 f max

Xmin

dx

+ - 2 -2 1/2
{i + 02 - 2 £n x - x }

(2.36)

Thus, within this eccentricity or 0-class, the period of a

star with arbitrary home radius can be expressed as a simple

(2.35)



multiple of the period of a star with unit home radius

(rH/ro = 1). Correspondingly, if the radial frequency is

denoted by K(O,r H ) , then

K(0,r H ) = (Vo/r H )  (0) , (2.37)

where

(0U) = 27/T(0) . (2.38)

Since the orbits of all stars of a given O-class are similar,

we will commonly use this practice of referring their prop-

erties to the reference orbit of the O-class - the orbit of

a star with unit home radius.

Obviously the frequency K(0,rH ) of radial vibration

is a generalization of the usual epicyclic frequency K(r)

which is the radial frequency of an orbit that departs only

infinitesimally from circular motion. Although the symbol

K has been employed here for both these frequencies, they

are distinguished by their arguments. We wish to emphasize

that we will always be dealing with the exact, finite

amplitude stellar orbits.

The orbit of a star of course also includes an angular

motion. During one radial oscillation it moves the angular

distance 0(0,rH ) , where

T( ,r H )
o(O,rH) = I (dO'/dt') dt'

0



o (0,r ) = 2
H

r max dr'

r mi n r' 2V2 f{ + 02 - 2 En(r'/rH) - (r'/rH)-2 1/2

x
=2 max

min

dx

x 2 {l + 02 - 2 n x - x }1/2

This last integral resembles the one in eqn. (2.36); hence

the notation

I (0) =n

x
2 f max

Xmin

dx

x {l + 02 - 2 n x - x }1/2
(2.39)

is convenient. We then have

0(O,rH) = 12(0) (2.40)

and

ý(0) = 27/1O(0) . (2.41)

The angular frequency, defined as the mean angular speed of

the star, is

Q(O,rH) = 0(0,rH)/T(0,r
H )

This in turn can be expressed as

Q(0,r H ) = (Vo/r H ) 0) , (2.42)

where

or



S(0) = 12(0)/I0(0)

is the dimensionless angular frequency of the reference star for

this O-class. Again these generalized angular frequencies

are distinguished from the usual angular velocity (i.e.,

rate of circular orbiting) of the disk, Q(r) , by the

difference in arguments.

The dimensionless orbit parameters for the reference

orbits of typical U-classes are listed below.

.1

.2

.3

.4

.5

.6

.7

.8

.9
1.0

1.1
1.2
1.3
1.4
1.5

x .min

.933

.874

.820

.772

.729

.689

.654

.621

.591

.564

.539

.515

.494

.474

.455

x max

1.075
1.160
1.256
1.366
1.493

1.638
1.808
2.005
2.237
2.511

2.837
3.229
3.701
4.274
4.977

I

4.463
4.525
4.630
4.782
4.985

5.246
5.574
5.980
6.479
7.089

7.835
8.749
9.869

11.248
12.955

I1

4.447
4.458
4.476
4.502
4.536

4.577
4.626
4.682
4.747
4.819

4.899
4.986
5.081
5.183
5.293

12

4.441
4.435
4.426
4.413
4.397

4.377
4.353
4.326
4.295
4.261

4.225
4.185
4.144
4.100
4.055

.9950

.9802

.9559

.9229

.8819

.8342

.7809

.7233

.6629

.6011

.5392

.4784

.4199

.3645

.3130

1.4078
1.3885
1.3570
1.3139
1.2603

1.1976
1.1272
1.0507
.9698
.8863

.8019

.7182

.6367

.5586

.4850

(The integral

Notice that the ratio

Il(0) is needed later for normalization.)

xmax/xmi
n

increases monotonically

with increasing 0 , as is to be expected from the interpre-

tation of 0 as a measure of the orbital eccentricity. For

small values of the eccentric velocity the orbits are nearly

(2.43)



circular. The radial frequency, K(,r H ) , of such orbits

is close to the epicyclic frequency, K(rH) = /2 Vo/r H , and

the angular frequency, Q(O,rH ) , is close to the angular

velocity of the disk, Q(rH ) = Vo/rH . (This comparison

refers to orbital parameters of a star with given rH and

the overall disk parameters at the radius r = rH .) Observe

that IO(0) and I2(0) both tend to r/2 as 0 ÷ 0 ;

therefore, just as one would expect from the small-amplitude

or epicyclic approximation, ý(0) V /2 and n(0) ÷ 1 . At

the other extreme, as 0 - w , the radial period IO(0)

tends monotonically to infinity, but I2(0) , or the angular

distance traversed in one radial oscillation, tends to .

So orbits with very large eccentric velocities are nearly

straight, in-and-out trajectories.

In space, these stellar orbits in general are not closed

and instead form rosettes. For some special values of 0 ,

however, the radial and angular frequencies are commensurable,

i.e., p I(0) = q 1(0) for some integers p and q . These

orbits will close after q radial oscillations and p

angular revolutions; for example, a star with 0 = 1.1917

satisfies the above relationship with p = 2 and q = 3

Even if a stellar orbit is not closed when viewed from

a non-rotating frame, it will appear closed when viewed from

a frame that rotates steadily in space with the mean angular

speed P(0,rH ) of the star; in fact, the stellar orbit then

seems to be periodic with the period equal to the time



T(U,rH ) of one radial oscillation. Thus, the stellar orbit

as it appears in the non-rotating frame of the disk can be

decomposed into a periodic radial and angular motion on top

of a mean angular motion, much as recommended in general by

Kalnajs (1971).

In order to get specific expressions of this decompo-

sition for future reference, we further specialize the ref-

erence orbit for those stars of a specific U-class to be not

only an orbit with unit home radius, but also one with a

particular set of initial conditions: at time t = 0 a

star in the standard orbit is at its pericenter -- r = rmin

- and at angular position 6 = 0 . Referring to eqns.

(2.23), (2.24) and (2.25) and now using bars instead of hats

to denote these particular reference orbit variables, we have

d 2 r/dt 2 = 1/r 3 -_ /r (2.44)

dO/dt = l/r2 (2.45)

r(0) = x mi n , dr/dt(0) = 0 , 8(0) = 0 , (2.46)

as the equations describing the orbit.

In terms of the time variable t , the radial coordinate

r(t) has the period 2f/i(0) , which is different for each

O-class. In terms of the orbital phase p defined by

ý = (0) t , (2.47)



the period is 2ff for each 0-class. The phase has been

chosen so that it has the value 0 when the star is at its

pericenter, r when it is at its apocenter and 2f when it

returns to the pericenter for the first time. (This phase

is ambiguous within an additive constant 2fn where n is

an integer.) Similarly, we can define the phase of the orbi-

tal motion for an arbitrary star -- one with any home radius

and any initial conditions at t' = t . In so doing, it is

convenient to let t stand for the (most recent) time at

which the star was located at its pericenter and 8 for

its angular position at that time. (There will not be any

need to have explicit expressions for 0 and t .) The
p p

phase can now be written

$ = K(O,rH) (t' - tp) , (2.48)

and, moreover, the orbit of the star can be expressed in terms

of the reference orbit as

r'(t') = rH r(4;0) (2.49)

8'(t') = p + (0;0)I , (2.50)

where i is related to t' by eqn. (2.48).

We will usually work with the orbital excursions of a

star in the logarithm of the radial position and in the devia-

tion from the mean angular motion. For the reference orbit

these are defined by
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X(; 0) = in r(t;0) (2.51)

Y(W;0) = 8(t;0) - S(0) t , (2.52)

with t related to ý by eqn. (2.47). These functions can

be used to describe the orbit of an arbitrary star:

r'(t') = rH ex( ;BO) (2.53)

6'(t') = Y(q;O) + p + (0,r H )  (t' - t ) , (2.54)

where eqn. (2.48) connects t' to * . The orbital excursions

X(9;0) and Y(*;0) describe the periodic portions of the

orbit. The final term in eqn. (2.54) describes the mean

angular motion.

Before leaving this discussion of the stellar orbits one

other point needs to be made. A star traversing the reference

orbit of any given O-class will, along the way, assume all the

dimensionless radial and tangential velocity pairs that corre-

spond to that 0-class. We may therefore use the equations of

motion to parameterize velocity space in terms of eccentric

velocity and phase instead of by a and i . In particular,

from eqn. (2.28) we obtain

02 = u2 + v2 _ 1 - 2 ln 7 , (2.55)

whereas the conservation of angular momentum implies

(0) = 1/r(;) (25(2.56)



When used in this context to describe velocity space rather

than a stellar orbit, the phase will be denoted by E instead

of by * , and it will be termed the velocity phase to distin-

guish it from the orbital phase 9 . Any given pair (0,5)

will correspond uniquely to a pair (i,i) : eqn. (2.56)

determines v from 0 and E ; eqn. (2.55) then provides

the magnitude of i ; the sign of u is determined by

whether c E [O,'] , in which case i > 0 , or whether

SE [r,2T] , in which case i < 0 . Unlike the variables

0 and rH , there is no ambiguity about the sign of a when

transforming to (u,v) . The stability analysis in Chapter

III will soon put this parametrization of velocity space

to good use.

c) Centrally Cut-out Models

The entirely self-similar or singular disk described

above has one annoying feature: all its rapidly rotating

stars near the center require undue care during analysis.

To lessen this annoyance, we found it advisable to focus

our study on certain simple variants of the basic singular

model -- ones in which progressively more and more of the

innermost stars were imagined "frozen" into their equilib-

rium orbits, to render them incapable of participating in

any disturbance.

These centrally cut-out disks - as we shall call them

-- can be regarded as composed of two stellar populations.



One is the usual "active" or mobile disk of stars able to

respond to all disturbance forces; the other is a "rigid"

or totally immobile component, here concentrated near the

middle. Like the rigid "halo components" imagined in some

other analyses, the latter is of course only fictitious;

however, in a loose sense , it perhaps mimics the hot

nucleus or nuclear bulge of a galaxy.

Our crucial requirement in concocting these cut-out

disks was that their combined equilibrium force from the

active and rigid mass distributions must remain exactly of

-i
type r as before. This was imposed to preserve the

very desirable similarity of the unperturbed stellar orbits

from radius to radius, just as in the singular disk. Our

only other considerations were that the rules of exclusion

be sensible and convenient. Obviously we wished the frac-

tion of density identified as the active component to rise

smoothly and monotonically from zero at the very center

toward unity at large radii; in addition, it seemed wise to

avoid classes of functions that seem disagreeable to

residue calculus.

These aims were met by simply multiplying the distribu-

tion function fs(E,J) from eqn. (2.11) by a cut-out factor

H(J) = (2.57)
JN + (roVo)N

that depends only upon the specific angular momentum J ,



besides the (positive) integer N , which we refer to as the

cut-out index. In detail, the distribution function for the

active stars of a cut-out disk is thus

fo (E,J) = H(J) fs(E,J) , (2.58)

or

ja -E/a2f (E,J) = C H(J) Je u (J > 0) , (2.59)

where, as before, the constant

a = (V o/ )2 - 1

the normalization constant C is given by eqn. (2.14), and

there are no counter-rotating stars.

For future reference, note that the distribution function

for the singular disk -- and hence also the one for the cut-

out disks -- can handily be expressed in terms of the eccen-

tric velocity U and the angular momentum J instead of in

terms of the energy E and the angular momentum. This is

achieved by replacing the energy in eqn. (2.11) with the

eccentric velocity by means of eqn. (2.29):

-1 _-U2/2or 2f (U,J) = C J e-U/ , (2.60)

where

Ca = e-(a+l)/2 (rV) a+l C . (2.61)
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A dimensionless normalization constant Ca  is introduced by

Ca = (0oro/Vo) Ca . (2.62)

This constant Ca can be found explicitly by combining eqns.

(2.12), (2.14), (2.61) and (2.62):

•-1 = l / [(a+l)/ 2 ]a/ 2 F[(a+l)/2] e(a+1)/2(a+a+l) . (2.63)a

A useful alternative expression is obtained by integrating

eqn. (2.59) over velocity space in terms of 0 and J and

comparing that density with s(r) . This requires the

Jacobian, which is

8(u,v) _ 0V
+ -2 -21/2

(0,J) r {l + 02 - 2 £n(r/rH) - (r/rH) 2 1 2

where rH = J/Vo . This procedure implies that the dimension-

less normalization constant must be

S =  0 I(0) e - (a+l) 2 dO . (2.64)
0

We will use this form rather than eqn. (2.63) when computing

Ca numerically.

Our stability analysis requires only that we have a

distribution function for the active stars. Therefore, no

distribution function for the rigid stellar component will

be given. These immobile stars may be thought of as part of

a high-velocity disk component or perhaps even, as already



mentioned, as part of a high-velocity central bulge. Such

stellar populations would have very little ability to respond

to perturbations in a low or moderate-velocity disk compo-

nent. Because of the current interest in galactic halos and

the possible interpretation of the immobile component as such

a system, we have supplied, in Appendix B, a closed form

expression for the volume density of a suitable spherical

halo.

Whatever interpretation is placed upon the rigid material,

we note once again that it is essential for this analysis that

the combined equilibrium force field of the active and rigid

components coincide with the force field given in eqn. (2.4)

of the singular disk. Above all, we wish to retain the orbi-

tal similarity from radius to radius that characterizes the

singular disk, and it is of course the combined equilibrium

force field and not the combined projected surface mass den-

sity that determines the stellar orbits. Since the total

force field of the cut-out disks coincides with that of the

singular disk, these models have the same rotation speed,

total gravitational potential, angular speed and epicyclic

frequency as given in eqns. (2.1), (2.5), (2.9) and (2.10)

for the singular disk. Furthermore, the description of the

stellar orbits furnished in section (b) applies equally well

to the cut-out models. The mean angular speed of a star,

given by eqn. (2.42), is of particular interest because it

was the stars of low angular momentum that were the



troublesome, rapidly rotating ones. Clearly, our choice of

the cut-out factor has greatly reduced the importance of

such stars.

Naturally, the surface density a (r) of the active

-I
stars is not the simple r density of the singular disk.

This active density is given instead by

00 CO j 2

Pa(r) = f f C H(J) Jae u du dv . (2.65)

In the absence of random motions - i.e., when oau = 0 --

that density is simply

N
(r col (r) r (2.66)

a,cold r N Nr +r

Otherwise it will be somewhat "smeared" from this exact form.

In particular, when a = 0.378 V -- or in circumstances
u o

where the singular disk is expected to become axisymmetric-

ally stable -- the densities of disks with cut-out indices

N = 1 , 2 , 3 and 4 are those displayed in Figure 1.

The top diagram indicates how the cut-out factor appears in

physical space; the active surface density itself is given

in the bottom diagram. Note that for N > 2 this surface

density appears to have a "hole" near the center - there is

then a reasonably well-defined inner edge to the active mater-

ial, as well as an intrinsic scale length for the models

themselves. As one indication of the degree to which pa(r)

departs from pa,cold(r) , observe that pa,cold(r=ro) = 0.5 po0
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Figure 1. The surface densities of four cut-out models with

au = 0.378 V : (a) fractional active density r a (r) ;

(b) total active density p a (r) . Radius is measured in units

of r and density in units of p . The cut-out index No o
is marked on each curve.



whereas a(r=r ) = 0.475 p when a = 0.378 V . Evi-

dently, p (r) provides a fairly decent estimate of
a,cold

the actual active surface mass density in a hot disk.

From either eqn. (2.66) or Figure 1 it is apparent that

~a r) p s(r) = p or/r as r + - . Therefore, the total

active mass of the cut-out models remains infinite. As we

explained for the singular disk in sub-section (a), this

does not seem to be a serious concern. While the total mass

of the rigid component depends upon whether it is interpreted

as a three-dimensional or a two-dimensional system, it is

easy to see that under the latter interpretation, its total

mass is finite for N > 2

The knowledge of the general behavior of a (r) and

K(r) permits us to use Toomre's criterion to estimate the

velocity dispersion needed to stabilize the disk against

short-scale axisymmetric disturbances. In the singular disk

we saw that this minimum dispersion umin (r) is the sameu,min

at all radii. However, in the cut-out disks it does depend

on the radius, since the relevant surface density p(r) in

eqn. (2.17) is now the active one, whereas K(r) is unchanged

from the singular model. Obviously, our pa(r) departs

sharply from the inverse-first-power profile near the middle.

Consequently, u,min(r) rises monotonically from a value

of zero at the center and approaches the singular disk value

0.378 V as r + • .
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Interpreted locally, the usual stability parameter

Q(r) = u/au,min (r) , (2.67)

referring to these cut-out disks, is therefore infinite at

the center and drops toward the constant, singular disk value

as r + w . For the global stability studies conducted in

this thesis, however, we will reserve the symbol

Q = au/lu,min (2.68)

(without any radial argument) to denote the ratio of the

actual velocity dispersion au to the velocity dispersion

aumin required to stabilize the disk against all axisym-

metric disturbances. The precise value of this overall

a min will be reported in Chapter IV.
u,min

To summarize, the basic self-similar and cut-out models

share the very convenient property that all stellar orbits

in them belong to just a single-parameter family of shapes.

As discussed above, the latter models were introduced primar-

ily to reduce the nuisance caused by the rapidly rotating

stars found near the middle of the former disk; incidentally,

this artifice also provides a natural scale length for the

models.
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The large angular velocities of the central stars could,

of course, have been avoided also by the adoption of other

variants of the singular disk, for instance, ones designed

to have a finite and nearly constant angular velocity towards

the center. One particularly attractive example of that

sort, noticed by Rybicki (1974, private communication), has

the density law

(r) = or o//r + r

and the rotation curve

V(r) = V [1 - r //r + r]l/2

As described in Appendix A, a Gaussian sort of exact distri-

bution function for the "hot" stars even in such a model can

be supplied fairly succinctly, and the complete model can be

shown to approach the Mestel-Toomre singular disk as r ÷ w .

Unfortunately, the self-similarity of the equilibrium orbits

is lost. Consequently, the disks suggested by Rybicki are

much harder to analyze for stability than our cut-out disks

- even though the latter obviously are more artificial.
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III. MATHEMATICAL APPARATUS

The aim of this chapter and its related appendices is

to provide a detailed description of the mathematical appa-

ratus that enables us to decide whether a given one of our

models, specified by its cut-out index N and velocity dis-

persion au , is able to sustain any infinitesimally small,

exponentially growing perturbations in the active surface

density of the stars. Any disk that admits exponentially

growing modes is clearly unstable, but as discussed at the

close of Chapter I, it is conceivable that a disk can be

unstable and yet have no exponentially growing modes. Never-

theless, we take the position that it is plausible to call

stable those disks without any exponentially growing modes.

a) Dynamics of the Disks

Before getting into the particulars of the stability

analysis, a few remarks about the dynamics of our model

galaxies seem in order. Both the singular disk and the cut-

out models have been assumed to be infinitesimally thin,

with all the stellar motions confined to the plane z = 0 ,

where z is the vertical coordinate. A full description of

the stars in the active component is furnished by their mass

distribution function f(r,O,u,v,t) . As usual, the amount



of mass, at time t , contributed by those stars with coor-

dinates contained in the range (r,r+dr) and (6,6+dG) and

velocities in the range (u,u+du) and (v,v+dv) is given by

f(r,O,u,v,t) r dr dO du dv . This function will frequently

be referred to as simply the distribution function. Since

the rigid stars, if any, are frozen in their equilibrium

orbits, there is no need to concern ourselves with their mass

distribution function. The stars move in the z = 0 plane

of the force field described by the total gravitational poten-

tial 4(r,6,z,t) . This potential includes the effects of

both the active and the rigid stars.

The conventional assumption of a collisionless stellar

model is made. The dynamics of the mobile stars are then

described by the Vlasov equation

Df/Dt = 0 , (3.1)

where D/Dt represents the convective time derivative follow-

ing the motion of the star:

D/Dt = D/Dt + u - D/Dx - V$- D/Du . (3.2)

Here x denotes the position vector of the star, u its

velocity vector and -Vý its acceleration under the total

gravitational potential. A detailed discussion of this

equation, as well as the applicability of the assumption of

a collisionless model for galaxies such as the Milky Way may

be found in Chandrasekhar (1960) .



The total surface mass density -- due to both the mobile

and immobile disk components -- is denoted by p(r,8,t) . It

is related to the total gravitational potential by Poisson's

equation

V2ý = 4rG p(r,e,t) 6(z) , (3.3)

where V2 represents the (three-dimensional) Laplacian and

6(z) is the Dirac delta-function. In terms of the distri-

bution function, the active material's contribution to the

total surface mass density, a (r,O,t) , is

Pa(r,O,t) = f I f(r,8,u,v,t) du dv . (3.4)

(Recall that our models contain no counter-rotating stars;

therefore, the distribution function vanishes for v < 0 .)

Although the potential 4 depends on all three spatial coor-

dinates as well as the time, its dependence upon the vertical

coordinate z will be suppressed hereafter since the dynamics

in the plane of the disk can be described solely in terms of

the value of the potential in the plane of the disk. So, by

c(r,8,t) is meant f(r,6,z=0,t) .

In equilibrium these functions are steady, or free from

any explicit time dependence. The equilibrium models consid-

ered here are all axisymmetric, so that they are also free

from any dependence upon the azimuthal angle 6 . In general,

equilibrium functions will be signified by a subscript o .



It is a simple task to verify that the equilibrium models

described in Chapter II satisfy eqns. (3.1) and (3.3).

b) Fourier Representation of Modes

We begin our stability analysis by noting that when the

surface density of the active stars is perturbed, it will

change from its equilibrium value

i(r,O,t) = ao (r)

to the perturbed valuel

p(r,8,t) = pa,o(r) + pl(r,O,t)

Perturbation quantities such as pl(r,O,t) will be denoted

by the subscript 1 . It is convenient to use complex varia-

bles to describe the perturbations; in particular, pl(r,O,t)

is represented as the real part of a complex function, say

q(r,6,t):

Pl(r,',t) = Re{q(r,O,t)}

The physical quantities are all periodic in the angular coor-

dinate 0 and so q(r,8,t) can be expanded in a Fourier

series, namely,

im8q(r,8,t) = c qm(r,t) e
1=-m

Since only active densities are perturbed, the subscript
a is dispensed with for all but the equilibrium density.
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Since a linear analysis in the perturbations is being applied,

each angular harmonic may be examined separately, and since

only real parts have physical significance, the angular har-

monic number m may be assumed to be non-negative. Thus we

assume that

imr
q(r,6,t) = qm(r,t) e

The terminology "angular harmonic m " will often be used to

refer to disturbances with angular harmonic number m .

We confine ourselves to perturbations whose growth can

be represented by an exponential ractor e . Our analysis

is restricted to non-negative values of the growth rate s

Temporal oscillations are also allowed for by including a

-imQ~ tfactor e p in qm(r,t) , i.e., we further assume that

st-imQ tqm(r,t) = D(r) e p .

