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Abstract

We address the problem of deriving optimal inequalities for P(X E S), for a multivariate
random variable X that has a given collection of moments, and S is an arbitrary set. Our
goal in this paper is twofold: First, to present the beautiful interplay of probability and
optimization related to moment inequalities, from a modern, optimization based, perspec-
tive. Second, to understand the complexity of deriving tight moment inequalities, search for
efficient algorithms in a general framework, and, when possible, derive simple closed-form
bounds. For the univariate case we provide an optimal inequality for P(X E S) for a single
random variable X, when its first k moments are known, as a solution of a semidefinite op-
timization problem in k + 1 dimensions. WVe generalize to multivariate settings the classical
Markov and Chebyshev inequalities, when moments up to second order are known, and the
set S is convex. We finally provide a sharp characterization of the complexity of finding
optimal bounds, i.e., a polynomial time algorithm when moments up to second order are
known and the domain of X is R', and a NP-hardness proof when moments of third or
higher order are given, or if moments of second order are given and the domain of X is R+.
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1 Introduction.

The problem of deriving bounds on the probability that a certain random variable belongs

in a set, given information on some of the moments of this random variable, has a very rich

and interesting history, which is very much connected with the development of probability

theory in the twentieth century. The inequalities due to Markov, Chebyshev and Chernoff

are some of the classical and widely used results of modern probability theory. Natural

questions, however, that arise are:

1. Are such bounds "best possible", i.e., do there exist distributions that match them?

2. Can such bounds be generalized in multivariate settings, and in what circumstances

can they be explicitly and/or algorithmically computed ?

3. Is there a general theory based on optimization methods to address moment-inequality

problems in probability theory, and how can this be developed?

In order to answer these questions we first define the notion of a feasible moment se-

quence.

Definition 1 A sequence : (k,... k,)kl+...+kn<k is a feasible (n, k, Q)-moment vector (or

sequence), if there is a random variable X = (X 1,...,X,) with domain Q C R n, whose

moments are given by a, that is Okl,...k = E[Xk'... Xk-], V 1 + + kn < k . We say

that any such random variable X has a &-feasible distribution and denote this as X - .

WVe denote by M = M (n, k, Q2) the set of feasible (n, k, Q)-moment vectors. For the

univariate case (n = 1), the problem of deciding if a = (M 1, M 2 ,..., Mk) is a feasible

(1, k, Q)-moment vector is the classical moment problem. This problem has been com-

pletely characterized by necessary and sufficient conditions by Stieltjes [53], [54] in 1894-95,

who adopts the "moment" terminology from mechanics (see also Karlin and Shapley [27],

Akhiezer [1], Siu, Sengupta & Lind [49] and Kemperman [29]). For univariate, nonnegative

random variables ( = R+), these conditions can be expressed by the semidefiniteness of
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the following matrices:

1 M1 ... l¥,

MIVn I M2+I ... 2lli2n

I l/12 ... Mn+ 

M 2 1I3 ... 1n+2R2n+l M =M ... 0.

M/n+1 Mn+2 ... V/2n+l

For univariate random variables with Q = R, the necessary and sufficient condition given

by Hamburger [18], [19] in 1920-21 for a vector = (/I 1,MNI2, ...,Mk) to be a feasible

(1, k, R)-moment sequence is that R2 [Lk >- 0. In the multivariate case, the formulation of

the problem can be traced back to Haviland [20], [21] in 1935-36 (see also Godwin [16]). To

date, the sufficiency part of the moment problem has not been completely resolved in the

multivariate case.

Suppose that is a feasible moment sequence and X has a &-feasible distribution. We

now define the central problem that this paper addresses:

The (n, k, Q)-Bound Problem.

Given a sequence & of up to kth order moments

mkf2 kn = E[X1XX2 . . X] k + + C + ki < k,

of a multivariate random variable X = (X1, X2, ... , X) on C R, find the "best possible"

or "tight" upper and lower bounds on P(X E S), for arbitrary events S C Q.

The term "best possible" or "tight" upper (and by analogy lower) bound above is defined

as follows.

Definition 2 We say that ca is a tight upper bound on P(X E S) if:
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(a) it is an upper bound, i.e., P(X E S) < Ca for all random variables X , a;

(b) it cannot be improved, i.e.,.for any e > 0 there is a random variable Xe for which

P(X S) > a - E.

We will denote such a tight upper bound by sup P(X E S). Note that a bound can be

tight without necessarily being exactly achievable (i.e. there is a random variable XY ' C

for which P(X E S) = a), but only asymptotically.

The well known inequalities due to Markov, Chebyshev and Chernoff, which are widely

used if we know the first moment, the first two moments, and all moments (i.e., the gener-

ating function) of a random variable, respectively, are feasible but not necessarily optimal

solutions to the (n, k, Q)-bound problem, i.e., they are not necessarily tight bounds.

Literature and Historical Perspective.

The history of the developments in the area of (n, k, Q)-bound problems, sometimes re-

ferred to as Chebyshev type inequalities, can be traced back to the work of Gauss, Cauchy,

Chebyshev, Markov etc, and has witnessed an unexpected evolution. The problem of finding

bounds on univariate distributions under moment constraints, has actually been proposed

and formulated without proof initially by Chebychev [9] in 1874 and resolved ten years later

by his student Markov [33] in his PhD thesis, using continued fractions techniques. In the

1950s and 1960s there has been a revival of the interest in this area, that resulted in a large

literature on the topic of generalized Chebyshev inequalities. Surveys of early literature can

be found in Shohat and Tamarkin [50] and Godwin [15], [16].

The idea that optimization methods and duality theory can be used to address moment-

type inequalities in probability first appeared in 1960, and is due independently and simul-

taneously to Isii [22] and Karlin (lecture notes at Stanford, see [28], p.472), who show that

certain types of Chebyshev inequalities for univariate random variables are sharp, via strong

duality results. Isii [23] extends these results for multivariate random variables. Marshall

and Olkin in 1961 [37] give a game theoretic proof of the sharpness of Chebyshev type

inequalities with first and second order moment constraints, as well as with trigonometric

moments. The same authors [35], [36] were the first to actually compute tight, explicit

bounds on probabilities given first and second order moments (the (n, 2, Q) problem in our

context), thus generalizing Chebyshev's inequality to a multivariate setting. A detailed,
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unified account of the evolution of Chebyshev Systems is given by Karlin and Studden [28]

in their 1966 monograph (see in particular chapters 12 and 13, that deal with (n, k, f2)-type

bounds).

Not for the first time in its history, "the problem of moments lay dormant for more than

20 years." l It revives briefly in the 1980s, with the book on Probability Inequalities and

Multivariate Distributions of Y.L. Tong [55] in 1980, who also publishes a monograph on

probability inequalities in 1984. The latter notably contains, among others, a generalization

of Markov's inequality for multivariate tails, due to Marshall [34], and an application of

moment inequalities for computing error bounds in stochastic programming, by Birge and

Wets [3]. A volume on Moments in Mathematics edited by Landau in 1987 includes a

background survey by the same author [32], as well as relevant papers of Kemperman [30]

and Diaconis [11]. Thirty two years after Isii's [23] original multivariate proof, Smith [52]

rederived the same duality results and proposed new interesting applications in decision

analysis, dynamic programming, statistics and finance.

Another line of research loosely connected to our research, is the work of Pitowski [41],

[42] who makes use of duality results to prove general theorems in probability (weak and

strong laws of large numbers, approximate central limit, the Linial-Nissan theorem etc.).

The author uses different linear programming formulations to define and study geometric

and complexity properties of correlation polytopes, which arise naturally in probability and

logic. A similar type of problem is addressed by Bukscir [8] and Prekopa [46], who study

probability bounds on finite unions of events by means of specialized boolean tree structures.

Prekopa uses a different mathematical programming approach to study probability in-

equalities given multivariate moments for discrete distributions [43] and programming with

probabilistic constraints [44], [45] for the case of discrete distributions. He derives upper and

lower bounds on moment constrained problems when the objective function obeys higher

order convexity conditions, and presents applications to Bonferroni inequalities. He also

investigates applications of moment-constrained problems to stochastic programming [47].

In fact, there has been a significant amount of work related to moment type problems in the

context of stochastic programming with incomplete distributional information. Important

contributions include Birge and Wets [3], [4], [5], and Dupacov& and Prekopa [12]. The

interested reader is referred also to Cipra [10], Kall [24], [25], [26], Ermoliev, Gaivoronski

'Shohat and Tamarkin [50], p.10.
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and Nedeva [13].

For a broader investigation of the optimization framework underlying this type of prob-

lems, we refer the interested reader to Borwein and Lewis [6], [7] who provide an in depth

analysis of partially finite convex programming.

Despite its long and scattered history, the common belief among researchers is still that

"the theory [of moment problems] is not up to the demands of applications" (Diaconis [11],

p. 129). The same author suggests that one of the reasons could be the high complexity of

the problem: "numerical determination ... is feasible for a small number of moments, but

appears to be quite difficult in general cases". Another reason is identified by Kemperman

([30], p.20) as being the lack of a general algorithmic approach:

"...a deep study of algorithms has been rare so far in the theory of moments,

except for certain very specific practical applications, for instance, to crystal-

lography, chemistry and tomography. No doubt, there is a considerable need for

developing reasonably good numerical procedures for handling the great variety

of moment problems which do arise in pure and applied mathematics and in the

sciences in general...".

