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Nomenclature

Roman

a scaling factor or speed of sound

bx axial chord

B Greitzer’s parameter

c translation constant

E[X] expected value of the random variable X

E throttle setting coefficient

f(x) probability density function

f ∗(x) probability density function of the modified distribution

i
√
−1

I(X) the indicator function

lc nondimensional compressor length

ṁcorr corrected mass-flow

n wheel speed fraction or harmonic number

p pressure

pi probability of instability

p̂i estimator of pi

r mean wheel radius

T temperature

U mean wheel speed

var(X) variance of the random variable X
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Greek

α phase angle between inlet distortion and tip clearance asymmetry

γ stagger angle

Γ deterioration rate

φ mass-flow coefficient

ψ pressure rise

π pressure ratio

ρ density

λ, µ parameters of the Hynes-Greitzer model

σ, µ standard deviation and mean value

θ circumferential angle

ω, ω̃ dimensional and nondimentional system eigenvalue

Abbreviations

aSM available Stability Margin

ID Inlet Distortion

IS Importance Sampling

MC (ordinary) Monte Carlo

MPR Maximum Pressure Rise

PDF Probability Density Function

RE Relative Error

rSM required Stability Margin

SM Stability Margin

TC Tip Clearance

TI Time Invariant

TV Time Variant
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Chapter 1

Introduction

1.1 Background

Several types of instabilities can be encountered during aircraft jet engine operation.

Some, such as surge and rotating stall, are purely fluid dynamic, some such as flutter

arise as result of fluid-structure interaction. This work is concerned only with the

former.

Surge is a large amplitude oscillation of the flow through the compressor. It can

be accompanied by visible flames from the front and the back of the engine, blade

bending and severe engine damage. Rotating stall consists of one or several sectors of

reduced or reversed flow with the pattern rotating around the engine circumference.

Rotating stall can lead to fatigue damage or loss of thrust, but its more important role

is that it is generally a precursor of surge. Both, surge and rotating stall represent

limits to operation and there is a great incentive in reducing their occurrences.

1.2 Previous Work

There is a large amount of literature on surge and rotating stall and we only discuss

work which is relevant to the present study. The first paper in the open literature on

the topic belongs to Emmons et al. [2] who in 1955 provided an explanation of the

mechanism by which the reduced flow region travels along the compressor circum-

17



ference and gave physical insight into surge by showing that the behavior is similar

to that of a Helmholtz resonator. Later, in 1976, Greitzer [3] provided a nonlinear

model for surge. A theory of rotating stall, based on a traveling wave decomposi-

tion, was created by Moore [4] in 1984. Two years later a unified model including

both surge and rotating stall was published jointly by Moore and Greitzer [5]. This

unified model is the first one to theoretically justify the interaction between the two

instability phenomena. Numerical solutions of the model equations in the presence of

inlet distortion were obtained by Hynes and Greitzer [6]. Their advancement is due

to the use of Fourier spectral methods which emerged as a major computational tool

in that time period. The ability to compute the stability numerically via eigenvalue

decompositions has stimulated the extension of these models to other problems. Bon-

naure extended the stability model to compressible flow [7] allowing for analysis of

high speed machines. Graf modified it to quantify the effect of stationary asymmetric

tip clearance [1] and Gordon looked at the instability behavior caused by rotating

tip clearance asymmetries and radial distortions [8]. The model has also been used

for control applications, more notably moving inlet guide vanes have been used by

van Schalkwyk and Haynes to design controllers capable of extending the stable flow

range of low speed axial compressor subjected to inlet distortion [9, 10]. An extensive

summary of most recent developments in the control applications of the models can

be found in [11].

All the works described represent deterministic investigations, but there is an

increased interest in applying probabilistic techniques into the area of jet engine

design. Garzon probabilistically analyzed the impact of geometric variability due to

manufacturing on compressor performance quantifying the mean and variation of loss

and turning [12, 13]. He showed that the deterministic (i.e. nominal) loss was lower

than the mean loss, and that the differences between deterministic and achieved mean

compressor efficiency could be as much as 1% at the compressor level. Analysis of the

compressor repeating-stage model was performed separately by Lavainne and Vincent

[14, 15], who also found that the achieved mean compressor efficiency and pressure

rise are worse than the respective deterministically predicted values.

18



1.3 Objectives and Structure

The objectives of this thesis are:

• Determine questions related to jet engine stability which can be solved by appli-

cations of probabilistic techniques, exemplify possible approaches and identify

their areas of applicability, advantages and disadvantages.

• Define shortcomings in the commonly used stability margin techniques.

The structure of this thesis is as follows:

• In Chapter 2 the technique of Importance Sampling is applied to the problem

of compression system stability in cases without and with aging. A large set of

example results is obtained.

• Chapter 3 focuses on the shortcomings of the commonly used stability margin

definition. Examples of specific types of problems which may occur are given.

• Chapter 4 describes the coupling effect between inlet distortion and circumferen-

tial tip clearance. The coupling is used as an example in which the probabilistic

techniques are applied in the assessment of stability.

1.4 Contributions

A new framework for estimation of probabilistic quantities related to jet engine in-

stabilities has been developed. The framework is based on a first principles physical

model combined with probabilistic estimation techniques. The outputs of interest

include, but are not limited to the probability of instability, mean number of cycles

to instability, probability of instability before a given number of cycles, mean number

of cycles between instabilities in a fleet.

The main contributions of this thesis are:

• Integration of a dynamic compression system stability model into a probabilis-

tic simulation based on importance sampling and showing that an effective

19



technique capable of estimating probabilities spanning a wide range of orders

of magnitude is required because small probability estimation using ordinary

Monte Carlo simulations demands a large computational effort.

• For the first time in open literature the probability of instability and several

related quantities are calculated from a physically relevant dynamic model. A

dynamic model is required because static stability is a necessary, but not suffi-

cient for dynamic stability.

• Comparison of the new approach to more traditional estimation methods based

on stability margin. Identification of limitations of stability margin techniques

and description of cases when erroneous results could be obtained due to these

traditional techniques.

• Quantification of the effect of deterioration on the probability of instability. As

aircraft engines age, deterioration becomes a significant contributor to the surge

events.

• Quantification of the interaction between inlet distortion and asymmetric tip

clearance, and demonstration that the relative phase can impact the stability

in a substantive manner.
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Chapter 2

Probabilistic Methodology

For a jet engine fleet the expected number of instabilities is equal to the probability

of instability of a single engine times the size of the fleet. One figure of merit for

stability is thus the probability of instability for a single engine.

2.1 Importance Sampling

The probability of instability pi is a small number, usually less than 1 × 10−4 for

commercially certified engines. The event of interest here thus happens very rarely

and when standard Monte Carlo (MC) sampling techniques are used to simulate

engine behavior many samples are required. There are more efficient simulation

techniques for low probability events, Importance Sampling (IS) being one of them.

IS increases the confidence in the estimates by sampling from modified distributions,

which allows the event of interest to occur more often. Due to the use of modified

sampling distributions, the resulting probability must be adjusted appropriately at

the end of the simulation.

The estimation of the probability of instability pi in this work is accomplished

by combining Importance Sampling with a dynamic compression system model. The

output of the dynamic model is binary – the system is either stable or unstable.

The inputs to the dynamic model are provided by the IS algorithm and the resulting

probability is weighted based on the IS input distributions.
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2.1.1 Description

The Monte Carlo method requires a large number of samples to achieve reasonable

confidence (99%) in the estimates of small probabilities. An illustration of this can

be created following [16]. Let p̂i be the MC estimator of the probability of instability

pi given by:

p̂i =
number of instabilities

total number of samples
(2.1)

The variance of this estimator is

var(p̂i) =
pi − p2

i

total number of samples
≈ pi

total number of samples
, (2.2)

for small pi (pi ≤ 1 × 10−2). The estimated 99% confidence interval for pi is [p̂i −
3
√

var(p̂i), p̂i + 3
√

var(p̂i)]. To guarantee an error less than 20%, the following

condition must be satisfied:

3
√

var(p̂i) < 0.20 pi, (2.3)

which is equivalent to

total number of samples >
225

pi

. (2.4)

If pi = 1×10−4 the required number of samples is larger than 2×106 and if pi = 1×10−6

it is larger than 2×108. These are prohibitive numbers for any Monte Carlo simulation

that relies on a realistic and therefore, computationally expensive dynamic model.

One possible approach is to simplify the dynamic model until its execution time is

small enough to allow taking the required large number of samples, but this decreases

the model fidelity. Another approach is to use Importance Sampling, reducing the

required number of samples and keeping the full dynamic model.

If the indicator function I is defined as

I(X) =











1 if X represents a stable system

0 if X represents an unstable system
, (2.5)
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the probability pi can be rewritten as

pi = E[I(X)] =
∫

I(x)f(x)dx =
∫

I(x)
f(x)

f ∗(x)
f ∗(x)dx = E∗[I(X)

f(X)

f ∗(X)
], (2.6)

where f(x) is the probability density function (PDF) of the random variable X and

f ∗(x) is another probability density function such that f(x) = 0 whenever f ∗(x) = 0.