The pattern speed Q is the angular frequency at which the
P

disturbance rotates. In short, we look for density pertur-

bations of the sort described by

p1 (r,6,t) = Re{D(r) ei(mO-wt)

where the complex temporal frequency of the disturbance is

w = mQ + is
p

Both Q and s are intrinsically real quantities.
P

(3.5)

(3.6)

.



The logarithmic spiral representation introduced by

Kalnajs (1965, 1971) is well-suited to the next step of our

analysis: connecting the change in the density of the active

material, given by eqn. (3.5), with the change in the total

gravitational potential. Like Kalnajs, we now represent the

radial part of the disturbance density as the Fourier

integral

D(r) = p (r/r ) -3/2 A(a) e  o dn(r/ro) d , (3.7)
0p 

o

where ip carries the dimensions of surface mass density and

measures the amplitude of the perturbation (assumed infinites-

imally small). The density transform in wavenumber 2 space is

denoted here by A(a) . In effect, D(r) is Fourier analyzed

in the logarithm of the radial coordinate. For non-axisymmetric

disturbances, where m > 0 is assumed, the positive wavenum-

bers correspond to trailing components of the perturbation,

and the negative wavenumbers to leading components. Under

any density perturbation the total gravitational potential

will change from its equilibrium value ýo(r) [cf. eqn. (2.5);

we have here added the subscript o to emphasize that this

is the equilibrium potential] to the new value

4(r,8,t) = 0 (r) + 1l(r,O,t) .

2Actually, a is a logarithmic wavenumber and not a
wavenumber in the usual sense. However, it will be referred
to here simply as a wavenumber.



The connection between the perturbation potential c1 (r,8,t)

and the perturbation density of eqn. (3.5) is provided by

Poisson's equation:

V2  (r,O,t) = 4rG pl(r,6,t) 6(z) . (3.8)

This of course is an exact relationship - there has been no

linearization so far. As Kalnajs (1965) noted, a distinct

advantage of the logarithmic spiral representation is that

when 4l(r,8,t) has the form described by eqns. (3.5) and

(3.7), the perturbation potential implied by eqn. (3.8) is

just

ml(r',,t) = Re{-2nGr p p ei(mo-wt) (r/r )- 1 /2

x W K(a,m) A(a) ee  on(r/ro) da} , (3.9)
-00

where

- 1 T[(m+1/2+ia)/2] r[(m+1/2-ia)/2]K(,m) 2 F[(m+3/2+ia)/2] r[(m+3/2-ia)/2] (3.10)

is a dimensionless function sometimes referred to as the

Kalnajs gravity factor. Two useful properties of this func-

tion are that it is real whenever a is real, and that

K(-a,m) = K(a,m) . Another advantage of this representation

is that the response of a disk to an elementary forcing in

wavenumber space - A(a) = 6 (ca-af) - is well-behaved, in

contrast to the response of a disk to a unit forcing in



physical space at a single radius which exhibits a logarithmic

singularity at the forcing radius. Once the disturbance

potential is available, the perturbation forces arising from

the change in the surface density can be readily found:

Fl,r =-d1

= Re{( 2frG pp ) ei(m --wt) (r/r )-3/2

x f (ia-1/2) K(a,m) A(a) eia 0n(r/r ) dal (3.11)
-00

-l
FI,e = -r d$1/de

= Ref( 2TG Up ) ei(me-wt) (r/r )-3/2

x f im K(a,m) A(a) ea (r/ro da . (3.12)
-00

Here F and F denote the disturbance forces in thel,r 1,8

radial and tangential directions.

Of course, not all functions D(r) can be represented

as a superposition of logarithmic spirals. Thus our stability

analysis admits only those perturbations for which the Fourier

integral in eqn. (3.9) is valid and for which the inverse

formula,

A(a) = (27) - 1 O P(r/r )3/2 D(r) e-  n(r/ro) (dr/r) , (3.13)0 0

holds. This requires, among other things, that (r/ro)3/2 D(r)

tends to zero as r - 0 and r ÷ w . The use of the Fourier



representation of the perturbation density, then, implicitly

permits a singularity of the disturbance at the center and

requires the density to drop off faster than the equilibrium

density as r -+ . These restrictions, however, are not

viewed as too severe. For any s > 0 we certainly expect

D(r) to decay rapidly as r -• for the simple reason that

stars at very large radii move too slowly to respond to the

disturbance. We expect most disturbances to decay toward

the center also both because of absorption at resonances

and because there is little active matter in the middle.

The possibility of a singularity in the disturbance at

the origin raises another issue: do perturbations of the sort

just described permit a valid linearization of the Vlasov

equation? This procedure requires that the perturbation forces

be much smaller than the equilibrium forces and that the

perturbed distribution function be much smaller than the equi-

librium distribution function. A specific examination of the

linearization will be given here only for the forces. The

distribution function behaves in a similar fashion. Both

the singular and cut-out disks have equilibrium forces which

-1
vary with radius as (r/r o )  [cf. eqn. (2.4)]. As (r/r )

m C the disturbance forces given explicitly in eqns. (3.11)

-3/2and (3.12) decay at least as fast as (r/r o) and there-

fore the linearization clearly remains valid at large radii.

As (r/ro ) + 0 , however, there is cause for concern. The

(r/r o)3/2 factor in the perturbation forces seems to imply
0



that these forces increase more rapidly than the equilibrium

forces. If this growth of the perturbation forces toward the

center of the disk is not mitigated in some manner, then no

matter how small the amplitude of the perturbation, the forces

associated with it will exceed the equilibrium forces at

sufficiently small (r/ro ) . There are two reasons for not

worrying about this. To begin with, for any small disturbance

of magnitude s , the amount of matter in the regime where the

linearization apparently breaks down [for (r/ro) < E] is

negligibly small compared to the amount of matter in the rest

of the disk inside any moderately-sized outer radius R . We

have in mind a radius R sufficiently large to encompass the

bulk of the region affected by the perturbation, but not so

large that the infinite total mass of the disk becomes an

issue. But more importantly, for any imposed density field

described by a density transform A(a) with a finite half-

width3 , the integrals over the wavenumbers a in eqns. (3.11)

and (3.12) will decay rapidly for large lIn(r/ro) . So

-3/2in fact, as (r/r ) + 0 , the (r/ro) growth of the per-

turbation forces is mitigated by the decay in (r/r ) caused

by the Fourier integral. For example, if K(a,m) A(a) is

a Gaussian in a , then

f K(a,m) A(a) e i n(r/r o0 ) de ,
3CO

3This excludes the elementary forcing at a fixed wave-
number af for which A(a) is a delta-function in a .



will be a Guassian in kn(r/r ) ; in this case,

(r/r)-3/2 K(a,m) A(a) e nr/ro d
0-0

actually tends to zero rather than blowing up as feared,

when the center is approached.

Although the calculations in the following section are

based on the computation of the response to an elementary

forcing of the disk, we eventually integrate over all values

of a and thus we expect the smoothing effect discussed

above to take hold. In fact, looking ahead for a moment,

all the modes of the cut-out disks that we specifically

located do exhibit this smoothing effect and decay in ampli-

tude toward very small radii.

c) Calculation of the Dynamical Response

To be worthy of its name, any mode must, of course,

be self-consistent - that is, the disturbance forces that

arise from the density field of a mode must regenerate the

same densities back, with due allowance for the temporal

growth and rotation of the modal pattern. The task under-

taken in this section is the derivation of the specific con-

ditions that must be satisfied by any mode of the singular

disk or one of the cut-out disks. The central issue is the

dynamical response of one of these model disks to an arbi-

trary imposed force field.



For the time being imagine that a potential perturba-

tion,

'limp(r,O,t) = Re{-27G pr ° ei( t) (r/r o)1 2

x f K(a,m) A. (a) e i on(r/r0) da} , (3.14)
--o Imp

has been imposed upon a disk. The forces resulting from this

imposed potential will induce a response density,

Pl,res(r,6 ,t) , in the disk. This process is governed by the

Vlasov equation, eqn. (3.1). At the same time, as noted in

the preceding section, this imposed potential corresponds, via

Poisson's equation, to the imposed density,

-3/2

limp (r,O,t) = Re{p ei(mewt) (/r)-3/2

x f A. (a) e on(r/ do} . (3.15)imp

If the density transform A. (a) represents a mode of angu-imp

lar harmonic number m and frequency w , then the imposed

density will exactly equal the response density, i.e.,

Pl,res(r,6,t) = p l , imp (r,,t) .

The specific question now is how the disk will respond

to an arbitrary imposed potential of the form expressed by

eqn. (3.14) and this in turn centers on how the disk will

respond to an elementary forcing,

i(me-wt)
(r,6,t) = Re{-2Glp r0 K(o,m) e

, (r/rimp e (3.16)

) e o } , (3.16)



at a single wavenumber. Henceforth the explicit indication

that the real parts of these complex-valued functions are

intended will be dropped.

In the presence of this elementary forcing the distri-

bution function will change from its equilibrium value

f(r,O,u,v,t) = f (r,u,v)

to the new amount

f(r,e,u,v,t) = f (r,u,v) + fl(r,8,u,v,t)

Under the assumption of infinitesimally small disturbances

the specific value that the distribution function perturba-

tion, fl(r,8,u,v,t) , takes is governed by the linearized

Vlasov equation,

Df a af a (3.17)fD •l,imp o + 1 l,imp o

Dt @r -u r DO 3v

where the convective derivative D/Dt is given by eqn. (3.2).

Since the equilibrium distribution function has the functional

dependence f (r,u,v) = f (E,J) , eqn. (3.17) can be rewritten

as

iDf pov l,imp •1,imp
S {u + } + (3.18)Dt aE 3r r Me aJ D8

One standard method for solving this partial differential

equation for fl(r,8,u,v,t) is to integrate the right-hand
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side along the equilibrium orbit of a star which at time t

has positions and velocities (r,O,u,v) [see, for example,

Stix (1962) in a related, plasma context]. In order to do

this, the radial and tangential perturbation forces that

such a star is subjected to along its unperturbed orbit at

all previous times must be computed. We denote these radial

and tangential forces at time t' by F ,r(r,8,u,v,t;t')l,r

and Fl, (r,e,u,v,t;t') , respectively. The solution of the

linearized Vlasov equation can now be expressed as

fl(r,O,u,v,t) = - (af /aE) AE - (af o /aJ) AJ , (3.19)

where AE and AJ are the cumulative changes in the star's

energy and angular momentum due to the perturbation:

t
AE = f [u'(t') F (r,O,u,v,t;t') +

- l,r

v'(t') F ,6(r,O,u,v,t;t')] dt' (3.20)

t
AJ = f - r'(t') F1 0, (r,O,u,v,t;t') dt' . (3.21)

Here, as in section II.b, primed variables refer to quantities

along the unperturbed orbit of the star.

The results of these and other calculations in this sub-

section can be conveniently expressed in terms of the imposed

potential sampled by a star along its equilibrium orbit. This

sampled potential is denoted by l,imp(r,O,u,v,t;t') and is

given by



imp(r,8,u,v,t;t') = -27Gp r0 K(a,m) ei[me (t) -t']

x [r' (t')/r-/2 is £n[r' (t')/ro]
[r (t )/r e o . (3.22)

Both the sampled potential and the perturbation forces con-

contain a dependence upon the angular harmonic number m and

the forcing wavenumber a in addition to the dependencies

on the variables explicitly listed; these secondary dependen-

cies, however, have been suppressed.

We now shift to the (),rH ) description of velocity

space and use the formulas for the stellar orbits developed

in section II.b:

= K(,r H ) (t'-tp)

r'(t') = rH e )  (3.23)

6'(t') = Y(4,0) + O(O,rH ) (t'-tp) + 0 .

With these expressions in mind, the sampled potential is now

rewritten as

Olimp (r,',,'rH t;t') = -27rGp pr0 K(a,m) e (mO-wt)

x e ( i a-1 / 2 ) Xn(r/ro) ei[mQ(O,rH) - ] ( t ' - t )

x {e(ia-1/ 2 ) £n[r'(t')/r o ] + i[me'(t')-(O,rH) (t'-t)-]} .

(3.24)

At this point we adopt a further suggestion by Kalnajs (1973,

private communication) and, noting that the term in braces in



the above equation is periodic in t' , expand it into the

Fourier series

{e(ia-1l/2) £n[r'(t')/r o] + i[mO'(t') - e(l,rH)(t'-t) - 8]}

Z=-00

where

-1 t+T(CrH) -iwK(D,r H ) (t'-t)
Pim(a;t'rH) = T (,r H ) I e

t

{e(ia-1/2) £n[r'(t')/ro]+i[mS'(t')-Q(D,r H (t'-t)- } . (3.25)

These Fourier coefficients can be expressed in simpler terms,

owing to the similarity of the stellar orbits. This is

achieved by performing the integration in eqn. (3.25) over

the orbital phase i instead of over the time t' and by

replacing the (O,rH) description with the (0,ý) one. As

implied in section II.b, the velocity phase 5 has the value

E = K(,rH) (t-tp)

Noting that when t' = t in eqns. (3.23),

r = r H e( )
H

and

e = Y(E;O) + (0,rH) (tt) p+ p I

Pkm(a;D, rH) ei)(',r) (t'-t)



we obtain

Pkm( a;O,) = e - ( i a- I / 2 )x ( ý ; f ) - i mY ( E; 0 ) x

(2O)- f2 +E e(ia-1/2)X(~;O)+imY( ;D)-i£k d.

Finally, by shifting the integration to the interval [0,2] ,

the factorization

P£m (•a;') = e-(ia-1/2)X(E;O)-imY(E;0)+ikS Q9m(a;), (3.26)

where

a2C =(2) f 2 T e(ia-1/2) X (; 0) +imY (V; T) -itp dV (3.27)
Q ~m(a;O) = (2w) f e di (3.27)

0

results. This last expression may be interpreted as a

Fourier coefficient for the reference orbit of the stars with

eccentric velocity 0 , i.e., an orbit with unit home radius

in which the star is initially at the pericenter.

When the Fourier series expansion and the (0,C) velo-

city space description are used in the sampled potential, eqn.

(3.22), we find that

limp(r,8,0,',t;t') = -2Gyp r0 K(a,m) e (me-wt)

x e ( i a-1 / 2 ) 9n(r/ro) ei[mQ(O,rH)-l] (t'-t)

x P£m(a;O'd ) e . (3.28)

As Kalnajs pointed out to us, this Fourier series expansion



of the sampled potential enables the orbit integration to

be carried out explicitly, even for eqn.

AE = 2rrGip r K(a,m) i (me-wt)e e(ia-1/2)
e

tK (O,rH) + m (O,r H )H
+ m(0,r H ) - WH

(3.29)P m (a;0, )

Then also, if more obviously :

AJ = 27GppI r K(a,m) ei (m-wt) e(ia-1/2)

x m P m(a;'~,)

£=- ZK (O0,rH)

These results may be verified

using

u'(t') = dr'(t')/dt'

F (r, ,u,v,t;t' )
,r ,uvt;t')

F (r,0,u,v,t;t')1,0

+ mQ(O,rH) - W

in a straightforward manner,

, v'(t') = J/r'(t') ,

S- 1',imp(r'
Dr

= 1 iimp (r'
r- (t ,imp
r'(t')96

We are now able to write down the perturbed distribution

function. Employing eqns. (2.11), (2.58), (3.19), (3.29) and

(3.30) we find that

= 27rGp r K(a,m)
po

i(me-wt) (ia-1/2)an(r/r o ) f (EJ)e e of (E,J)

{(a+l) [2K(O,r )+mQ(0,rr )]/V 2 -am/J}H(J)-mH'(J)H H 0
9K(C,r ) + mQ(O,r ) - wH H

Pm (a;,C )

(3.31)

(3.20):

xX

£n(r/r )
0

£=--- K(C,rH)

kn(r/r )

(3.30)

C-XX-O

(t'), '(t'),0,Et;t')

(t'),8'(t'),0, ,t;t')

f (r, ,0,D,t)
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Now that the perturbed distribution function is avail-

able, the density response to the forcing at the single wave-

number a , which is denoted by i res(r,6,t;a) , can be

obtained by integration:

lp res(r,',t;a) = If fl(r,8',f,,t) du dv
1,res 1

We choose to represent the result of this calculation as

-= p (r/r 3/2 i(mO-wt) ^
n l,res(r,6,t;a) = p (r/ro) e Sm (r;a;ou,A)

in terms of the elementary response function Sm(r;a;o , )

(3.32)

In order to perform the integration over velocity space in

terms of the variables (0,§) instead of (u,v) , the Jaco-

bian of this transformation is required:

S(u,v) -1 -2X(;0) 2
D ( , = (2T) I C) I ( ) e V9 (of U 0 0 (3.33)

The elementary response function is then found to be

Sm (r;a; ou ) = 2nGr o K(a,m) (p r /V ) Ca e(ia-1/2)

27r -1 -2X(*t;)
x f f (27T) I (0) e ' V2

0 0

Se- 0 2 / 2 ,2 2
x e u

{ (a+l) [ £i(0)+mn(0)]/J-am/J] }H(J) - mH' (J)

[£p(0) + m(0) ]Vo/J - w.0

x QPm(a; ) 0 dO dý .

kn (r/r 0 )

- (ia-1/2) X (E;0) -imY (;) +ik
e
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In this expression we have made extensive use of the dimen-

sionless quantities introduced in section II.b. The variable

J must be interpreted as a function of r , 0 and 5 ,

namely,

J = rV e -X(ý ; C)
0

This occurs because the tangential velocity v has been

parameterized by 0 and ý . Eventually, another coordinate

transformation will be adopted that permits the integration

to occur over the more natural angular momentum variable.

The expression for the elementary response function may be

simplified by noting that Vo = 2rG oro [see eqn. (2.3)]

and by introducing the additional dimensionless variables

= (r o/Vo ) W
(3.34)

-1= (rV o) J .

The cut-out factor H(J) and its derivative are also put in

dimensionless form via

(3J) = H(roVoJ)
(3.35)

B'(() = rVo dH(ro V )/dJ .

Referring to eqn. (2.57), we have

a(S) = SN/(1 + SN)

N- 1 N 2 (3.36)
'M(@) = NSN- /(l + N )2



We then obtain

S (r;a;o ,u ) =m u

i n ) oo
SK(a,m) eia (r/ro f {

-1(2r) I (0)

x e u

[(a+l)( £ (0)+mn(0) )-am]HA(3) - mJ• ' () dý}
£i(0) + mS(O) - ý

x Qkm (;) 0 dO . (3.37)

This function measures the density response to forcing at a

single wavenumber. The real interest, of course, is in the

response to a forcing from an arbitrary imposed density of

the form of eqn. (3.15). If this density response is expressed

as

i (me-wt)
re (r,O,t) = D (r) e
l,res res

then clearly 4

D (r) = p (r/r) -3/2res p ( o 00S (r;a;u , ) Aim (a) de_- m u imp

The response density itself has the transform A res(a)res which

4Here and at several subsequent points in this section
we have rather freely interchanged the order of integration
in a multiple, improper integral containing an infinite sum.
These mathematical manipulations must be regarded as merely
formal, for no rigorous justification for interchanging the
several limiting processes in these expressions is offered.
We submit that our cavalier approach to these questions is
vindicated in Appendix F, in which we report on an independent
confirmation of some of the results obtained on the basis of
the analysis of this section.

(-ia-1/2) X ( ;U) -imY (;) +ike
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is determined by

A re s ( ) = (2) f (r/r ) 3/2 D (r) e - i  n(r/r (dr/r)
res 0 p res

We now define the transfer function, S (B,a; u,&?) , which

relates the transform of the response density to that of the

imposed density:

A (Bs) =  f S (B, a; r ,) A. (a) da . (3.38)
res - m u imp

The transfer function is simply the transform of the elemen-

tary response function, i.e.,

S M($,a;U ,-) = (2n)-lf S (r;a;c ,i) e-iB En(r/r o ) (dr/r).(3.39)m u 0m u

It specifies how the density response to an elementary forcing

at wavenumber a spreads itself out over the response wave-

numbers B . It is calculated from eqns. (3.39) and (3.37)

by interchanging the orders of integration and summation until

the integral over r is the innermost operation and then

changing this integration variable from r to i where

= (r/r ) ex. The result is

O02/2&2
Sm (B,a;o ,') = a K(a,m) 0 I(0) e u Q (a;CO)m u a 0-cm

-1 2x (-ir-1/2) X (;0) -imY (E ; 1) +it d }× {(2 ) -  e2r
0

x {(27)- i [(a+l) ( £(0)+mn(0) )-am](3)-mJA' (J)
0 £I(0) + mn(O) - ag

x ei(a-B) £n (dJ/J)} 0 dO
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But notice that

iQm(8;0) = (2r) - 1 e(-iB-1/2)X(E;O)-imY(ý;0)+ik£ dE

[see eqn. (3.27)], where the bar denotes the complex conju-

gate, and define the angular momentum function, F m(n; 0 ,) ,

by

F,(; ,), = (2)- 1 f - [(a+l)( eR(0)+mf(0) )-am] (J)-ms1' (a)
0m(n; ,a) = (2n) .

ILK U) + m(U) - WJ

-ir n £n
x e-in n e (df/h) .

The transfer function then is simply

S (,,a; ,&i) = C K(a,m)m u a

0 -02/2
S=- Io () e u

R=-m 0

x Q m(a;O) 0 tm( F2m(M-C ; 0 ,) 0 dO . (3.40)

The angular momentum function can be expressed in the alternate

form

F£m(; 0 ,r) = (2)- 1 f
[(a+l)( R (0)+m (0) )-am]H(h)-mH' (h)

-00
h£R(0) + m (0) - we

e - i nh dh (3.41)

by making the change of variables h = £n 3 and the defini-
^ h ^ ^

tions H(h) = R(e ) and H'(h) = dH/dh

Now that all these specific expressions are available

we return to eqn. (3.38) and apply the self-consistency

requirement - A res(a) = Aimp () - to obtain the conditionres imp

•'J.L n~U rc~c\ 3~ r-~\ 'V~C
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which the growing modes of the singular and cut-out disks

must satisfy, namely,

A(B) = 0 S (8,a;u ,i) A() A de . (3.42)

This singular homogenous Fredholm integral equation for the

density transform of the modes is central to our subsequent

determination of whether exponentially growing modes are

indeed possible in any given one of our model galaxies.

Before proceeding to a description of the kernel , S (8,a;& ,i) ,

we wish to emphasize that the angular momentum function has

only been derived for growing disturbances, i.e., those with

Im{&f} > 0 .

d) Description of the Integral Equation

The nature of the kernel depends critically upon the

behavior of the angular momentum function. The Fourier inte-

gral, eqn. (3.41), defining this function may be performed

analytically for both the singular and the cut-out disks.