In an attempt to address Kemperman's criticism, Smith [52] actually introduced a com-

putational procedure for the (n, k, R=)-bound problem, although he does not refer to it

in this way. Unfortunately, the procedure is far from an actual algorithm, as there is no

proof of convergence, and no investigation (theoretical or experimental) of its efficiency. It

is fair to say that understanding of the algorithmic aspects and of the complexity of the

(n, k, Q)-bound problem is still lacking.

Yet a stronger criticism brought by Smith is the lack of simple, closed form solutions for

the (n, k, Rn)-bound problem: "the bounds given- by Chebychev's inequalities ... are quite

loose. The more general versions are rarely used because of the lack of simple closed-form

expressions for the bounds" ([52], p.808).

Goals and Contributions.

The previous discussion motivates our desire in the present paper to evaluate the complex-

ity of the (n, k, Q)-bound problem, search for efficient algorithms in a general framework,

and, when possible, derive simple closed-form tight bounds. Thus, our goal in this paper is
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twofold: First, to present the beautiful interplay of probability and optimization related to

moment inequalities that is present in some of the early literature, but has been strangely

forgotten in the recent literature and te'xtbooks, from a modern, optimization based per-

spective. In this attempt, we discover new proofs of old results, as well as new results.

Second, to understand the complexity of deriving tight moment inequalities, search for ef-

ficient algorithms in a general framework, and, when possible, derive simple closed-form

bounds. In particular, we provide a rather sharp characterization of which (n, k, Q)-bound

problems that are efficiently solvable and which are NP-hard.

More concretely, the contributions of the present paper are as follows:

1. Ve provide a survey of the literature related to moment inequalities in this century,

and derive new proofs of old results and new results from a modern, optimization

based perspective.

2. WVe characterize the complexity of the (n, k, Q)-bound problem. /Ve show that the

(n, 1, Q), (n, 2, Rn)-bound problems can be solved in polynomial time, whereas the

(n, 2, Rn)-bound problem is NP-hard, as well as all (n,k, Rn)-bound problems for

k > 3. The development of our algorithms is based on duality, separation and convex

optimization techniques.

3. If the set S in the definition of the (n, k, Rn)-bound problem for k = 1, 2 is convex,

we prove best possible bounds for P(X E S) explicitly as a solution of n (for k = 1),

and a single (for k = 2) convex optimization problems. These bounds represent

natural extensions and improvements of the Markov2 (k = 1) and Chebyshev 3 (k = 2)

inequalities in multivariate settings. They retain the simplicity and attractiveness of

the univariate case, as they only use the mean and covariance matrix of a multivariate

random variable. We also provide explicit constructions of distributions that achieve

the bounds. Our derivation of the tight bounds uses convex optimization methods,

and Lagrangean and Gauge duality.

4. We examine applications of the derived bounds to the law of large numbers by showing

a necessary and sufficient condition for the law of large numbers to hold for correlated

random variables. For example, we show as an application of our constructions, that

2 The bound for k = 1 extends Marshall's [34] generalization of Markov's inequality for multivariate tails.
3This is equivalent to the results of Marshal and Olkin [35], very little known in the scientific community.
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the central limit theorem fails to hold if the random variables involved are uncorrelated

instead of independent.

5. WVe investigate in detail the univariate case, i.e., the (1, k, Q)-bound problem for Q =

R, R+. For general k, we show that optimal bounds can be computed efficiently by

solving a single semidefinite optimization problem. We also derive optimal bounds for

tail probability events in closed form when up to three moments are given. For k = 1

we recover the Markov inequality, which also shows that the Markov inequality is best

possible. For k = 2 we recover a strict improvement of the Chebyshev inequality that

retains the simplicity of the bound. This inequality dates back at least to Uspensky's

book ([56], p.198) from 1937, who proposes it as an exercise. Despite its simplicity,

the bound has been strangely ignored in the recent literature and textbooks. For

k = 3 we derive new closed form tight bounds.

Structure.

The structure of the paper is as follows: In Section 2, we formulate the (n, k, Q)-bound

problem as an optimization problem and present duality results that are used throughout

the paper. In Section 3, we solve for the case when the set S is convex (a) the (n, 1, R_)-

bound problem, as n convex optimization problems, and (b) the (n, 2, Rn)-bound problem

as a single convex optimization problem. We construct extremal distributions that achieve

these bounds either exactly or asymptotically. We also provide a polynomial time algorithm

to solve the (n, 1, Q), (n, 2, Rn)-bound problems for the case when the set S is the union of

disjoint convex sets. In Section 4, we consider several applications of the bounds derived

in the previous section: we prove necessary and sufficient conditions for the Law of Large

Numbers to hold for correlated random variables, we discuss the validity of the Central

Limit Theorem, and we present a multivariate generalization of Markov's and Chebyshev's

inequality. In Section 5, we restrict our attention to the univariate case, and we show that

optimal bounds can be computed efficiently by solving a single semidefinite optimization

problem. In special cases, we derive closed form tight bounds on tail probabilities. We

compare these bounds with known inequalities such as the Markov, and the Chebyshev

bounds and investigate their tightness. Finally, we derive closed form tail probability bounds

when higher order moments are known. In Section 6, we prove that the (n, 2, R_)-bound

problem and the (n, k, Rn)-bound problem for k > 3 are NP-hard. The last section contains
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some concluding remarks.

2 Primal and Dual Formulations of The (n, k, £Q)-Bound Prob-

lem.

In this section, we formulate the (n, k, Q)-upper bound problem as an optimization problem,

where Q2 is the domain of the random variables we consider. We examine the corresponding

dual problem and present weak and strong duality results that permit us to develop algo-

rithms for the problem. The same approach and results apply to the (n, k, Q)-lower bound

problem.

The (n, k, )-upper bound problem can be formulated as the following optimization

problem (P):

(P) Zp = maximize j f(z)di

subject to z z f(z)d = k1...k, V k + + k < k

f(Z) = f(zl,., z,n) O, V = (zl,...,zn) E .

Notice that if Problem (P) is feasible, then a is a feasible moment sequence, and any

feasible distribution f( ) is a v-feasible distribution. The feasibility problem is exactly the

classical multidimensional moment problem.

In the spirit of linear programming duality theory, we associate a dual variable Uk,...kn

with each equality constraint of the primal. WVe can identify the vector of dual variables

with a k-degree, n-variate dual polynomial:

ki kn
9(Z1, t 2n) = X Ukl..kn *" · * X 

kl +...+kn <k

The dual objective translates to finding the smallest value of:

Ukl ... knkl ... = Uk ... kE[Xkl . Xnk] = E[g(X)],

where the expected value is taken over any a-feasible distribution. In this framework, the

Dual Problem (D) corresponding to Problem (P) can be written as:
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(D) ZD = minimize E[g(X)]

subject to g(x) k-degree, n-variate polynomial,

g(x) > Xs(x), Vx E Q,

where xs(x) is the indicator function of the set S, defined by:

1, if x E S,
xs(x)= 0, otherwise.

Notice that in general the optimum may not be achievable. Whenever the primal opti-

mum is achieved, we call the corresponding distribution an extremal distribution. We

next establish weak duality.

Theorem 1 (Weak duality) Zp < ZD.

Proof: Let f() be a primal optimal solution and let g( ) be any dual feasible solution.

Then:

Zp = f()ds = xs()f ( )d _ < g(z)f ()d2 = E[g(X)],

and hence Zp < inf E[g(X)] = ZD. [
- g(.)>xs(.)

Theorem 1 indicates that by solving the Dual Problem (D) we obtain an upper bound

on the primal objective and hence on the probability we are trying to bound. Under some

mild restrictions on the moment vector a, the dual bound turns out to be tight. This strong

duality result follows from a univariate result due to Karlin and Isii in 1960 (see Karlin and

Studden [28], p.472), and generalized by Isii in 1963 [23] for the multivariate case. The

following theorem holds for arbitrary distributions and is a consequence of their work:

Theorem 2 (Strong Duality and Complementary Slackness)

If the moment vector k is an interior point of the set .M of feasible moment vectors, then

the following results hold:

1. Strong Duality: Zp = ZD.
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2. Complementary Slackness: If the dual is bounded, there exists a dual optimal solution

gopt() and a discrete extremal distribution concentrated on points x, where gopt(x) =

Xs(z), that achieves the bound.

It can also be shown that if the dual is unbounded, then the primal is infeasible, i.e., the

multidimensional moment problem is infeasible. Moreover, if C is a boundary point of NI,

then it can be shown that the a-feasible distributions are concentrated on a subset Q0 of Q,

and strong duality holds provided we relax the dual to 20 (see Isii [23], p.190 or Smith [52],

p. 824). These authors also prove that it is equivalent to optimize only over distributions

that are concentrated on m + 2 points, where m is the number of moment constraints (in

our case m = n(n+l)). Little is known, however, about the uniqueness of such extremal

distributions. In the univariate case, Isii [22] proves that if is a boundary point of ,

then exactly one -feasible distribution exists.

If strong duality holds, then by optimizing over Problem (D) we obtain a tight bound

on P(X E S). On the other hand, solving Problem (D) is equivalent to solving the corre-

sponding separation problem, under certain technical conditions (see Gr6tschel, Lovgsz and

Schrijver [17]). In the next section, we show that the separation problem is polynomially

solvable for the cases (n, 1, Q) and (n, 2, Rn), and in Section 6, we show that it is NP-hard

for the cases (n, 2, R) and (n, k, Rn) for k > 3.