Equation (2.6) suggests the following estimator for pi:

p̂i =

∑

I(X) f(X)
f∗(X)

total number of samples
(2.7)

The variance of this estimator is

var∗(p̂i) =
E[I(X) f(X)

f∗(X)
] − p2

i

total number of samples
(2.8)

For an appropriately chosen function f ∗(x), the variance given by (2.8) will be less

than the variance given by (2.2) leading to a reduction in the required number of

samples for a given confidence interval. An inappropriate choice of f ∗(X), however,

can greatly increase the required number of samples [17], so Importance Sampling

must be applied with caution.

The optimal f ∗(X) which gives the best possible performance requires the knowl-

edge of the value of pi and therefore is not known, but choices for f ∗(X), which give

good confidence bounds, do exist. The two most common ones are Importance Sam-

pling via scaling and Importance Sampling via translation. In IS via scaling the new

PDF f ∗(x) is defined as

f ∗(x) =
1

a
f(
x

a
), (2.9)

and in IS via translation it is defined as

f ∗(x) = f(x− c), (2.10)

where a > 1 and c > 0. Examples of a scaled and a translated normal distribution

are shown in Figure 2-1.
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Figure 2-1: Scaled (a = 3) and translated (c = 3) probability density functions for
use in Importance Sampling.

2.1.2 Performance Assessment of Importance Sampling

There is no “ready to use” recipe how to choose the parameters a and c. To gain

insight into the Importance Sampling process, and to determine general guidelines

for the parameters, a series of tests with a normal distribution were performed. Each

test simulation has a single random input X that is distributed according to a stan-

dard normal distribution with zero mean and standard deviation equal to one. The

observed event of interest A is defined as

A = {x > xlimit}, (2.11)

where xlimit is a preselected constant. For each test, 1000 random samples of X are

taken and the probability pA of A is estimated using IS. The estimate p̂A is compared

to the real probability pA, which can be computed analytically for this simple event

type.

Figure 2-2 displays the predictions p̂A, obtained with Importance Sampling via
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Figure 2-2: Importance Sampling via scaling applied to four small probability events
A. Small scaling factors, which include Monte Carlo (a = 1), fail to provide mean-
ingful non-zero estimates as the probability of the event decreases.

scaling for four different values of xlimit. As the probability of the event decreases,

scaling factors close to 1 (a = 1 is the Monte Carlo method) do not provide an

estimate different than zero (no instabilities are recorded for any of the thousand

samples). For the range of low probability events considered, scaling a = 3 is found

to be optimal in the sense that it is enough to guarantee non-zero prediction with

1000 samples when the probability of interest is within [1 × 10−9, 1 × 10−3]. Unless

otherwise stated, a equals 3 in all simulation results presented later in this work; all

predictions fall into the range of probabilities displayed by the four plots in Figure

2-2.

The use of a = 3 also provides good 99% confidence bounds on the estimate as

shown in Figure 2-3. It is typical for Importance Sampling confidence bounds to

decrease sharply with the initial increase of the scaling factor and then flatten out

[16, 17]. Even though not visible from the figure, it can be shown that there is no

further benefit of increasing the scaling factor [16].
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Figure 2-3: The typical behavior of the lower and upper 99% estimated confidence
bounds for Importance Sampling via scaling (1000 samples) consists of a sharp initial
decrease and a flat follow-up section.

The results for Importance Sampling via translation are given in Figure 2-4. Small

amounts of translation as well as large ones should be avoided because they lead to

estimate p̂A = 0 because no events occurred during the simulation. Again there is

a relatively flat region in which the predicted value is not sensitive to the amount

of translation. Based on the expected probability ranges for the simulations, the

default translation amount is chosen to be equal to four standard deviations (the

input distribution is a normal one with standard deviation equal to one).

From a comparison of Figures 2-5 and 2-3 Importance Sampling via translation

is seen to provide better 99% confidence intervals. This is not surprising because,

as Figure 2-1 shows, translation moves more of the weight of the probability density

function into the region of interest, while scaling tends also to move probabilistic

weight into regions in which the event A does not occur (in this case to the left of

zero).

The results presented above assume normal input distributions and the simple
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Figure 2-4: Importance Sampling via translation is applied to four small probabil-
ity events. Small and large translation numbers factors which include Monte Carlo
(c = 0) fail to provide meaningful non-zero estimates as the probability of the event
decreases.

event A. For less idealized situations, the benefits of both Importance Sampling

methods can be expected to be less because of nonlinearities in the definition of A.

It is especially important for the definition of A to be “monotonic” for scaling and

translation to work. For translation this implies that as the input x goes from −∞
to +∞ there should be at most one value of x where a switch from not being in

A to being in A occurs. For scaling there should be at most two such switching

positions. Table 2.1 compares Importance Sampling versus Monte Carlo simulations

for the probability of instability of a compression system for three different cases (the

details of the compression system model are given in Section 2.2). For the baseline

case, Monte Carlo gives a large 99% confidence interval, which even includes negative

numbers. Comparing the three simulation runs for case B1 even when the number of

samples is increased 10 times, the confidence interval of Monte Carlo remains worse

than the confidence interval of IS. The advantage of Importance Sampling is more

apparent in cases B2 and B3 which correspond to a 3% reduction in the throttle setting
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Figure 2-5: The typical behavior of the lower and upper 99% estimated confidence
bounds for Importance Sampling via translation (1000 samples) consists of a sharp
initial decrease, a flat follow-up section, and a sharp blow-up.

relative to B1 (or in other words, moving away from the unstable configurations) and

50% reduction in the variability of the inputs relative to B1 respectively. Monte

Carlo fails to obtain non-zero estimates of the probability of instability while IS gives

reasonable values, even though the confidence intervals are worse than those for case

B1.

2.2 Dynamic Compression System Model

The compression system model used in this thesis is the incompressible Hynes-Greitzer

model [6] and its extension by Graf that includes nonuniform stationary tip clearance

[1]. Relative to the IS procedure, the model is a black box, so it could be replaced

with a compressible model [7] or models including radial distortions and rotating tip

clearances [8] without any conceptual modifications.

The jet engine is modeled as consisting of an inlet, a compressor, a large plenum
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Table 2.1: Performance comparison of Monte Carlo and Importance Sampling for
compression system stability

Test Case Algorithm Samples Upper Bound Probability p̂i Lower Bound
B1 MC 1000 1.33 × 10−2 0.60 × 10−2 −0.13 × 10−2

B1 IS 1000 0.51 × 10−2 0.38 × 10−2 +0.25 × 10−2

B1 MC 10000 0.66 × 10−2 0.46 × 10−2 +0.25 × 10−2

B2 MC 1000 0.00 × 10+0 0.00 × 10+0 +0.00 × 10+0

B2 IS 1000 4.23 × 10−4 2.44 × 10−4 +0.65 × 10−4

B3 MC 1000 0.00 × 10+0 0.00 × 10+0 +0.00 × 10+0

B3 IS 1000 5.67 × 10−6 1.42 × 10−6 −2.83 × 10−6

Plenum

0 2 3 4 5

Compressor Throttle

Figure 2-6: Compression system schematic for the Hynes-Greitzer model

behind the compressor and a throttle. Figure 2-6 shows a schematic of the config-

uration. The fluid is assumed incompressible everywhere with the exception of the

plenum where it behaves as a gas spring. The compressor is assumed to behave as an

actuator disc over which the pressure rise ψ occurs. The pressure rise ψ is defined as

ψ =
p3 − pt2

ρU2
, (2.12)

where p3 is the compressor exit static pressure, pt2 is the compressor inlet total pres-

sure, ρ is the fluid density and U is the wheel speed at the mean radius. The pressure

rise characteristic has a maximum in the region of interest while the throttle pressure

drop has a parabolic dependence on the specific massflow φ as shown in Figure 2-7.

29



The throttle pressure drop is defined as

ψ = Eφ2, (2.13)

where E is the throttle coefficient and φ = v
U

is the specific massflow (v is the axial

velocity of the flow). Depending on the throttle setting E, the compression system
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Figure 2-7: Compressor and throttle characteristics – throttle characteristic E1 has a
stable operating point, characteristic E2 has a marginally stable operating point and
characteristic E3 has an unstable operating point

operating point (the intersection of the compressor and throttle characteristics) is

either in a stable, or in an unstable region.

The stability boundary of the model in axisymmetric flow is the peak of the com-

pressor characteristic [4, 5]. For throttle characteristics to the right of characteristic

E2 (such as E1), the operation is stable and small disturbances decay; for throttle

characteristics to the left of characteristic E2 (such as E3), the operation is unstable

and small disturbances grow until the nonlinearities in the compressor characteristic

become important and a limit cycle (surge) forms [4].

