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Abstract

We model an isolated portion of a competitive supply chain as a M/M/1 make-to-

stock queue. The retailer carries finished goods inventory to service a Poisson demand

process, and specifies a policy for replenishing his inventory from an upstream supplier.

The supplier chooses the service rate, i.e., capacity, of his manufacturing facility, which

behaves as a single-server queue with exponential service times. Demand is backlogged

and both agents share the backorder cost. In addition, a linear inventory holding

cost is charged to the retailer, and a linear cost for building production capacity is

incurred by the supplier. The inventory level, demand rate and cost parameters are

common knowledge to both agents. Under the continuous state approximation that the

M/M/1 queue has an exponential rather than geometric steady-state distribution, we

characterize the optimal centralized and Nash solutions, and show that a contract with

linear transfer payments based on backorder, inventory and capacity levels coordinates

the system in the absence of participation constraints. We also derive explicit formulas

to assess the inefficiency of the Nash equilibrium, compare the agents' decision variables

and the customer service level of the centralized versus Nash solutions, and identify

conditions under which a coordinating contract is desirable for both agents.
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1 Introduction

Within many supply chains, a devoted upstream agent, referred to here as the supplier,

produces goods for a downstream agent, called the retailer, in a make-to-stock manner.

Broadly speaking, the performance (e.g., service levels, cost to produce and hold items) of

this isolated portion of the supply chain is dictated by three factors: (i) Retailer demand,

which is largely exogeneous but can in some cases be manipulated via pricing and advertising,

(ii) the effectiveness of the supplier's production process and the subsequent transportation

of goods, and (iii) the inventory replenishment policy, by which retailer demand is mapped

into orders placed with the supplier. If the supplier and retailer are under different ownership

or are independent entities within the same firm, then their competing objectives can lead

to severe coordination problems: The supplier typically wants to build as little capacity as

possible and receive excellent demand forecasts and/or a steady stream of orders, while the

retailer prefers to hold very little inventory and desires rapid response from the supplier.

These tensions may deteriorate overall system performance.

The recent explosion in the academic supply chain management literature is aimed at this

type of multi-agent problem. Almost without exception, the papers that incorporate stochas-

tic demand employ variants of one of two prototypical operations management models: The

newsvendor model or the Clark-Scarf (1960) multi-echelon inventory model. One-period and

two-period versions of newsvendor supply chain models have been studied intensively to ad-

dress the three factors above; see Agrawal et al. (1999), Cachon (1999) and Lariviere (1999)

for recent reviews. Although many valuable insights have been generated by this work,

these models are primarily useful for style goods and products with very short life cycles.

More complex (multi-period, and possibly multi-echelon and positive lead time) supply chain

models have been used to analyze the case where a product experiences ongoing production

and demand. Of the three factors in the last paragraph, these multi-period supply chain

models successfully capture the replenishment policy and have addressed some aspects of

retailer demand, e.g., information lead times in the Clark-Scarf model (Chen 1999), pricing
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in multi-echelon models with deterministic demand and ordering costs (Chen et al. 1999),

and forecast updates (Anupindi and Bassok 1999 in a multi-period newsvendor model and

Tsay and Lovejoy 1999 in a multi-stage model). However, the Clark-Scarf model, and indeed

all of traditional inventory theory, takes a crude approach towards the supplier's production

process, by assuming that lead times are independent of the ordering process, or equivalently,

that the production process is an infinite-server queue.

In this paper, we use an alternative prototypical model, an RI/M/1 make-to-stock queue,

to analyze a supply chain. Here, the supplier is modeled as a single-server queue, rather than

an infinite-server queue, and the retailer's optimal inventory replenishment strategy is a base

stock policy. Because the production system is explicitly incorporated, these make-to-stock

queues are also referred to as production-inventory systems. The M/M/1 make-to-stock

queue was introduced by Morse (1958), but lay mysteriouly dormant for the next three

decades, perhaps because the multi-echelon version of it lacked the attractive decomposition

property of the Clark-Scarf model and traditional (i.e., make-to-order) queueing networks,

except under some restrictive inventory policies (Rubio and Wein 1996). Make-to-stock

queueing systems have experienced a revival in the 1990s, including multi-product queues

with (e.g., Federgruen and Katalan 1996, Markowitz et al. 1999) and without (e.g., Zheng

and Zipkin 1990, Wein 1992) setups, and single-product, multi-stage systems in continuous

time (e.g., Buzacott et al. 1992, Lee and Zipkin 1992) and discrete time (e.g., Glasserman

and Tayur 1995 and Gavirneni et al. 1996, building on earlier work by Federgruen and

Zipkin 1986). Although these papers either undertake a performance analysis or consider a

centralized decision maker (Gaverneni et al. analyze their system under various informational

structures, but not in a game-theoretic setting), the make-to-stock queue is amenable to

a competitive analysis because it explicitly captures the trade-off between the supplier's

capacity choice and the retailer's choice of base stock level. However, the model treats

the third key factor in a naive way, by assuming that retailer demand is an exogenous

Poisson process. Moreover, we assume that the system state, the demand rate and the

cost parameters are known by each agent. While this assumption is admittedly crude, we
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believe it is an appropriate starting point for exploring competitive make-to-stock queues.

In the only other multi-agent production-inventory study that we are aware of, Plambeck

and Zenios (1999), contemporaneously to us, analyze a more complex dynamic system with

information asymmetry.

In an attempt to isolate - and hence understand - the impact of incorporating capacity

into a supply chain model, we intentionally mimic Cachon and Zipkin (1999). Their two-

stage Clark-Scarf model is quite similar to our 11///l make-to-stock queue: Both models

have two players, assume linear backorder and holding costs for retailer inventory (where the

backorder costs are shared by both agents), employ steady-state analyses, and ignore fixed

ordering costs. The key distinction between the two models is that the production stage is an

infinite-server queue and the supplier controls his (local or echelon) inventory level in Cachon

and Zipkin, whereas in our paper the production stage is modeled as a single-server queue

and the supplier controls the capacity level, which in turn dictates a steady-state lead time

distribution. While Cachon and Zipkin's supplier incurs a linear inventory holding cost, our

supplier is subjected to a linear capacity cost. Another deviation in the formulations is that

Cachon and Zipkin's agents minimize cost, while our agents maximize profit; this allows us to

explicitly incorporate participation (i.e., nonnegative profits) constraints. A minor difference

is that our queueing model is in continuous time, while Cachon and Zipkin's inventory model

is in discrete time. In fact, to make our results more transparent and to maintain a closer

match of the two models, we use a continuous state approximation, essentially replacing the

geometric steady-state distribution of the //lM/1 queue by an exponential distribution with

the same mean.

