
Domain-Independent Exception Handling Services That
Increase Robustness in Open Multi-Agent Systems

Mark Klein and Chrysanthos Dellarocas

CCS WP #211 SWP # 4115

May 2000

Domain-Independent Exception Handling Services That Increase
Robustness in Open Multi-Agent Systems'

MARK KLEIN, PHD
Centerfor Coordination Science
Massachusetts Institute of Technology
m_klein@mit.edu
http://ccs.mit.edu/klein/

CHRYSANTHOS DELLAROCAS, PHD
Sloan School of Management
Massachusetts Institute of Technology
dell@mit.edu
http://mit.ccs.edu/dell/

Abstract. A critical challenge to creating effective multi-agent systems is
allowing them to operate effectively in environments where failures
('exceptions') can occur. This paper describes the motivation, progress and
plans for work being pursued in this area by the MIT Adaptive Systems and
Evolutionary Software research group (http://ccs.mit.edu/ases/).

1. The Challenge: Enabling Robust Open Multi-Agent Systems

"open systems ... represent arguably the most important application for multi-

agent systems" (Wooldridge, Jennings et al. 1999)

This paper addresses one simple question: how can we develop effective multi-agent systems out
of the diverse and unreliable (buggy, malicious, or simply "dumb") agents and infrastructures we
can expect to encounter in open system contexts? This is becoming an increasingly critical
question because of emerging changes in the way human organizations work. Globalization,
enabled by ubiquitous telecommunications, has increasingly required that organizations be
assembled and re-configured within small time frames, often bringing together partners that have
never worked together before. Examples of this include international coalition military forces,
disaster recovery operations, open electronic marketplaces and virtual supply chains (1999)
(Fischer, Muller et al. 1996) (Tsvetovatyy, Gini et al. 1997).

Multi-agent systems (MAS) represent one of the most promising approaches for creating the
agile information systems needed to support these kinds of applications, because of their ability
to use multi-agent coordination protocols to dynamically self-organize themselves as their
problems and constituent agents change (Jennings, Sycara et al. 1998) (Wooldridge,

'Working Paper ASES-WP-2000-02, Center for Coordination Science, Massachusetts Institute of
Technology, Cambridge MA USA. February 2000 (http://ccs.mit.edu/ases).

1

Jennings et al. 1999). A critical open challenge remains, however. The vast majority of MAS
work to date has considered well-behaved agents running on reliable infrastructures in relatively
simple domains (Hagg 1996). These have been almost exclusively closed systems, i.e. where the
agents and their infrastructure are developed and enacted under centralized control. It is clear
however that these assumptions do not hold for the open contexts described above, where agents
can come from multiple sources and must operate on the infrastructures at hand (Hewitt and
Jong 1982). For these contexts we can expect, in contrast, to find:

* Unreliable Infrastructures. In large distributed systems like the Internet, unpredictable host
and communication problems can cause agents to slow down or die unexpectedly, messages
to be delayed, garbled or lost, etc. These problems become worse as the applications increase
in size, due to the increase in potential points of failure.

* Non-compliant agents. In open systems, agents are developed independently, come and go
freely, and can not always be trusted to follow the rules properly due to bugs, programmer
malice and so on. This can be expected to be especially prevalent and important in contexts
such as electronic commerce or military operations where there may be significant incentives
for fraud or malice.

* Emergent dysfunctions. Emerging multi-agent system applications are likely to involve
complex and dynamic interactions that can lead to emergent dysfunctions, such as chaotic
behavior, with the multi-agent coordination mechanisms that have proved most popular to
date (Youssefmir and Huberman 1995) (Sterman 1994). This is especially true since
agent societies operate in a realm where relative communication and computational costs and
capabilities can be radically different from those in human society, leading to behaviors with
which we have little previous experience. It has been argued, for example, that the 1987
stock crash was due in part to the action of computer-based "program traders" that were able
to execute trade decisions at unprecedented speed and volume, leading to unprecedented
stock market volatility (Waldrop 1987).

All of these departures from "ideal" multi-agent system behavior can be called exceptions, and
the results of inadequate exception handling include the potential for poor performance, system
shutdowns, and security vulnerabilities.

2

III

2. Our Approach: Knowledge-Based Exception Handling Services

Our group is addressing this problem directly by developing technologies to help increase the
robustness of open multi-agent systems, based on two key and novel ideas:

* It is possible to identify highly reusable domain-independent exception handling expertise
that describes the characteristic failure modes for different MAS coordination protocols, as
well as how they can be handled.

* This expertise can be instantiated in the form of exception handling services that outsource
exception handling from the agents in a multi-agent system, requiring only that they adhere
to some relatively simple guidelines.

The remainder of this section will examine these two ideas in more detail, describing the key
concepts, the progress we have made to date, the open research questions that remain, and how
we are addressing them. In a nutshell, our work to date has shown that exception handling based
on these ideas is workable and has substantial advantages over previously explored approaches.
Critical areas for further research include (1) methodologies and tools to support the rapid
analysis of how coordination protocols can fail and be "fixed", and (2) more sophisticated run-
time services that can adaptively diagnose and resolve exceptions in complex MAS environments
where many, and even simultaneous, exceptions can occur.

In order to make the ideas more concrete, we will present them in the context of the well-known
MAS protocol known as the Contract Net (Smith and Davis 1978). The Contract Net
(henceforth called CNET) is probably the most widely-used MAS protocol, and has been applied
to many domains including manufacturing control (Baker 1988) (Sousa and Ramos 1999),
tactical simulations (Boettcher, Perschbacher et al. 1987), transportation scheduling (Bouzid
and Mouaddib 1998), and distributed sensing (Smith and Davis 1978). CNET operates as
follows (Figure 1):

Contractor Role Subcontractor Role

Create RFB
(Request For

Bids) Sena..l ,B

.... Create Bid

Select Bid 41va

--1t

e Perform Work

Receive Results ;

3

Figure 1. A simple version of the Contract Net protocol.

An agent (hereafter called the "contractor") identifies a task that it cannot or chooses not to do
locally and attempts to find another agent (hereafter called the "subcontractor") to perform the
task. It begins by creating a Request For Bids (RFB) which describes the desired work, and then
sending it to potential subcontractors (typically identified using a matchmaker that indexes
agents by the skills they claim to have). Interested subcontractors respond with bids (specifying
such issues as the time needed to perform the task) from which the contractor selects a winner.
The winning agent, once notified of the award, performs the work (potentially subcontracting out
its own subtasks as needed) and submits the results to the contractor.

2.1. The Power of Domain-Independent Exception Handling

The first key idea underlying our work is that the characteristic exceptions and applicable
exception handling techniques for a multi-agent system can be usefully treated as dependent on
the coordination protocol used but independent of the domain the agents work in. This is a key
insight because it means that we can build exception handling knowledge bases (and associated
run-time services) that are generic and thereby highly reusable.

