ACOUSTICS OF DUCTS WITH FLOW AND ITS RELATION
TO ACOUSTICALLY INDUCED VALVE-PIPE INSTABILITIES
by
VIJAY KUMAR SINGHAL

B.Tech., Indian Institute of Technology, Delhi
1969

M.S., University of Minnesota
1971

SUBMITTED IN PARTIAL TFULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY

IN THERMAL ENERGY SYSTEMS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
FEBRUARY, 1976

Signature of Author .

Departﬁeﬁt of Aeronautics and
Astronautics, December 9, 1975

Certified by b o~

g gL & =~ 7 -

‘Thééis Supervisor

Certified by

/ - ¥ 7 7 Thesis Supervisor
- L] '

Certified by

v,y Thesis_Jupervisor

Accepted by

Chairmahy Depart?ghtal Graduafi/fgggiftee

a

Maanﬂ'_'-‘



-2
ACOUSTICS OF DUCTS WITH FLOW AND ITS RELATION

TO ACOUSTICALLY INDUCED VALVE-PIPE INSTABILITIES

by
VIJAY KUMAR SINGHAL

Submitted to the Department of Aeronautics and Astronautics
on December 9, 1975 in partial fulfiilment of the requirements

for the degree of Doctor of Philosophy.

ABSTRACT

Experimental and analytical studies are presented for
various aspects of the acoustics of hard walled ducts carrying
uniform flow. The wupstream and downstream emission of sound
from a stationary source into a moving fluid in a duct is
studied for plane waves and hlgher order modes. The sound
waves are attenuated by their interaction with turbulence in
the duct. Due to convective effects this attenuation is larger
when the wave travels against the flow than when it travels
with the flow. Reflection coefficients measured at the upstream
and downstream ends of the duct reveal that three times more
acoustic energy is lost at the downstream end than at the
upstream end. The flow induced contribution to the termination
resistance at the exit end is found to be proportional to the
Mach number. When the flow Mach number is greater than 0.4
typically, the losses in the duct and at the ends of the duct
are so large that its acoustic resonances are suppressed.

These results in the aeroacoustics of ducts are applied
to the problem of acoustically induced axial instabilities in
valve-pipe systems. It is shown that the acoustic reaction
force on the valve due to the fluctuating mass flow rate in the
duct can act as a negative damping. If this negative damping
is greater than the inherent mechanical "resistance" in the
valve and in the duct, the system is ur table. An instability
parameter is defined in terms of the mass flow characteristics
of the valve and the acoustical characteristics of the duct.
Duct lengths equal to odd multiples of quarter wavelength
corresponding to the natural frequency of the valve are found
to be the most unstable. Half wavelength ducts or multiples
thereof are the most stable but stability cannot be guaranteed
by changing the length alone. Neutral stability curves and the
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frequency of excitation on the verge of instability are
determined from numerical solution of the equations of motion.
Regions of moderate and violent instability are identified.
Experimental results on a very simple idealized model give
excellent qualitative agreement.

Some observations are made on the lateral and torsional
modes of excitation and on the flow-excitation of side branch
cavities in ducts. With increasing flow speed the modes of a
side branch cavity are excited successively. Nonlinear inter-
actions of these modes lead to sum and difference tones. If
the Mach number is less than 0.4 (approximately) and if the
side-branch cavity is in the center of the duct, additional
excitation of duct modes occurs. Design of quiet cavities is
also outlined.
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CHAPTER 1

INTRODUCTION

The parameters responsible for the instability induced by
acoustic feedback force acting as a negative damping have never
been clearly established. We show that a stable "control
valve" regulating the flow of fluid through a duct can be made
violently unstable simply by changing the length of the dis-
charge duct when all other geometric and flow parameters are
kept constant. This is the clearest example of selt-excitation
in which the acoustic reaction forces couple with the structural
resonances to generate unstable modes of vibration. The
experimental evidence supports essential aspects of the theory.
This work is applicable not only to valve-pipe systems but also
to the excitation of orchestral reed instruments like the
clarinet, oboe and bassoon.

The simplest model for all these systems consists of a
valve plug which controls the flow of fluid through a discharge
duct (Fig. 1). Other design features found in actual systems
are secondary for the understanding of the excitation mechanism
though they may be necessary for their usefulness. Such a
valve has three basic degrees of freedom: (a) translation in
the y direction, called the axial mode sirce it causes a velocity
perturbation along the axis of the duct, (b) the lateral mode
i.e. translation in the z direction since it excites the cross

modes of the duct, and (c¢) the torsional mode which constitutes
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rotational oscillations about x axis. The lateral and torsional
mode excitation by acoustic feedback has never been studied.

To study the axial oscillations we must isolate them from
the lateral and torsional modes. Surprisingly, we found that
the torsional vibrations are the easiest to excite, but they
can be suppressed by torsionally stiffening the end of the
cantilever beam a:z shown in figure 1. These torsional modes
were not acoustically coupled but were most probably excited
by vortices shed alternately from the opposite edges of the
valve plug. Even with this modification, at large flow
velocities torsional modes were sometimes excited when the
duct lengths were such that the system was stable for axial
oscillations.

Maedal studied the lateral instability of a poppet valve
where the rate of change of momentum of the fluid acted as a
negative damping. Maeda's arguments are based on the formula-
tion by Lee and Blackburn2 for the axial oscillations.

Our preliminary theoretical investigations for the
acoustically induced lateral instability reveal that lateral
instabilities can occur only when the structural resonance
frequency of the valve is less than the first acoustic cross-
mode frequency of the duct. The most unstable region is in
the vicinity of the first cut-off frequency of the duct but
with the valve frequency slightly lower than the duct frequency.
Even in this frequency range the valve can be stabilized by

stiffening it in relation to the acoustic destabilizing force
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due to the modulation of the flow. Though lateral instability
was experimentally observed, it was not acoustically coupled.
Study of lateral and torsional modes is continuing and will be
reported later.

Acoustically induced axial instability was first studied
by Ainsworth3 and Ezekielu. The same problem was later

6 7 8-9
o

investigated by Tominaris, Saito”, Funk , It 10

, Kasai™ ",
Ichikawa and Nakamurall, and Wandling and Johnsonlz. The later
papers consider different types of valves, additional fluid
lines, extra springs or more accumulators. All of these
studies involved actual hydraulic valves. Because of the
presence of extra springs and accumulators, sharp bends and
sudden changes in the cross-sectional areas of the conduits,
these real-life devices are too complicated to reveal the

basic destabilizing mechanism. High viscosity of the oil,
large viscous and static friction in the valve, misalignments
in the various parts, trapped air bubbles in o0il, changes in
oil temperature and spurious cavities (formed because of the
need to attach pressure gages in the valve chambers) are
responsible for some of the experimental difficulties encounter-
ed. Air bubbles trapped in oil can al ter the performance so
drastically that the valve can not be made unstableu. Ezekielu
echoed a general feeling of hopelessness when he said that
every time any part was changed, no matter how insignificant,

it seemed the entire stability picture may change. They found
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it extremely difficult to make consistent experiments, therefore
the experimental data reported is very meager and is in a very
narrow range of duct lengths. The theory is also unnecessarily
complicated mainly because of their unwillingness to model
the problem. The physical mechanism responsible for the

instability is therefore masked by compiex nonlinear differen-

tial equations or analog simulation techniques. They do show
correctly that the most unstable pipe lengths are the odd
multiples of the quarter wavelength corresponding to the
natural frequencies of the valve whereas multiples of half
wavelength are the most stable.

A similar reasoning was used by Wilson and Beavers13 to
explain the excitation of the clarinet modes. They expanded on
the ideas of Backus]"+ who had neglected the inertial term in
comparison to the spring and the damping forces. Their
experimental set up is also quite complicated but they report
the most extensive experimental results.

St. Hilaire, Wilson and Beavers15 have shown through long
involved mathematical analysis that unsteady Bernoulli pressure
term is responsible for the excitation of the reed instruments.
Our analysis indicates that unsteady Bernoulli pressure cannot
destabilize a reed. The growth rate of the instability was
measured by St. Hilaire15 et al to be proportional to Vw; where
V is the velocity through the slit opening and W is the
natural frequency of the reed. For reed excitation we propose

the acoustic feedback mechanism.
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Since very little was known about the acoustical
characteristics of ducts with flow, all of the investigators
mentioned above used less important acoustical parameters in
their analyses and ignored the more important effects. They
talked about including the viscosity and heat conduction losses
in the duct without being aware that turbulent flow gives larger

16-17

sound attentuation even at fairly low flow velocities.

The radiation losses from the end of the duct18 were either

3-12,15

completely left out or the effect of flow on the radia-

13-14 was ignored. Therefore they came up with

tion losses
stability parameters which are only partially correct. Their
maior conclusions are qualitatively correct because the
resonance frequency of the duct for small flow rates is only
weakly dependent on flow. But at moderate flow rates when

the flow begins to assert its influence on the acoustical
characteristics of ducts, their conclusions will most likely
not hold ground.

All aspects of the acoustics of ducts with flow are not
yet fully understood. Mechel, Schilz and Dietzlg, Athrens and
Ronnebergerls, Ronneberger and Schilz16 and Ronneberger20 have
made significant contributions to the acoustics of ducts with

flow. We have extended their work and have succeeded in

building a stronger theoretical base for some of their findings.
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CHAPTER 2
ACOUSTICS OF DUCTS WITH FLOW

The generation of sound at discrete frequencies as from
orifices, side branch resonators, valves, human whistling,
orchestral reed instruments and orifices coupled to ducts is
poorly understood and the acoustic feedback theory outlined in
the next chapter can be helpful in understanding these phenomena
if we know enough about the acoustical characteristics of a
duct with flow.

The question of upstream and downstream energy division
from a sound source placed in a duct with flow still remains to
be resolved (at least experimentally). We explored the in-
fluence of fluid motion on sound emission from a stationary
source in a duct21’22. The ratio of upstream to downstream
pressure was found to be intimately linked to the nature of
the flow boundary conditions in the source region. For plane
so'ind waves emitted by a compact source, whose characteristic
length is small compared to the wavelength of sound, we found
that the ratio of the amplitude of the upstream to downstream
pressure lP_/P+‘ is (1+M)2/(1-M)2 when the flow in the source
region is streamlined. Here M is the Mach number of the mean
flow in the duct. The same pressure ratio is (1+M)/(1-M) if
the boundary flow in the source region is turbulent. Similar
22

results were obtained for a source emitting higher order modes:

The results of these investigations have been published and
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reprints of these papers are included with this thesis as
appendices A and B.

Propagation of sound through the duct is another major
aspect of this study. A simple quasistatic modulation of the
pressure drop in the duct gives rise to an oscillatory friction
drag. Thus there is an added attenuation of sound waves due
to the turbulence in the flow.17 This attenuation is higher
in the downstream direction (by a factor of three at a flow
velocity equal to half the speed of sound). The attenuation
per diameter of travel distance, can be expressed as

ofw® 8.7yM/{2(1+M) } decibels (2.1)
where y is the turbulent flow friction factor, the positive
sign is for downstream propagation whereas the minus sign is for
upstream propagation. The turbulent attenuation exceeds the
viscothermal attenuation when M>2.86x10"3 fo‘s. At 450 Hz, if
M is greater than 0.06, the turbulent attenuation is larger
than that due to viscothermal losses. The results of this
investigation have also been published and a reprint of the
paper is included with this thesis as appendix C.

In addition to the acoustic losses in the turbulent flow
within the duct, there are similar aeroacoustic interactions
and losses in the entrance and the exit flows.18 The effect of
these interactions can be determined from measurements of the
acoustic pressure reflection coefficients at the ends of the

duct. We have carried out a detailed experimental study of this
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problem and have published the results. A reprint of this paper
is included with this thesis (appendix D). For this reason we
shall here give only a brief review of this work. For further
details the reader is referred to appendix D. For small ka and
up to moderate Mach numbers, i.e. ka<0.5 and M<0.5, the magnitude
of the pressure reflection coefficient R1 at the downstream end
was measured to be approximately unity. The reflection
coefficient of unity (actually slightly greater than unity)
does not mean that the acoustic end loss is zero. At a Mach
number of 0.4, the absorption coefficient at the exit is about
0.82. Also this flow induced loss at the exit end of the duct
is equivalent to a normalized specific acoustic termination
resistance OtzM. As we shall see in the next section, et is one
of the most important acoustic parameters needed for verification
of the theory. Our determination of termination resistance is
indirect and at best approximate. It constitutes the weakest
link in the quantitative comparison of the theoretical formula-
tion with the experimental results.