3 Efficient Algorithms for The (n, 1, Q), (n, 2, Rn)-Bound Prob-

lems.

In this section, we address the (n, 1, £Q), and (n, 2, Rn)-bound problems. We present tight

bounds as solutions to n convex optimization problems for the (n, 1, Rn)-bound problems,

and as a solution to a single convex optimization problem for the (n, 2, R=)-bound problem

for the case when the event S is a convex set. We present a polynomial time algorithm for

more general sets.

3.1 The (n, , R_)-Bound Problem for Convex Sets.

In this case, we are given a vector IM that represents the vector of means of a random variable

X defined in R n+, and we would like to find tight bounds on P(X E S) for a convex set S.

Marshall [34] derived a tight bound for the case that S = {x > (1 + J5)AiVi, i = 1,..., n}

(see Theorem 13 below). For general convex sets S, we believe the following result is new.
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Theorem 3 The tight (n, 1, R)-upper bound for an arbitrary convex event S is given by:

sup P(X ES)--min (1, max
X, =l ...,n inf

xE5

where Si = S (nj {x E RI lVIixj - /jzx < 0o).

Proof: Problem (D) can be written as follows for this case:

ZD = minimize a'MI + b

subject to a'x+ b > 1, Vx E

a'x + b > O, Vx E

If the optimal solution (ao, bo) satisfies min ax + bo = ce > 1, then
xES

the solution

has value ZD/c < ZD. Therefore, inf a'x + b = 1. By a similar argument we
xES

bo < 1. Moreover, since a'x + b > O, Vx E R, a > 0, and b > O0. We thus obtain:

ZD = minimize a'M + b

subject to inf a'x = 1- b.
xES

a > 0, O < b < 1.

Without loss of generality we let a = v, where A is a nonnegative scalar, and v is a

nonnegative vector with Ilvll = 1. Thus, we obtain:

ZD = minimize (1 - b) f ' b
inf v'x
xES

subject to v > 0, Ilvll =1, o < b < 1.

Thus,

ZD = min (1, min
'lvll=l,v>O

= min (1, min
i lVI 1=1 ,v>o

v'M 
inf v'x
2ES

v'M
sup v

(2)= min 1,sup min
IEs IUIl=l,v>o v'xm 

11
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= min 1,sup min 
'ES i=l,...,n Xi

min (1, max i 
=l...,In inf xES

xVESi 

where Si = S n (nj=i{x E R+I iVlix - M'jxi < O}) is a convex set. Note that in Eq. (2)

we exchanged the order of min and sup (see Rockafellar [48], p.

min is attained at v = e, where
II-v=1,v>o vx I

M = min
Xj i=l,.,n Xi

In order to understand Eq. (4), we let ¢(x) = min -. I
i=1,...,n XI

E {x E R'I Mixj - Mjxi < O}. Then, we have

sup (x) = max sup O(x) = max sup - =
XES i=l,...,n xESi i=l,...,n xES Xi

382). In Eq. (3), we used

Note that +(x) =
Mi
-, when
xi

max
i=l,...,n inf Xi

xESi

[

3.2 Extremal Distributions for The (n, 1, R)-Bound Problem.

In this section, we construct a distribution that achieves Bound (1). We will say that the

Bound (1) is achievable, when there exists an x* E S such that

min (1 Mgfi
,max -
i=1,...,n inf xi

ZESi

= -i < 1.
X.T:

In particular, the bound is achievable when the set S is closed and M S.

Theorem 4 (a) If iMV E S or if the Bound (1) is achievable, then there is an extremal

distribution that exactly achieves it.

(b) Otherwise, there is a sequence of distributions defined on R+ with mean M, that asymp-

totically achieve it.

Proof: (a) If M E S, then the extremal distribution is simply P(X = M) = 1. Now

suppose that M ~ S and the Bound (1) is achievable. We assume without loss of generality

12
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that the bound equals -- < 1, and it is achieved at x* E S. Therefore, l =

We consider the following random variable X defined on R:

Ixa}- ir

with probability

with probability

P=
X 1

l-p=I Ml .
X1

Note that E[X] = M, and vi= - i- -iVlz > Oforall i =1,...,n,since i = min
X*-- Ml X i=1 ... In 

Moreover, v S, or else by the convexity of S, we have that M = pz* + (1 - p)v E S, a

contradiction. Therefore,

P(X E S) = P(X = *) = 

(b) If NIM S and the Bound (1) is not achievable, then we construct a sequence of non-

negative distributions with mean M that approach it. Suppose without loss of generality

that max ii equals V, for x* E S1
i=l, ..., inf i xl

Consider a sequence xk E Si,

(the closure of Si), so Bound (1) is equal to

k - + x*, so that lim min -= , and a
k-+oo i=l,...,n X X

sequence Pk, 0 < Pk < min

distributions:

1,- -~ so that
xl

Pk -+ min (1, l . Consider the sequence of
xi/

with probability

k = M -pkxk
1 - Pk

with probability

Clearly, the random variables Xk are nonnegative with mean E[Xk] = M. Also vk S

or else M E S, so P(Xk E S) = P(Xk = k) = pk -+ min(1, Ml. This shows that the

sequence of nonnegative, distributions Xk with mean MI asymptotically achieve the Bound

.(1).

3.3 The (n, 2,Rn)-Bound Problem for Convex Sets.

We first rewrite the (n, 2, Rn)-bound problem in a more convenient form. Rather than

assuming that E[X] and E[XX] are known, we assume equivalently that the vector M =

13

min
=l,...,n XiI

min (1, Ml.

kX 

Xik =

Pk,

1 - Pk-



E[X] and the covariance matrix r = E[(X - M) (X - M1)'] are known. Given a set S C RT ,

we find tight upper bounds, denoted by sup P(X E S): on the probability P(X E S) for
XY(M,r)

all multivariate random variables X defined on R' with mean I = E[X] and covariance

matrix r = E[(X - M)(X - M)'].

First, notice that a necessary and sufficient condition for the existence of such a random

variable X, is that the covariance matrix r is symmetric and positive semidefinite. Indeed,

given X, for an arbitrary vector a we have:

0 < E[(a'(X - M)) 2 ] = a'E[(X - M)(X - M)']a = a'ra,

so r must be positive semidefinite. Conversely, given a symmetric semidefinite matrix r

and a mean vector M, we can define a multivariate normal distribution with mean M and

covariance r. Moreover, notice that r is positive definite if and only if the components of

X - /I are linearly independent. Indeed, the only way that 0 = a'ra = E[(a'(X- M)) 2]

for a nonzero vector a is that a'(X - M) = 0.

We assume that r has full rank and is positive definite. This does not reduce the

generality of the problem, it just eliminates redundant constraints, and thereby insures

that Theorem 2 holds. Indeed, the tightness of the bound is guaranteed by Theorem 2

whenever the moment vector is interior to Ad. If the moment vector is on the boundary, it

means that the covariance matrix of X is not of full rank, implying that the components of

X are linearly dependent. By eliminating the dependent components, we reduce without

loss of generality the problem to one of smaller dimension for which strong duality holds.

Hence, the primal and the dual problems (P) and (D) satisfy Zp = ZD. Our main result

in this section is as follows.

Theorem 5 The tight (n, 2, Rn)-upper bound for an arbitrary convex event S is given by:

sup P(X E S) = (5)
x-(M,r) 1 +d2 

where d2 = inf (x - MI)'r - (x - M), is the squared distance from M to the set S, under
xES

the norm induced by the matrix r-'.

An equivalent formulation is actually due to Marshall and Olkin [35] who prove the
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following sharp bound (in our notation):

sup P(X ES) = inf (6)
X(o,F) aEs 1 + (a'Fa)- (

where S = (a E Rnl a'x > 1, Vx E S}, is the so-called "antipolar" of S (a.k.a "blocker", or

"upper-dual"). The above result is with zero mean, but can be easily extended for nonzero

mean by a simple transformation (see the first part of the proof of Theorem 6). Given that

(a'ra) (x'r-x) > (a'x)2 > 1 Vx E S, a E S', one can easily see that our bound is at least as

tight as theirs. Equality follows from nonlinear Gauge duality principles (see Freund [14]).

We present a new proof of this result in two parts: First, we formulate a restricted

dual problem, and prove the restriction to be exact whenever the set S is convex. Second,

we calculate the optimal value of the restricted problem and show that it is equal to the

expression given in Eq. (5). Before we proceed to formulate the restricted problem, we

need the following preliminary result, which holds regardless of the convexity assumption

on the set S:

Lemma 1 There exists an optimal dual solution for the (n, 2, R) -bound problem of the

form g(x) = II A'(x - xo) 112, for some square matrix A and vector xo.