To find the growth rates of the different modes representing the small circumfer-
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ential disturbances a solution procedure based on Fourier spectral decomposition is

used. The presence of an eigenvalue with positive real parts implies growth of the

system mode with time and therefore instability. The detailed equations of the model

can be found in Appendix D.

In asymmetric cases involving variable tip clearance or inlet distortion, the ef-

fective compressor pressure rise curve (the overall system curve) retains the general

shape shown in Figure 2-7, but the peak is usually a little lower and the instability

limit is not the peak itself, but some point to the right of it.
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Figure 2-8: Asymmetric tip clearance geometry and its effect on the local compressor
pressure rise characteristic (following Graf [1])

The computational model was adapted by Graf [1] to predict the stability of a

compression system with asymmetric stationary tip clearance in the compressor. His

approach assumes that increasing the tip clearance reduces the pressure rise [18].

Therefore for a compressor with a rotor as shown in Figure 2-8, different points on

the circumference have different pressure rises. Point D1 represents a region with

small tip clearance and therefore higher than nominal pressure rise (point D2). Point

D3 represents a region with increased tip clearance and therefore pressure rise lower
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than at point D2. Each point on the circumference has its own local pressure rise

characteristic and the combination of all local pressure rise characteristics determines

the overall system stability. The numerical simulations performed by Graf and the

experimental data obtained by Wong [19] showed that in general the presence of

asymmetry tends to reduce the overall stability as compared to an axisymmetric

case.

2.3 Probabilistic Instability Simulations

A simplified data flow chart between the Importance Sampling procedure and the

dynamic model described in the previous section is shown in Figure 2-9. The inputs to

Determine Steady State

Determine Stability

Apply Appropriate Weights

Compute Probability of Instability

Sample Inputs

Stability
Model

Importance
Sampling

Figure 2-9: Importance Sampling is wrapped around a two stage stability model for
probability of instability estimation.

the dynamic model are sampled from scaled or translated probability density functions

by the IS procedure. The computation in the stability model is done in two stages

– first the steady-state solution is found and then eigenvalue analysis is performed

to determine the stability of the steady-state solution to small perturbations. The

binary output (stable/unstable) is then re-weighted according to the specifications of
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IS and averaging over sufficiently large number of samples is performed.

2.3.1 Inputs and Outputs

For simplicity only the following five parameters, which are thought to be the most

important ones, are sampled probabilistically:

• Inlet distortion amplitude – The inlet distortion is described in Section 4.1.

It requires several parameters all of which, with the exception of the ampli-

tude, are assumed constant. The amplitude is sampled from an exponential

distribution that satisfies the following two conditions:

1. Negative amplitudes have zero probability.

2. The larger the amplitude, the smaller the probability that it will occur.

IS via scaling is used for the inlet distortion amplitude.

• Asymmetric tip clearance nonuniformity – Unless otherwise stated all

simulations are performed with the first harmonic of the asymmetry because,

as Graf showed, the influence of the higher harmonics is minimal [1]. The

first harmonic corresponds to eccentricity between the rotor and the casing and

can be described by an amplitude. This amplitude is sampled from a normal

distribution with zero mean, as there is no reason to believe bias exists towards

eccentricity. The use of positive and negative amplitudes creates a discontinuity

in the phase angle, which will be observed as doubling of the number of peaks

of the probability of instability at the end of Chapter 4. IS via scaling is used

for the asymmetric tip clearance amplitude.

• Compressor maximum pressure rise – Changes in this parameter are due to

a number of factors (for example, increased average clearance) that are assumed

to be lumped together. The maximum pressure rise is sampled from a normal

distribution with mean equal to the nominal maximum compressor pressure

rise. IS via translation is used for this model input parameter.
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• Throttle setting coefficient – This coefficient determines the flow resistance.

The pressure drop versus mass flow relationship is:

ψ = Eφ2 (2.14)

The throttle coefficient E is equal to half of the more commonly encountered

coefficient KT [3, 6]. Here E is preferred for sampling convenience. It is sampled

from a normal distribution with mean equal to its nominal value. IS via scaling

is used for this coefficient.

• Phase angle between the tip clearance asymmetry and the inlet dis-

tortion – The definition of the phase angle is described in details in section 4.1.

The phase angle is assumed to not have a preferred value, thus it is sampled

from a uniform distribution covering the interval [0, 2π] using simple Monte

Carlo.

Table 2.2 shows typical values of the means and standard deviations of the five

parameters. Note that the inlet distortion amplitude is controlled by a single pa-

rameter because for an exponential distribution the mean and the standard deviation

are the same. In the absence of field data, the values of the standard deviations of

the maximum compressor pressure rise and the throttle setting are chosen to be one

percent of the respective mean values. The value of the standard deviation of the

tip clearance corresponds to a percent change in the tip clearance and is considered

representative. The actual values used for each simulation are given in Appendix C,

but they are similar to the values in Table 2.2.
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Table 2.2: Default values of the probabilistic distribution parameters
Parameter Probabilistic Distribution Default Mean µ Default Standard Deviation σ

Inlet Distortion Amplitude exponential 0.01 0.01
Asymmetric Tip Clearance Nonuniformity Amplitude normal 0 0.04
Maximum Compressor Pressure Rise normal 0.8 0.008
Throttle Setting Coefficient normal 2.9 0.029
Phase Angle uniform in [0, 2π] π Not Applicable
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2.3.2 Applications

The proposed probabilistic stability model can be used to perform trade-off studies

during the design phase of a jet engine project. Some examples studies are described

in this section.
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Figure 2-10: Probability of instability (with 99% confidence error bars) as a function
of variability which is defined by the standard deviation σ

Suppose designers have two different variability reduction technologies available

and they are trying to decide which one to implement. An example in which one

technology reduces the throttle setting variability and the other one reduces the vari-

ability of the asymmetric tip clearance nonuniformity is shown in Figure 2-10. In

addition to the estimated probability of instability for the baseline case (σ/σ0 = 1)

the figure displays the probability of instability as σ is reduced for each of the two

inputs. A clear conclusion which technology is more efficient in reducing the number

of instabilities can be made from the figure. Even when the 99% confidence intervals

are considered, the reduction of the tip clearance asymmetry is the better choice.

A more difficult decision situation is shown in Figure 2-11. It can arise when

the stability problems are more severe and a change in mean throttle setting (with a
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Figure 2-11: A comparison of the effect of mean throttle value reduction to the effect
of throttle variability reduction

possible accompanying performance reduction) is considered as a way to bring down

the probability of instability. The figure shows a comparison between the changes

in the mean throttle setting and reduction of the variability of the throttle setting.

If, for example, more than two percent reduction in the nominal throttle setting is

unacceptable due to performance constraints, but the probability of instability is

still too high, the only way in which the goal can be achieved is by reducing the

throttle variability (assuming that the only two levers for influencing the probability

of instability are those shown in the figure).

Another possible scenario will be realized if a given level for the probability of

instability must be met, for example 1 × 10−5. Then for the specific distributions

of this example the choice is between 40 percent reduction in variability and 6 per-

cent reduction in the nominal (mean) setting. The design process can continue with

selection between these two alternatives. The selection is made based on the cost

associated with each option.

It is possible for situations to arise in which reduction of the variability is not
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achievable and changes of the mean (nominal) values are the only option. For ex-

ample, suppose there are two options – either to increase the compressor maximum

pressure rise by 1% or to decrease the throttle setting E by 2% (presumably reducing

the throttle setting E is easier than increasing the pressure rise in a fixed number of

stages). Figure 2-12 shows that decreasing the mean throttle setting leads to a lower
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Figure 2-12: A comparison between the effects of increase in mean pressure rise and
reduction in mean throttle setting

estimate p̂i.

In summary Figures 2-10, 2-11 and 2-12 show three basic types trade-off studies

concerning the probability of instability pi:

i) effects of variability of one parameter versus the effects of variability in another

parameter

ii) effects of the variability of one parameter versus the effects of changing the

mean of another (or the same) parameter

iii) effects of the mean value of one parameter versus the effects of the mean value

of another parameter.
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2.4 The Effects of Aging

The analysis in the previous section assumes that the probability of instability does

not change in time. As jet engines age, however, the probability of instability in-

creases as clearances open up, blades and seals wear, etc. The Importance Sampling

methodology can be modified to compute different quantities of interest defined over a

given time interval of interest. The quantity of interest is identified as the probability

of instability before reaching a given number of flight cycles. Other quantities of in-

terest such as the expected number of instabilities in a fleet with a given distribution

of ages can also be simulated, but will not be considered here.

It is assumed that all engines in the fleet have the same age. This assumption

is not a fundamental limitation because by the use of Bayes’ law the probability of

instability for a given age distribution can be determined and the calculation proceed

in a similar manner.

The simulation technique defined in this section will be referred as time-variant

(TV) simulation and the simulation technique from the previous section will be re-

ferred as time-invariant (TI) simulation from now on.