In the absence of flow 9t=(ka)2/2. Therefore for even a
modest flow in the duct, M>(ka)2/2, the flow induced end losses
are far greater than the radiation losses in the absence of
flow. These flow losses have been completely ignored by all
previous investigator's.s-15

At the upstream end, on the other hand, the magnitude of

the reflection coefficient R2 is less than unity and decreases
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monotonically with increasing Mach number, |R2|='(1—M)j/(l+M)j
where j = 1.33., Using the measured values of the reflection
coefficients at the two ends, it is easily shown that the sound
absorption at the exit is about three times larger than at the
inlet.

Because of the radiation loss from the ends of the duct,
a duct of length L acts as if it is lengthened by a small
amount ¢ at each end. At the exit end our measurements of the
end correction ¢ gave ¢=0.6a(1-M2) where a is the hydraulic
radius of the duct.

The end losses dominate the turbulent attenuation in a
duct of hydraulic diameter d if

(1-M%) In (144, | YL
M 1-M nd

(2.2)
where d=2a. For O<M<0.5 the internal flow induced acoustic
losses in the duct play a minor role compared with the end
losses if L/d is less than 200. Interesting cases of
acoustically induced instability occur for small length to
diameter ratios. Therefore in almost all cases the end losses
induced by flow are dominant.

The acoustic losses increase the width of the resonances
(i.e. they decrease the Q value) and reduce the intensity of
the resonant peaks. Above a flow Mach number of about 0.4 the
losses become so large that the axial resonances of the duct

are practically "washed out" by the flow. This implies that

for Mach numbers greater than 0.4 in the duct it will be
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practically impossible to excite acoustically induced
instabilities (if unsteady shock effects are excluded from the
analysis).

In the absence of a valve plug we found that at sufficient-
ly low flow speeds, corresponding approximately to the Mach
number range 0.1<M<0.3, the axial modes of the open-ended
duct are excited by the flow. In this range the power emitted
from the duct, in both the upstream and downstream directions,
is proportional to the fourth power of velocity. It is this
ability of the duct to filter and amplify selectively the
turbulent pressure fluctuations near its resonance frequencies,

which is responsible for the acoustically induced instabilities.
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CHAPTER 3

THEORETICAL ANALYSIS OF VALVE INSTABILITY

Qualitative description of the instability mechanism

The valve-pipe system under consideration is shown in
Figure 2. 1If the piston is disturbed from its equilibrium
position, in the absence of any feedback it will return to
its equilibrium position after executing damped oscillatory
motion. However, the oscillation of the piston makes the
mass flow through the valve time dependent and gives rise to a
velocity fluctuation at the entrance of the pipe connected to
the valve. This, in turn, causes acoustic pressure fluctuations
and hence an acoustic reaction force on the valve.

For certain pipe lengths, this sound wave after reflection
from the end of the duct may give rise to an acoustic reaction
force which is in phase with the velocity of the piston. In
that case this acoustic feedback force acts as a negative damp-
ing in the system. If this negative resistance force exceeds
the small but positive inherent mechanical damping, an initial
perturbation of the valve from its equilibrium position will
grow exponentially in time until nonlinearity or other cons-
traints (including mechanical failure) limit further growth.
The magnitude of this reaction force is obviously dependent
on the acoustical characteristics of the termination of the
dur' and the length of the duct.

The acoustic reaction force can also be out of phase with

the piston velocity, thus adding to the friction in the system.
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The valve is then unconditionally stable even if the mechanical
damping is zero.

In this study we will determine the conditions for
stability in terms of an instability parameter n which is a
function of the mechanical properties of the piston and the
acoustical characteristics of the duct. The relevant duct
parameters are the effective duct length Ll, the cross-
sectional area A and the acoustical damping of the duct. The
effective duct length L1=L+0.3d+¢1 where L is the actual duct
length, d the duct diameter and ¢1 is the end correction at the
valve end.

Equation of Motion

A perturbation y in the axial position of the valve away
from the equilibrium location h results in a perturbation in
the mass flow rate given by (dm/dh)y. The mass flow rate m is
also a function of the pressure drop AP but the effect of the
term (aﬁ/aAP)h is small in comparison to (Aﬁ/&h)AP. If
Uv=dy/dt is the velocity of the valve plug and u the fluctuation
in axial flow velocity at the entrance to the pipe, then the

conservation of mass requires that
dm _
F)=§a u +auw) (3.1)

Here ? is the mean density of the fluid and Av is the cross-
sectional area of the valve.
Normally an axial valve instability results in a growing

oscillation at a frequency close to one of the characteristic
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axial frequencies of free oscillations of the valve. In the
vicinity of such a "resonance" the valve can be described
dynamically as a mass-spring oscillator with a characteristic
mass W, a spring constant K and a natural frequency N K/W.

In the linear range we can write the pressure fluctuation
at the entrance of the pipe and at the valve piston as

P = Uva/Av (3.2)

P =gc§u (3.3)
Where Zm, the mechanical impedance of the valve if given by
Zm=-LwW+R+L§-’ = R-tLwW [l-(%’f)J (3.4)
Incidentally, this is another way of writing the well-known
equatizp of motion
W %{;‘FR% +Kj = FORCE=PAv
for a damped spring-mass system. Here R, the mechanical
resistance of the oscillator is responsible for the friction
force RUV on the valve. The specific acoustic input impedance
q = 0-i) is a function of frequency w=2nf, the length L and

the acoustic termination resistance Qt of the duct.30

6= 6,(1+tmkL) /(1+6 tan kL) (3.5)
X = (l" 912) ‘ta/n‘kl_-/(l+ ef'ta%n.k'-) (3.6)

where k 1s the wave number = w/c and ¢ the sound speed
The equation of motion of the valve is obtained by
comblnlng equations (3.1) to (3.4) as
[R+(&)Agco- As gi d]_bw[w+(Av) Asc X
+dr[k-% gpeb)l =0

(3.7)
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This has the form of @ harmonic oscillator equation in which
the effect of the acoustic reaction force on the valve is
expressed as contributions to resistance, the mass and the
stiffness of the valve.

The acoustic effect on the spring constant is a reduction
of K and this causes the frequency of oscillation to be always
less than the frequency of free oscillations of the valve.

The additional mass due to acoustic load on the piston is
proportional to the acoustic input reactance X of the duct and
is omall ordinarily. For small duct lengths this additional
mass is proportional to the mass of air ?AL in the duct. When
the reactance is negative, this additional mass term acts
effectively as a stiffness.

The most important acoustic effect is its contribution
to resistance. It consists of two parts, one being the acoustic
radiation loss which is always positive and thus provides
additional damping of the valve. The second acoustic contr-
ibution to the resistance -(AV/A)(dI'n/dh)cK/w is proportional
to the acoustic input reactance &and to the slope dim/dh at
the operating point of the valve characteristic relating the
mass flow rate m and the valve displacement h. This is a
negative contribution to resistance in the range of duct

lengths where Kis positive. It is this negative resistance
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which is responsible for the instability of the valve. If the
magnitude of this quantity is larger than the sum of the
intrinsic mechanical resistance R of the valve and the small
contribution from the acoustic resistance 0, the system will
be unstable.

The slope dim/dh being approximately proportional to the
diameter of the valve, is an important parameter in the
stability analysisj; the larger it is, the more likely is the

occurrence of an instability.

Equivalent termination resistance, O+

The acoustic termination resistance Ot accounts not only
for the acoustic radiation loss from the end of the duct but
also for the acoustic losses in the fluid within the pipe. The
latter, in turn, has two causes: viscosity-heat conduction and
the interaction of sound with turbulent flow in the duct.

The various mechanisms and their contributions to Ot are:

Oil) due to the acoustic radiation from the end of the ductso,
OEZ) due to the interaction of sound with the exit jet from
the ductla, 9£3)

heat conduction

caused by acoustic losses due to viscosity and

and Oéu)

interaction in the ductl7.

6 = & (4/2) 3.0

L)
et - PM (3.9)

30 arising from the sound-turbulence
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)
L w
O = d C j?o"" + (- '),\jtog
58 X |()5 :ll:"‘_ (3.10)

Qi“) w UM _Q_.EL_-._ (3.11)

Here Cp is the specific heat at constant pressure, xthe ratio
of specific heats, K the heat conduction coefficient, u the
coefficient of viscosity, A the wavelength and B is a numerical
constant = 0.5 to 1.

At the comparatively low frequencies of interest (wave-
length much larger than the pipe diameter), the sound-turbulence
interaction is usually dominant for flow Mach numbers larger

than 0.1.
(2) ()
9;‘-’-‘ 6, +86, = (§+ Qé—Lq))M (3.12)

With B =~ 0.5-1.0 and 2yL/d=0.5, we see that for M=0.1,
the equivalent resistance Gt will be approximately 0.1 to 0.15.
The understanding of sound-turbulence interaction is still far
from complete and the determination of Ot is therefore only
approximate.
| Ot can also be determined experimentally from measurement
of the frequency dependence of the magnitude of the acoustic
input impedance |Z| at the entrance of the pipe. In a frequency
range in the vicinity of a frequencytun, at which the pipe
length is an odd number of quarter wavelengths L=(2n+1)(A/4),

|Z] has a maximum at w and the "sharpness" of the response
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curve for |Z| in this region is

Q = Whn = (2‘YL+\) ('“/_2_)
"~ Aw, )

where Awn

(3.13)
is the width of the curve at which the value of |Z|
is 1/ N2 of the maximum value.

Definitions

For the following development, it is convenient to define

a system instability parameter n, a frequency ratio x, a non-

dimensional length y and the logarithmic decrement of the
oscillator §

= A dm _c_
=% &

)

| (3.14)
x = 0/w, AND

.Y = L-/;lm (3.15)
VVOOM ](

(3.16)
The Q value of the oscillator is then
Q = ___me = ———K (3.17)
R WO
In terms of x and vy,
‘kL:Z‘“’L=21TwL—2'"'X
- W = - 3.18

Here Am is the wavelength of sound at the frequency fm;wm/Zn.
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The stability conditions can now be obtained from equation
(3.7) in terms of the parameters defined above.

Sufficient condition for stability

In order to obtain a sufficient condition for stability,
we shall consider the worst possible situation which corresponds
to the largest possible value of the negative resistance. If
the resistance of the valve exceeds this maximum value of the
negative resistance, the valve will be stable under all operat-
ing conditions. Actually, even if the intrinsic resistance of
the valve is zero, it is still possible for the valve to be
stable if the losses due to acoustic radiation exceed the
negative resistance. This rather unlikely possibility corres-

ponds to the condition

(AX.)ZA?CB S Ay dmn < X

A dh w (3.19)

which can be expressed as

M ¢ (&) AL X

where we have made use of the fact that the maximum value of

1?t/° is 0.5. The factor AgL/W is the ratio between the total
mass of the fluid in the pipe and the mass of the valve. This
is usually quite small and the condition (3.20) generally
cannot be fulfilled in practice and we must rely upon factors
other than acoustical damping to achieve stability. One

possibility is, of course, the use of mechanical damping of the
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valve,

If R is not zero, it is reasonable to neglect the second
term in the resistive part of equation (3.7), and the sufficient
condition for stability for all operating conditions and all
pipe lengths requires that mechanical resistance coefficient
be larger than a critical value such that

LA < din oo
R>2 A 6 dh (3.21)

which can be expressed in dimensionless form as

'\<%‘-=.,,2.,.xsr

Since x in most cases of interest is close to unity, we

(3.22)

may express this sufficient condition for stability approximately
by the rule that the instability parameter n of the system
should be less than twice the inverse of the Q value or less
than 1.6 times the logarithmic decrement of the valve. On
closer examination one finds that x depends somewhat on Ot and
if this dependence is accounted for (equation 3.28) the
sufficient condition for stability in equation (3.22) takes the
form shown in figure 2. This condition, however, corresponds
to the worst of the operating parameters. Much less stringent
requirements for stability result if this worst operating point
is avoided.

Stability diagrams

If the sufficient condition in equation (3.22) is not

satisfied, the question whether the system is stable or unstable
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involves more detailed studies based on the actual value of
the acoustical equivalent reistance and-not on the maximum
value. To find the actual value, we should solve equation (3.7).
The general solution, however, leading to a determination of
the real and imaginary parts ofw=wP + iwi, is quite involved
and has not as yet been carried out. But if we are concerned
mainly about the conditions for stability and not the growth or
decay rates of the oscillations, it is sufficient to solve
the equation when we restrict ourselves to the casew , = 0.
The solution thus obtained defines the relationship between
the parameters involved that leads to the stability contours
which represent the border between unstable and stable regions.
Thus if we let w be real in equation (3.7), we obtain the
following relations for the determination of w=w, and the

relationship between the parameters that yield neutral stability.