Evidence for the existence of domain-independent exception handling expertise: There is
substantial evidence for the validity of this claim. Early work on expert systems development
revealed that it is useful to separate domain-specific problem solving and generic control
knowledge (Gruber 1989) (Barnett 1984) (Malone and Crowston 1994). Our own work has
confirmed the applicability of this insight to exception handling in domains including
collaborative design (Klein 1989; Klein 1991), requirements capture (Klein 1997), workflow
management (Klein and Dellarocas 2000) and multi-agent systems (Klein and Dellarocas
1999) (Dellarocas and Klein 2000).

Analysis of the CNET protocol, for example, reveals that it is prone to domain-independent
exceptions from all three of the categories (unreliable infrastructures, non-compliant agents,
emergent dysfunctions) described above. Some examples include:

* Agent death: If a CNET agent dies there are several immediate consequences. If the agent is
acting as a subcontractor, its customer clearly will not receive the results it is expecting. In
addition, if the agent has subcontracted out one or more subtasks, these subtasks and all the
sub-sub-... tasks created to achieve them become "orphaned", in the sense that there is no
longer any real purpose for them and they are uselessly tying up potentially scarce
subcontractor resources. Finally, if the system uses a matchmaker, it will continue to offer
the now dead subcontractor as a candidate (a "false positive"), resulting in wasted message
traffic.

* Fraudulent [sub]contractor: A buggy or intentionally malicious CNET agent can wreak
havoc through fraudulent advertising, bidding or subcontracting. Imagine, for example, an
agent that falsely informs the matchmaker that it has a comprehensive set of skills, sends in
highly attractive but fraudulent bids (e.g. specifying it can do any task almost
instantaneously) for all the RFBs it receives, and once it wins the awards returns either no
results, or simply incorrect ones. The result would be that many if not all of the system's
tasks would be awarded to a non-performing agent.

4

III

* Resource poaching: It is typical for CNET systems to annotate tasks with priorities, so that
when a subcontractor is considering several RFBs, it will bid (first) for the RFB with the
greatest priority. One emergent dysfunction that can occur in such contexts is "resource
poaching", wherein a slew of low-priority but long-duration tasks tie up the subcontractors,
thereby freezing out resources needed for the higher-priority tasks that arrive later (Chia,
Neiman et al. 1998). This does not represent an error per se, but rather an unexpected
consequence of the protocol when applied in a complex environment.

A wide range of domain-independent techniques ("handlers") can be used to deal with such
exceptions. Some examples include:

* To detect agent death, periodically poll active subcontractors. If an agent dies, clear the agent
record from the matchmaker(s), and instruct the contractors for that agent to re-run the
bidding process for the failed tasks. One can cancel the orphaned sub-sub-tasks if any. Keep
track of agent MTBF (mean time between failure) statistics to help avoid relying on
unreliable agents for critical tasks in the future.

* To detect fraudulent agents, keep track of their performance over time and note which agents
consistently fail to produce results with the contracted cost, quality and duration. To foil
them, "kill" or "exile" or simply "ignore" them when they appear.

* To detect resource poaching, compare the average priority of pending tasks to the average
priority of in-work tasks. To resolve it, instruct subcontractors to preempt current lower
priority tasks and bid for the pending higher priority tasks. To avoid it, impose a longer
waiting period before agents select an RFB, increasing the chance that higher-priority tasks
will not be frozen out.

We have identified, to date, over 300 exception types and associated handlers for representative
examples of the most widely-used and studied classes of MAS coordination protocols including
CNET (Smith and Davis 1978) (Aryananda 1999), multi-level coordination (Durfee and
Montgomery 1990), and team-based approaches (Tambe 1997) (Xu 1999).

A systematic methodology for identifying exceptions: Given that such domain-independent
exception handling expertise exists, the key question becomes: How can we quickly (and ideally
automatically) identify the characteristic exceptions, as well as the appropriate handlers, for the
coordination protocol(s) being used in a particular MAS? We have developed the beginnings of a
systematic methodology for identifying characteristic exceptions, as well as a repository-based
approach for organizing knowledge about exceptions and their handlers so as to facilitate its
rapid retrieval.

The exceptions that characterize a given MAS protocol can be uncovered using an emerging
technique we call Role Commitment Violation (RCV) analysis. RCV analysis is based on the
insight that coordination fundamentally involves the process of agents making commitments to
each other (Singh 1999) (Jennings 1996) (Gasser 1992). Exceptions can thus be viewed as the
ways in which the components of a MAS can fail to achieve their commitments. RCV works,
more specifically, as follows:

5

III

* Identify all the roles involved in the multi-agent system. This generally includes a wider
range of roles than typically considered when describing a MAS protocol, including for
example the computational and communications infrastructure.

* For each role, identify the commitments that each role ideally (and implicitly or explicitly)
requires of the other roles in the system in order to meet its own commitments. Identifying
'idealized' commitments allows us to better identify exceptions that result because one role
makes assumptions that another role is not guaranteed to satisfy.

* For each commitment, identify the ways the commitment may be violated (i.e. identify the
exceptions). Since each agent in an open system is in principle a 'black box', this analysis
must be done based on general principles rather than on an understanding of precisely how
each role is implemented by the agent.

Let us make this more concrete but looking at several simple examples of the RCV analysis for
CNET. There are three classes of commitment types, corresponding to the three classes of
exceptions identified above. One type is infrastructural commitments, i.e. the implicit
commitments made by the infrastructure to provide reliable agent hosts and communication
links. Every agent, for example, relies upon the messaging infrastructure to send the right
messages to the right place at the right time. We can thereby infer that message sending is prone
to three generic exceptions: wrong thing (the message is garbled), wrong place (the message is
dropped or misrouted), and wrong time (the message is excessively delayed, or perhaps even
comes unexpectedly fast). A second class of commitment is that made between agents as part of
their coordination protocol. Our analysis has identified 17 such commitments in CNET,
including "correctly inform matchmaker about skill changes in a timely way" (a commitment to
the matchmaker), and "send only legitimate RFBs" (a commitment to a subcontractor). These
commitments have associated exceptions such as "agent fails to inform matchmaker about
capability loss" (e.g. if the agent dies), and "contractor sends invalid RFB" (e.g. if the customer
for the contractor cancelled its request and thereby made the RFB obsolete). Finally we have the
commitments made by the system manager to ensure overall effective system operation e.g. by
maintaining the appropriate mix of subcontractor skills.