For the singular disk, H(h) = 1 , while for the cut-out disks,

^ eNhH(h) = eNh/(l + eh) . In fact, the particular choice of the

cut-out factor in section II.c was guided by the desire to

perform these integrations analytically rather than numeri-

cally. The trick is to use residue calculus with a contour

that includes the lines Im{h} = 0 and Im{h} = 2rr and

closes at infinity. Then, in the case of the singular disk,



F P(m ;O,W) =Em
(a+l) ( £(0) + mn(0) ) - am

£2(0) + m (0) (1/2) 6 (n)

x e-iln 2n[( £i(0)+mn(0) )/i] / e 2 7T]

and in the case of a cut-out disk

N-I[2 (0) +m (0)] +
[,•(0)+m (0) ] + + ~N

x { [(a+l)( (Ri(0)+mQ(0) )-am] -

x e-in £n[( ( (0)+mU(0) )/ý]

e (2j-l) rn/N

£,(0)+mn(0) - we (2j-l)wTr i/N

[(a+l)( £ki(0)+ms(0) )-am] +

-NNmW

[k2i(0)+mI(0)]N + N

-imp +

m e (2j-l)ri/N

Rli(0)+m(0) - e ( 2 j - i / N

(3.44)

Throughout this thesis the principal branch of the loga-

rithm is chosen, i.e., its imaginary part lies in the range

[0,2w] . Two cases are then distinguished for the logarithm

appearing in the previous two formulas:

Case 1: £i(0) + mn(0) > 0

2n[( k£(0)+mn(0) )/c] = nl2£ (0)+mU(0) - £n - + 27i

Case 2:

(3.45)

£2i(0) + m (0) < 0

Zn[( (R(0)+mI(0) )/W] = inI2i(0)+m (0) 1 - £n 6 + 7i .

F (n;O,: ) = - {

(3.43)

N
N j=

j=j

(3.46)



76

The sign of £2(O) + m(0O) determines whether the 2'th radial

Fourier component of the potential is directly ( > 0 ) or

counter ( < 0 ) rotating. Since for moderate random velocity

dispersions, the typical values of 0 are rather small, a

good handle on the sign of £2(0) + mn(0) is provided by its

behavior for 0 + 0 . In this case, F(0) = /2 and n(0) = 1

and hence for m = 1 , the direct harmonics are 2 = 0, 1, 2,

* *a , for m = 2 , they are 9 = -1,

m = 3 they are 9 = -2, -1, 0, 1, 2, .

they are k = -2, -1, 0, i, 2, * * ,

discussion of the orbital parameters in

that as 0 increases, both i(0) and

but their ratio K(0)/n(0) = 2rr/I12 (0)

cific analysis reveals that for m = 1,

mn(0) has the same sign for each fixed

the value of 0 . For all other m > 0

0, 1, 2, , for

S* , for m = 4

etc. Referring to the

section II.b, we find

S(0) tend to zero

tends to 2 . A spe-

2 and 4 , £2(0) +

Z , regardless of

, there are some values

of 2 for which £2(0) + mn(0) changes sign as 0 increases,

and hence for which £2(0) + mn(0) vanishes. An eccentricity

class for which this occurs is one for which the orbits are

closed in inertial space. Any rotating disturbance will

appear virtually stationary to the rapidly rotating stars in

such closed orbits near the center of the disk. Thus, low

angular momentum stars in closed orbits are, for all practical

purposes, in resonance with the disturbance. In the singular

disk there are a large number of active stars in these nearly

resonant orbits and the angular momentum function in eqn. (3.43)



blows up as £U(0) + mN(0) - 0 . In the cut-out disks, at

least when the cut-out index N is greater than or equal to

two, there is a very small number of such stars and the

troublesome term actually vanishes as Z£(O) + mi(O) ÷ 0

In this thesis we are primarily concerned with m = 0, 1

and 2 . In these cases, the term £(0O) + mn(0) never

vanishes and so the above expressions for the angular momen-

tum function can be used without concern. For m = 3 ,

however, £k(0) + mn(0) = 0 when k = -2 and 0 1.19

Extra care is needed here. This point is considered further

when the results for m = 3 are presented in Chapter VI.

Even when there are no closed orbits in the non-rotating

inertial frame, there will still be orbits which are closed

in the frame rotating with the angular speed n of the

disturbance. Stars in such orbits will be in resonance with

the disturbance. These resonances surface clearly in the

angular momentum function expression in eqn. (3.41): when-

ever Z£(0) + mn(0) > 0 there will be some value of the

angular momentum for which the real part of the denominator

vanishes. This happens whenever kK(O,r H ) + m(O,r H ) = mQ .

But this is precisely the condition that the orbit of a star

with eccentric velocity 0 and home radius rH (angular

oHmomentum J =Vor H ) close in the frame rotating with angular

velocity Q . The home radii of such orbits are in the

vicinity of the radii for which K(r) + mQ(r) = mQp , where

K(r) and Q(r) now are the epicyclic frequency and angular



velocity of the disk as a whole at radius r . For stars in

circular orbits, resonances occur for all the radial harmonics

for which £K(r) + mQ(r) > 0 . In the density wave theory of

spiral structure three of these resonances play a major role:

the corotation resonance (k = 0), where the angular velocity

of the disk equals that of the pattern, the inner Lindblad

resonance (2 = -1) and the outer Lindblad resonance (2 = +1).

In the present models, corotation occurs at

r/r0 = /p ,

while the Lindblad resonances occur at

r/ro = (1 ± /2/m)/p .

The explicit expression for the angular momentum function

of the singular disk reveals several interesting features.

The most significant of these was pointed out by Kalnajs (1974,

private communication). The angular momentum function admits

the factorization

F m(Tn;0,) = eif n ' F* 0m(n;0)

and consequently the kernel itself has the form

S (Ba;& ,i) = ei( 8 - a) £n - S*(,a;& ) ,m u m u

where the functions F* (n;0) and S*(m,a;u ) implicitly
km m u

defined by these relations are actually independent of the



frequency & . If the function A*(a) is now defined by

-ia £n
A*(a) = e A(a) ,

then the integral equation for the growing modes, eqn. (3.42),

is seen to be equivalent to

A*(B) = f S*(8,a;6 ) A*(a) d .
- m u

If, for some value of & , this equation has a non-trivial

solution, then for each frequency in the upper half a-plane,

eqn. (3.42) will have the non-trivial solution

is £nA(a) = e A*(a) .

In this event the singular disk will have a two-dimensional

continuum of growing modes. More likely, this equation will

only have the trivial solution, implying that the singular

disk admits no exponentially growing modes. The frequency-

independent nature of the kernel has removed the customary

freedom to adjust the frequency so that the kernel admits

non-trivial solutions, or modes.5 It was especially because

of this peculiar behavior that we decided to study the effect

of carving out part of the highly active center from the sin-

gular disk. The cut-out disks that result have the frequency

inextricably contained in their kernels -- no similar

5Kalnajs also noted that this strange feature of the
singular disk occurs regardless of the particular distribu-
tion function chosen.



factorization of the frequency occurs. The reason that one

occurs in the singular disk is that it has no intrinsic

scale -- it is "too self-similar". The cut-out disks, on the

other hand, do have a length scale - the size of the rigid

center. In the latter models we expect to be able to find

some solutions of eqn. (3.42) corresponding to growing modes

for discrete frequencies, provided, of course, that the

velocity dispersion is sufficiently small.

A second, though less disconcerting, feature of the

basic self-similar model is that not only is the integral

equation singular because the range of wavenumbers is infinite,

but it also is so because the kernel itself is singular at
-i

a = B , where it behaves as (0-a)-1 . The integral on the

right-hand side of eqn. (3.42) should therefore be interpreted

in the principal value sense. The singularity at a = ý

arises only because the orders of integration have been inter-

changed in deriving the integral equation. No such singular-

ity arises in the more natural procedure for computing the

response to an arbitrary disturbance of a given frequency:

integrating first over the wavenumbers in the disturbance

and only then over the velocity space. In any case, the

kernel of the cut-out disks is well-defined at a = 8 ; this

principal value integral is immaterial for them.

One should also take note of the strong trailing bias

exhibited by both the singular and cut-out disks. Recall

that the transfer function S (Bl,; u, ) reports how a
m u



forcing at the wavenumber a spreads itself out over the

other wavenumbers B . The angular momentum function domi-

nates this redistribution. The trailing bias can be seen

most clearly in the singular disk. Assume that the forcing

rotates directly (n > 0) and that it has a vanishingly small

growth rate 6 (s = 0 +). Then, for those Fourier components

which are directly rotating [Z£(0) + mn(O) > 0], the angular

momentum function behaves roughly as

F m(B--2;(a-,) 
<e 8 < a ,

while for those components which are counter-rotating,

e 8 > a

F9m(B-c;t,) (a -(-) <
e @ < a ,

exclusive of multiplicative constants. The behavior of the

cut-out disks is analogous. The only substantial difference

away from a = 8 is that the exponentially decaying factors

are all e- 18-aJ7/N . Both direct and counter-rotating compo-

nents occur for any angular harmonic. In the transfer func-

tion itself, which involves a sum over the radial Fourier

harmonics and an integration over the eccentric velocities,

6Although the angular momentum function is only defined
by the integral in eqn. (3.41) for Im{6} > 0 , we are cer-
tainly entitled to use analytic continuation to obtain the
value as s + 0 and beyond. Since we have explicit expres-
sions for the result of the integration when s > 0 , this
limiting process is straightforward.



the directly rotating components will be more important for

ý > a , whereas the counter-rotating components will be more

important for B < a . Clearly these disks will respond to

an arbitrary disturbance in a decidedly one-sided, trailing

fashion -- most of the response occurs in wavenumbers more

positive than the forcing wavenumber. Very little of the

total response is fed back into more leading wavenumbers.

Figure 2 illustrates a typical angular momentum function of

each type for the N = 2 disk.

Our searches for modes are confined to the cut-out disks.

If their kernels were entirely one-sided, the search would be

futile, for Volterra kernels have no eigenfunctions. However,

as we shall see, even the slight trickle of feedback into

more leading wavenumbers suffices to permit growing modes if

the velocity dispersion is low enough. For growing distur-

bances the kernel is not so one-sided as in the case of van-

ishingly small growth. On the trailing side the angular

momentum function is decreased by a factor of exp[-IB-al

-1x tan (ý/mi )] and on the leading side it is increased to

the same extent. This favorable tendency, though, is more

than offset by an overall decrease in the size of the transfer

function as the growth rate is increased. Naturally enough,

slowly growing disturbances are easier to produce than

rapidly growing ones.

A few remarks about the behavior of the rest of the

kernel are in order. As Kalnajs (1971) has shown, for large
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Re Im

5 10

Figure 2. The angular momentum function F P(-a;;,m) forEm
the N = 2 disk with u = 0 = 0.378, p = 0.5 and _ = 0+

u p
Both curves report m = 2 functions: top curve refers to the

case k = -1 , and displays a strong trailing bias; bottom

curve shows the Hermitian-symmetric Z -2 contributions.



lal , K(a,m) = (a2 + m2)-1/ 2 . For fixed £ and 0 ,

stationary phase arguments imply that Q£m(a;O) will decay

as jal -1/2 for large Jal . On the whole then, the trans-

fer function S (8,a;& ,&) will exhibit a gradual, algebraic

decay along the diagonal a = 8 , a marked exponential decay

(in a for fixed a ) for a > a , and a mild exponential

decay (at least when - > 0 ) for a <

e) Numerical Procedures

The growing modes of a given cut-out disk correspond to

the solutions of the integral equation (3.42). We must resort

to numerical methods to find what solutions, if any, this

equation admits. An essential element of the method employed

to solve this equation is the computation of the response

due to an imposed density transform A(a) which is known

only at, say, 2n+l equally-spaced points centered on a = 0

This response is given by the integral on the right-hand side

of eqn. (3.42). It is sought at the same 2n+l locations

at which the imposed density is known. Two major numerical

tasks are involved in the determination of the response:

(i) the computation of the kernel, S (B,a;& ,u) , on a

(2n+l) x (2n+l) grid in (8,a) space, and (ii) the evalua-

tion of the response integral based on these values of the

kernel and those of the imposed density.

The computation of the kernel requires numerical

procedures for several major elements:
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1) The Kalnajs gravity factor K(a,m)

The axisymmetric gravity factor K(a,O) can be effec-

tively computed from an infinite product representation.

A recursion relation between K(a,n) and K(a,n+l) is

then used to obtain K(a,m) from K(a,O) .

2) The orbital parameters x mi n (0) , max (0) and I (0)

An iterative scheme based on Newton's method is used to

obtain x min(0) and Xmax(0) , the two solutions of eqn.

(2.34). The integrals I (0) are computed from eqn. (2.39)

by means of a quadrature designed to handle the singular-

ities in the denominator.

3) The Fourier coefficients Q m(a;O)

These are computed from eqn. (3.27) by the midpoint rule.

The orbital excursions X(ý;0) and Y(p;0) are found by

a Runge-Kutta integration of the unperturbed orbits.

4) The integral over eccentric velocities f dO
0

This is computed by means of a Gauss-Laguerre quadrature

in the variable 02 .

5) The normalization constant Ca

This, too, is computed by a Gauss-Laguerre quadrature over

eccentric velocities.

6) The sum over the radial harmonics

The results are compared as additional radial harmonics

are added.



Further details of the above procedures are furnished

in Appendix C. The numerical procedure for computing the

response integral itself,

res) m u Aimp(a) do

consists of suitably weighting the computed elements of the

kernel so that

2n+l
A (s.) S A (a )res k= ]jk imp k

where (Sjk) is the matrix consisting of the weighted elements

of the kernel and Pj and ack are the sampling wavenumbers.

This approach has the advantage of permitting the response to

numerous imposed densities to be found efficiently. The

basis for the weighting procedure is an 8-point Lagrangian

interpolation of both S (8,a;u ,3) and A im(p) . This

method is described explicitly in Appendix D.
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IV. AXISYMMETRIC (m = 0) RESULTS

Now that the mathematical basis of the stability analysis

has been presented, we turn to a discussion of the results.

In this chapter the simplest disturbances - the axisymmetric

(m = 0) ones -- are examined. Our primary objective here is

to confirm, in the context of the cut-out models, an earlier

but less complete calculation by Toomre of the criterion of

axisymmetric stability for the singular disk. In the process

we will also obtain the corresponding criteria for the cut-out

models. Otherwise, we will pay relatively little attention

to the axisymmetric modes of the latter disks, since the

emphasis in this thesis is on their non-axisymmetric behavior.

a) Singular Disk

The minimum velocity dispersion required to stabilize

the singular disk against exponentially growing disturbances

was found by Toomre (1970, unpublished) to be remarkably

close to the estimate furnished by local theory [cf. eqn.

(2.18)]: He found no difference between the global au,min

and the local estimate to within one percent. In 1973 Toomre

repeated his computations in double-precision arithmetic, and

found that the actual & does in fact differ from theu,min
4local estimate, but only by a few parts in 10 . Since this
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unpublished work relates to our analysis of the cut-out disks,

we will briefly describe Toomre's calculations.

The distribution function of the singular disk meets

the requirements of the demonstration by Kalnajs (1971) that

there are no overstable large-scale axisymmetric disturbances.

Therefore the frequency of conceivable instabilities can be

assumed to be purely imaginary, i.e., & = is . Toomre's

aim was to find the largest velocity dispersion for which a

marginally stable disturbance (one with a vanishingly small

growth rate s = 0 + ) can be supported by the singular disk.

For any finite growth rate there will be some radius (of

order V /s in dimensional units) beyond which the natural

time scales of the stars [% l/K(r) I are too long for them

to participate effectively in the disturbance. In this case,

since the singular disk is self-similar, the disturbances

themselves can be expected to be likewise. For this intuitive

reason, Toomre sought the response of the disk to an imposed

marginally stable disturbance of the form

-3/2
l,imp(r) = p (r/r )  cos[a kn(r/ro)] . (4.1)

He found that the response density does indeed have the same

form as the imposed density and can be expressed as

l,res(r) = R(u ,a) Plimp(r) ,

where R( ,a) is a real-valued function, which can beu
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expressed an an integral over radius and over velocity space.

The condition

R(iu,E ) = 1

implicitly relates the velocity dispersions and wavenumbers

for which self-consistent, marginally stable disturbances

exist. This condition is analogous to the one relating

velocity dispersion and wavenumber in the local theory.

Toomre's (1964) Figure 5 displays the form that this rela-

tionship takes in that approximation.

When working in the variables r , 0 and rH there

are several integrable singularities to contend with in the

numerical evaluation of R( u,a) . Still, Toomre was numer-

ically able to compute this function to better than 8

digits. He found that the maximum velocity dispersion for

which marginally stable modes exist is

Su,min = 0.378070 , (4.2)

in units of the circular speed V . For a > mo u = umin '

then, the singular disk is axisymmetrically stable.

When u = a exactly, the marginally stable
u u,min

disturbance has the wavenumber

am = 3.46062 .m (4.3)
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When the locally estimated 6u.min is computed to the same

number of digits, it turns out to be

S = 0.377940u,min

In short, the global result seems to be 1.000344 times the

local one - an almost embarrassing agreement!

Although the calculation by Toomre seemed sensible, some

questions remained about its assumptions. An obvious concern

was that one cannot be certain, without a more general inves-

tigation, that the marginally stable axisymmetric disturbances

indeed have the form specified by eqn. (4.1). In principle

this issue can be resolved by solving the integral equation

(3.42) for the singular disk when m = 0 . However, as we

saw in section III.d, that formulation suggests another worry:

either the singular disk has no growing modes whatsoever, or

else a continuum of them. The s = 0+ limit taken by

Toomre is apparently some sort of singular process.

Unfortunately, the numerical difficulties caused by the

principal value character of the kernel for the singular disk

have so far prevented us from developing any reliable pro-

cedures for obtaining solutions of eqn. (3.42). Hence we

can neither support nor contradict Toomre's estimate

directly.



b) Cut-out Disks

On the other hand, the calculations for the cut-out disks

are manageable and we can use them to infer the singular disk

behavior. As we have frequently noted, any cut-out disk is

virtually indistinguishable from the singular one at very

large radii. For the present purposes the behavior of the

local stability parameter Q(r) , defined by eqn. (2.67), is

instructive. For the singular disk it is independent of r;

for a cut-out disk it has an infinitely large value at the

center, and decreases monotonically as r increases, tending

axymptotically to the singular disk value as r - w . This

implies that the cut-out models are increasingly stable as

r decreases and that their susceptibility to axisymmetric

disturbances is governed by their properties at large radii.

Therefore we expect that the axisymmetric stability boundary

for any cut-out disk will be exactly the same as that for the

singular disk.

For axisymmetric disturbances the integral equation

governing the modes is understandably easier to handle than

it is for the m f 0 cases. As was done for the singular

disk, the search for growing modes here can be confined to

purely imaginary frequencies. The integral equation (3.42)

can then be manipulated into an equivalent one with an

Hermitian kernel:

B(B) = f T0 (,oa;&u,S) B(c) de , (4.4)



B(a) = /K(a,O) A(a)

T O( ,a; u = /K(,0) K(ac,0) C'a Io(0)
£=l 0

(a-a; 0, )

and

(n;O,.s) = FQ0 (n;O0,i) + FP 0 (n ; 0 , i s )-iQO

The remaining quantities have all been defined in Chapters

II and III. In obtaining this result the property

Q- 0 (eU;O) = Q£0 (a;0)

has been used. This is demonstrated in Appendix C, eqn. (C.3).

For any cut-out disk,

F-RO(n;D,is)

[see eqn. (3.41)] and therefore

E(-n;0,s) = E r1(;0,s)

Hence, recalling that K(a,0) is real, we can easily see that

the new axisymmetric kernel T0 (B,a;au,s) is indeed Hermitian.

We note here, for future reference, the additional property

T 0 ( - a , -B;u ,s) = T0 ( 8 , a;u ,s) •

where

(4.5)

-0/2 2e u

0 dO (4.6)

(4.7)

(4.8)

Qo (8;0)x Qao (a;0)

= FR0(-; 'i )



The integral equation (4.4) implicitly determines both

the characteristic frequencies and the shapes of the growing

axisymmetric modes of a cut-out disk. This equation presents

an eigenvalue problem for the growth rates ý and the symme-

trized density transforms B(a) of the modes. [Henceforth

we will refer to B(a) as simply a density transform. It

is to be understood that B(a) is related to the actual den-

sity transform A(a) by eqn. (4.5).] However, this is not

a conventional eigenvalue problem, since the characteristic

growth rates 9 enter into the kernel in a distinctly non-

linear fashion.

Consequently, a useful approach is to consider a more

general problem than that of finding the growing modes: for

any growth rate ý what are the imposed densities, B. (a) ,imp

for which the response density, B (a) , has the same shape,res

differing only by a constant real multiple? We denote this

real multiple by X(Gu,s) . Hence we are looking for those

densities for which

B res(a) = A(u ,) Bimp (a)

This more general, but artificial, problem is described by

the integral equation

-00

This now presents a standard linear eigenvalue problem for



the artificial, purely mathematical eigenvalues X(& ,s) and
u

their corresponding eigenfunctions B(a) . To avoid confusion

with the physical eigenvalue problem of eqn. (4.4), we will

refer to the solutions X(u ,s) of eqn. (4.9) as mathema-

tical or artificial eigenvalues and to the solutions s of

eqn. (4.4) as characteristic growth rates.

Since the kernel is Hermitian, all the mathematical

eigenvalues of eqn. (4.9) are necessarily real. We expect

there to be countably many of them, X1 (A u,) , X2 (auS) '

, which can be ordered so that Ix l (1 u ,s) > 1 2(&u,s)I

> . . , with I Xk(u ,s) - 0 as k - c . We do not attempt

to justify this expectation but merely note that the numerical

results show no indication of a continuum of mathematical

eigenvalues.

Clearly the issue of whether any specific growth rate

is a characteristic growth rate reduces to the more manage-

able question of whether any of the corresponding mathematical

eigenvalues are unity. The solutions of eqn. (4.9) can be

found by straightforward numerical methods. We use the same

basic approach in approximating the response integral in

eqn. (4.9) as we use in computing the response integral in

eqn. (3.42) for arbitrary non-axisymmetric disturbances.

This approach was surveyed in section III.e and is detailed

in Appendices C and D.



The general numerical procedures can be streamlined in

the axisymmetric case. The Hermitian property of the kernel

combined with eqn. (4.8) yield

T 0( ,; u  = T 0( - ,- ;  u

It is then easy to show that if B(a) is an eigenfunction

of eqn. (4.9) with eigenvalue X(U ,s) then B(-a) is also

an eigenfunction with the same eigenvalue. (Numerically, we

find that the mathematical eigenvalues are in fact degenerate.)

Although both

B+(a) = B(c) + B(-a)

and

B (c) = B(a) - B(-a)

are mathematically valid eigenfunctions when B(a) f B(-a)

only B+ (a) is physically relevant. The reason is that the

surface density corresponding to B_(a) is identically zero.