After defining the model in §2, we derive the centralized solution in §3, where a single

decision maker optimizes system performance, and the Nash equilibrium in §4, where the

supplier and retailer maximize their own profit. The two solutions are compared in §5. In §6,

we describe the contract that coordinates the system; i.e., allows the decentralized system to

achieve the same profit as the centralized system. In §7, we analyze the Stackelberg games,

where one agent has all the bargaining power. Concluding remarks are presented in §8.
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2 The Model

Our idealized supply chain consists of a supplier providing a single product to a retailer.

Retailer demand is modeled as a homogeneous Poisson process with rate A. The retailer

carries inventory to service this demand, and unsatisfied demand is backordered. The retailer

uses a (s - 1, s) base stock policy to replenish his inventory. That is, the inventory initially

contains s units, and the retailer places an order for one unit with the supplier at each epoch

of the Poisson demand process. Because we assume that there are no fixed ordering costs,

the retailer's optimal replenishment policy is indeed characterized by the base stock level s.

The supplier's production facility is modeled as a single-server queue with service times

that are exponentially distributed with rate M. The supplier is responsible for choosing the

parameter , which will also be referred to as the capacity. The server is only busy when

retailer orders are present in the queue. The supplier's facility behaves as a M/M/11 queue

because the demand process is Poisson and a base stock policy is used.

The selling price r that the retailer charges to the end customers and the wholesale price

w that the retailer pays to the supplier are fixed. These conditions implicitly assume that

the retailer and supplier operate in competitive markets. Each backordered unit generates

a cost b per unit of time for the production-inventory system. As in Cachon and Zipkin,

this backorder cost is split between the two agents, with a fraction a E [0, 1] incurred by

the retailer. The parameter c, which we refer to as the backorder allocation fraction, is

exogenously specified in our model. In addition, the retailer incurs a holding cost h per

unit of inventory per unit of time. The supplier is responsible for building production

capacity and the capacity cost c is per unit of product, so that c,/ is cost per unit time. We

assume r > w > c, so that positive profits are not unattainable. To make our results more

transparent, we normalize the expected profit per unit time by dividing it by the holding

cost rate h. Towards this end, we normalize the cost parameters as follows:

h b - Ac Ar Aw
h= = , b=-, c= -, r= w = (1)

h h' h h' h

To ease the notation, we hereafter omit the tildes from these cost parameters.
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Let N be the steady-state number of orders at the supplier's manufacturing facility. If we

assume for now that ,u > A (this point is revisited later), then N is geometrically distributed

with mean v-1, where
/-

v= lu . (2)

This parameter, which represents the normalized excess capacity, is the supplier's decision

variable in our analysis, and we often refer to it simply as capacity. To simplify our analysis,

we assume that N is a continuous random variable, and replace the geometric distribution by

an exponential distribution with parameter v. This continuous state approximation can be

justified by a heavy traffic approximation (e.g., §10 of Harrison 1988), and leads to slightly

different quantitative results (the approximation tends to underestimate the optimal discrete

base stock level). However, it has no effect on the qualitative system behavior, which is the

object of our study.

Because the revenues for each agent are fixed, profit maximization and cost minimiza-

tion lead to the same solution. We employ profit maximization to explicitly incorporate the

agents' participation constraints, which take the form of nonnegative expected profits. How-

ever, we introduce some variable cost notation (CR and Cs) in equations (3)-(4) for future

reference when discussing the inefficiency of the Nash solution (§5) and contracts that coor-

dinate the system (§6). In these equations, the quantities r - w and w - c are independent

of the supply chain decisions (c is the normalized capacity cost if no excess capacity is built)

and represent fixed profits for the respective agents. The steady-state expected normalized

profit per unit time for the risk-neutral retailer (R) and supplier (Ils) in terms of the two

decision variables are given by

HR(S, V) = r - w - CR(s, )' (3)

r- - E[(s- N)+ ] - bE[(N-s)+]

1 - e- VS es
r-w-s+ -oab

and

Is(s, v) = w-c-Cs(s, ) (4)
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= w-c-(1 - a)bE[(V - s)] - cv

= - c(1 + v) - (1-)b -

3 The Centralized Solution

As a reference point for the efficiency of the two-agent system, we start by finding the optimal

solution to the centralized version of the problem, where there is a single decision maker that

simultaneously optimizes the base stock level s and the normalized excess capacity v. The

steady-state expected normalized profit per unit time 1I (defined in terms of the total variable

cost C = CR + CS) for this decision maker is

I(s, v) = ITR(, ) + TS(S, ) (5)

= r-c-C(s,v)

1 - (b + 1)e--s
r - c(l +-) -s+ v

The centralized solution is given in Proposition 1; see the Appendix or the proof.

Proposition 1 If r - c > 2cln(1 + b), then the optimal centralized solution is the unique

solution to the first-order conditions

I(s,)s =0 ys=ln(l+b), (6)
Os

On(s, u) e- Vs 1
av =0 = =o -(b + 1)(vs + 1) 2 + + = 0, (7)

and is given by

v*= ln(1b) and s*= cln(1 + b). (8)
C

The resulting profit is

I(s*, v*) - r-c- 2cln(1 + b). (9)

If r-c < 2/cln(1 + b), then the system generates negative profits and the optimal centralized

solution is to not operate the supply chain.
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By relation (6), the ratio of the base stock level, s, to the supplier's mean queue length,

y-l, satisfies s = ln(1 + b) at optimality, which corresponds to a Pareto frontier for the

selection of s and v. (The corresponding first-order conditions for the discrete inventory

problem is ln(v + 1)s = ln(1 + b), and so our continuous approximation can be viewed as

using the Taylor series approximation ln(v + 1) . v.) Although this ratio is independent

of the capacity cost c, the optimal point on this Pareto frontier depends on c via s = vc

according to (8).