2.4.1 Description

The data flow in the model when deterioration is included is different than the data

flow presented earlier. The new information flow sequence is shown in Figure 2-13.

The input parameters of the model are separated into two categories: engine specific

and operating environment specific. The engine specific parameters are sampled once

and then the engine is subjected to a sequence of stability simulations. In each

simulation, the operating environment conditions are sampled independently with

the engine parameters modified on each cycle to include the deterioration. If a linear

deterioration model is assumed then in each simulation the compressor maximum

pressure rise is decreased by a fixed amount and a new set of environment parameters

(for example, inlet distortion amplitude) is generated. This is repeated for a given

number of cycles, for example 2000, which might represent the time until the first
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simulations for which the operating environment conditions are re-sampled with each
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Table 2.3: Deterioration rates
Parameter Deterioration Rate Γ [1/cycle]

Maximum Compressor Pressure Rise +1.82 × 10−5

Tip Clearance Asymmetry Amplitude +3.58 × 10−6

Throttle Setting −8.06 × 10−6

scheduled overhaul. Once the 2000 simulations cycles are completed, a new engine is

sampled and it is again subjected to the cycling simulation for the same number of

cycles.

A linear deterioration model is used for all simulations. For example, the maxi-

mum compressor pressure rise equation is:

ψmax = (ψmax)0 − Γ(k − 1), (2.15)

where ψmax is the maximum compressor pressure rise on cycle k, (ψmax)0 is the initial

maximum compressor pressure rise and Γ is the maximum pressure rise loss per

cycle. The value of Γ has been determined from the data of Richardson and James

[20, 21] by converting the efficiency losses to effective pressure ratio reductions. The

pressure ratios are converted to pressure rises using the inverse of the equations in

Appendix A and the resulting difference between the pressure rises is then divided

by the number of cycles for which the data was obtained. A similar approach is

used for the asymmetric tip clearance and the throttle setting coefficient. The actual

values used in all simulations are shown in Table 2.3 (as obtained from the data of

Richardson and James [20, 21]). The value of Γ for the throttle setting coefficient E

is negative because the throttle setting needs to get closer to the stability limit with

time in order to provide the same power output.

In the TV simulations the operating environment parameters should not be Im-

portance Sampled any more. The reason originates in the inherited behavior of multi-

dimensional IS. For simplicity consider 500 flight cycles and let the random variables

Y1, Y2, Y3, ..., Y500 with PDFs f(Y1), f(Y2), ..., f(Y500) represent the amplitude of

the inlet distortion on each cycle. Let X = X(Y1, Y2, ..., Y500) be the random variable

indicating whether the system is stable or unstable (0 or 1). From the definition of
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p̂i the following equation is obtained

p̂i = E[X] =
∫

Xf(Y1)f(Y2)...f(Y500)dY1dY2...dY500, (2.16)

and when it is rewritten in a form appropriate for IS Equation 2.16 becomes

p̂i =
∫

X
f(Y1)

f ∗(Y1)

f(Y2)

f ∗(Y2)
...
f(Y500)

f ∗(Y500)
)f ∗(Y1)f

∗(Y2)...f
∗(Y500)dY1dY2...dY500. (2.17)

The problem comes from the f(Yk)
f∗(Yk)

terms. If the engine shows an instability on the

first cycle then the f(Yk)
f∗(Yk)

terms for k ≥ 2 do not matter because in this caseX depends

only on Y1 and f(Y1)
f∗(Y1)

is presumably small if f ∗(Y1) has been chosen appropriately. If

there is no instability on the first cycle, but on the second one then X depends only

on Y1 and Y2, but now f(Y1)
f∗(Y1)

does not need to be small even though f(Y2)
f∗(Y2)

is small.

Actually given that there is no instability on the first cycle, it is known that Y1 is

in the region where f(Y1)
f∗(Y1)

is large, making the IS procedure relative to Y1 inefficient

compared to Monte Carlo. This deteriorates the quality of the estimate relative to

Y1, but as more and more of Yk are considered the estimate deteriorates relative to all

previous inputs Y1, Y2, ..., Yk−1. In the TI simulations this effect did not show up to

a significant degree because if the fraction f(Y )
f∗(Y )

was large, but the choice of function

f ∗(Y ) was appropriate then X(Y ) = 0 eliminating the large term from the integral.

Here, in the TV simulations, this is not the case: X = 1 because the engine showed

instability exactly on the k-th cycle. The performance deterioration is significant

and becomes worse if more than 500 flight cycles are considered. For this reason the

environment parameters are subjected to Monte Carlo, rather than IS. IS is retained

in the simulation of the engine parameters.

2.4.2 Applications

The information obtained from simulations including engine deterioration can be

used in the same manner as the time-invariant trade-off studies. Table 2.4 contains

simulation data for a baseline case and four hypothetical alternatives. In all cases
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Table 2.4: Comparison between the effects of aging and the effects of variability and
mean values

Case Lower Bound Probability p̂i Upper Bound

Baseline −7.04 × 10−5 6.64 × 10−4 1.39 × 10−3

Reduced Throttle Deterioration −9.51 × 10−6 3.20 × 10−4 6.50 × 10−4

Reduced Tip Clearance Deterioration −1.24 × 10−5 1.91 × 10−4 3.96 × 10−4

Reduced Throttle Variation +6.87 × 10−5 4.23 × 10−4 7.78 × 10−4

Reduced Nominal Throttle −1.81 × 10−4 2.42 × 10−4 6.66 × 10−4

500 flight cycles are simulated. Suppose that a choice between two different materials

to be used for a given component (for example turbine seals) has to be made. One

of the materials might be easier to process and therefore leads to less component

variation, but wears at a higher rate than the other one. It is not an obvious choice

to which material is the better one. The variability and the wear rate can be used

to generate a table similar to 2.4. The easier to process material corresponds to the

fourth row and the other one corresponds to the second row. The table shows that

the less prone to wear material is the better design choice because it leads to lower

probability of instability. Even though this conclusion cannot withstand arguments

that the 99% confidence intervals overlap significantly for it to be unconditionally

true, the intervals can be tightened by using more samples and/or problem specific

Importance Sampling distributions.

Simulations including the effects of aging can also be used in setting the overhaul

period. Figure 2-14 shows the probability of instability as a function of the number

of flight cycles before overhaul. If the tolerable level of probability of instability is

known, then the corresponding overhaul cycle length can be read off from the figure.

This figure also underlines the advantages of Importance Sampling. The circle

and triangle show the probability of instability for 500 flight cycles and the upper

99% confidence limit as predicted by the Monte Carlo method. The lower bound

is not shown because it is negative. In this case Monte Carlo obtained about the

same confidence intervals as Importance Sampling with 4 times more samples. If

IS is run for the same number of samples as the Monte Carlo method, the much
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Figure 2-14: Probability of instability as a function of the number of flown flight
cycles before engine overhaul (or decommission)

better confidence interval and prediction as represented by the thick red line are

obtained. Better optimization of the IS parameters and use of more advanced IS

techniques tailored specifically at the problem at hand could lead to one or two orders

of magnitude reduction in the required number of samples. The exact value of the

probability pi also influences the performance ratio between the Monte Carlo method

and Importance Sampling – the lower the probability pi, the larger the benefits of

Importance Sampling.
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Chapter 3

A Probabilistic View of Stability

Margins

Stability Margin (SM) is a widely used measure of the stability of jet engines and

compression systems. One possible definition of SM is [22]

SM =
πinst − πact

πact

, (3.1)

where πinst is the pressure ratio at the instability and πact is the actual operating

pressure ratio. The two pressure ratios are taken at the same corrected mass flow

ṁcorr. The pressure ratio π is defined as:

π =
pt3

pt2

, (3.2)

where pt2 is the total pressure at the compressor inlet and pt3 is the total pressure at

the compressor exit. The SM is a measure how far the actual operating point is from

the instability line. The SM is shown in Figure 3-1. The detailed equations by which

the figure is constructed from the φ− ψ compressor and throttle curves are outlined

in Appendix A.

In Figure 3-1 the operating line corresponds to constant throttle setting coefficient

E, while the nominal stability line corresponds to the points to which the peak of
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the compressor pressure rise curve maps at different corrected speeds. The nominal

stability line is for condition of no distortion, no tip clearance asymmetry, no peak

variation line and has throttle setting E = 3.2. Point B lies on the real stability line

and it is the place where the stability point at fixed corrected flow moves to when

distortion, tip clearance asymmetry and peak variation are added. SM represents the

vertical distance from the actual operating point A to the point of instability onset

B. The distance from A to C is the available stability margin (aSM) and the distance

between B and C is the required stability margin (rSM). The required stability margin

is the minimum margin necessary to guarantee stable operation. The stability margin

can be expressed as the difference between aSM and rSM:

SM = aSM − rSM (3.3)

In order for Equation 3.3 to hold, the definition of rSM is

rSM =
πC − πB

πA

, (3.4)

while the definition of aSM follows Equation 3.1:

aSM =
πC − πA

πA

. (3.5)

The pressure ratios at A, B and C are denoted with πA, πB and πC , respectively. Due

to the “nondimensionalization” of the pressure ratio with the actual pressure ratio

πact the stability margin can be directly read off the figure.