Therefore, we may assume that

B(a) = B(-a) , (4.10)

and reduce the linear eigenvalue problem to

1Recall that it is only the real part of the Fourier
integral that is physically significant.



6( u,S) B(8) = f T0(,a;~;u,S) B(a) da

00
+ If T0(-,1;cuS) B(a) dc (> > 0) . (4.11)

0

If this is broken up into its real and imaginary parts and

the interpolation scheme described in Appendix D is used to

evaluate the integrals, an approximation of the form

n+l
(G ,S ) B(B) = T B(a ) j = 1,2, • * * n+l (4.12)

k=l

is obtained. Both 8j and ak are elements of the set of

sampling wavenumbers consisting of the n+l equally spaced

points between a1 = 0 and an+l = n(Aa) . The distance

between successive points is represented by Aa . The two-

dimensional vector B(B.) consists of the real and imaginary

parts of B(Sj) and Tjk is a real 2x2 matrix whose

entries are weighted combinations of TO(Sjak; ul) and

T0 ( -Sjla k ; u's)

The mathematical eigenvalues are approximated by those

of the 2(n+l)-dimensional matrix implied by eqn. (4.12). We

have employed the eigenvalue package EISPACK [see Klema,

Garbow and Moler (1973)] to compute these numbers. Unfor-

tunately, the interpolation scheme used to obtain the elements

Tjk introduces an artificial asymmetry into the system given

by eqn. (4.12). We have found that the same eigenvalues (to

better than 1 part in 104) are obtained when the system is

artificially symmetrized by averaging the appropriate



off-diagonal components. The eigenvalues of the real symmet-

ric matrix that results from this averaging process can be

computed much more efficiently than can those of the original,

un-symmetric matrix. This is especially true when only a

few of the largest eigenvalues are desired.

Another useful consideration is that FR0 (n;O,iý) is

sharply peaked near n = 0 , decaying as e- If I /N when

N > 2 and as e-f ln l/2 when N = 1 . Hence the kernel

T0 (Bf,a;iu ,s) itself decays rapidly away from the diagonal

8 = a . Therefore, when the eigenfunction B(a) is sharply

peaked near some a > 3 , as happens when s is small, the

second integral in eqn.(4.11) can be ignored without signif-

icantly altering the computed eigenvalues.

We have found that when the above simplifications are

employed, our numerical procedures are capable of producing

efficiently the mathematical eigenvalues to an accuracy of

one part in ten thousand.2 Unfortunately, we have not been

able to obtain the axisymmetric stability criterion for the

cut-out disks to a comparable level of accuracy. The problem

is that although X(& ,s) can be computed quite accurately

for any given &u and s > 0 , the stability boundary can

only be approached in an s - 0 limit. This limiting pro-

cess is not an easy matter. The source of the difficulty is

In Chapter V some specific examples of the numerical
convergence to the mathematical eigenvalues are given, albeit
for the general non-axisymmetric routines. The streamlined
axisymmetric procedures converge in a similar fashion.



98

-i(B-a) Zn -the term e in the kernel of eqn. (4.4). It not

only prevents us from computing X(& u,0 ) directly, but also

suggests that, as a function of 9 , X( u,s) has a singu-

larity at s = 0 . In the absence of any firm knowledge of

the nature of this singularity, no reliable extrapolation

from a series of s > 0 results to the s = 0+ value can

be performed. It is mainly for this reason (we believe) that

the present calculation of the axisymmetric stability criter-

ion for one of the cut-out disks can support Toomre's result

for the singular disk only to within a few parts in 103

Our efforts to locate the axisymmetric stability boundary

have focused on the disk with cut-out index N = 2 . Two

different strategies have been used. The first one leaned

heavily on the singular disk result. The aim was to check

whether, when u has the value 0.378070 , the largest

mathematical eigenvalue tends, as expected, to 1 as s 4 0+.

The following table contains the results.

s (0.378070,I)

-110 0.7558-210 0.9421-310 0.9796-4
10 0.9903

-510 0.9944
-610 0.9963
-710 0.9974

As one can see, the limiting value (presumably A = 1) is

approached very slowly. (For the cut-out index N = 3 model,

the approach to the limit is a little, but not much, faster.)



For the reasons given above, we have not attempted to extrap-

olate these numbers. By themselves they permit us to conclude

only that the stability criteria for the singular disk and

this particular cut-out model agree to within a few tenths of

one percent.

A couple of interesting features are displayed by the

mathematical eigenvalues and eigenfunctions in the s -÷ 0+

limit. For one, the second and third largest mathematical

eigenvalues become larger and larger fractions of the dominant

(or largest) eigenvalue as s decreases. Apparently, they

too tend to A = 1 . Quite possibly this is also the case

with the fourth, fifth, etc. eigenvalues, but we have not

checked, mainly because the smaller eigenvalues are not com-

puted as accurately as the larger ones. This behavior may

well be linked to the existence of a continuum of modes in

the singular disk for &u = umin . Another point is that

by examining the eigenfunction B(a) we find that for very

small ý , the peak of the density transform occurs between

a = 3.48 and a = 3.49 . For the singular disk, B(a)

should be simply a delta-function centered on am = 3.46

[see eqns. (4.1) and (4.3)]. These features give us further

assurance that for very small s the cut-out models are

mimicing the singular disk.

The second strategy that we used for locating the stabil-

ity boundary was less biased toward the singular disk result.

The objective was to determine how s, , the growth rate of
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the fastest growing mode, varied with u . This was achieved

by picking a value of u (< 0.378070) and then iterating in

the growth rate s until the largest mathematical eigenvalue

equalled one, i.e., X(& ,s,) = . The results are summarizedu

below.

SQ s*

0.3030 0.8014 0.1007
0.3215 0.8504 0.0619
0.3407 0.9012 0.0298
0.3591 0.9498 0.00829
0.3686 0.9750 0.00176
0.3733 0.9874 0.000247
0.3756 0.9935 0.0000212
0.3768 0.9966 0.00000057

The second column contains the global stability parameter

Q [see eqn. (2.68)] where the singular disk result was used

as the reference value, i.e.,

Q = &u/0.378070 . (4.13)

Ideally, we would like to extrapolate s, to 0+ and find

the corresponding value of u . This, of course, would

give us the precise minimum velocity dispersion required to

suppress all axisymmetric instabilities. Again, though,

because of the uncertainties of any such extrapolation we

have left things as they stand, coming about as close to the

singular disk value here as we did by the other approach.

To summarize, both of the above attempts to locate the

axisymmetric stability boundary of this particular cut-out
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disk suggest that umin = 0.377 , with some uncertainty

in the last digit. Almost certainly the source of this

inaccuracy is an irregular behavior of the mathematical

eigenvalues as ~÷ 0+

Compared with these cut-out disk results, the stability

criterion of the singular disk was obtained to twice the

accuracy. One reason this was possible was that in Toomre's

calculation, the s -÷ 0+ limit was taken directly, and hence

the difficulties we encountered in extrapolating s > 0

results were avoided. On the other hand, there was some

concern about the assumptions made in the singular disk cal-

culation. One worry centered on the likelihood that exponen-

tially growing modes exist in the singular disk for only one

value of & ; this left the s -+ 0+ limit somewhat suspect.u

Furthermore, a specific form was assumed for the marginally

stable disturbances. The present, cruder results for the

N = 2 cut-out disk, though, appear to dispel these suspicions.

Since there are solid grounds for expecting the cut-out models

to have the same value of a as the singular model, theu,min

fact that essentially the same result is obtained for the cut-

out disk seems to indicate that the singular disk was indeed

properly treated. Thus, we henceforth take the more accurate

singular disk result to be the actual 6umin for all the

cut-out models; in particular, the axisymmetric stability

parameter Q will be based upon umin = 0.378070 .u ,min
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The last question we consider in this chapter is the

shape of the unstable axisymmetric disturbances in a cut-out

model. We again use the N = 2 disk, this time choosing

a = 0.303 (Q = 0.801). The growth rates of the two most

unstable modes are l1 = 0.101 and s2 = 0.036 . Their

surface densities are illustrated in Figure 3. We have

chosen to plot 5 ~i(U) vs. £n - rather than -1(- ) vs.

r , where r = r/r is the radial coordinate in dimension-

less units. This choice enables a direct comparison to be

to be made between the form assumed by Toomre in eqn. (4.1)

for the marginally stable modes of the singular disk and the

form actually taken by the modes in this particular cut-out

disk. The former disturbances extend over the entire singu-

lar disk whereas the two modes displayed in Figure 3 are

effectively confined to an annular region between r- 1

and - % 1/9 . Both the inner and outer "barriers" have

simple explanations. Since most of the material at radial

distances less than 1 in a cut-out disk is rigid, very

little activity can occur there. At the other extreme, the

obstacle to the disturbance is the same one that exists for

modes of finite growth rate even in the singular disk -

stars beyond - % 1/9 simply respond too slowly for them

to participate in the perturbation. Within the annular

region, however, the two modes displayed in Figure 3 are

basically sinusoidal. Compared to the more slowly growing

disturbance the first mode has a somewhat larger wavelength
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4 2n r

-3/2Figure 3. The density fields, shown as 3/2 i() vs. kn 9 ,

of the two most unstable m = 0 modes of the N = 2 disk

with u = 0.303 . The growth rates are s = 0.101 (top)

and s = 0.036 (bottom). Asterisks mark the radii at which

= 1/s .
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(in tn - ) and fewer oscillations in the active region --

apparently three fewer "half-wavelengths". In terms of

the radius i itself, of course, these modes look some-

what different. The wavelength in physical space is much

tighter at smaller radii than at larger ones. Moreover,

since the magnitude of the disturbance is scaled by a factor

of E-3/2 compared to that in Figure 3, the size of the

oscillations is much larger at small radii than they appear

in that diagram. All in all, however, these instabilities

are rather ordinary "ring modes". The fact that there is

nothing particularly remarkable about the shapes of these

disturbances compared to those intuitively expected by

Toomre lends additional support to his singular disk result.
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V. BISYMMETRIC (m = 2) RESULTS

Of the various non-axisymmetric disturbances, presumably

the most interesting are the two-armed ones. Many of the

prominent structures observed in actual galaxies have a dis-

tinct bisymmetric shape. In this chapter we will determine

the circumstances under which m = 2 instabilities are pos-

sible in several of the cut-out disks and we will also examine

the characteristics of some of those growing disturbances.

First, however, we must discuss the strategy we used for

solving the crucial integral equation (3.42), in particular

how it was possible to decide whether there are any growing

disturbances in a given model, and if so, what the charac-

teristic frequencies and shapes are.

a) Use of an Artificial Eigenvalue Problem

In broad terms the strategy is rather similar to that

employed in the search for axisymmetric modes. With each

frequency i we associate the artificial, linear eigenvalue

problem

X(au ,) A(B) = f S (8,o;a ,a ) A(a) de , (5.1)
Sm ufrequencies for which some mathematical

and seek those frequencies for which some mathematical
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eigenvalue X(u ,I) is unity. Compared to the case with

the m = 0 modes, however, there are additional complica-

tions. We must now consider disturbances which not only

grow (- > 0) but also rotate (np / 0). Moreover, the kernel

is no longer Hermitian - not even for = 0+ . Consequently,

the mathematical eigenvalues now have both real and imaginary

parts. Hence the search for those characteristic frequencies

which permit some mathematical eigenvalue to equal unity must

take place in two dimensions instead of only one as in the

axisymmetric case.

We again use a suitable finite-dimensional matrix equation

to approximate the integral equation, namely,

2n+l
X(&u,W) A(Sj) k=l Sjk A(ak) (j=l,2,. . ,2n+l) (5.2)

k=1

[see section III.e and Appendix D]. Since (Sjk) is not

Hermitian, it is now more difficult to compute the eigen-

values. Therefore, we generally rely on an iterative "power

method" procedure to find the largest one or two eigenvalues.

This method is described in Appendix E.

While the remaining remarks in this chapter are directed

specifically to the manner in which we determine whether a

given cut-out disk is stable to bisymmetric disturbances,

they pertain equally well to the approach used for the

other non-axisymmetric harmonics, like m = 1 or m = 3
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The search for the possible growing modes is guided by

the manner in which the largest mathematical eigenvalue (in

absolute sense) depends upon the frequency. The two compo-

nents of the frequency, the pattern speed n and the growth

rate § , play different roles in determining the response

of the disk. The pattern speed determines the locations of

the corotation and Lindblad resonances. For bisymmetric

perturbations the inner Lindblad resonance occurs at rILR

0.293/np , the corotation resonance at rCR = l/2p , and the

outer Lindblad resonance at rOLR = 1.707/p , at least for

particles in nearly circular orbits. In the asymptotic den-

sity wave theory of Lin and Shu, the density disturbance is

confined to the "principal range" between the two Lindblad

resonances. The nature of the response of the disk can be

expected to depend sharply upon where the principal range

lies with respect to the "edge" in the active stellar compo-

nent of the cut-out disks. This edge occurs in the vicinity

of r = 1 . Inside this radius the majority of the stars are

rigid, whereas outside this point the majority of the stars

are mobile. Three ranges of the pattern speed can therefore

be distinguished: (i) n > 2: The disturbance lies inside

the edge. Since the active density is so low near the center,

the response should be rather small. (ii) 2 > n > 0.2: The

disturbance overlaps the edge. The strong gradient in the

active density should strongly influence the response.

(iii) n < 0.2: The disturbance lies well beyond the edge.
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As S ÷ 0 , the response should approach that of the singular

disk. The pattern speed, therefore, can be expected to influ-

ence strongly the character of the response. This is measured

in large part by the complex phase of the mathematical eigen-

value. The growth rate, on the other hand, affects primarily

the strength of the response. It becomes increasingly diffi-

cult for a disk to respond effectively to disturbances with

larger and larger growth rates. Hence, the magnitudes of the

mathematical eigenvalues can be expected to decrease as the

growth rate increases.

b) Artificial Eigenvalues of the N = 2 Disk

We now focus on the disk with cut-out index N = 2

taking a detailed look at its mathematical eigenvalues. Our

starting point is a system which is marginally stable to axi-

symmetric disturbances. As demonstrated in the previous

chapter, a disk with a velocity dispersion of & = 0.378
u

will have a global stability parameter Q of unity.

The objective here is to spot general trends. So, for

the moment, rough calculations of the mathematical eigenvalues

will suffice. The accuracy of the results is controlled

mainly by three factors: (i) the fineness of the spacing in

wavenumber used in the approximation of the integral equa-

tion; (ii) the number of points used in the Gauss-Laguerre

integration over the eccentric velocity; and (iii) the number

of radial harmonics included. Eigenvalues accurate to 3
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or even 4 digits can be obtained with rather coarse wave-

number spacings and only a few eccentric velocity points.

(However, this degree of accuracy also requires that a size-

able number of radial harmonics be included, as will be

illustrated below.) The convergence to the largest mathe-

matical eigenvalue when I = 0.60 and
P

in the table below, where the effect of

s = 0.20 is displayed

improving all facets

of the approximation is shown.

0.413338
0.413807
0.413921
0.413957
0.413974
0.413980

AR

0.413918
0.413950
0.413957
0.413958
0.413958

XR

0.462612
0.454289
0.452706
0.452413
0.452405
0.452451
0.452529
0.452579
0.452615

k kn p
-3 6

-10 20
-11 22

-0.044536
-0.043120
-0.042928
-0.042897
-0.042892
-0.042894

I

-0.042928
-0.042903
-0.042897
-0.042897
-0.042897

A1

-0.008834
-0.014609
-0.015926
-0.016173
-0.016196
-0.016143
-0.016104
-0.016068
-0.016041

The spacing in wavenumber of the approximation to the integral

The number of Gauss-Laguerre

1.00
0.75
0.60
0.50
0.40
0.30

ii)

iii)

n

equation is denoted by Aa .
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points used in the eccentric velocity quadrature is denoted

by n0 . The sum over the radial harmonics extends from

k = R to Z = R . The real and imaginary parts of the
n p

eigenvalue have the obvious notation. In each part of this

table only one parameter is varied. The nominal values are

Aa = 0.50 over the range [-12,12] (this range is already

sufficiently large to obtain 6 digit accuracy in the eigen-

value), n 0 
= 6 , k = -2 and k = 4 . Part (i) showsn p

the convergence as Ac is decreased, part (ii) as n0  is

increased and part (iii) as more radial harmonics are included.

[In part (iii) the last three radial harmonics have been

given twice their normal weights, for reasons explained in

Appendix C. This accounts for the large difference between

the 2 = -2 to 4 results and the Z = -3 to 6 results.]

For some purposes we settle for results in which only a

few radial harmonics are incorporated, typically from £ = -2

to 4 . As the table suggests, this leads to eigenvalues that

are individually in error by about 10% . The important

consideration is that the relative behavior of the eigenvalues

with the frequency is indicated by these crude calculations

just as well as by more accurate calculations. Naturally,

when precise results are desired, such as the value of the

characteristic frequency of a mode, an adequate number of

radial harmonics are included.

There are several considerations, besides simple trial

and error, that help us to decide how elaborate to make the
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numerical approximation in any specific situation. The use

of our finite approximation to the artificial eigenvalue

problem requires that we limit the range of wavenumbers that

are included - we must truncate the infinite range o c

[-0,1] . Just how great this extent needs to be for reliable

results depends on several factors. When the velocity disper-

sion is small, the shorter length scales are more prominent

than when the dispersion is large. This suggests that the

size of the wavenumber region that we retain must become

larger as the velocity dispersion increases. The extent of

this region is also influenced by the size of the pattern

speed. Ordinarily, a disturbance is largely confined to

the portion of the disk between the Lindblad resonances.

When pis large, however, the hole in the center of a cut-

out disk presents a significant, additional inner barrier to

the disturbance. So, a perturbation with a small pattern

speed will often have a larger width in 2n - than one with

a large pattern speed. Since the width of a Fourier transform

is roughly inversely proportional to the width of the function

in physical space, a broader region of wavenumber space is

required to represent adequately the density transform when

the pattern speed is large than when it is small. The

requirement for a wider wavenumber region for smaller velo-

city dispersions is somewhat ameliorated by an accompanying

reduction in the influence of the higher radial harmonics.

This occurs because these radial harmonics are really needed
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only for the more eccentric orbits, which are less prevalent

for smaller velocity dispersions.

Using coarse results in which only a few radial harmonics

are kept, we now proceed to trace the behavior of the dominant

eigenvalue of the disk of cut-out index N = 2 when its axi-

symmetric stability parameter Q is unity. Our first step

is to pick a growth rate and to find out how the largest

eigenvalue varies with the pattern speed. We start with the

growth rate 9 = 0.40 and look at the response for the pat-

tern speeds n = 1.00, 0.90, 0.80, 0.70, 0.60, 0.50, and

0.40 . The results are plotted in Figure 4. For this growth

rate they are the points connected by the "left-most" curve

in that diagram. Clearly, the eigenvalue will lie on the

positive real axis when =! 0.76 . However, it will then

have the disappointingly low value of 0.29 - disappointing

when the objective is to find a growing mode, since the value

X = 1 is required for that. Note that none of the eigen-

values along this curve has a modulus even approaching unity.

So a mode cannot be found within this range of pattern speeds

by examining the smaller eigenvalues. The only chance for a

growing mode lies in a growth rate other than 9 = 0.40 .

Even there, though, strong grounds for pessimism exist.

The use of a finite, numerical approximation to the kernel

of the integral equation (5.1) guarantees that the eigenvalues

will be analytic in the frequency. Hence the eigenvalue

A(& ,j) that is computed gives a conformal mapping from theu
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upper half of the complex a-plane into the complex X-plane.

The eigenvalue curve for s = 0.40 in Figure 4 is the image

of the segment of the line Im{f} = 0.40 between Re{i} =

2.00 and ReN{} = 0.80 .1 Since conformal mappings preserve

the orientation of curves, the eigenvalues for growth rates

smaller than s = 0.40 will lie to the left of the eigen-

value curve for s = 0.40 as it is traced in the direction

of decreasing pattern speed. In itself, this is a hopeful

sign, for at least the eigenvalues for smaller growth rates

will lie closer to 1 , consistent with the expectation that

IX( u, )I will be larger for smaller growth rates. Unfor-

tunately, analytic mappings also preserve the relative lengths

of curves passing through a common point. Merely by exam-

ining the distance between the points for n = 0.60 and

n = 0.50 along the s = 0.40 curve in Figure 4, we can

estimate that the eigenvalue curve for s = 0+ - which

bounds the region of growing disturbances -- will cross the

real axis in the vicinity of Re{X} = 1/2 . Thus, even the

fragmentary evidence of the s = 0.40 results suggests that

no growing, bisymmetric modes can be supported by the N = 2

disk when 6 = 0.378u

This suggestion is confirmed by the specific results

for the smaller growth rates s = 0.20 and s = 0+  included

in Figure 4. The latter results represent the limit of

1Recall that Re{f} = m , so that for m = 2 , when
n = 1.00 , then RefN} = 2.00 .
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vanishingly small growth. These eigenvalues for the smaller

growth rates lie more or less where expected. From the

standpoint of finding possible growing modes, the most signif-

icant feature of the results in Figure 4 is that the eigen-

value curve for the limiting case = 0+ crosses the posi-

tive Re{(A-axis at A = 0.529 (when n = 0.562). Even

allowing a 10 percent uncertainty due to neglect of the

higher radial harmonics, this limiting eigenvalue curve

evidently comes nowhere near the value X = 1 required

for a bona-fide mode.

The clear implication is that the N = 2 cut-out disk,

unlike most other galaxy models studied, is not especially

prone to m = 2 instabilities. This result was so unex-

pected that, when we first obtained it, we suspected some

serious blunder. Perhaps only some numerical constant had

been left out inadvertently - after all, if so much as a

factor of 2 were missing, our whole conclusion would change,

for then the B = 0+ eigenvalue curve would cross the real

axis beyond X = 1 . Consequently, we conducted a number

of tests of our procedures.

We first made the rather elementary test of comparing

for small u the limiting form of the hot disk kernel,

S m(,a; u,3) , calculated in Chapter III on the basis of

stellar dynamics, with the strictly cold disk (a = 0)

kernel obtained independently from a fluid description. When

&u had the value 0.01 the hot disk result agreed to severalu
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digits with the cold disk answer. This agreement already

appeared to preclude any omission of overall numerical factors.

Next, in the particular case m = 0 , we compared the

kernel computed for a "hot" Eu = 0.400 disk by the general

non-axisymmetric procedures with the same kernel produced by

the specialized axisymmetric routines discussed in Chapter IV.

Here again the results were reassuringly close.