As expected, the optimal capacity level decreases with the capacity cost and increases

with the backorder-to-holding cost ratio b. Similarly, because capacity and safety stock

provide alternative means to avoid backorders, the optimal base stock level increases with

the capacity cost and with the normalized backorder cost b. Finally, as expected, neither

w nor a, play any role in this single-agent optimization, because transfer payments between

the retailer and the supplier do no affect the centralized profit.

4 The Nash Solution

Under the Nash equilibrium concept, the retailer chooses s to maximize IR(S, v), assum-

ing that the supplier chooses v to maximize 1-Is(s, v); likewise, the supplier simultaneously

chooses v to maximize ns(s; v) assuming the retailer chooses s to maximize rIR(S, v). Be-

cause each agent's strategy is a best response to the other's, neither agent is motivated to

depart from this equilibrium.

Our results are most easily presented by deriving the Nash equilibrium in the absence

of participation constraints, which is done in the next proposition, and then incorporating

the participation constraints, nR > 0 and Is > 0. In anticipation of subsequent analysis,

we express the Nash equilibrium in terms of the backorder allocation fraction c. Let us also

define the auxilliary function

f(b) (1- )b(ln(l + ab) + 1)
(1 + ab)ln(1 + b)

8

�F�I__ -- _..-----. ��-���-�ll_-·IIIIXIll_---___�_---�



III

which plays a prominent role in our analysis.

Proposition 2 In the absence of participation constraints, the unique Nash equilibrium is

~ = f(b)v*, (11)

( In(l + b) )* (12)

The resulting profits, FlM(a) and T1;(a), are

n(a) = nIR(S, ) = r- w - s, (13)

(ln(l+acb)+2 cv

Proof: Let s*(v) be the retailer's reaction curve, i.e., the optimal base stock level given a

capacity v installed by the supplier. Because (3) is concave in s, s*(v) is characterized by

the first-order condition

vs*(v) = ln(1 + oab). (15)

Using a similar argument, we find that the supplier's reaction curve v*(s) satisfies

e* (s)s (V*s)s I ) (-)bS2' (16)

The unique solution to (15)-(16) is (11)-(12), and substituting this solution into (3)-(4)

yields (13)-(14). *
Because f,(b) is decreasing in a and ln(1 + ab) is increasing in a for b > 0, it follows that

as a increases, the retailer becomes more concerned with backorders and increases his base

stock level, while the supplier cares less about backorders and builds less excess capacity.

As mentioned previously, we assume that the two agents do not participate in the game

unless their expected normalized profits in (13)-(14) are nonnegative. Hence, if either of these

profits are negative, the Nash equilibrium (in the presence of participation constraints) is an

inoperative supply chain. The remainder of this section is devoted to an analysis of these

profits as a function of a. The supplier's profit II(a) is an increasing function of a that

satisfies

In(0) = w- c- 257, nl* (1) = w- c,
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and rI(a) is a decreasing function of a that satisfies

rI(O0) = r - w, lim Ik(ca) - -oc, (17)

as shown in Figure 1. (Many of the limits taken in this paper, e.g., a - 1, are implicitly

taken to be one-sided.)

r-w

0

w-c-2 b

Figure 1: The retailer's (IIR) and supplier's (Ils) profits in the Nash equilibrium as a function of the

backorder allocation fraction a.

To understand the unbounded retailer losses in (17), note that for the extreme case

a = 1, the supplier does not face any backorder cost and consequently has no incentive to

build excess capacity, i.e, v* = 0. This corresponds to the null recurrent case of a queueing

system with an arrival rate equal to its service rate, and s = co; There is no base stock level

that allows the retailer to maintain finite inventory (backorder plus holding) costs. Hence,

this production-inventory system is unstable when a = 1 and the Nash equilibrium is that

the retailer does not participate, and the supply chain does not operate.

More generally, there exist Camin and cmax such that FIl(a) > 0 and rI(ca) > 0 if and

only if ca E [min, Cmax] That is, the Nash equilibrium is an inoperative supply chain when

a < min or a > max,,. The threshold tma E (0, 1), and solves

- w=ln( + b)(b) ) (18)

10
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If w - c > 2bc, then camin = 0. Otherwise, amin solves

(ln(l +ab) + 2) f (b) s (19)

We have been unable to explicitly solve for amax and cOmin in (18)-(19). However, to

increase our understanding of these two equations, we investigate the solution in two extreme

cases: When backorders are much less costly than holding inventory (b << 1), we have

O -max- F ( -- W)4 +-r(r--w) a2bc (- )2m ( - (20)
2bc ' 4bc

When backorder costs are very large,

(r - w)2 ln(1 + b)c
amax ln(1 + b)c + (r - W)2 Lmin ln(1 + b)c + ( - )2 ' (21)

Even under the assumption r > w > c, it is possible that aVmin > amax in (20)-(21). In this

situation, even though each agent is willing to participate for some values of ac, it is not

possible for the retailer and supplier to simultaneously earn nonnegative profits.

5 Comparison of Solutions

In this section, we compare the centralized solution and the Nash equilibrium with respect

to the total system profit, the agents' decisions, and the consumers of the product.

The Nash equilibrium is inefficient. As in §4, it is convenient to first quantify the

inefficiency of the Nash equilibrium in the absence of participation constraints, and then to

incorporate them later. In the absence of participation constraints, the centralized solution

is not achievable as a Nash equilibrium. By equations (6) and (15), the first-order conditions

are vs* = ln(1 + b) in the centralized solution and s* = ln(1 + ab) in the Nash solution.

Hence, the two solutions are not equal when a < 1, and the Nash equilibrium in the a = 1

case is an unstable system, as discussed earlier.