The details of the process of obtaining the probability of instability from SM are

given in Section 3.3. The general procedure consists of three steps:

i) estimate rSM for each factor influencing the stability

ii) add all rSMs

iii) assume normal distribution for the sum and estimate the probability of insta-

bility from it.
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Figure 3-1: Graphical representation of the required stability margin (rSM), the avail-
able stability margin (aSM) and the stability margin (SM)

The following two sections exemplify some of the errors made in these steps.

3.1 The Additivity of Margins

The required stability margin (rSM) as shown in Figure 3-1 depends on the position

of point B, which itself depends on the factors reducing the stability of the jet engine.

When only the effect of the maximum pressure rise is considered, point B will be at

a given location and rSM will have some value rSMMPR. When only the effect of the

inlet distortion is considered, point B will be at another location and rSM will have

some value rSMID. When both, the effect of the maximum pressure rise and the effect

of the inlet distortion, are considered together, point B will be at a third location and

rSM will have some other value rSMMPR+ID. There is no fundamental reason why

the dynamic model should give values such that rSMMPR+ID = rSMMPR + rSMID.

The lack of additivity of SM is shown in Figure 3-2 which displays contours of the
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Figure 3-2: Contours of constant relative error RE in a case without asymmetric tip
clearance variation

relative error RE,

RE =
rSMMPR + rSMID − rSMMPR+ID

rSMMPR+ID

. (3.6)

The figure shows that the larger the departures from the nominal values of the two

factors, the larger the relative error RE. With only two factors the maximum error

obtained is about 2% of the rSM, but when a third factor is added the relative error

grows up to about 10% which makes it non-negligible. This is illustrated by Figure

3-3 which shows similar contours of constant error at one percent asymmetric tip

clearance amplitude.

3.2 Nonlinearity of Margins

The non-additivity of rSM does not manifest itself only when several different factors,

whose effects need to be added, are considered, but also when a single factor is
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Figure 3-3: Contours of constant relative error in a case with one percent asymmetric
tip clearance amplitude

considered. If rSM was additive (i.e. rSM(a+b) = rSM(a)+rSM(b)) then doubling

the cause when a single instability cause was considered should double the rSM.

Equivalently rSM should be linear relative to the cause. This is not always the case

as it can be seen from Figure 3-4. The stability degrading factor considered is the

nonuniform tip clearance and its amplitude is shown on the horizontal axis. The

required stability margin is computed for two different pressure rise curves. It can

be seen that for the steep pressure rise curve the dependence is approximately linear

except very close to zero. This happens because the section of the pressure rise curve

which has very high curvature is small and even small tip clearance deviation pushes

the operating point beyond it. The situation is different for shallower pressure rise

curves. The curvature is smaller, but it remains significant for a large portion of the

curve causing the initial deviation from linearity in the tip clearance - rSM relationship

observed for the second pressure rise curve in the figure. Beyond 3% tip clearance

amplitude the linearity assumption holds with reasonable accuracy. A description

of the curve numbering nomenclature used in this figure and in next section can be
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Figure 3-4: Required stability margin as a function of the asymmetric tip clearance
amplitude for two different compressor pressure rise curves

found in Appendix B.

Other factors in addition to tip clearance asymmetry could result in nonlinear

behavior. Figure 3-5 shows rSM for different levels of the maximum compressor

pressure rise and for different amplitudes of the inlet distortion. Weak nonlinearities

are visible in both plots, even though the ranges shown are very large and will not

be encountered in practice. When smaller, more realistic, ranges are considered the

linear approximation holds with acceptable accuracy for these two cases.

3.3 Probability of Instability Predictions Based on

Margins

The prediction of the probability of instability based on stability margin assumes that

the overall stability margin distribution is normal. Figure 3-6 illustrates the process

of determining the probability of instability from the stability margin. The area under

the tail of the distribution and to the left of the zero represents the probability of
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Figure 3-5: Weak nonlinearities in the required stability margin for variations in the
maximum pressure rise and the inlet distortion loss also exist.

instability.

Computationally the mean and the standard deviation of SM can be determined

from Monte Carlo simulations that, in addition, produce the distributions of SM. For

example, if three factors are considered and rSM is assumed additive then:

rSMtotal = rSM1 + rSM2 + rSM3, (3.7)

where rSMtotal is the total required stability margin and rSM1, rSM2, rSM3 are the

required stability margins for each of the factors. Given Equation 3.7 the following

way of computing the total mean and standard deviation can be devised:

µrSMtotal
= E[rSMtotal] = E[rSM1] + E[rSM2] + E[rSM3] = (3.8)

= µrSM1
+ µrSM2

+ µrSM3
(3.9)

σrSMtotal
=

√

var(rSMtotal) = (3.10)

=
√

var(rSM1) + var(rSM2) + var(rSM3) = (3.11)
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=
√

σ2
rSM1

+ σ2
rSM2

+ σ2
rSM3

, (3.12)

where µ and σ stand for the mean and the standard deviation respectively. It will be

shown that there are important cases when the normal distribution assumption used

to evaluate the probability of instability does not hold and leads to significant errors.

A better estimate of the probability of instability can be obtained by counting the

number of times SM is less than zero and dividing the result by the total number of

Monte Carlo samples.

3.3.1 The Importance of the Dominating Effects

A prediction based on the normality assumption can be quite good if the inputs

under consideration are normal and the dependence of SM on them is approximately

linear. One such case is shown in Figure 3-7. The only input considered in this

case is variation of the maximum pressure rise, which has a normal distribution.

The distribution of SM comes out approximately normal as confirmed by the normal

probability plot, indicating that good agreement between the direct counting of the
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number of negative SM and the prediction based on the normal curve fit can be

expected. The two predictions as cited in the figure come out to within a percent of

each other.
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Figure 3-7: Histogram of stability margin when the maximum pressure rise has vari-
ability of 6%; the distribution of stability margin is very close to normal and the
agreement between the probabilities obtained by the two methods is very good.

For inputs that are not normally distributed, the assumption of output normal-

ity can be poor, for example, the inlet distortion is exponentially distributed and

therefore its PDF is very far from normal. The distribution of SM when the only

factor considered is inlet distortion is shown in Figure 3-8. The distribution is clearly

not normal as indicated by the normal probability plot. Agreement between the two

probability prediction methods cannot be expected and indeed the disagreement is

roughly 20%.

The SM distributions presented above were obtained by considering a single input

to the model, but similar behavior can be observed when several inputs are considered.

Figure 3-9 shows a case when asymmetric tip clearance, inlet distortion and the

maximum pressure rise are all probabilistically sampled. The mean levels of the three
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Figure 3-8: Histogram of stability margin when the mean inlet distortion pressure loss
is 5% of the maximum pressure rise; the distribution of stability margin is clearly not
normal and this is reflected in the disagreement between the probabilities obtained
by the two methods.
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Figure 3-9: Stability margin distribution in the absence of dominating non-normal
effects
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Figure 3-10: Stability margin distribution in the presence of dominating non-normal
effects
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Figure 3-11: Stability margin distribution in the presence of dominating non-normal
effects; note that in this case the probability based on counting also begins to lose
attractiveness because there are too few samples with negative margins (7 out of 1000
samples)
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inputs have been chosen so that there is no dominating non-normal effect. In such

case the agreement between the two predictions is relatively good. Cases when the

mean levels of the inputs are such that a dominating factor is present are shown in

Figures 3-10 and 3-11. The normal fit is not appropriate and a large difference in the

predictions produced by the normal fit and the direct counting is observed. In the last

case the prediction based on counting the number of negative SMs cannot be trusted

because there are too few samples with negative SM. Therefore the direct counting

method even though “exact” in its nature can generate poor quality predictions if

the probability of instability is small and no or few actual cases of negative SM are

recorded.

An estimate in the counting method can be obtained by increasing the number of

samples (and therefore the execution time). Importance Sampling cannot be applied

to generate histograms of SM in this case because IS modifies the distributions. The

mean and the standard deviations of SM can still be estimated with IS if necessary.

3.3.2 Comparison Between the Approaches for Predicting

the Probability of Instability

Table 3.1 contains the numerical values of the probability of instability for the cases

considered in the previous section. In addition, it contains the predictions obtained

via IS to allow for comparison between the two approaches. The first column with

numbers contains the probability of instability obtained on the basis of the normality

assumption. The second column with numbers shows the probability as computed by

counting the number of negative SMs. This column is also labeled “MC over margin”

because the counting of the margins is equivalent to Monte Carlo method applied over

the margins. The last column with numbers contains the probability as predicted by

Importance Sampling or Monte Carlo (in parenthesis). Monte Carlo as a specific case

of Importance Sampling is used in the first few cases because the probability to be

simulated is not small enough to justify the use of IS.