A .
R—_A- %‘E" c_._L_Z_(_ = 0 (3.23)

wW - ',_!5 (K- —'%'-‘-’- %—'K—cG):O

We have in these equations neglected the mass load and the

(3.24)

second term in the resistive part of equation (3.7). Equation
(3.23) simply says that the effective resistance force on the
piston, including the effect of the acoustic reaction force,
is zero when the system is on the verge of self-oscillation.

In terms of the system parameters n, y, Q, x and Gt, equations
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(3.23) and 3.24) can be expressed as

lS_. —_— (‘-— ei?') eit ‘EL

(3.25)
Q |+ 6F &* *
and 2 2 Q 2
2 2
I+e e 1 I+87e” (5,6

where we have made use of equations (3.5) and (3.6) to express
© and %Lin terms of the system parameters. Here, e=tankL.
From equation (3.26) it is clear that x is always less than
unity i.e. the frequency of oscillation of the valve is less
than the natural frequency. This has been verified experimen-

tal1y'ts13

and is due to the negative contribution to spring
constant from the acoustic feedback.
From equations (3.25) and (3.26) follow

¥= Tz velen [e:,
and

_ b
AT X Q ’]-(“'Xa)] (3.27)

2 2.2
I-X2= -‘i S |i JT- 4(68*;;'.6“']) (3.28)
'R 2
where S=1)(."'9¢)+€ ond € = '/Q
For a prescribed value of Q, Ot and n we first obtain the
frequency ratio x from equation (3.28). Then the stability
contour, i.e. the relation between n and y representing neutral
stability is given by equation (3.27). The function n=n(y) for

given values of the parameters Q and Ot has several branches.
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Having obtained the first branch n1=n1(y), we find the others

simply by displacing the variable y so that the nth branch is

'r"\ = “]I (3+ %) (3.29)

These branches represent the stability contours for the
different modes of motion of the system. The qualitative
behavior of the first few branches is shown in Figure 3. Each
branch approaches n=1 asymptotically as y»*« ., Below each
contour the corresponding mode is stable, and above the contour
it is unstable. In order for the system to be stable for all
possible modes of oscillation, the operating point, i.e. the
values of n and y, must lie below all the contours.

Stability contours obtained in this manner are shown in
figures 4 to 6. The corresponding contours for the frequency
ratio x (i.e. the frequency of oscillation corresponding to
neutral stability) are shown in figures 7 to 9.

Once the instability parameter is defined to be inversely
proportional to Ot, the remaining effect of Ot on the stability
contours is seen to be negligible; increasing Ot then has the
effect of increasing the end correction to the duct (Figures
4 and 5). The Q value of the valve has a more pronounced
effect on the stability contours as shown in Figures 4 and 6.
Larger Q is reflected mainly by a downward translation of the
stability boundary and a small increase in the end correction.

Larger Q implies smaller damping and therefore a system that
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can be made unstable more readily.

Even though we have not presented curves for the growth
rates, using qualitative arguments it is very easy to show that
the magnitude of the negative damping is large in the immediate
vicinity to the left of the stable regions and small in the
immediate vicinity to the right thereof.

The flow velocity in the pipe affects the acoustical
damping of the duct and thus is indirectly reflected in the
instability parameter. Its influence on the resonance fre-
quencies of the duct is usually negligible since it involves
the factor (1-M2).

As an example of the use of stability diagrams, consider
a valve with Q=20 and a duct with Ot=0.l (Figure 4). An
operating point corresponding to n=0.2, y=0.5 then corresponds
to stable operation whereas for n=0.2, y=0.25 it is unstable.
Actually, in this particular example, with an instability
parameter n=0.2 and a Q value of 20, the values of the duct
length parameter y=L/Am yielding stability, correspond to the
intervals y=0 to 0.2, 0.27-0.7, 0.83-1.2,1.39-1.7, 1.93-2.2 etc.
As n increases; these regions diminish until for n> 0.82 the
system becomes unstable for all lengths L >0.08 Am. On the
other hand, for n<0.1 the system is stable for all values of L.
This latter result is consistent with the sufficient condition

n< 2x/Q.




-31-

Stabilizing an unstable valve

To stabilize a given system we have several options
involving among others, an increase in the acoustical or
mechanical damping in the system, an increase in the stiffness
of the valve (and a corresponding increase in the resonance
frequency of the valve) or a change in the length of the pipe
so that the acoustic reaction force acts as a stabilizing posi-
tive damping. An orifice located at the end of the duct will

introduce both acoustical and mechanical damping.
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CHAPTER 4

DISCUSSION OF EXPERIMENTAL RESULTS ON VALVE INSTABILITY

It is essential to keep the experimental system for
studying valve instability as simple as possible to avoid the
difficulties that other inves‘cigator‘sl‘L have faced. The simplest
system seems to be a straight uniform duct with a cantilever
beam acting as a valve. A beam machined from a large chunk
of metal is also the easiest way to get the smallest damping in
the system. The roots of the beam are curved to avoid sharp
turns which cause stress concentration ané result in cracks.
Such a valve has many modes but we were able to excite only
the first bending and the first torsional mode. All attempts
to excite the second bending mode were unsuccessful though
torsional modes are almost nonexistent when the modification
shown in figure 1 is used. Attempts to eliminate the torsional
vibrations by rounding the edges were unsuccessful.

The natural frequency of the beam is obtained by hitting
the beam with a small hammer and Fourier analyzing the impact
sound as received on a microbhone placed nearby.

The "valve" is mounted on a milling machine bed thus
making it possible to move the valve along three independent
directions relative to the duct. The duct is held in a big
chamber filled with glass wool to avoid reflections of sound
from the chamber and the end of the duct is unflanged. Thus

the valve can be positioned independently of the duct and its
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separation distance from the duct or their relative alignment
can be varied.

A suction system is used so that the fluid flow is
as "clean" as possible without any interference from unnecessary
piping that is associated with blowing air systems. The flow
is provided by a steam ejector which is acoustically isolated
from the "valve-pipe" system by the almost "anechoic" chamber.
The steam ejector is essentially a constant flow device and
therefore in the experiments we adjust the flow rate to a
desired value, then change the gap between the "valve" and the
duct until the system is on the verge of self-oscillation.

The valve is expected to behave like an orifice so that
the volume flow rate is directly proportional to the opening h
and the square root of the pressure drop AP across the valve
where AP is the difference of the atmospheric pressure from
the pressure in the chamber. We expect the pressure recovery
in the duct or in the chamber to be almost negligible. At
constant pressure drop the flow rate is measured to be directly
proportional to h (Figure 10) and the slopes are approximately
proportional to 475; (Figure 11). At small AP and large h this
relationship has to be modified since then a larger fraction of
the pressure drop occurs in the duct instead of the valve
orifice.

Having chosen the beam and the pipe cross-section, dﬁ/dh and

Ot are the only controls we have on the instability parameter.



- 34~
Since the equivalent termination resistance Ot is proportional
to the Mach number in the duct (equation 3.12), we can simplify
the experiment by holding the flow rate constant. Here the
constant flow characteristic of the steam ejector is a big
plus. The length of the duct is easily changed by changing the
duct that is attached to the chamber. The instability parameter
is now directly proportional to the square root of the pressure
drop. The beam is now brought closer and closer to the duct
until it just begins to vibrate. The pressure drop AP that is
required for a given flow rate through the valve and the gap
size h determine dh/dh. Results obtained in this manner are
shown in Figure 12. The qualitative resemblance with Figure U4
is very encouraging.

It is difficult to compare the theoretical predictions with
the experimental results because in the analysis we neglected
the effect of flow on the Q value of the beam. The dependence
of Q on flow is now being studied experimentally. At values
of L/Am (e.g. L/Am=0.9) where large pressure drop is required
to destabilize the valve, the flow velocity through the opening
is so large and consequently the Q value of the valve so low
that it 1s almost impossible to get the beam to oscillate in
bending mode though it was still possible to excite the tor-
sional modes of the beam, either because the negative damping
arising from the reaction forces is larger or because the

mechanical damping is lower for the torsional modes when
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compared with the bending modes.

Four strain gages are mounted on the root of the cantilever
beam to measure its bending modes. The Fourier analysis of the
output from strain gages and the output from a microphone placed
nearby give the same frequency of excitation. The oscillation
frequency for various duct lengths at the verge of instability
is shown in Figure 13.

It is observed that when a duct of a certain length is
being tested to determine the boundary between stable and
unstable regions, the vibrations grow very violently--to the
point of breaking the beam or to the point where the bean
starts hitting the duct--when the pressure drop is increased by
a very small amount (like 5 to 10 mms of mercury) if the duct
length is in the immediate vicinity to the left of the stable
region e.g. L/Am=0.25 or 0.7. On the other hand, when the
length of the duct is in the immediate vicinity to the right
of the stable region, e.g. L/Amzl.o or 1.5, the instabil’cy
parameter n can be increased by large amounts without any
significant increase in noise or vibrations. Incidentally the
unwanted collisions between the "valve" and the duct hindered
our attempts to measure growth rates but effort is continuing
in that direction.

When the experimental neutral stability curve (Figure 12)
is compared with a typical stability curve predicted analytically,

a leftward shift along the L/Am axis is observed. The small
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end correction to the duct is unable to explain this trend
toward lower L/Am.

The data presented here is consistent with the data reported
by Ezekielu and Wilson and Beaversls. The nondimensional para-
meters used by them are different from the ones we have used.
They use AP/(Kw) as the instability parameter where w is some
characteristic length. Ezekielu chooses w to be the width of
the valve port whereas in the work of Wilson and Beavers13 w
represents the steady state gap opening h. Our parameter n is
much better because it involves the flow characteristics of the
valve and the acoustical characteristics of the duct. Their
parameters also have the disadvantage of inciuding the spring
constant K in several of the nondimensional parameters
necessary for the theoretical analysis. Direct comparison of
the result is meaningless because the experimental systems used
in the three sets of experiments are quite different. It
should be noted that the theory of Wilson and Beaver's13 predicts
that in the second stable region centered around L=\ the
maximum pressure drop up to which the system is stable is larger
than the corresponding maximum in the stable region around
L=A/2, Their experiments show the reverse to be true. Our
theory and experiments (Figures 4 and 12) confirm their experimen-

tal findings.
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CHAPTER 5§
ACOUSTICALLY INDUCED FLOW INSTABILITY IN SIDE BRANCH CAVITIES

Often the ducts carrying flow have side branch cavities.
These cavities are sometimes associated with the control valve
regulating the fluid flow but their presence is not necessarily
linked to valves. At times, they are deliberately included to
damp the hydraulic shrges or to act as sound absorbers. It is
well-known that they can be set in violent acoustic oscillations
by the flow. The screeching of side branch resonators has been

the subject of numerous studies Qq-zg. The fluid dynamic

25-27 are based on excitation of the shear layer, are

models
somewhat empirical and have only been partially successful.
Here we describe some experiments which show that the duct and
the location of the resonator along the duct have significant
effects on the excitation characteristics.

A cavity 3 inches deep and 3/4 inch square cross-section
is cut from commercial tubing with 1/8 inch thick walls and
is attached to a duct of 3/4 inch square cross-section. The
cavity can be joined easily to the duct with plasticine when
a 1 inch square is shaved off on a milling machine from the top
surface of the duct. The duct is mounted on the flow facility
in the manner described earlier for the valve-pipe system.
Because we use a suction device, the flow is smooth and we

can easily isolate the cavity acoustically from the flow device.

The noise produced is Fourier analyzed on a real time spectrum
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analyzer,

As indicated in Figure 14, screech occurs over a wide
range of flow velocities. The intensity of this excitation
can be surprisingly large. In our experiment with a single
cavity, under special conditions (e.g. modification of the
edges) levels exceeding 127 dB were observed at 1 foot from
the entrance of the pipe. Qualitatively we can state that as
the flow velocity is increased gradually through the pipe, we
encounter flow regimes in which the various modes of the side
branch cavity are excited. 1In Figure 14 we notice the concen-
tration of points at frequencies which correspond to the depth
being odd multiples of quarter wavelength (cavity depth=
(2n+1)A/4 where n is an integer). For deep cavities (width<<
depth), if we account for the gross flow modification of the end
correction of the cavity, the peaks of the spectra can be
identified as odd multiples of the quarter wave length resonance
of the side branch cavity. The associated amplitude changes in
the radiated noise level lead us to postulate a shear layer at
the mouth of the cavity, whose characteristic frequency increases
monotonically with the flow velocity. When a multiple or
submultiple of this characteristic shear layer frequency is near
a resonance frequency of the side branch resonator, a coupled
resonance radiates intense sound. The strength of the excitation
depends on how close the two frequencies are to each other, the

strongest being at exact coincidence.
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To explore the possible role of the degree of turbulence
in the duct on the excitation, experiments were carried out with
the side branch cavity located in the vieinity of the entrance
of the duct, in the center of the duct and near the downstream
end of the duct. It is found that when the cavity is very
close to the ends, the distance to the end being typically less
than 4 duct diameters, excitation is suppressed because the
boundary layer is poorly established.