The magnitude of the inefficiency of a Nash equilibrium is typically quantified by com-

paring the profits under the centralized and Nash solutions. Because the profits r - w and

11
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w - c are fixed in (3)-(4), it is more natural to restrict ourselves to the variable costs. This

assumption also allows us to follow Cachon and Zipkin and compute the competition penalty,

which is defined as the percentage' increase in variable cost of the Nash equilibrium over the

centralized solution. By (5) and (8), the variable cost for the centralized solution is

C(s*, I)= (v) - 1)+ + be- cv* = 2cln(1 + b),

and the variable cost C, associated with the Nash equilibrium in the absence of participation

constraints is, by (3)-(4) and Proposition 2,

C; = CR(S, LC(b)I(l + ) = b) + ln(1 + ab) (b)
f, [ In(l + ab) + 1 In( + b)f,(b)

Hence, the competition penalty in the absence of participation constraints is C-C(s',V*) XC(s*,v*)

100%, where

C -C(S*,v*) 1 (b l In(1 + ab) +2\ ln(1 + b)
C(s*, v*) - 2 fj kjn(1 + cfb) 1 In(ln(1 + b)f(b) (22)

Surprisingly, the competition penalty in (22) is independent of the supplier's cost of excess

capacity. However, this penalty is a function of a and b, and we can simplify equation (22)

for the limiting values of these two parameters. The function f,(b) is decreasing in oa and

fl(b) = 0. Hence, the competition penalty goes to oo as a - 1. At the other extreme,

f,(b) i as or - 0, and the competition penalty in this case is given by

b
n(+b) -1 for b> 0. (23)

This function is increasing and concave in b, approaches zero as b -+ 0 and grows to ooc as

b - oo.

Turning to the backorder cost asymptotics, f (b) - A as b -+ oo, and the competition

penalty approaches
1

-_ 1. (24)
2 (1-or)

This quantity vanishes at ac = 0.5, is symmetric about o '= 0.5, is convex for a E (0, 1), and

approaches oo as a - 0 and a - 1. Finally, for the case b -+ 0, the competition penalty is
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given by

-2- -a c(25)

which is an increasing convex function of a. Consistent with the previous analyses, this

penalty function vanishes as a - 0 and approaches co as a - 1.

In summary, there are two regimes, (a = 0.5, b -+ oo) and (a - 0, b - 0), where the Nash

equilibrium is asymptotically efficient, and two regimes, a - 1 and (a - 0, b -+ oo), where

the inefficiency of the Nash solution is arbitrarily large. However, because equation (22)

does not consider the agents' participation constraints, some of the large inefficiencies in the

latter regimes are not attainable by the supply chain.

To complement these asymptotic results, we compute in Table 1 the competition penalty

in (22) for various values of a and b. Our asymptotic results agree with the numbers around

the four edges of this table. Two new insights emerge from Table 1. First, the competition

penalty is minimized by a near 0.5 when b > 1. Second, the competition penalty appears to

be an increasing function of b for a < 0.5, and a U-shaped function of b for a > 0.5.

Comparison of decision variables. Figure 2 plots the optimal Nash production ca-

pacity v and the optimal Nash base stock level s as a function of a, and allows us to

compare these functions to the centralized solutions, v* and s*. Excess capacity and the

base stock level are alternative ways for the supplier and retailer, respectively, to buffer

against demand uncertainty, and Figure 2 shows that the inefficiency of the Nash solution

does not necessarly imply that these agents have less buffer resources in the Nash solution

than in the centralized solution. For both decision variables, there exist thresholds on the

value of a, denoted by a, and a , in Figure 2, that divide the regions where the agents have

more or less buffer resources than the optimal centralized solution. However, as shown in

the next proposition, at least one agent in the Nash equilibrium possesses less of his buffer

resource than the central planner.

Proposition 3 For ac and c, defined in Figure 2, we have a, > c,.

13
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Table 1: The competition penalty in (22) in the absence of participation constraints for different values of

the backorder-to-holding cost ratio b and the backorder allocation fraction a.

Proof: By Figure 2, if as < a, then there exists & E [, a'] such that v&s! > v*s*. However,

this inequality together with (6) and (15) implies that f(b) = ln(1 + b), i.e., & = 1. But for

a = 1 the supply chain is unstable and does not operate. Hence, vs, < v*s* for c E[0, 1),

and consequently a, > a,. *

We cannot solve for a, and oa, in closed form, except when b takes on a limiting value.

By (12), as satisfies
ln(1 + ab) (9r-1

ln(1 + b)fa(b) - -

As b -+ 0, we have fob(b) -+ 1 -a and ln(l+ab) -+ a. ' Therefore, as b -+ 0, ac satisfies

- 1, or acs = -1 0.618, which is the inverse of the golden-section number that

14

I .aI I I I .

b 0 0.1 0.3 0.5 0.7 0.9 1

10-3 0.0% 0.2% 1.6% 6.1% 18.7% 73.9% oo%

1 20.1% 14.8% 7.8% 5.9% 12.9% 59.5% oo%

2 34.9% 23.8% 10.7% 5.8% 11.1% 56.1% oo%

3 47.1% 30.1% 12.3% 5.6% 10.2% 54.8% oo%

4 57.6% 34.9% 13.3% 5.4% 9.6% 54.1% oo%

5 67.0% 38.7% 14.0% 5.3% 9.2% 53.8% oo%

6 75.6% 41.7% 14.5% 5.2% 9.0% 53.6% oc%

7 83.5% 44.3% 14.9% 5.1% 8.8% 53.5% oo%

8 90.8% 46.4% 15.2% 5.0% 8.7% 53.5% oo%

9 97.7% 48.3% 15.4% 4.9% 8.5% 53.5% oo%

10 104.2% 49.9% 15.6% 4.8% 8.4% 53.5% oo%

10200 4.6 x 10100% 66.7% 9.2% 0.0% 9.1% 66.5% oo%

111



0 aV 1 0 S . 1

Figure 2: The optimal Nash production capacity () and the optimal Nash base stock level (s*) as a

function of the backorder allocation fraction a. The centralized solutions are v* and s*.

arises in a variety of disciplines (e.g., Vajda 1989). As b -+ oc, we have f(b) - , and

n(1+ab) In this case, a, satisfies = , or a, = 0.5. Numerical computations reveal
in(l+b) t 1-

that a, is unimodal in b, achieving a maximum of 0.627 at b = 1.48, and is rather insensitive

to moderate values of b (e.g., a, > 0.61 for b E [1, 10]).

By (11), c, solves fa(b) = 1. As b --+ 0, this condition becomes /1 - a = 1, which gives

a, = 0. As b -+ oc, the condition becomes 1 = 1, which is solved by c, = 0.5. Note that

a,= -a, = 0.5 as b -+ oo is consistent with our previous claim that the Nash equilibrium is

asymptotically efficient in the regime ( = 0.5, b -+ oc). A numerical study reveals that c,

is more sensitive than a, to the value of b. As b varies from 1 to 10, a, ranges from 0.28 to

0.49.