Proof: Let g(x) = x'Hz +c'x +d be an optimal solution to Problem (D). Then, H must be

positive semidefinite, since g(x) >, 0 Vx E R', and we can assume without loss of generality

that H is symmetric. This is equivalent to the existence of a square matrix A such that

H = AA'. Notice that whenever x'Hx = 0, or equivalently A'x = 0, we must have c'x = 0

by the nonnegativity of g(x). This means that c is spanned by the columns of A, so we can

write c = 2Ab, and g(x) = x'AA'x + 2b'A'x + d = [I A'x + b 112 + d - Il b 112. Since we seek

to minimize E[g(X)], we should make the constant term as small as possible, yet keeping

g(x) nonnegative. Thus 1 b 112 -d = min 11 A'x + b 112= 11 A'zo + b 112, where o satisfies

AA'zo + Ab = 0, from the first order conditions. It follows that

g(x) = llA'x + b112 - 11 A'xo + bll2= II A'(x - Xo) 112

[
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Lemma 1 shows that the Dual Problem (D) is equivalent to:

ZD = minimize E[ 11 A'(X - b) I12]

subject to inf 11 A'(x - b) 112= . (7)
zES

The reason we wrote equality in Eq. (7) above is that if A, b are optimal solutions, and

inf 11 A'(x - b) 112= a2 > 1, then by letting A' = A/a, we can decrease the objective value
ES

further, thus contradicting the optimality of (A, b).

We formulate the following restricted dual problem:

(RD) ZRD = minimize E[(a'(X - b)) 2]

subject to inf a'(x - b) = 1.
xES

Clearly ZD < ZRD, since for any feasible solution (a, b) to (RD) we have a corresponding

feasible solution of (D) with the same objective value, namely: (A = (a, 0, ... ,0) , b). We

next show that if S is a convex set, this restriction is actually exact, thereby reducing the

dual problem to one which is easier to solve.

Lemma 2 If S is a convex set, then ZD = ZRD.

Proof: We only need to show ZD > ZRD.

Let (A, b) be an optimal solution to Problem (7), and let inf I1 A'(x - b) 112= 11 A'(xo -
xES

b) 112= 1, for some minimizer x0o E S. If the optimum value is not attained, we can consider

a sequence in S that achieves it. By the Cauchy-Schwartz inequality we have:

11 A'(x - b) 112= 11 A'(x - b) 112 11 A'(xo - b) 112> ((o - b)'AA'(x - b)) 2 .

Let a = AA'(xo - b), so ((xo - b)'AA'(x - b))2 = (a'(x - b)) 2 < II A'(x - b) 112. We

next show that (a, b) is feasible for (RD). Indeed, taking expectations, we obtain that

ZRD < E[(a'(X - b))2] < E[ II A'(X - b) 112] = ZD.

WVe now prove that (a, b) is feasible for (RD), as desired. Notice that a'(xo - b) = 1; it

remains to show that a'(x - b) > 1, for all other x E S. We have that

inf A'(x - b) 112= 11 A'(xo - b) 112= 1.
xES
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We rewrite this as inf lv 12= 1 vo 112= 1, where
vESA,b

SA,b = ( A'(x - b) I x E S), 'v = A'(x - b), o = A'(xo - b) E SA,b.

Clearly SA,b is a convex set, since it is obtained from the convex set S by a linear trans-

formation. It is well known (see Kinderlehrer and Stampacchia [31]) that for every convex

function F : R - R, and convex set K, zo is an optimal solution to the problem inf F(z)
zEK

if and only if

VF(zo)'(z - zo) > 0, Vz E . (8)

1 l
Applying this result for F(z) = -zz, K = SA,b, and zo = vo, we obtain that v (v- Vo) > 0,2 a
that is vv > vvo = 1, for all v E SA,b. But notice that vv = (o - b)'AA'(x - b). This

shows that a'(x - b) = (o - b)'AA'(x - b) > 1 for all x E S, so (a, b) is feasible for (RD). E

Proof of Theorem 5:

The previous two lemmas show that Problem (D) is equivalent to the following restricted

problem:

ZD = minimize E[(a'(X - M - c))2 ] = min a'ra + (a'c)2

subject to inf a'(x - M - c) = 1,
xES

where we substituted b = c+M in the Formulation (RD). Substituting a'c = inf a'(x- M) - 1
xES

back into the objective, the problem can be further rewritten as:

ZD = min a'Ta + (1 -a'(x, -M)) 2 ,

where xa is an optimizer of inf a'(x - I) (again if the optimum is not attained we can
xES

consider a sequence in S converging to za).

From the Cauchy-Schwartz inequality we have

(a'(z - M))2 < Il12 all2lr- (X - M)112 .
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Therefore,

inf a'(x - M) < i-nff la'(x M)l < IIa'r inf ilr-(x - M)s I.
xES xES -ES

Let d = infES Ir- (x - M)jl. Thus,

ZD = min (a'ra+[l-inf (a'(-M))]2)
a X:ES

min (a'a
a

min aa,
a

1+ [1 - (aa)d]2)
[I - (ra) d 

1if a'Pa < -- d2,

if a'a > 
-d2 

1
If a'Pa >d, then ZD >

1 . 1
Otherwise, let ca = (a'ra) . Then,

+ [1- inf (a'(x -
xES

M))12) > min (2 + (1
Ct

Optimizing over the right hand side we obtain that r* = d/(1 + d2) <
1

value is 1 + d2 Thus, in this case,
1 + d2 '

min (a'Pa + [1 - min(a'(x -
xES

M))]2)

1
d' and the optimal

1

>- +d 2 -

1 1
Since - > + d2 we have in all cases:

> f1+ d2'

ZD> 1
1 + d2 '

To prove equality, let x* be an optimizer of inf llr-(x - M)I (again if the optimum
XES

is not attained, we consider a sequence xk E S converging to x*). Applying (8) with

F(z) = (z - M)r-1 (z - M), zo = Zx, and K = S, and since S is convex, we have that for

all x E S:

(x* - m)'r - ( - x*) > o,

18
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and therefore,

'ao(x - M) > a(xX - M),

1
with ao = OS-(x* - M ), and = d. Hence,

1+ d2

inf a(x - M) = a(x* - VM) = d2,
XES

and therefore,

(aao + [1 - inf (a(x - M))] 2 )
- 1 + d2

0 x~~ES 1 + d2'

1
Therefore, ZD = 1 + d2

1 + d2

3.4 Extremal Distributions for The (n, 2, Rn)-Bound Problem..

In this section, we construct an extremal distribution of a random variable X - (M, F), so

that P(X E S) = 1/(1 + d2) with d2 = infes( - M)'T-1 (X - M). We will say that the

bound d is achievable, when there exists an x* E S such that d2 = (* - M)'-l (x* - M).

In particular, d is achievable if the set S is closed. A similar construction is due to Marshall

and Olkin [35].

Theorem 6 (a) If M S and if d2 = inf (x - M)Tr-l(X - M) is achievable, then there is
zES

an extremal distribution that exactly achieves the Bound (5).

(b) Otherwise, if MI E S or if d2 is not achievable, then there is a sequence of (M, F)-feasible

distributions that asymptotically approach the Bound (5).

Proof:

(a) Suppose that the bound d2 is achievable and M ~ S. We show how to construct a
1

random variable X (, F) that achieves the bound: P(X E S) = 1+ d2 ' Note that

2 = inf I r - M)112 = inf lY1l 2,
aES yET

where T = {y y = r-2( - M), x E S}. Since we assumed that the bound is achievable,

there exists a vector vo E T, such that d2 = lvo0112. Since M S, it follows 0 ¢ T, and
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therefore, vo f 0.

We first construct a discrete random variable Y - (0, I), that has the property that

P(Y T) > 1d2 By letting X-= 2Y Mi iL, we obtain a discrete distribution X (1M/f, F)

that satisfies:

P(X E S)= P(Y E T) >
l+ d2'

The distribution of Y is as follows:

1
vo, with probability po 1+ d2 '

vi, with probability pi, i = 1, ... , n.

WVe next show how the vectors vi, and the probabilities Pi, i = 1,..., n are selected.

Let

1
Vo=1 [ 1+ d2 (vo vfo).

The matrix Vo is positive definite. Indeed, using the Cauchy-Schwartz inequality, we obtain:

~I Vo1 2 (v'vo)2 1 V)2=(V/V)2 

- 1-d2 \d 2 1 ) d2v' Vo v = 1 ll + d2 ('~V°-)2 -i1~otl (+d%=)2 d21 m+ d) >O ,

and equality holds in both inequalities above if and only if v'vo = 0, and (since vo £ 0)

v'v = 0, that is v = 0. Since V is positive definite we can decompose it as Vo = Q · Q',

where Q is a nonsingular matrix. Notice that, by possibly multiplying it by an orthonormal

rotation matrix, we can choose Q in such a way that Q-1vo < 0.

We select the vector of probabilities p = (P1, . ., p,l) as follows:

1
X = (7'- · ' A)_ =- + Q-12O > 0.P + d2

Note that

e'p = (1d 2 )2 1 I(QQ')-1+v 1+d2-2) (1 2 ' %(QQ ) Vo = (1 + d) 2 'v ( + Voo V )O 1 + d-
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since vvo0 v= 12o 112= d and (QQ')- = Vol = I + v0v. Therefore,

L- e 1 1d 2

i=0 p o= 1 -d 2 l+d2 1i=O

Let V denote the square n x n matrix with rows v. We select the matrix V as follows:

V= IQ',

where I,/ is a diagonal matrix, whose ith diagonal entry is vp, i = 1,..., n. Note that

( 1 1 1
Vp = Qv- )Q 1dO + d2 o

n

and therefore, E[Y] = v-pi = 0. Moreover,
i=O

1
v'SpV = QQ'= Vo = I - + d2 (vo. ).

Hence,

n

E[YY'] = Z p (vi v') = V'rpV + po = I.
i=O

Finally, since the bound is achievable, the vector vo E T. Therefore,

P(X E S) = P(Y E T) > P(Y = vo) = po= 1+ d2

~1 ~ + d2

From Eq. (5), we know that P(X E S) < 1 + d2 and thus the random variable X satisfies

the bound with equality.