RCV can be viewed, we believe, as a useful complement to traditional failure identification
techniques (known collectively as failure mode effects analysis (Hunt, Pugh et al. 1995)) and
appears to be particularly well-suited to open systems exception analysis, because it treats
components as black boxes and focuses on the failure modes for their inter-relationships rather
than the failure modes for the components themselves. Using RCV, we believe that we have
exhaustively (or nearly so) identified all the exception types for the CNET variant described
above. In any case, our analysis has uncovered all the exceptions revealed by an exhaustive
review of the CNET literature, as well as many others.

Once we have identified the exceptions that characterize a given MAS protocol we need to
uncover the handlers that are appropriate for dealing with them. Unlike exceptions, the range of
possible handlers is not a closed easily enumerable set but seems to be limited only by human
ingenuity. Exception handling techniques have been developed in many disciplines including
multi-agent systems (Higg 1996) (Kaminka and Tambe 1998) (Tambe 1997) (Horling,
Lesser et al. 1999) (Venkatraman and Singh 1999) (Bansal, Ramohanarao et al. 1997),
distributed and real-time systems (Bums and Wellings 1996) (Mullender 1993), planning and
robotics (Traverso, Spalazzi et al. 1996) (Howe 1995) (Birnbaum, Collins et al. 1990)

6

(Broverman and Croft 1987) (Firby 1987) (Hindriks, de Boer et al. 1998), computer-
supported cooperative work (Mi and Scacchi 1993) (Chiu, Karlapalem et al. 1997) (Klein
1998) (Auramaki and Leppanen 1989) (Finkelstein, Gabbay et al. 1994), operations research
(Fletcher and Misbah 1999) (Adamides and Bonvin 1993) (Katz 1993), and management
science (Milgrom and Roberts 1992) (Loomis 1979) to mention just a few. Our task,
therefore, has been to mine these literatures, and abstract out the key ideas as handlers
appropriate for the MAS context. We have, to date, reviewed over 60 research publications for
this purpose.

A knowledge base for representing exception handling expertise: We have developed a simple
but effective schema for capturing this knowledge in a way that facilitates quickly finding the
appropriate handlers for given protocols, based on an extension of concepts developed by the
MIT Process Handbook project (Klein 2000) (Malone, Crowston et al. 1998). The scheme is
based on three interlinked taxonomies representing coordination protocols (AKA mechanisms),
their characteristic exceptions, and the handlers appropriate for dealing with them:

coordination
mechanisms

exception
types

exception
handling

is handled by

Figure 2. Overview of the schema for exception handling expertise.

The first taxonomy captures MAS coordination protocols, arranged in an abstraction hierarchy
with abstract protocol classes on the left and more specific ones on the right:

F~e Ed. View CJI W"mIo-

3-
stigmergic

cognitive

, ,sign-based stigmergy
N cue-based stigmergy

/ markets
mediated
|unmediated

Slteams (distributed planning)
individualists game theory)

41 r1" --1 -- F .

Figure 3. A part of the coordination mechanism taxonomy.

Each protocol has pointers to the exceptions that characterize it, themselves
exception taxonomy:

stored in an

7

I -- I

- -----------�I�- ·

WOMM'.1-wWo =11UMA I I - 101 X.11--- l" ." 1111'1'�'' - I -

v
m"�

, I I . ..'-
DFlPe Edt.iew, Vbtion : 9 Wr d: . .

IDefault Parent Exception

thrashing (livelock)

resource poaching
circular wait deadlock

NIexcessive market power
solution worsens problem
prisoners dilemma

box canyon (bad attractor]
ist designer wins

missed opportunities

lunmanaged dependencies
contractor violates commit...

-Isubcontractor violates co...
Imatchmaker violates com...
communication problems

ph tasks

chaotic behavior

agent makes mistake
/agent too siow

.lanlnt di, e.
;nt ... (-agent problems "-

agent skills change
host problems

.,[,,,, -.....- - - -..r_Wo _ _: _ - - * __:_ * * - --- * * f :..._. /z;A;.r _ .;,

Figure 4. A part of the exception type taxonomy.

Exceptions are themselves linked, finally, to the potential applicable handlers in an exception
handler taxonomy. We have found that there are four main types of handlers; those suitable for
anticipating and avoiding exceptions (before they occur), or detecting and resolving them (after
they occur):

8

,lemergent dysfunctions
system commitment violati...

agent commitment violations

/
linfrastructure commitme

17S

f

._ _ _. __ , , ., _%u !

11

-

".tUl l

nl " m;larsn"j
\~~~~~~~~~~..,.

·! ! I J J -i 3 ! J ! J J w L 5 0

:Psie Ek9~". .ew . .b_ . . .:*)-~~··rr~'-DG~

xception Handlers

Fix exeptione~~~~

esigrijr-(X critics

icp ical need for busy resources

vakue detection

tait checking

eremteeption i ~ ent KB I iconsistency Detect

io review meetigs

deect stuck behavior

inle ctradictio

red database

lupport re.olution processresolve exception
;" ' Eke conflict resolutio

p ont design decimons

ast-comittment design

design agents

unctional testing to verify servic
nts agree up4ront on coord

K _~~.... L _ _ 1.:_
- .ptr~ea resource alocao

avoid exception
wze terminogy

payments via trustee

ppre ysmfutional instincts

ales impact before prop

:ont-based routing

compare cognitive maps

4 1 .:,

Figure 5. A part of the exception handler taxonomy.

The power of this approach is that we can use inheritance to simplify identifying the exceptions
and handlers for a given MAS protocol. Some exceptions are characteristic of a whole class of
protocols, and therefore are potentially inherited by all of its subclasses. Any protocol, for
example, that implements 'pull-based resource sharing' (where resources are allocated by
selecting among requests) potentially faces the problem of resource poaching. Similarly, a
handler suitable for an abstract exception type is likely to be suitable for subclasses of that type.
Preemptive re-allocation of resources, for example, is a reasonable potential candidate for any
subclass of the resource poaching exception. Finally, if a handler is suitable for an exception, it is
likely that subclasses of that handler will be useful for that exception as well.

Open issues: While we have made substantial progress in terms of being able to rapidly identify
the exceptions and handlers for some widely-used MAS protocols, important issues remain to be
addressed:

How can we simplify exception analysis? The RCV technique described above currently
requires careful human judgement in order to successfully identify all exceptions for a
protocol. Is there a way to make this procedure easier and guarantee completeness of
exception identification? One option is to extend the taxonomic schema describe above to
exploit inheritance to identify role commitment violations. Another is to develop techniques
to automatically identify exceptions based on a formal commitment-based protocol
representation such as that proposed by Singh et al (Venkatraman and Singh 1999).