Customer service level. The exponential distribution of the queue length implies that

the steady-state probability that a customer is forced to wait because of retailer shortages

is equal to Pr(N > s) = e-"s; hence, we refer to e- s x 100% as the service level. By

equations (6) and (15), this quantity equals (1 +b) - in the centralized solution and (l+ ab) - l

in the Nash solution. Hence, customers receive better service in the centralized solution than

in the Nash equilibrium. Even though the system is not stable for a = 1, customers generally

15



desire a larger value of a; i.e., they prefer that the penalty for shortages be absorbed primarily

by the agent in direct contact with them.

6 Contracts

WVe showed in §5 that the Nash equilibrium is always inefficient when the supply chain

operates. In this section, we construct a coordinating contract that specifies linear tranfer

payments based on retailer inventory and backorder levels, the capacity level and the cost

parameters. As in our earlier analysis, this information is assumed to be common knowledge.

Cachon and Zipkin also use a linear transfer payment based on inventory levels to coordinate

their supply chain, and readers are referred to §1.5 of Cachon for a survey of alternative types

of contracts in the multi-echelon inventory setting. We do not impose an explicit constraint

that forces either agent to build a predefined level of its buffer resource. Using Cachon and

Lariviere's (1997) terminology, we assume a voluntary compliance regime, where both the

retailer and the supplier choose their buffer resource levels to maximize their own profits.

Although we have used profit maximization thus far, because the revenues are fixed our

presentation of the contract analysis is simpler - and perhaps more natural - in the setting

of variable cost minimization. Consequently, we first present the contract in the absence of

participation constraints, and at the end of this section we incorporate the revenues via the

agents' participation constraints. Because the model contains three cost components, the

most general linear transfer payment (without loss of generality, the payment is from the

supplier to the retailer) contains cost coefficients for the holding cost, backorder cost and

capacity cost, which are denoted by 'Yh, Yb and yc, respectively. The steady-state expected

normalized (recall from (1) that h = 1) transfer payment per unit time is given by

T(s, v) = y, (E[(s - N)+]) + thb (bE[(N - s)+]) + tccv. (27)

This transfer payment modifies the profit functions in (3)-(4) for the retailer and supplier,
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respectively, to

CR(S, ) = CR(s, ) -T(s,V) = (1 -Ah) + b(a -b)- -- , (28)

CS(S, Cs(S, v) T(s, ) = C(yh, ) + T(, ) = - + b( - + b)- + ( + c)cv. (29)

The following proposition provides a general result for the coordination of static games with

additive utility structures, and may be applicable to other supply chain problems.

Proposition 4 Consider a static game with n players, where player i has action space Xi

for i = 1,..., n. For any action x E X 1 x X 2 X ... X X,, the utility of player i is given

by ui(x). The utility function for the centralized planner problem is EnI= ui(x), and let

x* E argmaxx EnLI ui(x) be an optimal centralized solution. For i =A j, let Tij(x) be a linear

transfer payment that player i pays to player j if the action is x. If Tij(x) = yjui(x), where

Ej- yj = 1, then x* is a Nash equilibrium of the modified static game in which player i's

utility function is given by

Ui( ) = ui() - E Ti(x) + E Tji(x).
jfi j~i

Proof: By our assumptions on Tij(x), the modified utility function for player i can be

written as

iii(Z) = (1 - EYj)Ui(Z) + -tYi uj(x) (30)
ji ii

N

= i E j(x). (31)
j=1

Hence, " i_1 i(x) = 5i=l ui(x), and x* is a Nash equilibrium of the modified game. I

Applying Proposition 4 to equations (28)-(29) shows that coordination in the absence of

participation constraints can be achieved if

-YC = - Yb = 1 - h (32)

A comparison of equations (3)-(4) and (28)-(29) implies that the modified cost functions are

given by

CR(s, v) = (1 -Yh)C(, ), CS(S, v) = YhC(s, V). (33)
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This is a consequence of the more general result in (31), which shows that any split of the

total profit is possible by selecting appropiate values of the {yi} parameters. Note that 7h

need not be in the interval [0, 1].

Although we appear to have a degree of freedom in splitting the profits via Yh, two

conditions must be met by ah to guarantee that both agents will enter into the contract.

First, both agents must be better off under the Nash equilibrium with the transfer payments

than under the Nash equilibrium without the transfer payments, i.e.,

CR(S,, V') > (1 - h)C(S, V),

Cs(s> ) > AC(S ,) .

This condition can be rewritten as a/h E [(b), 7a(b)], where

ln(1 + b)
%(b) = 1 2 ln(1 + b)f,(b)'

a(b) - f,(b) (ln(1 + ab) + 2
2 In(l +ab)+l 

The second condition on ah requires that both agents achieve a nonnegative profit. The

resulting inequalities can be calculated using equations (3)-(4), (9) and (28)-(29). Combin-

ing these two conditions, we can characterize the range of coordinating contracts that are

attractive to both agents as

max -cln(+b) (b) h < min 2cln( +b)(b) (34)

If condition (34) is satisfied, we say that the system can be coordinated (by the contract),

and the remainder of this section is devoted to an analysis of this condition. First we note

that it is always possible to coordinate the system if both agents are willing to participate

in the Nash equilibrium in §4. This conclusion stems from the fact that if both players are

willing to participate in the Nash equilibrium, then the additional profits from the centralized

solution can be split so that each agent is still willing to participate and is at least as well

off as in the Nash solution. Hence, the nontrivial cases to analyze are a E [0, cOmin) and
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a E (max, 1]; recall that these two thresholds characterize the participation constraints in

the Nash equilibrium and are defined in (18)-(19).

WVe can analyze (34) when a approaches one of its extreme values. As a -+ 0, we have

_y(b) -+1 and 7a(b) - ln(1 + ) (35)

Thus, because a -+ 0 implies that a < , equation (34) reduces to

Yh min 2/cln(l+b) ln(lb)(36)

If w - c > 2b, then the second term in the brackets in (36) achieves the minimum, and

the interval in (36) is nonempty because b > ln(1 + b) for b > 0. Because f(b) /ln(b)

as a - 0, the inequality w - c 2 can be recognized as the supplier's participation

constraint in (19) in the a - 0 case. If, on the other hand, w - c < 2v/, then (36) reduces

to

27cln( + b)2 <Zn lC~b (37)
By (9), the interval in (37) is nonempty if and only if rI(s*, *) > r - w.