(b) If M E S, then the upper bound in Eq. (5) equals 1. Let X, = + B, Z, where Be

is a Bernoulli random variable with success probability , and Z N(0, F) is a multivariate

normal random variable independent of B. One can easily check that X, - (, F) and

P(X, = M) > 1-E. Therefore, for any event S than contains M, we have P(X, E S) > 1-E.
l

If the bound d2 is not achievable, then we can construct a sequence Xk = F2Yk + M

of (, F)-feasible rand'om variables that approach the bound in Eq. (5) in the following
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way: Let (v k) --+ vo with v'k E T, and dk - iV kl2, so dk -+ d. We define for each k > 1,

the random variable Yk in the same way as we constructed Y in part (a), so Yk - (0, I)
.. 1

and P(Yk E T) > P(Yk = 0k) = 1 + d 1 + d 2 This shows that the sequence of (0, I)-

feasible random variables Yk, and thus the sequence of (I, F)-feasible random variables

Xk = F2Yk + M, asymptotically approach the bound (5). [

3.5 A Polynomial Time Algorithm for Unions of Convex Sets.

In this section, we present polynomial time algorithms that compute tight (n, 1, Q) and

(n, 2, Rn)-bounds for any event S that can be decomposed as a disjoint union of a polynomial

(in n) number of convex sets. We further assume that the set Q can be decomposed as

a disjoint union of a polynomial (in n) number of convex sets. Our overall strategy is

to formulate the problem as an optimization problem, consider its dual and exhibit an

algorithm that solves the corresponding separation problem in polynomial time.

The Tight (n, 1, tQ)-Bound.

We are given the mean-vector M = (M 1,..., Mn) of an n-dimensional random variable X

with domain Q2 that can be decomposed in a polynomial (in n) number of convex sets, and

we want to derive tight bounds on P(X E S). Problem (D) can be written as follows:

ZD = minimize u'M + uo

subject to g(x) = u'x + uo > Xs(x), Vx E 2.

The separation problem associated with Problem (9) is defined as follows: Given a vector

a and a scalar b we want to check whether g(x) = a'x + b > Xs(x), Vx E Q2, and if not, we

want to exhibit a violated inequality. The following algorithm achieves this goal.

Algorithm A:

1. Solve the problem inf g(x) (note that the problem involves a polynomial number
xEf2

of convex optimization problems; in particular if Q is polyhedral, this is a linear

optimization problem). Let zo be the optimal solution value and let xo E Q be an

optimal solution.

2. If zo < 0, then we have g(xo) = z0o < 0: this constitutes a violated inequality;
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3. Otherwise, we solve inf g(x) (again, the problem involves a polynomial number of
xES

convex optimization problems, while if S is polyhedral, this is a linear optimization

problem). Let z1 be the optimal solution value and let xz E S be an optimal solution.

(a) If z < 1, then for x E S we have g(xi) = z < 1: this constitutes a violated

inequality.

(b) If z 1, then a, b are feasible.

The above algorithm solves the separation problem in polynomial time, since we can solve

any convex optimization problem in polynomial time (see Nesterov and Nemirowskii [40],

Nemhauser and Wolsey [39]). Therefore, the (n, 1, Q)-upper bound problem is polynomially

solvable.

The Tight (n, 2, R=)-Bound.

WVe are given first and second order moment information (, I) on the n-dimensional ran-

dom variable X, and we would like to compute sup P(X E S). Recall that the corre-
X-(M,r)

sponding dual problem can be written as:

ZD = minimize E[g(X)] (10)

subject to g(x) = x'Hx + c'x +'d > Xs(x), Vx z E R

The separation problem corresponding to Problem (10) can be stated as follows: Given

a matrix H, a vector c and a scalar d, we need to check whether g(x) = x'Hx + c'x + d >

Xs(x), Vx E R ' , and if not, find a violated inequality. Notice that we can assume without

loss of generality that the matrix H is symmetric.

The following algorithm solves the separation problem in polynomial time.

Algorithm B:

1. If H is not positive semidefinite, then we find a vector x0 so that g(xo) < 0. We

decompose H = Q'AQ, where A = diag(A1,..., A,) is the diagonal matrix of eigen-

values of H. Let Ai < 0 be a negative eigenvalue of H. Let y be vector with yj = 0,
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for all j f i, and y large enough so that XAiY + (Qc)iy- + d < 0. Let xo Q'y. Then,

g(Zo) = xHtxo + c'xo + d

- y'QQ'AQQ'y + c'Q'y + d

= y'Ay + c'Q'y + d
n n

- EAy + :(Qc) jyj d
j=1 j=1

= y? + (Qc) y + d < 0.

This produces a violated inequality.

2. Otherwise, if H is positive semidefinite, then:

(a) We test if g(z) > 0, Vxz E R by solving the convex optimization problem:

inf g(x).

Let zo be the optimal value. If zo < 0, we find xo such that g(xo) < 0, which

represents a violated inequality. Otherwise,

(b) We test if g(x) > 1, Vx E S by solving a polynomial collection of convex

optimization problems

inf g(x).
xES

Let z be the optimal value. If zi > 1, then g(x) > 1, Vx E S, and thus (H, c, d)

is feasible. If not, we exhibit an x1 such that g(xz) < 1, and thus we identify a

violated inequality.

Since we can solve the separation problem in polynomial time, we can also solve (within

E) the (n, 2, Rn)-bound problem in polynomial time (in the problem data and log -).

4 Applications.

In this section, we provide several applications of the bounds we derived in the previous

section.

24



4.1 On The Law of Large Numbers for Correlated Random Variables.

Consider a sequence of random variables X(n) = (X 1,..., X,). If X-(n) ( e, r(n)), i.e.,

all members of the sequence have the same mean, and Var(Xi) < c, i = 1,...n, under

what conditions does the law of large numbers hold, i.e., for all e > O, as n -+ oo

Ep n Yi
-[ >e ?

In preparation to answering this question we first derive simple tight closed form bounds

for P(X(n) E S) for particular sets S.

Proposition 1 For any vector o and constant r, we have:

sup P ('X > r) =
X~(M,r) {

' + (ra
a'rac + ( - ,)2

1

, ifr > 'M,

, otherwise.

inf P ('X > ) =
X-(M,r)

Proof: From Eq. (5) we have that

sup
X-(M,]

where

I
(r- a'M)2

a'rac + (r - C/'M)2

0

P ('X > r) =
r)

otherwise.

1
1 + d2'

d2 = minimize (x - M)'r - 1(x - M)

subject to cd > .

Applying the Kuhn-Tucker conditions, we easily obtain that d2 = A2

if r - ci'M > 0, and A = 0, otherwise. The Bound (11) then follows.

For the infimum, we observe that

inf P (a'X > r) = 1- sup P ('X < 
xl~(M'Fr) X-(M,F)

o'raF, and A = r-a'M

(11)

, ifr < a'M,
(12)
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Since {xI cI'z r is a convex set, Eq. (12) follows similarly by applying Eq. (5). 

Theorem 7 (The Law of Large Numbers for correlated random variables) A

sequence of correlated random variables X(n) = (X 1,...,

satisfies the law of large numbers, i.e. for any > O, P

n - co if and only if

lim Var ( = 1 Xin-+oo n

Xn)

(2

with X(n) , (. e, r(-))
-= i_ >E) - 0, as

n

n

i,j=l
-0.

Proof: Applying Proposition 1 with c = e, we obtain that for any n > 1:

1

sup P i >
X(n) -(Aer(n) ) n

n2

1 + ( I A) 

r(n)
i,j=l

1

,if > ,

Therefore, if
nz (n)/n2 converges to 0 as n -+ coo, then:

i,j=l

p ( Xisup F1 =)
n

X(n)"o(e,F(n) ) · ~lx

0

1

,if r > A,

,I if r < .

This shows that for any such infinite sequence of random variables, the Law of Large

Numbers holds.
Tk

Conversely, if E3 pi, /n2 does not converge to 0, then there is a subsequence E r'(k)/>k
i,j=1 i,j=l

that converges to a constant 0, or it diverges to infinity. We found in Theorem 6 a sequence

of extremal distributions that satisfies

1

(1 (7- )
2

1+

1

,if > ,

,if r < .
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Such a subsequence clearly violates the Law of Large Numbers.

Remark: The law of large numbers for, independent, identically distributed random vari-

ables assumes that E[IXI] < oc. This implies that Var(X,) < co, and thus we have

lim Var (.i=l ) = O Therefore, in this case the usual law of large numbers follows

from Theorem 7.

4.2 Fat Tails and The Central Limit Theorem for Uncorrelated Random

Variables.

Consider a sequence of random variables X(n) = (X 1,..., X). If the random variables Xi

are independent and identically distributed, then the central limit theorem holds. Suppose,

we relax the independence condition by only assuming instead that X() (u e, a 2 1), i.e.,

XY are identically distributed and uncorrelated but not necessarily independent. Is it true

that the central limit theorem holds in this case?

Applying Proposition 1 with = e, r = t/e'Fi(n)e + e'M() we obtain that for any

n> 1:

n N ,if t> 0,
sup pE (-=lXi - ) > t 1

( e,~2r ) k, ~/~_ t =1 , if t < 0.

inf P (i=l>t) 1 + t 2 ift<0

X ) 0 , if t> 0 .

