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SENSITIVITY ANALYSIS OF

THE BROOKHAVEN ENERGY SYSTEM OPTIMIZATION MODEL

By J.F. Shapiro, D.E. White and D.O. Wood

The Brookhaven Energy System Optimization Model (BESOM) is a linear

programming (LP) model of the U.S. energy sector developed at the Brookhaven
1

National Laboratories (BNL). It has been used by ERDA as an analytical tool

in a number of energy studies including "A National Plan for Energy Research,
2

Development and Demonstration." BESOM was used in ERDA-48 to evaluate the

resource use and environmental effects of a number of future energy scenarios.

It was used in ERDA-76 to study the trade-offs between different fuels with

respect to various fuel characteristics such as capital versus operating

costs, scarce resource usage, or dependence on imports. Currently, there is

a joint study underway between BNL and Data Resources Incorporated to study

the relationships between energy and economic growth.

BESOM minimizes the cost of meeting given demand levels d measured in

BTU's for a number of energy end uses such as space heat or automobile

travel in a given year. The demand is met by converting and transporting

primary supplies measured in si BTU's through a number of stages. A precise

LP statement of BESOM is

min E cijxij + PiSi (la)
i,j i

s.t. x - si = 0 for all supplies i (lb)
j ij

wx = d for all end uses j (lc)
i ijxij 

E akijXij < bk for all k (d)
i

0 xij for all i,j, 0 S s Si for all i (le)

where 0 < wj < 1.

1
The model was originally proposed by Hoffman (1972) in his Ph.D. thesis;
more recent developments and uses of the model are reviewed in Beller (1975).

2

See ERDA-48 (1975) and ERDA-76 (1976).

3
See Jorgenson (1975).
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The supply quantity si is a variable permitted to vary between 0 and an

upper bound Si at constant unit price Pi. The coefficients wij reflect

the efficiency of using supply i to meet end use . They are calculated,

along with the cost coefficients cij, from The Reference Energy System

which is a network representation of the various stages in the conversion

and transmission process between supply and end use. In the ERDA-48 version

of the model, there are 27 supply and 22 end use demand categories with xij

variables linking each of the possible combinations (e.g., imported oil to

space heat).

Problem (la), (lb), (lc) and (le) with the supply variables si fixed is
4 

a generalized transportation problem. This type of network optimization

problem has been extensively analyzed in the literature including special
5

purpose algorithms. There are the additional constraints (ld) involving

the transportation variables for environment and other factors. This suggests

the use of Lagrangean relaxation methods on the additional constraints to

exploit the special network structure thereby achieving faster and more
6

flexible solution methods.

The purpose of this note is to report and reflect on some computational

experimentation with BESOM used in the ERDA-48 study of the U.S. energy sector

in 1985. The experimentation was motivated by our more general goal to

develop and implement decomposition methods for energy planning models which

combine LP submodels such as BESOM of processing and transmission of energy
7

commodities, with econometric supply and demand models. LP shadow prices

play a central role in decomposing these planning models into their LP and

econometric components, and it was these that we chose to calculate.

4
See Dantzig (1963); Chapter 21.

5
See Jewell (1962).

6
See Geoffrion (1974).

7
See Shapiro (1976).
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Specifically, the first expertments we performed were sensitivity

analyses on the supplies of coal, oil and gas to compute the shadow prices

at various levels of supply as shown in Figures la, lb and lc. These shadow

prices measure in dollars the value at the indicated supply levels to the U.S.

energy sector with fixed demand in 1985 of another 106Btus of coal, oil and

natural gas. The large incremental changes in the shadow prices indicate

that the BESOM model is tightly constrained. Moreover, the infeasibility

which results if the supply of natural gas is lowered below the given level

suggests the upper limit for that commodity was set to permit feasibility

to be obtained. Primary fuels can substitute for each other to a certain

extent in BESOM, but the total primary energy supply is limited. The infea-

sibility for natural gas would imply that there are uses of natural gas for

which there are no substitutes.

Another phenomenon observed for the ERDA-48 LP model was the existence

of numerous alternative optima. Specifically, there were 20 non-basic

variables at zero reduced cost, compared with 149 basic variables, which

could enter the basis at a positive level. Thus, the LP model treated these

activities as the same although there were substantial differences between
8

some of them (e.g., underground versus stripmining).

It is the nature of LP models to produce the lumpy or step function

shadow price structure shown in Figure 1. Each level part of the step

function corresponds to a specific optimal LP basis, and the large incremental

change is indicative of significant changes in the basis structure. Smooth

changes in the shadow prices would result if there were some nonlinearities

in the model; for example, if there were nonlinear convex costs associated

with the flows in the generalized transportation model derived from The

Reference Energy System. These cost functions would require more data to

construct than the linear ones, and the resulting model would be more diffi-

cult to optimize, although not seriously so.