To summarize, when the supplier absorbs almost all of the backorder cost (i.e., a - O0), a

coordinating contract is always possible if the supplier is willing to participate in the absence

of the contract (i.e., w - c > 2). If the centralized system profit Il(s*, v*) is less than

the retailer's fixed profit, r - w, then the supplier will not enter into the contract. Most

interesting is the intermediate case, w - c E (2 cln(1 + b), 2/-), where the system profit

is bigger than the retailer's fixed profit, but the supplier is unwilling to participate in the

absence of a contract. Here, the excess system profit enables the contract to entice the

supplier to participate in the supply chain.

Turning to the a - 1 case, we have f(b) -+ 0 and therefore 7To(b) - -oo and ,y(b) - 0.

Thus, condition (34) reduces to

r -- W
1- r - < Yh < 0, (38)

2 cln( + b)
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Equation (9) shows that the interval in (38) is nonempty if and only if HI(s*, v*) > w - c.

Hence, when the retailer incurs almost all of the backorder cost, the contract is attractive to

both parties if and only if the centralized system profit exceeds the supplier's fixed profit,

w - c. In this case, the contract coefficient ah < 0, and (33) implies that Cs(S, v) < 0; i.e.,

the retailer subsidizes the supplier's entire operation.

The analysis is more difficult in the general case, E (0, amin) U (max, 1). Here, we

consider the extreme values of b. As b -+ oo, (b) - 1 -1 and '%(b) - 2-

Even though (b) < Ca(b) for ao E [0, 1] in this case (this can be derived with the change of

variable x = x/-), neither of these quantities are binding in (34), and coordination becomes

impossible because the lower bound in (34) is at least 1 and the upper bound in (34) goes

to 0. In contrast, as b -- 0, _(b) and 5Y(b) are binding in (34), and _ (b) -+ 1 - and

%(b) - /- c- . Because 1 - < 1- c for a E [0, 1], coordination is always possible

as b - 0.

In conclusion, system coordination is most difficult when c takes on an extreme value. We

can show (the proof is omitted, but the result follows from our analyses of the o - 0 and a -+

1 cases) that a sufficient (but not necessary) condition for coordination is that the optimal

centralized profit exceeds the fixed profits of both agents, I (s*, v*) > max {r - w, w - c}.

Moreover, if we consider w as endogenous, then the likelihood of coordination is maximized

by minimizing the right side of this inequality. This is achieved by w = (r + c)/2, which

splits the fixed profits evenly. By (9), coordination is always possible in this case if r - c >

4 /cln(1 + b).

7 The Stackelberg Games

We conclude our study of this two-stage supply chain by considering the case where one

agent dominates.

Supplier's Stackelberg game. When the supplier is the Stackelberg leader, he chooses

v to optimize IIs(s, v) in (4), given the retailer's best response, s*(v) in (15). This straight-
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forward computation leads to the following proposition.

Proposition 5 In the absence of.participation constraints, the equilibrium in the supplier's

Stackelberg game is

5s5- 1 + n ( +1 + ln(1 + b)39)

The agents' profits are

(1- )bc
Is(s,, ~) = w - c - 2 (-)b ' YR(sa, ip) = r -w-S. (40)'IS W - 2 1 + c4b ' '

Equation (39) implies that vas = v s, and hence the customer service level is the

same under the Stackelberg and Nash equilibria. Because the first-order conditions of the

centralized problem dictate the service level, it also follows that the Stackelberg equilibrium

is inefficient relative to the centralized solution. Not surprisingly, the supplier builds less

capacity and the retailer holds more safety stock in (39) than in the Nash equilibrium. The

discrepancy between the Stackelberg and Nash solutions increases as a and b increase.

Now we compare the profit of each agent and the entire system under the Nash and

Stackelberg equilibria. By (14), the supplier's profit in the Nash equilibrium can be written

as

_s(s, (1 - c)bc ln(1+ b)+ 2
1 + b 2 n(1 + b)+ 1

The function 2 is strictly increasing in [0, c), and is equal to 1 when x = 0. Thus,

it is always the case that nS(9, vP) > s(s*, v); this is to be expected, because the sup-

plier incorporates the retailer's best response when selecting his level of capacity. However,

Is(Oa, Pa) = FIs(s, v,,) when a = 0, a = 1 or b = 0, and so the supplier does not benefit

from being the leader in these extreme cases.

By (13) and (39), the difference in the retailer's profit between the Nash equilibrium and

the Stackelberg equilibrium is

1R(s, zV) - R(9, Pa) -s (1+ + ln(1 + ab) - 1) . (41)
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As expected, the retailer is worse off in the supplier's Stackelberg equilibrium than in the

Nash equilibrium. By (8), (10), (12) and (41), the reduction in the retailer's profit from

being the follower vanishes as a -4 0 and b - 0, and increases with ac and b.

A comparison of the total system profit shows that HIR(S., ve)+IIs(sf, vo) > R(a, va)+

Is (s, i,) if and only if

(1 + b) In( + b)
(1 - i ab)ln( b)- 1 + ln(1 + cab) + 1 > O. (42)

(1-a)b

Condition (42) holds for large values of ac, but is not true in general. Because the left side

of (42) equals zero when a = O0, is increasing in a > a if it is increasing in a at ao, and

has a derivative with respect to ca equal to 1 - when a = 0, we conclude that for b 2

the Nash solution achieves a higher system profit than the Stackelberg equilibrium for any

value of a. If b > 2, the Nash solution is more efficient if and only if a > o, where is the

unique positive value of a that solves (42) with equality.