Moreover, from Theorem 6 there exist extremal distributions that achieve these bounds.

Such distributions clearly violate the central limit theorem, as they induce much "fatter

tails" for ?=l1 Xi than the one (normal distribution) predicted by the central limit theorem.

4.3 The Multivariate Markov Inequality.

Given a vector M1 = (M1, ... , In)', we derive in this section tight bounds on the following

upper tail of a multivariate nonnegative random variable X = (X 1,..., Xn)' with mean
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A = E[X]:

P(X > Ie+6) = P(X > (1 + Si)Mi, Vi = 1,..., n).

where = (1,..., and we denote by 5s = ( 1i 1 X,...,6, i)'

Theorem 8 The tight multivariate (n, 1, R n_)-Markov bound for nonnegative random vari-

ables is

sup P(X > Ie+s) = min . (13)
X-M+ i=l,...,n 1 + 

Proof: Applying the bound (1) for S = {xz xi > (1 + Ji)Mi , Vi = 1,..., n}, we obtain

Eq. (13). a

The bound (13) constitutes a natural multivariate generalization of Markov's inequality

and is originally due to Marshall [34]. In particular, for a nonnegative univariate random

variable, in the case that S = [(1 + 6)M, oo), the bound (13) is exactly Markov inequality:

sup P(X > (1 + )M)= 1
X-M+ 1 + 5

4.4 The Multivariate Chebyshev Inequality.

Given a vector M = ( 1 ,...,M IV)', and an n x n positive definite, full rank matrix ,

we derive in this section tight bounds on the following upper, lower, and two-sided tail

probabilities of a multivariate random variable X = (X1,...,X,)' with mean M = E[X]

and covariance matrix r = E[(X - M)(X- M)']:

P(X > MIe+&) = P(xY > (1 + I),/i i = 1,..., n),

P(X < lVIe_) = P(X < (1- &i)M /i, i = 1... n),

P(X > Il,'+s or X < lVIeS) = P(jXi - t/il > 6siVi, Vi = 1,..., n),

where 6 = (1, ... , ,)', and we denote by Ms = (lll ,- , nMn)

The bounds we derive constitute multivariate generalizations of Chebyshev's inequality.

They improve upon the Chebyshev's inequality for scalar random variables. In order to
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obtain nontrivial bounds we require that not all iMi < O, which expresses the fact that

the tail event does not include the mean vector.

The One-Sided Chebyshev Inequality.

In this section, we find a tight bound for P(X > Me+s). The bound immediately extends

to P(X < 1VIe6).

Theorem 9 (a) The tight multivariate one-sided (n, 2, Rn)-Chebyshev bound is

1
sup P(X > IVIe+6) d 

X-(M,r) 1 + d2

where d2 is given by:

d2 = minimize x'r-1 x

(14)

(15)

subject to x > S6,

or alternatively d2 is given by the Gauge dual problem of (15):

1
= minimize

d2 x'rx (16)

subject to x'M = 1

x > 0.

(b) If r-laIs > 0, then the tight bound is expressible in closed form:

1
sup P(X > Me+,) = + MI-M

X-(M,r)
(17)

Proof: (a) Applying the Bound (5) for S = {x x > (1 + 6i)il/ , Vi = 1,..., n}, and

changing variables we obtain Eq. (14). The alternative expression (16) for d2 follows from

elementary Gauge duality theory (see Freund [14]).

(b) The Kuhn-Tucker conditions for Problem (15) are as follows:

2r-1 x - A = 0, A > O, > , '(x - Ms) = .
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The choice x = M, A = 2-livls6 > 0 (by assumption) satisfies the Kuhn-Tucker con-

ditions, which are sufficient (this is a convex quadratic optimization problem). Thus,

d2 = VIr- l 1 a, and hence, Eq. (17) follows. [

The Two-Sided Chebyshev Inequality.

In this section, we find a tight bound for P(X > Ie+s or X < e-_).

Theorem 10 (a) The tight multivariate two-sided (n, 2, Rn)-Chebyshev bound is

sup P(X > M+s or X < Me_s) = min(1,t 2 ), (18)
x(M,r)

where

t2 = minimize x'rx (19)

subject to x'IMI = 1

x > 0.

(b) If r-1A1 > 0, then the tight bound is expressible in closed form:

sup P(X > e+6 or X < Ies) = min 1, ). (20)
X~(M,r) v/ -

The first proof of a similar bound, in a more general setting, is due to Marshall and

Olkin [35] who show the following result for zero mean random variables (in our notation):

sup P(X > or X < -) = min(l, t2 ), (21)
x(o,r)

where t 2 = inf a'ra, where again S = {a E RlI a'x > 1, V x > } is the antipolar of
aESL

S. The equivalence of the two formulations follows from elementary Gauge duality theory

(see Freund [14]), after applying a mean-adjustment transformation (see for example the

beginning of Theorem 6).
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Proof: Problem (D) in this particular case becomes:

ZD = minimize -E[g(X)]

subject to g(x) 2-degree

g(x) > {
O.,

n-variate polynomial

if > e+s or x < Me-,

otherwise .

Similar to Lemma 2, we show in an analogous way that either the dual optimum is 1, or

else there exists an optimal solution of the form g(x) = (a'(z - I)) 2, for some vector a.

Therefore, the dual problem is equivalent to:

ZD = minimize

subject to

E[g(X)]

g(x)=1, Vx E R n

or

g(x) = (a'(x- M))2 > { 
0,

(22)

if x > e~+6 or x < e-6,

otherwise .

Suppose that g(x) = (a'(x-M))2 is optimal for Problem (22). Then, g(Me+6) = g(MIe_-) =

1, that is (a'A/s)2 = 1. The feasibility constraints are g(x + Me+s) > 1, Vx > 0 and

g(-x + vie-s) > 1, Vx > 0, or equivalently (a'(x + ]b4s)) 2 > (a'Ms) 2, Vx > 0, which is

further equivalent to a > 0 or a < 0. Therefore, the dual problem can be reformulated as:

ZD = minimize

subject to

(1, E[(a'(X - M))2]) = min(1, a'Ta)

a'/VIs = 1

a > 0,

from which Eq. (18) follows.

(b) If r-liMvs > 0, then a0 = r - lvf is feasible and a3'ao = (VIr- 11M6i )-'. By the(I> O, then ao=

Cauchy-Schwartz inequality, for an arbitrary a:

1 = (a's))2< (a'ra) (vIr- Is),

or equivalently aq'a > (iM6sr- 1iMs) -l = aFao, which means ao is optimal and the closed

form bound is indeed 1
iVI' r-1M'
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In the univariate case Ni6 = 61VM and r = a 2. Therefore, r-li s > 0, and the

closed form bound applies, i.e.,

c2
P(X > (1+ )1V) < (23)

2

where C MI2 is the coefficient of variation of the random variable X. The usual

Chebyshev inequality is given by P(X > (1+J)M) < -. Inequality (23) is always stronger.

Moreover, as we showed in Theorem 6 there exist extremal distributions that satisfy it with

equality. The original result can be traced back to the 1937 book of Uspensky [56], and is

mentioned later by Marshall and Olkin (1960) [35], [36], but has not received much attention

in modern probability textbooks.

5 Optimal Bounds for the Univariate Case.

In this section, we restrict our attention to univariate random variables. Given the first k

moments Ml, ... , Mk (we let Mo = 1) of a real random variable X with domain Q, we are

interested in deriving tight bounds on P(X E S). Our main result in this section is that

optimal bounds can be derived as a solution to a single semidefinite optimization problem.

We also derive closed form tight bounds when up to the first three momens are given.

5.1 Tight Bounds as Semidefinite Optimization Problems.

From Section 2, given the first k moments of X with domain Q, we can find a tight bound

for P(X E S) by solving the following problem

k

minimize Z yrlr
r=O
k

subject to E yrXr > 1, V ES (24)
r=O
k

E YrXr > _ O, : E Q.
r=O

Since S and Q are intervals in the real line we show in the next proposition that the

feasible region of Problem (24) can be expressed using semidefinite constraints. Semidefinite

optimization problems are efficiently solvable using interior point methods. For a review of
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semidefinite optimization see Vandenberghe and Boyd [57]. The results and the proofs in

the following proposition are inspired by Ben-Tal and Nemirovski [2], p.140-142.

2k

The polynomial g(x) = Z YrX satisfies g(2) > 0 if
r=O

exists a positive semidefinite matrix X = [xij]ij=o ... k, .such that

Yr = r
ij: +j=r

(b) The polynomial

exists a positive

xij, 

and only if there

X >- 0. (25)

0 = xij, I = .. ,k,
i,j: i+j=21-1

Y = xj, I = ,...,k, (26)
i,j: i+j=21

X >- 0.

k

(c) The polynomial g(x) = yXr satisfies g(x) > 0 for all x E [0, a] if and only if there
r=O

exists a positive semidefinite matrix X = [xi;]ij=o ... k, such that

0= ij..,,

i,j: i+j=21-1

yr (-r) > x-

i,j: i+j=21

XY >- 0.