The clinching evidence, though, was the verification of

our results by explicit orbit integrations. These tests are

described in Appendix F. The most basic of these checks

involved the response of a cut-out disk to an elementary

forcing at a single wavenumber [see eqn. (3.16)]: at several

radii the density response implied by the transfer function

S (8,a;a ,i) is calculated and compared with the densitym u

obtained independently from a tedious orbit integration. The

earliest such check on the N = 2 , m = 2 results showed

agreement to better that 1% when the forcing wavenumber

was a = 5 , the pattern speed I = 0.25 and the growth

rate E = 0.40 . At the same time, similar checks on the

N = 1 , m = 2 results showed even better agreement for

both a = 5 and a = 0 . As described in the appendix, we

have more recently tested some of the actual, highly accurate

solutions [X(G ,o) , A(a)] of eqn. (5.1) by comparing the

imposed density with the response density implied by orbit

integrations. In some cases the two densities differ by

only a few parts in 10
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Thus, there is good reason to believe that our numer-

ical results are reliable. However, we cannot yet firmly

conclude that the N = 2 cut-out disk is markedly less sus-

ceptible to m = 2 instabilities than to m = 0 ones. Of

course, more accurate results than those above are needed,

but the real gap in the evidence stated thus far is the behav-

ior of the mathematical eigenvalues for frequencies other

than those illustrated in Figure 4. Only moderate pattern

speeds - ones for which the disturbance overlaps the edge

of the active part of the disk - were considered there.

Yet to be examined are eigenvalues for both large and small

pattern speeds; likewise we must be careful to pay attention

also to the second, third, - - • mathematical eigenvalues

admitted in any given situation. Results for a wide range

of growth rates are not essential; in fact, the eigenvalues

for s = 0+  suffice to determine whether growing modes are

possible, since a marginal eigenvalue curve, consisting of

mathematical eigenvalues for frequencies of the form A =

mn + iO+ , delimits the image in the complex X-plane of the

upper half of the o-plane. The question of which side of a

marginal eigenvalue curve corresponds to this image is resolved

through the conformal mapping property of X(& ,&) discussedu

earlier. Clearly, growing modes are possible if and only if

the point X = 1 lies in the image of the upper half a-plane

of at least one mathematical eigenvalue.
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Most of these issues are covered by the more extensive

results for the N = 2 disk summarized in Figure 5. The

marginal eigenvalue curves over a broad range of pattern

speeds are displayed there for the two largest mathematical

eigenvalues. Sufficient radial harmonics have been included

to produce results reliable to within graphical accuracy.

In general terms, observe that for any given (positive)

pattern speed the only significant difference between the

largest and the second largest eigenvalues involves their

moduli; their phases are more or less the same. Here at

least, all points inside the second marginal eigenvalue curve

are also inside the largest one. Therefore the critical

question of the location of the point X = 1 , which corre-

sponds to a self-consilstent disturbance, relative to these

two curves is resolved by the largest curve alone.

We focus now on just the dominant, or largest, eigen-

value. For large pattern speeds its behavior is fairly mun-

dane. As expected, A + 0 as n ÷ since the disturbance
p

is then concentrated at the very center of the disk where

there is very little mass able to participate in the commo-

tion. Actually, Figure 5 only contains results up to n = 5

For larger n , reliable results are difficult to obtain

because a very broad range in a is required then to represent

A(a) adequately in the approximation to eqn. (5.1)2

2The reason for this was explained earlier in this
sub-section.
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There can be little doubt, though that the dominant eigenvalue

curve does approach the origin at this extreme. For moderate

pattern speeds the accurate results in Figure 5 differ, as

anticipated, by less than 10% from the crude s = 0+

results in Figure 4. The most important feature is that the

dominant marginal eigenvalue curve crosses the positive

Re{f}-axis at X = 0.595 when n = 0.538 . This is a

slight increase from the crossing at X = 0.529 when g =

0.562 in Figure 4, but hardly enough to alter the signifi-

cant conclusion that no growing modes with moderate pattern

speeds are possible in the N = 2 disk. In fact, just from

the size of the largest eigenvalue this conclusion can now

be extended to rule out growing modes firmly for all pattern

speeds greater than 0.284 , since that is the point at which

the modulus first exceeds 1 . We observe that by the time

n is that small this eigenvalue has already swung in phase
p

over 400 clockwise from the positive real axis. As n
p

decreases still further the largest eigenvalue remains greater

than 1 in modulus and continues swinging in the clockwise

direction. It reaches a maximum modulus of 1.39 near & =
P

0.075 and thereafter decreases gradually. The results in

Figure 5 suggest strongly that in the limit -+ 0 + ,
p

tends to a point on the negative real axis in the neighborhood

of X = -1.15 . This apparent tendency has not been more

solidly established because of the numerical difficulty of

obtaining results for very small pattern speeds. Still, it
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appears certain that the largest eigenvalue does not even

+
remotely approach X = 1 as 0 -* 0 . To summarize, it

p

seems safe to conclude that the largest eigenvalue cannot

equal 1 for s > 0 when ! > 0 .
p

Before excluding altogether the possibility of finding

any growing modes in this model, both the smaller eigenvalues

and the results for n < 0 must be examined. As already
p

noted, the second marginal eigenvalue curve displayed in

Figure 5 behaves much the same as the dominant one. It does

not exceed 1 in absolute value until S drops below

0.15 . The size of the second eigenvalue continually increases

as n + 0 , and it seems likely that in this limit it
p

approaches the largest eigenvalue. (This is one reason results

are hard to obtain for small & -- the power method becomes

increasingly inefficient.) So now the possibility of growing

modes has been restricted to Q < 0.15 . Further bounds
p

require an analysis of the third, fourth and even smaller

eigenvalues, but it seems likely to us that they too tend to

the negative real axis beyond X = -1 . It has not seemed to us

worth the expense to close in this manner an already convin-

cing case against growing modes.

When n < 0 the eigenvalue curves are more complicated.
p

The difficulty is that there are two distinct types of solu-

tions to eqn. (5.1) for counter-rotating disturbances. One

solution corresponds to a distinctly leading pattern -

A(a) is most active in the vicinity of a = -10 - and the
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other to a more or less non-spiral eigenfunction -- A(-a)

A(a) . The first type of solution is the dominant one for

-m < n < -0.05 ; its eigenvalue starts out at the origin
p

in quadrant III for large, negative n and circles into

quadrant IV as p + 0- , never much exceeding 1/2 in modu-
p

lus. Near P = -0.05 the nearly non-spiral solution becomes

the dominant one; its eigenvalue lies a shade below the nega-

tive Re{Xf-axis, drifting out to the left as P -÷ 0 ,

possibly tending to the p - 0+ limit. We conclude thatp

this N = 2 disk does not admit any growing modes with

negative pattern speeds.

So far, we have given a fairly complete description of

the manner in which the mathematical eigenvalues X(& , )

vary with the frequency. The dependence upon the velocity

dispersion is illustrated in Figure 6, where portions of the

dominant marginal eigenvalue curves for Q = 0.80, 1.00

and 1.20 are displayed. Here, as in Figure 4, we have

resorted to coarse results for which only a few radial har-

monics are included. (With the exception of Figures 4 and 6

all results cited here are reliable to the number of digits

quoted, and certainly those used for the plots are reliable

to within graphical accuracy.) Naturally, the eigenvalues

increase as - decreases, since colder disks respond more

than hotter disks to a given imposed potential. In fact,

the eigenvalues displayed in Figure 6 vary more or less as

Since the kernel has a logarithmic branch point at
w = 0 , it is not clear that these two limits coincide.
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_-1S Probably the most significant feature of these curves

is the point at which they cross the ReXl}-axis:4

Q = 1.20: X = 0.443 when 2 = 0.556
p

Q = 1.00: X = 0.529 when S = 0.561

Q = 0.80: A = 0.643 when S = 0.576
p

These results suggest that A = 1 does not fall within the

image of the upper half of the a-plane (and therefore no

m = 2 instabilities are present) until Q < 1/2 . A more

precise stability boundary for the N = 2 model as well as

that of several other cut-out models will be reported in

sub-section (d).

c) Artificial Eigenvalues of Other Models

The issue we address here is the behavior of the eigen-

values of the other cut-out disks. Although our examinations

of these eigenvalues were not as detailed as our study of

the N = 2 model, there seems little doubt that, regardless

of the cut-out index N , A( u,O) can assume positive real

values only for moderate values of n . That region of the

X-plane is of course the most relevant one when seeking grow-

ing modes. We needn't worry about what happens for large

pattern speeds, for surely AX - 0 as n + w . In fact,
p

this must occur more rapidly with increasing N , since there

4The curve for Q = 1.00 here does not exactly match
the corresponding curve in Figure 5 since a slightly better
numerical approximation was used here.
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is then progressively less active mass at the small radii

where disturbances of large speed are likely to be concen-

trated. At the other extreme, for very small p , the

exact form of the cut-out center should not be very impor-

tant, for the corresponding density disturbances are concen-

trated far outside the center. Thus we expect that the

eigenvalues for all the cut-out disks should behave similarly

for very small n . The results listed below for N = 1,

2, 3 and 4 when 0 = 0.01 and 0.001 are consistent

with this expectation:

= 0.01 0 = 0.001
p p

N XR I R I

1 -0.913 -0.496 -1.096 -0.192
2 -1.180 -0.390 -1.160 -0.097
3 -1.241 -0.295 -1.164 -0.066
4 -1.255 -0.244 -1.163 -0.053

The eigenvalues are noticeably closer for the smaller of the

two pattern speeds. We saw in the previous section that

when N = 2 , the eigenvalues appear to end up on the negative

Re{X}-axis. Apparently the eigenvalues of the other models

do likewise in the limit p 0+ . Therefore, small pattern
p

speeds are not a serious concern either.

Relying then on the above evidence and the detailed

N = 2 results, we hereafter restrict our examinations of

the cut-out models to the regime of moderate pattern speeds.

For the models with cut-out indices N = i1, 2, 3 and 4 ,
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the relevant portions of the dominant marginal eigenvalue

curves (s = 0 + ) are displayed in Figure 7. As in the two

earliest diagrams of this chapter the velocity dispersion

is such that Q = 1 . From these results alone, we can

determine which models are stable by the location of the

point X = 1 : if it lies to the left of the curve as it

is traversed in the direction of decreasing n , then no

growing modes are possible since the eigenvalues for s > 0

lie to the right of a marginal eigenvalue curve.

On this basis it is clear that the N = 1 model is

extraordinarily stable to m = 2 disturbances when Q = 1

Curiously, the eigenvalue which has the largest modulus when

n < 0.65 is not the same one that is largest when & >

0.65 . The first and second eigenvalues, then, switch roles

near that pattern speed. For purposes of clarity, only the

eigenvalue that dominates for the smaller pattern speeds has

been displayed. The eigenvalue which dominates for larger

p lies roughly 450 in phase closer to the Re{X}-axis than
p

does the eigenvalue plotted in Figure 7 for N = 1 ; moreover,

it crosses the real axis at a larger value -- at X = 0.225

when n = 0.807 . The other cut-out models do not exhibit
p

this interchange of eigenvalue roles. Evidently the N = 1

disk would have to be virtually cold (8 < 0.1) before the
u%

marginal eigenvalue curve would cross the real axis beyond

X = 1 (using the rough rule of thumb that X varies with

the velocity dispersion in an inverse-first-power manner),
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or equivalently, before any growing m = 2 modes would be

possible.

As previously noted, the cut-out index N = 2 disk is

already well-stabilized to bisymmetric disturbances when

Q = 1 . Recall that its marginal eigenvalue curve crosses

the Re{X}-axis at X = 0.595 , and that Q consequently needs

to decrease by about a factor of 2 before any m = 2 modes

become unstable.

The N = 3 disk is the first member of this family of

cut-out models that admits a growing m = 2 mode when Q is

1 . As depicted in Figure 7, the point X = 1 lies within

the marginal eigenvalue curve, so that we are sure to find

some pattern speed p and some growth rate s > 0 for

which X(0u ,) = 1 . The marginal eigenvalue curve intersects

the positive Re{X}-axis at X = 1.061 when n = 0.424 .

Note that the point X = 1 does not fall within the marginal

eigenvalue curve with much room to spare; an increase of

au by only 10% will surely suffice to suppress this

instability.

In contrast, the N = 4 model is unstable by a wide

margin when the axisymmetric instabilities first disappear.

The Re{XI-axis is crossed by its marginal eigenvalue curve

at X = 1.453 when n = 0.390 . We fully expect this disk

to remain susceptible to m = 2 instabilities until Q

reaches the neighborhood of 1.5 .
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Before proceeding to our report of the more accurate

m = 2 stability criteria for these cut-out models, we wish

to make several remarks. Neither the N = 3 nor the N = 4

model has a second unstable mode when Q = 1 . For N = 3 ,

the marginal eigenvalue curve for the second eigenvalue inter-

sects the Re{X}-axis at X = 0.782 for n = 0.430 , while

for N = 4 it does so at X = 0.983 for Q = 0.392 . Note

that in both cases the pattern speed at which the second mar-

ginal eigenvalue is purely real differs by only 1% from the

pattern speed at which the marginal eigenvalue curve for the

dominant eigenvalue crosses the real axis. This feature

reinforces our earlier impression, formed from the specific

N = 2 results, that the phases of the various mathematical

eigenvalues for a given pattern speed are more or less the same.

The foregoing results suggest that the N = 5, 6, 7,

* * * models will be progressively more unstable, i.e., the

instabilities will have increasingly large growth rates, when

Q = 1 (or, for that matter, for any other Q in the vicinity

of 1); moreover, it appears certain that for N > 5 , there

will be at least two unstable modes when Q is 1 . We have

not pursued the more sharply cut-out models sufficiently to

determine what, if any, limiting behavior they exhibit as

N + w . In this limit, of course, the cut-out factor H(J)

tends to a step function at J = rV , and consequently the
oo

active density appears more and more to have simply a sharp

hole in the center.
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Finally, since the cut-out models in the Q + 0+
p

limit are expected to mimic the singular disk, our results

for small n suggest that the dominant eigenvalue of the
p

basic self-similar model has a real negative value when

Q = 1 . In fact, Kalnajs had anticipated just this result

when warning us about the peculiar frequency dependence of

the singular disk kernel. Furthermore, since it seems likely

that only the modulus of A will change as & is varied,

the implication is that the singular disk admits no exponen-

tially growing modes of type m = 2 when Q is in the vicin-

ity of 1 .

d) Stability Criteria

Our detailed N = 2 results led us to conclude that

the last m = 2 instabilities to disappear from a given cut-

out disk as C increases are indeed those associated withu

the largest mathematical eigenvalue. Therefore, the minimum

velocity dispersion for which one of these disks is m = 2

stable is surely that value of -u , denoted here by C2,crit '

for which the dominant marginal eigenvalue curve passes

exactly through the point A = 1 , i.e., that value of u

for which (& 2 , ritmnp +io) = 1 for some n . Thus far

we have provided only rough estimates of 2,crit by relying

on the Q = 1 results and the observed A I &-1 behavior.

In this section we will report our refinements of these esti-

mates, which were obtained by determining, to several digits,
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the specific values of n and especially U for whichp u

X(U ,mp ) = 1 , where, of course, by mnp we actually mean

mn +iO .
p

A two-dimensional iteration in U and & was usedu p

to find the solutions of

A (&u,mp ) = 1

Ii(@u,mnp ) = 0.

We employed essentially a Newton-Ralphson method of iteration,

using the last three iterates to estimate the partial deriva-

tives.

No attempt was made to find U2,crit for the N = 1

model. The primary reason for this omission was the small

size of this U (as we have seen, it is surely less than

0.10); hence a very broad range in a would have been needed

to obtain an adequate approximation to the integral equation

(5.1).

For the N = 2 model, the minimum velocity dispersion

is -2,crit = 0.21 (Q = 0.55). The marginally stable m = 2

mode has p = 0.57 . In the N = 3 cut-out disk, &2,crit

= 0.417 (Q = 1.10), with the marginally stable mode having

n = 0.417 . The last member of the family of cut-out models

for which we tracked down the stability boundary was the

N = 4 model, where 2,crit = 0.603 (Q = 1.59). The margin-

ally stable mode occurs when n = 0.363 .p
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Surely the fact that the N = 2 model is m = 2 stable

for Q > 0.55 is surprising enough. But even for the other

two models, for which m = 2 stability is not achieved until

Q > 1 , the ratio of the energy in random motions to that in

rotational motion is rather small. At any point in the disk,

this ratio, denoted here by R , is given by

R = U [1 + (a /a )2

The tangential velocity dispersion can be obtained from eqn.

(2.16). Using our above stability criteria we find that,

at marginal stability, R = 0.064 for the N = 2 disk,

R = 0.257 for the N = 3 disk and R = 0.527 for the N = 4

disk. These values of R disagree sharply with the ratio

R = 2.6 that Ostriker and Peebles (1973) have suggested

characterizes the stability boundary in disk galaxies.

(Actually, they phrased their criterion in terms of the ratio

of total rotational to total gravitational energy; we have

recast it in slightly different terms.) Although their cri-

terion does apply to many systems, the cut-out models are

exceptions. Of course, this may be the case only because we

have carved out the region where their result can be most

expected to hold.

Although there is only a single unstable m = 2 mode

in the N = 3 and N = 4 disks when Q = 1 , we can in

principle determine how low u must be before other insta-

bilities arise - ones associated with the smaller mathematical
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eigenvalues. We have done this only for the N = 3 model.

We found that a second instability develops when u drops

below 0.30 (Q = 0.80) and a third when the dispersion is

lower than u = 0.28 (Q = 0.74). At its point of marginal

stability the second mode has a pattern speed of n = 0.46

while the corresponding pattern speed of the third mode is

n = 0.42 . These angular speeds are again in the moderate

range.

For more sharply cut out models (N > 5) we expect that

2 will be increasingly large. The determination of
2,crit

the m = 2 stability criteria of these models would require

computation for very hot disks (Q > 2). The typical orbits

in these systems would have very large eccentricities. We

have not attempted these calculations, since an inordinately

large number of radial harmonics would then have been needed

to get decent results.

e) Growing Modes When Q = 1

No doubt the most essential result on the bisymmetric

disturbances of the cut-out models is that which has just

been reported - the amount of "heat" necessary to stabilize

all such modes. But perhaps the most interesting feature of

disks which are still unstable to two-armed disturbances

u <  )2,crit is the nature of the growing modes - their

characteristic frequencies and shapes. The former properties

are discussed in this sub-section.
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We will consider for this purpose disks with the velocity

dispersion -u = 0.378070 (Q = 1). These are systems which

are barely stable to axisymmetric perturbations. Of the four

cut-out models examined in this thesis only the N = 3 and

N = 4 disks have any growing modes at this velocity disper-

sion.

For this fixed -u , we seek to find the specific pattern

speed np and growth rate s for which X( u,m p +iý) = 1

As in our earlier search for the marginally stable modes, an

iterative procedure is used to find the characteristic fre-

quency & = mn +ii . However, in the present case we do not
p

need to resort to such a clumsy two-dimensional iteration.

The reason is that X is an analytic function of I and

therefore an iteration in the single variable & is possible,

An inverse Lagrange interpolation which employs all the pre-

vious [W,X(u ,i)] pairs is easy to implement and was used

here to produce the successive estimates of the characteris-

tic frequency.

For the N = 3 cut-out disk, the Q = 1 unstable mode

has a pattern speed of n = 0.433 and a growth rate of

9 = 0.021 . As we had anticipated from the 9 = 0+  eigen-

values, this is a rather slowly growing disturbance. On the

other hand, the N = 4 unstable mode grows considerably

faster, as expected. Its growth rate is s = 0.1270 and

its pattern speed is n = 0.4394 .
P
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The near agreement between the pattern speeds of the

growing modes in these two disks is striking. The inner

Lindblad resonance, corotation radius and outer Lindblad

resonance for the mode of the N = 3 disk occur at

= .676 r, CR 2.31 and rOLR 3.94 , and for theILR CR OLR
mode of the N = 4 model, these resonances are located at

rILR = 0.667 , rCR = 2.28 and =OLR = 3.89 . These reso-

nance radii, of course, are those for the stars in circular

orbits. We will take a closer look at the latter mode in

the following sub-section.

For now, note that the corotation circles of these

modes - and indeed even those for the marginally stable

modes discussed earlier -- lie within a factor of 2 or

at most 3 from the edge in the active density. Moreover,

the inner Lindblad resonance is noticeably inside this edge,

but it is still close enough for there to be an appreciable

amount of material near the resonance. Most of the activity

of the density disturbances themselves can thus be expected

to lie in the vicinity of the rigid center. Both this evi-

dence from the pattern speeds themselves and the additional

fact that the instability is stronger in the more sharply

cut out disks, leave little doubt that these modes are some-

how due to the presence of an edge to the active density.

Although we have some ideas about the details of this process,

we are presently unable to offer a clear physical mechanism

for this behavior.
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We have one other result of some interest to present in

this sub-section. Even though the N = 2 disk has no expo-

nentially growing modes when Q = 1 , we can still search for

the least rapidly (exponentially) decaying disturbance. The

mathematical apparatus developed in Chapter III was based on

the assumption that the perturbation was growing, i.e.,

i = Im{ý} > 0 . By analogy with the Landau treatment of the

initial value problem in plasma physics [cf., for example,

Stix (1962)] the decaying modes are given by the solutions

of eqn. (3.42) when the kernel, eqn. (3.40), is analytically

continued into the region Im{f} < 0 . The only portion of

the kernel in which the frequency appears is the angular

momentum function. Since a specific expression, eqn. (3.44),

is available for this function, the continuation process is

fairly easy. The only subtle point is the treatment of

the term

9 2 (0)+mn (0)Rn [] .

In expressions (3.45) and (3.46) the assumption that Im{i}

> 0 was explicitly used. In those formulas the principal

branch of the logarithm was specified. The analytic contin-

uation into the region Im{&} < 0 is achieved by using, for

£n Z that branch of the logarithm that enables the argument

of the logarithm to vary smoothly as s crosses 0 , i.e.,

if n > 0 , then, whether s > 0 or s < 0 ,. n 63 should

be taken to be £nj[3 + i tan-1 (/mp) . However, note that
p
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the angular momentum function has a branch point at - = 0 .

Therefore, although we may find that the dominant exponential

behavior has a "damping rate" - < 0 , we cannot conclude

that all disturbances will decay at least as fast as e .

With this caution in mind, we report now that for Q = 1 ,

the dominant decaying mode of the N = 2 cut-out disk has a

damping rate s = -0.220 and a pattern speed Q = 0.414 .

In principle, it is possible to compute similar damping rates

for the dominant mode of the N = 1 disk and even for the

modes associated with the sub-dominant mathematical eigenvalues

of the N = 3 and N = 4 disks. However, we have chosen not

to pursue this point any further.

f) Illustration of a Growing Mode

We close our discussion of the bisymmetric disturbances

with a detailed illustration of one of the growing modes

whose characteristic frequency was cited in the previous sub-

section: the mode of the disk with cut-out index N = 4

when the system is marginally stable to axisymmetric distur-

bances.