Now we turn to the participation constraints. We start with the follower (i.e., the retailer)

because he performs the inner maximization in this game. By (8), (10), (12) and (39), we

can express the optimal Stackelberg base stock level as

s, = ln(l + b) (1 + ab)
(1 - a)b'

Hence, it follows from (40) that the retailer's participation constraint, rIR(, Ma) > 0, is

equivalent to

(r-w) - > ln(1 + ab) 1-. (43)
c- 

The right side of (43) is increasing in a > 0, and so there exists a threshold, call it ,,max, such

that the participation constraint is satisfied if and only if a < dmax (i.e., max solves (43)

with equality). For future reference, let us also define the threshold

4bc - (w - c) 2

aemin = 4bc + b(w - c) 2 ' (44)

The supplier's profit -i(S, Ma) in (40) is nonnegative if and only if a > dmin.
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There are three cases to examine: a > max, a E [min, dmrax] and a < cmin. If ca > dmax

then the retailer's participation constraint is violated. To avoid an inoperative supply chain,

which would give zero profits to both agents, the supplier - as the leader - has the luxury of

selecting a capacity level that raises the retailer's expected profit to zero. That is, by (15)

the supplier chooses v, = tn(1+b), and the retailer subsequently selects s. = r - w. If the

supplier's resulting profit (see (4)) is nonnegative, i.e.,

w-c- (r-w)(1-a)b ln( + b)c > 0, (45)
(1 + ab) ln(1 + ab) r-w

then this is the supplier's Stackelberg equilibrium for the a > emax. If (45) is violated, then

the equilibrium is an inoperative supply chain.

In the second case, a E [min7, max], both participation constraints are satisfied and the

Stackelberg equilibrium is given by (39). In the last case, a < amin, the supplier is unable

to earn a nonnegative expected profit, and decides not to participate. Finally; as in §4, it is

possible that kmin > kmax; in this case, there is no value of a that simultaneously provides

nonnegative profits for both agents. For brevity's sake, we do not pursue asymptotics for

amin and dmax-

Retailer's Stackelberg game. The Stackelberg problem is less tractable when the

retailer is the leader. However, the following proposition (see the Appendix for a proof)

characterizes the solution.

Proposition 6 Let (ii, s) be the equilibirum when the retailer is the Stackelberg leader in

the absence of participation constraints. Define p > 0 to be the unique nonnegative solution

of

/32 + (3 + 2) (- e- ( - s 0)) = O. (46)

Then the Stackelberg solution is

(1 - a)b(P + 1)e - P (47)
C a
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Although we do not have a closed-form solution to the retailer's Stackelberg game, the

next proposition (see the Appendix for a proof) provides a comparison between this equilib-

rium and the Nash equilibrium.

Proposition 7 The following five inequalities hold:

v ~*V < so, (48)

v, _ v>, (49)

s < s3t, (50)

nR(So, Va) > UR(Sa V), (51)

Is(Oa, i1') < Rs(,, vo). (52)

While inequalities (49)-(52) mirror our results for the supplier Stackelberg game, in-

equality (48) states that the customer service level, e x 100%, is lower in the retailer's

Stackelberg equilibrium than in the supplier's Stackelberg equilibrium (and the Nash equi-

librium). Inequality (48) also implies that the retailer Stackelberg equilibrium is inefficient

relative to the centralized solution. Analytical approximations (using e -x - I - x in (46))

and numerical computations reveal that when the service level is close to 0 or 100%, both

Stackelberg games have asymptotically the same service level. The maximum difference is

approximately 9.5%, and is achieved when the service level is 76.0% for the supplier's Stack-

elberg game and 66.5% for the retailer's Stackelberg game. In a more practical example, if

the supplier's Stackelberg service level is 90.0% then the retailer's Stackelberg service level

is approximately 82%. Hence, the deterioration in customer service is not trivial.

Finally, numerical experiments under a wide range of values for a and b suggest that

the retailer's Stackelberg game achieves a higher total profit than the supplier's Stackelberg

game. However, we have been unable to provide a proof.
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8 Concluding Remarks

The distinguishing feature of our simple supply chain model is that congestion at the sup-

plier's manufacturing facility is explicitly captured via a single-server queue. Each agent has

a resource at his disposal (the supplier chooses the capacity level and the retailer chooses the

base stock level) that buffers against expensive backorders of the retailer's inventory. When

the inventory backorder cost is incurred entirely by the retailer (i.e., the backorder allocation

fraction a = 1), the supplier has no incentive to build any excess capacity, which leads to

system instability. When the supplier incurs some backorder cost ( E [0, 1)), there is a

unique Nash equilibrium in the absence of participation constraints. The Nash equilibrium

is always inefficient: The agents' selfish behavior degrades overall system performance. The

Nash equilibrium is asymptotically efficient in two cases: (i) The backorder cost goes to zero

and the retailer is not charged for backorders, and (ii) the backorder cost goes to infinity and

is split evenly between the two agents. In the absence of participation constraints, the Nash

equilibrium has an arbitrarily high inefficiency in two cases: (i) The backorder cost goes to

infinity and the supplier incurs all of the backorder cost, and (ii) the retailer incurs all of the

backorder cost. Relative to the centralized solution, the agents in the Nash equilibrium have

more buffer resources when they care sufficiently about backorders: The supplier builds more

capacity than optimal when c < a, (and c, > 0.28 if backorders are more expensive than

holding inventory) and the retailer has a larger than optimal base stock level when c > 0.63

(and in some cases, an even smaller threshold). However, at least one of the agents in the

Nash equilibrium holds a lower-than-optimal level of his buffer resource. Finally, customers

receive better service in the centralized solution than in the Nash equilibrium, and customer

service improves in the Nash setting when the retailer incurs most - but not all - of the

backorder cost.

We assume that the agents only participate if their expected profits are nonnegative. In

the Nash equilibrium, the retailer refuses to participate when a gets sufficiently large (the

inventory costs become arbitrarily large when c = 1), and the supplier may also (depending
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on the cost and revenue parameters) refuse to participate when a gets too small. A simple

linear transfer payment, which is based on actual inventory and backorder levels, the ca-

pacity level and the cost parameters, coordinates the system in the absence of participation

constraints. We derive bounds on oa for when the coordinating contract is attractive to both

parties, in that each agent achieves a nonnegative profit that is no smaller than his Nash

equilibrium profit. There are values of ct for which the contract will lead to the operation of

an otherwise inoperative supply chain; i.e., the extra system profit generated by the contract

is sufficient to entice the nonparticipating agent into playing. Overall, we find that a contract

is more likely to be entered into by both agents when the system is reasonably profitable

(i.e., the optimal profit of the centralized system is large) and relatively well-balanced (i.e.,

a is near 0.5 and the wholesale price w is intermediate between the retailer's selling price r

and the supplier's manufacturing cost c). Finally, when one of the agents is the Stackelberg

leader, he builds less of his buffer resource and receives a higher profit than in the Nash

equilibrium, and the other agent builds more of his buffer resource and receives a smaller

profit. Customer service is the same in the Nash equilibrium as when the supplier is the

Stackelberg leader, but customers fare worse when the retailer is the leader.