9

What is the space of critical exceptions and handlers for the most important MAS protocols?
We have focused so far on infrastructural exceptions in CNET and a small handful of other
protocols. It would be useful to get a more comprehensive view of what exception types are
of greatest practical relevance, scope out the major classes of useful handlers, understand
what their tradeoffs are, and identify gaps that should be addressed by future research.

2.2. An Architecture for Exception Handling Services

Weaknesses with current 'survivalist' approaches: One can imagine at least two possible
approaches to developing more robust multi-agent systems. One, which we can call the
"survivalist" approach, involves using our knowledge of exceptions and their handlers to design
more sophisticated agents exploiting more complex coordination protocols to handle exceptions.
Most MAS research has in fact taken this direction. Even the original CNET protocol (Smith
and Davis 1978) included such augmentations as an "immediate response bid', which allowed a
contractor to determine whether the lack of bids was due to all eligible subcontractors being busy
(in which case a retry is appropriate) or due to the outright lack of appropriate subcontractors.
This "survivalist" approach to multi-agent exception handling faces, however, a number of
serious shortcomings.

First of all, it places a heavy burden on agent developers, who must implement potentially
complicated exception handling behaviors capable of dealing with all the exceptions the agent
might possibly encounter; this is difficult at best. Agents become harder to maintain, understand
and reuse because a potentially large body of exception handling code obscures the relatively
simple normative behavior of an agent.

This approach can, in addition, result in poor exception handling performance. Finding the
appropriate responses to some kinds of exceptions (notably emergent exceptions such as resource
poaching) requires for example that the agents achieve a more or less global view of the multi-
agent system state, which is notoriously difficult to establish among multiple agents without
heavy bandwidth requirements.

Most seriously, however, this approach is unrealistic for open agent contexts. Some kinds of
exception handling require carefully coordinated behaviors across multiple agents. Agents may
not comply properly with the more sophisticated protocols, or violate some of their underlying
assumptions. Some exception avoidance approaches (e.g. (Sandholm, Sikka et al. 1999))
assume, for example, that all agents are rational utility maximizers, which obviously may not
always be the case. Some kinds of interventions (such as "killing" a malicious agent) may be
difficult to realize because the agents do not have the legitimacy needed to apply such
interventions to their peers.

Our 'citizen' approach: For these reasons, our approach has been to develop instead a set of
services that offload the exception handling burden from agents. We call this the "citizen"
approach by analogy to the way exceptions are handled in human society. In such contexts,
agents adopt relatively simple and optimistic rules of behavior and rely on a whole host of
institutions (the police, the Better Business Bureau, Security and Exchange Commission, and so
on) to handle most exceptions. This is generally a good tradeoff because such institutions are
able, by virtue of specialized expertise, widely accepted legitimacy and economies of scale, to
deal with exceptions more effectively and efficiently than individual citizens, while making
relatively few demands of most agents (e.g. pay your taxes, obey police officers, report crimes)

10

III

and being able to deal with the subset of agents that do not cooperate. This same approach, we
believe, has directly analogous benefits in the MAS context.

Our approach instantiates these ideas in an open MAS setting using the following functional
architecture:

(O Sentinel

(Agent
- _---. MAS Protocol Message Traffic

.-- , Exception Handling Traffic

Figure 6. Functional architecture for open MAS with exception handling services.

When an agent joins an open MAS served by the exception handling (EH) services, it must
register with a registrar responsible for assigning it a sentinel that will mediate all of the agents'
further interactions with other agents in the system. The agents so 'wrapped' can include
problem solving agents as well as components such as matchmakers that support the protocols
they enact.

Sentinels are the central element in this approach. They can be viewed as "commitment
monitors" whose role is to observe and influence agent behavior as necessary to ensure the
robust functioning of the system as a whole. Each sentinel includes a repository of domain-
independent EH expertise that describes the characteristic exceptions and associated handlers for
the protocol(s) enacted by the agents in that MAS. Sentinels monitor message traffic to develop a
model of the commitments their agent(s) are involved in, use the appropriate anticipation and/or
detection handlers to uncover when these commitments are violated, diagnose the underlying
causes to identify the appropriate avoidance and/or resolution handlers, and enact these handlers
to help re-establish the violated commitments, or at least minimize the impact of them having
been violated. Ancillary services such as the contract notary and reputation server keep track of
global state information such as commitment structures and reliability statistics. Agents, for their
part, must be able to respond appropriately to a relatively small set of EH directives to support
the action of the sentinels.

11

I

I i-GK

Let us consider the example of handling the 'agent death' exception in CNET. Sentinels can use
the handlers described above to detect and resolve this exception as follows:

* Whenever a contractor sends an award message to an subcontractor, the subcontractor's
sentinel informs the contract notary about the commitment and ensures (by periodic polling)
that the subcontractor is still functioning.

* If the subcontractor dies, its sentinel then instructs the matchmaker to remove the dead
subcontractor from its database, and directs the contractor to re-start the bidding process for
the task previously allocated to the deceased agent. The sentinel also queries the contract
notary to see if the dead subcontractor had awarded any subtasks to other CNET agents; if
so, these agents are instructed to cancel these 'orphaned' tasks. Finally, the sentinel informs
the reputation server of the subcontractors' death in order to update the reliability statistics
for that agent in case it should re-join the MAS at some later time.

Sentinels can implement the agent death anticipation and avoidance handlers as follows:

* When a contractor agent sends out an RFB, its sentinel makes a note of the deadline for bids
for that RFB.

* When a subcontractor agent sends a bid for the RFB, its sentinel automatically annotates this
outgoing message with the agents' reliability (received from the reputation server when the
sentinel was assigned to that agent).

* When the contractor sentinel receives the bids, it caches them until just before the RFB
deadline, and then selectively filters out the bids from unreliable agents before passing them
on. A more sophisticated version of this handler might take into account the scarcity of
subcontractors with this skill (also maintained by the reputation server) in deciding whether
to filter out a bid or not.

While we can not, in this limited space, exhaustively enumerate all the ways sentinels can handle
different exceptions, we hope that we have sufficiently illustrated the point that distinct EH
services configured according to the principles described above can help ensure reliable MAS
operation in the face of at least some important exceptions.