When the side branch cavity is moved farther from the ends
as shown in Figure 15, several resonances are observed that
cannot be identified as odd multiples of the quarter wavelength
resonance. The motion of the shear layer provides the nonlinear
coupling between the cavity modes, thus generating the sum
and difference tones. The peaks labeled fl’ f3 and f5 represent
the one-quarter, three-quarter and five-quarter wavelength
resonances of the side branch cavity. The remaining peaks are
not related to the quarter wavelength resonances. However,
upon closer examination we find that the peak labeled fa_1
represents a difference frequency of f3 and fl’ whereas the
peak labeled f3+l is the sum frequency of the two. Similarly

we identify f as a peak at twice the first frequency and

1+1

f as a peak at twice the third frequency. Other such

3+3
combinations are also identified in the figure.
Another interesting coupling effect was observed when the

side branch cavity was located at the center of the duct. A
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typical result is shown in Figure 16. Here the spectral line
representing the resonance of the side branch cavity has several
"satellites". These "satellites" are found to occur at
frequencies given by flt nfd, where f1 is the cavity mode, fd is
the fundamental axial duct frequency and n is an integer. In
other words, this resonance indicates nonlinear coupling between
the side branch cavity and the axial resonances of the main duct.
Again this coupling is undoubtedly provided through the modi-
fication of the shear layer by the axial motion in the duct.

It is most interesting to observe that the "satellites"
disappear at sufficiently high flow speeds. This is actually
to be expectedle, since as a result of the flow induced damping,
the axial modes are, in effect, eliminated by the flow at
sufficiently high flow speeds.

It is puzzling to find that a cavity inclined as shown in
Figure 17a is as quiet as a duct without any side branch cavity
whereas a cavity inclined the other way (Figure 17b) whistles
very violently, the noise level sometimes exceeding 125dB for

a single cavity.



41—
CHAPTER 6

CONCLUDING REMARKS

Significant progress has been made in our understanding
of the emission and propagation of acoustic waves in uniform
hard walled ducts carrying a uniform flow though a lot more
still needs to be done. The upstream and downstream emission
of sound from a stationary source into a moving fluid in a duct
depends on the boundary conditions in the source region. A
change in boundary conditions resultc in a transition from
"laminar" to "turbulent" state but these boundary conditions
need to be established rigorously. Of course, the important
question of division of acoustic energy with or against the
flow still remains to be resolved.

The attenuation of plane waves by the turbulence in the
flow is explained by a simple quasistatic model. The analysis
needs to be extended to higher order modes. Also the difference
in experimental results obtained from the standing wave
technique and the pulse excitation remains to be explained.

The end correction, the termination resistance and the
reflection coefficients from the ends of the duct are measured
for plane sound waves propagating in ducts carrying uniform
flow. The contribution of flow to the equivalent termination
resistance is approximately equal to the Mach number of the flow
but this observation needs to be substantiated by further de-

tailed experiments and mathematical analysis.
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Since these investigations on duct acoustics have already
been published in the Journal of the Acoustical Society of
America, only a brief review is included in this thesis and
the reprints can be found in the appendices.

This knowledge is used for a stuuy of the acoustically
induced instabilities in valve-pipe systems. The oscillations
of the valve modulate the mass flow through the pipe. The
resulting velocity perturbation leads to an acoustic reaction
force on the valve. We determine the operating conditions for
this acoustic reaction force to act as a negative damping.

The length of the duct determines to a large extent whether the
reaction force is stabilizing or destabilizing. An instability
parameter is defined in terms of the mechanical properties of
the valve and the acoustical characteristics of the duct. The
stability contours show that for small values of the instability
parameter, the valve is always stable regardless of duct length
but for large values of the instability parameter all pipe
lengths are unstable.

The salient features of the theory are verified experimen-
tally except for a phase shift which cannot be explained by
the small end correction to the pipe. Only the axial modes are
studied in detail. Torsional modes are the easiest to excite
but can be quenched almost completely by torsionally stiffening
the end of the cantilever beam that is used for the investiga-

tions of axial valve oscillations. It is possible to excite the
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lateral modes of a valve whose predominant degree of freedom is
the lateral translatory motion cf the valve stem. The lateral
and torsional modes observed experimentally did not seem to
be acousticaliy coupled. Preliminary analytical investigations
reveal the existence of acoustically coupled lateral modes. The
torsional and the lateral modes need further study.

Some remarks are included on the excitation of side
branch cavities in ducts with flow. Coupling of cavity modes
with the axial modes of the duct is demonstrated. A cavity
inclined properly with respect to the duct axis is found to be
as quiet as a duct without the cavity. The sound absorption

characteristics of these inclined cavities need further study.
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An experimental demonstration of the influence of fluid mctien in a duct on -the sound pressure field radiated
in the upstream and downstream directions from a stzlionary sound source is presented. The measured ratio
between the upstream and downstreain sound pressurc 2:aptitudes in the duct is presented as a function of the
flow Mach number in the range M = 0-0.5. The results are discussed in the iight of a mathematical analysis

of the problem.

Subject Classification: 14.6; :1.6.

INTRODUCTION

The problem of sound radiation from a source in
relative motion with respect to the surrounding tiuid has
become of considerable intzrest in recent ycars, par-
ticularly in connection with noise generation in aircrait
and in various types of fluid machinery. Although the
basic effects, as well as many details of the influence of
fluid motion on sound radiation, huve been identified by
several investigators,! * these studies have been limited
to mathematical analvsis of the idealized case of moving
point sources. The problem of sound emission from real
sources of finite dimnensions has received much less
attention. The purpose of this paper is to present an
explicit experimental demonstration of the intluence of
relative fluid motion on sound radiation from a sta-
tionary source, with particular attention to the relation
between the sound pressure fields radiated upstream and
downstream.

1. EXPERIMENTAL ARRANGEMENT

The experimental arrangement is shown schematically
in Fig. 1. A sound source is mounted in one of the side
walls of a rectangular duct with inner dimensions
§X3 in. The duct is connected to a pump through a
plenum chamber, and the flow speed in the tube can be
varied between 0 and 170 m/sec, which corresponds to
a Mach number range in air of about 0-0.5.

The loudspeaker is driven by means of a pulse
generator and produces harmonic sound pressure wave
trains in the duct. The carrier frequency of these waves
is chosen to be considerably lower than the cutoil fre-
quency for the first higher-order acoustic mode in the
duct, so that at the carier frequency only the plane-
wave mode will be able to propagate. Pulse, rather than
steady-state, excitation of the sound source was used so

that the problem of reflection from the ends of the duct
did not have to be considered in the analysis of the data.
The reflection problem will be discussed separately ina
iortheoming paper.

The pressure puises are detected by two identical
pressure transducers mounted in the side walls of the
duct on the upstream and downstreaur sides of the
sound source at equal distances from it. I the absence
of low, M =0, the recorded pulscs from these trans-
ducers are simuitaneous and identical in shape, as
demonstrated by the results shown in Fig. 1. Any
difference in the sensitivity of the transducers is com-
pensated for by gain adjustment of the transducer
amplifiers, so that in the absence of flow the amplitudes
of the recorded pulses from the transducers are equal.
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Fic. 1. Examples of recorded pressure pulses in the upstream
(p-) and the downstream (p,) directions at flow Mach numbers
M =0and M =045,

The Journal of the Acoustical Society of America 1343



T

INGARD AND SINGHAL

sor ] ,
’ .
‘ . /
[ X ’ B
% Jres? i
RA S
’ °
29} / 2.
J P (L
’ K =M
’ v
’ [ 34
’ 04
’ "’
t ° - l" ’l'
, 54
" ”'
’,
’ i
'o .
S
L s vor b 08 -
[X) R
-*» 0
A §
X Gt
° .o
Lo
A&»‘
Y coal 1 ' 1 1 :
4] (-1 02 0.3 [-X ] o3
L]

F1c. 2. Mach number dependence of the measured ratio j»_'p. |
between the pressure amplitudes radiated in the upstrean and
downstream (!ircc(inns. o—1477 Hz. 0—1000 Hz. +—1(v0 Hz
(different location in the duct).

When the air in the duct is moving, however, the
pressure amplitudes are no longer equal; the amplitude
in the upstream direction is larger than in the down-
stream direction, and the difference increases mono-
tonically with the flow speed in the duct. An exampie of
recorded upstream and downstream pressure waves at a
flow Mach number 3 of 0.45 is shown in Fig. 1. In
addition to the obvious ditference in the pressure ampli-
tudes, a difference in the time of arrival of the two
pulsesis also apparent in this figure. This time ditfcrence
is governed by the average tflow Mach number across the
duct.® From the measured vzlue of this time ditfercnce
and the distance between the sound source and the
receivers the flow Mach number in the duct was
determined.

The Mach number dependence of the ratio |p_/p,|
between the upstream and downstream pressure ampli-
tudes obtained in this manner is iHustrated in Fig. 2.
Measurements were carried out at two frequencies,
1000 Hz and 1477 Hz. As can be seen, there is no marked
difference in the amplitude ratio at these two fre-
quencies. Furthermore, the results obtained did not
depend on the strength of the source signal within the
amplitude range available in our experiment.

Qualitatively, the observed higher sound pressure in
the upstream direction is to be expected from the fact
that the sound pressure about a moving source in a
medium at rest is larger in the forward direction. In our
case, with the sound source at rest, the “jorward”
direction corresponds to the upstream direction.

The monotonic increase of | p_/p, | with M indicates
an irregularity or “transition” in the vicinity of /~-0.1
which corresponds to a Reynolds number of 0.3X 103,
based on the duct diameter. In the following mathe-
matical analysis of the radiation problem it wiil be
shown that the Mach number dependence of {p_, p. ' is
intimately linked to the nature of the flow boundary
conditions in the source region and that if a change in
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these boundiry conditions occurs at a certain Reynolds
number, a corresponding change in |p-/p,] is to be
expected.

II. MATHEMATICAL ANALYSIS

In the mathematical analysis of this problem we start
from the wave equation for the sound pressure field

p(xysl)
o . a% . % 2M o*p 1%

(1-313)
ox? 9y* 9z ¢ Ooxd ¢ o

0, (1

where ¢ is the sound speed, and 3 the mean Much
number in the duct. The coordinates x, y, = refer 1o a
stationary laboratory frame of reference with respect to
which the unperturbed fluid is assumed to move with
uniform speed Mc in the positive x direction. We wish to
solve this equation subject to the boundary conditions
peculiar to our experimental arrangement.

The duct walls, placed in the planes y=0, y=¢ and
z=0, 2=, are assumed to be rigid everywhere except in
the source region, as indicated in Fig. 3. Consequently,
the normal components of the fluid velocity and the
corresponding pressure gradients are zero at the bound-
aries except at the source. If the source, located in the
wall in the plane y =0, produces a velocity perturbation
u, in the fluid flow in the plane y=0, the efiect of the
source can be expressed as the boundary condition

Uy= “0](1121‘) (}' = 0)' (2)

It is important to realize, however, that this velocity
perturbation of the fluid in the duct is not necessarily
the same as the velocity of the oscillating air column in
the throat of the loudspeaker source

anu(x,2,0)
U= ot ? (3)

where 7.(x,2,f) is the displacement of the air column.
Although u,=u, is valid when there is no mean tlow in
the duct, the situation is more complex when mean fiow
is present. For example, if the flow over the source
region is streamlined, the transverse oscillatory motion
of the air of the source will result in a displacement of
the streamlines, and this displacement gives rise to a
velocity perturbation in the fluid tlow given by

] ]
u,(x,z,l)=(5+Mc$;)q.(x,z,l). “@)

This model of the flow perturbation produced by the
source is unrealistic if the boundary flow is turbulent, in
which case the contributions from the space derivative
in Eq. 4 at difierent locations of the source are expected
to be largely uncorrelated and the efiect correspondingly
reduced. In the absence of this contribution, the bound-
ary condition in Eq. 4 reduces to u,=u,.
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In our experiment, since only the plane-wave mode is
transmitted z2long the duct, it is expeuient to introduce
the averaze sound pressutc j over the duct cross

section,
1
f=—-[[ dydz.
2l

We now obtain a wave equation for j by integrating
Eq. 1 over the transverse coordinates ¥, 5. \We make use
of the fact that the duct walls are rigid, except in the
source region, and note that the average of #*p/oz* is
zero. Similarly, the average of 9°p;0)% is

®

a/4) [ (~apromte,

where (3p/dy)o is evaluated in the source region of the
wall at y=0. We can express (3p a¥)o in terms of the
velocity perturbation , from the momentum equation

a 2 ap
p(—-i-Mc—)u,,= -
at dx ay

The wave equation for the average pressure j» can then
be expressed as .