(27)

k

(d) The polynomial g(x) = 'YrzXr satisfies g(x) > 0 for all x E [a, co) if and
r=O

exists a positive semidefinite matrix X = [xi;]i,j=o...k, such that

o= T
i,j: i+j=21-1

7Yr r1) =

r=1 /

(28)
Xij,

i,j: i+j=21

X >- 0.
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Proposition 2 (a)

k

g(x) = T yrXr satisfies g(x) > 0 for all x > 0 if and only if there
r=O

semidefinite matrix X = [Xij]i,;j=,...,k, such that

only if there

r = 0, . . ., 2k,

Xij,



k

(e) The polynomial g(x) = s yrx' satisfies g(x) > 0 for all x E (-co, a] if and only if
r=O

there exists a positive sem'idefinite matri X = [xij]ij=o ,...k such that

Y ( a) 
r----I

) - Xi2 j,

i,j: i+j=21-1

i,j: i+j=21

X >- O.

k

(f) The polynomial g(x) = >1 yrXr satisfies g(x) > 0 for all x E [a, b] if and
r=O

exists a positive semidefinite matrix X = [xij]i,;=o,...,k, such that

(29)

mOI rkm-' (m 

EL y r) kr ar'nb
m=C ~ \m I j 

0= E x

m = E xj,
i,j: i+j=21

X >- 0.

Proof

(a) Suppose (25) holds. Let e = (1, x, x2, ... , xk)'. Then

2k

g(X) = > > xjx
r=O i+j=r

k k

= ExZxxjiX
i=0 j=O

= eXe:

>0,

since X >- 0.

Conversely, suppose that the polynomial g(x) of degree 2k is nonnegative for all x.

Then, the real roots of g(x) should have even multiplicity, otherwise g(x) would alter its

sign in a neighborhood of a root. Let Ai, i = 1, ... , r be its real roots with corresponding

multiplicity 2mi. Its complex roots can be arranged in conjugate pairs, a + ibj, aj - ibj,
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only if there

ii,

(30)

I = ,...,k,

I = 1...,k,



j= 1..., h. Then,

r

g(X) = Y2k; ( a) 2 mi
i=1

f ((x
j=l

- aj)2 b).

Note that the leading coefficient Y2k needs to be positive. Thus, by expanding the terms in

the products, we see that g(x) can be written as a sum of squares of polynomials, of the

form

2

g(X) = E 
i=O j=

--¢eX,e

with X positive semidefinite, from where Equation (25) follows.

(b) We observe that g(x) > 0 for x > 0 if and only if g(t2 ) > 0 for all t. Since

g(t2 ) = o + O t + ylt 2 + O t 3 + 2t 4 + . . + y k t 2k ,

we obtain (26) by applying part (a).

(c) We observe that g(x) > 0 for x E [0, a] if and only if

(1 + t2)kg (
at2

1 + t 2 >0, for all t.

Since

(1 + t2)kg 1 +- t2
k

= yrart2 r (1 + t2)k-r
r=O

k k-r

r=O 1=0

k 3

= Z t 2 j L
j=O r=O

k - r)t 2 (1+r)

Yr ( r) a)

by applying part (a) we obtain (27).
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(d) We observe that g(x) > 0 for x E [a, oo) if and only if

g(a(I + t 2)) > 0, for all t.

Since

k

g(a(1 + )) = Z yar(1 + t 2)r
r=O

- h> r (r Y~· )t21

r=O 1=0

r )r)

Yr I a·

k k

-- ' r t 21

/=0 rl

by applying part (a) we obtain (28).

(e) WVe observe that g(x) > 0 for x E (-oo, a] if and only if

for all t.

Since

k

(1 + t2) g ( 1 ) = E Yrar(l +
r=O

k k-r

= E yrar E (
r=O 1=0

k k-I

= t 2 ' ( YZ
1=0 r=O

by applying part (a) we obtain (29).

(f) We observe that g(x) > 0 for x E [a, b] if and only if

(1 + t 2)kg a +

t2) k - r

?k-r
I

k.-
r l

for all t.
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(I~t2)"g1 + t2O

(b - a) 2 0
1 + t2



k

-= yr(a+
r=O

bt2 )r(l + t2)k-r

k

- Z' Yr : () armbmt2 m

r=0 m=O

=0 r t =m0 r--r e. 

k- (k - r)

I-

by applying part (a) we obtain (30).

We next show that Problem (24) can be written as a semidefinite optimization problem.

Theorem 11 Given the first k moments (M 1,..., Mk) (we let Mo = 1) of a random vari-

able X defined on Q we obtain the following tight upper bounds:

(a) If Q = R + , the tight upper bound on P(X > a) is given as the solution of the semidefi-

nite optimization problem

k

minimize E yrMr
r=O

subject to 0= z1j, .,k
i,j: i+j=21-1

(yo -1) + E Yr )a = xoo,
r= 1 i

r(jar) xii. I=1,...,k, (31)
i,j: i+ j=21

o= >
i,j: i+j=21-1

Yr
r=O (k-r)\\l-r·

zij,

>E Zi j ,
i,j: i+j=2l

x,z >-0.

If Q = R, then the tight bound on P(X > a) is as above with the next to last equation in

(31) replaced by

- ar =
I

i,j: i+j=21

Zij, I = 0, . .. k.
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(b) If = R+, the tight upper bound on P(a < X < b) is given as the solution of the

semidefinite optimization problem

k

minimize YrIVIr
r=O

subject to 0 = Z
i,j: i+j=21-1

) (I-r r-mbm = ()
I -M a 

I k+m-I r'

m=O r=m -

O= E 2

i,j: i+j=21-1

yl= E
i,j: i+j=21

x,z> 0o.
(32)

If Q = R, then the tight upper bound on P(a X < b) is as above with the next to last

equation in (32) replaced by

- r) r

I ya Z> Zij ,
i,j: i+j=21

and the following equations added

o= 2
i,j: i+j=21-1

uij, I = 1,...,k,

E Uij
i,j: i+j=21

U >- 0.

Proof

(a) The feasible region of Problem (24) for S = [a, oc) and Q = R+, becomes:

k

g(X) = ,yrX > , V x E [a, oo),
r=O

and g(x) > 0, V z E [0, a).

By applying Proposition 2(c),(d) we obtain (31). If Q = R, we apply Proposition 2(d),(e).
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Xij,3 ,

+
i,j: i+j=21

Xi,

zij

iyr(k
r=O

Yr br=1)~
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(b) The feasible region of Problem (24) for S = [a, b] and Q = R+, becomes:

k

g(x) = E yrxr > 1, V x E [a, b],
r=O

and g(x) > 0, V z E [0, c).

By applying Proposition 2(b),(f) we obtain (32). If Q = R, we apply Proposition 2(c),(d),(f)

5.2 Closed form bounds

In this section, we find closed form bounds when up to the first three first moments are

given. WVe define the squared coefficient of variation: C

coefficient of variation DM = 1M3 - .2 Let > 0.

_ 2V2 , and the third order

Theorem 12 The following bounds in Table are tight for k = 1, 2, 3.

Table 1: Tight Bounds for the (1, k, Q2)-problem for k < 3.
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(k, 2) s (X > (1 + 6)M 1) P(X < (1- 6)M1 ) P(IX - MrIj > SM 1 )

(1,R+) 1 1 1

Cr 2 min 1 2 
(2, R) CM min 

f~,I f C~ + 62 2.

(3, R+) f,(C2, D , ) S2(C3, D , 6) f3(C2k D , )M M M ~~~~M,



The following definitions are used:

C2 I2 )· ;P ~ r22

Cin C + 2 1 + + (C2r - 6) 2 i l C-
f (Cm, D, 6) 1-

D + ( + )(c - 6) if < C2
+ + (1 + C2~)(c2 -_s)'

Af(C 1,D, D )- =1. - (C + 1)3

A/ (D + (Cj~ + 1) (Cd + 2))(D + (C2~ + 6)2)'
(dM + C) (DM '2

f3(CM, DM, 6) = min (1,1+ 33 M )
4+3(1+362) +2(1+362) 

The proof of the theorem is given in Appendix A.

6 The Complexity of The (n, 2, R+), (n,k,Rn)-Bound Prob-

lems.

In this section, we show that the separation problem associated with Problem (D) for the

cases (n, 2, Rn), (n, k, Rn)-bound problems are NP-hard for k > 3. By the equivalence of

optimization and separation (see Gr6tschel, Lovasz and Schrijver [17]), solving Problem (D)

is NP-hard as well. Finally, because of Theorem 2, solving the (n, 2, Rn), (n, k, Rn)-bound

problems with k > 3 is NP-hard.

6.1 The Complexity of The (n, 2, R+)-Bound Problem.

The separation problem can be formulated as follows in this case:

Problem 2SEP: Given a multivariate polynomial g(x) = x'Hxf+c'x+d, and a set S C R+,

does there exist x E S such that g(x) < 0 ?

If we consider the special case c = 0, d = 0, and S = Rn, Problem 2SEP reduces to the

question whether a given matrix H is co-positive, which is NP-hard (see Murty and Kabadi

[38]).

6.2 The Complexity of The (n, k, Rn)-Bound Problem for k > 3.

For k > 3, the separation problem can be formulated as follows:

Problem 3SEP: Given a multivariate polynomial g(-) of degree k > 3, and a set S C Rn,

does there exist x E S such that g(x) < 0 ?
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We show that problem 3SEP is NP-hard by performing a reduction from 3SAT (see

Sipser [51]).

Theorem 13 Problem 3SAT polynomially reduces to 3SEP.

Proof: For an arbitrary 3SAT instance (a 3CNF boolean formula in n variables), we

consider the following arithmetization g(.) of b: we replace each boolean variable xi by

the monomial 1 - xz, its negation i by x, and we convert A's into additions and V's to

multiplications. For example, the arithmetization of the formula ( = (xl V X2 V x3 ) A (xl V

x3 V x4 ), is: g(x) = x1(1 - 2 )x 3 + (1- x1)(1 - 3 )X 4.