We have made substantial progress in our work on the EH services. We have implemented and
empirically evaluated a simplified subset of these services applied to the agent death exception
for CNET. Our results have shown that the EH services substantially out-performed the widely-
used 'survivalist' exception handling technique (timeout and retry), with comparable agent
complexity. In one experimental condition, for example, the EH services reduced average task
completion times, when agent death occurs, by a factor of nearly four (Dellarocas and Klein
2000) (Figure 7):

12

Figure 7: An Example of Mean Task Completion Times for Citizen vs Survivalist Agents

We have also made substantial progress in defining an EH services architecture that is both
scalable (with respect to number of agents) and generic (can be applied to a wide range of MAS
contexts). The architecture is fundamentally distributed: it is based on a distributed sentinel
population plus EH services that are essentially database applications and thus can be replicated
using well-known techniques. We have found that, with careful design, it has been possible to
minimize EH related message traffic among these components. The architecture makes few
assumptions about the MAS system the EH services operate in. Agents need implement only a
relatively small number of simple EH directives (e.g. "are you alive?" and "cancel task X") in
order to participate fully. Significant benefit (such as selective filtering of bids from unreliable
agents) is possible even if the agents implement no EH directives whatsoever. Finally, if
sentinels are integrated into the messaging infrastructure, the EH services can be totally
transparent to the agents. If this can not be done, all that is required is that agents be able to treat
sentinels as proxies for their in and out-going message traffic.

Open Issues: Important issues remain. Some of the most pressing include:

As we extend our approach to handle a wider range of exceptions, we will increasingly
encounter situations where a given exception (e.g. a task is late) can have multiple possible
causes (e.g. the subcontractor died, the results message was lost, we can not find
subcontractors with the necessary skills, etc). How can the EH services most effectively
diagnose (and thereby select interventions for) exceptions in that context? There are two
main contenders: a fault-tree approach (based on exhaustive pre-enumeration of the causal
relationships among failure modes) requires extensive up-front knowledge acquisition, but
model-based approaches, requiring as they do a complete behavioral model, may not be
applicable to an open system made up of agents whose behavior is, in principle, a priori

unknowable (Hamscher, Console et al. 1992).

* There appears to be a direct relationship between the number of EH directives an agent can
handle, and the level of support that the EH services can provide; the more directives agents
implement, the more the EH services can do for them. These tradeoffs need to be better
understood to provide guidelines for agent developers.

* How do we deal with agents that include some native ('survivalist') exception handling
capabilities, and may therefore prefer to use their own techniques rather than outsource

13

Long Tasks, Scarce Subcontractors

---Survivalist agents ---- Citizen agents i

580 -=...
4 5 480- 1793

~380 -I-- -
X 280 --- -0------6----- -- -- t 162.06-

I 180 ___.9378 __ 102,_ i
80

88282 101%36 4

Length of task chain (levels)

handling of some exceptions to the EH services? One of the team members (Prof. Dellarocas)
is exploring the notion of using explicit contracts defining the normative behavior of open
MAS agents to facilitate agent interoperability. One possibility is to extend this notion to
capture an explicit EH 'contract' wherein agents specify, for each of the exceptions
characteristic of their protocol, which exceptions they wish to outsource and which they
prefer to handle themselves.

What about exceptions in the exception handling process itself, e.g. agents that do not
respond correctly to EH directives, sentinels that die, or EH messages that get lost? Our
preliminary analysis suggests that the principles we described above can apply. Every
sentinel, for example, can have another sentinel assigned to monitor it, and all sentinels can
register their monitoring commitments with the contract notary. If a sentinel dies, therefore,
we will be able to detect it, and shift its duties to a replacement sentinel.

3. Our Research Activities

Our group' efforts in this area include the following key objectives:

Objective 1: Develop Exception Analysis Methodologies: We are continuing to develop the
RCV exception analysis methodology by applying it to other MAS protocols, and are exploring
such techniques as inheritance and the use of formal commitment models (Venkatraman and
Singh 1999) to substantially simplify the task of analyzing a new protocols.

Objective 2: Acquire Exception Handling Expertise: There are relatively few classes of MAS
coordination protocols: the main types include market mechanisms (such as CNET, auctions and
General Equilibrium Markets) (Radhakrishnan, Sandholm et al. 1997), distributed planning
(Durfee 1996) (Lesser 1990) , game theory (Rosenschein and Zlotkin 1994), team-based
approaches (Tambe 1997) (Jennings and Campos 1997) and stigmergic coordination (Ferber
1996) (Ferber and Jacopin 1991) (Beckers, Holland et al. 1994). The long-term goal of this
line of research is to systematically perform an EH analysis for all the most important protocols.
For now, however, we are focusing on market mechanisms. Such mechanisms are unique in that
they are scalable to large numbers of agents, are backed up with substantive theoretical and
empirical results from economics, computer science and other disciplines, and are immediately
applicable to many of today's most compelling practical challenges such as e-commerce. We
believe that the most interesting results will come from study of exceptions due to non-compliant
agents (e.g. agents lying or under-performing), emergent problems (e.g. thrashing), and failures
in the exception handling process itself.

Objective 3: Develop Exception Handling Services: We are defining the agent development
guidelines and developing the EH service components needed to exploit the EH expertise
acquired above in order to improve the robustness of open multi-agent systems, in a way that is
both scalable and generic. We are following a three phase approach that tackles increasingly
sophisticated capabilities over time. In phase I, we focus on implementing the handlers and
associated EH services needed to diagnose and resolve market exceptions with 'pure' citizen
agents (where all exception handling is outsourced). In phase II we address the issue of dealing
with agents that have some degree of 'survivalist' exception handling capabilities: in an open
system such agents are likely to exist, and it is important to avoid the possibility of the agents
and EH services working at cross-purposes. Finally, in phase III we explore making the EH

14

II[

services more adaptive in terms of what exceptions they address when. All exception handling
involves some kind of cost, and it would be useful to design the services so they can allocate EH
effort intelligently, for example by increasing the vigilance for non-compliant agents when new
unfamiliar agents arrive.

Objective 4: Evaluate Services in Simulated and Real MAS Environments: We are evaluating
the EH services we develop by simulating a range of realistic MAS scenarios, based on the
analysis of the abstract properties of representative problem domains such as information
retrieval, e-commerce and the like. Our work to date has applied this strategy successfully in our
work on agent death in CNET, where we used the Swarm agent-based simulation tool (Minar,
Burkhart et al. 1996) to evaluate the impact of the EH services for a variety of experimental
conditions that varied task decomposition topologies (e.g. tall skinny task decompositions vs
shallow and broad task decompositions), task lengths, and exception frequencies (Dellarocas
and Klein 2000). The net result of this work is empirically-based, generalizable results
concerning the relative efficacy for different exception handler approaches for different
exceptions, which can captured as tradeoff information in the EH knowledge base.

The evaluation component of our work also includes studying how our EH services can be
integrated with third-party market-based MAS. This allows us to thoroughly understand how
developers can "plug" our technology into their open systems. We are currently involved in
performing an initial evaluation of this sort in the context of the DARPA CoABS (control of
agent-based systems) program, where we are creating a simplified version of the EH services to
be incorporated into the MAS infrastructure being developed in this program. Further work will
look at other systems, e.g. the University of Michigan AuctionBot system (Wurman, Wellman
et al. 1998)).