O

0 Map 13
(1-31%) ? 2— P P
It ¢ oxdl ¢t or

o

=s(x,0),

where

0= £(a-i-M a)/. (x,2,0)d ®)
s(x,)——A Py cax \ 1y(x,2,0)dz.

In this inhomogeneous wave equation the right-hand
side is considered to be a known source function s(x,0)
defined in the source plane y=0, where x, is given by
Eq. 4. To solve this equation, we introduce the Fourier
transforms

Br)= f f Pk w)etecdkdo, ©)

s(x,0)= f / S(kw)eitre i dhdw, (10)
and from Eq. 7 obtain
P(kw) —SC0) (1)
G =k G—)
where
B (12)
YT -

1f we let the source region be limited to —L<x< L,so
that s(x,) is zero outside this region, we can express
S(k,w) as .

L
S(k,m)=l f s(xo,w) exp(—ikxe)dxo,  (13)
xJ .

-L6-

A MOVING FLUID

SOURCE REGION
Uytuy (s, 2,0)

Fi6. 3. The source resion is in the plane y=0 of the duct and is

defined by the perturbation of the fluid velodity uy in the y
direction.

where s(x,w) is the temporal Fourier transform of s(x,t).
Then, froin Egs. 4 and 7, we have

S(kw)= (iw)(:'-:)pm,(l -M cf)zn.(k,u), (14)
A w
where
1 1 L
v-(k.~)=;; L /o dz f; ne(x0,2040)
Xexp(—ikzo)dxo (13)

and A,=b2L is the source area, tio={—iwno) is the
velocity amplitude of the source, and 7o is the displace-
ment amplitude. In the special case of a piston-like
displacement such that 0 (%0,50,w) =m0 in the source

region, we get
(16)

Having obtained S(kw), we determine the pressure
amplitude p(x,w) from

Plrw)= /« P(kw)et=dk
-— k,ﬁl skx
Sl dk, (17)

T ) UMtk k=)

no(kw) =sinkL/kL.

where S(k,w) is given by Eqgs. 14 and 15.

The poles k=k, and k=k_, although located on the &
axis in the present analysis, would contain a small
positive and negative part, respectively, if some damp-
ing mechanism, such as viscosity or heat conduction,
had been included in the analysis. Evaluating the
integral by contour integration in the complex & plane,
we can complete the contour in the upper k plane for
x> L, and thus include the pole at k=k,. The corre-
sponding solution is then

4,1 1

w
Al o] o
pr= z(pcuo)u_'_m, (k4) exp 'c(1+M) (18)
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Similarly, by closing the path in the lower half-plane,
we find, for x<—L,

1
e == Pyt k—,
? 1 Z(pcuo) - M)"’( w)

. @
Xes [-i——-———z]. 19

P c(1-31) (19)
These solutions represent the waves transmitted in the
downstream and upstream directions traveling with the
speeds c(1+M) and ¢(1 - M), respectively, as expected.
It is intercsting to note that the amplitudes of these
waves are ditferent in the presence of tlow in the duct. I
the source region is acousticaliy compact, that is, if L is
much smaller thun the acoustic wavelength \, the value
of the source function 7, is close to unity, as can be seen
in the special example given in Eq. 16, and the ratio of
the upstream and downstream pressure amplitudes

becomes L2
.I_’:l.=£i_?_ (:’L<<1). (20)
1Pl (1=30)* \¢

III. DISCUSSION

It should be emphasized that the Mach number de-
pendence of the wave amplitudes. expressed by the
factors (14-3)~? and (1—M)"?in Egs. 18 and 19 and
leading to the amplitude ratio in Eq. 20, depends inti-
mately on the nature of the source and the velocity
perturbation that it produces in the iduid. In the
analysis carried out here the relationship between the
(known) dispiacement of the air column in the loud-
spezker throat and the corresponding velocity perturba-
tion produced in the duct tlow has been assumed to be
described by Eq. 4, a relation based on the model of an
oscillatory displacement of streamlined flow over the
source region. In highly turbulent flow it may be more
realistic to use as 2 boundary condition u,=u,=0dy,/9t
(obtained by neglecting 8/9x in Eq. 4), which means
that the velocity perturbation in the duct ilow equals
the velocity in the loudspeaker throat. The amplitude
ratio | p../p.] obtained in this case is (14+M)/(1—-A).

1346 Volume 54  Number 5 1973

In Fig. 2, which shows the measured amplitude ratio
|p-/p+i as a function of the flow Mach number, we
have also plotted the functions F\(A0N=(1+M)/
(1—3)*and F2(M) = (14M)/(1— M), representing the
theoretical results obtained on the basis of the two
difterent boundary conditions that were considered. It
is interesting to find that the cxperimental results fall
between these theoretical curves. At Mach numbers lcss
than ~0.1, the data are in good agreement with the
function F), which indicates that the streamline model
of the flow is meaningiul. As the Mach number is
increased, however, the data show a irend toward the
function Fe, ‘which favors the boundary condition
1u,=u,’

ACKNOWLEDGMENT

The experiments were carried out at the MIT Gas
Turbine Laboratory, and we wish to thank Mr. Angelo
Moretta for assistance in setting up the flow facility for
the experiments. This work was supported by the U. S.
Navy (Otfice of Naval Research) under Contract
N00014-67-A-0204-0019.

'D. 1. Blokhintsev, “Acoustics of a Nonhomogeneous Maving
Medium,” NACA TM 1399 (Feb. 1956) (translation).

2H. G. Kiissner, “Losunzen der klassischen Wellengleichung tir
bewegte Quellen,” Z. Angew. Math. Mech. 24, 243-250
(1934).

M. 1. Lighthill, “On Sound G d Aerodynamically: II.
Turbulence as a Source of Sound,” Proc. R. Soc. A
222, 1-32 (1954).

‘P. M. Morse and K. U. Ingard, Theoretical Acoustics
(McGraw-Hill, New York, 1968), pp. 632-689.

R. Mari, “A Moving Source Problem Relevant to Jet Noise,”
J. Sound Vib. 25, 1-11 (1972).

*F. Mechel, W. Schilz, and J. Dietz, “Akustische Impedanz
einer Luftdurchstromien Offaung,” Acustica 15, 199-206
(1965).

TActually, if we account for the static pressure drop in the flow
direction and the related difference in sound attenuatior. for
upstream and d m propagation, the values forp _/p ,
for M > 0.2 are reduced and the corresponding data points
in Fig. 2 are brought to even better agreement with the
(1 + M)/(1 — M) curve than that shown in the figure.

1
4_




Appendix B

-4 8-
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A study of the influence of fluid moticn on the emission of higher-order acoustic modes from a
stationasy source in a duct is prescated. In particular, the ratio betweea the upstream and
downstream higher-order mode amplitudcs is calculated. This ratio has been measured for the (1,0)
mende in 8 rectangular duct at flow velccities from zero to 0.25 times the sound speed. The
frequency dependence has also been measured at a fixed flow Mach number of O.1.

Subject Classification: 28.60.

INTRODUCTION

Renewed interest in sound transmission through ducts
has resulted in a large number of papers on the subject
with particular emphasis on the effects of flow. Ina re-
cent review of the subject by Nayfeh, Kaiser, and Telio-
nis,? 114 references pertinent to duct acoustics are
given.

Some of the effects of {low on the acoustic character-
istics of lined ducts are related to the convection, re-
fraction, and scattering of sound by the flow, and others
involve *-e possible flow modification of the boundary
impedance and the generation of noise by the flow.

This paper deals more with the influence of flow on
the emission rather than the transmission of sound, as
we discuss the {low dependence of the coupling between
a stationary soyrce ard the duct modes. It represents
an extension of a previous paper on the subject,® in
which wa determined the effect of flow on the ratio be-
tween the amplitudes of the plane waves emitted in the
upstream and downstream directions from a stationary
source in the wall of a rigid duct, In the present exten-
sion of this study we calculate the amplitude ratio also
for higher-order duct modes and present experimental
results for the (1,0) mode in a rectangular duct.

I. MATHEMATICAL ANALYSIS

If the mean flow velocity in the duct is V, the speed
of sonnd ¢, and the corresponding mean Mach number
M= V/e, the sound pressure fieid p(s, y, z, /) satisfies
the well-known wave equation

op atp #*p 2M ¥p 1 ¥
a-n PR b aae W

As indicated in Fig. 1(a), the source extends over a dis-
tance 2L along the axis of the duct and is confined to the
two opposing side walls. In this rezion the source is
specilied by the iime-dependent normal component of the
displacemert of the boundary. In general, the sound
field prodnced by this source is composed of an infinite
set of acoustic modes. If the walls of the duct are rigid,
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some of these modes will propagate through the duct
with undiminished amplitude (except for the small at-
tenuation caused by turbulence, viscosity, and heat con-
duction) and some will decay exponentially with distance
from the source region.

If the cross section of the duct is rectangular with di-
mensions a and b, the (1, n) mode in the duct can be
written as .

Deal, t) cOS(nr3y/0) cos(nwz/b). . (2)
To obtain the equation for the amplitude function p,.,, we
maultiply Eq. 1 by cos(nmy/a) cos(um z/b) and integrate
over the cross-sectional area of the duct. Then, ac-
counting for the fact that the duct walls are rigid, ex-
cept in the source region, we obtain the following equa-
tion for p.u(x, f):

a8 2v & 1 9
{“-"' Yoxt~"c oxat ~c¥ off

R A st

-5 r-(). Jo)

. The source term S..(%, ?) is determined by the normal

component of the pressure gradient at the boundaries
of the duct. We have assumed here a source limited to
the walls y=0 and y=a. If the walls z=0 and z=b also
contain sources, a similar integral over these walls
must be added. .

The normal component of the pressure gradier. is
different from zero only in the source region, since the
duct walls are rigid elsewhere. X in the source region
the vand z components of the fluid velocity at the bound-
aries are u, and #,, the pressure gradients in the ex-
pression for s,, are obtained from the monientum equa-
tion

(v 2)
o P of "’v’x Uy, (5)
eowln|91974by|MAmti¢lSociond America 805
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FIG. 1. () Source regions in the duct planes y=0 and y =a
(shaded). The two sources are operatad in opposite phases, as
shown by the plus and minus signs. () Schematic drawing of the
experimental setup. S denotes the speakers and M the micro-

phones.

with a similar expression for 35/3z {f there are sources
in the planes z=0 and z=b.

I the flow is streamlined over the boundary in the
source region znd if the displacement of the boundary
is n,, the normal component of the fiuid velocity is

- -~V,,)n.. " ()

which, to first order, is equivalent to continuicy of
velocity perpendicular to the deformed boundary. I,

on the other hand, the flow is turbulent, the {irst-order
contribution corresponding to V 8n,/ax is expected to
average to zero over the source 8o that r, = 27,/al..

In any event, after having expressed the source func-
tion in terms of the krowa source characteristics, given
either in terms of velocity or displacement, we can de-
termine p,,, from Eq. 3 by means of a space—time Fou-
rier transform and thus obtain the Fourier transform
Po(k, ) of the pressure amplitude in terms of the Fou-
rier transform S,..(k, w) of the known source function,
The quantity S..(k, w) can be expressed as

Sanlk, w) = (iw) ‘-“‘E‘Puo(l -Me f,). Hon(k, w), U]
where . .
Hop(k, w) =§:T Al—. L cos("—'b&- dz,

X I.: [(' 1)"1(%, a, 2o, )

- u(x., 0, 2, (l’)] C'“'OdX. .
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is the “source” area 2bL and A is the duct area ab.
The characteristic velocity amplitude u, is wn, and
n/m, s the shape of the displacement function at the
boundary in the source region. Quantity 7, is used for
pormalization and will be taken to be the maximum dis-
placement amplitude in the source region.

After some algebraic manipulation, we obtain the fol-
lowing expressions for the amplitudes g, and pg, of the
(m, n) mode transmitted in the downstream and upstream
directions, respectively:

_1 12 M(1 -8, *
s Qoo (ML ] Hoallley )8, (8)
where . .
Bt =P @ - e bm @
=" 1+Mc' ™M 1-Mc’
Otpn ¥ M
P =0 G =1 = (wma/ W),

(@m/ O = (1 = N (nra/a) + (r3/8').
The ratio between the upstream and downstream ampli~

tudes is
. Tl 1+ M N [L= M =82 | Ha (R, w)
Ry, “’"I%: '(1-‘\1) e (A -po) | Halon, @) °
N M (9)

Above the cutoff frequency, as w goes from wy, to in-
finity, the quantity 37, goes from M//(1+ ) to 1 and
8%, goes from — M/(1 - ) to 1. I the frequency de-
pendence of H,, can be neglected, which is true for an
acoustically compact source, the corresponding varia-
tion of the pressure ratio is from 1 to (1+M)*/(1 = 1),

Below the cutoff trequency, the quantity 35, is com-

plex,
. ) LFYY
£ BM‘”/:;ZM |: M , (10)

and as w goes from zero to w,,, the ratio of the mag-
nitudes of the pressure amplitudes pZ, and p;, remains
the same, but the relative phase of p;, and p[,, changes.