The density transform A(a) of this mode is displayed

in Figure 8. The real and imaginary parts (solid curves) of

this eigenfunction are given along with its magnitude (dotted

curve). Of course, this selection of the real and imaginary

parts (as well as that of the vertical scale) is arbitrary

since any non-zero complex multiple of A(a) is also a mode.
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Recalling that the positive wavenumbers correspond to

trailing components of a disturbance density, it is obvious

from Figure 8 that this mode is a trailing one -- there is

very little content in the negative, or leading, wavenumbers.

In fact, since the density transform peaks near a = 5.5 ,

we can expect the density itself to be roughly characterized

by this wavenumber.

The only other comment we have about Figure 8 concerns

the high-wavenumber content of A(a) . The noteworthy fea-

ture is that the density transform decays in amplitude far

more rapidly to the left of its peak than it does to the

right: by the time a =-8 , IA(a) is already down to

the 0.1% level, while at an equal distance to the right

of the peak, it has only dropped to 0.6% of its maximum;

even at a = +30 , IA(a) still has 0.3% of its peak value.

This can be explained by referring to the transfer function

S (8,a;& ,&) , given explicitly by eqn. (3.40). This function

describes how the disk responds at the wavenumber 8 to a

forcing at the wavenumber a . For the density disturbance

of this mode the forcing wavenumbers are mainly in the neigh-

borhood of a \ 5.5 . The term in the transfer function

which dominates the redistribution to other wavenumbers is

the angular momentum function F£m(B-a;0,i) . As we pointed

out in section III.d, this function is responsible for a

strong trailing bias in the transfer function itself. In

fact, as 8-a + +w , the k > -1 angular momentum functions
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-l
decay only as e_ 8-al tan-l (/mcp . Clearly, the smaller

the growth rate, the larger A(a) will be for large positive

wavenumbers. Presumably some of this is due to the effects

of resonant stars - after all, the k > -1 terms are the

resonant ones.

Of course, the density transform is only of secondary

importance; the real interest lies in 1 (r) . (We are meas-

uring density in units of p and radius in units of ro ;

the dependence upon 8 and t has been suppressed.) This

density in physical space is displayed in Figure 9 in terms

of a contour map and in Figure 10 in terms of two radial

cross sections. The positive contours at 80, 60, 40, 20

and 10% of the peak disturbance density are shown as solid

curves in Figure 9 ; the nodes of this density are indicated

by the dotted lines; the negative contours are not displayed.

The arrows mark the corresponding contour levels on Figure 10.

In the latter diagram the designations Re and Im refer to

the real and imaginary parts of the Fourier integral

( 3 / 2  f A(a) e i a Zn -d .
-00

The actual positions of these two radial slices are marked

in Figure 9. The resonance locations marked on these diagrams

are those for stars in circular orbits.

Our first observation is that this density forms a rather

striking, trailing spiral pattern which is mildly tightly-wound.
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Figure 9. Density contours of the only unstable m = 2 mode
of the N = 4 disk with 0 = 1 . Solid curves denote 80, 60,
40, 20 and 10% of peak density; dotted curves are the nodes.
The lines marked Re and Im indicate the locations of the
radial slices shown in Figure 10. Both the model and this
growing pattern rotate counter-clockwise. Inner Lindblad
resonance (circle marked ILR) and outer Lindblad resonance
(not shown) are equidistant from corotation resonance (CR).

B .-....



142

-Jn-I--4

4!su
a(]

o
 

rd
U
0
 

H

4 0
- 

)

4 Hr-

C
O
 

C

~
O
r
b
O

0
 

ý4
0
 

0
H

O

O
 

0
o

•
0
0
00 

0
0
r 

*p
0 

a 
0

U
 O) Q
-
(
1

o
 
4
 .
,
$
 0

0 -H
0 

-

O
)
 

H
-
P
 
H
-
,

J 
0
0

O
0
0
O

crd 
C

U
)0

w r 
00

0>

o 
-4 4 

0

-H
 

0
 

-H
 

0



143

We find that the wavenumber a = 5.5 does characterize the

density field. To be more specific, by referring to Figure

10 we observe that one complete oscillation of the real part

occurs between the nodes at i1 = 1.06 and i2 = 3.33 ,

while for the imaginary part the relevant locations are

r1 = 0.83 and i2 = 2.58 . The corresponding (logarithmic)

wavenumber is a = 2f/£n( 2/ 1) . For this wavenumber, the

arms are inclined by roughly 200 to the circular direction.

Secondly, note how well the disturbance appears to be

confined to the "principal range" between the two Lindblad

resonances. The density peaks roughly halfway between the

inner Lindblad resonance and the corotation circle. Just

as we had surmised earlier on the basis of the pattern speed

alone, this disturbance overlaps the edge in the active den-

sity. Note that the inner resonance is situated just barely

inside the edge at - n 1 in the active density. To give

some indication of how wide the effective inner Lindblad

resonance region is in this hot disk, we note that a resonant

star with the typical eccentric velocity 0 = 0.4 oscillates

between rmin = 0.467 and max = 0.827 (cf. table on p. 36).

These number should be compared with the nominal resonance

location I = 0.667 . Note also that the resonances areILR

blurred further because the growth rate 9 is sizeable.

On the whole, then, these illustrations reinforce our

earlier impression that the instability is indebted to the

sharply cut out center of these models.
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VI. RESULTS FOR SEVERAL OTHER ANGULAR HARMONICS

Besides the m = 0 and the fairly thorough m = 2

results which have already been described, our stability

analysis includes results for the m = 1 , 3 and 4

angular harmonics. The same general approach was taken for

these other three non-axisymmetric harmonics as was adopted

for the m = 2 harmonic. Specifically, we again introduced

an artificial, mathematical eigenvalue problem analogous to

eqn. (5.1). The presence or absence of exponentially growing

modes was then inferred from the numerically obtained mathe-

matical eigenvalues.

The results for the three remaining cases could not be

obtained quite as efficiently as in the case m = 2 . When

m = 1 or m = 3 , the magnitude of the largest eigenvalue

proved usually to be not much greater than the magnitude of

the second largest. For this reason, the iterative procedure

described in Appendix E for finding the dominant eigenvalue

converged only slowly. Moreover, the convergence of the sums

over radial harmonics also seemed markedly slower than when

m = 2 . Hence, and also because there is probably less

interest in the m 3 2 results, we draw only broad conclusions

about them.
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a) m = 1 Results

The m = 1 disturbances differ from those of all the

other angular harmonics in one very important respect: only

then does the center of mass of the perturbed density not

necessarily coincide with the center of the unperturbed

system; in other words, only when m = 1 can the first

moment of the disturbance density be non-zero. In deriving

the integral equation (3.42) which governs the modes, we

assumed that all parts of the equilibrium disk remain fixed.

Therefore, any m = 1 "modes" computed on the basis of that

equation are such that the center of mass of the entire system

moves. To be more precise, it spirals out from r = 0 ,

increasing in radius at the rate eSt , while rotating at the

angular speed n .

Clearly what is called for is a procedure which allows

the equilibrium disk the freedom to displace laterally in such

a fashion that its own first moment exactly cancels that of

the perturbed density. The center of mass will then remain

fixed. This approach is complicated by the infinite total

mass of the models we are studying. However, only the mobile

component has infinite total mass, at least when the cut-out

index N > 2 ; the total mass of what we called the immobile

or rigid component then has a respectable, finite value.

Therefore, it is the rigid center alone which needs to be

moved in order to leave the center of mass of the entire sys-

tem fixed under an m = 1 disturbance. The movement of this
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"plug" will cause a perturbation of the equilibrium 1/r

force field that is over and above the perturbation caused

by the disturbance density itself. In the linear approxi-

mation , the total disturbance force felt by a mobile star

is simply the sum of two separate forces - one as usual

from the perturbed density of the active component and another

from the motion of the rigid matter.

Although we have developed a specific procedure for

including in the integral equation the response of the active

stars to the motion of the rigid center, our results for the

stability of the m = 1 fixed-center-of-mass disturbances

are, at present, inconclusive.

In the remainder of this section we therefore describe

our results only for the naive m = 1 disturbances -- those

for which the equilibrium disk is held fixed. As we mentioned

earlier, when m is equal to 1 , the iteration to the lar-

gest mathematical eigenvalue converges slowly. Largely for

this reason we do not present any graphical illustrations of

the manner in which the mathematical eigenvalue varies with

S and .
p

We find that the eigenvalue X(u ,i) again depends upon

the frequency - in the expected analytic manner; hence, we

1The magnitude of the motion of the rigid center is
directly proportional to the first moment of the disturbance
density and that perturbation we have assumed to be infinites-
imally small. Even though the first moment consists of an
integral over the infinite extent of the disk, it still has
a finite value, at least in all cases that we have encountered.
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determine whether or not any growing m = 1 modes exist by

examining the eigenvalues when the growth rate is vanishingly

small. Most of our specific results are for the model with

cut-out index N = 2 . Qualitatively, the marginal eigenvalue

curve for large n is much like the corresponding curve for

m = 2: for very large S , X tends to the origin. For

moderate pattern speeds both the real and imaginary parts of

X are positive. Once the pattern speed drops below np = 1

then the m = 1 marginal eigenvalue curve departs sharply

from the m = 2 curve. The m = 1 curve apparently trails

off along, but slightly above, the positive Re(Xl-axis as

n+ 0 , whereas we recall that the m = 2 curve wound around

toward the negative Re{I}-axis. To be specific, when - =

0.378070 (Q = 1) , Re{X} is at least as large as 1.7 for

n < 0.001 . We have no evidence that the m = 1 curve ever
P

crosses the Re{X}-axis.

The m = 1 eigenvalues appear to come in pairs: the

two largest ones differ from each other by only a few percent;

likewise the third and fourth largest eigenvalues are quite

close. However, the eigenvalues in the second pair have only

about 80% of the magnitude of those in the first pair. The

fifth and sixth eigenvalues are similarly related with respect

to the third and fourth. This pairing off is especially

noticeable for small n . All of the pairs drift out along
p

the positive Re{t}-axis, well beyond X = 1 .
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The most significant and surprising feature that these

eigenvalue curves imply is that the cut-out disks must have

a large number of "naive" m = 1 instabilities, even for

very hot models (Q > 2). This is surely the case when Q = 1

because the point X = 1 lies in the direction of increasing

growth rates from the 9 = 0 curves of many of the eigen-

values. The fact that eigenvalues at least as large as 1.7

exist here for small p suggests that the instabilities

will persist even for substantially larger Q . Our brief

examinations of several of the other cut-out models indicate

that they too are plagued with these instabilities. We have

not tracked down the precise stability criterion for these

m = 1 disturbances because of the numerical difficulty of

obtaining decent results when & is large and n is small.u p

However, when 0 = 1 we have tracked down a number of

the characteristic frequencies. These are

PS
p

0.1407 0.0659
0.1322 0.0590
0.0647 0.0369
0.0570 0.0290

As one can see, these instabilities come in pairs. The

slower growing modes are concentrated farther and farther

away from the cut-out center, judging from the progressive

increase in their corotation radii. Even for the fastest-

growing mode, the corotation circle is a factor of 7 beyond

the edge in the active density.
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The density transform A(a) of this dominant m = 1

mode is illustrated in Figure 11. It differs in several

respects from the transform of the m = 2 mode, which was

displayed in Figure 8. Most noticeably, there is a more

pronounced leading (a < 0) component in the m = 1 distur-

bance. In addition, IA(a) drops off much more rapidly

as a - += than the m = 2 transform does: for instance,

when a = +20 , IA(a) is already below 0.01% of its

peak value, whereas the m = 2 transform is more than an

order of magnitude larger. Both these tendencies are under-

standable. We refer once again to the trailing bias of the

angular momentum function: in particular, we note that the

-1factor tan (s/m~p) , which produces the exponential decay

toward more positive wavenumbers, and mitigates the decay

toward more negative wavenumbers, is 0.44 for the m = 1

mode but only 0.14 for the m = 2 one. Another obvious

difference is that the m = 1 transform is more oscillatory

than the previous one, i.e., the typical distance between

successive nodes of either the real or imaginary part is less

than half the corresponding distance for the m = 2 transform.

This will be rationalized below.

The actual disturbance density of this mode is displayed

in Figures 12 and 13. The conventions are the same as those

used in the corresponding m = 2 graphs. The corotation

resonance of the present mode is located at rCR = 7.11 and

the outer Lindblad resonance at rOLR = 17.2 (well beyondOLR
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CR

Figure 12. Density contours of the most unstable "naive"

m = 1 mode of the N = 2 disk with Q = 1 . Solid curves

denote 30, 60, 40, 20 and 10% of peak density; dotted curves

are the nodes. The lines marked Re and Im indicate the

locations of the radial slices shown in Figure 13. Both the

model and this growing mode rotate counter-clockwise. Dashed

circle marked CR identifies the corotation resonance.
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the range covered in these diagrams). No inner Lindblad

resonance exists for this or any other m = 1 mode in our

galaxy models, since £2(0) + m(0O) < 0 for all 0 when

m = 1 and k = -1 . Figure 13 shows clearly that even

though this m = 1 mode has no inner Lindblad resonance,

which as we recall from our introductory remarks tends to

absorb waves, the disturbance still decays as r - 0 . Pos-

sibly this is due to the small amount of active mass at

the very center. We also observe that the disturbance peaks

between r = 1 and r = 4 . The mode here is not so concen-

trated near the active density edge as the m = 2 modes

proved to be; we of course expect this simply from the differ-

ing pattern speeds. Incidentally, this helps explain why

the m = 1 density transform is the more oscillatory of the

two modes illustrated in this thesis, since even a crude

sort of stationary phase argument suggests that the Fourier

integral

f A(a) e da

will be greatest when the integral as a whole is the least

oscillatory; near the peak of this integral, typical values

of £n i are larger for the m = 1 mode and consequently

A(a) can be expected to be more oscillatory.

We close this sub-section with the reminder that these

m = 1 instabilities may actually be fictitious -- we cannot

yet say whether they remain when the center of mass is fixed.
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b) m = 3 Results

The explorations we have made of the m = 3 angular

harmonic have been very brief. In short, we first confirmed

that our numerical procedures handled this case adequately

and then we determined whether or not any m = 3 instabili-

ties were present in models with an axisymmetric stability

parameter Q of unity.

The reason for the specific check of the numerical pro-

cedures here was the concern about the Z = -2 radial harmonic:

as we noted in section III.e, when m = 3 and Z = -2 the

term £Z(0) + mn(0) which occurs in the angular momentum

function changes sign as 0 increases. The worry was that

the change of character in the angular momentum function that

accompanied the change in sign of £Z(0) + m2(0) [see Appen-

dix D] would create inaccuracies in the Gauss-Laguerre inte-

gration over eccentric velocities. Since this term equals

zero for 0 = 1.19 , the trouble, if any, would occur in the

neighborhood of that eccentric velocity. To test this, we

compared the largest eigenvalue of an N = 2 cut-out disk

when it was obtained from a 5-point Gauss-Laguerre scheme with

the fourth point situated at 0 = 1.18 with that obtained

when the fourth point was located at 0 = 1.20 . The results

agreed to better than 4 digits. For a 6-point quadrature

there was similar agreement between the results as the fourth

point straddled 0 = 1.19 . Evidently the vanishing of

Z£(0) + mn(0) does not cause any serious numerical problems.
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As usual we determined whether any growing m = 3 modes

were possible in a given model by finding where the dominant

marginal eigenvalue curve crossed the positive Re{A}-axis.

For the N = 2 model with Bu = 0.378 (Q = 1) this happens

at X = 0.31 when p = 0.62 . For large n , 1 clearly
P P

tends to the origin. At the other extreme, the dominant

2
eigenvalue has been followed down to S as small as 0.05

p
At that point it has a magnitude of roughly 1.5 but a phase

of -500 - well into the fourth quadrant. Even though this

curve has not been pursued to small enough pattern speeds to

determine its destination as n- 0+ , there is no indica-
p

tion that it ever re-crosses the positive Re{(A-axis. There-

fore, we submit that no m = 3 instabilities are present in

this cut-out model when Q = 1; moreover, judging from the

magnitude of A at its purely real location, three-armed

instabilities are not likely to surface until &u< 0.1
--l

(assuming that, as for m = 2 , A ).

By comparison, the corresponding m = 2 eigenvalue curve

has A = 0.60 as its value on the positive Re{(}-axis. Hence

the N = 2 model is even more stable to m = 3 disturbances

than it is to m = 2 ones.

2We wish to note here that when %p % 0.20 , a previously
sub-dominant eigenvalue becomes the largest one. (Recall that
a similar feature was observed for the m = 2 eigenvalues of
the N = 1 disk.) In fact, a closer examination reveals that
many of the m = 3 eigenvalue curves cross each other. When
m = 3 , then, the curve consisting of the largest eigenvalue
for a given np has a discontinuity near np % 0.20 . Still,
none of the eigenvalue curves comes anywhere close to A = 1 .
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In contrast, the N = 3 and N = 4 cut-out models are

unstable to m = 2 disturbances for this & . But even foru

the N = 4 disk, the m = 3 disturbances are still well

under control when Q = 1 - the dominant eigenvalue has a

strictly real value of only X = 0.61 (when n = 0.63).

c) m = 4 Results

The final angular harmonic that we have examined is the

m = 4 one. Unlike the previous case, Z£(O) + m1(0) never

vanishes when m = 4 ; thus there was no need to check the

numerical procedures here. Again the focus was put on the

N = 2 cut-out model when Q = 1 . The dominant eigenvalue

curve here is similar to that for m = 2 : for very large

n , IX 0 ; as n decreases, 1 swings clockwise from

the first quadrant through the fourth one and into the third,

possibly also tending to the negative ReIA}-axis as S -0 0+
p

The value of A when it crosses the positive Re{l}-axis is

0.22 (at n = 0.65). By the time n has reached 0.10 ,
P P

IAI has grown as large as 1/2 , but by then its phase is

beyond -900 . We have no evidence that JII ever exceeds

1 , let alone approaches the point A = 1 . Thus we conclude

that m = 4 instabilities are even harder to obtain than

m = 3 ones.

The same conclusion arises for the N = 4 model when

Q = 1 . There the Re{A}-axis is intersected at A = 0.40

(when p = 0.54), compared with A = 0.63 when m = 3 .P
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Of the five angular harmonics that we have examined, then,

the m = 4 disturbances are the tamest.

As a final remark, observe that for both m = 3 and

m = 4 , the eigenvalues are in the neighborhood of the positive

Re{X}-axis only for moderate pattern speeds. The implication

of this is that even when u is low enough for there to be

instabilities of these types, they, like the m = 2 ones,

are surely related in some fashion to the edge in the active

density.
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VII. SUMMARY AND DISCUSSION

In the preceding chapters we examined a class of galaxy

models with uniform circular velocity. In these models the

disk component was taken to be increasingly unresponsive

toward the center. As we remarked, this rigidity can be

interpreted as either a centrally concentrated, high-velocity

disk component or else as a high-velocity halo (although

Appendix B indicates that disks with cut-out indices N > 2

do not admit spherical halos whose volume densities are

everywhere non-negative).

Determined as it is by conditions at large radii, the

minimum velocity dispersion required to stabilize these models

against all axisymmetric disturbances is the same for each

cut-out disk -- and for the singular disk -- specifically,

umin = 0.3781 V . Remarkably, this global result differs
u,min o

by only about 3 parts in 104 from the estimate provided

by local theory. When the velocity dispersion is less than

this critical value the disks admit one or more large-scale,

exponentially growing modes. The shapes of such axisymmetric

modes in a cut-out disk are about what one would expect:

the disturbance density is more or less sinusoidal in an

annular region bounded on the inside by the edge of the active
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density and bounded loosely on the outside by the radius at

which the stars no longer have time (in terms of their own

"epicyclic clocks") to respond to the perturbation.

Our analysis of the disturbances with angular wavenumber

m = 1 is still incomplete. It would have been desirable to

admit only perturbations which do not shift the center of

mass of the system. Thus far, however, we have been able to

consider with good numerical accuracy only disturbances which

do not shift the rigid center. All of our cut-out disks seem

unstable to this sort of disturbance, even for velocity dis-

persions well in excess of that needed to eliminate axisym-

metric instabilities. We have especially examined one such

growing, off-center instability in a disk with cut-out index

N = 2 which was just hot enough to prevent the growth of

axisymmetric disturbances. Most of the "activity" in this

density perturbation occurs substantially outside the inactive

central region. This disturbance can conceivably penetrate

to the center of the disk since no inner Lindblad resonance

exists to absorb waves at small radii. Unfortunately, it is

not clear yet whether analogous disturbances will prove to

be unstable for moderate velocity dispersions when a proper

analysis with a fixed center of mass (but laterally mobile

"rigid" component) has been completed.

Among the remaining non-axisymmetric disturbances, the

bisymmetric (m = 2) modes are, as expected, the most demanding

ones in the cut-out disks; in all of these models, distinctly
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more velocity dispersion is required to suppress the last

growing m = 2 mode than is needed to eliminate the m = 3

and m = 4 instabilities.

Nevertheless, we were astonished to discover that even

these m = 2 disturbances in the relatively gently cut-out

N = 1 and N = 2 disks are easier to stabilize than the

axisymmetric m = 0 perturbations. This contrasts sharply

with the marked "two-armed" and/or bar-like instabilities

found in many other models, such as the gaseous disks studied

by Bardeen, several of the uniformly rotating disks examined

by Kalnajs, the disks with modified gravity considered by

Erickson, the numerous N-body experiments conducted by Hohl

& Hockney and by Miller, Prendergast & Quirk, and even the

limited simulations by Ostriker & Peebles of disk-halo systems.

In all but one of those models the dominant instability which

remained after axisymmetric stability had been achieved was

one of type m = 2 . (The exception was a model studied by

Kalnajs in which an m = 3 instability was the most persis-

tent.) Bisymmetric instabilities have been particularly

evident in the N-body computer simulations cited. Our N = 1

and N = 2 models, then, are distinct exceptions to this

usual behavior.

Admittedly, when the center is more strongly cut out, as

in our N = 3 and N = 4 models, even our dominant insta-

bility has a bisymmetric character. However, the spiral

density patterns of such growing "two-armed" or m = 2 modes
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leave little doubt that their unstable behavior is somehow

due to the edge of the mobile matter, for the disturbance

then is greatest near that edge itself, and its angular

speed tends to place the inner Lindblad resonance noticeably

within the "hole". We have examined several of these modes

in detail and have found them to exhibit a distinctly trailing

spiral structure; by-and-large, this structure seems confined

to the annular region between the two Lindblad resonances

(one of which, as we implied, lies fairly deep within the

inactive region). Significantly, however, all four of the

cut-out disks specifically examined here require much less

random motion relative to their rotational motion to achieve

m = 2 stability than the amount Ostriker and Peebles have

suggested is generally characteristic of galaxy models.