Objective 5: Disseminate Results: The results of our work are being disseminated via
publications as well as planned workshops, tutorials, and special issues in this area. Our growing
exception handling knowledge base is also publicly available via the Web version of the MIT
Process Handbook (see http://process.mit.edu/handbook.html): we anticipate that this medium
will facilitate ready access by researchers, practitioners, and students interested in this topic
(Klein and Dellarocas 2000).

To summarize, the direct deliverables of our research include::

* Improved techniques for analyzing the exception modes in open multi-agent systems, which
will be valuable for distributed system development irregardless of whether the developers
take advantage of the EH services approach we are developing or not.

* A knowledge base of exceptions and associated handlers for several important classes of
market-based MAS coordination protocols, made freely available in highly organized form
over the Web. While we are orienting our work towards the challenge of open agent systems,
we believe that this knowledge base will also be useful for closed systems since the best
exception handling techniques, in our experience, are often the same.

* Agent development guidelines, as well as implementations of key EH service components, as
needed to enhance the robustness of open multi-agent systems.

15

* All of the above verified by substantial empirical evaluations in simulated MAS settings as
well as the exercise of introducing this technology into a working MAS.

A key long-term aspiration of this work to develop a general coordination-theory-centric
perspective on failures in complex distributed systems. Coordination theory has been successful
in using powerful abstractions such as dependencies and coordination mechanisms to better
understand normative behavior in complex distributed systems, irregardless of the nature of the
agents and the domain (Malone and Crowston 1994). It is our hope that this work will lead to
the development of similarly powerful abstractions concerning exception handling behavior
which can be applied to domains ranging from computational systems to markets and human
organizations.

4. Related Work

As we have already seen, the problem of robustness in multi-agent systems has been largely
ignored by the MAS community, and the little previous work in this area has adopted
'survivalist' approaches that are unsuitable for open agent systems. Several lines of research
have begun to explore concepts similar to those presented here, but none as far as we know have
explored the combination of domain-independent exception handling implemented as distinct
services. Higg (Higg 1996) presents the concept of sentinel agents; these are distinct services
which monitor the agent system and intervene when necessary by selecting alternative problem
solving methods, excluding faulty agents, or reporting to human operators. This approach is not
domain-independent, however: sentinels must be customized for each new application. Kaminka
et al (Kaminka and Tambe 1998) created Social Attentive Monitoring (SAM), wherein agents
detect exceptions via uncovering violations of normative relationships with their teammates, and
exploit a teamwork model to diagnose and fix these problems. This approach does have generic
elements, but it is limited to teamwork protocols like TEAMCORE (Tambe 1997) and requires
domain-dependent exception detection procedures. Horling et al. (Horling, Lesser et al. 1999)
have explored the use of domain-independent tools to detect and resolve the exception wherein
the agents have a harmfully inaccurate picture of the inter-agent dependencies in their current
context. This approach is limited to a single exception type, however, and like SAM applies to
just one class of coordination protocol. Venkatraman et al (Venkatraman and Singh 1999)
describe a generic approach to uncovering agents that do not comply with coordination protocols.
This approach only addresses one subclass of exception types, however, and does not include a
resolution component. Decker et al. (Decker, Williamson et al. 1996) analyze the relative
failure-proneness of matchmaker vs brokered middle-agents, but offer no prescriptions about
how to deal with failures when they do occur. Huberman et al. (Youssefmiir and Huberman
1995) and Sterman et al. (Sterman 1994) have investigated emergent dysfunctions (in
particular, chaotic dynamics) can appear in resource acquisition contexts, but their prescriptions
make strong assumptions concerning the agent implementations (e.g. that agents can switch
among multiple resource acquisition strategies) and thus are less well suited for open MAS
contexts. Finally, Nodine et al (Nodine and Unruh 1999) and Kuwabara (Kuwabara 1996)
discuss generic mechanisms for extending coordination protocols to handle errors, but include at
best rudimentary prescriptions concerning what extensions are appropriate when.

Related work can also be found if we go farther afield into such disciplines as planning,
distributed systems, manufacturing process control, and the like. Distributed database and real-
time systems research has produced useful techniques such as error-correcting protocols,

16

III

checkpointing and rollbacks (Holzmann 1991) (Bums and Wellings 1996) (Mullender
1993), but these techniques are aimed at closed systems and achieve generality at the cost of the
efficiencies that can result from coordination-mechanism specific exception handling. Forrest et
al. (Somayaji, Hofmeyr et al. 1998) (Dasgupta and Forrest 1999) describe an intriguing set
of ideas, inspired by the immune system, for dealing with behavioral anomalies; they have
identified little generic EH expertise to date, however, mainly concerning the detection of
machine tool breakage and some kinds of security intrusions. There has also been substantial
work in the planning and robotics communities on dealing with unexpected world states
(Traverso, Spalazzi et al. 1996) (Howe 1995) (Birnbaum, Collins et al. 1990) (Broverman
and Croft 1987) (Firby 1987) (Hindriks, de Boer et al. 1998). This work focuses almost
exclusively on exceptions (e.g. failed operations, unexpected events) in the world manipulated by
the agents, and not on exceptions concerning the agent world itself. Finally, there has been
substantial work on detecting and resolving exceptions in computer-supported cooperative work
(Mi and Scacchi 1993) (Chiu, Karlapalem et al. 1997) (Klein 1998) (Auramaki and Leppanen
1989) (Finkelstein, Gabbay et al. 1994) and manufacturing control (Fletcher and Misbah
1999) (Adamides and Bonvin 1993) (Katz 1993) but this has been applied to a very limited
range of domains (e.g. just software engineering or flexible manufacturing cell control) and
exception types (e.g. just inappropriate task assignments).

In an important sense we can say that the approach presented in this paper attempts to subsume
much of the previous work in this area, in that our goal is to provide a unifying framework to
exploit exception handling techniques derived from multiple disparate disciplines, for the benefit
of improved robustness in open multi-agent systems.

5. References

(1999). Proceedings of the International Workshop on Knowledge-Based Planning for Coalition
Forces. Edinburgh, Scotland.

Adamides, E. and D. Bonvin (1993). "Failure recovery of flexible production systems
through cooperation of distributed agents." Ifip Transactions B: Computer Applications in
Technology 11: 227-38.

Aryananda, L. (1999). An Exception Handling Service for the Contract Net Protocol.
Department of Electrical Engineering and Computer Science. Cambridge MA, MIT.

Auramaki, E. and M. Leppanen (1989). Exceptions and office information systems. Proceedings of the
IFIP WG 8.4 Working Conference on Office Information Systems: The Design Process., Linz, Austria.