1t should be emphasized that the expression given in
Eq. 9 for the pressure ratio corresponds to the assump-
tion of streamlined flow, that is, when the fluid velocity
and lateral displacement of the boundary in the source
region are related as shown in Eq. 6. We have pro-
posed” that this relation be modified to u,=2an,/a¢ for
a “turbulent” boundary layer. The corresponding modi-
fication of the expression for the pressure ratio in-
volves replacing the function Fy(M, w) in Eq. 9 by
1+ M\ = AN - B2) | Han(kis, w)
Fi(M,v)= ( .u)l1 T b | Aol ©

In the case of a pistonlike source with a uniform dis-
placement amplitude 7, of the boundary in the source
region, the quantity /,, that enters into F; and F; be-
comes

Hon(kSs, 0) = Sin(RS, L)/ES,L , (12)

which for an acoustically compact source is close to
unity.
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1. EXPERIMENT

The experimental arrangement is shown schematically
in Fig. 1(b). The duct has a rectangular cross section
with the inner dimensions 374 in. X 1 :,/4 in. A sound
source, a horn-type driver, is mounted in each of two
opposite duct w2lls. The two sources are driven by har-
monic pulse trains, 180° out of phase, and with the mag-
pitude of the acoustic signals from the speakers a'-
justed to be the same, the (monopole) source strength
of the source configuration will be zero, and no plane-
wave component will be generated in the duct.

The cutolf frequency of the (1,0) mode is 3860 Hz. The
next cutoff frequency is 7720 Hz, corresponding to the
(2,0) mode. In our experiments the frequency was cho-
sen to lie between these limits, so that only the (1,0)
mode propagated through the duct. All other higher
modes decayed exponentially with distance away from
the source. To avoid propagational effects in our ex-
periments such as attenuation of sound due to turbulence
within the duct,® the microphones were placed quite
close to the source, in our case about 8.5 “diameters”
away, but yet sufficiently far away to ensure that the
exponentially decaying higher-order modes did not af-
fect the results. To confirm the existence of only the
(1,0) mode, the distribution of the sound pressure across
the duct was measured and found tobe inexcellentagree-
ment with the expected cos(ry/a) function. The sound
pressure at the center of the duct, that is, at y=a/2,
where the contribution from the (1,0) mode is zero, was
found to be 30 dB lower than the amplitude of the (1,0)
mode. The existence of such a “clean” (1,0) mode, even
at a distance more than 50 diam from the source, was
a clear indication that the wave-distorting propagational
effects, such as refraction due to velocity gradients,
were of little or no consequence in our experiment.

As indicated in Fig. 1(b), two microphones were used,

200 ,e
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FIG. 2. Mach number dependence of the measured ratlo Ipy/
2| between the pressure amplitudes radiated in the upstream
and downstream directions at a frequency of 5500 Uz. The
curve marked a corresponds to streamlincd flow over the source
boundary {function Fy(V, ) in Eq. 8] and curve b is the pro-
posed modification for a “turbulent” boundary layer {function
FyM, o) In kq. 1)
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FIG. 3. The variation of 1p,, /py, With frequency f for a
Aach number of 0.1, m=1, n=0. Curvesaand b correspond
to curves a and b in Fig. 2. The cutoff frequency for the 1,0
rode is fj. Also shown for comparison is curve ¢ which cor-
responds to the result for plane waves? generated by a finite
size socurce in a “turbulent” medium.

one on the upstream and one on the downstream side of
the sound source. Although the reflection from the end
of the duct is much smaller for the (1,0) mode than for
the plane wave, we used short pulse trains of the har-
monic signal to the source, so that the incident and re-
flected wave trains in the duct could be separated read-
ily.

As in our previous study of the plane-wave mode, we
were interested here mainly in the ratio between up-
stream and downstream wave amplitudes. Figure 2
showsthe measured value of |pjo/piel as a function of
the Mach number at a frequency of 5500 Hz. The ex-
perimental results fall between the functions Fy(M, w)
and F»(M,w) given in Eqs. 9 and 11, corresponding to
the streamline flow model and the proposed modifica-
tion for “turbulent” flow. At Mach numbers iess than
approximately 0,04, corresponding to a Reynolds num-
ber of 2.5%10%, the data are closer to the F; function.
This result is, at least qualitatively, consistent with
the results obtained for the plane wave, as described
in our previous paper.®

The measured frequency dependence of | pjo/piol at a
fixed flow Mach number of 0.1 is shown in Fig. 3. Again,
we find that the experimental results fallbetween Fy(M,w)
and F3(M,w). For comparison, the frequency dependence
of the pressure ratio for the plane wave component is
also shown. For ar acoustically compact source this
ratio is irdependent of frequency, but if we account for
the finite source dimension, the frequency dependence is
given by (sink L/k_L)/ (sink,L/k L). Although a similar
factor enters in the frequency dependence for the higher
mode, the dominant effect arises from the relationship
between the wavelength and the duct dimension rather
than from the wavelength compared with the source di-
mension, so that the net effect is an increase rather than
a decrease with frequency in the investigated frequency
range.
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Results of steady-state and pulse mcasuremnents of upstream and downstream attenuation of sound in
turbulent pipe flow are presented and compared with calculated values obtained from a simple modei
in which the sound is treated as a quasistatic perturbation of the steady flow in the pipe.
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INTRODUCTION

Under most conditions the attenuation of sound in a
duct is basically thc result of viscous and heat-conduc-
tion losses at ihe duct boundury. The corresponding
losses in the bulk of the gas are small compared with
the boundary losses, at least at sufficiently low frequen-
cies. For a rigid smooth wail these viscothermal
boundary losses account for the “classical attenuation”
in a pipe, as was determined by Kirchhoff for the funda-
mental “plane” wave mode.! Actually, viscosity, and to
a lesser extent heat conduction, are largely responsible
for the acoustic losses even when the duct wall is irre-
gular or is covered with an acoustic lining, although in
such cases the attenuation is often expressed in terms
of empirical material parameters, such as flow resis-
tance, acoustic normal impedance, and the like, which
are related only indirectly to the shear viscosity and
heat conduction.

In the presence of mean flow, or at large acoustic
ampluudes,' additional losses can occur as a result of
the generation of turbulence either by the large ampli-
tude sound field itself or by the interaction of sound (at
any amplitude) with the vorticity in the [low. This
“nonlinear” contribution to sound absorption has been
studied in several investigations during the past 40
years' and has recently been the subject of considerable
attention in connection with the design of duct liners in
aircraft.

In the light of these considerations, and in pursuance
of our systematic study of sound propagation in ducts
with flow, we have examined the propagation of sound in
hard-walled pipes carrying turbulent flow.

1. QUASISTATIC APPROXIMATION

In this paper we report the results of measurements
of sound attenuation in turbulent pipe flow and anattempt
to understand these resultsintermsof a simple phenom-
enological theoretical analysis of the problem.?® In
this analysis we consider the oscillatory flow in the
sound field to represent a quasistatic modulation of the
steady flow. This results in a modulation of the pres-
sure drop in the pipe, which can be expressed as an
equivalent turbulent friction acting on the oscillatory
flow. :

This approach does not deal explizitly with the detailed
mechanism of the interaction of the sound wave with the
turbulent flow, since this interaction is accounted for in

835 J. Acoust. Soc. Am,, Vol. §5, No. 3, Mach 1974

the empirical velocity dependence of the pressure drop
per unit length in turbuleat pipe flow. Inamoredetailed
analysis we would have tu consider not only the :ncun
flow but also the turbulent spectrum, as weil as the
mean-flow profile in the duct.

H-the mean velocity in the duct is V and the density
is p, the steady-state pressure drop per unit length of
the duct can be written as (/) (21'2°2), where « is the
ratio between the zrea of the duct cross section aud its
perimeter (a=d’4 for a circular cross section of diam-
eter d), and ¢ is an empirically determined friction
factor that depends on the Reynolds number R. The
Reynolds number dependence of ¢ has been studied ex-
perimentally by rumerous investigators for pipes with
varying degrees of wall roughness, aud the results are
summarized in most texts on fluid flow. *

In the presence of a fundamental acoustic mode in the
pipe, the velocity and pressure fieids will be perturbed.
Accordingly, we express the velocity and the pressure
as Vo+u(f) and Py+p(), where u isthe oscillatory acous-
tic flow velocity and p the sound pressure. The quan-
tities Vo and Py are the unperturbed vilues of velocity
and pressure. The time dependence of these quantities
is neglected in the present analysis.

The corresponding perturbation of the turbulent fric-
tion in the pipe gives rise to an oscillating friction drag
that affects the acoustic field with a contribution to the
pressure gradient equal to

L3 pVi 8® ¥ ( znalno)
-apoV.u- % DV.“--a PoVou l-a»z TR

The linearized momentum equation for the sound field
is then

() 3 [ 4 Vo 8lnd
- p,(;;+ Vo ;)u +5Po Vou (l + —2“ A )
° .
s ppcu=-L, (1)

in which we have expressed separately the viscothermal
drag as an additional term 2@,p,cu.

The continuity equation for the sound field is

] ) 288 _
(Jl‘v" “)[up.c ax -0 (2)
where we have introduced p/c? for the perturbation in

density. For a wavelike perturbation, exp (ikx - iwt),
Egs. 1 and 2 reduce to

Copyright O 1974 by the Acoustical Society of America 635
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FIG. 1, Standing-wave patterns in a duct with flow. An acous-.
tic wave exp (o,x —ik,;x —ic:t) traveling in the negative x direc-
tion reflects from the end x=0 as R expl{- Gx + tkyx —iwt), where
R= IR explio). (a) With reflection coefficient IR 1 <1; (b)
With IRI>1. The figures show the envelope of the pressure
maxima and minima. From the tangents to these envelopes at
the end of the duct, x=0, onc can easily find from the informa-
tion given on the figure the refiection coefficient IR | and the
attenuation coefficients ay and a;.

W

W v M, dny
[-i:dka\lo-&%ﬁlo-f("—zau)(a; )+2ﬁ u—:’kp 0

and

ipocku + [ —i(w/c) +ikMg)p=0, . (3)
where Mg= Vy/c is the Mach number of the flow in the -
Pipe.

The corresponding dispersion relation 2(w) for the
acoustic wave is then

Ll . LB SR L ll L} L4 LB
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FIG. 2. Attenuation of a planc sound wave traveling against
the direction of mean flow as a function of Mach aumber.. The
calculated curve ¢, is from theory with the published data® on
the friction factor §. Diamcter D=4a,
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FIG. 3. Comparison of downstream attenuation measurements
by the standing-wave and pulse techniques with the theoretical
predictions.
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Note that V, 8lny/aV, is equal to R 3(Iny)/aR, where
R is the Reynolds number, and that y D(Ina)/al’.,

-=9y/3Vy is of first order in ¢. Then, neglecting the

second-order product terms in §, 3y/3V,, and 8,, and
with (1 +i€)'/2=1+ie/2 (e «<1), we get the following ex-
pressions for the propagation constants k, and £ for the
acoustic waves traveling in the downstreamandupstream
directions of the turbulent flow

w/e LATAY R alny 1
ko rean* [ﬁ' *2 ToR )] oy ®

w/c tMy R alnp 1
= 2 (‘ 4 5 ) = ©
At zero flow and in the low-velocity laminar flow

regime, the attenuation is ca“'sed solelyby viscosity and
heat conduction. As the Reynouds number increases,
the flow becomes turbulent and the term PMy/[2a(1 2 M,)]
becoraes the major contribution to the attenuation. It
is larger in the upstream than in the downstream direc-
tion, the difference expressed by the factors (1+M,)™
and (1 -3ip)™. For example, at a Mach number of 0.5,
neglecting viscothermal effects, we have #_.=3.0k,.
The term (¥.Mo/4a)R3 (Ing)/aR is negative at low Rey-
nolds numbers, but since it is only about 10% of ti:«
previous term, it is not very significant in most cases.
It can be shown, however, that because of the rapid
decrease of ¥ with R at low Reynolds numbers the at-
tenuation for downstream propagation actually can de-
crease with increasing velocity at very low flow speeds.