Until we have resolved the question of the m = 1 ,

fixed-center-of-mass stability, we cannot assert that our

models are really more stable than other current ones. If

genuine instabilities analogous to our naive m = 1 troubles

are in fact present, then our models will have simply

exchanged a serious m = 2 instability for another of type

m = 1 . So to speak, we may merely have jumped from the

frying pan into the fire.
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APPENDIX A

AN ALTERNATIVE TO THE CUT-OUT MODELS

i) Description

In section II.c of the text we described the cut-out

disks, which were introduced because of the rapid angular

motions near the center of the singular disk. This appendix

will describe another appealing modification of the basic

self-similar model which has the same effect. As in the case

with the cut-out models, the differences between the singular

disk and the model discussed here are largely confined to the

center; elsewhere a strong resemblance to the singular disk

prevails.

The connection between the surface density and the rota-

tion law for this model follows from the well-known fact [see,

for example, Toomre (1963)] that there is a linear relation-

ship between the surface density p(r) and the square of the

rotation law V 2 (r) , i.e., given the pairs [pl(r) , V2 (r)]1 1
and [22(r) , V2 (r)] for two galaxy models, other valid

models can be obtained by forming linear combinations of these

pairs. Recently Rybicki (1974, private communication) noticed,

in effect, that one may form the difference between the sing-

ular disk which has

p(r) = io(r /r)

V 2 (r) = V 2
o
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and Toomre's Model 0 (1963) which has

p(r) = p [(r /r) - r //r' + r z]

V2 (r) = V2 r //rz + rL
to achieve a galaxy model with0 0

to achieve a galaxy model with

I(r) = p ro//rI + r
0O O

V2 (r) = V2 [1 - r/ 2 +z]
O O ro o

(A.1)

(A.2)

This model will be referred to here as the regular disk. The

constants are related by V2 = 2rGPorr . The gravitational

potential follows immediately upon integration of the radial

force -V 2 (r)/r :

() 2 = n[l + /1 + (r/r ) ]0 0 (A.3)

In this axisymmetric potential the constants of motion are,

explicitly, the energy

E = (u 2 + v 2 )/2 + V2 9n[l + /i + (r/r )]O 0

and the angular momentum

J = rv .

(A.4)

(A.5)

Two other important properties are the angular rotation rate

of the disk, given by
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Q(r) = (V /r) {1 - r //r + r }(A.6)

and the epicyclic frequency, given by

K 2(r) = (2V/r 2) [1 - r/ + V r /(r2 + r) 3/2 (A.7)

Notice that for large values of r the properties of

the regular disk approach those of the singular disk, in par-

ticular P(r) -+ o(ro/r) and V(r) + Vo . Hence at large

radii the two models are indistinguishable. Near the center,

however, the two disks differ markedly: the surface density

of the singular disk increases without bound, whereas that

of the regular disk is finite; at the center of the singular

disk, as indeed everywhere else, the rotation speed V(r) is

a constant, whereas at the center of the regular disk it is

the angular rotation rate that is nearly constant. More to

the point, both the angular velocity and the epicyclic fre-

quency of the regular disk are finite at the center -- this

model does not have the rapidly rotating stars that plague

the singular disk at the origin. Note that the regular disk

is a more drastic modification of the singular disk than the

cut-out models discussed in the text, for the regular disk

is not self-similar. Consequently, there are significant

differences in the stellar orbits from radius to radius,

especially near the origin.
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ii) The Distribution Function

Our contribution consists of furnishing an exact distri-

bution function for the regular disk. We looked for one of

the form

f (E,J) = g(J) e u (J > 0)

which satisfies the requirement of self-consistency:

I f f (E,J) du dv = 1 r0//r+ o.-A distribution function 0which meets these conditions is

A distribution function which meets these conditions is

(A.8)

(A.9)

fo (E,J) = (uo/T u) e u

k=0
1/2 ; -J 2 /2 2r 2 ]
, ~~Our

X = V2o u

(k) = r(X+l)/[f(k+l)

(A.10)

, (A.11)

(A.12)r(X-k+l)] ,

and M[a , b ; x] is the confluent hypergeometric function.

The verification of this result is delayed until the next sub-

section of this appendix.

Whenever X = n , an integer, the sum in eqn. (A.10)

terminates, running from k = 0 to k = n . Moreover,

(n) is then the usual binomial coefficient. For this special

where
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case one can show rather simply that f (E,J) > 0 , as required0

by any physical distribution function. Referring to the

identity

M[-(k-l)/2 , 1/2 ; -x] = e-x M[k/2 , 1/2 ; x] (A.13)

[Abramowitz & Stegun (1965, p.504)] and to the series expan-

sion for the confluent hypergeometric function

M[k/2 , 1/2 ; x] = 1 + (k/2) +(k/2) (k/2+) +
(1/2)1! (1/2) (3/2)2!

[Abramowitz & Stegun (1965,p.504)], as well as to the non-

negativeness of the binomial coefficients, it is clear that

each term in the sum in eqn. (A.10) from k = 0 to k = n

is non-negative.

Fortunately the distribution function can be expressed

entirely in terms of polynomials, exponentials and error

functions. This is achieved by simplifying the two classes

of confluent hypergeometric functions that occur in the sum.

The first class corresponds to odd values of k in the sum.

We use the notation

G (h) = M[-q , 1/2 ; -h2 ] , (A.14)

where q is a non-negative integer, to denote these terms.

The second class corresponds to even values of k and its

members are denoted F (h) , wherep



F (h) = M[-p+1/2 , 1/2 ; -h2 ] ,
P

and p is also a non-negative integer. The distribution

function is now written as

fo(E,J) = (•O/ •)e-E/ u { • (2p)
p=0

+ y

+ q(2q+l)
q=0

It is shown in the next section that

G (h) = (9)j=0

and that F (h) can be found

2p

F (J//2 auro)

G (J//2 uro)} .
q uo

F(1/2) h2j

F (j+1/2)

from the recurrence relation

2p-l F pl(h)
2p

(p > 1) ,

(A.16)

(A.17)

(A.18)

with

F 0 (h) = e

F l (h) = e + V/ h erf(h)

where erf(h) is the error function:

h 2

erf(h) = (2//") et dt
0

Indeed, when X = n the distribution function has the

convenient form

167

(A.15)

(A.19)

(A.20)
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f0 (E,J) = (lPo/noru) e-E/ {Pl(h2 ) + P2(h2 ) e -h2

+ / T h P3 (h2 ) erf(h)} , (A.21)

where h = J//2 auro , P1 (x) is a rational polynomial of

degree < (n-l)/2 and P2(x) and P3 (x) are rational poly-

nomials of degree < (n-2)/2 . Several examples are given in

the last section of this appendix.

Thus, whenever X = n the distribution function may be

expressed in a comparatively simple closed form, albeit of

increasing complexity as n increases. Since A = V2/a2

a sequence of models with diminishing velocity dispersion is

obtained as n runs through the integers 1, 2, 3,

The first member of this sequence - corresponding to n = 1

-- is the very hot model with au = V0 . As n increases

the corresponding models in the sequence approach ever closer

to the cold disk (a = 0) .

The velocity dispersions of the n = 6 and n = 7

models straddle the estimate of that minimum dispersion needed

for the disk to be everywhere locally stable to axisymmetric

disturbances: Using Toomre's criterion, this minimum disper-

sion is estimated to be

Smin(r) = (r/r o ) [1 + (r/r0) 211/ 4
u,min {[l + (r/r ) 2]3/2 - (r/r )2/2 - 11/2 us

where a = 0.3779 V is the local estimate for the singu-
u,s 0

lar disk. For r << r , the local estimate for the regular
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disk is

ou,min(r) - [1 + (r/r) 2/4] ou s

and for r >> r it is

-2
•u i (r) - [( + (r/r ) /4] a .

The ratio a u,min(r)/yus rises gently from unity at r = 0

to a value of 1.032 for r = r , reaches a maximum value of

1.046 when r = 2.197 r0  and thereafter decreases asymptot-

ically to unity as r tends to infinity. Thus, for n = 7

or au = V //7V = 0.378 Vo , the regular disk is everywhere

close to marginal axisymmetric stability. For n = 6 , or

a = 0.408 Vo , the regular disk is already everywhere margi-

nally stable in the local axisymmetric sense. The distribu-

tion functions for these two cases are included among the

examples at the end of this appendix.

iii) Verification

The first task of this section is the confirmation of

the distribution function given in eqn. (A.10) for the regular

disk. Inserting the functional form of eqn. (A.8) into the

requirement of eqn. (A.9) and performing the integration

over u , we find that g(J) must satisfy

Sg(rv) /2 X n[l + 1 + (r/r) 2 dvSg(rv) e-' u e =o dv=
0

( o//Vo u)//l + (r/r )0
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or

f g(rv) e /2u dv = [1 + 1 + (r/ro) Z] (A.22)
0 /2aou  /1 + (r/r )

The solution of this integral equation for g(J) was found

by using Mellin transforms. This is a very tedious calcula-

tion and here we will be content simply to confirm that

00

g(J) = ('o/"ou) (+l)
k=0 k! F(X-k+l)

x M[-(k-l)/2 , 1/2 ; -J 2 /2 2 r2 ] (A.23)uo

does indeed satisfy eqn. (A.22).

Use the identity of eqn.(A.13) to write eqn. (A.23) as

-J 2/2y2r2 0 r(+I)

g(J) = (po/7 u) e u l)
k=O k! F(X-k+l)

x M[k/2 , 1/2 ; J 2 /2G u
2 r 2 ] . (A.24)
uo

Denote the left-hand side of eqn. (A.22) by I . Using the

preceding form for g(J) in eqn. (A.22) and then inter-

changing the order of integration and summation' we find

(00 0F(+1) -v (r2 + r )/20 2r
I = (/T • ) I f e o uo

k=0 k! F(X-k+l) 0

x M[k/2 , 1/2 ; v 2 r 2 /2 2 r 2 ] dvuo

This is surely valid for integral values of A since
the sum is then finite. For non-integral values of X we
need to demonstrate that the sum in eqn. (A.24) is uniformly
convergent in order to justify this operation. But since a
demonstration that f (E,J) > 0 is lacking for this general

0case, and moreover, since a convenient sequence of fully
justified models is given by the models with integral A
we have not given a general justification for this operation.
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The substitution x = v 2 r 2/2a 2 r 2  leads touo

00

I = ( r o/Ou) (our //rr) kF(A+)
k=0 k! F(X-k+l) 0

-x(r2+ r2)/r2x e o o M[k/2 , 1/2 ; x] dx

According to Gradshteyn and Ryzhik (1965, p.860),

f e x M[a , c ; x] dx = r(c) s (1 - s- )
0

Therefore, since F(1/2) = /w

TI I ~ * I *.

I = (or //2irar) I I At±l)
k=0 k! r(X-k+l)

vTr [(r 2 + r 2 ) /r 2]o

2(+)] -k/2x [1 - r 2/(r 2 + r O2)k/
2

x F((I) [1 + (r/r )2] k/2
k=0 k! F(X-k+l)

But

k=0

F(X+1) [1 + (r/r) 2 k/2 = [i + 1i + (r/r) ]

k! F (X-k+l)

(this is the general binomial expansion). Thus,

S= ( po//a u) [1+ /i+ (r/r 0 )] //1 + (r/r )

and the solution in eqn. (A.23) is confirmed.
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We now show that the functions G (h) and F (h)
q P

introduced in eqns. (A.14) and (A.15) have the properties

cited in eqns. (A.17) - (A.20). The first case is rather

simple. The series expansion for M[-q , 1/2 ; -h2 ] termi-

nates after (q+l) terms [see Abramowitz and Stegun (1965,

p. 504)]:

M[-q , 1/2 ; -h2] = 1 + (-q) (_h2 ) + (-q)(-q+l) (h2)2
(1/2) 1! (1/2) (3/2) 2!

+ . .. + (-q)(-q+l) • (-1) (-h2)q
(1/2) (3/2). . .(1/2+q-1)q!

So,

G (h) = ) (1/2) h2j (A.25)
j=0 F(1/2+j)

since (1/2) (3/2) . . . (1/2+j-1) = r(1/2+j)/r(1/2) and

(-q)(-q+l) . * • (-q+j-l) = (-1)q (q)(q-l) - - • (q-j+l)

j! j!

The second case is more complicated. The function F0 (h)

is obtained by consulting the identity (A.13) which implies

-h2  -h2M[1/2 , 1/2 ; -h2 ] = e M[0 , 1/2 ; h2] = e ,

since

M[O , 1/2 ; x] = 1

Therefore,

-h2
F0( h ) = e . (A.26)



173

We now refer to Abramowitz and Stegun (1965, p. 509) to

find that

M[1/2 , 3/2 ; -h2 ] = (T/12h) erf(h)

where erf(h) is the error function

h _t2
erf(h) = (2//i) f e dt

0

Next, use the recurrence relation

M[1/2 , 1/2 ; -h2 ] - M[-1/2 , 1/2 ; -h2]

+ 2h2 M[1/2 , 3/2 ; -h2 ] = 0

[Abramowitz and Stegun (1965, p. 506, #13.4.4)], which implies

that

M[-1/2 , 1/2 ; -h 2 ] = M[1/2 , 1/2 ; -h 2 ]

+ 2h2 M[1/2 , 3/2 ; -h 2 ]

Fl (h) = e - h + / h erf(h) . (A.27)

To find the remaining F (h) we use the recurrence relation

p M[-p-1/2 , 1/2 ; -h2] + (-2p + 1/2 - h2 )

X M[-p-1/2 , 1/2 ; -h2] + (p - 1/2) M[-p+3/2 , 1/2 ; -h2 ] = 0

[Abramowitz and Stegun (1965, p. 506, #13.4.3)] to deduce that

or



F p (h) 4p-1+2h2  2p-1(h)= F (h) Fp_ (h)
p+ 2p 2p -1

(p > 1) .

Thus, eqns. (A.26) - (A.28) enable us to find F (h) for
P

all integers p > 0 in terms of polynomials, exponentials

and error functions, whereas G (h) is given by eqn. (A.25)
q

as a polynomial alone.

ii) Examples

Finally, we give several examples of these distribution

functions. Let f n(E,J) denote the distribution function

for the regular disk for which (Vo/ou)2 = n and let

h = J//2a r . Then

-h 2  -E/o 2

f (E,J) = ( uo/'oa) fl + e } e u

-h2  -E/j2
f2(E,J) = (1o/1ou) {2 + 2e + V/ h erf(h)} e u

-h2

f 4 (E,J) = (p /Tr2 ) { [8 + 8h 2 ] + [8 + h 2] e +Sh [15/2 u

/2h [15/2 + h2 ] erf(h)} e- E/u

f 6 (E,J) = ( /o/T 2 ) ([32 + 64h 2 + 8h 4 ] + [32 + 69/4

e-h + / h [315/8 + 35/2 h2 + h4]

f 7 (E,J) = (po/uc 2 ) {[64 + 160h 2 + 32h 4 + 8/15 h6 ]

+ [64 + 203/4 h2 + 7/2 h4] e-h

h 2 + 1/2 h 4 ]

erf(h)} e-E/ u

+ V/ h [693/8 + 105/2 h2 + 7/2 h4 ] erf(h)}e-E/ u

174

(A.28)
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APPENDIX B

DENSITY OF A SPHERICAL HALO EQUIVALENT

TO A RIGID DISK COMPONENT

In section II.c of the text we offered two interpre-

tations of the rigid stellar component in a cut-out disk: a

two-dimensional disk component or a three-dimensional "halo".

If the first interpretation is adopted, the immobile surface

density pi(r) can be found by subtracting the active density

a (r) from the density of the singular disk ps(r) . The

active surface density must be found numerically since the

integration of the active distribution function over velocity

space [see eqn. (2.65)] cannot be performed analytically, at

least not by this writer. Alternatively, if the second inter-

pretation - that the active disk is immersed in a three-

dimensional halo - is adopted, the rigid volume density must

be so chosen that the forces it generates in the plane of the

active material are precisely those that a rigid disk compo-

nent would generate. We furnish here a convenient closed

form expression for a spherically symmetric halo that accom-

plishes this.

We start by finding an expression for the forces in the

plane of symmetry due to the rigid disk component. The loga-

rithmic spiral representation of Kalnajs is a convenient tool

for this task (see section III.b). It enables us to relate

the rigid surface density easily to the gravitational
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potential from the rigid stars (in the plane of the disk).

This potential is denoted by .i(r) . The radial force that

we are after, Fi,r(r) , is simply -d4i/dr . The rigid

surface density can be expressed as an integral over velocity

space:

00 00

fi(r) = j f [1 - H(J)] f s(E,J) du dv , (B.1)
-m 0

where the singular disk distribution function f (E,J) is
s

explained in section II.a and the cut-out factor H(J) in

section II.c. Whenever the cut-out index N is greater than

or equal to 2 , the rigid surface density has the logarithmic

spiral representation:

-3/2 is 9n(r/rPi (r )  •(r/r) 3/2 B(a) e (r/ro da , (B.2)--00

where

B(a) = (27) f C (r/r ) 3/2[p (r)/11 ]  e -  o n(r/ro) (dr/r) . (B.3)0

The integral over radial velocities in eqn. (B.1) is trivial.

Even though the integral over tangential velocities in eqn.

(B.1) is apparently intractable, the combination in eqn. (B.3)

of an integral over radii and integral over tangential velo-

cities is manageable, provided that the order of integration is

reversed so that the integral over r is performed first.
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The result is1

B(a) = (2N) - 1 [(a+l)/2] (i-1/2)/2 csc[(l/2-ia)/N]

x F[(ia-1/2)/2 + (a+l)/2] / F[(a+l)/2] . (B.4)

The rigid surface density is axisymmetric. The potential that

corresponds to it is

oo

i(r) = -2GP or o (r/r )- 1 /2 f K(a,0) B(ca) eia kn(r/ro) da ,--00

where K(a,0) is the Kalnajs gravity factor, eqn. (3.10),

when m = 0 . Hence the radial forces that the rigid disk

component generates are given by

0o

Fi,r (r) = 2rGP0 (r/r ) 3 / 2 f
,rOO

(ia-1/2) K(a,0) B(a)

x eia kn(r/r ) da .

A spherical halo with volume density PH(r) will produce

the radial forces

r

FH,r(r) = -4G r - 2  PH(r') r' 2 dr'
O

1To verify this computation, and to remove any lingering
doubts that the reversal of the order of integration in
eqn. (B.3) is legitimate, we have compared the rigid surface
density that this value of B(a) implies with the rigid surface
density obtained by subtracting a (r) from p (r). To perform
this comparison both eqn. (2.65) for pa (r) and eqn. (B.2)
for p.i(r) were integrated numerically. Happily, the results
are in agreement.
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Thus, the halo density must be

PH(r) = po/r 0 (r/ro)-5/2 Re { I (a2+1/4) K(c,0)
0

x B(c) eia kn(r/ro) da } . (B.5)

In order for this halo density to have a clear physical

interpretation, it must be non-negative at all radii. We have

numerically computed PH(r) from eqn. (B.5) over the range

lIn(r/ro)1 < 7 when N = 2, 3 and 4 for the velocity disper-

sions 0.200, 0.378, 0.600 and 1.000 . Only for the cut-out

index 2 disk is the halo density always non-negative. When

N = 3 and N = 4 , PH(r) is negative for large radii, at

least for - = 0.200, 0.378 and 0.600 . As the velocity

dispersion is increased, the radius at which PH(r) first

turns negative increases, for example, when N = 3 and

&u = 0.200 , the halo density turns negative at (r/r ) - 2.5 ,

but when N = 3 and u = 0.600 , it turns negative at

(r/r ) - 9 . For -u = 1.000 , the halo density is non-negative

over the entire range I£n(r/ro ) < 7
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APPENDIX C

NUMERICAL COMPUTATION OF THE KERNEL

In section III.e of the text the procedures used to

evaluate the kernel, S (B,a; ,j) , were outlined. Thism u

appendix provides more details for each of the essential

elements.

1) Kalnajs gravity factor

The basis of our computation of the Kalnajs gravity

factor, given by eqn.(3.10), is Euler's formula,

r(z+l) =
i n

lim n! nZ/ H (z+k) }
n-oo k=l

This enables us to write the axisymmetric (m = 0) gravity

factor as the limit

K(a,0) = lim 1 n (4k+3)2 + 4a2

n k2n (4k+l)z + 4a-k=O

Once the axisymmetric gravity factor is available, the corre-

sponding factor for an arbitrary angular harmonic m can be

obtained by successively applying the recurrence relation

K(a,m) K(c,m+l) = [(m + 1/2)2 + Ca2]-

[Kalnajs (1971)]. The infinite product for the axisymmetric

gravity factor converges rather slowly. However, it is easily
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shown that the error after n terms in the product have been

used has the form

-i -2
cI n + c2 n +-2

where cl and c2 are constants. Therefore, the use of

several Richardson extrapolations substantially improves

the convergence, to the point that 12 digit accuracy is

readily achieved.

2) orbital parameters

The maximum and minimum radii reached by a star with

eccentric velocity 0 and unit angular momentum, denoted by

max (0) and Xmi n (0) , respectively, are the two roots of

eqn. (2.34):

-2f(x) = 1 + - 2 n x - x - 2 = 0.

The function f(x) is simply the square of the radial velo-

city of this star at radius x . Clearly, f(x) > 0 only

for x [x min(0) , max (0)] . Furthermore, f'(x) > 0

for x < 1 and f'(x) < 0 for x > 1 , while f(x) + -0

both as x - 0 and as x - w . Therefore, an iterative

procedure based on Newton's method will converge to x (0)max

so long as the initial guess x0  is greater than 1 . Since

an iteration in the variable x may lead to an iterate x

which is less than 0 when x0 < 1 , it is preferable to
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find x min (0) by iterating in the variable y = 1/x with

yo > 1 . In practice, a half dozen or so iterations will

yield x min (0) and max (0) to at least a dozen places.