Baker, A. (1988). Complete manufacturing control using a contract net: a simulation
study. Proceedings of the International Conference on Computer Integrated
Manufacturing, Troy New York USA, IEEE Computer Society Press.

Bansal, A. K., K. Ramohanarao, et al. (1997). Distributed Storage of Replicated Beliefs to
Facilitate Recovery of Distributed Intelligent Agents. Intelligent Agents IV; Proceedings
of ATAL-97. M. P. Singh, A. Rao and M. J. Wooldridge: 77-91.

17

Barnett, J. A. (1984). "How Much Is Control Knowledge Worth? A Primitive Example."
Artificial Intelligence 22(1): 77-89.

Beckers, R., O. E. Holland, et al. (1994). From local actions to global tasks: stigmergy
and collective robotics. Proceedings of the Fourth International Workshop on the
Syntheses and Simulation of Living Systems, Cambridge, MA, USA, MIT Press;
Cambridge, MA, USA.

Bimbaum, L., G. Collins, et al. (1990). Model-Based Diagnosis of Planning Failures.
Proceedings of the National Conference on Artificial Intelligence (AAAI-90).

Boettcher, K., D. Perschbacher, et al. (1987). "Coordination of distributed agents in
tactical situations." Ieee(87CH2450): 1421-6.

Bouzid, M. and A.-I. Mouaddib (1998). "Cooperative uncertain temporal reasoning for
distributed transportation scheduling." Proceedings International Conference on Multi
Agent Systems.

Broverman, C. A. and W. B. Croft (1987). Reasoning About Exceptions During Plan
Execution Monitoring. Proceedings of the National Conference on Artificial Intelligence
(AAAI-87).

Bums, A. and A. Wellings (1996). Real-Time Systems and Their Programming
Languages, Addison-Wesley.

Chia, M. H., D. E. Neiman, et al. (1998). Poaching and distraction in asynchronous agent
activities. Proceedings of the Third International Conference on Multi-Agent Systems,
Paris, France.

Chiu, D. K. W., K. Karlapalem, et al. (1997). Exception Handling in ADOME Workflow
System. Hong Kong, Hong Kong University of Science and Technology.

Dasgupta, D. and S. Forrest (1999). Artificial immune systems in industrial applications.
Proceedings of the Second International Conference on Intelligent Processing and
Manufacturing of Materials. IPMM'99.

Decker, K., M. Williamson, et al. (1996). Matchmaking and brokering. Proceedings of
ICMAS '96: 2nd International Conference on Multiagent Systems, Kyoto, Japan, AAAI
Press.

Dellarocas, C. and M. Klein (2000). An Experimental Evaluation of Domain-Independent
Fault Handling Services in Open Multi-Agent Systems. Proceedings of The International
Conference on Multi-Agent Systems (ICMAS-2000), Boston, MA.

Durfee, E. H. (1996). Planning in Distributed Artificial Intelligence. Foundations of
Distributed Artificial Intelligence. G. M. P. O'Hare and N. R. Jennings, John Wiley &
Sons: 231-245.

18

III

Durfee, E. H. and T. A. Montgomery (1990). A Hierarchical Protocol for Coordinating
Multiagent Behaviors.

Ferber, J. (1996). Reactive Distributed Artificial Intelligence: Principles and
Applications. Foundations of Distributed Artificial Intelligence. G. M. P. O'Hare and N.
R. Jennings, John Wiley and Sons: 287.

Ferber, J. and E. Jacopin (1991). "The framework of eco-problem solving." Decentralized
A.I. 2: 181-93.

Finkelstein, A., D. Gabbay, et al. (1994). "Inconsistency Handling in Multi-perspective
Systems." IEEE Transactions on Software Engineering 20(8): 569-578.

Firby, R. J. (1987). An Investigation into Reactive Planning in Complex Domains.
Proceedings of AAAI-87.

Fischer, K., J. P. Muller, et al. (1996). Intelligent agents in virtual enterprises. Proceedings of
the First International Conference on the Practical Application of Intelligent Agents and Multi-
Agent Technology (PAAM'96), Blackpool, UK.

Fletcher, M. and D. S. Misbah (1999). "Task rescheduling in multi-agent manufacturing."
Proceedings. Tenth International Workshop on Database and Expert Systems
Applications. DEXA 99: 689-94.

Gasser, L. (1992). DAI Approaches to Coordination. Distributed Artificial Intelligence:
Theory and Praxis. N. M. Avouris and L. Gasser, Kluwer Academic Publishers: 31-51.

Gruber, T. R. (1989). "A Method For Acquiring Strategic Knowledge." Knowledge
Acquisition 1(3): 255-277.

Hagg, S. (1996). A Sentinel Approach to Fault Handling in Multi-Agent Systems.
Proceedings of the Second Australian Workshop on Distributed AI, in conjunction with
Fourth Pacific Rim International Conference on Artificial Intelligence (PRICAI'96),
Cairns, Australia.

Hamscher, W., L. Console, et al. (1992). Readings in model-based diagnosis. San Mateo,
CA, Morgan Kaufmann Publishers.

Hewitt, C. and P. D. Jong (1982). Open Systems, Massachusetts Institute of Technology.

Hindriks, K., F. de Boer, et al. (1998). "Failure, monitoring and recovery in the agent
language 3APL." Cognitive Robotics. Papers from the.

Holzmann, G. J. (1991). Design and validation of computer protocols. Englewood Cliffs,
N.J., Prentice Hall.

19

Horling, B., V. Lesser, et al. (1999). Diagnosis as an Integral Part of Multi-Agent
Adaptability. Amherst, Massachussets, University of Massachussets at Amherst
Department of Computer Science.

Howe, A. E. (1995). "Improving the reliability of artificial intelligence planning systems
by analyzing their failure recovery." IEEE Transactions on Knowledge and Data
Engineering 7(1): 14-25.

Hunt, J., D. R. Pugh, et al. (1995). "Failure mode effects analysis: a practical application
of functional modeling." Applied Artificial Intelligence 9(1): 33-44.

Jennings, N. and J. Campos (1997). "Toward a Social Level Characterization of Socially
Responsible Agents." IEE Proceedings on Software Engineering 144(1).

Jennings, N. R. (1996). Coordination Techniques for Distributed Artificial Intelligence.
Foundations of Distributed Artificial Intelligence. G. M. P. O'Hare and N. R. Jennings,
John Wiley & Sons: 187-210.

Jennings, N. R., K. Sycara, et al. (1998). "A Roadmap of Agent Research and
Development." Autonomus Agents and Multi-Agent Systems 1: 275-306.

Kaminka, G. A. and M. Tambe (1998). What is Wrong With Us? Improving Robustness
Through Social Diagnosis. Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98).