At high Reynolds numbers ¥ becomes independent of
R, and then only ¥A!o/[2a(1 £.,)] contributes to the at-
tenuation. By retaining only this term, the sound at-
tenuation in a distance x of turbulent pipe flow can be

expressed as
_ WA,
a2 ) @

For a square cross section, dxd, we have a=d/4 and

Attenuation in decibels = 8.7
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FIG. 4. Sound attenuation in turbulent pipe flow by standing-
wave measurements at 1100 Hz with p ~p, expl=kx/(1 = M),
3/4 in, by 7/3 in. rectangular cross section. Different points
on the curve indicate the variability in the standing-wave pro-
cedure,

with a typical value ¥~ 107, we get

My /X

Lo (2

Attenuation due to turbulence ~0.17 1z Mo( d)dB'
(8)

As an example, for a travel distance x=100 d and
My==0.3, the upstream attenuation is 7. 5 dB and the
downstream attenuation is 4 dB.

It is interesting to compare the viscothermal sound
attenuation with that caused by turbulence alone. The
viscothermal attenuation can be expressed’ as

Boma Lldy+ir-1My],

where dy = [21/(ogw)]'/2 is the viscdus acoustic boundary
layer thickness, dg=[2K/(pgwC,)]'/? is the thermal
acoustic boundary layer thickness, ¥=C,/C, is the ratio
of specific heats, p the coefficient of shear viscosity,

K the heat conduction coefficient, C, the specific heatat

/
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FIG. 5. Theoretically calculated upstream attenuation co-
elficients for “sinooth” pipes as a function of the “diameter”
of the pipe.
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FIG. 6. Predicted downstream attenuation coefficients for
“smooth” pipes.

constant pressure, and f=w/2r the acoustic frequency.

The viscothermal attenuation is proportional to the
square root of acoustic frequency, whereas the contri-

bution caused by turbulence is (by thequasistatic approx-

imation) independent of frequency. For air at standard
conditions, B8, =1.43x10°% s'/%/a, This should be com-
pared with the turbulent attenuation 8,=0.5¢Mg/a. With
a typical value 10~ for ¥, it follows that at f=100 Hz
we get B, = 8, when M,=0.03 and at f=1000 Hz, B,=8,,
when My=>0.1. In general, we see that 8, excceds B8,

if

Mo>2.86x10% 5 /2 (9)

1. MEASUREMENTS

In experimental studics of the sound attenuation in
turbulent pipe flow, we used a sound source mounted in
one of the side walls, approximately midway between
theopen ends of a rectarngular pipe with inner dimensions
3/4 in. by 3/4in. or 3/4in. by 7/8in. One end of theduct
was connected to a pump via a plenum chamber and the
other end was open and unflanged. The flow velocity in
the duct could be varied between 0 and 170 m/sec.

Two sets of experiments were undertaken, one with
pulse excitation and the other with steady-state excita-
tion of the sound source. In the pulse measurements,
the sound source was driven by means of a pulse gener-

ator which produced harmonic sound pressure wave trains

in the duct. The carrier frequency of these waves was
chosen to be considerably lower thanthe cutoff frequency
of the first higher-order mode in the duct, so that at

the carrier frequency only the plane wave mode was able

to propagate.

By mounting a pair of pressure transducers on either
side of the sound source, the decay of upstream and
downstream pulses in the known distance between the
microphones in each pair was determined for a number
of different flow velocities.

In the steady-state measurements the standing-wave

field in the tube was recorded by means of a microphone
probe, which was moved along the axis of the tube. The

attenuation was then determined from the slope at the
origin of the curve connecting the pressure minima in
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the standinz-wave pattern. Actually, a modification of
the conventional procedure had to be made to accommo-
date the occurrence of a pressure reflection coefficient
greater than unity at the downstream end of the pipe.
This modification is summarized irn Fig. 1.

. DISCUSSION

Figures 2, 3, and 4 show that the attenuation is almost
independent of the Mach number at low Mach numbers.
For Mach numbers beyond 0. 23, corresponding to Rey-
nolds numbers (based on the pipe “diameter”) larger
than 1.1 >10% the flow dependence of the attenuation is
quite pronounced in the upstream direction, less pro-
nounced in the downstream direction.

The accuracy cf measurements of this type is not par-
ticularly great, as can be seen from the spread in ex-
perimental data points shown in Fig. 4. Apart from the
errors in purely acoustic measurements, there are
several factors that influence the accuracy of these
measurements. For example, there isa static pressure
variation along the lengta of the pipe and a correspond-
ing variation of the density and the flow velocity. This
effect has been ignored in the analysis presented here,
but a more detailed theoretical study revealed that these
effects lead to additional terms, of second or higher
order in M,, which in our case were always less than
10% of the leading terms considered here. At higher
Mach numbers than those involved in our experiment
(My<0. 43), these correction terms must be accounted
for.

Within the range of the accuracy of the measurcements,
the experimental and calculated atienuations are in fair
agreement, particularly in the upstream direction.
There appears to be a consistent pulse-measured atten-
uation somewhat lower than the steady-state measure-
menats. Ahrens and Ronneberger® found a strong fre-
quency dependence, but our data show no such behavior
in the range of frequencies investigated. At the partic-
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ular frequency of our experiment, however, their data
are in good agreement with ours.

©On the basis of the analysis presented here, we have
constructed the curves shown in Figs. 5 and 6, to be
used as an aid in estimating the sound attenuation in
turbulent pipe flow under some different conditions. In
the preparation of these curves we used the empirical
Reynolds number dependence of the friction coefficient
¢, as can be found in most texts on fluld dynamics, *
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Effect of flow on the acoustic resonances of an open-
ended duct*
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The effect of flow on the acoustic resonances of an open-ended, hard-walled duct is analyzed. The flow
produces acoustic losses both in the interior of the duct and at tie ends. Unless the duct is very long,
typically 100 times the diameter, the losses at the ends dominate. At flow Mach numbers in excess of 0.4
the losses are so large that axial duct resonances are almost completely suppressed. The plane-wave Green's
function for the duct with flow is expressed in terms of the (experimentally determined) pressure reflection
coefficients at the ends of the duct. and the flow deper-‘ence of the complex cigenfrequencies of the duct is

obtained. Some observations concerning the noise produced by the flow in the duct are also reported.

Subject Classification: 28.60; 20.45.

INTRODUCTION

Some of the basic. aspects of the acoustics of an open-
ended duct without mean flow are discussed in general
texts on sourd. !** More technical details can be fourd
in specialized treatises dealing, for example, with the
acoustics of musical instruments® and the vocal tract.

In the most elementary treatment of the plane-wave
eigenmodes of a straight uniform duct of length L with
both ends open, it is assumed that the ends are pressure
nodes, so that the wavelengths of the eigenmodes are
3L/m, where » is an integer. The corresponding pres-
sure reflection coefficient R at an open end of the duct
is then R=~-1. On this assumption no acoustic energy
is radiated from the duct into the surrounding free space.

If the radiation is accounted for, the modes will be
damped and the wavelengths of the eigenmodes are found
to be somewhat longer than 2L/n. The problem of re-
flection from the open end of the duct without mean flow
but including the effect of radiation has been the subject
of many studies of various degrees of sophistication, *~*

Viscothermal effects in the acoustical boundary layer,
as well as in the bulk, also contribute to the damping,*®
and at large amplitudes vorticity at the ends of the duct
results in additional damping and a slight reduction of
the wavelengths of the eigenmodes.

In many applications, the duct carries a mean flow and
the acoustical characteristics of the duct are then al-
tered; the damping of an eigenmode will be increased
and its frequency decreased. One can identify several
mechanisms that contribute to these effects, such as the
convection of the sound by the inean flow, the interaction
of sound with the turhulent flow within the duct, and the
effect of flow on the reflection coelficicnts at the ends of
the duct. The effect of turbulent flow on the attenuation
of sound'®™? and on the reflection of sound from an cpen
end of a duct'® ! have been studied previously.
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The main purpose of this paper is to investigate the
effect of flow on the eigenmodes of a duct open at both
ends, tv account for these effects, and to investigate
their relative significance. In addition, we wish to com-
ment on the related problem of the noise produced by the
flow in the duct.

1. A SIMPLE DEMONSTRATION

A simple experiment demonstrating the effect of flow
on the acoustical response of an open-ended duct to an
external sound field is shown in Fig. 1. Here the duct
is attached to a suction plenum chamber so that flow can
be drawn through the duct with speeds up to approxi-
mately half the speed of sound. The duct is excited by
an external random noise field, and the response is de-
termined by a microphone flush mounted in the wall of
the duct at its center.

. ‘The upper trace in Fig. 1 shows the frequency spec-
trum of the microphone signal when there is no mean
flow through the duct. The peaks in the spectrum signi-
fy the resonances of the duct. The absolute values of
the peaks, or even their relative values, are of no par-
ticular interest in this context, since they include the
response of the sound source. What is important in this
demonstration is the influence of flow on the resonance
peaks, and spectra were obtained for a wide range of
flow speeds. Typical examples are shown in the middle
and the lower traces in Fig. 1. The flow is scen to re-
duce the resonant peaks and to increase the width of the
resonances, and at a flow Mach number of approximate-
ly 0.4 the resonances are practically eliminated. This
experiment was carried out in a duct with a square cross
section { in. by ¥ in., but the results presented are ag-
plicable to ducts in general, as the discussion in the fol-
lowing sections indicates. In the experiments, the ex-
ternal sound ficld was always chosen larze enough to ex-
ceed the flow noise (see Sec. V).

Copyright © 1975 by tha Acoustical Society of America 788
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FIG. 1. Effect of flow on the frequency response of the axial
modes of an open-ended duct to an external random noise field,
Frequency scale 0~2000 Hz, linear. The flow produces acous-
tic losses and a downshift of the resonaace frequencies. At
Mach numbers above 0.4, the acoustic resonances are almost
completely suppressed by the flow.

il. “INTERNAL"” FLOW EFFECTS

In addition to the effect of convection of sound by the
mean flow, which changes the phase velocity of the plane
sound waves in the duct in the upstream and downstream
directions by the factors (1 - A1) and (1 + M), respective-
1y (M=Machnumber), thereis also an effect of the tur-
bulent flow on the sound attenuation in the duct. Ina
previous study, ! we measured the attenuation of sound
in turbulent duct flow with both steady-state and pulsed
sound fields and attempted to explain the resuilts ob-
tained in terms of a quasistatic analysis of the problem,
Although such an analysis, at best, can be expected to
be meaningful only at low frequencies, the results ob-
tained were found to be in relatively good agreement
with the experiments. The corresponding propagation
conslants k_ and k, for upstream and downstream travel-
ing plane waves exp(- ik.x) and exp(ik,x)are

w 1 A
LSS veradiver
w 1 A
LA S vy add e A o
M R alnd
a3 (145 557):

where ¥ is the turbulent flow friction factor (defined by
ap=(pV?/2)L/d =static pressure drop in a length L,
V= mean flow velocity), M the mean flow Mach nunber
in the duct, d the ratio between the cross-sectional area
of the duct and its perimeter, and R the Reyrolds num-
ber. The subscript plus refers to downstream and the
subscript minus to upstream propagation.
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i1l. END LOSSES

In addition to the acoustic losses in the turbulent flow
within the duct, there are similar aeroacoustic interac-
tions and losses in the entrance and the exit flows. The
effect of these interactions can be determined from mea-~
surements of the acoustic pressure reflection coeffi-
cients at the ends of the duct. Such measurements have
been carried out with the standing-wave method by Me-
chel et al.*® and by Ronneberger'! for Mach numbers
up to 0. 35 and over a comparatively wide range of fre-
quencies. We have supplemented these measurements

using both pulse and standing-wave techniques, arranged
in such a way that the upstream and downstream reflec-

tion coefficients could be obtained simultaneously.

In the pulse measurements, harmonic wave traing
were emitted from a sound source mounted in the side
wall of the duct and the incident and reflected pulses
were measured by means of microphones arranged as
shown in Fig. 2. The use of two microphones made it
possible to make appropriate corrections for the atten-
uation of the pulses within the duct.