The table once again illustrates that the prediction using the normality assumption
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Table 3.1: Probability of instability as predicted by the different methods. The format
of the numbers is p̂i ± z where z is the 99% confidence interval
Case SM normality SM counting/ IS (or MC) Figure

assumption MC over margin

F1 0.0685 0.0680 ± 0.0239 (0.0560 ± 0.0218) 3-7
F2 0.2150 0.1610 ± 0.0349 (0.1840 ± 0.0368) 3-8
F3 0.1714 0.1640 ± 0.0351 (0.1730 ± 0.0359) 3-9
F4 0.0509 0.0610 ± 0.0227 (0.0680 ± 0.0239) 3-10
F5 0.0000 0.0070 ± 0.0079 0.0028 ± 0.0013 3-11

(0.0050 ± 0.0067)
F6 5.2042 × 10−15 0 ± 0 1.5629 × 10−4 ± 7.6681 × 10−5

F7 4.3984 × 10−31 0 ± 0 9.4933 × 10−6 ± 7.9947 × 10−6

does not behave properly when the SM distribution is not normal. The predictions

based on the normality assumption in the last two cases are clearly unrealistically low.

The SM counting method also begins to give significant errors when the probability

drops to 5 × 10−6. For such cases, the SM counting does not encounter any events

during the simulation and predicts zero probability.

In summary, the Importance Sampling technique from the previous chapter (sup-

plemented with Monte Carlo when the probabilities to be estimated are large) is

the most general and gives the most realistic estimates of the three methods com-

pared here because it does not rely on any assumptions about normality, linearity

and additivity.

57



58



Chapter 4

Inlet Distortion – Asymmetric Tip

Clearance Interaction

4.1 Model Description

Inlet distortion and asymmetric tip clearance are both circumferential disturbances

to uniform annular flow. Their interaction can lead to enhancement or suppression

of the growth of the circumferential instability waves. It is to be expected that when

the distortion is aligned with a portion of increased tip clearance the compression

system will be less stable than if the distortion is aligned with a region of reduced tip

clearance.

There are models that consider inlet distortion and asymmetric tip clearance sep-

arately [6, 1]. They solve in one or another form the following equation for the axial

flow coefficient φ:
p4 − pt2

ρU2
= ψ(φ) − λ

∂φ

∂θ
− rµ

U

∂φ

∂t
, (4.1)

where U is the wheel speed, ρ is the density, λ and µ are parameters describing

the fluid inertia (defined in Appendix D), p4 is the plenum pressure and pt2 is the

inlet stagnation pressure. To unify the two models we note that the inlet distortion

enters via inlet stagnation pressure pt4 while the asymmetric tip clearance enters

the equation via the pressure rise ψ(φ) so the two effects are decoupled from each
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other and can be imposed separately. The computational procedure developed by

Hynes and Greitzer is extended to account for variable pressure rise ψ = ψ(φ, θ).

The circumferential angle θ is added as a parameter of ψ because every point on the

circumference has a different local pressure rise curve [1]. Following Graf, the pressure

rise curve at each point on the circumference is computed from the local tip clearance

using the correlation of Smith [18] that for each additional percent tip clearance there

is a corresponding 5% reduction in the maximum pressure rise.
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Figure 4-1: Inlet distortion shape and positioning relative to the asymmetric tip
clearance

The phase angle between the inlet distortion and the tip clearance asymmetry

determines whether the two add constructively or destructively. The definitions of

the phase angle α, the span, and the trailing and raising edges of the inlet distortion

are shown in Figure 4-1. The tip clearance asymmetry is assumed to be sinusoidal

in shape. This is not a significant restriction as it has been shown that the first

harmonic of the tip clearance asymmetry is the most important one [1]. The inlet

distortion is assumed to be almost square in shape, having a flat top where the loss is

constant and two half-sine shaped edges. These edges are added in order to improve
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the resemblance to a real non-screen induced inlet distortion, which does not have

discontinuous jumps. In the results to follow, the length of the edges is π/10 and the

length of the flat section is 2π/3. Even though the first few harmonics of the distortion

are the most important ones the length of the edges can significantly modify their

amplitudes and therefore the edges were deemed a necessary addition. The phase

angle α is defined as the angle between the point of largest tip clearance and the end

of the rising edge (the beginning of the flat section) of the distortion.

4.2 Parametric Study

4.2.1 The Effect of Operating Point

Figure 4-2 shows plots of the largest real part of the eigenvalues as a function of
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Figure 4-2: Dependence of the Phase Effect on the Operating Point (Throttle Setting
E)

the phase angle α at different levels of the throttle setting E. In one of the cases,

the curve crosses the zero line implying that the phase itself can drive the stability,

with some phase angles leading to stable conditions and some phase angles leading
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to unstable conditions. The approximately sine-wave shape of the curves shown can

be explained with the sine shape of the tip clearance asymmetry. It is to be expect

that the constructive and destructive effects of the distortion at α and α+ π are the

approximately same, but have different directions.

4.2.2 The Effect of Curve Shape

The effect of different curve shapes was explored by Graf [1], who found that some

pressure rise curves tend to cause slower decay rates (larger negative real parts of

the system eigenvalues) for the circumferential waves than others. A similar effect is

observed when the interaction of the asymmetric tip clearance with the distortion is

considered. Figures 4-3 and 4-4 display the dependence of the largest real part of
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Figure 4-3: Dependence of the Phase Effect on the Curve Shape to the Left of the
Peak

the eigenvalues on the phase for different pressure rise curves. All pressure rise curves

considered have the same maximum pressure rise and are subjected to inlet distortion

and tip clearance asymmetry with the same amplitudes. The throttle setting is also

kept the same in all simulations. Figure 4-3 considers pressure rise curves which are
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Figure 4-4: Dependence of the Phase Effect on the Curve Shape to the Right of the
Peak

the same to the right of the peak, but become steeper and steeper to the left of the

peak (see Appendix B for the curve type nomenclature). From the investigation of

Graf it is known that the steeper the curve on the left the more unstable the points

of the circumference operating in that region and therefore the less stable the whole

system is. The same effect is observed here. Figure 4-4 shows the analogous behavior

for curve variations on the right of the peak. In this case, the steeper the curve on

the right is, the more stable the compression system is.

4.2.3 Other Effects

The dependence of stability on two other parameters is shown in Figure 4-5. It has

been found by Graf that the higher harmonics of the tip clearance asymmetry have

much less influence on the stability than the first harmonic [1]. The first plot shows

that this continues to be the case when inlet distortion is added. In the particular case

shown, the first harmonic leads to instabilities at all phase angles while the second

and the third harmonic lead to very stable configurations. The amplitudes of the
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asymmetric tip clearance in all three cases is the same.

The second plot in the figure shows the dependence of the largest real part of the

eigenvalues on the phase α for different values of the distortion span angle. As it is to

be expected, the larger the distortion span, the larger the portion of the curve above

zero, i.e., the more likely the instability is.

0 2 4 6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

relative phase α [rad]

la
rg

es
t r

ea
l p

ar
t

first harmonic
second harmonic
third harmonic

0 2 4 6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

relative phase α [rad]

la
rg

es
t r

ea
l p

ar
t

 distortion span = π/3
 distortion span = 2π/3
 distortion span = π
distortion span = 4π/3

Figure 4-5: Dependence of the Phase Effect on the Harmonic Number and the Dis-
tortion Span Angle

4.3 The Probabilistic Effect of the Phase

Given that the phase angle has such a large effect on the stability of the system, it is

interesting to check what its effect on the probability of instability is.

In the stability margin approach one of the most obvious disadvantages of SM is

that it cannot capture the effect of the phase angle. Figure 4-6 displays contours of

constant relative error in the stability margin, when simple additivity is assumed and

no provisions for the phase angle are made. In two of the cases the error is on the

order of 2-3 percent and probably can be neglected without any serious consequences.
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In the other two cases shown, the error in the margin is the order of 20 to 50 percent

and cannot be ignored. Furthermore, the errors in these two cases are in different

directions because one of those cases corresponds to perfect in-phase alignment of the

distortion and the tip clearance asymmetry and the other one corresponds to perfect

out of phase alignment. Given the large error in the stability margin, large errors in

the prediction of the probability of instability are possible.
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Figure 4-6: Contours of relative error made when the additivity assumption for sta-
bility margin is used.

The errors in the stability margin approach can be contrasted to straightforward

inclusion of the phase angle as an input in the Importance Sampling approach. The

probabilistic distributions of the other parameters are the same as the ones used in

Chapter 2 and the importance sampling parameters, a and c, are also kept the same.