As motivation for the proof, note that g(.) is a 3-degree polynomial in n variables,

evaluating to zero at any satisfying assignment of . Also note that g(x) is a nonnegative

integer for any boolean assignment x E {0, 1}n. Thus if b is unsatisfiable, then g(x) > 1

for any boolean assignment x E {O, 1}n.

Starting with an instance of 3SAT with n variables and m clauses, we construct an

instance (g(.), S) of 3SEP as follows:

(x) = 2g(x) + (24m)2 Exi(1 - x)-1, S = [OI ].

i=1

Note that the construction can be done in polynomial time. We next show that formula b

is satisfiable if and only if there exists x E S such that g(x) < 0.

Clearly if is satisfiable, there exists a satisfying assignment corresponding to a vector

xo E {0, 1}n. Clearly g(xo) = 0, and thus g(xo) = -1 < 0.

Conversely, suppose is not satisfiable. We will show that for all x E S = [0, 1] n,
1

g(x) > 0. Let E = 24-- For any x E S = [0, 1]n, there are two possibilities:

(a) There exists a boolean vector y E {0, 1}n such that lxi - l < E, Vi.

If we expand the term in g(-) corresponding to each of the m clauses of as a

polynomial, we obtain a sum of at most one monomial of degree three, three monomials

of degree two, three monomials of degree one, and one monomial of degree zero. Let

Sk be the set k-tuples corresponding to the monomials of degree k, k = 1, 2, 3. Then,

IS1l < 3m, S2 < 3m, S31 < m. Matching corresponding monomials for x and y,

canceling constants, and applying the triangle inequality, we obtain:

Ig () - g(y) I Z lXixsk - YYjYkl + E lxix -yySil + E X - Yl.
(ij,k)E53 (i,j)ES2 iESi
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Since xi - yil < , Vi, we obtain:

XiXjXk - YiYjYk < XIzijxk - yijXkI + IYiXjk - YiyjXk + lyiYjXk - YiyjYkl

= - YiIXjXk + yiX;j - yjiIk +- Y yyjXk - yk < 3,

since x, y E [0, 1]g. Similarly, xixzj - iYjl < 2. Therefore.

Ig(zx) - g9(Y) < 31ES 3 1 + 2EIS21 + EIS1l < 12me = -
2

1
Thus, g(zx) > go(Y) - 2. Since X is not satisfiable, we have gk(y) > 1, for any boolean

1 1
vector y E {0, 1}n. Thus, go(x) > 1 - 2 = 2, and hence g(x) > 2 g(x)- 1 > 0.

(b) There exists at least one i for which E < xi < 1 - E . This implies xi(1 - xi) > E2 ,

and, since go(x) > 0, Vx E S, it follows that g(x) > (24m) 2E2 - 1 = 0.

Therefore, if b is not satisfiable, then all x E S = [0, 1]n, satisfy g(x) > 0, and the theorem

follows. U

7 Concluding Remarks.

This paper reviewed the beautiful interplay of probability and optimization by examining

tight bounds involving moments. Moreover, it broke new ground by characterizing sharply,

we believe, the complexity of the (n, k, Q)-bound problem, by providing polynomial time

algorithms for the (1, k, Q), (n, 1, Q), (n, 2, R')-bound problems, and by showing that the

(n, 2, R+), (n, k, Rn)-bound problems for k > 3 are NP-hard.

Appendix A: Proof of Theorem 12

The inequality for k = 1 and Q = R+ follows from Eq. (13) (Markov's inequality). It is

also tight as indicated from the following distribution:

0,
XY= )

(1 + ) -/1,

with probability + 

1
with probability 1

1 +'
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The one-sided tail inequalities for k = 2 and Q = R- follow from Eq. (23). They are also

tight as indicated by Theorem 6. The two-sided tail inequality for for k = 2 and Q2 = Rn

follows from Eq. (18). It is tight as indicated from the following distribution:

(1 + ) 1ml,

X = (1 - 5)M1,

X = ( 1 -8>/ f1 ,Al/1,

with probability

with probability

with probability

The (1, 3, R+)-Bound.

Let j = (1 + 6)M 1. The necessary and sufficient condition for (1 1, 2,, M3) to be a valid

sequence is CiM = M2 - M1 > 0, and D2 = Ml1M 3 - M2 > 0. The dual feasible solution

g(x) needs to satisfy g(x) > 0 for all x > 0, and g(x) > 1, for all x > j. At optimality

g(j) = 1, otherwise we can decrease the objective function further. Therefore, there are

three possible types of dual optimal functions g(.):

(a) (See Figure 1) g(x) = ( 2 )3,7 < .

(b) (See Figure 2) g(x) =

(c) (See Figure 3) g(x) =

( - 71)( - 72) 2 ' 71 < 0, 7Y1 < 72 < .

a (x- 7 )2(-) + 1, a<1,7 > j.
2j 

Figure 1: The function g(x) = -. 7) 3 0 1~~~ _-T) , < 0.
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/71

Figure 2: The function g(x) =
(j - 71)( - 72)2

, 71 < 0, 71 < 72 < 

j

Figure 3: The function g(x) = a

The tight bound using only MA/1 and IM2 is:

P(X > j) < Zo= min 1 
c2 

C2 + 2rM

1

1+6'
C2C M

C, + 6+ I

for C > 6,

for C < .

We next examine the bounds obtained by optimizing undetermined parameters in cases (a),

(b), and (c).

Case (a). The best possible bound in this case is:

E[(X - y)3] i
Z, = min = min

-<o (j - 7)3 3y<0

13 - 3'2 + 3 2M 1 _ -73

( - )3

44

(X - )2(X - j)
2j

(33)

-7 ------- 
-"I/

I
Y2 i

+ 1, a , j-



WVe differentiate with respect to -y and we obtain that the critical point satisfies:

E[(X - /)s]= (j - 3)E[(X - ,,) ],

which leads to :

-'( I- j) - 2y(M2 - Alj) + Av13 - VI2j = 0 .

There are two possibilities to consider:

(i) If /13 > j 2, then Eq.

function thus becomes:

(34) has a feasible solution '* < 0. The dual objective

min E[(X - y)2]
- ,, (j - )2

C2

- C,+ ,2 >- 

and thus this bound is dominated by Z0.

(ii) If IM3 < jM 2, then M2 < jM1l, otherwise M1 13 - M 2 < 0, and thus (M 1 , M 2, 1 3) is

not a valid moment sequence. Therefore, there does not exist a solution of Eq. (34)

with 3y* < 0. Thus, the optimal solution is for 7' = 0, and the dual objective function

becomes:

Z 1 3 _ D (C + 1)2
= 3 (1 + )3

The best possible bound in this case is:

2]

+ E - Y2Zb = 'min E[(X - 1 ) (X - 72) 2]

In order for an optimal solution to produce a non-dominated bound, it must be that

E[(X- 2 ) 2 (X- j)] < 0, or else the dual objective is at least: E[(X - 2)] 

Therefore, in such an optimal solution we should set (j -71) as small as possible, so 71 = 0.

The dual objective becomes:

Zb = min
0<Y2 <3

E[X(X - 7y2) 2]
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(34)

Case (b).

E[(X _ y*)2]

(j - /*)2

(35)

1 E[(X - (X - N) 1
= min - ( -_ 2

71,2 U -Y1) 3 J 2 2



When we differentiate the objective function with respect to 7/2, we obtain that the critical

point must satisfy

E[X(X - '72)2] = (j - 72)E[X(X - /,2)], (36)

which leads to:

* I3 - jiv 2 = 
72 - MIA/I:: V 2 - i Al [1+C - + .

CM-8

There are two possibilities to consider:

(i) If 6 < C, then 7* > j, and the optimum is obtained by setting 72 = 0,

produces the dominated bound:

which

D2 + (CM + 1)2
(1+3)3

1
- 1 +=zo

(ii) If > CM, then y* < j. Then, substituting 72*, we obtain the bound:

1
1+3

Case (c). In this case g(x) =
(a - )2( _ j)

72j
+ 1, a < 1, > j . First notice that a must

be 1 in an optimal solution, and the bound becomes:

E[(X - 7) 2 (X - j)]
2j

M3 - 2/1(27 + j) + 1 (7 2 + 27j)1 = min
y>j 72j

Again, by differentiating with respect to , we obtain the same critical point: * = M3 - M2

which satisfies

E[(X - )2 (X - j)] = ?E[(X - 7)(X - j)].

There are two possibilities:
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M3
Z = j 3

(37)

Z = min
v>j

D 21M

D 2 + (C2 - )2'



(i) If C > 6, then < > j, and we obtain the bound

1 
1+3 (38)

(ii) If C2, < , then ^' < j, and the optimum is obtained by setting -/ = j, which produces

the dominated bound

- 3jiV12 + 3j2 M1
j3

1
= [D(CM-)

(]. _ )3 1 > ZO.T -+3 

Combining all previous case, we obtain that

Z min (Zo, Z, Zb)

Zc

,if CM < ,

, if C > 3

Moreover, one can easily check that:

1
1+3

< + (C + 1)2 _

- (1 M.)3 I(I + )3

and the theorem follows. The formulae for the left tail and the two-sided inequality follow

by a similar construction.
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