The integrals I (U) defined in eqn. (2.39),

max (0)
I (0) = 2 f max dx

x (0) xn {l + - 2 £n x - x -21/2

are needed when n = 0, 1 and 2 . The argument of the square

root is just the function f(x) above, which has simple zeros

at x min (0) and max (0) when 0 > 0 . The integrands,

then, have square root singularities at the end points of

integration. Furthermore, the nature of the integrand

suggests that the regions [xmin(0) , 1] and [1 , max()]

should have nearly equal weights. An integration in the

variable x itself not only has to contend with the singu-

larities in the integrand but also gives a disproportionately

large weight to the latter region. These difficulties can be

eliminated by transforming first to the variable y = £n x

and then to the variable 8 , where

Y = (Ymax + Ymin )/ 2 - (Ymax- Ymin) cos 8 /2 ,

with Yin = n x min (0) and Ymax = n x (0) . Then

I n (0) = (y max- y in) f e(n) {f(x)}1 !} sin 6 dO

Notice that as 0 + 0 , f(x) U 02 . So the integrand is

now regular at the lower endpoint. Similarly, the singularity
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at 8 = f also disappears. Since the integrand is periodic

in 0 , a quadrature by means of the midpoint rule is partic-

ularly appropriate. In fact, as few as 10 sampling points

in 6 suffice to give I (0) to 12 digits when 0 < 2

3) Fourier coefficients

The Fourier coefficients are defined by eqn. (3,27),

Qm(a; 0) = (2)-1 2 e(ia-1/2)X(ý;C)+imY(9;c)-i,4 dp e0

and the orbital excursions can be found from eqns. (2.44) -

(2.47), (2.51) and (2.52). The radial excursion X( ;0) is

even in 4 about its apocenter ( f = r) while the angular

excursion Y(*;0) is odd about f = . Hence, only half

of the [0,2f] range is actually needed:

Qkm(a;O) = r-1 f e(ia-1/2)X(;0) cos[mY(i;0)-2k] d4 . (C.1)
0

This integrand is periodic in 4 and the midpoint formula

again produces an adequate approximation. We typically use

the rule

1.2 O
np = 15 e

to determine how many sampling points in 4 to use. (It is

prudent to insure that n is at least twice as large as the

number of Fourier harmonics desired in order to avoid aliasing.)

A sufficiently accurate Runge-Kutta integration of the equi-

librium orbit is obtained by performing 2n time steps
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between the pericenter and the apocenter. These criteria

yield Fourier coefficients which are certainly accurate to

6 digits for small 0 , but to only 3 or 4 digits for

large 0 . Very accurate Fourier coefficients are not needed

when 0 is large, since the weights assigned to the Fourier

coefficients in eqn. (3.40) decrease exponentially with C .

We record here several useful symmetry properties of the

Fourier coefficients:

Qkm(-a;C) = Q m(a;c) (C.2)

Q-0 (a;0) = QZ0 (a;0) . (C.3)

These follow directly from eqn. (C.1).

4) integration over eccentric velocities

An inspection of the integrand (in 0 ) of the kernel,

eqn. (3.40), reveals that all the terms are regular functions

of 02 and that 0 dO = d(0 2 )/2 . Therefore, a Gauss-

Laguerre quadrature in the variable x = 02/2& 2 can beu

expected to work well. In fact, it works surprisingly well,

especially when the sample eccentric velocities are shifted

inward by choosing the sample 0i  according to x = 0 /2 2

where x. is one of the Gauss-Laguerre abscissas and & is1 n

roughly 80% of u . The table entries on p. 109 in section

V.b illustrate how few points are actually required.
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5) normalization constant

The expression for the normalization constant given in

eqn. (2.63) also lends itself to a Gauss-Laguerre quadrature.

Exactly the same sample velocities are used here as are used

in the computation of the kernel.

6) sum over radial harmonics

The greatest nuisance in the computation of the kernel

is the sum over the radial harmonics. The dependence upon £

is contained in the terms

Qkm(a;o ) Qkm(a;0 ) F£m(8-a;0,C)

The explicit formula for the angular momentum function,

eqn. (3.44), indicates that IF£m(B-a;O,i)I tends to a con-

stant value as k -- +w and to a different constant value as

S- + -w . Numerical evaluation of the Fourier coefficients

reveals that they decrease fairly quickly as -* -m but

rather slowly as -a +w . In fact, in order to obtain the

kernel to even 5 digit accuracy, upwards of 50 radial

harmonics are frequently required. Fortunately we are

actually interested not so much in computing the kernel accu-

rately as we are in obtaining the response accurately, in

particular, with finding the mathematical eigenvalues, (Gu '•,)

of the kernel (see section V.a). Since integration tends to

smooth out irregularities, our hope is that as additional

radial harmonics are added to the kernel, the eigenvalues
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converge faster than the kernel itself. This, indeed, is the

case. The convergence of the eigenvalues can be improved by

giving the last few radial harmonics added weight. This lets

them, in some sense, represent the terms left out of the sum.

Typically the last three radial harmonics in the sum are

given twice their normal value. The convergence of this

procedure is illustrated in section V.b of the text.
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APPENDIX D

NUMERICAL COMPUTATION OF THE RESPONSE INTEGRAL

The numerical solution of the integral equation (3.42)

hinges on the calculation of the response of a cut-out disk

to an imposed density with density transform A(a) . In our

approximation the imposed density is known only at 2n+l

equally-spaced locations. These sample wavenumbers are

denoted by a. , where a. = (j-n+l)Aa . The spacing between

successive wavenumbers is denoted by Ac . We seek to find

the response density transform B(a) at these same locations.1

In the previous appendix we described how the kernel,

S (8,a;c ,U) , can be found at the (2n+l)x(2n+l) locationsm u

(Yja k ) k The issue here is the manner in which the integral

B(f) = I Sm( ,a;u,j) A(c) dc (D.1)

is computed.

For any specific 8j , the most pronounced a-dependence

in the kernel is displayed by the angular momentum function;

in particular, for 8-a - F , F£m(c-a;O,t ) decays as

e ( -a) rr/N , whereas for 8-a - +o , it decays as

-(-a))tan (8/mn )e ) tan-l p . Our integration scheme is tailored to

this behavior of the angular momentum function.

1In this appendix we use B(a) instead of A (ac) to
denote the response density and simply A(a) inseasd of
A. (a) to denote the imposed density.imp
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In the limit S = 0+ , F£m(n;O,i) has a convenient

decomposition into an Hermitian portion and a Volterra

portion,

F m(n;OA,) = H£m(n) + V(m n)

where Hkm(- ) = Hkm(n) and Vkm( ) = 0 for n < 0 .2

The specific formulas for Hkm(n) and Vkm(n) depend on

the sign of £2(0) + mn(0) . In the remainder of this appen-

dix this term will be abbreviated by kR+mn . In detail,

we have

£i+mn < 0

-i
Hm(-) 2 sinh n r

(£+m_) N-1 -in £n InJ(+mn)/mmpl

(Ri+mi) + (mnp)N

Nm (m n ) N
N + N

(Zi+mn) + (mn )
p

- [(a+l)(£ 9+m) - am]}

N -Tn (2j-1) 7n/N

j=l £k+mn - m eim +

[(a+l) (£R+mn) - am] +
e(2j-1) i/N

S- mn e(2j-1)i/N
P

Vkm(() = 0 (for all n )

2We assume throughout this appendix that n > 0 . When
< 0 , the same type of decomposition still ex sts except

tRat V9m(n) = 0 for n > 0 .



188

£2+mn > 0

-i (£+m) N-1 e-n -in Inj (£ +mn)/mnpl
Hm() 2 sinh frn (£2+mn)N + (m N

Nm )N
x Nm(mnn) - [(a+l)(k£+mI) - am]}

(£k2+mn) + (m p )

+ N +m - e(2j-l) { -imn +
P

[(a+l) (£2+mi) - am] +
m.(mn) e (2 j -l) Ti/N

£E+m' - mn e ( 2 j - l) i /N

Vm (n) = 0

-i (W+mn)N-l -in £nj9 (£+mm)/mp I
(2ki+mn) + (mp )

P

Nm (mnp) N

(£2+mM)N + (mp )N
P

- [(a+l) (£k+mQ) - am]

(n > 0)

The corresponding decomposition of the kernel itself has

the form

Sm ( 8 , ;a u ,? ) = K(a,m) [H(B,a) + V(8,a)] ,

where H(a,8) = H(8,a) and V(8,a) = 0 for a > 8 . In

order to perform the numerical integration in eqn. (D.1) we

approximate both the kernel and the density transform by an

8-point Lagrange interpolating polynomial. In general, if

f(a) is any function, and fi denotes f(oi) with fi = 0

(n < 0)

V (n) =
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when i < 0 or i > 2n+l , then for a < a < a 2 n+l the

approximation is

f(a) L [(a-a r )/At fp+r
p=-3

where r is chosen so that cr< a < a The Lagrange

interpolating polynomials, L p[x] , are given explicitly by

L [x] =P
(-1) p  (x+4-i)

i=1
(3+p)! (4-p)! (x-p)

[Abramowitz and Stegun (1965, p. 878)]. Taking into consid-

eration the behavior of the Hermitian and Volterra portions

of the kernel, we write

AH(8,c) = e - ( a- )7/N W(8,c)
H(8,a) = e(a-B)•/N W(8,a)

V(8,a) = V(B,a)

and approximate the smoother functions H

for a > 8

for a < 8

for a < 8

W and V

Lagrange interpolation. We also write the density transforms

as

A

A(a) = A(a)/K(a,m)

B(a) = B(a)/K(a,m)

and represent A(a) and B(a) by Lagrange interpolation.



190

Then the response at 8 = Bj can be expressed as

B(aj) = K( j,m) [IH + I W + IV]

where IH , IW and IV  are the integrals involving the

three portions of the kernel. For example,

2n r+1 4 4 -(-)/N
I H = r+l e j L [(c-ar)/At]

r=j a p=-3 q=-3 P

x L q[(- r )/At] Hjq+r Ap+r da

2n 4 4 ^ ^
= e r /N C H. A
r=j p=-3 q=-3 Pq j3,q+r p+r

where the weighting coefficients are

CH  = A f e L [x] L [x] dx
pq 0 p q

We combine this result with the analogous results for IW

and I to obtain a matrix (Sjk) which expresses the den-

sity response in terms of the imposed density:

2n+l A

B(j) =  l Sjk A(ack)k=1

For given u and i this matrix need only be computed once.

We are then in a position to find quickly the response to any

trial density. In discussions of this approximation elsewhere

we simply ignore the slight difference between A(a) and A(a)

Although the kernel cannot be decomposed into a Volterra

portion and an Hermitian portion when 9 > 0 , it still
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exhibits the strongly one-sided behavior discussed in section

III.d: for 8-0 < 0 it decays rapidly as

-1
e-[f/N - tan ( s /m~p ) ]la-I,

whereas for B-a > 0 it decays slowly as

-tan -l(/m p) Ia-8I

So the response integrals can be profitably separated into

an a > 8 part and an a < 8 part. The interpolation

scheme is now tailored to the exponential behavior on each

side of a = 8 . We find that the response can be obtained

nearly as accurately when s > 0 as it can be for a com-

parable approximation when = 0+ . However, a typical

A > 0 computation takes 30-40% longer than a comparable

= 0+ calculation. Moreover, the weighting coefficients

of the s = 0 scheme, such as C , are independent of
pq

p , whereas the corresponding weighting coefficients of the

-1S > 0 scheme depend upon tan (s/m2p) . This gives a

further advantage to the ý = 0 scheme when calculations

are desired for a variety of frequencies. Fortunately, as

described in section V.b, the question of whether a given disk

is stable or unstable can be settled entirely on the basis

of the results for vanishingly small growth rates.
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APPENDIX E

ITERATIVE PROCEDURE FOR COMPUTING EIGENVALUES

The results of the previous appendix lead to a numerical

approximation to the mathematical eigenvalues of eqn. (5.1)

in the form

2n+l
x(ru,6 ) A(6j) =  SjkA(a k )  j=1,2, - ,2n+ (E.1)

j=1

Since only the largest one or two eigenvalues and their eigen-

functions are usually desired, we often resort to an iterative

procedure to find them rather than using the general eigen-

value package EISPACK to find all the eigenvalues.

Even though we have no guarantee that the non-Hermitian

matrix (Sjk) has a complete set of eigenfunctions, the power

method has, in practice, produced the largest eigenvalue of

eqn. (E.1) along with its eigenfunction. The power method

is described in most numerical analysis texts [see, for

instance, Ralston (1965)]. In our adaptation of this proce-

dure, the estimate after the p-th iteration used for the

largest eigenvalue, l , is obtained by taking the ratio1

of one of the components of the response vector, B (p+l) , r

to the same component of the imposed vector, A ()ra) , where

2n+l
B(+) (Bj) = Sjk A ( a•k)

k=l jk

The best choice for this component is the largest component



193

of the current response vector. We check about a half dozen

representative components of this vector and use the largest

of these in forming the ratio. The next imposed vector,

A(P+) (a ) is obtained from B(P+l) (j) by renormalizing

it so that A(P+1)(an+1) = 1 . The iteration converges

geometrically, in the fashion

p1 1+ r2 2 1) + • .. + r2n+l( 2n+ll 1

In order to improve the convergence of this sequence

{f1p ) } we form an extrapolated sequence. In general, if a

sequence {a p converges to the limit am in such a manner

that

a = a + rlAP + r2AA  +
p 11 22

then the extrapolated sequence {bp} , where

a a - a2
p-lap+l p

b =
p ap + a - 2aap1  p+l p

will converge as

b a + rP + r3A +
p 0 2 2 3 3

So this extrapolation removes the dominant transient term.

Of course it may be applied more than once. We typically

form two such extrapolated sequences from the iterates {( p )1

The iteration was usually stopped once three or more
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successive extrapolated estimates of A1  agreed to within

1 part in 105 . Occasionally the criterion for stopping

the iteration was more demanding.

Once the largest eigenvalue and its eigenfunction,

Al (a ) , are known, the second largest eigenvalue can be

obtained by using the power method on the matrix (Wjk) '

where

Wjk = Sjk - [Al ( aj)/A(a q)] Sq, k

and q denotes some component of the largest eigenvector.

(We usually chose q = n+l .) The eigenvalues of (Wjk)

are O,X2, 1 3, • • 3 ' 2n+l and the q-th row of (Wjk) is

zero. When the q-th row and column are dropped from (Wjk)

the eigenvalues of the resulting 2nx2n matrix are 12,13,

* *• , 2n+l . This procedure is Wielandt's deflation and

it is also described in most numerical analysis texts.

Actually, the extrapolation scheme that accelerates the

power method can also be used to estimate both r2 and

(12/1) . Hence, a fairly decent estimate of X2  (but not

the second eigenfunction) can be obtained without resorting

to the matrix deflation.

The power method is inefficient whenever 12 is close

in size to Al . In such cases we must resort to EISPACK.

This has never been a problem when m = 2 or 4 . However,

it has been a problem on occasion when m = 1 or 3 .
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APPENDIX F

TESTS VIA EXPLICIT ORBIT INTEGRATIONS

In order to corroborate both the general stability

analysis presented in Chapter III and the specific numerical

procedures described there and in previous appendices, we

have performed an independent check of some of the results

reported in Chapters V and VI. The checks were performed

on two levels: (i) to confirm that the density response to

an elementary forcing at a single wavenumber was computed

correctly and (ii) to confirm that the numerically obtained

solutions of the integral equation (3.42) -- both the charac-

teristic frequency a and the associated eigenfunction A(a)

- did in fact correspond to self-consistent density pertur-

bations (or modes). In both of these areas the standard for

the comparison was a brute force integration of the linearized

Vlasov equation. In this appendix we will first describe how

the explicit orbit integrations were performed and then report

on the outcome of the comparisons.

i) Method of Explicit Orbit Integration

In general the density response is given by the integral

over velocity space of the perturbed distribution function

fl(r,6,u,v,t) caused by the forcing potential. In turn,

fl(r,e,u,v,t) is available from an integration in time over

the unperturbed stellar orbits. In the text the orbital
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similarity in our models and the Fourier series expansion of

the sampled potential were both utilized in streamlining

these calculations. Here, though, none of these short cuts

were taken. The integration over velocity space was performed

in the normal radial and tangential velocity components u

and v , while the integration along the equilibrium orbits

was done directly.

Consider first an elementary forcing of the form given

by eqn. (3.16). The induced change in the distribution func-

tion is given by eqn. (3.19):

fl(r,O,u,v,t) = - (af o/E) AE - (afo/aJ) AJ

We choose, without loss of generality, to concentrate on the

response at t = 0 and 0 = 0 . In detail, eqns. (3.20)

and (3.20) are then

0
AE = 27rG K(a,m) f [(ia-1/2) u' (t') + im v'(t')]

x e(ia-3/2) £n[r'(t')/r o]  im0'(t') - wt' dt'

AJ = 2ZGwp K(a,m) I im e (i-1/2) £n[r'(t')/ro]

x e im' (t') - tt'

These time integrals are convergent so long as the growth

rate s is positive. The backwards time integration

st'can be stopped once e becomes negligibly small. A
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better approach to this infinite integral, and the one we

have adopted in most applications, is to exploit the period-

icity of the stellar orbits: Let T(u,v) denote the radial

period of the star in question and Q(u,v) denote its angu-

lar frequency . Then it is easy to see that the contribution

to the integral from each complete radial oscillation is

merely e-iT(u,v) [m2(u,v)-w] times the contribution from

the previous oscillation. Hence, all that is required is an

integral over a single radial oscillation; the total change

in E or J is simply the change in one period times the

geometric series

I e-inT(u,v) [mQ(u,v)-w]
n=0

e.g.,

2GAJ K(a,m) I im
-iT(u,v) [mQ(u,v)-w] i1 -e -T(u,v)

e(ia-1/2) £n[r'(t')/r ] eim6'(t') - wt' dt'

In practice these orbit integrals can be computed more effi-

ciently by integrating in angle rather than time. The reason

is that an integration in time gives relatively little weight

to contributions to the integral from small radii, where the

1With the single exception of our computation of T(u,v)
and Q(u,v) , the numerical procedures used in the orbit inte-
grations were entirely independent of the methods used for
finding the solutions of eqn. (3.40).
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integrand is largest, since the star moves very swiftly near

its pericenter; in contrast, the integration in angle gives

a more sensible weight to that portion of the orbit. We

used Simpson's rule to perform this quadrature in angle. The

orbit variables r' , u' , v' and t' as a function of

8' were computed by a Runge-Kutta integration of eqns. (2.19),

(2.20) and (2.21), modified so that 0' rather than t' was

the independent variable.

These procedures enabled us to compute fl(r,8=0,u,v,t=0)

for given r , u and v . We found that the perturbed dis-

tribution function could be adequately integrated over velo-

city space (to produce the actual response density at radius

r) by performing the crudest possible integration -- we simply

employed a finite rectangular grid in the two-dimensional

velocity space and used the mid-point rule in each direction.

The response densities calculated in this manner were

then compared with those computed from the transfer function

by means of the Fourier integral

ilres(r) = p (r/r) 3/2 I S m (B, ;&u , ) e 8 £n(r/r0 ) d

(We have suppressed the dependence upon angle and time.)

This, too, measures the response to a forcing at a single

wavenumber a . The numerical procedures described in Appen-

dix C were used to compute S (8,a;a ,3) over a finite
ms , while the Fourier integral was evaluated

range of 8's , while the Fourier integral was evaluated
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by means of Simpson's rule. The elementary response calcu-

lations tested how well we had computed the transfer function

S m(,a;u , ) . The results will be described shortly.

Our more ambitious orbit integrations were designed to

test how reliably our numerical methods produced the solutions,

[o,A(a)] , of eqn. (3.40); alternatively, these are solutions

of eqn. (5.1) with the property that X(a ,&) = 1 . The orbit

integrations were performed in a manner analogous to those

for the elementary response tests. The difference was that

here an added Fourier integral appeared in the expressions

for AE and AJ , e.g.,

0 00

AJ = 2GVGp i dt' fI de A(a) K(a,m) im

x e(ia-1/2) £n[r'(t')/r o ] eimO'(t') - wt'

Of course, our computed eigenfunctions A(a) were only

available over a finite range, usually for a e [-20,20]

Simpson's rule was used to approximate the truncated Fourier

integral. The resulting response density was then compared

with the imposed density

-3/2 i A(a)is £n(r/r o) do
llimp (r) = ap (r/r )  f A(a) eia nr/r

Simpson's rule was used for this integral also. These checks

tested the full range of our numerical procedures -- those

described in Appendices D and E as well as those described

in Appendix C.
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ii) Results of Explicit Orbit Integrations

As mentioned in the text, our first orbit integration

tests were of the elementary response variety. We specific-

ally tested the response of the N = 1 and N = 2 disks

with & = 0.400 to an imposed density with m = 2 , ! =u p

0.25 and s = 0.40 . (We cite these results in terms of

dimensionless variables.) At that time the densities com-

puted via orbit integrations were not correctly normalized,

although the ones computed via the transfer function were.

The following table contains the results:

N = 1

1 i1/ 2 1 =

I p oi
1.491

0.4511

3.305

I Itf

1.023

0.3086

0.3315

a = 0

.oi

105.60

42.90

N = 1

ýtf

105.64

42.81

a = 5

Il/P21 =

Aoi

1.758

0.7117

2.470

N = 2

lIoi
1.831

0.8386

2.171

II tf

0.4455

0.1792

2.486

-oi

72.36

31.69

ýtf

73.05

32.12

a= 5

l1PItf

0.4611

0.2111

2.184

0oi

72.36

32.13

ýtf

73.48

32.57

1 1/P 21 =
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The subscript oi denotes an orbit integration result;

tf denotes a response computed via the transfer function.

The magnitude of the density response is denoted by p•I ;

the difference in phase between the imposed density and the

response density is denoted by 4 . As usual, a denotes

the wavenumber of the imposed density. Since the orbit inte-

gration results were not normalized, we can only compare the

ratio of the density at r = 1 to that at r = 2 . This

ratio is given in the third line of each part of the table.

By comparing the entries in the foregoing table, we find that

the two methods of computing the elementary response agree to

within 1% . We subsequently normalized the orbit integra-

tion results correctly, and confirmed that aspect of our

calculations also.

We now

the computed

for both the

in the text.

turn to the more important tests, the ones of

solutions of eqn. (3.40). This has been done

m = 2 and m = 1 modes which are illustrated

The results are

m = 2 mode

1res, R

2.36463

-1.74684

'imp,R

2.35772

-1.73769

res, I

0.03700

-0.90462

"imp,I

0.04183

-0.90845

m = 1 mode

res,R

-0.71650

0.50735

imp, R

-0.71654

0.50722

res ,I

0.15281

-0.18220

'imp,I

0.15253

-0.18214
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Here the comparison is made between the real and imaginary

parts of the response density, computed via orbit integra-

tions, and those of the imposed density. If [i,A(a)] truly

represents a mode, then these two densities should agree.

As one can see, the m = 2 results agree to within 0.5%

and the m = 1 results to within 0.04% . We submit that

this agreement is satisfactory confirmation of our methods.

Clearly, the m = 1 results agree better than the

m = 2 ones. We suspect two factors for this difference in

accuracy: (i) The larger angular harmonic number m of

the latter mode means that the disturbance forces are more

oscillatory in the angular direction; consequently, the orbit

integrals are more difficult to compute. (ii) For the m = 2

mode, the density transform is still alive at large positive

a , whereas the m = 1 transform is sensibly zero there:

at the largest a for which A(a) is available for the m

= 2 mode, IA(a) I ~ 0.001 ; for the m =1 mode IA(a) '

0.00001 at the corresponding point. Therefore our finite

approximation to the Fourier integral is worse in the m = 2

case.

We should point out that although A(a) is not known

beyond a = +30 for the m = 2 mode, the eigenvalue X(& ,u)

itself is already well-determined by the values of the trans-

form for lal < 12
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