The probability of instability p̂i together with its confidence intervals is shown as a

function of the phase angle in Figure 4-7. Peaks in the probability can be seen when

the distortion and the tip clearance asymmetry are aligned and valleys when they

are not. The two peaks are a result of the probabilistic distribution used for the

tip clearance amplitude. Specifically ,the tip clearance amplitude is sampled from
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a normal distribution with zero mean. Therefore, negative values are as likely as

positive values. The effect of a negative value for the amplitude is to invert the

phase, more specifically to add π radians to it and thus causing the second peak in

the figure.
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Figure 4-7: Probability of instability as predicted by importance sampling for different
phase angles between the inlet distortion and the tip clearance asymmetry

Table 4.1: Probability of instability predictions
Angle IS estimate of pi SM estimate of pi

0 2.587 × 10−05 1.865 × 10−16

π
2

2.149 × 10−06 8.034 × 10−16

π 4.493 × 10−05 9.434 × 10−17

3π
2

2.437 × 10−06 1.489 × 10−18

Random 2.400 × 10−05 9.333 × 10−14

Inlet Distortion only 5.482 × 10−07 2.947 × 10−85

Tip Clearance Asymmetry only 3.734 × 10−07 2.080 × 10−20

A comparison between the values for the probability of instability predicted using

Importance Sampling and Stability Margin is shown in table 4.1. In all cases, the

predictions obtained via stability margin calculation are unrealistically low. The inlet
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distortion only case and the tip clearance only case are provided for reference and

once again underline the problem which the stability margin approach has with non-

normal distributions. The probabilistic distribution of the phase angle α in the case

labeled “Random” is uniform as there is no reason for a preferred angle to exist. The

stability margin approach fails to capture the qualitative behavior of the probability

of instability as a function of the phase angle. The large quantitative difference in

the numbers for the two columns of the table are due to additivity and normality

assumptions in the SM approach.
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Chapter 5

Conclusion

5.1 Summary

The following is a summary of the major findings and accomplishments of this work:

• A probabilistic treatment of compression system instability based on Impor-

tance Sampling and dynamical models [6, 1] has been developed. It has been

shown that the approach is capable of estimating the probability of instability

even when it is very small and when a Monte Carlo simulation with comparable

confidence intervals would require excessive computational times. The advan-

tage of Importance Sampling over ordinary Monte Carlo is realized by scal-

ing and translating the input distributions. A few possible applications of the

probabilistic approach in the early design stages of new jet engine development

projects have been outlined. The approach has been adapted to incorporate

aging effects.

• Shortcomings of the traditional stability margin approach have been identified.

Specifically, it was shown via examples that the common assumptions that

stability margin is additive, linear and normally distributed do not always hold.

The largest errors come from the normality assumption and can be avoided by

the use of Monte Carlo over the margin instead of the normal fit. The Monte

Carlo over the margin, however, has its own problem of requiring large number
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of samples for small confidence intervals.

• Importance Sampling estimates were compared to estimates obtained via the

two approaches based on stability margin. It was found that the approach as-

suming normality of the distribution gives inferior results compared to the other

estimation techniques. The Monte Carlo over the margin approach has perfor-

mance comparable to the Importance Sampling, but inserts an unnecessary step

for margin computation.

• The effect of the interaction between asymmetric tip clearance and inlet dis-

tortion was modeled. It was found that the interaction is strongly dependent

on the relative phase angle between the two. It was shown that situations

when the relative phase by itself drives the instability can occur. Overall the

model agreed qualitatively with the expected trends known from experience or

other models. It was shown that the more traditional stability margin approach

does not capture neither the qualitative, nor the quantitative behavior of the

probability of instability in the presence of the effects of the relative phase.

In conclusion, a new approach based on a known dynamical model and a proba-

bilistic technique specifically tailored to the problem at hand – Importance Sampling

– has been suggested. Its advantages over regular Monte Carlo methods and stabil-

ity margin approaches have been illustrated by a set of examples and possible issues

within the stability margin approach have been identified.

5.2 Future Work

A few possible directions of improvement in the order of importance are:

• Comparison of the predicted probabilities of instabilities against real instability

data from the field. This should be done for both, the time-variant and the

time-invariant simulation modes.
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• The dynamical model used in this work is incompressible in its nature. For a

more realistic simulation a compressible model is needed.

• A more realistic deterioration model can be incorporated into the simulation.

The current model assumes linear deterioration, but a model with high wear-

and-tear profile in the first few flight cycles will be more realistic.

• Once real inputs for an engine from the field are available the importance sam-

pling methods and distributions can be finely tuned for improved performance

on the problem at hand.

• The factors leading to the probabilistic nature of the maximum compressor

pressure rise need to be differentiated and fully investigated.
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Appendix A

Pressure Rise Curve to

Compressor Map Conversion

A typical compressor pressure rise characteristic used in the simulations is presented

in Figure A-1. The dividing point between the stable and unstable region is assumed

to be the peak of the characteristic [4]. A compressor map showing the corrected

mass-flow versus the pressure ratio is obtained from the pressure rise characteristic

using the following equations:

π = 1 + (
ρn2U2

nom

pt

)ψ (A.1)

ṁcorr = m

√
Tt

pt

= (AUnomn

√

ρ

ptR
)φ, (A.2)

where Unom is the nominal wheel speed, pt is the inlet stagnation pressure, ρ is the

density, n is the wheel speed fraction, Tt is the inlet stagnation pressure, ψ is the

pressure rise and φ is the mass flow coefficient.

A sample compressor map assuming A = 1 m2, Unom = 100 m/s, pt = 1.013× 105

Pa and ρ = 1.225 kg/m3 is shown in Figure A-2. The percentages next to each line

indicate the fractional speed n. Figure A-2 can be transformed into Figure 3-1 by

normalization of the vertical and horizontal scales with the actual pressure ratio πact

and the actual corrected mass-flow (ṁcorr)act.
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Figure A-1: Sample compressor pressure rise characteristic with the stable and un-
stable regions identified
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Figure A-2: Compressor map generated from the sample pressure rise characteristic
shown in Figure A-1
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Appendix B

Compressor Pressure Rise Curves

The compressor pressure rise curves used in this thesis have been generating by “glu-

ing” together pieces of parabolas. The different pieces are shown in Figure B-1 and

the gluing has been performed at the top of each parabola where the slope of the

curve is zero. The type number associated with each curves is a four digit number.

The first two digits are 1 and 0 and provide distinction from all previous curve type

definitions used within the project code (unique identification numbers are easier to

use than context dependent identification numbers). The third digit is associated

with the curve on the left of the peak. The larger the digit is, the steeper the curve

is. The exact equation of the parabola is given by:

ψ = 0.8 − 1.8 ∗ 2k ∗ (φ− 0.5)2 for 0 ≤ φ ≤ 0.5, (B.1)

where k is the third digit in the curve type number. The same equation is used for

the right hand side of the curve:

ψ = 0.8 − 1.8 ∗ 2l ∗ (φ− 0.5)2 for 0.5 ≤ φ ≤ 1, (B.2)

where l is the fourth digit in the curve type number.

A few examples of different curve types are shown in Figure B-2.
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Figure B-1: Left of the peak and right of the peak curve shapes and their naming
conventions
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Figure B-2: Examples of curves assembled from left of the peak and right of the peak
pieces
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Appendix C

Tables of Simulation Parameters

This appendix contains the minimum set of input values required for reproduction of

the results shown within this thesis. If within a section of the following four tables

there is an unspecified input then it either has the default value if it is a required

input for that particular simulation, or its value is irrelevant because it is not an

input parameter for that particular simulation. For example the section on Table 4-7

does not contain a number for the harmonic number of the tip clearance amplitude

because it has the default value of 1; alternatively for the same table, the standard

deviation of the maximum pressure rise is not given because the maximum pressure

rise is not varied during the simulations incorporated into the table.
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Table C.1: Parameters used for generation of the figures and tables in Chapter 2
Global parameters

Parameter Value Parameter Value
Greitzer’s B parameter 0.05 λ parameter of the Hynes-Greitzer model 1.0

Inlet distortion span angle 2π
3

µ parameter of the Hynes-Greitzer model 1.01

Parameters for Figures 2-10, 2-11 and 2-12
Parameter Value Parameter Value
Curve type 1011 Mean throttle setting Enom = (µE)0 2.9

St. Dev. of inlet distortion (σID)0 0.02(µMPR)0 St. Dev. of tip clearance amplitude (σTC)0 1%
Mean maximum pressure rise (µMPR)0 0.8 Sample Size 1000

St. Dev. of maximum pressure rise (σMPR)0 0.015(µMPR)0 St. Dev. of throttle setting (σE)0 0.02Enom

Tip clearance harmonic 1 Phase angle α π
2

Parameters for Table 2.4
Parameter Value Parameter Value

Mean throttle setting Enom = (µE)0 2.9 St. Dev. of throttle setting (σE)0 0.01Enom

Reduced throttle deterioration 0.5Γ Reduced tip clearance deterioration 0.2Γ
Reduced throttle variation 0.5(σE)0 Reduced nominal throttle 0.99Enom