8
The identification of the cause of this difficulty and a method for resolving

it is given by White (1976).
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We also experimented with fitting convex nonlinear supply curves to the

supply of underground and stripmined coal and domestic and imported oil.

The resulting nonlinear programming problem was solved using generalized

linear programming, otherwise known as Danzig-Wolfe decomposition. Speci-

fically, we decomposed the nonlinear model into two parts: one part was a

master LP problem consisting of BESOM with a number of fixed supply vectors

which could be taken in convex combination, and the other parts were subproblems
9

consisting of the nonlinear supply functions.

At the beginning of the procedure, the optimal shadow prices and other

solution data from BESOM were passed to our program where new marginal price

vectors were selected. These marginal price vectors were then passed to the

supply function subproblems where they were used to compute new supply levels.

The control program then selected a set of these price/quantity vectors (each

of these vectors representing a point on the multi-dimensional total cost supply

surface) to pass to the LP Master program. The vectors thus passed are a linear

approximation to a region of the nonlinear total cost curve. As subsequent

vectors can make use of previous solutions, this process tends to more closely

approximate the nonlinear cost surface and move toward the "true" solution.

The LP Master program then selects a convex combination of the new supply vectors

and finds a new optimal solution. This process continues until the Master and

the supply values are in agreement.

This same approach could be taken for more complex supply (and demand)

models not given in explicit functional form, including econometric/behavioral

models such as the MacAvoy-Pindyck Natural Gas Model. The procedure would

be to pass the required price (and other) information to the supply model

which would then determine a new level of supply. This supply quantity(s)

would then be passed back to be incorporated in the supply vector for the LP

Master problem. In this fashion, quite different supply models could operate

and interact through this LP structure.

9
A recent discussion and interpretation of generalized linear programming
is given by Magnanti, Shapiro and Wagner (1976).

10
See MacAvoy and Pindyck (1975).



BESOM: 1985 Base Case Solution

Upper Limit
on Supply

Stripmined Coal $ .8738/106 Btu 11.07x1015 Btu 11.07x1015 Btu

Underground Coal

Total Coal

Domestic Oil

Imported Oil

Total Oil

Natural Gas

1.3882 "

1.4181 "

.8727 "

22.14 "

" 21.20 "
" 26.44 "

47.64 "

" 24.04 "

it 18.9949"

" 21.20 "
" 25.99315"

" 47.19315"

" 23.9750 "

Table 1

The unit prices given here are the implied supply prices of the model, i.e.,
the cost at the source of supply (mine-mouth, etc.) before making allowance
for the transportation/distribution efficiency (e.g., coal distributed to
the user at a cost of .9700/106 Btu with a coefficient of 1.03 in the supply
equation becomes coal originating from the supply sector at a cost of
.941/106 Btu).

Supply
Activity

Unit 
Price

Solution
Supply
Level

.9417 " " 11.07 "" 7.9249 " Is

is

it

to

to

1
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We applied these procedures to BESOM varying four of the supply

activities (domestic and imported oil, underground and stripmined coal).

Using the generalized linear programming codes that we developed and simple

constant elasticity supply models, optimum solutions were obtained after

relatively few iterations between the master and the subprogram; typically

less than ten iterations were required. The assumptions and the results of

one run are shown in Table 2.

Generalized Programming Solution

Supply
Activity

Stripmined
Coal

Underground
Coal

TOTAL Coal

Domestic
Oil

Imported
Oil

TOTAL Oil

Initial

Average
Quantity Cost

11.070

7.925

18.995

21.200

25.993

47.193

Marg. Elasti-
Cost city

.8738 .9612 1.0

.9417 1.0359 1.0

1.3882 1.5270 1.0

1.4181 1.5599 1.0

Solution

Marg.
Quantity Cost

11.4133

7.5816

18.9949

21.4492

25.7439

47.1931

.9911

.9911

1.5450

1.5450

Table 2

The initial values used were the same as those used in the base case

scenario, and after five (5) iterations, the above solution (Table 2) was

obtained. The total quantities of coal and the total quantities of oil

consumed remain the same, as might be expected, considering the very steep

changes in shadow prices mentioned previously. Within those categories, the

cheaper source substituted for the more expensive one until the marginal

prices equalized. Thus, we see how the generalized linear programming pro-

cedure produces solutions which automatically balance marginal costs without

excessive searching back and forth to find the optimal point. Rather, only a

region around the optimal point needs to be specified.

- l
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