In the steady-state experiments the sound source was
mounted at the center of the duct and the sound-pressure
amplitude distribution in the duci was measured by
means of a probe microphone which could be moved
along the duct. Examples of the measured pressure
distribution in the duct, without flow and with flow, are
shown in Figs. 3 and 4. It is interesting to note that in
the presence of flow the sound field becomes asymmet-
rical with respect to the sound source location, with a
higher sound-pressure amplitude on the upstream side
of the source than on the downstream side. This is con-
sistent with a previous study of acoustic pulses emitted
in the upstream and downstream directions. !*

From the sound-pressure distribution the reflection
coefficients are determined as described in Refs. 11 and
13. The measured magnitudes of the reflection coeffi-
cients R, and R, at the downstream and upstream ends,
respectively, are shown in Figs. 5and 6. In the ab-
sence of flow, the magnitude of the reflection coefficient
is approximately unity at sufficiently low frequencies,
say, for ka<0.5 (k=w/c, c=sound speed, a=duct radi-
us). Our measurements were restricted to this frequen-
¢y range and to flow Mach numbers up to 0.5. As can
be seen from Fig. 5, the magnitude of the pressure re-
flection coefficient at the downstream end is approxi-
mately unity, or actually somewhat larger than unily in
the velocity range considered. At the upstream end, on
the other hand, the magnitude of R, is less than unity
and decreases monotonically with the flow velocity.

SOURCE
ma o my O A M
R AYAVAVRVAVAVA I IT )

FLOW

FIG. 2. Arrangcment for pulse measurement of the pressure
rcflection coefficients at the ends of the duct, Two microphones
are used as detectors of incident and reflected pulses on both
sides of the sound source to make it possible easily to correct
for the sound attenuation due to turbuleat flow In the duct,
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FIG. 3. Sound-pressure amplitude distribution in an open-
eoded duct without flow, The sound is generated by a source at
the center of the duct, Frequency 1400 Hz. Duct cross sec-
tion $ 10, x ¥ in,

These results are consistent with those reported by Me-
chel ef al.’® and Ronneberger. '

In contrast to the no-flow case, a pressure reflection
coefficient of unity in the presence of flow does not mean
that the acoustic end loss is zero. Rather, if we use the
expressions I, =(1+M)*(pt/pe) and 1_=(1 - 3D¥( p2/pc)
for the acoustic intensities in the downstream and up-
stream directions, the observed value of unity (approxi-
mately) of the magnitude of the pressure reflection co-
efficient R, at the downstream end corresponds to an
acoustic absorption coefficient a, =1 ~(/_/1,) (due to
sound-jet flow interaction) given by

o ('1?7"(:) . @

In the absence of flow, the absorption coefficient at the
end of the duct is due solely to sound radiation and can
be expressed as

46 40
(0+1)%+x" (1+0)°*

where (6 - ix)=(1 + RY/(1 - R) is the specific acoustic ra-
diation impedance of the open end (normalized to pe).

By comparison with Eq. 2 we note that the flow-in-
duced losses at the exit end of the pipe are equivalent to
a normalized specific acoustic terminration resistance
=M,

In the long-wavelength limit ka<« 1, the radiation re-
sistance® of an unflanged circular duct is 6= (ka)*/2, and
it follows that in this case, for even a modest flow in the
duct, AM>(ka)/2, the flow-induced end losses are far
greater than the radiation losses.

At the entrance of the duct the Mach number depen-
dence of the experimentally determined pressure reflec-

a=1-|R| ®

J. Acoust. Sog. Am., Vol. 58, No. 4, October 1975

-58- 790

tion coefficient (Fig. 6) can be expressed approximately
as

Ru(M) = Ry(0) %:—1‘“7’)', (M<0.5), @

where n=>1,33 for values of M less than 0.5. The
corresponding absorption coefficient is then

_ ymf 1 = M2
a;=1~ Rz(o)(m , (5)
which for small values of M reduces to
ap>1,33M, (M«1). (6)

By comparison with Eq. 2, which for M << 1 reduces to
a, =4 M, we note that the sound absorption at the exit is
about three times larger than at the inlet.

The flow-induced sound absorption at tl.2 exit end is
undoubtedly related to the interaction of-acoustic waves
with the jet discharge from the duct. At the inlet the
flow losses generally are smaller, and the same also
applies to the acoustic losses. Ata Mach number of
0.4 we see from Eq. 2 that the absorption coefficient at
the exit is about 0. 82, and it is not surprising, then,
that the acoustic resonances of the pipe will be practi-
cally “washed” out by the flow at higher flow speeds.

In the absence of flow and in a frequency range given
by *a<0. 5 the phase of the reflection coelficient can be
expressed approximately as ¢ =7 +2k0, where 8 is the
“end correction” of the duct. The theoretical value of
the end correction for an unflanged circular duct® is 8
~0.61a. Inthe presence of flow, we define the end
correction 0 by

O=%+ thk‘%, . : (Y]

The measured values of ¢ at the downstream end were
found to be almost independent of the flow velocity and
the corresponding value of & was found to be 8=>0.6a(l
~M%). Ananalysis of the data of Mechel et al. ' also
yielded results consistent with Eq. 7, though with a
somewhat larger value of the end correction, 8>0.66a
x(1 - M?). For the purpose of the present paper such a
difference in the end correction is not significant.

FIG. 4. Sound-pressure amplitusde distribution in the open-~
znded duct (see Fig. 3) when the flow Mach number is 0.2.
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FIG. 7. Mach number dependence of the {complex) cigenfre-
quency of the mth axial acoustic mode of an open-ended duct of
effect!ve length L’. (¢ is the friction factor, d the “hydraulic
diameter,” L the length of the pipe, ard M the Mach number,
Sce Eqs. 1 and 14,) The experimental basis for this result re-
fers to the Mach rumber range 0-0.5. Thercfore, at higher
Mach numbers the curve in this figure may be regavded as an
extrapolation,

In Fig. 7 we have illustrated in the complex w plane
the Mach number dependence of the eigenfrequencies
Wy =W, ~ fuy. The bandwidth of the response curve is
determined by (w;/w,), which increases monotonically
with M as shown in Fig. 8.

V. FLOW NOISE

In our response experiments it was important, of
course, to make certain that the effect of the flow noise
was insignificant compared with the source signal. Al-
though the main purpose of thic paper is a study of the
influence of {low on the eiger{requencies and acoustic
response of an open duct to a sound source, we shall in-

.SF L/l

/] 05 10

FIG. 8. Mach number dependence of the ratio between the
imaginary and real parts of the complex frequency of the mth
axial eigenmute of an open-ended duct,  Orly flow-induced
acoustic losses are accounted for, The experimental basis for
this result refovs to the Mach pumber vamse 0-0,%, There-
fore, at hiziwr Mach numbers the curve in this flgure may be
ragarded s an extrapolution,
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FIG. 9. Noise spectra produced by flow through a sharp-edged,
smooth circular duct 12 it long, with an faner diameter of }

fn. and a wall thickness of l!: fn. The entrance end is unflanged,
the exit end flanged. frequency scale 0-10 kllz, linear. Up-
per trace M =0.03; middle trace M > 0,27; lower trace M
~0,.55. The middle trace indicates pronounced excitation of

the axtal modes of the duct.

clude here some observations about the noise produced
by the flow.

Results of measurements of flow noise in ducts have
been reported’d which suggest that the total acoustic
power increases as V" with values of n between 5 and 6.
It has also been pointed out!? that in a finite frequency
band (octave band), the exponent u in the velocity depen-
dence of the acoustic power can vary considerably (typi-
cally between n=>5 and n=> 8) from one octave band to
another. It should be noted that unless special precau-
tions are taken, it is difficult to differentiate between
the flow noise within the duct and the noise generated in
the immediate vicinity of the entrance and the exit of the
duct. In many experiments these latter contributions
are dominant, with the high-frequency noise originating
mainly at the inlet and the low-frequency noise at the
exit.

In experiments of this kind we observed that at suffi-
ciently low flow speeds, corresponding approximately
to the Mach number range 0.1 <M<0.3, the axial modes
of the open-ended duct were excited by the flow, and that
in this range the power emitted from the duct, in both
the upstream and downstream directions, was propor-
tional to V" with n=4..

Examples of observed noise spectra produced by the
flow in a circular duct 12 in. long, with an inner diam-
eter of § in., are shown in Fig. 9. The microphone was
located on lhe axis ia front of the duct inlet. The axial
modes are clearly noticeable in the spectrum for M
~0.27. At higher flow speeds such an excitation does
not oceur, which is consistent with our analysis of the
flow dependence of the acoustic resonances of the duct.
In this flow regime the velocity cdependence of the acous-
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tic power emitted from the duct in tae downstream di-
rection approaches that of a subsonic jet (eighth-power
law) .. the flow speed is increased, whereas in the up-
stream direction the velocity dependence was found to
be markedly weaker, indicating that tiie bulk of the noise
was not caused by the interior flow of the duct.
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Fig. 1:

T

(a) Valve-pipe arrangement used for the experiments.

Duct cross-section, 3/4 inch x 1 3/4% inch
rectangular, is shown shaded in (b). The
rectangular cantilever beam used as a valve is
0.74% inch wide. The valve is aligned almost
'perfectly' with respect to the pipe as shown

in the side view in (b). The small end mass
shown shaded 1in (a) quenched the torsional
modes. Attempts to eliminate the torsional
modes in preference to bending modes by rounding
off the cross-section of the cantilever beam as
shown in (d) were only partially successful.
Cross-section 0.74 in x 1/8 inch without the

end mass is shown in (c¢), rounded cross-section
in (d). Rounded cross-section was not used for
the experiments reported here. Torsional modes
about the x axis are shown in (e). In (f), flow
through the pipe A is generated by a suction
device (steam ejector) controlled by a valve C.
Anechoic chamber B decouples acoustically the
flow device from the duct. The valve D is
bolted firmly to a milling machine bed E making
possible the alignment of the valve with respect
to the duct in x, y and z directions. The valve
shown in (g) has first natural bending mode

at 435 Hz and first natural torsional mode at
3250 Hz. Dimensions of the valve are in inches.
A cantilever beam with an end plate covering the
cross-section of the duct (h) is used for
preliminary studies of torsional modes.
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Fig. 2. The valve-pipe arrangement is modeled as a damped
spring-mass oscillator with mass We spring K and a mechanical
damping coefficient R. The unconditional stability region as
a function of the duct termination resistance 6, is also shown.
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Fig. 3. Determination of the stability-contours for modes
N=1,2,3,4 etc. All modes are stable below the solid

contours. Various modes correspond to different number of
wavelengths in the pipe.
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Fig. 4. Analytically determined neutrally stable region.
Mechanical Q of the valve = 20, duct termination resistance

8, = 0.1. System is stable if the operating point is below
tﬁe contour and unstable in the region above. The wavelength
in the fluid corresponding to the natural frequency of the

valve (without flow) is Am.
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Fig. 5. Stability contour for Q = 20, 6,_ = 0.4.
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6. Stability contour for Q = 5, et = 0.1.
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Fig. 7. Theoretically predicted angular frequency of
oscillation of the valve on the verge of instability as
a function of duct length | for Q = 20 and et = 0.1.
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Fig. 10a. Volume flow rate vs. the equilibrium separation
distance h between the end of the duct and the valve. Each
curve is for the pressure drop Ap = p,-p, maintained constant
and equal to the value (in millimeter® of mercury) shown on
the curve.
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Fig. 10b. Volume flow rate vs. the equilibrium separation
distance h between the end of the duct and the valve. Each
curve is for the pressure drop Ap = p.- maintained constant
and equal to the value (in millimeter% of mercury) shown on
the curve.
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Fig. 12a. Experimentally determined neutral stability curve
normalized with respect to the minimum value n_. At the
minimum point n/n_=1, measured Ap=6.25 mms of°mercury.

The flow rate thrSugh the pipe is maintained constant,

Duct Mach number M=0.05. Note that (estimated) n is less
than 1 for all points.
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Fig. 12b. Experimental neutral stability curve. At the
minimum point, measured Ap = 9.1 mms of mercury. M=0.07.
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Fig. 14, The screech frequency f as a function of the flow
Mach number M in the duct for a side branch resonator.
Cavity depth 4@ = 3 inches, width w = 3/4 inch, duct has

3’4 inch x 3/4 inch rectangular cross-section. [ L=7.6 cms,
AL=15.2 cms, OL=>27.3 cms, xL>60.7 cms.
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Fig.15. Nonlinear coupling between the cavity modes. Peaks

in the spectrum marked fl’ f3, f5 are resonances corresponding
to cavity depth being one quarter, three quarter and five
quarter wavelengths respectively. Ll = 27.3 cms, L2=121.6 cms,
M=0.21, w=3/4 inch, d=3 inches. Duct cross-section is

3/% inch x 3/4 inch. Coupling is evident as peaks f3+1,

f , etc; which are respectively the sum and difference

3-1
of f3 and fl'
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Fig. 16. Nonlinear coupling between the axial modes of the
duct and the cavity resonances. d = 3 inches, w = 3/4 inch,
duct cross-section = 3/4 inch x 3/4 inch, L=3 feet, M=0.21.
Cavity mode f_is at 3150 Hz, the "satellites" due to the
coupling are St £ + 180 Hz; 180 Hz being the axial duct
mode corresponding to wavelength = 2L.
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