No maximum pressure rise variation; no inlet distortion variation

Parameters for Figure 2-14
Parameter Value Parameter Value

Mean throttle setting Enom = (µE)0 2.9 St. Dev. of throttle setting (σE)0 0.01Enom

St. Dev. of inlet distortion (σID)0 0.02(µMPR)0 St. Dev. of tip clearance amplitude (σTC)0 1%
Mean maximum pressure rise (µMPR)0 0.8 Curve type 1011

No maximum pressure rise variation
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Table C.2: Parameters used for generation of the figures and tables in Chapter 3
Parameters for Figures 3-2 and 3-3

Parameter Value Parameter Value
Nominal maximum pressure rise (µMPR)0 0.8 Tip clearance amplitude 1%

Mean throttle setting Enom = (µE)0 2.9 Curve type 1011
Tip clearance harmonic 1 Phase angle α π

2

Parameters for Figure 3-4
Parameter Value Parameter Value

Nominal maximum pressure rise (µMPR)0 0.8 Mean throttle setting Enom = (µE)0 2.9
Tip clearance harmonic 1

Parameters for Figure 3-5
Parameter Value Parameter Value

Nominal maximum pressure rise (µMPR)0 0.8 Curve type 1011
Mean throttle setting Enom = (µE)0 2.9

Parameters for Figure 3-7
Parameter Value Parameter Value

Nominal maximum pressure rise (µMPR)0 0.8 Mean throttle setting Enom = (µE)0 2.9
St. Dev. of maximum pressure rise (σMPR)0 0.06(µMPR)0 Sample Size 1000
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Table C.3: Parameters used for generation of the figures and tables in Chapter 3 (continued)
Parameters for Figure 3-8

Parameter Value Parameter Value
Nominal maximum pressure rise (µMPR)0 0.8 Mean throttle setting Enom = (µE)0 2.9

St. Dev. of inlet distortion amplitude (σID)0 0.04(µMPR)0 Sample Size 1000

Parameters for Figure 3-9
Parameter Value Parameter Value

Nominal maximum pressure rise (µMPR)0 0.8 Mean throttle setting Enom = (µE)0 2.9
St. Dev. of maximum pressure rise (σMPR)0 0.06(µMPR)0 Std. Dev. of tip clearance amplitude 1%
St. Dev. of inlet distortion amplitude (σID)0 0.025(µMPR)0 Sample Size 1000

Parameters for Figure 3-10
Parameter Value Parameter Value

Nominal maximum pressure rise (µMPR)0 0.8 Mean throttle setting Enom = (µE)0 2.9
St. Dev. of maximum pressure rise (σMPR)0 0.015(µMPR)0 Std. Dev. of tip clearance amplitude 1%
St. Dev. of inlet distortion amplitude (σID)0 0.025(µMPR)0 Sample Size 1000

Parameters for Figure 3-11
Parameter Value Parameter Value

Nominal maximum pressure rise (µMPR)0 0.8 Mean throttle setting Enom = (µE)0 2.9
St. Dev. of maximum pressure rise (σMPR)0 0.0075(µMPR)0 Std. Dev. of tip clearance amplitude 1%
St. Dev. of inlet distortion amplitude (σID)0 0.0125(µMPR)0 Sample Size 1000

Parameters for Table 3.1
Parameter Value Parameter Value

Nominal maximum pressure rise (µMPR)0 0.8 Mean throttle setting Enom = (µE)0 2.9
Case F6

St. Dev. of maximum pressure rise (σMPR)0 0.0050(µMPR)0 St. Dev. of inlet distortion amplitude (σID)0 0.0083(µMPR)0

Case F7

St. Dev. of maximum pressure rise (σMPR)0 0.0037(µMPR)0 St. Dev. of inlet distortion amplitude (σID)0 0.0063(µMPR)0
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Table C.4: Parameters used for generation of the figures and tables in Chapter 4
Parameters for Figure 4-2

Parameter Value Parameter Value
Nominal maximum pressure rise (µMPR)0 0.8 Curve type 1033

St. Dev. of inlet distortion amplitude (σID)0 0.02(µMPR)0 Std. Dev. of tip clearance amplitude 1%

Parameters for Figures 4-3 and 4-4
Parameter Value Parameter Value

Nominal maximum pressure rise (µMPR)0 0.8 Mean throttle setting Enom = (µE)0 2.7
St. Dev. of inlet distortion amplitude (σID)0 0.02(µMPR)0 Std. Dev. of tip clearance amplitude 1%

Parameters for Figure 4-5
Parameter Value Parameter Value

Nominal maximum pressure rise (µMPR)0 0.8 Curve type 1044
St. Dev. of inlet distortion amplitude (σID)0 0.02(µMPR)0 Std. Dev. of tip clearance amplitude 1%
Left plot: Mean throttle setting Enom = (µE)0 2.8 Right plot: Mean throttle setting Enom = (µE)0 2.75

Parameters for Figure 4-6
Parameter Value Parameter Value

Nominal maximum pressure rise (µMPR)0 0.8 Curve type 1011
St. Dev. of inlet distortion amplitude (σID)0 0.04(µMPR)0 Std. Dev. of tip clearance amplitude 1%

Mean throttle setting Enom = (µE)0 2.9

Parameters for Table 4.1 and Figure 4-7
Parameter Value Parameter Value

Nominal maximum pressure rise (µMPR)0 0.8 Curve type 1055
St. Dev. of inlet distortion amplitude (σID)0 0.005(µMPR)0 Std. Dev. of tip clearance amplitude 0.33%

Mean throttle setting Enom = (µE)0 2.9
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Appendix D

Details of the Hynes-Greitzer

Model

The algorithm of Hynes and Greitzer from [6] is used for compression system stability

determination. The steady state mass flow distribution across the circumference is

found from the combined compressor pressure rise and throttle equations:

p5 − pt2(θ)

ρU2
= ψ(φ(θ), θ) − λ

∂φ

∂θ
− E(

1

2π

∫ 2π

0
φ(θ)dθ)2. (D.1)

This equation is solved by a spectral collocation method which represents the mass-

flow in Fourier series and allows efficient calculation of the differential and integral

operators. The collocation points are uniformly distributed along the circumference

and the resulting set of nonlinear equations is solved using the standard dogleg algo-

rithm provided by fsolve in Matlab [23].

The coefficients λ and µ describing the fluid inertia are defined as:

λ =
U

r

N
∑

i=1

τRi
(D.2)

µ =
U

r

[

N
∑

i=1

(τRi
+ τSi

) + τIGV

]

, (D.3)

where U is the mean wheel speed, r is the mean wheel radius and the time constants
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τ are defined as:

τ =
bx

U cos2 γ
, (D.4)

where bx is the axial chord and γ is the stagger angle [6]. The subscripts S and R

stand for stator and rotor, respectively.

Equation 4.1 gives rise to a small perturbation equation:

δp4 − δpt2

ρU2
=
∂ψ

∂φ
δφ− λ

∂δφ

∂θ
− rµ

U

∂δφ

∂t
. (D.5)

Assuming the following two spectral decompositions

φ =
∞
∑

n=−∞

ane
inθ+iωt (D.6)

∂ψ

∂φ
=

∞
∑

n=−∞

cne
iωθ, (D.7)

a system of equations is obtained:

((
2

|n| + µ)w̃ + λn+ ic0)an = −i
∞
∑

s=−∞, s 6=n

cn−sas, for n 6= 0 (D.8)

(lcω̃ + ic0)a0 − iδp̂4 = −i
∞
∑

s=−∞, s 6=0

c−sas, for n = 0 (D.9)

where ω is the frequency of the perturbation, ω̃ = ωr
U

is the nondimentionalized

frequency, n is the harmonic number, lc is the nondimensional compressor length

and δp̂4 = δp
ρU2 is the nondimensional plenum pressure perturbation. One additional

equation can be obtained using mass conservation for the plenum volume

[

4B2lciω̃ +
π

E(
∫ 2π
0 φ(θ)dθ)

]

δp̂4 = a0, (D.10)

where B = U
2a

√

Vplenum

A2Ltot
is Greitzer’s parameter for the compression system, a is the

speed of sound, Vplenum is the plenum volume, A2 is the flow-through area and Ltot is

the overall effective length of the compressor duct. Typically Equations D.9 and D.10

are combined into one equation eliminating δp̂4, but writing them separately allows
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the use of efficient numerical eigenvalue algorithms. The numerical values of ω̃ are

obtained by truncating Equations D.8 and D.9, and solving them together with D.10

as an eigenvalue problem. The values of the model parameters are given in Table D.1

and correspond to the values for one of the experimental test compressors at MIT

and were used by Graf in his asymmetric tip clearance investigation [1]. The values of

cn are determined from the compressor pressure rise characteristic using Fast Fourier

Transform and the value of the integral in Equation D.10 comes from the steady state

solution found earlier.

Table D.1: Hynes-Greitzer model parameters
Parameter Value

B 0.05
λ 1.00
µ 1.01
lc 4 + µ = 5.01
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