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Abstract

A simple mathematical model is developed for determining the time-varying fraction

of senescent cells in culture in terms of the underlying probability distribution of the number

of population doublings until senescence. This functional relationship is inverted, which al-

lows for the estimation of the probability distribution of the number of population doublings

until senescence given experimental data on the time-varying fraction of senescent cells. The

relationship - in particular, the lag - between these two quantities is analyzed under the

assumption that the number of population doublings until senescence follows the Weibull

distribution. If the number of population doublings until senescence is geometrically dis-

tributed (i.e., the Weibull with shape parameter equal to one) then the cell culture appears

immortal.
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A measurement goal of many in vitro studies is the number of population doublings

until replicative senescence [1]. Typically, this random quantity is not quantified directly,

but is estimated via the time-varying fraction of cells in culture that are incapable of fur-

ther proliferation. This paper develops and analyzes a simple mathematical model of the

relationship between these two quantities. We construct the probability distribution for the

number of population doublings until senescence from the time-varying fraction of senescent

cells, and explore the implications of assuming that the number of population doublings until

senescence takes on certain common probability distributions (uniform or Weibull).

Materials and Methods

The mathematical model tracks the population dynamics of cells in culture. Inter-

generation times are assumed to be constant and identical for all cells, giving rise to a

totally synchronized system that evolves in discrete time. Time is indexed by the generation

number n, and N replicating cells are initially present in generation n = 0. In generation

n = 1, 2,..., all replicating cells from the previous generation divide into two cells, and each

daughter cell is (independently of one another) a replicating cell with probability 1-hn and

is a senescent cell with probability hn, where ho = 0. Senescent cells are incapable of further

proliferation. Let pn be the probability that a cell divides in generations 0,..., n - 1, and

fails to divide thereafter; we refer to the probability mass function pn., n = 1,...} as the

senescence time distribution. The probabilities p, and the hazard rates hn are related via

n-1

p = hn (1- hi). (1)
i=O

Let Rn be the number of replicating cells and Sn be the number of senescent cells at

time (i.e., generation) n. Then the stochastic process (R, Sn) is a two-type decomposable

Galton-Watson branching process [2]. The expected values of these quantities are given by

n n i-1

E[Rn1 = N2n (1-hi) and E[S] = NZ2hi l(1-hj). (2)
i=1 i=1 j=1
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The primary quantity of interest is the mean.fraction of cells that are senescent in generation

n, E[s '-]. We approximate this quantity by the ratio of the means,

E[Sn] _Eni 2ihi -'1(1 - hj)
fl-f = - 1 (3)E[Rn] +E[Sn] El=l 2ihi =j1 - hj) +2n II=(1 - hi)

and refer to f, as the fraction of senescent cells. This approximation should be quite accurate

because of the large number of cells typically involved. Figure 1 depicts the quantities p,

and f, for a hypothetical example. The goal of our analysis is to understand the relationship

between the p,'s in (1) and the f,'s in (3).

Results

Equation (3) is a triangular system of equations, and hence can be inverted to solve

for the hn's in terms of the f's. This inversion yields

hl =fi, (4)

2fn - fn-lfn-- fn-x
h, = 2f - fn-1f ) for n = 2, 4, 6,..., (5)

and

fn(4 - 2fn-2 - 2fn-1 + fn-2fn-1) - fn-1(2- fn-2) for n 3 5 7 (6)
2(2 - fn-2 - 2f.-1 + fn-2fn-1)

Substituting (4)-(6) into (1) gives an explicit but complex expression for the pn's in terms

of the fn's.

Because it is difficult to obtain any general insights from equations (4)-(6), we now let

pn take on an assumed form, and derive the resulting fraction of senescent cells, fn. Perhaps

the simplest case is to suppose that the cell senescence time is uniformly distributed on the

integers between a and b. Then p, = b-1 for n = a,..., b, and hn = b-1 for n = a,..., b.

It follows from equation (3) that

2n-a+l - 1 2
fn = 2a- 2- for large n. (7)

2n - + l - 1 + 2n-a(b - n) 2 + b - n
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Note that f, is increasing and convex in n for n < b, and all cells are senescent by time b. To

assess the lag between pn and fn, we compute two quantities. The first quantity is f(a+b)/2,

which is the: fraction of senescent cells at the mean senescence time. The second quantity

is the generation no.5 such that fno.5 = 0.5; i.e., the generation when 50% of the cells are

senescent. Using the approximation in (7), we get

f(a+b)/2 2 2 (8)

where w = a is the half width of the uniform interval, and

no.5 b- 2. (9)

As a hypothetical example, suppose that the number of population doublings for human

embyonic fibroblasts is uniform between a = 50 and b = 70. Then, as shown in Figure 2,

there is a significant lag in the observed fraction of senescent cells: f6o 0 0.167 and no.5 = 68.

A more appropriate senescence time distribution is the Weibull, which is the most

popular parametric family of distributions in survival analysis [3] and failure analysis [4].

The discrete-time version of this distribution has probability mass function pn = O(n- l) -n

and hazard rate h = 1 - an - ( n- l) for n = 1,... [5]. This distribution is characterized

by the shape parameter a and the scale parameter 0, where a > 0 and 0 < 0 < 1. The

special case a = 1 is the geometric distribution, which is the discrete-time counterpart to

the exponential distribution, with constant hazard rate 1 - 8. More generally, the hazard

rate is monotone increasing (decreasing, respectively) in n for a > 1 (a < 1, respectively).