Recall that our model is quite similar to the two-stage inventory model of Cachon and

Zipkin: The two main differences are the single-server vs. infinite-server model for the

manufacturing process, and our inclusion of revenue, and hence participation constraints. A

key difference in the results of the two models occurs in the a = 1 case. When the supplier

does not care about retailer backorders, he builds no excess capacity in our queueing model,

whereas he holds no inventory in Cachon and Zipkin's inventory model. The effect of the

former is an unstable system, while the effect of the latter is to turn the supply chain into a

stable - albeit ineffective - make-to-order system. In Cachon and Zipkin's echelon inventory

game, the Nash solution is indeed highly inefficient when a = 1, but in the local inventory

game the median inefficiency in their computational study is only 1%. When a = 1 in

the local inventory game, the supplier's base stock level offers him little control over the

system's cost, whereas the capacity level in our model affects the entire system in a more
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profound way. On the other hand, both models predict that the inefficiency is small when

the backorder costs are shared equally. Another qualitative difference between our models

is that Cachon and Zipkin's agents hold less inventory in the Nash equilibrium than in

the centralized solution, whereas our agents build/hold a higher-than-optimal level of their

buffer resource when their share of the backorder cost is large. Again, this may be due to the

larger nonlinear effect that capacity has in a make-to-stock queue relative to the upstream

inventory in a two-stage inventory model.

In our view, the make-to-stock queue is an attractive operations management model

to embed into a game-theoretic framework. The model is in most ways richer than the

newsvendor model and is about as complex as - but considerably more tractable than - a

two-stage Clark-Scarf model. It also allows us to capture the nonlinear effect of capacity

and the impact of the retailer's order process on the supplier's lead times. Of course, none

of these models attempt to mimic the complexities of an actual supply chain. Nevertheless,

to the extent that queueing effects are present in manufacturers' production facilities, the

make-to-stock queue is a parsimonious and tractable model for deriving new insights into

multi-agent models for supply chain management.
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Appendix

Proof of Proposition 1. The function rI(s, ) defined in (5) is continuously differen-

tiable and bounded above by Ar in X = (s, v) I s > 0, v > 0}. Thus, a global maximum is

either a local interior maximum that satisfies the first-order conditions or an element of the

boundary of X; alternatively, there could be no global maximum if the function increases as

s -+ oo or v -+ co.

However, we have checked that limo,,, I(s, u) - -oo for > 0, and lim -oo I(s, v) -

-oo for s > 0, which implies that a global maximum exists. From the first-order condi-

tions (6) and (7), the only interior point that is a candidate for the global maximum is
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(s*, v*). In addition, the Hessian of YI(s, v) at (s*, v*) is given by

H(s*, v*) =-(
v* S*

S* c(ln(l+b)+2)
V

Because ln(1 + b) > 0 for b > 0, the Hessian is negative definite and (s*, v*) is the unique

local maximum in the interior of X. The resulting profit is FI(s*, v*) = r-c- 2 cln(1 + b).

Finally, lim,,o H(s, v) -+ -oo for s > 0, and

n(0, v) = r - - - + cv < r - - 247b < (s*, *)
I/

Thus, (s*, v*) is the unique global maximum for Il(s, v).

Proof of Proposition 6.

for v > 0, b > 0.

I

To derive the Stackelberg equilibrium, we find it convenient

to define

/ = vs, (53)

and rewrite the supplier's reaction curve (16) as

e = C-P P2 -(1- a)bs2 ' (54)

The one-to-one correspondence between the base stock level s and the service level parameter

/3 (recall that the service level is e- : x 100%) allows the retailer in this Stackelberg game to

choose p rather than s. By (3) and (53), the retailer's profit is

nR(, ) =r-w- ( / - 1 + (1 + ab)e-)
vy

(55)

Solving (54) for s and using (53) gives

(56)vP(/) = (I - )b( + )e-3
¢

Substituting (56) into (55) yields the retailer's profit as the following concave function of

P > 0:

R() = r-w - 1-)b
- + (1 + b)e-U

(/3- (/3+ I)e- }
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Therefore, the first-order condition

32 ( + 2)(1 - (1 + b)e- 3) 
$ -/3 =0 (58)

2( + 1)3 e 

is sufficient for optimality. Because 1 + arb = es a; and the denominator of (58) is always

positive, condition (58) is equivalent to (46). Hence, by (46), (53) and (56), the Stackelberg

equilibrium is given by (46)-(47). *

Proof of Proposition 7. To prove (48), note that the left side of (46) is positive if

> vs*. Thus, the root p of (46) must satisfy < vs*,- i.e., Id< < v*s.

To show that > v and s9 < s, we first observe that v(s) = argmax>o {fIIR(s, v)}

and a2 IR(SV) = (1a )bse- v5 < 0. Thus (e.g., Chapter 2 of Topkis 1998), 1IR(S, v) satisfies

the decreasing difference property,

d(s)< . (59)
ds -

In addition, the function e-(P3 + 1)/2 is decreasing in > 0. Hence, from (54) and

inequality (48), we conclude that , _ s< . Finally, (59) and so < s implies that v,> > v,.

The retailer's profit in (57) is a decreasing function of for , > 3 /. Hence, inequality (51)

follows from (48). To prove (52), i.e., Ils(P*, v) > Iis(/, i<), we first use (4) to rewrite the

supplier's profit as

Is(, v)= w-c( + 1)-(1 - a)be-).

The function 1Is(/, v) is increasing in for v > 0, and so inequality (48) implies that

fIs(P3*, Pa) > s(/, Pa). Hence the proof of (52) will follow if we can show that Is(/*, v,) >

FIs(/*, va). For any fixed nonnegative 3, the function Is(, v) is concave in v, achieves its

only maximum at v(/) = (L-a)be and is decreasing for v E [v(3), oo). In particular, we

have v(/*) = (- < X/1 + ln(1+ ab)= This inequality and (49) imply that) c(l+) whic(+h completes the proof of (52). b)

Hs(/*, i,~) > Ils(E*, P), which completes the proof of (52). I
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