Katz, D. M., S. (1993). Exception management on a shop floor using online simulation. Proceedings of

1993 Winter Simulation Conference - (WSC '93), Los Angeles, CA, USA, IEEE; New York, NY, USA.

Klein, M. (1989). Conflict Resolution in Cooperative Design. PhD thesis. Computer
Science. Urbana-Champaign, IL., University of Illinois.

Klein, M. (1991). "Supporting Conflict Resolution in Cooperative Design Systems."
IEEE Systems Man and Cybernetics 21(6): 1379-1390.

Klein, M. (1997). "An exception handling approach to enhancing consistency,
completeness, and correctness in collaborative requirements capture." Concurrent
Engineering Research & Applicati6ns 5(1): 37-46.

Klein, M. (1998). A Knowledge-Based Approach to Handling Exceptions in Workflow
Systems. Cambridge MA USA, MIT Center for Coordination Science.

Klein, M. (2000). Towards a Systematic Repository of Knowledge About Managing
Collaborative Design Conflicts. Proceedings of the International Conference on AI in
Design (AID-2000), Boston MA.

20

Klein, M. and C. Dellarocas (1999). Exception Handling in Agent Systems. Proceedings
of the Third International Conference on AUTONOMOUS AGENTS (Agents '99),
Seattle, Washington.

Klein, M. and C. Dellarocas (2000). "A Knowledge-Based Approach to Handling
Exceptions in Workflow Systems." Journal of Computer-Supported Collaborative Work.
Special Issue on Adaptive Workflow Systems. 9(3/4).

Klein, M. and C. Dellarocas (2000). Towards a Systematic Repository of Knowledge
about Managing Multi-Agent System Exceptions. Cambridge MA USA, Massachusetts
Institute of Technology.

Kuwabara, K. (1996). Meta-level control of coordination protocols. Procedings of The
International Conference on Multi-Agent Systems (ICMAS-96), Kyoto, Japan.

Lesser, V. R. (1990). "An overview of DAI: viewing distributed AI as distributed search."
Journal of Japanese Society for Artificial Intelligence 5(4): 392-400.

Loomis, J. C. (1979). "Management by Exception." Journal of Property Management
44(3): 171-173.

Malone, T. W. and K. Crowston (1994). "The interdisciplinary study of coordination."
ACM Computing Surveys 26(1): 87-119.

Malone, T. W., K. Crowston, et al. (1998). "Tools for inventing organizations: Toward a
handbook of organizational processes." Management Science 45(3): 425-443.

Mi, P. and W. Scacchi (1993). Articulation: An Integrated Approach to the Diagnosis,
Replanning and Rescheduling of Software Process Failures. Proceedings of 8th
Knowledge-Based Software Engineering Conference, Chicago, IL, USA, IEEE Comput.
Soc. Press; Los Alamitos, CA, USA.

Milgrom, P. and J. Roberts (1992). Economics, Organization and Management,
Prentice Hall.

Minar, N., R. Burkhart, et al. (1996). The Swarm Simulation System: A Toolkit for
Building Multi-Agent Systems. Santa Fe, New Mexico, USA, Santa Fe Institute.

Mullender, S. J. (1993). Distributed systems. New York

Wokingham, England; Reading, Mass., ACM Press;

Addison-Wesley Pub. Co.

Nodine, M. H. and A. Unruh (1999). Constructing Robust Conversation Policies in
Dynamic Agent Communities. Proceedings of the Workshop on Specifying and

21

Implementing Conversation Policies, part of The Third International Conference on
Autonomous Agents (AA-99), Seattle, Washington USA.

Radhakrishnan, T., T. Sandholm, et al. (1997). Market-Oriented Approaches to Multi-
Agent Systems.

Rosenschein, J. S. and G. Zlotkin (1994). Rules of encounter: designing conventions for
automated negotiation among computers. Cambridge, Mass., MIT Press.

Sandholm, T., S. Sikka, et al. (1999). Algorithms for Optimizing Leveled Commitment
Contracts. Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI-99), Stockholm, Sweden.

Singh, M. P. (1999). "An Ontology for Commitments in Multiagent Systems: Toward a
Unification of Normative Concepts." Artificial Intelligence and Law.

Smith, R. G. and R. Davis (1978). "Applications Of The Contract Net Framework:
Distributed Sensing." Distributed Sensor Nets: Proceedings of a Workshop.

Smith, R. G. and R. Davis (1978). "Distributed Problem Solving: The Contract Net
Approach." Proceedings of the 2nd National Conference of the Canadian Society for
Computational Studies of Intelligence.

Somayaji, A., S. Hofmeyr, et al. (1998). Principles of a computer immune system. New
Security Paradigms Workshop. Proceedings., Langdale, Cumbria UK, ACM.

Sousa, P. and C. Ramos (1999). "A distributed architecture and negotiation protocol for
scheduling in manufacturing systems." Computers in Industry 38(2): 103-13.

Sterman, J. D. (1994). Learning in and about complex systems. Cambridge, Mass., Alfred
P. Sloan School of Management, Massachusetts Institute of Technology.

Tambe, M. (1997). "Towards flexible teamwork." Journal of Artificial Intelligence
Research 7: 83-124.

Traverso, P., L. Spalazzi, et al. (1996). "Reasoning about acting, sensing and failure
handling: a logic for agents embedded in the real world." Intelligent Agents II. Agent
Theories, Architectures, and Languages. IJCAI'95 Workshop.

Tsvetovatyy, M. B., M. Gini, et al. (1997). "MAGMA: An agent-based virtual marketplace for
electronic commerce." Applied Artificial Intelligence 11(6): 501-524.

Venkatraman, M. and M. P. Singh (1999). "Verifying Compliance with Commitment
Protocols: Enabling Open Web-Based Multiagent Systems." Autonomous Agents and
Multi-Agent Systems 3(3).

Waldrop, M. (1987). "Computers amplify Black Monday." Science 238: 602-604.

22

III

Wooldridge, M., N. R. Jennings, et al. (1999). A Methodology for Agent-Oriented
Analysis and Design. Proceedings of the Third Annual Conference on Autonomous
Agents (AA-99), Seattle WA USA, ACM Press.

Wurman, P. R., M. P. Wellman, et al. (1998). "The Michigan Internet AuctionBot: a
configurable auction server for human and software agents." Proceedings of the Second
International Conference on Autonomous Agents. ACM.

Xu, W. (1999). Generic Exception Analysis in a Dynamic Multi-Agent Environment.
Department of Electrical Engineering and Computer Science. Cambridge MA, MIT.

Youssefmir, M. and B. Huberman (1995). Resource contention in multi-agent systems.
First International Conference on Multi-Agent Systems (ICMAS-95), San Francisco, CA,
USA, AAAI Press.

23