The mean senescence time under the Weibull assumption is

00
E ia. (10)
i=O

Figure 3 displays the discrete Weibull distribution for several different values of a. The

WVeibull's popularity stems from its flexibility in describing a variety of behaviors.
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Using equation (3), we find that the fraction of senescent cells is given by

If = i- + En- 2 (11)

If = 1 then E[n] = (1- )-1 and f converges to 2(1- ) as n gets large, as long as > 0.5

(i.e., the mean senescence time is greater than two generations). For example, if 0 = 0.98

(the mean senescence time is 50 generations) then fi = 0.020, f2 = 0.030, f3 = 0.035,

fs = 0.039, and the asymptotic limit of 0.04 is approached very quickly. If a > 1 then fn

in (11) converges to 1 as n gets large. However, the convergence can be slow if the shape

parameter a is sufficiently small, as shown in Figure 4.

Discussion

This paper is concerned with estimating the probability distribution of the number of

population doublings until replicative senescence (referred to here as the senescence time)

from experimental data on the time-varying fraction of cells in culture that are senescent. If

all cells in a culture had the same senescence time then the percentage of senescent cells would

instantaneously shift from 0% to 100%. In this case, the estimation problem is trivial. How-

ever, many factors (e.g., environmental conditions, growth factors, cell-to-cell interactions,

intrinsic ageing) affect the proliferative behavior of cells, resulting in some heterogeneity in

the senescence time. This variation among cells complicates the relationship between the

senescence time distribution and the time-varying fraction of senescent cells. More specifi-

cally, the fundamental asymmetry involved - the senescent cells do not repopulate whereas

the nonsenescent cells proliferate exponentially - causes the fraction of senescent cells to

lag behind the senescence time distribution. This lag has not been well quantified and may

be underestimated (due to the highly nonlinear nature of the asymmetry) by experimental

researchers.

From a pragmatic standpoint, our results (see equations (1) and (4)-(6)) can be used
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to construct a probability mass function for the senescence time from experimental data that

dynamically tracks the fraction of senescent cells. However, the nature of the lag between

these two key quantities is more effectively elucidated by making probabilistic assumptions

about the senescence time distribution and analyzing the resulting fraction of senescent

cells. If the senescence time is uniformly distributed then the lag is easily quantified (see

equations (8) and (9)) and can be significant; i.e., the percentage of senescent cells at the

mean senescence time can be considerably less than 50%. Because the uniform distribution

is unlikely to provide a good fit to experimental data, we also considered the discrete time

version of the Weibull distribution, which is a very flexible family of distributions that is

widely used to measure lifetimes in medical and industrial settings.

Our most interesting result shows that if the senescence time is geometrically dis-

tributed (i.e., a discrete Weibull with shape parameter one) then the fraction of senescent

cells rapidly converges to two divided by the mean senescence time; hence, if the mean senes-

cence time was 50 generations then the fraction of senescent cells would peak at 0.04, which

may be below the level of detection; i.e., these cells would appear immortal. More generally,

although the fraction of senescent cells converges to 1 for the discrete Weibull distribution

with shape parameter greater than 1, convergence can be slow if the shape parameter is not

large.

While some studies have suggested that cells, before differentiation into somatic and

germ cells, are capable of unlimited proliferation in culture, these results have been criticized

and remain controversial (see [11 for a review). Our analysis may shed some light on this

controversy, by showing that immortality can be achieved by somewhat modest heterogeneity

(more specifically, by the exponentially decaying right tail) among cells in their senescence

times.

Our mathematical model contains two simplifying assumptions. The most restrictive
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assumption is that all intergeneration times. are constant. There is evidence (summarized

in [1]) that the reduction in cell proliferation is due not only to an increasing fraction of

cells that are incapable of dividing, but also to progressively larger intergeneration times

as cells age. If the elongation of intergeneration times varied deterministically in time (it

appears to be roughly linear in the generation number in Figure 2 of [7]), then one can

simply translate time into generation number and use our results directly. However, if

intergeneration times elongate in a variable manner - as suggested in [7] - then a more

complicated continuous-time branching process model would be required to determine the

relative impact of larger intergeneration times and increasing fractions of nonreplicating

cells on the declining proliferative capacity of cells in culture. Our model also ignores the

subcultivation that typically occurs during the early stages of cell culture experiments. If

some of the senescent cells are not successfully transplanted during the replating process

then an underestimation of the fraction of senescent cells and an overestimation of the lag

between this quantity and the senescence time distribution will occur.

Despite these two shortcomings of the model, our analysis suggests that the lag be-

tween the fraction of senescent cells and the time to replicative senescence may be larger

than previously thought, and shows how an exponential right tail in the senescence time

distribution could, in theory, generate an immortal culture.
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Figure 1. Figure (a) contains the probability mass function p for the number of generations

until senescence. Given Pn, the fraction of senescent cells in culture is shown in Figure (b).
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Figure 2. The lag. between p , and f,, where p, is uniformly distributed between 50 and 70

population doublings. Only one out of six cells are senescent at the mean senescence time

(generation 60), and it is not until generation 68 that 50% of the cells become senescent.
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Figure 3. The probability mass function p, of the discrete Weibull' distribution with

various shape parameter values o, scaled so that the mean is 60 generations.
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